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ABSTRACT

REPRESENTATIONS AND ACTIONS OF HOPF ALGEBRAS

Ramy Yammine

DOCTOR OF PHILOSOPHY

Temple University, May, 2021

Dr. Martin Lorenz, Chair

The larger area of my thesis is Algebra; more specifically, my work belongs to

the following two major branches of Algebra: representation theory and invariant

theory. In brief, the objective of representation theory is to investigate algebraic ob-

jects through their actions on vector spaces; this allows the well-developed toolkit

of linear algebra to be brought to bear on complex algebraic problems. The the-

ory has played a crucial role in nearly every subdiscipline of pure mathematics.

Outside of pure mathematics, representation theory has been successfully used, for

instance, in the study of symmetries of physical systems and in describing molec-

ular structures in physical chemistry. Invariant theory is another classical algebraic

theme permeating virtually all areas of pure mathematics and some areas of applied

mathematics as well, notably coding theory. The theory studies actions of algebraic

objects, traditionally groups and Lie algebras, on algebras, that is, vector spaces

that are equipped with a multiplication.

The representation theory of (associative) algebras provides a useful setting in

which to study many aspects of the two most classical flavors of representation

theory under a common umbrella: representations of groups and of Lie algebras.

However, it turns out that general algebras fail to capture certain features of group

representations and the same can be said for representations of Lie algebras as well.

The additional structure that is needed in order to access these features is naturally

provided by the important class of Hopf algebras. Besides unifying the representa-

tion theories of groups and of Lie algebras, Hopf algebras serve a similar purpose
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in invariant theory, allowing for a simultaneous treatment of group actions (by au-

tomorphisms) and Lie algebras (by derivations) on algebras. More importantly,

actions of Hopf algebras have the potential of capturing additional aspects of the

structure of algebras they act on, uncovering features that cannot be accessed by

ordinary groups or Lie algebras.

Presently, the theory of Hopf algebras is still nowhere near the level that has

been achieved for groups and for Lie algebras over the course of the past century and

earlier. This thesis aims to make a contribution to the representation and invariant

theories of Hopf algebras, focusing for the most part on Hopf algebras that are not

necessarily finite dimensional. Specifically, the contributions presented here can be

grouped under two headings:

(i) Invariant Theory: Hopf algebra actions and prime spectra, and

(ii) Representation Theory: the adjoint representation of a Hopf algebra.

In the work done under the heading (i), we were able to use the action of co-

commutative Hopf algebras on other algebras to "stratify" the prime spectrum of

the algebra being acted upon, and then express each stratum in terms of the spec-

trum of a commutative domain. Additionally, we studied the transfer of properties

between an ideal in the algebra being acted upon, and the largest sub-ideal of that

ideal, stable under the action. We were able to achieve results for various families

of acting Hopf algebras, namely cocommutative and connected Hopf algebras.

The main results concerning heading (ii) concerned the subalgebra of locally finite

elements of a Hopf algebra, often called the finite part of the Hopf algebra. This

is a subalgebra containing the center that was used successfully to study the ring

theoretic properties of group algebras, Lie algebras, and other classical structures.

We prove that the finite is not only a subalgebra, but a coideal subalgebra in gen-

eral, and in the case of (almost) cocommuative Hopf algebra, it is indeed a Hopf

subalgebra. The results in this thesis generalize earlier theorems that were proved

for the prototypical special classes of Hopf algebras: group algebras and enveloping

algebras of Lie algebras.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Representation theory and invariant theory

The objective of Representation Theory is to investigate algebraic objects through

their linear actions on vector spaces; this allows the well-developed toolkit of linear

algebra to be brought to bear on more complex algebraic problems. The theory has

played a crucial role in nearly every subdiscipline of pure mathematics. Outside of

pure mathematics, Representation Theory has been successfully used, for instance,

in the study of symmetries of physical systems [51] and in describing molecular

structures in physical chemistry [12].

Invariant Theory is another classical algebraic theme permeating virtually all

areas of pure mathematics and some areas of applied mathematics as well, notably

coding theory; see, e.g., [50] and the references therein. The theory studies actions

of algebraic objects, traditionally groups or Lie algebras, on algebras, that is, vector

spaces that are equipped with a multiplication. Depending on the algebra under

consideration, the theory has a strong geometric component. For example, the ordi-

nary polynomial algebra k[x1, . . . , xn] is closely tied to affine n-space kn and group

actions on k[x1, . . . , xn] are thought of as symmetries of affine space.

We now give some brief background on the main “flavors” of Representation
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Theory and Invariant Theory insofar as they are relevant to this thesis.

1.1.2 Group representation theory

Historically, the first application of representation theory in its current form was

to the study of groups. In detail, a representation of a group G over a field k is a

group homomorphism

ρ : G→ GL(V ), g 7→ gV ,

where V is a k-vector space and GL(V ) denotes the group of invertible linear trans-

formations of V . The dimension of V , which may be infinite, is called the degree

of the representation. The representation ρ is called irreducible if V 6= 0 and no

subspace of V other than 0 and V itself is stable under the transformations gV for all

g ∈ G. Such representations play a crucial role in group representation theory. In-

deed, if the groupG is finite and the characteristic of the base field k does not divide

the order |G|, then every representation of G over k can be decomposed, essentially

uniquely, into a direct sum of irreducible representations. This reduces the problem

of describing all representations of G over k to the case of irreducible representa-

tions. The following key result from classical group representation theory, due to

Frobenius [17], severely narrows the possibilities for the irreducible representations

of G.

Frobenius’ Theorem. Let G be a finite group and let k be an algebraically closed

field whose characteristic does not divide the order of G. Then the degree of every

irreducible representation of G over k is a divisor of the order of G.

While the complete description of all irreducible representations of a given finite

group is generally still a formidable task, this has in fact been achieved for many

groups of great interest. Foremost amount them are the symmetric groups, where

a description of the irreducible representations can be given in combinatorial terms

using the so-called Young graph of partitions; see Okounkov and Vershik [42], [53]

(who elaborate on earlier work of Young [58]). Additionally, it is worth noting
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that Representation Theory was the main tool used in the proof of the celebrated

Classification Theorem of finite simple groups.

1.1.3 Invariant theory of groups

Invariant Theory, in algebraic terms, is concerned with study of the relationship

between an algebra A on which a group G acts by algebra automorphisms. The

main goal is to describe the set of all fixed points in A under the action of G; this

is in fact a subalgebra of A, called the subalgebra of G-invariants and denoted by

AG. The most traditional setting of invariant theory arises from a representation

ρ : G→ GL(V ) of G as above. The representation ρ gives rise to an action of G by

algebra automorphisms on the symmetric algebra A = S(V ). If dimk V = n, then

a choice of basis for V yields an isomorphism S(V ) ∼= k[x1, . . . , xn]. This type

of action is commonly called a linear action and the resulting algebra of invariants

S(V )G is often referred to as an algebra of polynomial invariants. The ring theo-

retic properties of polynomial invariants have been thoroughly explored, especially

for finite groups G. Early work of Hilbert [21] and of E. Noether [41] established

that S(V )G is an integrally closed affine domain over k and S(V ) is a finitely gen-

erated S(V )G-module. One of the most celebrated results on polynomial invariants

is the following.

Shephard-Todd-Chevalley Theorem ([48], [11]). Suppose that the finite group G

acts linearly on the polynomial algebra S(V ) ∼= k[x1, . . . , xn] and that the charac-

teristic of k does not divide the order of G. Then the invariant algebra S(V )G is a

polynomial algebra over k precisely if G acts as a pseudoreflection group on V .

Here, an element g ∈ G is called a pseudoreflection on V if the linear transforma-

tion IdV −gV of V has rank at most 1; the group G acts as a pseudoreflection group

on V if G can be generated by pseudoreflections on V .
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1.1.4 From groups and other structures to algebras

As has first been observed by Emmy Noether, group representation theory can

be embedded into the more general representation theory of associative algebras.

This is accomplished by associating to each group G and each base field k an as-

sociative algebra, the so-called group algebra kG. The precise definition of kG,

while not difficult, is omitted here, but we do at least mention that the operative fact

concerning the group algebra kG, in the context of representation theory, is that its

representations of kG are in natural one-to-one correspondence with the representa-

tions of G over k. In particular, irreducible representations of G over k correspond

to irreducible kG-modules in the usual ring-theoretic sense. Here, a representation

of a k-algebra A is a homomorphism of k-algebras

ρ : A→ Endk(V ), a 7→ aV ,

where V is a k-vector space. Representations of A can equivalently be described in

the language of left A-modules.

Similar reductions to the case of algebras exist for the representations of other

algebraic structures as well. For example, in the case of a Lie algebra g, the algebra

in question is the so-called enveloping algebra of g; for a quiver Γ, the vehicle is

the path algebra of Γ.

1.1.5 Hopf algebras

While the representation theory of associative algebras provides a useful setting

in which to study many aspects of group representation theory, it turns out that gen-

eral associative algebras fail to capture certain features of group representations,

and the same can be said for representations of Lie algebras as well. Additional

structure is needed in order to access these features, and this structure is naturally

provided by the important class of Hopf algebras. The formal definition of Hopf

algebras is famously unwieldy and will be discussed in more detail below. In brief,

a Hopf k-algebra is a k-algebra H—so there is a multiplication and unit—but there

are three additional structure maps: the comultiplication ∆: H → H ⊗ H , the
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counit ε : H → k, and the antipode S: H → H . All these maps must satisfy certain

axioms, which we will spell out in the next chapter. For example, there is the coas-

sociativity axiom for the comultiplication, which dualizes (in the category-theoretic

sense of reversing arrows) the familiar associativity axiom for the multiplication.

A remarkable feature of the Hopf algebra axioms is their self-duality. This

makes it possible to equip the linear dualH∗ = Homk(H, k) of any finite-dimensional

Hopf algebra H with the structure of a Hopf algebra by employing the transposes

of the structure maps of H as the structure maps of H∗.

The comultiplication, counit and antipode of a Hopf algebra H impart addi-

tional structure on the category of representations of H; this category will be de-

noted by RepH . Specifically, the comultiplication ∆ allows to form the tensor

product representation V ⊗W of any two given V,W ∈ RepH and the counit ε

yields a distinguished object of RepH , the so-called trivial representation 1. With

these constructions, RepH becomes a monoidal category. Furthermore, using the

antipode S, the linear dual V ∗ = Homk(V, k) of any V ∈ RepH becomes a repre-

sentation of H in its own right.

Besides unifying the representation theories of groups and of Lie algebras, Hopf

algebras serve a similar purpose in invariant theory, allowing for a simultaneous

treatment of group actions (by automorphisms) and Lie algebras (by derivations)

on algebras. In addition, due to the relevance of some aspects of Hopf algebras in

theoretical physics, certain Hopf algebras are now commonly referred to as quan-

tum groups. The resulting invariant theory, often called quantum invariant theory,

is one of the main research areas in the current mainstream of noncommutative al-

gebra. Furthermore, monoidal categories with a notion of a dual are presently the

subject of intense investigation, in part due to the fact that they provide the math-

ematical underpinnings of the emerging theory of quantum computing; see [46],

[16]. Hopf algebras feature prominently in this endeavor. However, the theory of

Hopf algebras is still nowhere near the level that has been achieved for groups and

for Lie algebras. For example, the generalization of Frobenius’ Theorem to the

context of Hopf algebra is a longstanding open conjecture due to Kaplansky [24]

and the Shephard-Todd-Chevalley Theorem also awaits its proper extension. The
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ring-theoretic properties of Hopf algebras, their actions and their representations,

present a fertile research area where many fundamental results are waiting to be

discovered.

1.2 Summary of research

My work during my time as a PhD student aimed to make a contribution to the

theory Hopf algebras focusing on their representations and their actions on algebras.

My main contributions thus far can be grouped under two headings:

Invariant Theory: Hopf algebra actions and prime spectra, and

Representation Theory: the adjoint representation of a Hopf algebra.

I will describe my findings, and some ideas for future work, in more detail below.

In the forthcoming, H will denote a Hopf algebra over a field k, with antipode S

and counit ε. I will also use the Sweedler comultiplication notation

∆h = h(1) ⊗ h(2) for h ∈ H.

Moreover, A will always be an H-module algebra, that is, A is a k-algebra that is

also a leftH-module, via an “action” homomorphismH⊗A→ A, h⊗a 7→ h.a, sat-

isfying two compatibility conditions: h.(ab) = (h(1).a)(h(2).b) and h.1A = ε(h)1A

for h ∈ H and a, b ∈ A. When specialized to group algebras, these conditions state

that the group in question acts by algebra automorphisms; for enveloping algebras

of Lie algebras, they state that the Lie algebra acts by derivations.

1.2.1 Hopf algebra actions and (semi-)primeness.

An ideal I of A such that H.I ⊆ I will be called an H-ideal of A. For an

arbitrary ideal I , we may take the sum of all H-ideals that are contained in I; this

is the unique largest H-ideal of A that is contained in I , called the H-core of I .

We will denote the H-core of I by I:H below. The relationship between ideals

and their H-cores is interesting in general, and it is of particular interest for prime
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ideals. Indeed, in studying a given k-algebra A, one of the prime objectives is to

understand the set of prime ideals of A, commonly denoted by SpecA.

More specifically denoting the set of all ideals of A by IdealsA and the subset

of all H-ideals by H-IdealsA, we have the core operator,

· :H : IdealsA −→ H-IdealsA.

This operator evidently preserves intersections and it is the identity on the subset

H-IdealsA ⊆ IdealsA. We are interested in the question as to when this operator

preserves primeness or semiprimeness. Recall that I is said to be semiprime if

A/I has no nonzero nilpotent ideals or, equivalently, I is an intersection of prime

ideals. The semiprimeness question may seem a mere technicality, but it can be

reformulated in various alternative ways, and semiprimeness is a valuable ring-

theoretic commodity without which the investigation of H-module algebras can be

rather daunting. In joint work with Lorenz and Nguyen [35], we have shown that

the operator · :H does indeed preserve semiprimeness when the Hopf algebra H is

cocommutative and char k = 0.

In subsequent work [57], I studied actions of a connected Hopf algebras on A,

and showed that the core operator · :H does in fact preserve primeness in this case

(and hence semiprimeness as well) when char k = 0.

Theorem 1.2.1. LetH be a connected Hopf algebra over a field of characteristic 0,

letA be anH-module algebra, and let I be an ideal ofA. If I is prime (semi-prime,

completely prime), then so is I:H .

Recall that a Hopf algebra is said to be connected if the base field k is its only

simple subcoalgebra. Examples of connected Hopf algebras include universal en-

veloping algebras of Lie algebras, and coordinate rings of affine algebraic unipotent

groups [54]. In the special case of enveloping algebras of Lie algebras, the above

theorem is due to Dixmier; see [15, 3.3].
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1.2.2 Hopf algebra actions and prime spectra: stratification.

The existence of an action of a Hopf algebra H on A leads to a useful grouping

of the prime ideals of A, called the H-stratification of SpecA. This stratification

employs the H-core operator discussed in the previous paragraph. Specifically, it

turns out that if I = P :H is the H-core of some prime P ∈ SpecA, then I always

satisfies a condition resembling the familiar defining condition of “primeness,” but

restricted to H-ideals: if J1J2 ⊆ I for H-ideals Ji , then at least one of the Ji must

be contained in I . Such ideals I are called H-prime. Thus, denoting the collection

of all H-primes of A by H-SpecA, the H-core operator restricts to a map

· :H : SpecA→ H-SpecA.

Under mild additional conditions on A or the H-action on A, it is known that

this map is surjective. For example, this holds whenever dimk H.a < ∞ for all

a ∈ A, which is automatic for actions of finite dimensional Hopf algebras, or when

A is Noetherian. The fibers of this map, that is, the sets

SpecI A
def
= {P ∈ SpecA | P :H = I} (I ∈ H-SpecA),

are called the H-strata of SpecA and the resulting partition

SpecA =
⊔

I∈H-SpecA

SpecI A

is the aforementioned H-stratification. Stratifications of this type were pioneered

by Goodearl and Letzter [20] in the case of group actions or, equivalently, actions

of group algebras H = kG; they have proven to be a useful tool in the investigation

of many questions in non-commutative ring theory, such as the Dixmier-Moeglin

equivalence (to be discussed in detail later), the catenarity problem [56], [55], and

the computation of various ring-theoretic invariants, such as heights of prime ideals

or Gelfand–Kirillov dimensions [18].

For rational actions of a connected affine algebraic k-group G (with k alge-

braically closed), one has a description of each stratum SpecI A in terms of the

prime spectrum of a suitable commutative algebra [31, Theorem 9]. In joint work
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with Lorenz and Nguyen [35], we were able to generalize this result to the con-

text of cocommutative Hopf algebras: Assuming H to be cocommutative and the

H-action on A to be “integral,” a technical condition that replaces “rationality” and

“connectedness” for algebraic groups and their actions, we describe eachH-stratum

SpecI A in terms of the spectrum of a commutative algebra that can be calculated

from I . The detailed formulation of this result is too technical to be included here.

For the precise statement, see Theorem 4.1.1 below.

1.2.3 The adjoint representation of a Hopf algebra

The (left) adjoint action is the action of H on itself defined by:

h.k = h(1)k S(h(2)) (h, k ∈ H).

The Hopf algebra H , equipped with this particular H-action, is a left H-module

algebra that will be denoted by Had. It is easy to see that the invariant subalgebra of

Had is given by (Had)
H = ZH , the center of H . Our main interest is in the locally

finite part,

Had fin = {h ∈ H | dimk H.h <∞};

this is always a subalgebra ofH containingZH , butHad fin has additional properties

that generally fail for the center. Of course, if H is finite dimensional, then Had fin =

H; so we are mostly concerned with infinite-dimensional Hopf algebras below.

In the special case of a group algebra, H = kG, the adjoint action is the familiar

G-action by conjugation. It turns out that (kG)ad fin = kGfin, the subgroup algebra

of

Gfin = {g ∈ G | g has finitely many G-conjugates},

the so-called FC-center of G. In particular, Had fin always is a Hopf subalgebra of

kG, whereas this holds for (kG)Had = Z(kG) only under very severe restrictions

on the group G. In the literature, Gfin is traditionally denoted by ∆(G), a notation

introduced by Passman before Hopf algebras entered the mainstream of research in

algebra and not to be confused with the notation for the Hopf comultiplication; this
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notation has led to the nomenclature “∆-methods” in the study of group algebras. It

turns out that a significant number of ring-theoretic properties of group algebras are

controlled by the FC-center; see [43]. The locally finite part of the adjoint represen-

tation has since also been explored for enveloping algebras [5], [6], [7] and for more

general Hopf algebrasH [4], [23], [29]. In the case whereH is the enveloping alge-

bra of a Lie algebra over a field k of characteristic 0, it has been shown in the above

references that Had fin is an enveloping algebra itself, and hence it is again a Hopf

subalgebra of H . While this no longer remains true for a quantized enveloping al-

gebra H = Uq(g)—see [4, Example 2.8] or [29] for counterexamples—Joseph and

Letzter [23], [29] have shown that Uq(g)ad fin is at least a left coideal subalgebra of

Uq(g), that is, a subalgebra that is also a left coideal. In recent joint work with Kolb,

Lorenz, and Nguyen [25], we were able to prove that this holds generally: Had fin is

always a left coideal subalgebra of H , for any Hopf algebra H . Furthermore, if H

is virtually cocommutative (i.e., H is finitely generated as right module over some

cocommutative Hopf subalgebra), then Had fin is in fact a Hopf subalgebra of H .

Theorem 1.2.2. (a) Had fin is always a left coideal subalgebra ofH , for any Hopf

algebra H .

(b) If H is virtually cocommutative, then Had fin is a Hopf subalgebra of H .

1.3 Layout of this thesis and future projects

Chapter 2 serves to assemble the preliminaries needed for the exposition of

the work descrived in the previous paragraph. The core of this thesis is Chapter

3, where I present my work descrived in 1.2.1 above in detail, elaborating on the

published version [57]. In the concluding Chapter 4, I describe my joint work with

my adviser and other co-authors in a brief survey format without proofs.

I am currently working on analyzing the structure of the finite part Had fin for a

Hopf algebra H that is connected. Computing Had fin for many examples of con-

nected Hopf algebras indicates that Had fin is possibly actually a Hopf subalgebra in
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this case, and not only a coideal subalgebra. I hope to settle this question in future

work. Other possible avenues for future research will be indicated throughout this

thesis, especially in Chapter 4.

Notations and conventions

Throughout this thesis, k denotes an arbitrary field; all further assumptions on k

will be stated as they are needed. Further, H will denote a Hopf algebra over a field

k, with antipode S and counit ε. I will use the Sweedler comultiplication notation

∆h = h(1) ⊗ h(2) (h ∈ H).

Moreover, A will always be an H-module algebra, that is, A is a k-algebra that

is also a left H-module, via an “action” homomorphism H ⊗ A → A, h ⊗ a 7→
h.a, satisfying two compatibility conditions: h.(ab) = (h(1).a)(h(2).b) and h.1A =

ε(h)1A for h ∈ H and a, b ∈ A. Tensors will all be over the field k by default, i.e.

⊗ = ⊗k. The notation < · , · >: V ∗ ⊗ V −→ k will be used to represent the

evaluation map. Additional explanations of the above notation will be given below

and further, more specialized, notations will be introduced as well.
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CHAPTER 2

PRELIMINARIES

This chapter introduced the background, additional notation, definitions, and re-

sults used throughout this thesis. The reader is assumed to be familiar with the ba-

sics of the representation and invariant theories of associative algebras and groups.

The chapter begins with a detailed definition of a Hopf algebra and a brief introduc-

tion to their representation theory including several important theorems. We then

go on to give the definition of a rational prime ideals and highlight their role in

connecting our work in invariant theory to representation theory.

Throughout this chapter, k denotes an arbitrary field and all tensor products are

assumed to be over k unless otherwise denoted.
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2.1 Hopf algebras

2.1.1 Coalgebras

The familiar axioms of a k-algebra with multiplication m : A⊗A→ A and unit

µ : k→ A can be expressed by the commutativity of the following diagrams in the

category of k-vector spaces:

A⊗ A⊗ A A⊗ A A⊗ A k⊗ A

A⊗ A A A⊗ k A

Id⊗m

m

m⊗ Id m

∼

∼

µ⊗ Id

Id⊗µ
m

Associativity Unit

Reversing the direction of all arrows in the above diagrams, we obtain commutative

diagrams describing the defining axioms of coalgebras. In detail, a k-coalgebra is

a k-vector space, C, that is equipped with two linear maps, the comultiplication

∆: C → C ⊗ C and the counit ε : C → k, which satisfy the coassociativity and

counit axioms:

C ⊗ C ⊗ C C ⊗ C C ⊗ C k⊗ C

C ⊗ C C C ⊗ k C

Id⊗∆

∆

∆⊗ Id ∆

∼

∼

ε⊗ Id

Id⊗ε
∆

Coassociativity Counit

For example, if A is a finite-dimensional k-algebra, then the k-linear dual C = A∗

becomes a k-coalgebra by taking the dual maps ∆ = m∗ and ε = µ∗.

Without special notation, computations using the comultiplication ∆ quickly

become unwieldy. This dissertation will make use of an abbreviated notation known
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as Sweedler notation (after Moss Sweedler, one of the first to research Hopf alge-

bras). In this notation the element ∆(c) =
∑

i c
i
(1) ⊗ ci(2) will be abbreviated by

∆(c) = c(1) ⊗ c(2) ,

where summation is assumed. Using this notation, the counit axiom can be written

simply as

〈ε, c〉 = 〈ε, c(1)〉c(2) = c(1)〈ε, c(2)〉

and the coassociativity axiom can be expressed as

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = (Id⊗∆)∆(c) = (∆⊗ Id)∆(c) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) .

We will write the map (Id⊗∆) ◦ ∆ = (∆ ⊗ Id) ◦ ∆ more simply as ∆2 and it is

also customary to write ∆2(c) = c(1)⊗ c(2)⊗ c(3). Inductively, for any number n of

iterations of the comultiplication, one obtains a linear map ∆n : C → C⊗(n+1) that

will be written as

∆n(c) = c(1) ⊗ c(2) ⊗ . . .⊗ c(n+1) .

A subcoalgebra of a coalgebra C is defined exactly as expected: it is a subspace

D of C such that ∆(D) ⊆ D ⊗D. Given two coalgebras C and D, a k-linear map

ϕ : C → D is a morphism of coalgebras if ∆D◦ϕ = (ϕ⊗ϕ)◦∆C and εC = εD◦ϕ.

A coideal of a coalgebra C is a subspace I ⊆ C such that ∆(I) ⊆ I ⊗H +H ⊗ I
and I ⊆ Ker(ε). These are exactly the conditions necessary to make the coalgebra

structure maps descend to the vector space C/I , thus giving it the structure of a

coalgebra. As in the case of associative algebras, it remains true that coideals are

exactly the kernels of coalgebra morphisms.

We now discuss two important constructions. Given an algebra A, we can con-

struct it opposite algebraAop in the familiar way. A similar construction is available

for coalgebras. Namely, given a coalgebra C, its coopposite coalgebra Ccop is the

vector space C with comultiplication given by ∆cop = τ ◦∆, where τ : C ⊗ C →
C ⊗ C simply switches the order of the tensor factors, and with εcop = ε. Next,

given two coalgebras C and D, we can give their tensor product the structure of a
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coalgebra by defining εC⊗D = εC ⊗ εD and ∆C⊗D = (Id⊗τ ⊗ Id) ◦ (∆C ⊗ ∆D)

or, in Sweedler notation,

∆(c⊗ d) = c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2) .

Example 2.1.1. One of the simplest and most useful examples of a k-algebra is the

matrix ring Mn(k). Its dual Mn(k)∗ gives us one of the simplest and most useful

examples of a coalgebra. Let Ei,j ∈ Mn(k) be the matrix with a 1 in position (i, j)

and a 0 everywhere else and take {di,j} to be the basis of Mn(k)∗ that is dual to

{Ei,j}. In terms of this basis the coalgebra structure of Mn(k)∗ is given by the

equations below:

∆(di,j) =
n∑
k=1

di,k ⊗ dk,j

ε(di,j) = δi,j (Kronecker delta)

Example 2.1.2. The vector space k[x] admits a coalgebra structure with structure

maps as given below:

∆(xn) =
n∑
k=0

(
n

k

)
xn−k ⊗ xk

ε(xn) = δn,0

This is an example of an infinite-dimensional k-coalgebra.

2.1.2 Convolution product

Given a k-algebraA and a k-coalgebraC, we can give Homk(C,A) the structure

of an algebra. The multiplication is called the convolution product, it is denoted by

∗ and defined by ∗ = m◦( .⊗ . )◦∆: Homk(C,A)⊗Homk(C,A)→ Homk(C,A).

In explicit elementwise form, for c ∈ C and f, g ∈ Homk(C,A),

〈f ∗ g, c〉 = 〈f, c(1)〉〈g, c(2)〉 .

The unit map is given by it is straightforward to verify that µ ◦ ε : C → k → A

serves as a unit element for ∗ .
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2.1.3 Bialgebras and Hopf algebras

A bialgebra is a coalgebra in the category of algebras or, equivalently, an al-

gebra in the category of coalgebras. More explicitly a k-bialgebra B is both a

k-algebra and a k-coalgebra with the two structures being compatible in the sense

that the following two equivalent conditions are satisfied:

(a) The comultiplication ∆ and the counit ε of B are algebra maps;

(b) the multiplication m and the unit u of B are coalgebra maps.

Checking the conditions (a) and (b) is equivalent to checking that the following

formulas hold, for x, y ∈ B:

∆(xy) = x(1)y(1) ⊗ x(2)y(2) = ∆(x)∆(y) < ε, xy >=< ε, x >< ε, y >,

as well as

∆(1) = 1⊗ 1 < ε, 1 >= 1k.

For more details, [33] can serve as a reference.

Example 2.1.3. The vector space k[x] is a bialgebra, where k[x] has the usual poly-

nomial algebra structure and the coalgebra structure described in Example 2.1.2.

Let H be a k-bialgebra. Then Endk(H) = Homk(H,H) is an algebra via the

convolution product, where the first H is viewed as a coalgebra structure and the

second H as an algebra. If there exists a two-sided inverse, S ∈ Endk(H), to the

identity morphism, IdH ∈ Endk(H), thenH is called a Hopf Algebra. The element

S is then called the antipode of H . In Sweedler notation, the defining property of

the antipode can be written as

S(h(1))h(2) = ε(h)µ(1) = h(1)S(h(2)) .

It is worth noting that the antipode is always an antialgebra and anticoalgebra map

[40]. Explicitly, for any a, b, h ∈ H ,

S(ab) = S(b)S(a) and S(h(2))⊗ S(h(1)) = S(h)(1) ⊗ S(h)(2) .
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A remarkable feature of Hopf algebras is that their axioms are self dual. Thus

given a finite-dimensional Hopf algebra H , the k-linear dual H∗ also has the struc-

ture of a Hopf algebra, where the structure maps of H∗ come from applying the

dualizing functor . ∗ to the structure maps of H .

Example 2.1.4. Given a group G and a field k, we can construct the group algebra

kG: it is the k vector space with basis the elements of G; multiplication is given

by linear extension of the group multiplication; and unit element of kG is given by

the unit element of G. The group algebra is in fact a Hopf algebra, with coalgebra

structure maps and the antipode as given below, for g ∈ G:

∆(g) = g ⊗ g

ε(g) = 1

S(g) = g−1

Example 2.1.5. When |G| < ∞ we can construct the Hopf algebra (kG)∗, the k-

linear dual of kG. Let {ρx | x ∈ G} denote the basis of (kG)∗ that is dual to the

basis G of kG. Then for g, h ∈ G the Hopf algebra structure of (kG)∗ is given by:

µ(1) =
∑
g∈G

ρg = ε ρgρh = δg,hρg

ε(ρg) = ρg(1) = δg,1 ∆(ρg) =
∑
h∈G

ρh ⊗ ρh−1g

S(ρg) = ρg−1

Group algebras are particularly nice examples of Hopf algebras in that they are

cocommutative, meaning that, τ ◦ ∆ = ∆ where τ is the twist map as in Section

2.1.1. In other words, (kG)cop = kG. An element h of a Hopf algebra is called

group-like if ∆(h) = h ⊗ h and ε(h) = 1. In this case S(h) will also be a group-

like element, and S(h) is the multiplicative inverse of h. As the name suggests, the

collection of all group-like elements of any Hopf algebra H forms a subgroup of

the group of units of H .

Example 2.1.6. Another classical example of a cocommutative Hopf algebra is

the enveloping algebra Ug of a Lie algebra g. The images of k-basis of g in Ug
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generate Ug as an algebra. The space generated by these images is the space of

primitive elements of Ug. Here, an element x of a Hopf algebra is called primitive

if ∆(x) = x⊗ 1 + 1⊗ x and < ε, x >= 0. Note that Example 2.1.3 is an example

of an enveloping algebra, namely that of the one-dimensional Lie algebra.

The smallest non-cocommutative example of a Hopf algebra is a four-dimensional

example named after Sweedler, who first constructed it.

Example 2.1.7. Assume that k has characteristic 6= 2. The Sweedler algebra, de-

noted H4, is the unique non-commutative and non-cocommutative Hopf algebra of

dimension 4. The algebra structure of H4 is defined by H4 = k〈g, x | g2 = 1, x2 =

0, xg = −gx〉. The coalgebra structure and the antipode of H4 are defined by:

∆(g) = g ⊗ g , ∆(x) = x⊗ 1 + g ⊗ x ,

ε(g) = 1 , ε(x) = 0 ,

S(g) = g , S(x) = −gx .

2.1.4 Hopf subalgebras and quotient Hopf algebras

A Hopf subalgebra of a Hopf algebra H , by definition, is a subalgebra of H

that is also a subcoalgebra and is stable under the antipode. Likewise, a Hopf ideal

of H is an ideal of H that is also a coideal and is stable under the antipode.

Given a subalgebra, A, of H we can define H (A) to be the subalgebra of A

that is generated by all Hopf subalgebras of H that are contained in A. It is a

simple exercise to see that this subalgebra is in fact a Hopf subalgebra, and thus is

the unique largest Hopf subalgebra of H contained in A. Of particular interest is

sometimes the largest Hopf subalgebra contained in the center of H . For brevity,

we will simply write

ζ(H) = H Z(H) .

A similar process can be done starting with an ideal I of H to construct the

largest Hopf ideal, H (I), contained in I: define H (I) to be the sum of all Hopf

ideals of H that are contained in I . Given an H-module, M , we can use this con-

struction to construct the largest Hopf ideal of H contained in the annihilator of M ;
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this ideal will be called the Hopf kernel of M and denoted by

H Ker(M) .

A representation ofH that is given by anH-moduleM with Hopf kernel H Ker(M) =

0 will be called inner faithful.

Example 2.1.8. Given a Hopf algebra H , we always have the augmentation ideal,

H+ := Ker(ε). This is in fact a Hopf ideal. The quotient Hopf algebra H = H/H+

is isomorphic t o k as an algebra and the coalgebra structure is given by ∆H(c) =

c ⊗ 1. Given a Hopf subalgebra K in H , we can form the left ideal HK+ of H . It

is easy to see that HK+ is also a coideal of H . In Section 2.2.4, we will discuss

under which circumstances HK+ is in fact a Hopf ideal of H .

Example 2.1.9. For any group G, the Hopf subalgebras of the group algebra kG

are exactly the various kH , where H is a subgroup of G. The Hopf ideals of kG

are exactly the ideals of the form kGkH+, where H is a normal subgroup of G.

Furthermore, kG/kGkH+ ∼= k[G/H]. An inner faithful representation of kG is

just a representation of G such that no group element g ∈ G other than g = 1 acts

as the identity transformation.

It is important to note that, while all Hopf ideals of group algebras arise from

Hopf subalgebras, this is not always the case in general. This is illustrated in the

next example.

Example 2.1.10. Observe the set G := {1, g} ⊆ H4 in the Sweedler algebra is a

group. The Hopf algebra kG is the only Hopf subalgebra of the Sweedler algebra

other then k and H4. The space H4kG+ has basis {x + gx, 1 − g} which is not an

ideal of H4 since it does not contain x − gx = (1 − g)x. Now look at the Hopf

ideal of H4 given by the k-span of {x, gx}. This is in fact the Jacobson radical of

H4. Since this Hopf ideal did not arise from the unique nontrivial Hopf subalgebra

kG it could not have arisen from any Hopf subalgebra. The corresponding quotient

Hopf algebra is isomorphic to the group algebra k[C2], where C2 is the cyclic group

of order two.
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2.2 Representation theory

As is the case with groups, Hopf algebras have a representation theory that has

additional features not present in the representation theory of general associative

algebras. Throughout this dissertation we will focus on left modules. This is only

for consistency as the theory could be formulated equally well for right modules.

In the following, H denotes a Hopf k-algebra and RepH denotes the category

of left H-modules that are finite-dimensional over k. All further assumptions will

be explicitly stated when they are needed.

2.2.1 The representation ring and character algebra

The coalgebra structure ofH allows us to endow the category of leftH-modules

with the structure of a tensor category. The precise definition of a tensor category is

not needed and hence will be omitted. The key fact that is needed is that, given two

left H-modules V and W , the tensor product V ⊗W has an H-module structure

with h ∈ H acting by

h.(v ⊗ w) = h(1).v ⊗ h(2).w . (2.1)

The counit of a Hopf algebra gives rise to a representation, which will be called

the trivial representation and denoted by 1. Explicitly, 1 = k with h ∈ H acting

by h.1 = 〈ε, h〉. It is easy to see that, for any V ∈ RepH , the isomorphisms

V ⊗1 ∼= V ∼= 1⊗V hold in RepH . Using the trivial representation we get a notion

of the invariants of any V ∈ RepH ,

V H = {v ∈ V | h.v = 〈ε, h〉v} .

The antipode of the Hopf algebra allows us to give the k-linear dual of a module

the structure of an H-module. Given V ∈ RepH , the vector space V ∗ becomes an

H-module with action defined by

〈h.f, v〉 = 〈f, S(h).v〉 . (2.2)
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We can work with the representation ring R(H) of H , which is defined as the

abelian group with generators the isomorphism classes [V ] of finite-dimensional

representations V ∈ RepH and with relations [U ] + [W ] = [V ] for each short exact

sequence 0 → U → V → W → 0 in RepH . The multiplication of R(H) comes

from the tensor product of representations: [V ][W ] = [V ⊗W ]. By extension of

scalars from Z to k, we obtain the k-algebra Rk(H) := k⊗R(H); this algebra will

be called the representation algebra of H .

It is a standard fact that the representation algebra Rk(H) embeds into the lin-

ear dual H∗ via the character map and this embedding is a homomorphism of

k-algebras for the convolution algebra structure of H∗; see [33, Proposition 12.10].

Explicitly, for any finite-dimensional V ∈ RepH , the character χV is the linear

form on H that is defined by 〈χV , h〉 = trace(hV ), where hV ∈ Endk(V ) denotes

the operator given by the action of h ∈ H . The character map is given by

χ : Rk(H) H∗

∈ ∈

[V ] χV

The image of the character map in H∗ is called character algebra of H and is

denoted R(H). A k-basis of R(H) is given by the irreducible characters of H ,

that is, the characters of a full set of non-isomorphic irreducible finite-dimensional

representations of H . If H is semisimple and k is a splitting field for H (e.g., if k is

algebraically closed), then the character algebra R(H) coincides with the subspace

of all trace forms on H , that is, the linear forms on H that vanish on the subspace

[H,H] spanned by the Lie commutators [h, k] = hk − kh for h, k ∈ H . Thus, the

space of trace forms is isomorphic to (H/[H,H])∗; it can equivalently be thought

of as the set of cocommutative elements of H∗.

Example 2.2.1. Let G be a finite group. Then the set of irreducible characters of

kG∗ are the elements of G and hence kG = R(kG∗).
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2.2.2 Comodules

Given an algebra A = (A,m, µ), the familiar axioms of a left A-module M can

be expressed by the existence of a k-linear “action” map a : A⊗M →M such that

the following diagrams are commutative:

A⊗ A⊗M A⊗M A⊗M k⊗M

A⊗M M M

Id⊗a

a

m⊗ Id a ∼

µ⊗ Id

a

Dually, if C = (C,∆, ε) is a k-coalgebra, then a k-vector space N is called a left

C-comodule if there is a k-linear “coaction” map ρ : N → C ⊗ N such that the

following diagrams commute:

C ⊗ C ⊗N C ⊗N C ⊗N k⊗N

C ⊗N N N

Id⊗ρ

ρ

∆⊗ Id ρ ∼

ε⊗ Id

ρ

As with coalgebras it is customary to use a version of the Sweedler notation when

dealing with comodules: for n ∈ N ,

ρ(n) = n(−1) ⊗ n(0) .

For right comodules, defined by the obvious modification of the above, we will

instead use the notation

ρ(n) = n(0) ⊗ n(1) ∈ N ⊗ C .

Let M be a right C-comodule. Then M can be viewed as a left a left module

over the convolution algebra C∗ via

c∗.m = m(0)〈c∗,m(1)〉 (c∗ ∈ C∗,m ∈M) .
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If C is finite-dimensional, then all left C∗-modules arise in this fashion; so there

is equivalence between the categories of right C-comodules and left C∗-modules.

Thus, as one would expect, there are analogs of all constructions and properties

of modules for comodules. For example, a subcomodule of a left comodule M

is a subspace V ⊆ M such that ρ(V ) ⊆ C ⊗ V . When C is a bialgebra, one

subcomodule of particular interest is given by the coinvariants,

coInvM := {m ∈M | ρ(m) = 1⊗m} .

A comodule M is called simple if M contains no subcomodules other than 0 and

M itself, and M is called indecomposable if it can not be expressed as the direct

sum of two nonzero subcomodules. A coalgebra C is called cosemisimple if all

C-comodules are direct sums of simple comodules. We will not go into detail on

cosemisimplicity as, in the case where C is finite-dimensional, it is equivalent to

the dual algebra C∗ being semisimple by our remark above. A Hopf algebra with

cosemisimple coalgebra structure is called cosemisimple.

Example 2.2.2. The group algebra kG is cosemisimple. All simple comodules are

one dimensional and have the form kg for g ∈ G with structure map given by

ρ(g) = g ⊗ g.

Example 2.2.3. The coalgebra Mn(k)∗ of Example 2.1.1 is also cosemisimple. Up

to isomorphism it has exactly one simple left comodule. This module can be viewed

as k{ei,1} with ρ(ei,1) =
∑

k ei,k ⊗ ek,1. If k is algebraically closed, then dualizing

the Artin-Wedderburn structure theorem of semisimple algebras, one sees that all

cosemisimple coalgebras over k are isomorphic to a direct sum of duals of matrix

algebras.

Example 2.2.4. A classical non-example is the enveloping algebra of a Lie algebra.

Indeed, if g is a k-Lie algebra and U g is its enveloping algebra, then k ⊕ kg is a

sub-colagebra of U g that is not decomposable into simples.
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2.2.3 Module algebras

Quantum invariant theory is concerned with actions of Hopf algebras on asso-

ciative algebras. In detail, let A be an associative k-algebra and assume that A is a

left module over the Hopf k-algebra H with action map H⊗A→ A, h⊗ a 7→ h.a.

If the multiplication m : A ⊗ A → A and the unit map µ : A → k = 1 are maps

of H-modules, then we say A is a H-module algebra. We will sometimes use the

categorical notation A ∈ HAlg. These axioms can be stated in Sweedler notation as

follows: for b, c ∈ A and h ∈ H , we have

h.(bc) = (h(1).b)(h(2).c) and h.1A = 〈ε, h〉1A .

Example 2.2.5. Let A be an associative algebra and let G be a subgroup of the

autmorphism group Autalg(A). Then the G-action on A extends to an action of the

group algebra kG, making A a kG-module algebra.

Example 2.2.6. Let A be an associative k-algebra and g be a k-Lie algebra that

embeds into the derivations Lie algebra Derk(A). We then have that the g-action on

A extends to an action of U g, the enveloping algebra of g, on A. This makes A a

U g-module algebra.

2.2.4 Adjoint representation

Let V be an H-bimodule, that is, a left module over the algebra H ⊗Hop. Then

we can form a left adjoint module of V , denoted by Vad, by defining

hv := h(1)vS(h(2)) (h ∈ H, v ∈ V ) .

Naturally, there is also an analogous right adjoint action, given by

vh = S(h(1))vh(2) .

However, by passing to the opposite-cooposite Hopf algebra, this action can be

reduced to the above action; so we will mainly focus on the left-handed version

here. In fact, we will mostly be interested in the case where V = H is the regularH-

bimodule, with left and right actions given by multiplication. As in the Introduction,
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the corresponding representation ofH will be called the adjoint representation. The

algebra H , with the (left) adjoint H-action, is an example of an H-module algebra

as introduced in the previous section.

For any H-bimodule V , the ordinary H-actions on V and the adjoint action are

related by:

hv = (h(1)v)h(2) . (2.3)

The H-invariants of Vad are given by:

(Vad)
H = ZV := {v ∈ V | hv = vh for all h ∈ H} . (2.4)

Indeed, for v ∈ ZV and h ∈ H , we have hv = h(1)S(h(2))v = 〈ε, h〉v; so v ∈
(Vad)

H . Conversely, if v ∈ (Vad)
H and h ∈ H , then (2.3) gives hv = (h(1)v)h(2) =

〈ε, h(1)〉vh(2) = vh.

Example 2.2.7. For G a group the adjoint action of kG is given by the k-linear

extension of G acting on itself by conjugation.

Example 2.2.8. Another classical example of the adjoint action of a Hopf algebra

on itself is when H is an enveloping algebra of a Lie algebra. When g is a Lie

algebra and U g is its enveloping algebra, the adjoint action of an element x ∈ g on

an element u ∈ U g is given by x.u = x(1)uS(x(2)) = xu−ux = [x, u]. This action

can be extended to an action of U g on itself.

Example 2.2.9. To he adjoint action of H4 is given on algebra generators by:

gg = g gx = −x g1 = 1 ggx = −gx
xg = −2gx xx = 0 x1 = 0 xgx = 0

If a Hopf subalgebra K of H is stable under the left and right adjoint actions

of H , then we say K is normal. In this case, the coideal HK+ of H is also a

two-sided ideal of H , and hence it is a Hopf ideal. If H is finite dimensional, then

the converse holds as well: for any Hopf subalgebra K of H , the Hopf ideal HK+

is an ideal of H if and only if K is normal; see [40, Corollary 3.4.4]. Famous and

useful examples of normal Hopf subalgeras of a Hopf algebra are the center, Z(H),

and the finite part Had fin.
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2.2.5 Integrals, semisimplicity and cosemisimplicity

A k-algebra, A, is said to be augmented if A is equipped with a given algebra

map ε : A→ k, called the augmentation map of A. Thus, a Hopf algebra is always

an augmented algebra, the augmentation map ε being the counit. A left integral

in an augmented algebra (A, ε) is an element Λ ∈ A such that aΛ = ε(a)Λ for

all a ∈ A. Right integrals are defined similarly by the condition Λa = Λε(a) for

all a ∈ A. Throughout, Λ will always be used to denote an integral, superscripts

of L or R will be used to distinguish left and right integrals. The space of all left

integral of an augmented algebra A will be denoted
∫ L
A

and similarly the space of

right integrals will be denoted
∫ R
A

. The following theorem of Larson and Sweedler

shows that finite-dimensional Hopf algebras always have integrals, and they are

unique up to scalar multiples [28].

Theorem 2.2.10. Let H be a finite-dimensional Hopf algebra. Then the spaces
∫ L
H

and
∫ R
H

are one dimensional.

AsH∗ is also a Hopf algebra it is an augmented algebra with augmentation map

µ∗. Thus Theorem 2.2.10 also implies the existence of integrals of H∗. These inte-

grals will commonly be denoted with the lowercase Greek letter λ and superscripts

of L and R will be used to distinguish left and right integrals.

Observe for all h ∈ H we have hΛR is also a right integral and since the space

of right integrals is one dimensional this gives hΛR = 〈α, h〉ΛR for some α ∈ H∗.
The element α is easily seen to be an algebra map; thus it is a group-like element of

H∗. The element α is called the distinguished group-like element of H∗. A Hopf

algebra is called unimodular if the distinguished group like element of H∗ is the

counit ofH or equivalently ifH contains a central integral. IdentifyingH withH∗∗

we also get a distinguished group-like element of H .

The integral of a Hopf algebra can be used to easily determine when the Hopf

algebra is semisimple via the following theorem.

Maschke’s Theorem for Hopf Algebras [28]. A Hopf algebra H is semisimple iff

H is finite dimensional and ε(
∫ L
H

) 6= 0 or, equivalently, ε(
∫ R
H

) 6= 0.
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The theorem, though due to Larson and Sweedler, is generally named after

Heinrich Maschke, who proved the special case of group algebras: kG is semisim-

ple if and only if G is finite and char k does not divide the order |G| [47].

It is an immediate consequence of Maschke’s Theorem that a semisimple Hopf

algebra is unimodular. Another immediate consequence is that semisimple Hopf

algebras are separable: F⊗H remains semisimple for all field extensions F/k. This

follows, because any integral of H is also an integral of F ⊗H . If char k = 0, then

a theorem of Larson and Radford [27] gives thatH is also cosemisimple. Moreover,

in this case, the antipode of H and H∗ must satisfy S ◦ S = Id. A Hopf algebra

with the latter property is called involutory [27]. It was shown in [27] that, for an

involutory unimodular Hopf algebra, the character of the regular representation is

an integral of H∗. We will make frequent use of this fact in this thesis.

Example 2.2.11. For a finite group G, the standard integral of kG is
∑

g∈G g. It

is easily seen to be central and hence group algebras are unimodular. Applying

Maschke’s Theorem for Hopf algebras, we get back Maschke’s original result that

kG is semisimple iff G is finite and char k does not divide |G|. Even in the case

where char k divides |G|, the group algebra kG is still involutory as, clearly, the

antipode g 7→ g−1 composed with itself is the identity.

Example 2.2.12. The standard integral of kG∗ is ρ1 where 1 is the identity element

of kG. Since kG∗ is commutative, it is clearly unimodular.

Example 2.2.13. The Sweedler algebraH4 is our first example of a non-unimodular

Hopf algebra. The space of left integrals is spanned by gx+x, and the space of right

integral by−gx+x. The distinguished group like element of the dual is defined on

algebra generators by α(x) = 0 and α(g) = −1. Since ε(gx + x) = 0, Maschke’s

Theorem for Hopf algebras tells us that H4 is not semisimple. In fact, as we have

pointed out in Example 2.1.10, the Jacobson radical of H4 is the 2-dimensional

ideal of H4 that is generated by the element x .
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2.2.6 Chevalley property

For a non-semisimple Hopf algebra the tensor product of two completely re-

ducible modules fails to be completely reducible in general. It is of interest to

know when the tensor product inherits complete reduciblity from its factors. Fol-

lowing [1], a Hopf algebraH (not necessarily finite-dimensional) is said to have the

Chevalley property if the tensor product of any two finite-dimensional completely

reducible H-modules is again completely reducible. A classical result of Chevalley

[11] states that group algebras of arbitrary groups over fields of characteristic zero

do in fact have this property; see also [22, Theorem VII.2.2]. We will say that a left

H-module M has the Chevalley property if all tensor powers M⊗n are completely

reducible or, equivalently, the H-module T(M) :=
⊕

n∈Z+
M⊗n is completely re-

ducible. The Chevalley property for H , in the above sense, is evidently equivalent

to the Chevalley property for the direct sum of all finite-dimensional irreducible

H-modules.

2.3 Motivation and background: rationality

In this section we give some background to serve as a motivation for Section

4.1. The study of prime spectra of algebras is interesting and useful in its own

right, but has additional importance through its applications and connections to

other fundamental questions as well.

2.3.1 Symmetric rings of quotients

In this section, R denotes any ring (with 1). We briefly recall some background

material on the symmetric ring of quotients QR and its center. The symmetric ring

of quotients will not be defined here. For details, see [33].
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Extended center

The center of QR, CR := Z(QR), is called the extended center of R. See [33,

Appendix E] for details. The ring R is a subring of QR and CR coincides with

the centralizer of R in QR. In particular, ZR ⊆ CR. If ZR = CR, then R is

called centrally closed. In general, we may consider the following subring of QR,

possibly strictly larger than R:

R̃ := R(CR) ⊆ QR.

If R is semiprime, then R̃ is a centrally closed ring [3, Theorem 3.2], called the

central closure of R. If R is a k-algebra, then so is R̃, because ZR ⊆ CR = ZR̃.

2.3.2 Rational primes

Rational and H-rational ideals are certain prime and H-prime ideals, respec-

tively, that are of particular interest. Ultimately, the notion of a rational prime ideal

is motivated by the classical (weak) Nullstellensatz of Hilbert; we will discuss the

connection in greater detail below. The definition of rational and H-rational ideals

relies on a suitable quotient ring ofA: For anyH-prime ideal I , let CH(I) denote the

subalgebra of H-invariants of the center of the ring of the so-called H-symmetric

quotient QH(A/I). It is known that CH(I) is a field containing the base field k [37].

If the extension CH(I)/k is algebraic, then we say that I is H-rational. For a trivial

H-action onA, we obtain the notion of rationality for a prime ideal P : Letting C(P )

denote the center of the ordinary symmetric ring of quotients Q(A/P ), the prime P

is said to be rational if the field extension C(P )/k is algebraic. Denoting the collec-

tion of all rational and H-rational ideals of A by RatA and H-RatA, respectively,

Lorenz [34] has shown that the H-core operator gives well-defined map

RatA −→ H-RatA , P 7→ P :H .

This map has been explored in detail for rational actions of an affine algebraic group

G on A. In this case, the map is surjective and its fibers are exactly the G-orbits in
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RatA [31]. In the current more general context of Hopf actions, however, none of

this is known.

An interesting project would be to study the map RatA→ H-RatA. In partic-

ular, describe its image and its fibers under suitable hypotheses on the H-action on

A. We do, however, expect this project to be a long-term one. Indeed, while there is

a notion of H-orbits in SpecA, proposed by Skryabin [49], its usefulness has only

been tested under very special circumstances thus far (e.g., for H-module algebras

A that are finite over their centers or else noetherian with H finite dimensional).

Despite the fact that much ground work remains to be done, the existence of the

above framework is valuable inasmuch as it also captures, besides the aforemen-

tioned case of group actions, the much-studied notion of Poisson-rational primes

[10], [19].

2.3.3 Connections to representation theory

When trying to understand the category of representations of A, the first goal is

often the description of the set of irreducible representations, IrrA. This task, how-

ever, is usually a daunting one, and often unachievable in any useful way. However,

a helpful connection exists between the representation and ideal theories of A; this

link is provided by the kernel KerV of a representation V of A, that is, the kernel

of the corresponding homomorphism A→ Endk(V ). When V ∈ IrrA, we say that

the ideal P = KerV is primitive. The set of all such ideals is denoted by PrimA;

so we have a surjection of sets,

IrrA� PrimA , V 7→ KerV .

Even though this map is generally far from being bijective, ring-theoretic tools

allow us to study PrimA, while the fibers of that surjection give us a rough idea

about the set IrrA. There is one caveat with this approach, however: In principle,

showing that a given prime ideal P of A is actually primitive still requires us to

come up with an irreducible representation of A for which P is the kernel. To have

a useful strategy, one would like an intrinsic characterization of “primitivity,” one
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that allows us to detect primitivity directly from P , much in the way the classical

(weak) Nullstellensatz of Hilbert, for an affine commutative algebra A, equates

maximality of P with algebraicity of A/P over k.

It is in this connection that the above notion of rationality first arose. To com-

plete the picture, we recall that SpecA carries the so-called Jacobson-Zariski topol-

ogy: closed subsets of SpecA in this topology are precisely the sets of the form

{P ∈ SpecA | P ⊇ I}

for some ideal I of A. A prime ideal P of A is said to be locally closed if the one-

point subset {P} ⊆ SpecA is locally closed. It is a fortuitous fact that, for many

algebras A that are of interest, the following equivalence has been established, for

every P ∈ SpecA,

P is locally closed ⇐⇒ P is primitive ⇐⇒ P is rational .

This equivalence is called the Dixmier-Moeglin equivalence; when it holds, one

obtains a topological (locally closed) and a ring-theoretic (rational) characteriza-

tion of the representation-theoretic notion of primitivity, thereby widening the set

of tools that can be used to investigate PrimA. The implications =⇒ above hold

for wide classes of algebras, being a consequence of the non-commutative Null-

stellensatz, but the reverse implications are rather more fickle. Nonetheless, the

Dixmier-Moeglin equivalence has been shown to hold for affine PI algebras [44],

enveloping algebras of finite-dimensional Lie algebras [14], [39], and for various

quantum groups [9].

Even though the Dixmier-Moeglin equivalence makes no reference to any H-

action on A, such actions and the aforementioned H-stratification of SpecA have

proven to be helpful in establishing the equivalence for certain algebras. So far this

approach to the Dixmier-Moeglin equivalence has been predominantly pursued for

certain group actions; see [31], [9]). It would be interesting to put the larger context

of Hopf algebra actions on A and the resulting the stratifications of SpecA to use

in analyzing the representation theory of A and the Dixmier-Moeglin equivalence

in particular.
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CHAPTER 3

ACTIONS OF HOPF ALGEBRAS:

PRIMENESS AND

SEMIPRIMENESS

In this chapter, I present my main results on Hopf algebra actions and invariant

theory. We keep the earlier notation: H is a Hopf algebra and A is an H-module

algebra. An ideal I of A such that H.I ⊆ I will be called an H-ideal of A. For

an arbitrary ideal I , we may take the sum of all H-ideals that are contained in I;

this is the unique largest H-ideal of A that is contained in I , called the H-core of I .

We will denote the H-core of I by I:H below. The relationship between ideals and

their H-cores is full of mysteries, and it is of particular interest for prime ideals.

More specifically denoting the set of all ideals of A by IdealsA and the subset

of all H-ideals by H-IdealsA, we have the core operator,

· :H : IdealsA −→ H-IdealsA.

This operator evidently preserves intersections and it is the identity on the subset

H-IdealsA ⊆ IdealsA. We are interested in the question as to when this operator

preserves primeness or semiprimeness. Recall that I is said to be semiprime if A/I

has no nonzero nilpotent ideals or, equivalently, I is an intersection of prime ideals.

The above question may seem a mere technicality, but it can be reformulated in
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various alternative ways, and semiprimeness is a valuable ring-theoretic commodity

without which the investigation of H-module algebras can be rather daunting. In

joint work with Lorenz and Nguyen [35], we have shown that the operator · :H

does indeed preserve semiprimeness when the Hopf algebra H is cocommutative

and char k = 0.

In subsequent work [57], I studied actions of a connected Hopf algebras on A,

and showed that the core operator · :H does in fact preserve primeness in this case

(and hence semiprimeness as well) when char k = 0. Recall that a Hopf algebra is

said to be connected if the base field k is its only simple subcoalgebra. Examples

of connected Hopf algebras include universal enveloping algebras of Lie algebras,

and coordinate rings of affine algebraic unipotent groups [54].

3.1 Semiprimeness

3.1.1 Reformulations

We start this section by giving several reformulations, in terms of the semiprime

radical operator
√
· . The semiprime radical of a subset X ⊆ A, by definition, is

the unique smallest semiprime ideal of A containing X:

√
X =

⋂
P∈SpecA
P⊇X

P .

We continue to assume that A ∈ HAlg; the Hopf algebra H can be arbitrary for

now.

Lemma 3.1.1. The following are equivalent:

(i) If J is an H-ideal of A, then so is
√
J;

(ii) for all ideals I of A, the H-core
√
I:H is semiprime;

(iii) H.
√
I ⊆
√
H.I for any ideal I of A.
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Proof. (i) ⇒ (ii). We may assume that I is semiprime. Then
√
I:H ⊆

√
I = I ,

since
√
· preserves inclusions. In fact,

√
I:H ⊆ I:H , because

√
I:H is an H-

ideal by (i). The reverse inclusion being trivial, it follows that I:H =
√
I:H is

semiprime.

(ii)⇒ (iii). Let J denote the ideal of A that is generated by the subsetH.I ⊆ A.

Then
√
I ⊆
√
J =

√
H.I and J is easily seen to be an H-ideal. (If the antipode S

is bijective, then J = H.I [33, Exercise 10.4.3].) Thus, J = J :H ⊆
√
J :H and the

latter ideal is semiprime by (ii). It follows that
√
J =
√
J :H ⊆

√
J :H . Again, the

reverse inclusion is clear; so
√
J =

√
J :H . Therefore, H.

√
I ⊆ H.

√
J =

√
J =

√
H.I .

(iii)⇒ (i). Specialize (iii) to the case where I = J is an H-ideal.

3.1.2 Extending the base field

For the proof of Theorem 3.1.4, we may work over an algebraically closed base

field. This follows by taking K to be an algebraic closure of k in the argument

below.

Let K/k be any field extension and put H ′ = H ⊗K and A′ = A ⊗K. Then

A′ ∈ H′Alg and H ′ is cocommutative if H is so. Assuming Theorem 3.1.4 to hold

for A′, our goal is to show that it also holds for A. So let I be a semiprime ideal

of A. Viewing A as being contained in A′ in the usual way, IA′ is an ideal of A′

satisfying IA′ ∩ A = I . By Zorn’s Lemma, we may choose an ideal I ′ of A′ that

is maximal subject to the condition I ′ ∩ A = I . Then I ′ is semiprime. For, if J

is any ideal of A′ such that J % I ′, then J ∩ A % I by maximality of I ′, and so

(J ∩ A)2 * I by semiprimeness of I . Since (J ∩ A)2 ⊆ J2 ∩ A, it follows that

J2 * I ′, proving that I ′ is semiprime. Therefore, by our assumption, the core I ′:H ′

is semiprime. Since the extensionA ↪→ A′ is centralizing, it follows that (I ′:H ′)∩A
is a semiprime ideal of A. Finally, (I ′:H ′) ∩ A = {a ∈ A | H ′.a ⊆ I ′} = {a ∈ A |
H.a ⊆ I ′ ∩ A = I} = I:H , giving the desired conclusion that I:H is semiprime.
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3.1.3 Enveloping algebras

For any ring R, let RJXλKλ∈Λ denote the ring of formal power series in the

commuting variables Xλ (λ ∈ Λ) over R; see [8, Chap. III, §2, no 11].

Lemma 3.1.2. LetR be a ring, let Λ be any set, and let S be a subring ofRJXλKλ∈Λ

such that S maps onto R under the homomorphism RJXλKλ∈Λ → R, Xλ 7→ 0. If R

is prime (resp., semiprime, a domain) then so is S.

Proof. We write monomials in the variables Xλ as Xn =
∏

λX
n(λ)
λ (n ∈ M),

where M = Z(Λ)
+ denotes the additive monoid of all functions n : Λ → Z+ such

that n(λ) = 0 for almost all λ ∈ Λ. Fix a total order < on M having the following

properties (e.g., [2, Example 2.5]): every nonempty subset of M has a smallest

element; the zero function 0 is the smallest element of M ; and n < m implies

n + r <m + r for all n,m, r ∈M .

For any 0 6= s =
∑

n∈M snX
n ∈ RJXλKλ∈Λ, we may consider its lowest

coefficient, smin := sm with m = min{n ∈ M | sn 6= 0}. If R is prime and

0 6= s, t ∈ S are given, then 0 6= sminrtmin for some r ∈ R. By assumption, there

exists an element u ∈ S having the form u = r +
∑

n6=0 unX
n. It follows that

sut 6= 0, with (sut)min = sminrtmin. This proves that S is prime. For the assertions

where R is semiprime or a domain, take s = t or r = 1, respectively.

Now let H = Ug be the enveloping algebra of an arbitrary Lie k-algebra g and

assume that char k = 0. The primeness assertion of the proposition below is [15,

3.3.2] and the semiprimeness assertion is an easy consequence. We prove all three

assertions together below. Recall that an ideal of a ring is said to be completely

prime if the quotient is a domain.

For the proof, we recall the structure of the convolution algebra Homk(H,R)

for an arbitrary k-algebra R. Let (eλ)λ∈Λ be a k-basis of g and fix a total order

of the index set Λ. Put M = Z(Λ)
+ as in the proof of Lemma 3.1.2 and, for each

n ∈ M , put en =
∏<

λ
1

n(λ)!
e
n(λ)
λ ∈ H , where the superscript < indicates that the

factors occur in the order of increasing λ. The elements en form a k-basis of H

by the Poincaré-Birkhoff-Witt Theorem, and the comultiplication of H is given by
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∆en =
∑

r+s=n er ⊗ es; see [33, Example 9.5]. Writing Xn =
∏

λX
n(λ)
λ as in the

proof of Lemma 3.1.2, we obtain an isomorphism of k-algebras,

ϕ : Homk(H,R)
∼→ RJXλKλ∈Λ , f 7→

∑
n∈M

f(en)Xn.

Under this isomorphism, the algebra map u∗ : Homk(H,R) → R , f 7→ f(1) ,

coming from the unit map u = uH : k → H translates into the map RJXλKλ∈Λ �

R, Xλ 7→ 0, as considered in Lemma 3.1.2.

Proposition 3.1.3. Let H = Ug be the enveloping algebra of a Lie k-algebra g,

let A ∈ HAlg, and let I be an ideal of A. Assume that char k = 0. If I is prime,

semiprime or completely prime, then I:H is likewise.

Proof. First note that the core I:H is identical to the kernel of the map δI : A →
Homk(H,A/I) that is given by δI(a) = (h 7→ h.a + I). We need to show that

the properties of being prime, semiprime, or a domain all transfer from A/I to the

subring δIA ⊆ Hom(H,A/I) or, equivalently, to the subring S ⊆ (A/I)JXλKλ∈Λ

that corresponds to δIA under the above isomorphism ϕ. Consider the map

u∗ : Homk(H,A/I)→ A/I, f 7→ f(1),

and note that (u∗ ◦ δI)(a) = a + I for a ∈ A. Therefore, S maps onto A/I

under the map (A/I)JXλKλ∈Λ → A/I , Xλ 7→ 0. Now all assertions follow from

Lemma 3.1.2.

For an arbitrary cocommutative Hopf algebra H , we cannot expect a result as

strong as Proposition 3.1.3: group algebras provide easy counterexamples to the

primeness and complete primeness assertions. Indeed, let H = kG be the group

k-algebra of the group G and let A ∈ HAlg. Then I:H =
⋂
g∈G g.I for any ideal I

ofA. If I is semiprime, then so are all g.I , because each g ∈ G acts onA by algebra

automorphisms, and hence
⋂
g∈G g.I will be semiprime also. However, primeness

and complete primeness, while inherited by each g.I , are generally lost upon taking

the intersection.
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3.1.4 Cocommutative Hopf algebras

Let H be cocommutative Hopf and assume that char k = 0 and that k is alge-

braically closed, as we may by §3.1.2. ThenH has the structure of a smash product,

H ∼= U#V , where U is the enveloping algebra of the Lie algebra of primitive el-

ements of H and V is the group algebra of the group of grouplike elements of H;

see [52, §13.1] or [45, §15.3].

This will allow us to use what we know about actions of both enveloping alge-

bras of Lie algebras and of group algebras, to prove the following theorem:

Theorem 3.1.4. Let A ∈ HAlg and assume that H is cocommutative and char k =

0. Then I:H is semiprime for every semiprime ideal I of A.

Proof. Indeed, by the Kostant-Cartier Theorem [], we have that H ∼= U#V as

above. Thus, both U and V are Hopf subalgebras of H and H = UV , the k-

space spanned by all products uv with u ∈ U and v ∈ V . Viewing A ∈ UAlg

and A ∈ V Alg by restriction, repeated application of the core operator gives the

following equality for any ideal I of A:

I:H = {a ∈ A | UV.a ⊆ I} = {a ∈ A | V.a ⊆ I:U} = (I:U):V.

If I is semiprime, then so is I:U (Proposition 3.1.3). Our remarks on group algebras

in the first paragraph of this proof further give semiprimeness of (I:U):V . Thus,

I:H is semiprime and Theorem 3.1.4 is proved.

3.2 Connected Hopf algebras

In this section, we will generalize the result of Proposition 3.1.3 to connected

Hopf algebras. This class of Hopf algebras includes enveloping algebras of Lie

algebras and, in fact, when the characteristic of the field is 0, every cocommutative

connected Hopf algebra is an enveloping algebra of a Lie algebra [38].

Other examples of connected Hopf algebras include the coordinate rings of affine

unipotent algebraic groups. Again, if the characteristic of the field is 0, these will
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be the only connected commutative Hopf algebras.

These classifications were achieved by the 1960s, and until recently there were no

known examples of non-commutative non-cocommutative connected Hopf algebras

over characteristic 0. It wasn’t until Zhang [60] that such examples were discovered,

which renewed interest in the area.

In addition to generalizing some classical algebras, connected Hopf algebras can

provide a starting point into studying pointed Hopf algebras. Every connected Hopf

algebra is pointed, and the newly discovered connected Hopf algebras can provide

non-cocommutative examples of pointed Hopf algebras.

3.2.1 Result

It turns out that one can achieve a transfer of primeness and semiprimess from an

ideal I in anH-module algebraA, to itsH-core I:H . As was previously mentioned,

one cannot expect such a result to generalize much further, to, say, pointed Hopf

algebras, since it does not hold in the classical case when H is a group algebra.

Theorem 3.2.1. LetH be a connected Hopf algebra over a field of characteristic 0,

letA be anH-module algebra, and let I be an ideal ofA. If I is prime (semi-prime,

completely prime), then so is I:H .

Our main tool in the proof of Theorem 3.2.1 is an analysis of the coradical

filtration of H . This will allow us to construct a certain PBW basis of H , which

is then used to prove that certain subrings of convolution algebras of H are prime

(semiprime, a domain); see Theorem 3.2.7 below. The strategy for the proof is an

adaptation of that used in [36, Lemma 16 and Proposition 17]. However, while the

convolution algebra in question was a power series ring in [36], this is no longer the

case in the present more general context. Theorem 3.2.1 will then be derived from

Theorem 3.2.7.

Before we embark on the proof of Theorem 3.2.1, we mention a few things

about the history of connected Hopf algebras, and of recent developments that

sparked renewed interest.
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Notations and conventions. The notation introduced in the foregoing will remain

in effect below. We work over a base field k and will write ⊗ = ⊗k . Throughout,

H will denote a Hopf k-algebra; the comultiplication ∆ : H → H ⊗ H will be

written in the Sweedler notation, ∆(h) = h(1) ⊗ h(2) . All further assumptions on k

andH will be specified as they are needed. We denote by Z+ the set of non-negative

integers and by Z>0 the set of strictly positive integers.

3.2.2 Set-theoretic preliminaries

We introduce here a certain monoid that will be essential for the proof of Theo-

rem 3.2.1.

The monoid M

Let Λ be a set. We consider functions m : Λ −→ Z+ whose support suppm :=

{λ ∈ Λ |m(λ) 6= 0} is finite. Using the familiar “pointwise” addition of functions,

(m + m′)(λ) = m(λ) + m′(λ) for λ ∈ Λ, we obtain a commutative monoid,

M := Z(Λ)
+ = {m : Λ −→ Z+ | suppm is finite},

The identity element is the unique function 0 ∈ M such that supp0 = ∅; so

0(λ) = 0 for all λ ∈ Λ. We will think of Λ as a subset of M \ {0}, identifying

λ ∈ Λ with the function δλ ∈M that is defined by

δλ(λ
′) = δλ,λ′ (λ, λ′ ∈ Λ),

where δλ,λ′ is the Kronecker delta. Thus, supp δλ = {λ} and each m ∈ M has the

form m =
∑

λ∈suppm m(λ)δλ .

Now assume that Λ is equipped with a map | · | : Λ −→ Z>0 , which we will

think of as a “degree.” We extend | · | from Λ to M , defining the degree of an

element m ∈M by

|m| :=
∑

λ∈suppm

m(λ)|λ| ∈ Z+ .
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Note that |δλ| = |λ| and that degrees are additive: |m + m′| = |m| + |m′| for

m,m′ ∈M . For a given d ∈ Z+ , we put

Md := {m ∈M | |m| = d} and Λd := Λ ∩Md .

Thus, M =
⊔
d∈Z+

Md and M0 = {0}, Λ0 = ∅.

A well-order on M

Now assume that Λ is equipped with a total order ≤ such that Λ1 < Λ2 < . . . ,

that is, elements of Λi precede elements of Λj in this order if i < j. We extend ≤
to M as follows. First order elements of M by degree, i.e.,

{0} = M0 < M1 < M2 < . . . .

For the tie-breaker, let n 6= m ∈Md and put

µ = µn,m := max{λ ∈ Λ | n(λ) 6= m(λ)}.

Note that {λ ∈ Λ | n(λ) 6= m(λ)} is finite, being contained in supp(n)∪supp(m).

If n(µ) > m(µ), then we define n > m. For λ 6= λ′ ∈ Λ, this becomes δλ > δλ′ if

and only if λ > λ′.

Lemma 3.2.2. The above order on M has the following properties:

(a) ≤ is a total order on M and 0 is the unique minimal element of M .

(b) If n,m ∈M are such that n <m, then n + r <m + r for every r ∈M .

(c) If the order of each Λd is a well-order, then ≤ is a well-order of M .

Proof. (a) It is clear that 0 < m for any 0 6= m ∈ M and that exactly one of

n = m, n < m or n > m holds for any two n,m ∈ M . To check transitivity,

consider elements n < m < r of M . Then n 6= r and we need to show that

n < r. For this, we may assume that |n| = |m| = |r|, because otherwise |n| < |r|
and we are done. Put µ = µn,m, ν = µm,r and ρ = µn,r . Then n(µ) < m(µ),

m(ν) < r(ν) and we need to show that n(ρ) < r(ρ). Let λ := max{µ, ν} and note
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that n(ρ) 6= r(ρ) implies n(ρ) 6= m(ρ) or m(ρ) 6= r(ρ), and hence ρ ≤ λ. If λ = µ

then n(λ) < m(λ) ≤ r(λ), and if λ = ν then n(λ) ≤ m(λ) < r(λ). This proves

λ = ρ and that n(ρ) < r(ρ).

(b) By additivity of degrees, n+r <m+r certainly holds if |n| < |m|. Assume

that n < m but |n| = |m| and let µ = µn,m; so n(µ) < m(µ). Then we also have

µ = µn+r,m+r and (n + r)(µ) < (m + r)(µ).

(c) Our assumption easily implies that the order of Λ is a well-order. Now let

∅ 6= S ⊆M be arbitrary. We wish to find a minimal element in S. Put

d = d(S) := min{d′ ∈ Z+ | S ∩Md′ 6= ∅}.

If d = 0, then 0 ∈ S and 0 is the desired minimal element by (a). So assume

d > 0 and that all ∅ 6= T ⊆ M with d(T ) < d have a minimal element. The

desired minimal element of S must belong to S ∩Md ; so we may assume without

loss that S ⊆Md . Write µn = µn,0 = max(supp(n)) for 0 6= n ∈M and put

λS := min{µn | n ∈ S} ∈ Λ;

this is well defined since we have a well-order on Λ. Consider the subsets

S ′ := {s ∈ S | µs = λS} and S ′′ := {s ∈ S ′ | s(λS) ≤ s′(λS) ∀s′ ∈ S ′}

and put zS := s(λS) for any s ∈ S ′′; so zS ∈ Z>0 . Since all elements of S ′′ are

smaller than elements of S \ S ′′, it suffices to find a minimal element in S ′′. Notice

that, for r ∈ S ′, the function r − zSδλS belongs to M . Indeed, r(λ) ≥ zS for all

λ ∈ Λ and hence (r − zSδλS)(λ) = r(λ) − zS ∈ Z+. By part (b), comparing two

elements r, t ∈ S ′′ is equivalent to comparing r−zSδλS and t−zSδλS . Thus setting

T := {s− zSδλS | s ∈ S ′′}, our goal is to show that T has a minimal element. But

T ⊂M and all elements of T are of the form r−zSδλS where r ∈ S ′′, so the degree

of any element in T is d − |λS|zS < d. Therefore, d(T ) < d and, by our inductive

hypothesis, T has a minimal element. This finishes the proof.
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3.2.3 The coradical filtration

In this section, we recall some standard definitions and state some known facts

for later use.

Coradically graded coalgebras

Let C be a k-coalgebra. Throughout, we let C0 denote the coradical, that is, the

sum of all its simple sub-coalgebras of C. The coalgebra C is said to be connected

if C0 = k. The coradical filtration of C is recursively defined by

Cj+1 := {x ∈ C | ∆(x) ∈ Cj ⊗ C + C ⊗ C0} (j ≥ 0).

We also put C−1 := {0}. This yields a coalgebra filtration [45, Prop. 4.1.5]:

{0} = C−1 ⊆ C0 ⊆ · · · ⊆ Cj ⊆ Cj+1 ⊆ · · · ⊆ C =
⋃
n≥0

Cn

and

∆(Cj) ⊆
∑

0≤i≤j

Ci ⊗ Cj−i (j ≥ 0).

We consider the graded vector space that is associated to this filtration:

grC :=
⊕
n≥0

(grC)(n) with (grC)(n) := Cn/Cn−1 .

Any element 0 6= c ∈ (grC)(n) will be called homogeneous of degree n. The vec-

tor space grC inherits a natural coalgebra structure from C; this will be discussed

greater detail in 3.2.4 below. The resulting coalgebra grC is coradically graded

[45, Prop. 4.4.15]: the coradical filtration of grC is given by

(grC)n =
⊕

0≤k≤n

(grC)(k) (n ∈ Z+).

In particular, the coradical of grC coincides with the coradical of C:

(grC)0 = (grC)(0) = C0 .

Hence grC is connected if and only if C is connected.
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Some facts about connected Hopf algebras

Let H be a connected Hopf k-algebra. By 3.2.3, the graded coalgebra grH is

connected as well. Below, we list some additional known properties of the coradical

filtration (Hn) of H and of grH =
⊕

n≥0Hn/Hn−1:

(a) grH is a coradically graded Hopf algebra [45, Prop. 7.9.4]: The coradical

filtration (Hn) is also an algebra filtration, that is, HnHm ⊆ Hn+m for all

n,m. Furthermore, all Hn are stable under the antipode of H . Thus, grH

inherits a natural Hopf algebra structure from H , graded as a k-algebra and

coradically graded as k-coalgebra.

(b) grH is commutative as k-algebra [60, Prop. 6.4].

(c) If char k = 0, then grH is isomorphic to a graded polynomial algebra: There

is an isomorphism of graded algebras,

grH ∼= k[zλ]λ∈Λ

for some family
(
zλ
)
λ∈Λ

of homogeneous algebraically independent vari-

ables, necessarily of strictly positive degrees [59, Proposition 3.6].

3.2.4 A Poincaré-Birkhoff-Witt basis for H

The classical Poincaré-Birkhoff-Witt (PBW) Theorem (see, e.g., [15], [33]) pro-

vides a k-basis for the enveloping algebra Ug of any Lie k-algebra g that consists

of certain ordered monomials: If (xλ)λ∈Λ is a k-basis of g and ≤ is a total order on

Λ, then a k-basis of Ug is given by the monomials xλ1xλ2 . . . xλn with n ∈ Z+ and

λ1 ≤ λ2 ≤ · · · ≤ λn . In this section, working in characteristic 0, we will construct

an analogous basis for an arbitrary connected Hopf algebra H , formed by ordered

monomials in specified algebra generators for H . We will call it a PBW basis of H .

We assume from this point onward that H is a connected Hopf k-algebra and

that char k = 0.
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PBW basis

We fix a family of homogeneous algebra generators (zλ)λ∈Λ of grH as in 3.2.3(c),

viewing the isomorphism grH ∼= k[zλ]λ∈Λ as an identification. Define a map

| · | : Λ→ Z>0 by

|λ| := deg zλ .

Fix a well-order on each set Λd := {λ ∈ Λ | |λ| = d}. As in 3.2.2, 3.2.2 consider

the monoid M = {f : Λ −→ Z+ | supp(f) is finite}, equipped with the well-

order ≤ coming from the chosen orders on each Λd .

We consider the following k-basis of grH:

zn :=
∏
λ∈Λ

1

n(λ)!
z
n(λ)
λ =

∏
λ∈suppn

1

n(λ)!
z
n(λ)
λ (n ∈M). (3.1)

Note that zn is homogeneous of degree |n| =
∑

λ∈Λ n(λ)|λ|. Our goal is to lift this

basis to obtain a PBW basis of H . In detail, for every positive integer k, let

πk : Hk � (grH)(k) = Hk/Hk−1

be the canonical epimorphism. For each λ ∈ Λ, let eλ ∈ H|λ| ⊆ H be a fixed

pre-image of zλ under π|λ|. We put

en =
<∏

λ∈suppn

1

n(λ)!
e
n(λ)
λ (n ∈M), (3.2)

where the superscript < indicates that the factors occur in the order of increasing λ.

Note that en ∈ H|n| and π|n|(en) = zn . Furthermore, e0 = 1.

Lemma 3.2.3. (a) Mn :=
(
en
)
n∈M,|n|≤n is a basis of Hn (n ≥ 0). Hence,

M :=
(
en
)
n∈M is a basis of H .

(b) enem − cn,men+m ∈ H|n+m|−1 for some cn,m ∈ k×.

Proof. (a) We first prove linear independence of M . Suppose that there is a linear

relation
∑r

i=1 aieni = 0 with r ≥ 1, ni ∈ M , and 0 6= ai ∈ k for all i. Put d =

max{|ni|}1≤i≤r. Then
∑r

i=1 aieni ∈ Hd and πd(
∑r

i=1 aieni) =
∑
|ni|=d aizni = 0.
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Since {zn}n∈M are linearly independent in grH , it follows that ai = 0 for all

i ∈ {1, 2, ..., r} such that |ni| = d, contradicting our assumption that all ai 6= 0.

Next, we show that Mn spans Hn . For n = 0, this is certainly true because

H0 = k and e0 = 1. Now let n > 0. For any h ∈ Hn, the projection πn(h) ∈
(grH)(n) can be written as a k-linear combination πn(h) =

∑r
i=1 aizni with |ni| =

n. Thus, h −
∑r

i=1 aieni ∈ Hn−1. Since Hn−1 is spanned by Mn−1 by induction,

we deduce that h is in the span of Mn .

(b) Note that en+m ∈ H|n+m| and also enem ∈ H|n|H|m| ⊆ H|n+m|, where

the last inclusion holds by 3.2.3(a) and additivity of | · |. Furthermore, since grH is

commutative by 3.2.3(b), we have znzm = cn,mzn+m with cn,m =
∏

λ∈Λ
(n+m)(λ)!
n(λ)!m(λ)!

∈
k×. Therefore, by definition of the multiplication of grH ,

π|n+m|(enem) = π|n|(en)π|m|(em) = znzm = cn,mzn+m = cn,mπ|n+m|(en+m)

and so enem − cn,men+m ∈ H|n+m|−1 as claimed.

The family M will be our PBW basis for H .

The comultiplication on the PBW basis

We will first prove a result concerning the comultiplication of H .

Lemma 3.2.4. ∆(h) ∈ 1⊗ h+ h⊗ 1 +
n−1∑
i=1

Hi ⊗Hn−i for any h ∈ Hn .

Proof. We start with some preparations, following the procedure that is described

in detail in [45, p. 139ff]. The coradical filtration (Hn) can be used to give H a

graded k-vector space structure such that Hn =
⊕n

k=0H(k) for all n ≥ 0 and

ε(H(n)) = 0 for all n ≥ 1. Then there are isomorphisms

jn : H(n) ∼−→ Hn/Hn−1 = (grH)(n) (n ≥ 0)

and we obtain an isomorphism of graded vector spaces,

j :=
⊕
n≥0

jn : H ∼−→ grH .
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Letting pn : H ⊗ H � (H ⊗ H)(n) :=
⊕

r+s=nH(r) ⊗ H(s) denote the natural

projection, we define

δ :=
⊕
n≥0

pn ◦∆
∣∣
H(n)

: H → H ⊗H.

Then, for any z ∈ H(n) (n ≥ 0),

∆(z)− δ(z) ∈
⊕
r<n

(H ⊗H)(r) =
⊕
i+j<n

H(i)⊗H(j). (3.3)

Transferring δ to grH via j, we obtain a comultiplication ∆gr : grH → grH⊗grH

making grH a graded coalgebra and a commutative diagram:

H H ⊗H

grH grH ⊗ grH

δ

j j⊗j
∆gr

(3.4)

See [45, p. 139-141] for all this and [45, Props. 4.4.15, 7.9.4] for the fact that the

above construction results in a coradically graded Hopf algebra, grH .

Now let B be a k-bialgebra whose coradical filtration (Bn) is a bialgebra filtra-

tion in the sense of [45, Definition 5.6.2]—we will later take B = grH , where this

condition is satisfied. For any n > 0, we put

Pn :=
{
b ∈ Bn | ∆(z) ∈ 1⊗ b+ b⊗ 1 +

n−1∑
i=1

Bi ⊗Bn−i
}
.

Clearly, Pn ⊆Pk if k ≥ n and kPn ⊆Pn for all n. In addition:

Claim. PnPm ⊆Pn+m and Pn + Pm ⊆Pmax(n,m) for all n,m > 0.

To check this, let b ∈Pn, c ∈Pm and put r := max(n,m). Then

∆(bc) = ∆(b)∆(c)

∈
(
1⊗ b+ b⊗ 1 +

n−1∑
i=1

Bi ⊗Bn−i
)(

1⊗ c+ c⊗ 1 +
m−1∑
i=1

Bi ⊗Bm−i
)

⊆ 1⊗ bc+ bc⊗ 1 + b⊗ c+ c⊗ b+
m+n−1∑
i=1

Bi ⊗Bm+n−i

= 1⊗ bc+ bc⊗ 1 +
m+n−1∑
i=1

Bi ⊗Bm+n−i
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∆(b+ c) = ∆(b) + ∆(c)

∈
(
1⊗ b+ b⊗ 1 +

n−1∑
i=1

Bi ⊗Bn−i
)

+
(
1⊗ c+ c⊗ 1 +

m−1∑
i=1

Bi ⊗Bn−i
)

⊆ 1⊗ b+ b⊗ 1 + 1⊗ c+ c⊗ 1 +
r−1∑
i=1

Bi ⊗Br−i

= 1⊗ (b+ c) + (b+ c)⊗ 1 +
r−1∑
i=1

Bi ⊗Br−i ,

which proves the Claim.

We now apply the foregoing with B = grH using the notation of 3.2.3(c).

By [59, Theorem 3.2], we know that zλ ∈ P|λ| for all λ ∈ Λ. Therefore, the

first inclusion in the claim gives that zn ∈ P|n|; see (3.1). Next, observe that any

z ∈ (grH)n = (grH)(0)⊕· · ·⊕(grH)(n) can be written as z =
∑

n∈M,|n|≤n cnzn .

The second inclusion of the claim therefore gives that z ∈Pn.

To finish, let h ∈ Hn be given and put z := j(h) ∈ (grH)n . By the foregoing,

z ∈ Pn and so ∆gr(z) ∈ 1 ⊗ z + z ⊗ 1 +
∑n−1

i=1 (grH)i ⊗ (grH)n−i . Diagram

(3.4) now gives δ(h) ∈ 1 ⊗ h + h ⊗ 1 +
∑n−1

i=1 Hi ⊗ Hn−i and (3.3) further gives

∆(h) ∈ 1 ⊗ h + h ⊗ 1 +
∑n−1

i=1 Hi ⊗ Hn−i +
∑n−1

i=0 Hi ⊗ Hn−i−1 . Finally, note

that
∑n−1

i=0 Hi ⊗ Hn−i−1 ⊆
∑n−1

i=1 Hi ⊗ Hn−i, because H0 ⊗ Hn−1 ⊆ H1 ⊗ Hn−1

and Hi ⊗Hn−i−1 ⊆ Hi ⊗Hn−i. Thus, ∆(h) ∈ 1⊗ h+ h⊗ 1 +
∑n−1

i=1 Hi ⊗Hn−i,

which completes the proof.

Recall that Mn =
(
en
)
n∈M,|n|≤n is a basis of Hn (Lemma 3.2.3). For a given

n ∈ M , let H<n denote the subspace of H|n| that is spanned by the ei with i < n

and putH≤n = ken+H<n. Furthermore, we put (H⊗H)<n =
∑

i+j<nH
≤i⊗H≤j

and (H ⊗H)≤n =
∑

i+j≤nH
≤i ⊗H≤j; these are the subspaces of H ⊗H that are

spanned by the tensors ei ⊗ ej with i + j < n and i + j ≤ n, respectively

Lemma 3.2.5. For n ∈M we have ∆(en) ∈
∑

m+m′=n em ⊗ em′ + (H ⊗H)<n.

Proof. We start with the following auxiliary observation. Recall from Lemma 3.2.3(b)

that eiej ∈ kei+j + H|i+j|−1 and observe that the right-hand side is contained in
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H≤i+j. It follows that H≤nH≤m ⊆ H≤n+m for any n,m ∈M . Therefore,

(H ⊗H)≤n(H ⊗H)<m =
∑
i+j≤n
k+l<m

H≤iH≤k ⊗H≤jH≤l

⊆
∑
i+j≤n
k+l<m

H≤i+k ⊗H≤j+l

⊆
∑

r+s<n+m

H≤r ⊗H≤s = (H ⊗H)<n+m.

(3.5)

Similarly, (H ⊗H)<n(H ⊗H)≤m ⊆ (H ⊗H)<n+m.

To prove the Lemma, let us put

Σ(n) :=
∑

m+m′=n

em ⊗ em′ .

Our goal is to show that ∆(en) ∈ Σ(n) + (H ⊗ H)<n. This certainly holds for

n = 0, since e0 = 1 and ∆(1) = 1 ⊗ 1 = Σ(0). Now assume that n 6= 0

and proceed by induction on | suppn|. If | suppn| = 1, then n = nδλ and en =

enδλ =
enλ
n!

for some λ ∈ Λ, n ∈ Z>0 . By Lemma 3.2.4, we know that ∆(eλ) ∈
1⊗ eλ + eλ⊗ 1 +

∑|λ|−1
i=1 Hi⊗H|λ|−i. The summand Hi⊗H|λ|−i is spanned by the

tensors ej ⊗ ej with |i| ≤ i and |j| ≤ |λ| − i by Lemma 3.2.3; so |i + j| ≤ |λ|. In

addition, |i|, |j| < |λ|. Thus, if µ ≥ λ, then i(µ) = j(µ) = 0, since |λ| ≤ |µ|. This

shows that i + j < δλ . Therefore,
∑|λ|−1

i=1 Hi ⊗ H|λ|−i ⊆ (H ⊗ H)<δλ and hence

∆(eλ) ∈ 1⊗ eλ + eλ ⊗ 1 + (H ⊗H)<δλ . Now we compute:

∆(enδλ) =
1

n!
∆(eλ)

n ∈ 1

n!

(
1⊗ eλ + eλ ⊗ 1 + (H ⊗H)<δλ

)n
⊆ 1

n!
(1⊗ eλ + eλ ⊗ 1)n + (H ⊗H)<nδλ ,

where the last inclusion is obtained by expanding the product and using (3.5) on all

but the first summand. The binomial theorem further gives 1
n!

(1⊗ eλ + eλ ⊗ 1)n =∑n
i=0

1
i!(n−i)! e

i
λ ⊗ en−iλ =

∑n
i=0 eiδλ ⊗ e(n−i)δλ = Σ(nδλ) . Therefore,

∆(enδλ) ∈ Σ(nδλ) + (H ⊗H)<nδλ .

For the inductive step, let n ∈ M with | suppn| > 1. Put µ := max suppn,

n := n(µ), and n′ := n − nδµ . Thus, suppn′ = suppn \ {µ} and hence, by
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induction, ∆(en′) ∈ Σ(n′) + (H ⊗H)<n′ . Furthermore,

en =
<∏

λ∈suppn

1

n(λ)!
e
n(λ)
λ =

( <∏
λ∈suppn,λ 6=µ

1

n(λ)!
e
n(λ)
λ

)enµ
n!

= en′ enδµ .

It follows that

∆(en) = ∆(en′)∆(enδµ) ∈
(
Σ(n′) + (H ⊗H)<n′

)(
Σ(nδµ) + (H ⊗H)<nδµ

)
By (3.5), (H ⊗H)<n′Σ(nδµ) ⊆ (H ⊗H)<n′(H ⊗H)≤nδµ ⊆ (H ⊗H)<n as well

as Σ(n′)(H⊗H)<nδµ ⊆ (H⊗H)<n and (H⊗H)<n′(H⊗H)<nδµ ⊆ (H⊗H)<n.

Finally, Σ(n′)Σ(nδµ) = Σ(n). This completes the proof.

3.2.5 The convolution algebra

In this section, we fix an arbitrary k-algebra R (associative, with 1) and con-

sider the convolution algebra Homk(H,R); this is a k-algebra with convolution ∗
as multiplication:

(f ∗ g)(h) = f(h(1))g(h(2)) (f, g ∈ Homk(H,R), h ∈ H).

We continue working under the standing assumptions that the Hopf algebra H is

connected and char k = 0.

Minimal support elements

Let M = Z(Λ)
+ be the monoid of Section 3.2.2 and let M be the PBW basis

of H as in Section 3.2.4; so M ∼= M as sets via en ↔ n. Since every f ∈
Homk(H,R) is determined by its values on the basis M , which can be arbitrarily

assigned elements of R, we have a bijection Φ: Homk(H,R) ∼−→ RM , the set of

all functions s : M → R; explicitly,

(Φf)(n) = f(en) (f ∈ Homk(H,R),n ∈M). (3.6)

Now assume that M is equipped with the well-order ≤ of Lemma 3.2.2. Note

that the support supp Φf = {n ∈ M | f(en) 6= 0} need not be finite if f 6= 0, but
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it does have a smallest element for the well-order ≤ . For 0 6= f ∈ Homk(H,R),

we may therefore define

f := min supp Φf ∈M and fmin := f(ef ) ∈ R \ {0}. (3.7)

Lemma 3.2.6. Let 0 6= f, g ∈ Homk(H,R) and define f ,g ∈M as in (3.7). Then:

(a) (f ∗ g)(en) = 0 for n < f + g and (f ∗ g)(ef+g) = f(ef ) g(eg) .

(b) If f(ef ) g(eg) 6= 0, then f ∗ g 6= 0 and (f ∗ g)min = f(ef ) g(eg) .

Proof. Since part (b) is clear from (a), we will focus on (a).

Note that f vanishes on H<f , the subspace of H that is generated by the basis

elements en with n < f ; similarly, g(H<g) = {0}. For any ei⊗ ej ∈ (H⊗H)<f+g,

we have either i < f or j < g, because otherwise i+ j ≥ f + g by Lemma 3.2.2(b).

Hence, f(ei)g(ej) = 0 and so

m ◦ (f ⊗ g)(H ⊗H)<f+g = 0. (3.8)

Now let n ∈M be such that n ≤ f + g. By Lemma 3.2.5,

∆(en) ∈
∑

m+m′=n

em ⊗ em′ + (H ⊗H)<n.

Equation (3.8) gives us that (f ∗ g)(en) = 0 if n < f + g, and

(f ∗ g)(en) =
∑

m+m′=n

f(em)g(em′)

if n = f + g. Consider (m,m′) ∈M ×M with m + m′ = n as in the sum above.

If m < f or m′ < g, then f(em)g(em′) = 0. Therefore, the only contribution to

the sum comes from the pair (m,m′) = (f ,g), proving the lemma.

Subrings of the convolution algebra

The unit map u = uH : k→ H gives rise to the following algebra map:

u∗ : Homk(H,R) � R , f 7→ f(1).

The theorem below is an adaptation of Lemma 3.1.2.
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Theorem 3.2.7. Assume that char k = 0. Let R be a k-algebra, let H be a con-

nected Hopf k-algebra, and let S ⊆ Homk(H,R) be a subring such that u∗(S) =

R . If R is prime (semiprime, a domain), then so is S.

Proof. First assume that R is prime. Let 0 6= s, t ∈ S be given and let smin, tmin ∈
R \ {0} be as in (3.7). Then 0 6= sminrtmin for some r ∈ R. By assumption,

there exists an element u ∈ S such that u(1) = r. Since 1 = e0, we evidently have

0 = min supp Φu and umin = r. It now follows from Lemma 3.2.6 that s∗u∗t 6= 0

and (s ∗ u ∗ t)min = sminrtmin . This proves that S is prime.

For the assertions where R is semiprime or a domain, take s = t or r = 1,

respectively.

Of course, Theorem 3.2.7 applies with S = Homk(H,R). Thus, we obtain the

following corollary.

Corollary 3.2.8. LetH be a connected Hopf algebra over a field k of characteristic

0 and let R be a k-algebra that is prime (semiprime, a domain), then so is the

convolution algebra Homk(H,R).

Proof of Theorem 3.2.1

We are now ready to give the proof of Theorem 3.2.1, which is also a conse-

quence of Theorem 3.2.7.

Let A be an H-module algebra and let I be an arbitrary ideal of A. The core

(I : H) is the kernel of the map ρ : A −→ Homk(H,A/I) that is defined by

ρ(a) = (h 7→ h.a + I). So ρ(A) ∼= A/(I : H) as rings. Note that the composite

map u∗ ◦ ρ : A → Homk(H,A/I) → A/I is the canonical epimorphism, a 7→
a + I (a ∈ A). So u∗(ρ(A)) = A/I . Therefore, Theorem 3.2.7 applies with

S = ρ(A) andR = A/I . We obtain that whenA/I is prime (semiprime, a domain),

then so is ρ(A). Since ρ(A) ∼= A/(I : H), this is equivalent to the statement of

Theorem 3.2.1.
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CHAPTER 4

JOINT WORK

4.1 Hopf algebra actions: stratification

Introduction

Let H be a Hopf algebra over a field k and let A be an arbitrary associative

k-algebra. An action of H on A is given by a k-linear map H ⊗ A→ A, h⊗ a 7→
h.a, that makes A into a left H-module and satisfies the “measuring” conditions

h.(ab) = (h1.a)(h2.b) and h.1 = 〈ε, h〉1 for h ∈ H and a, b ∈ A. Here, ⊗ = ⊗k ,

∆h = h1 ⊗ h2 denotes the comultiplication of H , and ε is the counit. We will

write H A to indicate such an action. Algebras equipped with an H-action are

called left H-module algebras. With algebra maps that are also H-module maps as

morphisms, left H-module algebras form a category, HAlg. For example, an action

of a group algebra kG on A amounts to the datum of a group homomorphism G→
AutA, the automorphism group of the algebra A. For the enveloping algebra Ug of

a Lie k-algebra g, an action Ug A is given by a Lie homomorphism g → DerA,

the Lie algebra of all derivations of A. In both these prototypical cases, the acting

Hopf algebra is cocommutative. We present here the results of investigating the

effect of a given action H A of an arbitrary cocommutative Hopf algebra H on

the prime and semiprime ideals of A, partially generalizing prior work of Lorenz

on rational actions of algebraic groups [30], [31], [32].
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If A 6= 0 and the product of any two nonzero H-ideals of A is again nonzero,

then A is said to be H-prime. An H-ideal I of A is called H-prime if A/I is H-

prime. It is easy to see that H-cores of prime ideals are H-prime. Denoting the

collection of all H-primes of A by H-SpecA, we thus obtain a map SpecA →
H-SpecA , P 7→ P :H . The fibers

SpecI A
def
= {P ∈ SpecA | P :H = I}

are called the H-strata of SpecA. The stratification SpecA =
⊔
I∈H-SpecA SpecI A

was pioneered by Goodearl and Letzter [20] in the case of group actions or, equiv-

alently, actions of group algebras. It has proven to be a useful tool for investigating

SpecA, especially for rational actions of a connected affine algebraic group G over

an algebraically closed field k. In this case, one has a description of each stra-

tum SpecI A in terms of the prime spectrum of a suitable commutative algebra [31,

Theorem 9]. Our principal goal is to generalize this result to the context of cocom-

mutative Hopf algebras.

Main result

To state our main result, we first make some observations. Let H be cocommu-

tative and k algebraically closed. Assume that the action H A is locally finite,

that is, dimk H.a < ∞ for all a ∈ A. Then A becomes a right comodule algebra

over the (commutative) finite dual H◦ of H:

A A⊗H◦

a a0 ⊗ a1

with h.a = a0〈a1, h〉 (h ∈ H, a ∈ A). (4.1)

The action H A will be called integral if the image of the map (4.1) is contained

in A ⊗ O for some Hopf subalgebra O ⊆ H◦ that is an integral domain. This

condition serves as a replacement for connectedness in the case of algebraic group

actions. Assuming it to be satisfied, it follows that each I ∈ H-SpecA is in fact

a prime ideal of A. Consequently, the extended center C(A/I) = Z Q(A/I) is a

k-field, where Q(A/I) denotes the symmetric ring of quotients of A/I . The action
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H A/I extends uniquely to an H-action on Q(A/I) and this action stabilizes

the center C(A/I). Furthermore, O ∈ HAlg via the “hit” action ⇀ that is given by

〈h⇀f, k〉 = 〈f, kh〉 for f ∈ O and h, k ∈ H . The actions ⇀ and H C(A/I)

combine to an H-action on the tensor product; so

CI := C(A/I)⊗O ∈ HAlg . (4.2)

The algebra CI is a commutative integral domain. We let SpecHCI denote the

subset of SpecCI consisting of all prime H-ideals of CI .

Theorem 4.1.1. Let H be a cocommutative Hopf algebra over an algebraically

closed field k and let A be a k-algebra that is equipped with an integral action

H A. Then, for any I ∈ H-SpecA, there is a bijection

c : SpecI A
∼→ SpecHCI

having the following properties, for any P, P ′ ∈ SpecI A:

(i) c(P ) ⊆ c(P ′) if and only if P ⊆ P ′, and

(ii) Fract(CI/c(P )) ∼= C((A/P )⊗O).

Examples

As a first example, let G be an affine algebraic k-group and let O = O(G) be

the algebra of polynomial functions on G. Then O ⊆ H◦ with H = kG. A rational

G-action on A, by definition, is a locally finite action H A such that the image of

(4.1) is contained in A⊗O. If G is connected, then O is an integral domain and so

the action is integral. In this setting, Theorem 4.1.1 is covered by [31, Theorem 9].

Next, let g be a Lie k-algebra acting by derivations on A and assume that every

a ∈ A is contained in some finite-dimensional g-stable subspace of A. With H =

Ug, we then have a locally finite actionH A and hence a map (4.1). If char k = 0,

then the convolution algebra H∗ is a power series algebra over k and hence H∗ is a

commutative domain. Since H◦ is a subalgebra of H∗, we may take O = H◦ and

so we have an integral action. Theorem 4.1.1 appears to be new in this case.
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Outlook

In future work, we hope to pursue the general theme of the work described above

for Hopf algebras that are not necessarily cocommutative. In particular, we plan to

address “rationality” of prime ideals and explore the Dixmier-Mœglin equivalence

in the context of Hopf algebra actions, generalizing the work on group actions in

[30], [31].

4.2 Adjoint action of Hopf algebras

Locally finite parts

Let H be a Hopf algebra over a field k, with comultiplication ∆h = h(1)⊗ h(2),

antipode S, and counit ε. The left adjoint action of H on itself is defined by

k.h = k(1)h S(k(2)) (h, k ∈ H). (4.3)

This action makes H a left H-module algebra that will be denoted by Had. Our

main interest is in the locally finite part,

Had fin = {h ∈ H | dimk H.h <∞}.

Of course, if H is finite dimensional, then Had fin = H; so we are primarily con-

cerned with infinite-dimensional Hopf algebras.

Finitely generating subalgebras

Locally finite parts may of course be defined for arbitrary representations as

the sum of all finite-dimensional subrepresentations: for any left module V over a

k-algebra R,

Vfin
def
= {v ∈ V | dimk R.v <∞}.

This gives a functor · fin on the category RMod of left R-modules. If R is finitely

generated as right module over some subalgebra T , then Vfin = {v ∈ V | dimk T.v <

∞} for any V ∈ RMod. Adopting group-theoretical terminology, we will call a
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Hopf algebra H virtually of type C, where C is a given class of Hopf algebras, if H

is finitely generated as right module over some Hopf subalgebra K ∈ C.

Main theorem

The locally finite part Afin of any left H-module algebra A is a subalgebra that

contains the algebra of H-invariants, AH = {a ∈ A | h.a = 〈ε, h〉a for all h ∈ H}.
For A = Had, the invariant algebra coincides with the center of H [33, Lemma

10.1]. The center is rarely a Hopf subalgebra of H , even if H is a group algebra,

and Had fin need not be a Hopf subalgebra either in general, for example when H is

a quantized enveloping algebra; see [4, Example 2.8] or [29]. However, we have

the following result. Recall that a left coideal subalgebra of H is a subalgebra C

that is also a left coideal of H , i.e., ∆(C) ⊆ H ⊗ C.

Theorem 4.2.1. (a) Had fin is always a left coideal subalgebra of H .

(b) If H is virtually cocommutative, then Had fin is a Hopf subalgebra of H .

For a quantized enveloping algebra of a complex semisimple Lie algebra, H =

Uq(g), part (a) is due to Joseph and Letzter: it follows from [23, Theorem 4.10] that

Uq(g)ad fin is a left coideal subalgebra and this fact is also explicitly stated as [29,

Theorem 5.1]. Part (b) extends an earlier result of Bergen [4, Theorem 2.18] to ar-

bitrary characteristics. Bergen’s proof is based on his joint work with Passman [7],

which determines Had fin explicitly for group algebras and for enveloping algebras

of Lie algebras in characteristic 0.

Finite parts of tensor products

Some of our work is in the context of (virtually) pointed Hopf algebras. Over an

algebraically closed field, all cocommutative Hopf algebras are pointed [52, Lemma

8.0.1]. However, many pointed Hopf algebras of interest are not necessarily co-

commutative. Examples include the algebras of polynomial functions of solvable

connected affined algebraic groups (over an algebraically closed base field) and
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quantized enveloping algebras of semisimple Lie algebras. It turns out that · fin is a

tensor functor for virtually pointed Hopf algebras:

Theorem 4.2.2. If H is virtually pointed, then (V ⊗W )fin = Vfin ⊗Wfin for any

V,W ∈ HMod.

Dietzmann’s lemma

A standard group-theoretic fact, known as Dietzmann’s Lemma, states that any

finite subset of a group that is stable under conjugation and consists of torsion ele-

ments generates a finite subgroup ([13] or [26, §53]). Our final result is the follow-

ing version of Dietzmann’s Lemma for arbitrary Hopf algebras.

Proposition 4.2.3. Let C1, . . . , Ck be finite-dimensional left coideal subalgebras of

H and assume that C =
∑k

i=1 Ci is stable under the adjoint action of H . Then C

generates a finite-dimensional subalgebra of H .

Of course, the subalgebra that is generated by C is also a left coideal subalge-

bra, stable under the adjoint H-action, and it is contained in Had fin. Our proof of

Proposition 4.2.3 will show that if all Ci are in fact sub-bialgebras of H , then it

suffices to assume that C is stable under the adjoint actions of all Ci.

Outlook

As was mentioned earlier, the finite part Had fin of a group algebra H = kG

is the subgroup algebra kGfin of the FC-center Gfin. In this case, it is known that

kG is prime if and only if Gfin is torsion-free abelian [43]. For Hopf algebras, an

analogous primeness criterion would be highly desirable. This is another possible

future project.
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