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ABSTRACT

EXTENDINGACTIONS OF HOPFALGEBRAS TO

ACTIONS OF THE DRINFEL’D

DOUBLE

Zachary Cline

DOCTOR OF PHILOSOPHY

Temple University, May, 2019

Dr. Martin Lorenz, Chair

Mathematicians have long thought of symmetry in terms of actions of groups,

but group actions have proven too restrictive in some cases to give an interesting

picture of the symmetry of some mathematical objects, e.g. some noncommutative

algebras. It is generally agreed that the right generalizations of group actions to

solve this problem are actions of Hopf algebras, the study of which has exploded in

the years since the publication of Sweedler’s Hopf algebras in 1969.

Different varieties of Hopf algebras have been useful in many fields of math-

ematics. For instance, in his “Quantum Groups” paper, Vladimir Drinfel’d intro-

duced quasitriangular Hopf algebras, a class of Hopf algebras whose modules each

provide a solution to the quantum Yang-Baxter equation. Solutions of this equa-

tion are a source of knot and link invariants and in physics, determine if a one-

dimensional quantum system is integrable. Drinfel’d also introduced the Drinfel’d

double construction, which produces for each finite-dimensional Hopf algebra a qu-

asitriangular one in which the original embeds.

This thesis ismotivated bywork of SusanMontgomery andHans-Jürgen Schnei-

der on actions of the Taft (Hopf) algebras Tn(q) and extending such actions to the

Drinfel’d doubleD(Tn(q)). In 2001, Montgomery and Schneider classified all non-

trivial actions of Tn(q) on an n-dimensional associative algebra A. It turns out

that A must be isomorphic to the group algebra of grouplike elements kG(Tn(q)).
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They further determined that each such action extends uniquely to an action of the

Drinfel’d doubleD(Tn(q)) on A, effectively showing that each action has a unique

compatible coaction. We generalize Montgomery and Schneider’s results to Hopf

algebras related to the Taft algebras: the Sweedler (Hopf) algebra, bosonizations of

1-dimensional quantum linear spaces, generalized Taft algebras, and the Frobenius-

Lusztig kernel uq(sl2). For each Hopf algebra H , we determine

1. whether there are non-trivial actions of H on A,

2. the possible H-actions on A, and

3. the possible D(H)-actions on A extending an H-action and how many there

are.
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CHAPTER 1

INTRODUCTION

Unless otherwise specified, throughout this work, kwill denote an algebraically
closed field of characteristic 0, algebraic structures will be over k, and⊗ will mean

⊗k. ‘Dimension’ will always mean k-vector space dimension. Technical terms in
the introduction and definitions throughout the manuscript are italicized. An index

of notation and terminology is provided at the end to aid the reader.

1.1 Symmetry

One objective of mathematics in general is the discovery, creation, and interpre-

tation of patterns, and in the physical world, one of the most observed and prevalent

patterns is symmetry. From childhood, we are taught about symmetry in school; we

observe it in the plants and animals of nature; it has been used in architecture and the

arts since the beginning of civilization. Yet, only fairly recently in the scope of hu-

man history did mathematicians realize that they could study symmetry rigorously,

with the discovery (or invention) of groups.

If we fix a certain property or structure of some mathematical object, the set of

operations on the object which preserve that property form a group. The symmetric

group Sn is the group of symmetries of arrangements of n objects, the dihedral

group D2n is the group of symmetries of an n-sided regular polygon, and GLn(R)
comprises the linear symmetries of real n-space. We can think of symmetries more
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generally in terms of group actions: a group action ofG on a setX is simply a group

homomorphism φ : G → SX , where SX is the symmetric group on X . The act of

specifying which property we want to preserve for our desired notion of ‘symmetry’

is to simply replace SX with a subgroup.

For instance, Group Representation Theory is devoted to studying groups by

their linear actions on vector spaces. A representation of G is a vector space V

equipped with a group homomorphism φ : G → GL(V ). We will denote the cat-

egory of representations of a group G by Rep(G). (In fact, some purely group-

theoretic facts have been proven using actions and representations, such as Burn-

side’s paqb Theorem and results in the classification of finite simple groups [21,

Section 3.6])

While group actions capture symmetry in the classical sense discussed above,

they have proven too restrictive to yield interesting information about all mathemat-

ical objects, such as noncommutative algebras. Noncommutative algebras typically

have small, uninteresting automorphism groups, and so are too rigid for group ac-

tions to reflect their rich structure. Thus, we need a different notion of symmetry

to handle symmetries of k-algebras in general, and a natural first place to look are
actions of some other algebraic structure.

To see what sort of structure we should use to handle symmetries of k-algebras
in general, recall that through the diagonal action, the tensor product of two group

representations is a representation as well: for V,W ∈ Rep(G)

g · (v ⊗ w) = (g · v)⊗ (g · w) g ∈ G, v ∈ V, w ∈ W. (1.1)

Moreover, the one-dimensional vector space k is a representation of any group by

the trivial action: g · 1k = 1k. These facts are used to define actions of groups on k-
algebras generated by V , giving the classical symmetry of k-algebras. If one wants
classical symmetries of algebras generated by the dual space V ∗, then note that V ∗

can be made a representation via

(g · f)(v) = f(g−1 · v) g ∈ G, v ∈ V, f ∈ V ∗. (1.2)

Together, these propertiesmakeRep(G) a rigidmonoidal category. Thus, we should
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expect to need an algebraic object whose representations form a rigid monoidal cat-

egory, and whose representation theory contains that of groups as a special case. It

has generally been accepted that the right objects of study to generalize group rep-

resentation theory to this end are Hopf algebras. We reserve the precise definition

of Hopf algebra for Section 2.1, but define it briefly here.

Definition 1.1.1. AHopf algebra is a k-vector space H , equipped with

• an associative k-algebra structure (H,m, η), where m : H ⊗ H → H and

η : k → H are the multiplication and unit maps, respectively;

• a coassociative k-coalgebra structure (H,∆, ε), where∆ : H → H ⊗H and

ε : H → k are the comultiplication and counit maps, respectively;

• and an anti-automorphism S : H → H , called the antipode,

satisfying compatibility conditions.

1.2 Hopf algebras

While Hopf algebras originated in the study of algebraic topology and algebraic

groups [4], they are objects which appear in a variety of contexts and are now studied

in their own right. They generalize two classical algebraic objects: group algebras

and universal enveloping algebras of Lie algebras. The group algebra of a group

G, denoted kG, is the k-vector space with basis G, and multiplication coming from
extending the group operation linearly. The universal enveloping algebra of a Lie

algebra g, denoted U(g), is the quotient of the tensor algebra T (g) by the ideal

generated by elements of the form x⊗y−y⊗x− [x, y] for x, y ∈ g. For a groupG

(or a Lie algebra g), the coalgebra structure and antipode of kG (or U(g)) are given

respectively by

∆(g) = g ⊗ g ε(g) = 1 S(g) = g−1 (g ∈ G);

∆(x) = 1⊗ x+ x⊗ 1 ε(x) = 0 S(x) = −x (x ∈ g).
(1.3)
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Many classical results about Hopf algebras involve proving or disproving analo-

gous versions (or generalizations) of theorems from group theory, e.g. the Nichols-

Zoeller Theorem [26] which generalizes Lagrange’s Theorem (that the number of

elements of any subgroup must divide the number of elements of the group). While

Hopf algebras were introduced in the 1940’s, the theory is still developing today,

with most results pertaining to particular classes or examples. The classification of

these objects is far from complete, with most results limited to Hopf algebras whose

dimensions are products of a few prime integers [2, 10].

Since a Hopf algebra H is in particular an algebra, we will define a representa-

tion of H to be an H-module, and will denote the category of representations of H

by HM (the reason for which is more clear in Section 2.1.2). As desired, HM is

indeed a rigid monoidal category. (For more explanation of this, see Section 2.2.1.)

The tensor product, trivial, and dual actions are given as follows: For a Hopf algebra

H and V,W ∈ HM, we have that V ⊗W , k, and V ∗ are also representations via,

respectively,

h · (v ⊗ w) = (h(1) · v)⊗ (h(2) · w), h · 1k = ε(h)1k,

(h · f)(v) = f(S(h) · v) (for h ∈ H , v ∈ V , w ∈ W , and f ∈ V ∗).
(1.4)

(Here, we are using Sweedler’s summation-less notation,∆(h) = h(1) ⊗ h(2).) Also,

recalling that a representation ofG is the same thing as a kG-module, by comparing
(1.1), (1.2), (1.3), and (1.4), one sees that representations of Hopf algebras general-

ize group representations. Motivated by the group case, we call a nonzero element

g of a Hopf algebra H grouplike if ∆(g) = g ⊗ g. As we will see in Remark 2.1.8,

the set of grouplike elements of H forms a group, denoted G(H).

Moreover, since enveloping algebras are also Hopf algebras, with the structure

given in (1.3), we see how the tensor product, trivial, and dual representations in

Rep(g) arise for a Lie algebra g, by (1.4):

x · (v ⊗ w) = v ⊗ (x · w) + (x · v)⊗ w, x · 1k = 0,

(x · f)(v) = f(−x · v) (for x ∈ g, v ∈ V , w ∈ W , and f ∈ V ∗).

Like for groups and Lie algebras, for any Hopf algebra H , we can use (1.4) to

define an action of H on an algebra A.
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Definition 1.2.1. Let H be a Hopf algebra. An H-module algebra A is an algebra

(or monoid) in HM. Put another way, A is simultaneously an H-module and k-
algebra such that

h · (ab) = (h(1) · a)(h(2) · b), h · 1A = ε(h)1A (for h ∈ H and a, b ∈ A).

We also say that H acts on A and call this a Hopf action on A.

This definition of an action of a Hopf algebra on an algebra gives us a way to

define a new type of symmetry. Now group algebras and enveloping algebras are

examples of cocommutative Hopf algebras, meaning ∆ = τ ◦∆ for the twist map

τ : H ⊗ H → H ⊗ H . In fact, a theorem of Cartier, Kostant, Milnor, and Moore

states that all cocommutative Hopf algebras are smash products of the two previ-

ously mentioned types [1, Theorem 1.1]. Thus, symmetry coming from cocommu-

tative Hopf algebras are considered classical. On the other hand, symmetry from a

Hopf action that does not factor through that of a cocommutative Hopf algebra is

considered quantum symmetry.

This work is focused on classifying actions of pointed Hopf algebras H on the

group algebra of grouplike elements kG(H), essentially studying quantum symme-

tries of classical objects. (See Section 2.1.1 for a definition of a ‘pointed’ Hopf

algebra.) Actions of such Hopf algebrasH are then extended to actions of the Drin-

fel’d double D(H).

The purpose of looking for actions of D(H) is to find solutions to the quantum

Yang-Baxter equation, which provide a source of link/knot invariants and play a role

in the theory of quantum integrable systems [17, 18]. For a vector space V , a map

c ∈ Autk(V ⊗ V ) is called a solution of the quantum Yang-Baxter equation if the

identity

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idV ⊗ c)(c⊗ idV )(idV ⊗ c) (1.5)

holds in Autk(V ⊗ V ⊗ V ). In [14], Drinfel’d introduced the notion of quasitrian-

gular Hopf algebras, whose modules each lead to a solution of the quantum Yang-

Baxter equation. He also introduced the quantum double of a finite-dimensional
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Hopf algebra H (now called the Drinfel’d double of H), denoted D(H), which is

a canonical quasitriangular Hopf algebra in which H embeds. Thus, modules of a

finite-dimensional Hopf algebra H which admit an extension to the structure of a

D(H)-module give solutions of the quantum Yang-Baxter equation.

Thus, for the sake of both studying symmetries of associative algebras and for

finding solutions of the quantum Yang-Baxter equation, we are interested in the

question of when actions of a finite-dimensional Hopf algebra H on A leads to a

non-trivial action of D(H) on A. In particular, we explore the question of when

a group (G-)action on A by algebra automorphisms can extend non-trivially to an

action of a Hopf algebraH onA, and when this action can then extend non-trivially

to an action of D(H) on A (see Question 1.3.3).

1.3 Motivation from Montgomery–Schneider

The scope of this thesis is based on the work of Susan Montgomery and Hans-

Jürgen Schneider on actions of the n2-dimensional Taft Hopf algebra, Tn(q). For

n ∈ N, n ≥ 2, and a primitive nth root of unity q ∈ k, this Hopf algebra is generated
as an algebra by elements g and x, with relations

gn = 1, xn = 0, gx = qxg.

The rest of the Hopf algebra structure is given in Example 2.1.11. For now, note

that the group of grouplike elements is the cyclic group of order n: G(Tn(q)) =

〈g〉. In [24], Montgomery and Schneider classified the n-dimensional Tn(q)-module

algebras with no nonzero nilpotent elements, for which x does not act by zero. In

fact, x acting by nonzero is exactly the condition that this module structure is inner-

faithful, i.e., that the action does not factor through any proper Hopf quotient of

Tn(q) (see, e.g., Corollary 2.5.3). Moreover, by Proposition 2.5.5 below, the value

n is the smallest possible dimension of an inner-faithful Tn(q)-module algebra with

no nonzero nilpotent elements. Their classification was the following.

Theorem 1.3.1. [24, Theorem 2.5] Take n ≥ 2. Let A be an n-dimensional inner-

faithful Tn(q)-module algebra with no nonzero nilpotent elements. Then there exists
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an element u ∈ A and nonzero scalars β, γ ∈ k such that A = k[u]/(un − β),

where g · u = q−1u, and x · u = γ1A.

By scaling u, we can assume without loss of generality that un = 1A in A

above. Thus, A is in fact isomorphic as an algebra to the group algebra kG, where
G = G(Tn(q)) ∼= Z/nZ is the group of grouplike elements of Tn(q). Moreover,

note that sinceG is abelian,G ∼= Ĝ, the character group ofG. (This isomorphism is

in general not unique.) The action of the Hopf subalgebra kG ⊆ Tn(q) on A ∼= kG
is induced by the character group: Fix generators g ∈ Ĝ and u ∈ G so that 〈g, u〉 =
q−1; then, in A ∼= kG, we get that g · um = q−mum = 〈g, um〉um. In general, for G
abelian, there is always an action of kĜ on kG given by

g · u = 〈g, u〉u g ∈ Ĝ, u ∈ G. (1.6)

Thus,Montgomery and Schneider classified all the inner-faithful actions ofTn(q)

on the group algebra of its grouplike elements kG(Tn(q)), extending the action of
kG(Tn(q)) on itself as just described. We set the following notation.

Notation 1.3.2 (A(H)). For a Hopf algebra H with a finite abelian group of grou-

plike elements G := G(H), let A(H) denote an inner-faithful H-module algebra

that is isomorphic to kG as an algebra so that kG ⊂ H acts on A(H) ∼= kG as kĜ
does in (1.6).

Montgomery and Schneider showed further that for n ≥ 3, each such action of

Tn(q) on A(Tn(q)) can be extended uniquely to an action of the Drinfel’d double

D(Tn(q)) onA(Tn(q)); we recall the details of their result in Theorem 3.1.2. There-

fore, each module algebra A(Tn(q)) gives a solution to the quantum Yang-Baxter

equation, and the symmetries of A(Tn(q)) coming from the action ofD(Tn(q)) are,

in a sense, determined uniquely by the symmetries coming from the action of Tn(q).

Motivated by their work, we investigate the following questions.

Question 1.3.3. Let H be a finite-dimensional Hopf algebra with an abelian group

of grouplike elements.

(a) Do the module algebra structures A(H) as described in Notation 1.3.2 exist?
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If (a) is affirmative, then:

(b) What are the possible H-module structures on A(H)?

(c) What are the possible D(H)-module algebra structures on A(H) extending

that in (b)? How many extensions are there? In particular, is there a unique

extension as in the case of the Taft algebras (Tn(q) with n ≥ 3)?

Remark 1.3.4. The first case to consider is, naturally, the case H = kG for G a

finite abelian group. Here, A(H) = H with the action determined by (1.6), which

addresses Question 1.3.3(a,b). Note thatD(kG) ∼= kG⊗ kG as Hopf algebras with

the tensor product Hopf algebra structure. The second copy of kG corresponds to

the original H , and the first copy corresponds to the dual (kG)∗ ∼= kG. Thus, any
extension of an action of kG on A(kG) to one ofD(kG) on A(kG) is given by any
other action (not necessarily faithful) of Ĝ ∼= G on kG by algebra automorphisms.

1.4 Main results and related work

Because the answers to Question 1.3.3 are interesting for the Taft algebras Tn(q),

we will answer these questions for some pointed, finite-dimensional Hopf algebras

related to Taft algebras. In Chapter 2, we provide background information per-

taining to actions of pointed Hopf algebras and their Drinfel’d doubles that will be

used throughout. Chapter 3 goes over the case of the Taft algebras in more de-

tail, and gives an answer to Question 1.3.3(c) for the Sweedler algebra T2(−1).

Chapter 4 is dedicated to a family of coradically graded Hopf algebras,Hn(ζ,m, t),

for which the Taft algebras are a subclass; these Hopf algebras arise as bosoniza-

tions of quantum linear spaces from Andruskiewitsch and Schneider’s work [5].

Explicit computations are given for the dual Hn(ζ,m, t)
∗, with the dual pairing

given, and for D(Hn(ζ,m, t)) before addressing Question 1.3.3. Non-trivial lift-

ings of Hn(ζ,m, t), namely the generalized Taft algebras T (n,N, 1), are the sub-

ject of Chapter 5. Again, explicit computations of the dual and double are given for

T (n,N, 1). It is known that a Taft algebra can be considered as the positive Borel
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part of the Frobenius-Lusztig kernel uq(sl2), and Chapter 6 answers Question 1.3.3

for the full small quantum group uq(sl2). Directions for future research are dis-

cussed in Chapter 7, while some computations omitted in the body for the sake of

brevity are included in Appendix A.

Our main results are summarized as follows.

Theorem 1.4.1. Consider the finite-dimensional pointed Hopf algebras T2(−1),

Hn(ζ,m, t), T (n,N, 1), and uq(sl2) discussed above. Then, Question 1.3.3 is an-

swered for these Hopf algebras, as detailed in Tables 1 and 2.

The results of Montgomery and Schneider for Tn(q) are included in Table 1 and

2 for comparison, and the proof of Theorem 1.4.1 is the main focus of most of this

thesis.

It is worth mentioning that presentations for the dual and double of these Hopf

algebras are computed, which may be of independent interest. As an example, we

give a complete proof of the fact that uq(sl2)
∗ is isomorphic to a quotient of the

quantum group Oq(SL2), and give the dual pairing. While this fact is seemingly

well-known (see, e.g., Brown-Goodearl’s work in [11, III.7.10]), there did not seem

to be a full proof in the literature.

We end this section by mentioning some related results in the literature that may

be of interest. In [13], Cohen, Fischman, and Montgomery examine conditions on

a Hopf algebra H and left H-module H-comodule algebra A under which A can

be realized as a D(H)-module algebra. In particular, they show that if H has a

bijective antipode and either (i) A is a faithful A#H-module, or (ii) A/AcoH is H-

Galois and A is H-commutative (i.e. ab = (a(−1) · b)a(0) for all a, b ∈ A), then

A is a D(H)-module algebra. Chen and Zhang classified all D(T2(−1))-module

algebras of dimension 4 up to isomorphism as D(T2(−1))-modules in [12], in par-

ticular giving all D(T2(−1))-module algebra structures onM2(k). In [19], Kinser
andWalton examine actions of Taft algebras on path algebras of quivers, and extend

such actions to D(Tn(q)).
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CHAPTER 2

PRELIMINARIES

The main objects of study are Hopf algebras. The relevant general theory is

developed in Section 2.1. In Section 2.2, we consider actions of Hopf algebras

on associative algebras, and develop the theory of Yetter-Drinfel’d modules and

bosonizations. Many of the pointed Hopf algebras we consider later are (liftings of)

bosonizations. The Drinfel’d double is the subject of Section 2.3. In Section 2.4,

we introduce an important class of Hopf algebras in the category of Yetter-Drinfel’d

modules, namely Nichols algebras. These have proven useful in the classification

program of pointed Hopf algebras. Finally, we discuss inner-faithful module alge-

bras in Section 2.5 and their structure for pointed Hopf algebrasH withG(H) finite

cyclic.

2.1 Hopf algebras

Even rigorously defining what a Hopf algebra is requires a bit of background. A

Hopf algebra is a k-vector space with a compatible algebra and coalgebra structure,
along with a special map called the antipode. Each of these terms, besides ‘alge-

bra’, needs a proper explanation. We first discuss the dual notion of an associative

algebra: a coassociative coalgebra.
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2.1.1 (Co)algebras

It is easiest to understand coassociative coalgebras as the dual notion to associa-

tive algebras. One typically learns that an associative k-algebra is a unital ring A
together with a unital ring homomorphism f : k → A so that f(k) ⊆ Z(A). This

map gives the ringA the additional structure of a k-vector space, and so a k-algebra
is simultaneously a ring and a vector space with compatible structures. Of course,

this definition prioritizes the ring structure. Alternatively, we could prioritize the

vector space structure, and define an associative k-algebra as a k-vector space A
equipped with two k-linear maps, m : A ⊗ A → A and η : k → A for which the

diagrams

A⊗ A⊗ A A⊗ A

A⊗ A A

idA⊗m

m⊗idA m

m

A⊗ A

k⊗ A A⊗ k

A

m

η⊗idA idA⊗η

(2.1)

commute. The first diagram expresses associativity of the multiplication and the

second gives that η(1k) is the unit of A. (Here, η and f above are the same map.)

We callm and η the multiplication (or product) and unit maps, respectively, for the

algebra A.

One benefit of the second definition of an associative k-algebra is that we can
generalize the notion of “algebra” to arbitrary monoidal categories (see [28, Chap-

ter 11]). We will see some examples in Section 2.2.1. The more pertinent benefit is

that we can now define a coalgebra as the dual notion of an algebra, with the axioms

given by “reversing all arrows”. More precisely, a coassociative k-coalgebra is a
k-vector space C equipped with two k-linear maps,∆ : C → C⊗C and ε : C → k
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for which the diagrams

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ idC⊗∆

∆⊗idC

C

k⊗ C C ⊗ k

C ⊗ C

∆

ε⊗idC idC⊗ε

(2.2)

commute. We call ∆ and ε the comultiplication (or coproduct) and counit maps,

respectively, for C.

For any c ∈ C, we have∆(c) =
∑n

i=1 ai ⊗ bi for some n ∈ N and ai, bi ∈ C. If

we start performing calculations with many elements, the introduced notation and

plethora of summations becomes bulky and hard to keep track of.

Notation 2.1.1. To make such calculations easier, when all maps involved are k-
linear, Sweedler introduced the notation ∆(c) = c(1) ⊗ c(2), which is now called

Sweedler notation.

As an example, the commutativity of the diagrams in (2.2) is expressed

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2), (2.3)

ε(c(1))c(2) = c = c(1)ε(c(2)). (2.4)

By virtue of (2.3), there is no ambiguity in writing c(1) ⊗ c(2) ⊗ c(3), which is

sometimes written ∆(2)(c). Just as associativity of multiplication leads to a gen-

eralized associativity (that any placement of parentheses results in the same prod-

uct) so too the coassociativity leads to a generalized coassociativity (that applying

∆ successively n times always results in the same coproduct, regardless of which

slot we apply ∆ to at each step.) Thus, more generally, we write ∆(n−1)(c) =

c(1) ⊗ c(2) ⊗ · · · ⊗ c(n).

Example 2.1.2. Let X be any set and let kX denote the k-vector space with basis
X . We can give kX a coalgebra structure by defining

∆(x) = x⊗ x ε(x) = 1 (2.5)

for any x ∈ X .
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For any coalgebra C, we call an element grouplike if it satisfies (2.5). The set of

all grouplike elements is linearly independent and denoted G(C). The motivation

for the term will become clear later. (See Example 2.1.9.) An element c ∈ C

will be called (g, h)-skew primitive if it satisfies ∆(c) = g ⊗ c + c ⊗ h for some

g, h ∈ G(C). The space of all such elements is denoted Pg,h(C). Note that the

axioms of a coalgebra force ε(c) = 0 for any skew primitive c. As an example, if

g, h ∈ G(C), then g−h ∈ Pg,h(C). We will see more interesting examples of skew

primitive elements in Examples 2.1.10 and 2.1.11.

We will make regular use of the following standard terminology surrounding

coalgebras. Let C and D be coalgebras.

• coalgebra homomorphism: a map φ : C → D such that for any c ∈ C,

∆(f(c)) = f(c(1))⊗ f(c(2)) and ε(f(c)) = ε(c).

• coideal: kernel of a coalgebra homomorphism. Asubspace I ⊆ C is a coideal

if and only if ∆(I) ⊆ C ⊗ I + I ⊗ C and ε(I) = 0.

• subcoalgebra of C: a subspace V of C such that∆(V ) ⊆ V ⊗V . Of course,

as for most algebraic objects, there are obvious versions of the isomorphism

theorems for coalgebras.

• simple coalgebra: a coalgebra which has only two subcoalgebras, (0) and

itself.

• coradical of C: the (direct) sum of the simple subcoalgebras of C. It is de-

noted C0.

• pointed coalgebra: a coalgebra C whose simple subcoalgebras are all 1-di-

mensional, i.e. C0 = kG(C).

• coalgebra filtration of C: an increasing (with respect to ⊆) and exhaustive
family of subspaces {Vi}i≥0 satisfying∆(Vi) ⊆

∑i
j=0 Vj⊗Vi−j for all i ≥ 0.

• coradical filtration of C: the coalgebra filtration defined inductively by C0

being the coradical and Ci = ∆−1(Ci−1 ⊗ C + C ⊗ C0) for all i > 0.
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• coalgebra grading of C: a vector space decomposition C =
⊕

i≥0C(i) such

that ε(C(0)) = 0 and ∆(C(i)) ⊆
∑i

j=0C(j) ⊗ C(i − j). The associated

graded coalgebra for the coradical filtration will be denoted gr(C).

• coradically graded coalgebra: a graded coalgebra C such that C ∼= gr(C) as

graded coalgebras, i.e if Ci =
⊕i

j=0C(j) for all i ∈ N.

Let (C,∆, ε) be any coalgebra and let τ : C ⊗ C → C ⊗ C denote the typical

twist map: c⊗ d 7→ d⊗ c. Then we can define a new coalgebra structure on C by

replacing∆ with τ ◦∆. We call this the coopposite coalgebra and denote it Ccop. If

∆ = τ ◦∆, we call C cocommutative. If (D, ∆̂, ε̂) is another coalgeba, then C ⊗D

can be given a coalgebra structure with coproduct ∆⊗ ∆̂ and counit ε⊗ ε̂. This is

called the tensor product coalgebra structure on C ⊗D.

Now, since the definition of coalgebra is dual to that of an algebra, we have

that the vector space dual C∗ with multiplication ∆∗ and unit ε∗ is an associative

k-algebra. On the other hand, if A is a k-algebra, then A◦ := m∗−1(A∗ ⊗ A∗) with

comultiplication m∗ and counit η∗ is a k-coalgebra.1 Note that when A is finite-

dimensional, A◦ = A∗. This leads to the following example.

Example 2.1.3. Let n ∈ N, n ≥ 1, and let Mn(k) denote the k-algebra of n × n

matrices with entries in k. Let Ei,j denote the matrix with a single 1 in the ith

row and jth column and 0 elsewhere. Then {Ei,j} is the standard basis of Mn(k).
The dual space, Cn(k) := Mn(k)∗ is a coalgebra called a comatrix coalgebra over

k. Denoting the dual basis to {Ei,j} by {ei,j}, the comultiplication and counit are
given by

∆(ei,j) =
n∑

`=1

ei,` ⊗ e`,j ε(ei,j) = δi,j.

2.1.2 (Co)modules

Dual to the notion of a module for an algebra is the notion of a comodule for a

coalgebra. For an associative k-algebra A, a right A-module is a k-vector spaceM
1We must consider A◦ and not simply A∗ because, while A∗ ⊗ A∗ ⊆ (A ⊗ A)∗, equality does

not hold in general.
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equipped with a linear map µ :M ⊗ A→M so that the diagrams

M ⊗ A⊗ A M ⊗ A

M ⊗ A M

µ⊗idA

idM⊗m µ

µ

M ⊗ k M

M ⊗ A

idM⊗η µ

commute. Thus, for a coassociative k-coalgebraC, a rightC-comodule is a k-vector
spaceM equipped with a linear map ρ :M →M ⊗ C so that the diagrams

M M ⊗ C

M ⊗ C M ⊗ C ⊗ C

ρ

ρ ρ⊗idC

idM⊗∆

M M ⊗ k

M ⊗ C

ρ idM⊗ε
(2.6)

commute. We will use the modified Sweedler notation ρ(m) = m(0)⊗m(1). In this

notation, (2.6) states that for allm ∈M ,

m(0)(0) ⊗m(0)(1) ⊗m(1) = m(0) ⊗m(1)(1) ⊗m(1)(2), (2.7)

m(0)ε(m(1)) = m. (2.8)

In light of (2.7), there is no ambiguity in writing m(0) ⊗m(1) ⊗m(2) and similarly

for any number of applications of ρ. Of course, we can define left C-comodules

analogously, in which case, we would write ρ(m) = m(−1)⊗m(0). (The convention

is that the 0 subscript always corresponds to the elements ofM .)

Notation 2.1.4. We will denote the category of right A-modules (resp. left A-

modules, right C-comodules, left C-comodules) by MA (resp. AM, MC , CM).

Example 2.1.5. Let n ∈ N, n ≥ 1, and let M be a k-vector space with basis

v1, . . . , vn. ThenM is a right Cn(k)-comodule via ρ(vj) =
∑n

i=1 vi ⊗ ei,j . This is

dual to the action of Mn(k) on an n-dimensional vector space.

2.1.3 Bialgebras and Hopf algebras

With a bit of background on coalgebras and comodules, we can now discuss

bialgebras and Hopf algebras.
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A k-bialgebra is a k-vector space B equipped with k-linear mapsm, η, ∆, and
ε, so that

1. (B,m, η) is an associative k-algebra,

2. (B,∆, ε) is a coassociative k-coalgebra, and

3. ∆ and ε are algebra homomorphisms (or equivalently,m and η are coalgebra

homomorphisms).

For item 3, we are considering B ⊗ B as an algebra (or coalgera) with the tensor

product structure. Note that we can twist the multiplication and/or the comultipli-

cation with the twist map τ : a ⊗ b 7→ b ⊗ a to get three other bialgebra structures

on B: Bop, Bcop and Bop cop. For example, Bop cop has multiplication m ◦ τ and

comultiplication τ ◦ ∆. A bi-ideal of B is a subspace which is simultaneously an

ideal and coideal of B. These are seen to be the kernels of bialgebra homomor-

phisms, maps between bialgebras which are simultaneously algebra and coalgebra

homomorphisms.

Example 2.1.6. If the set in 2.1.2 is a multiplicative monoidM then kM is a bial-

gebra by extending the multiplication ofM linearly with 1M being the identity.

We can form tensor products of bialgebras, with both the tensor product algebra

and coalgebra structure. Also, the dual coalgebra B◦ is a subalgebra of the dual

coalgebra B∗, and so we have a bialgebra structure on B◦, which we call the dual

bialgebra.

For a coalgebra C and algebra A, the space Homk(C,A) becomes an algebra

under the convolution product f ∗ g = m ◦ (f ⊗ g) ◦∆; the identity is u ◦ ε. Thus,
for a bialgebra B, Endk(B) is an algebra.

Definition 2.1.7. AHopf algebra is a bialgebraH for which idH has a convolution

inverse in Endk(H), called the antipode and denoted by S. In other words, a Hopf

algebra is a bialgebra equipped with a linear map S : H → H so that h(1)S(h(2)) =

ε(h)1H = S(h(1))h(2) for all h ∈ H .
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Remark 2.1.8. For a Hopf algebraH , and a grouplike element g, the above equation

implies that S(g) must be a two-sided inverse for g. In fact, for any Hopf algebra

H , the setG(H) forms a group. (For an arbitrary bialgebra B, the setG(B) always

forms a monoid.) Additionally, for x ∈ P(g,h)(H), the equation above implies that

S(x) = −g−1xh−1.

By virtue of being a convolution inverse of an algebra and coalgebra map, S

is both an anti-algebra map and anti-coalgebra map, i.e. S(ab) = S(b)S(a) and

∆(S(a)) = S(a(2)) ⊗ S(a(1)) for all a ∈ H . The bialgebra Hop cop is also a Hopf

algebra with the same antipode, while Hop and Hcop are Hopf algebras if and only

if S is bijective, in which case the antipode of these is S−1. All finite-dimensional

Hopf algebras have a bijective antipode.

The tensor product of Hopf algebras is a Hopf algebra with antipode given by the

tensor product of antipodes. Also, the dual bialgebraH◦ of any Hopf algebraH is a

Hopf algebra with antipode given by S◦ = S∗|H◦ . AHopf ideal is a bi-ideal I such

that S(I) ⊆ I , and a Hopf algebra homomorphism is a bialgebra homomorphism

between Hopf algebras. It turns out that the axioms for a bialgebra homomorphism

f : C → D force f ◦ SC = SD ◦ f .

Example 2.1.9. If the monoid (set) in Example 2.1.6 (2.1.2) is a group G, then the

resulting group algebra kG is a Hopf algebra. The comultiplication and counit are

again given by∆(g) = g⊗g and ε(g) = 1 and the antipode is given by S(g) = g−1.

Example 2.1.10. Let g be a Lie algebra over k and let U(g) denote the universal

enveloping algebra of g. By defining g ⊆ P1,1(U(g)), i.e. ∆(x) = 1 ⊗ x + x ⊗ 1,

ε(x) = 0, and S(x) = −x for all x ∈ g, we get a Hopf algebra structure on U(g).

(One should check that ∆ and S are well-defined.)

Example 2.1.11. Let n ∈ N, n ≥ 2, and suppose k contains a primitive nth root of

unity q. The Taft algebra Tn(q) is the algebra generated by g and x with relations

gn = 1, xn = 0, gx = qxg.

Tn(q) is a Hopf algebra with g ∈ G(Tn(q)) and x ∈ Pg,1(Tn(q)). (Thus, we have

ε(g) = 1, S(g) = gn−1, ε(x) = 0, and S(x) = −g−1x.) The Taft algebras are
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neither commutative nor cocommutative. The case n = 2, namely the Hopf algebra

T2(−1), is called the Sweedler Hopf algebra.

Abialgebra or Hopf algebra is called pointed if its underlying coalgebra structure

is so. It is well-known that any bialgebra generated by grouplike and skew primitive

elements is pointed. Each of the Hopf algebras in Examples 2.1.9-2.1.11 are pointed.

Andruskiewitsch and Schneider conjecture that, conversely, all finite-dimensional

pointed Hopf algebras, H , over an algebraically closed field of characteristic 0 are

generated by grouplike and skew primitive elements, [6, Conjecture 5.7]; Angiono

verified this conjecture in the case when G(H) is abelian, [8, Theorem 2].

Next, we discuss when a Hopf algebra’s coradical filtration gives a filtration of

the Hopf algebra. The coradical filtration of Hopf algebras has been useful in the

work ofAndruskiewitsch and Schneider in classifying pointed Hopf algebras [2, 6].

A coalgebra filtration {Vi}i≥0 of a bialgebra B is called a bialgebra filtration if it

is also an algebra filtration, i.e. ViVj ⊆ Vi+j for all i, j. If B is a Hopf algebra, a

bialgebra filtration is a Hopf algebra filtration if in addition, S(Vi) ⊆ Vi for all i. A

bialgebra grading is a coalgebra gradingB =
⊕

i≥0B(i) of a bialgebraB which is

also an algebra grading (1 ∈ B(0) andB(i)B(j) ⊆ B(i+j)). IfB is a Hopf algebra,

a bialgebra grading is a Hopf algebra grading if in addition, S(B(i)) ⊆ B(i) for all

i ≥ 0. A coradically graded bialgebra (or Hopf algebra) is a graded bialgebra (or

Hopf algebra) whose underlying coalgebra is coradically graded.

The coradical filtration of a bialgebra (Hopf algebra) B is a bialgebra (Hopf al-

gebra) filtration if and only if B0 is a subalgebra (Hopf subalgebra) of B. In this

case, gr(B) is coradically graded, and B is called a lifting of gr(B). In particular,

every pointed Hopf algebra H is a lifting of gr(H). The Hopf algebras in Exam-

ples 2.1.9 and 2.1.11 are coradically graded and the universal enveloping algebra in

Example 2.1.10 is a lifting of the symmetric algebra S(g).

2.1.4 q-Binomial symbols

In many Hopf algebras, there will be a relation like that in the Taft algebras, of

the form yx = qxy, for q ∈ k. It is thus helpful to consider the quantum binomial
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coefficients,
(
n
m

)
q
, which are defined using any x, y such that yx = qxy by

(x+ y)n =
n∑

m=0

(
n

m

)
q

xn−mym. (2.9)

The q-binomial coefficients are polynomials in q and are related to the following

symbols. For any integer n ≥ 0, set

(n)q := 1 + q + q2 + . . .+ qn−1 =
qn − 1

q − 1
(if q 6= 1);

(n)q! := (1)q (2)q · · · (n)q =
(q − 1)(q2 − 1) · · · (qn − 1)

(q − 1)n
(if q 6= 1).

By convention, we also define (0)q! = 1.

The relationship between these symbols and q-binomial coefficients is given by

[28, Proposition 7.2.1(a)]: If (n− 1)q! 6= 0, then one obtains that(
n

m

)
q

=
(n)q!

(m)q!(n−m)q!
.

It is clear that (n)q = 0 if and only if ord(q)|n. Thus, if q is an nth root of unity and

yx = qxy, we have

(x+ y)n = xn + yn. (2.10)

We also have the following variation, which will be useful for the computation

of D(uq(sl2)) in Section 6.1 and Appendix A. Let q 6= ±1 ∈ k. For any integer n,
set

[n]q =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+1.

For a positive integer n, set [n]q! = [1]q[2]q · · · [n]q. Also define[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

As a convention, we will set [0]q! = 1 and
[
n
k

]
q
= 1 if n < k. The relationship

between these and the symbols (k)q defined above is given by

[n]q = q−(n−1)(n)q2 , [n]q! = q−n(n−1)/2(n)q2 !, and[
n

k

]
q

= q−k(n−k)

(
n

k

)
q2
. (2.11)
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2.1.5 Perfect dualities

For computing presentations of Drinfel’d doubles, we will first need presenta-

tions of dual Hopf algebras, in such a way that we know the dual pairing. One

helpful way for thinking about dual Hopf algebras is perfect dualities, which we re-

call from [18, Definition V.7.1]. Let H andK be Hopf algebras and 〈 , 〉 a bilinear
form on H ×K. We say H and K are in duality, or that the bilinear form induces

a duality between them, if the following hold for any u, v ∈ H and x, y ∈ K:

〈uv, x〉 = 〈u, x(1)〉〈v, x(2)〉, 〈u, xy〉 = 〈u(1), x〉〈u(2), y〉,

〈1, x〉 = εK(x), 〈u, 1〉 = εH(u), 〈SH(u), x〉 = 〈u, SK(x)〉.
(2.12)

With φ : H → K∗ and ψ : K → H∗ defined by φ(u)(x) = 〈u, x〉 = ψ(x)(u), we

say the duality between H andK is perfect if φ and ψ are injective. Observe that a

perfect duality between finite-dimensional Hopf algebras induces an isomorphism

K ∼= H∗.

2.2 (Co)Actions of Hopf algebras

As mentioned in Section 1.2, we are primarily interested here in actions of Hopf

algebras on other algebras, which generalize actions of groups on algebras. The fea-

ture of group representations that allows us to define actions of groups on algebras,

the base field, and duals, is that the category of representations of a group G is a

rigid monoidal category. The representations of a Hopf algebraH , HM, also form a

rigid monoidal category. Moreover, due to Example 2.1.9, the representation theory

of Hopf algebras generalizes the representation theory of groups. We briefly de-

scribe the features of the monoidal structure here. We also introduce a special class

of objects which are both modules and comodules over H in a compatible way and

explain their significance to the classification of pointed Hopf algebras.
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2.2.1 Monoidal structure of representations

One feature of bialgebras is that the categories of modules and comodules form

monoidal categories. We will not give a fully rigorous definition of these sorts of

categories here, but describe them nonetheless. Amonoidal category is essentially

a category with well-defined and well-behaved tensor products, ⊗, and an isomor-
phism class of objects which constitute an identity object, 1, for the tensor product.

(See [32, Chapter 1] for more details.) Such a category is called rigid if there are

well-defined duals, evaluation, and coevaluation maps. The prototype of a rigid

monoidal category is k-Vect, the category of vector spaces over k, with⊗ being the

vector space tensor product, 1 = k, and duals being vector space duals. Another
example of a monoidal category is Set, the category of sets, with ⊗ being direct

product and 1 the set with one element.

Because of the extra structure of a monoidal category, we can define algebras

(or monoids) as objects A equipped with morphismsm : A⊗ A → A and η : 1 →
A satisfying the diagrams in (2.1) (with 1 replacing k). Similarly, we can define
coalgebra (or comonoids) as objects C equipped with morphisms ∆ : C → C ⊗C

and ε : C → 1 satisfying the diagrams in (2.2) (again with 1 replacing k). In k-Vect,
algebras and coalgebras are associative k-algebras and coassociative k-coalgebras,
respectively. In Set, algebras are traditional monoids, and coalgebras are simply sets

where ∆ is the diagonal map and ε is the unique map to the set with one element.

The examples pertinent to this work, however, come from (co)modules.

Example 2.2.1. LetH be a bialgebra. Then the category of leftH-modules HM is

a monoidal category with ⊗ being the tensor product of vector spaces and 1 = k.
ForM,N ∈ HM, the module structures onM ⊗N and k are given respectively by

h · (m⊗ n) = h(1) ·m⊗ h(2) · n (h ∈ H, m ∈M, n ∈ N),

h · 1k = ε(h) (h ∈ H).

IfH is a Hopf algebra, then HM is rigid, with the module structure onM∗ defined

by

(h · p)(m) = p(S(h) ·m) (h ∈ H, p ∈M∗, m ∈M).
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Example 2.2.2. Similarly, the category HM of left H-comodules is a monoidal

category. ForM,N ∈ HM, the comodule structures onM ⊗N and k are given by

ρ(m⊗ n) = m(−1)n(−1) ⊗m(0) ⊗ n(0) (h ∈ H, m ∈M, n ∈ N),

ρ(1k) = 1H ⊗ 1k.

We now consider algebras and coalgebras in these monoidal categories. Let H

be a bialgebra over k. Since HM is a monoidal category, we define left H-module

algebras as algebras in this category. In other words, a left H-module algebra is a

left H-module A satisfying

h · (ab) = (h(1) · a)(h(2) · b) and h · 1A = ε(h)1A.

We will also say that H acts on the algebra A. We could similarly define right

H-module algebras.

If A is anH-module algebra, then there is an associative k-algebra structure on
A⊗H . The identity is 1A ⊗ 1H and multiplication is defined by

(a⊗ h)(b⊗ k) = a(h(1) · b)⊗ h(2)k.

This algebra is called the smash product of A and H and is denoted A#H .

Similarly, we define leftH-comodule coalgebras as coalgebras in HM. In other

words, a left H-comodule coalgebra is a left H-comodule C satisfying

c(1)(−1)c(2)(−1) ⊗ c(1)(0) ⊗ c(2)(0) = c(−1) ⊗ c(0)(1) ⊗ c(0)(2) and

c(−1)ε(c(0)) = ε(c)1C .

We will also say that H coacts on the coalgebra C. If C is an H-comodule coalge-

bra, then there is a coassociative k-coalgebra structure on C ⊗ H . The counit and

coproduct are given, respectively, by

ε(c⊗ h) = ε(c)ε(h) and ∆(c⊗ h) = (c(1) ⊗ c(2)(−1)h(1))⊗ (c(2)(0) ⊗ h(2)).

This coalgebra is called the smash coproduct of C and H and is denoted C\H .
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2.2.2 Yetter-Drinfel’d modules, bosonizations

Because Hopf algebras have both an algebra and coalgebra structure, we can

consider spaces which are simultaneously H-modules and H-comodules. If we

want such a space to have any useful structure to it, the module and comodule struc-

ture should be compatible in some sense. The compatibility condition that seems

most obvious for a left H-module and left H-comodule,

ρ(h ·m) = h(1)m(−1) ⊗ h(2) ·m(0),

defines what are known as left H-Hopf modules. These are very well understood.

(See, e.g., [28, Section 8.2].) Aless obvious, but very useful, compatibility condition

leads to Yetter-Drinfel’d modules. These allow us to combine the smash product

and smash coproduct structures to form a new Hopf algebra in a process called

bosonization.

Let H be a Hopf algebra. A (left-left) Yetter-Drinfel’d module M over H is

simultaneously a leftH-module and a leftH-comodule, satisfying the compatibility

condition

ρ(h ·m) = h(1)m(−1)S(h(3))⊗ h(2) ·m(0),

for all h ∈ H andm ∈M . We will denote the category of Yetter-Drinfel’d modules

over H by H
HYD. If H = kΓ is the group algebra of a group Γ, we will write Γ

ΓYD
for kΓ

kΓYD.

Remark 2.2.3. [6, Remark 1.5] If Γ is an abelian group, then a Yetter-Drinfel’d

module over kΓ is the same as a Γ-graded kΓ-module. If Γ is finite abelian, then

the module structure is diagonalizable, and we have

V =
⊕

g∈Γ,χ∈Γ̂

V χ
g , V χ

g = V χ∩Vg = {v ∈ V : ρ(v) = g⊗v, γv = χ(γ)v ∀γ ∈ Γ}.

With the H-module and H-comodule structures on tensor products defined as

above, HHYD is a monoidal category. The main reason to consider H
HYD is its use

in the study of pointed Hopf algebras and classification of pointed Hopf algebras

using bosonizations. (See e.g. [6, 7, 22]) Results in the classification program use
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the fact that HHYD is in fact a braided monoidal category, which we describe here.

For motivation, recall that in k-Vect, we can form tensor products of algebras and

coalgebras, which is what allows us to define bialgebras over k. (Recall that we
need ∆ : B → B ⊗ B to be an algebra map. In particular, this means we need

B ⊗ B to be an algebra.) In arbitrary monoidal categories, however, we can only

form tensor product algebra and coalgebra structures if the category is braided.

Again, without giving the long formal definition, a braided monoidal category

is a monoidal category together with well-behaved natural isomorphisms

cA,B : A⊗B → B ⊗ A

for any pair of objects A,B. If A and B are two algebras in a braided monoidal

category, then we can give A⊗B an algebra structure as well by definingmA⊗B =

(mA ⊗ mB) ◦ (id ⊗ cB,A ⊗ id).2 We can similarly define tensor product coalge-

bras. With these tensor product algebra and coalgebra structures, bialgebras and

Hopf algebras in such a category are defined analogously to the definition given

in Section 2.1.3. This actually generalizes the previous definition, by noting that

k-Vect has a braiding cV,W : V ⊗ W → W ⊗ V given by the usual twist map:

cV,W (v⊗w) = w⊗v. As another example, Set has braiding given by the twist map
as well cV,W (v, w) = (w, v). Hopf algebras in Set with this braiding are simply

groups.

The braiding of H
HYD is just a bit more complicated, given by

cM,N(m⊗ n) = m(−1) · n⊗m(0). (2.13)

The tensor product of algebras A,B ∈ H
HYD is denoted A⊗B to distinguish it from

the usual tensor product of two k-algebras. In A⊗B, we have

(a⊗ b)(a′ ⊗ b′) = a(b(−1) · a′)⊗ b(0)b
′.

AHopf algebra in H
HYD is typically called a braided Hopf algebra. It is a coalgebra

and algebra B ∈ H
HYD such that ∆ : B → B⊗B and ε : B → k are algebra maps.

2Here, we are ignoring the associativity isomorphisms from the monoidal category, which is okay

due to Mac Lane’s Coherence Theorem. For more information on braided monoidal categories, see

[23, 28].
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Of course, if B is a braided Hopf algebra in H
HYD, then in particular, B is a left

H-module algebra and a leftH-comodule coalgebra. Thus,B⊗H is a k-algebra and
a k-coalgebra via the smash product and smash coproduct structures (Section 2.2.1),
respectively. By combining these structures, and using the antipode ofB andH , we

get that B ⊗H is in fact a Hopf algebra over k, which we describe as follows.

Definition-Theorem2.2.4 ([28, Theorems 11.6.7, 11.6.9]). LetH be aHopf algebra

over k and let B be a braided Hopf algebra in H
HYD. Then B⊗H is a Hopf algebra

over k with

• unit 1B ⊗ 1H ,

• multiplication (a⊗ h)(b⊗ k) = a(h(1) · b)⊗ h(2)k,

• counit ε(b⊗ h) = εB(b)εH(h),

• comultiplication ∆(b⊗ h) = (b(1) ⊗ b(2)(−1)h(1))⊗ (b(2)(0) ⊗ h(2)),

• and antipode S(b⊗ h) = (1⊗ SH(b(−1)h))(SB(b(0))⊗ 1)

for a, b ∈ B and h, k ∈ H . This Hopf algebra is called the bosonization or biproduct

of B and H , and is denoted by B#H .

Bosonizations have become an essential tool in the classification of pointedHopf

algebras, thanks to Radford’s abstract characterization of those Hopf algebras that

can be realized as bosonizations.

Theorem 2.2.5. [27, Theorem 3] Let H be a Hopf algebra and L a bialgebra, and

suppose we have bialgebra maps L
j

�
π
H satisfying π ◦ j = idH . Let B = Lcoinv =

{` ∈ L : `(1) ⊗ π(`(2)) = ` ⊗ 1}. Then B is a braided bialgebra in H
HYD and we

have an isomorphism of bialgebras f : B#H → L given by f(b#h) = bj(h).

Recall from Section 2.1.3 that the coradical filtration of a Hopf algebra L is a

Hopf algebra filtration if and only if L0 is a Hopf subalgebra. In particular, the

coradical filtration of a pointed Hopf algebra L is a Hopf algebra filtration. Thus,

in this case, the associated graded coalgebra gr(L) is a graded Hopf algebra, with
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kG(L) = L0 = gr(L)(0) a Hopf subalgebra. With j : kG(L) → gr(L) the inclusion

and π : gr(L) → gr(L)(0) = kG(L) the typical projection map, gr(L) and kG(L)
satisfy the hypotheses of Theorem 2.2.5. Thus,

gr(L) ∼= R#kG(L),

where R = {` ∈ L : `(1) ⊗ π(`(2)) = ` ⊗ 1}. The braided Hopf algebra R is in

fact graded: R =
⊕

n≥0R(n) with R(n) = gr(L)(n) ∩ R. Moreover, R(0) = k1
and R(1) = P (R). The braided Hopf algebra R is called the diagram of L and the

dimension of R(1) is called the rank of L. As defined in Section 2.1.3, the Hopf

algebra L is called a lifting of the coradically graded Hopf algebra gr(L).

Andruskiewitsch and Schneider have used Radford’s result to launch a very ac-

tive program of classifying finite-dimensional pointed Hopf algebras [2, 6]. Their

method is to determine all possible diagrams R when L0 = kΓ, Γ a group, and then

determine all possible liftings of R#kΓ. A good source of diagrams are Nichols

algebras, which we describe in Section 2.4.

2.3 The Drinfel’d double

The main appeal of the Drinfel’d double construction is that every finite dimen-

sional Hopf algebra H embeds in its double D(H), and every Drinfel’d double is

quasitriangular. Without giving a rigorous definition, a quasitriangular Hopf alge-

bra has an invertible element R ∈ H ⊗ H , sometimes called an R-matrix, which

satisfies

R∆(h) = ∆cop(h)R for all h ∈ H .

Moreover, τ(R) satisfies the quantum Yang-Baxter equation (1.5), and equips each

H-module with a solution as well. Therefore, D(H)-modules give solutions to the

quantum Yang-Baxter equation, and from any finite-dimensional Hopf algebra, we

can arrive at families of solutions through the Drinfel’d double construction.

Moreover, for a Hopf algebra H , the categories D(H)M and HYDH are equiv-

alent [28, Section 13.1]. Here, HYDH is a variant of H
HYD which is equivalent
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as a category to Hcop

HcopYD. That is, objects of HYDH are left H-modules and right

H-comodules satisfying

ρ(h ·m) = h(2) ·m(0) ⊗ h(3)m(1)S
−1(h(1)).

Toward defining the Drinfel’d double, we first introduce the transpose actions

of a Hopf algebra H on its dual. Here, for p ∈ H∗ and a ∈ H , we write 〈p, a〉 for
p(a) ∈ k. The transpose action is given by

〈a � p, b〉 := 〈p, ba〉, 〈p ≺ a, b〉 := 〈p, ab〉, for a, b ∈ H, p ∈ H∗.

Since H◦ ⊆ H∗ is a Hopf algebra with comultiplication given by m∗, we have

〈p, ab〉 = 〈p,m(a⊗b)〉 = 〈m∗(p), a⊗b〉 = 〈p(1), a〉〈p(2), b〉 for p ∈ H◦. Therefore,

a � p = 〈p(2), a〉p(1) and p ≺ a = 〈p(1), a〉p(2). Combining these two facts gives

a � p ≺ b = 〈p(1), b〉〈p(3), a〉p(2). (2.14)

Definition 2.3.1. LetH be a finite-dimensional Hopf algebra with antipode S. (Re-

call that the antipode S is then necessarily invertible.) TheDrinfel’d double,D(H),

ofH , is the Hopf algebra with coalgebra structure given by the tensor product coal-

gebra structure

D(H) = H∗cop ⊗H, (2.15)

with multiplication given by

(p⊗ a)(q ⊗ b) = p
(
a(1) � q ≺ S−1(a(3))

)
⊗ a(2)b, (2.16)

with unit ε⊗ 1, and with antipode

SD(H)(p⊗ a) = (ε⊗ S(a))(p ◦ S−1 ⊗ 1) for p ∈ H∗, a ∈ H.

Simple tensors in D(H) are written as p ./ a.

Note that both H and H∗cop embed in D(H), and we will think of elements of

the former two as elements of the latter, by identifying p ./ 1 with p and ε ./ a with

a. These identifications are justified by the following.
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Lemma 2.3.2. LetH be a finite-dimensional Hopf algebra. Then for p, q ∈ H∗ and

a, b ∈ H , we have the following identities in D(H):

(p ./ 1)(ε ./ a) = p ./ a, (p ./ 1)(q ./ 1) = pq ./ 1,

(ε ./ a)(ε ./ b) = ε ./ ab, SD(H)(p ./ 1) = p ◦ S−1 ./ 1, and

SD(H)(ε ./ a) = ε ./ S(a).

As a consequence, if {ai}ni=1 is a set of generators for H and {pi}mi=1 is a set

of generators for H∗, then {pi ./ 1}mi=1 ∪ {ε ./ ai}ni=1 generates D(H) as an

algebra.

From now on, we suppress the ./ notation. It is clear that the relations between

generators ofH andH∗ will also be relations inD(H). Thus, to achieve an algebra

presentation of D(H), it remains to show how elements of H move past those of

H∗. We will compute relations giving this “commutation” between elements of H

andH∗ using the following consequence of (2.16): For any p ∈ H∗ and a ∈ H , we

have in D(H):

ap = (a(1) � p ≺ S−1(a(3)))a(2) = 〈p(1), S−1(a(3))〉〈p(3), a(1)〉p(2)a(2). (2.17)

The explicit computation of the double of many finite-dimensional, pointed Hopf

algebras will be given later (see Sections 4.2.2, 5.2, 6.1).

2.4 Nichols algebras

Recall that an object of the category H
HYD is simultaneously a left H-module

and left H-comodule satisfying

ρ(h ·m) = h(1)m(−1)S(h(3))⊗ h(2) ·m(0).

This is a braided monoidal category and we typically call Hopf algebras in this

category braided Hopf algebras. (See Section 2.2.2.) Also recall that each braided

Hopf algebra B in H
HYD gives rise to a new Hopf algebra, called the bosonization

of B and H , and denoted B#H . Thus, it would be useful to have a way to produce
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braided Hopf algebras in H
HYD. For any V ∈ H

HYD, there is a canonical graded
braided Hopf algebra B(V ) ∈ H

HYD, called a Nichols algebra. These were first
discovered by Warren D. Nichols and appeared in [25]. For a current survey of

the Nichols algebras pertinent to the classification program of finite-dimensional

pointed Hopf algebras, see the work of Andruskiewitsch and Angiono [3].

Definition 2.4.1. Let H be a Hopf algebra and let V ∈ H
HYD. A graded braided

Hopf algebra R =
⊕

n≥0R(n) in
H
HYD is called a Nichols algebra of V , denoted

B(V ), if

• k = R(0) and V ∼= R(1) as Yetter-Drinfel’d modules,

• R(1) = P1,1(R), and

• R is generated as an algebra by R(1).

The dimension of V ∼= R(1) will be called the rank ofB(V ).

It turns out Nichols algebras of V ∈ H
HYD always exist and are unique up to

isomorphism. In fact, B upgrades to a functor. We now wish to describe a spe-

cial class of Nichols algebras introduced by Andruskiewitsch and Schneider: those

coming from braided vector spaces of “Cartan type”.

Definition 2.4.2. Abraided vector space is a k-vector space V equipped with a map

c ∈ Endk(V ⊗V ) satisfying the quantum Yang-Baxter equation (or braid equation):

(c⊗ id) ◦ (id⊗ c) ◦ (c⊗ id) = (id⊗ c) ◦ (c⊗ id) ◦ (id⊗ c).

We say a braided vector space (V, c) is of

• diagonal type if there is a basis (x1, . . . , xθ) of V such that

c(xi ⊗ xj) = qi,jxj ⊗ xi

for all i, j. Every braided vector space of diagonal type can be realized as an

object of Γ
ΓYD for some abelian group Γ. Conversely, everyM ∈ H

HYD is a

braided vector space via the braiding map cM,M .
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• Cartan type if, further, qi,i 6= 1 for all i and there are integers ai,j satisfying

1. ai,i = 2,

2. 0 ≤ −ai,j ≤ ord(qi,i) if i 6= j, and

3. qi,jqj,i = q
ai,j
i,i .

If thematrix (aij) is a Cartanmatrix associated to a finite-dimensional semisim-

ple Lie algebra, we can specify the type further.

If V is a braided vector space of Cartan type, viewed as an object in H
HYD for

some Hopf algebra H , we say B(V ) is a Nichols algebra of Cartan type. More

specifically, if V is a braided vector space of type (A1)
×θ, then the Nichols algebra

B(V ) ∈ H
HYD is called a quantum linear space over H .

Quantum linear spaces are studied in detail in [5]. We study these more in Chap-

ter 4.

2.5 Inner-faithful module algebras

Throughout this work, we consider module algebras over some pointed Hopf

algebras that are faithful in the following sense.

Definition 2.5.1. LetH be a Hopf algebra andM a leftH-module. We say thatM is

an inner-faithful H-module, or that the action ofH onM is inner-faithful provided

I ·M 6= 0 for any nonzero Hopf ideal I ofH . In other words, the action ofH onM

is inner-faithful provided the action onM does not factor through any proper Hopf

quotient of H .

If A is anH-module algebra such that the action ofH on A is inner-faithful, we

call A an inner-faithful H-module algebra.

Clearly, if the action of H onM is faithful, then it is inner-faithful. Since all of

the Hopf algebras we will consider in this work are pointed, the following standard

results will be useful.
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Lemma 2.5.2. Let H be a pointed Hopf algebra and I a nonzero Hopf ideal of H .

Then I contains a nonzero element of Pg,1(H) for some g ∈ G(H).

Proof. Consider the projection map f : H → H/I . Since I 6= 0, f is not injective.

Therefore, by [31, 6.1.1], we can fix some g, h ∈ G(H), with f |Pg,h(H) not injective.

Choose nonzero x ∈ Pg,h(H) such that f(x) = 0 (i.e. x ∈ I), and take x′ = xh−1.

Then x′ ∈ Pgh−1,1(H) ∩ I and x′ 6= 0, or else x = x′h = 0.

Corollary 2.5.3. Let H be a pointed Hopf algebra and A an H-module algebra.

Then the action of H on A is inner-faithful if and only if for each g ∈ G(H) and

nonzero x ∈ Pg,1(H) we have that x · A 6= 0.

Since g − 1 ∈ Pg,1(H), we have the following consequence.

Corollary 2.5.4. Suppose thatH acts onA inner-faithfully. Then the group of grou-

plike elements G(H) acts faithfully on A by algebra automorphisms.

These results actually give us a lower bound on the k-vector space dimension of
inner-faithful module algebras with no nonzero nilpotent elements.

Proposition 2.5.5. Suppose that a finite group G acts faithfully by algebra auto-

morphisms on a finite-dimensional k-algebraA with no nonzero nilpotent elements.

Then

dimk(A) ≥ max{ord(g) : g ∈ G}.

Proof. Let g ∈ G and n = ord(g). Since 〈g〉 is finite abelian, the action of g on A
is diagonalizable with

A =
n−1⊕
i=0

Ai, Ai = {a ∈ A : g · a = qia},

where q is a fixed primitive nth root of unity. Because ord(g) = n, and the action

is faithful, there exists j such that gcd(j, n) = 1 and Aj 6= 0. Without loss of

generality, by choosing a different q, we can take j = 1. Choose nonzero u ∈ A1.

Since A has no nonzero nilpotent elements, ui 6= 0 for all i. Also, g · ui = qiui for

all i, showing that ui ∈ Ai. Thus, Ai 6= 0 for all i. Therefore, dimk(A) ≥ n.
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Remark 2.5.6. For any Hopf algebra H , Proposition 2.5.5 shows that if G(H)

is cyclic of order n, then the smallest possible dimension of an inner-faithful H-

module algebra with no nonzero nilpotent elements is n, and that if such a lower

bound is met, then these H-module algebras would be exactly A(H) as in Nota-

tion 1.3.2.

Remark 2.5.7. For each of the Hopf algebras we consider, the group of grouplike

elements is a finite cyclic group. Thus, for convenience, we describe the general

structure of A(H) in case G(H) is cyclic. Fix a generator g ∈ G(H). Then, for a

generator u ∈ A(H) such that A(H) ∼= k[u]/(un − 1), there is a primitive nth root

of unity q ∈ kwith g ·u = qu. Alternatively, for a fixed q, we can choose u ∈ A(H)

such that g · u = qu and A(H) = k[u]/(un − 1). Here, we write the eigenspaces of

the g-action

Ai = {a ∈ A : g · a = qia},

noting that A =
⊕n−1

i=0 Ai and Ai = kui. We will use this notation throughout.
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CHAPTER 3

THE TAFTALGEBRAS

In this section, we will consider Question 1.3.3 in Chapter 1 for the Taft algebras

Tn(q) (see Example 2.1.11).

3.1 Work of Montgomery–Schneider (n ≥ 3)

Recall that Montgomery and Schneider have answered Question 1.3.3(a,b) for

actions of the Taft algebras Tn(q) on the algebra A(Tn(q)) given in Notation 1.3.2;

seeTheorem 1.3.1. They further answeredQuestion 1.3.3(c) on actions of the double

D(Tn(q)) on A(Tn(q)) for the case n > 2 as recalled in the next two results.

Lemma 3.1.1. [24, Lemma 4.4] The Hopf algebraD(Tn(q)) is generated by group-

like elements g andG, a (g, 1)-skew primitive element x, and a (1, G)-skew primitive

element X , subject to the relations

gn = Gn = 1, xn = Xn = 0, gx = qxg, GX = qXG,

gG = Gg, xG = qGx, gX = q−1Xg, xX = Xx+G− g.

Note that X is (1, G)-skew primitive in D(Tn(q)), whereas it is (G, 1)-skew

primitive in Tn(q)
∗ ∼= Tn(q), because D(Tn(q)) contains a copy of Tn(q)

∗cop.

Theorem 3.1.2. [24, Theorem 4.5] Take n > 2. Let A = k[u]/(un − β) for β ∈ k×

be an n-dimensional inner-faithful Tn(q)-module algebra with no nonzero nilpotent
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elements, such that g · u = qu and x · u = γ1A for 0 6= γ ∈ k. Then, by defining
G · u = q−1u andX · u = γ−1(q−1 − 1)u2, we obtain that A(Tn(q)) is aD(Tn(q))-

module algebra. Moreover, all D(Tn(q))-module algebra structures on A(Tn(q))

are of this form.

The original theorem in [24] has the assumption n > 1, not n > 2. We now

discuss this disparity.

3.2 The Sweedler algebra (n = 2)

We begin with the following remark pertaining to Theorem 3.1.2 in the case

when n = 2, i.e. for the Sweedler algebra T2(−1).

Remark 3.2.1. The proof of Theorem 3.1.2 in [24] fails for n = 2 at the point

when one considers the action of H∗cop ⊂ D(H), and applies [24, Theorem 2.2].

To specify the action ofH∗cop, one uses integers 0 ≤ s, t ≤ n− 1 with t(1− s) ≡ 1

mod n. It is shown then that t = n− 1, from which it is concluded that s = 2. This

is valid if n > 2. However, for n = 2, we get that s = 0, and [24, Theorem 2.2]

actually gives us different information than when n > 2. We explore here the case

when n = 2, that is, when H is the Sweedler Hopf algebra, T2(−1).

Note that by Theorem 1.3.1 and Remark 2.5.7, we know all the actions (as in

Notation 1.3.2) of T2(−1) on A(T2(−1)), namely that as an algebra, A(T2(−1)) ∼=
k[u]/(u2 − 1), with the action given by g · u = −u and x · u = γ1A for some

nonzero γ ∈ k. Considering the remark above, we now examine Question 1.3.3(c)

for H = T2(−1).

Proposition 3.2.2. Recall the notation of Lemma 3.1.1 for n = 2, and thus q = −1.

Fix an action of T2(−1) on A(T2(−1)) = k[u]/(u2 − 1) as in Theorem 1.3.1,

g · u = −u, x · u = γ1A,

for some nonzero γ ∈ k. Then, for any δ ∈ k, by defining

G · u = −u, X · u = δ1A,
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we obtain that A(T2(−1)) is a D(T2(−1))-module algebra. Moreover, all exten-

sions of the action of T2(−1) on A(T2(−1)) to D(T2(−1)) are of this form.

Proof. That A(T2(−1)) is aD(T2(−1))-module algebra with the given action of G

and X is easily verified, so we show that all extensions of the action of T2(−1) on

A(T2(−1)) to an action D(T2(−1)) are of this form. Fix an action of T2(−1) on

A(T2(−1)). That is, we have A := A(T2(−1)) = k[u]/(u2 − 1) with the action of

T2(−1) on A given by g · u = −u and x · u = γ1A. We can decompose A by the

eigenspaces of the action of g as in Remark 2.5.7: A = A0 ⊕ A1 with A0 = k1A
and A1 = ku. Now assume this action can be extended to an action of D(T2(−1)).

SinceA is aD(T2(−1))-module algebra, g · (G · u) = G · (g · u) = −G · u. Hence,
G ·u ∈ A1, soG ·u = αu for some α ∈ k. Also, we have x ·(G ·u) = −G ·(x ·u) =
−G · γ1A = −γ1A, so α = −1. Finally, g · (X · u) = −X · (g · u) = X · u
implies that X · u ∈ A0 = k1A, so X · u = δ1A for some δ ∈ k. (Note that

(xX −Xx) · u = (G− g) · u = 0, so no restrictions on δ need to be imposed.)

All the results about the Taft algebras, including the Sweedler algebra —Mont-

gomery and Schneider’s results (stated in Theorem 1.3.1 and Theorem 3.1.2) as well

as Proposition 3.2.2— can be realized as a corollary of results about a generalization

of Taft algebras, which we consider next.



38

CHAPTER 4

Hn(ζ,m, t), A CORADICALLY

GRADED GENERALIZATION OF

TAFTALGEBRAS

We wish to answer Question 1.3.3 for a family of coradically graded Hopf al-

gebras that contains the Taft algebras Tn(q) (Example 2.1.11). In the language of

Nichols algebras (Section 2.4), Tn(q) is of Cartan type A1 and has rank 1. In fact,

Tn(q) ∼= B(V )#kΓ, where (V, c) = kx is a one-dimensional braided vector space
with braiding c(x⊗x) = qx⊗x, Γ = 〈g〉 the cyclic group of order n, g ·x = qx, and

ρ(x) = g ⊗ x. That is, Tn(q) is a bosonization of the quantum linear space B(V )

of rank 1. Thus, we consider more generally bosonizations of all rank 1 quantum

linear spaces over finite cyclic groups.

4.1 The Hopf Algebras Hn(ζ,m, t)

We start with Andruskiewitsch and Schneider’s construction in [5] of rank θ

quantum linear spaces over a finite abelian group Γ, and then restrict to the case that

Γ is cyclic and θ = 1. Let V ∈ Γ
ΓYD of dimension θ, say with basis x1, . . . , xθ. By

Remark 2.2.3, ρ(xi) = gi ⊗ xi for some gi ∈ Γ, and for all g ∈ Γ, g · xi = χi(g)xi
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for some χi ∈ Γ. Thus, by (2.13), there is a braiding on V given by

c(xi ⊗ xj) = gi · xj ⊗ xi = χj(gi)xj ⊗ xi.

As stated in Section 2.4, if V is of type (A1)
×θ, that is, if χi(gi) 6= 1 for all i and

χi(gj)χj(gi) = 1 for all i, j, then B(V ) is a quantum linear space. One can verify

thatB(V ) is generated by the xi with relations

xNi
i = 0 with Ni = ord(χi(gi)), and xixj = χj(gi)xjxi (i 6= j).

Definition 4.1.1. [5, Section 3] For V as above, the quantum linear spaceB(V ) in

Γ
ΓYD just defined is denoted byR(g1, . . . , gθ;χ1, . . . , χθ).

To classify all rank 1 quantum linear spaces over a finite cyclic group, we will

use the following result in group theory, which can be verified using some basic

number theory and the Chinese Remainder Theorem.

Lemma 4.1.2. If Γ is a cyclic group of order n, and an element g ∈ Γ has order

n/k for some k|n, then there exists a generator y of Γ such that g = yk.

Now let Γ be a finite cyclic group of order n. A quantum linear space of rank

1 over Γ, denoted R(g;χ), is entirely determined by a choice of g ∈ Γ and χ ∈ Γ̂

such that χ(g) 6= 1. Fix a non-identity element g ∈ Γ. Then g has order n/m for

some m|n, and by Lemma 4.1.2, we can choose a generator y of Γ so that g = ym.

Similarly, fix a non-identity element χ ∈ Γ̂. Then χ(y) is an nth root of unity, say of

order n/twith t|n, and again by Lemma 4.1.2, we can choose a primitive nth root of

unity, ζ , such that χ(y) = ζt. We have χ(g) = ζmt, andN = ord(χ(g)) = n
gcd(n,mt)

.

Our assumption that χ(g) 6= 1 means precisely that n - mt. In this case, R(g;χ)

has a single generator, x, and a single relation, xN = 0. By definition, R(g;χ) is a

braided Hopf algebra in Γ
ΓYD with ρ(x) = g⊗x = ym⊗x and y ·x = χ(y)x = ζtx.

The structure of the bosonizationR(g;χ)#kΓ is similar to that of a Taft algebra, and
we denote it with similar notation.

Definition-Proposition 4.1.3. Let m, t be positive integer divisors of n such that

n - mt and let ζ be a primitive nth root of unity. DefineHn(ζ,m, t) as the k-algebra
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generated by y and x, subject to the relations

yn = 1, xN = 0 (for N = ord(ζmt)), yx = ζtxy.

The algebra Hn(ζ,m, t) has a unique Hopf algebra structure determined by

∆(y) = y ⊗ y, ∆(x) = ym ⊗ x+ x⊗ 1,

ε(y) = 1, ε(x) = 0, S(y) = y−1, S(x) = −y−mx.

Here, Hn(ζ,m, t) ∼= R(g;χ)#kΓ, where g = ym and χ(y) = ζt. Such Hopf

algebras have dimension Nn.

For a fixed n, a natural first question is whether each choice of ζ , m, and t

determines a unique Hopf algebra. Unsurprisingly, the answer is negative; however,

an isomorphism class does uniquely determine n,m, and t. To show this, we require

the following lemma characterizing certain primitive elements.

Lemma 4.1.4. [5, Corollary 5.3] Let 0 ≤ b < n. Then

Pyb,1(Hn(ζ,m, t)) =

kx+ k(yb − 1), if b ≡ m mod n

k(yb − 1), otherwise.

Proposition 4.1.5. Let m, m̂, t, t̂ be positive divisors of n such that n divides nei-

ther mt nor m̂t̂. Let ζ, ζ̂ be primitive nth roots of unity in k. Then Hn(ζ,m, t) ∼=
Hn̂(ζ̂ , m̂, t̂) if and only if n = n̂,m = m̂, t = t̂, and there exists f ∈ (Z/nZ)× such

that (ζ̂)ft = ζt and fm ≡ m mod n. As a consequence, for fixed n ∈ N and a

fixed primitive nth root of unity ζ , each choice ofm, t ∈ N with both dividing n and

n - mt yields a unique isomorphism class of Hopf algebras Hn(ζ,m, t).

Proof. Let y, x denote the generators of Hn(ζ,m, t), and ŷ, x̂ the generators of

Hn̂(ζ̂ , m̂, t̂). Assume the conditions on n̂, m̂, t̂, and f . The isomorphism between

the two is defined by sending y to ŷf and x to x̂. One can easily check that this

defines a Hopf algebra isomorphism.

On the other hand, suppose Hn(ζ,m, t) and Hn̂(ζ̂ , m̂, t̂) are isomorphic and let

φ denote an isomorphism between them. By counting grouplike elements, n = n̂.
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Moreover, φ(y) must be a grouplike element of order n. Thus, there exists some

f ∈ (Z/nZ)× such that φ(y) = ŷf . Since (φ ⊗ φ) ◦ ∆ = ∆ ◦ φ, we must have
φ(x) ∈ Pŷfm,1(Hn̂(ζ̂ , m̂, t̂)). By Lemma 4.1.4,

Pŷfm,1(Hn̂(ζ̂ , m̂, t̂)) =

kx̂+ k(ŷfm − 1), fm ≡ m̂ mod n

k(ŷfm − 1), otherwise.

Since φ(x) and ŷf must generate Hn̂(ζ̂ , m̂, t̂), it must be that fm ≡ m̂ mod n and

φ(x) = αx̂+ β(ŷfm − 1) for some α, β ∈ k with α 6= 0. Now, sincem and m̂ both

divide n, and f is a unit mod n, the equation fm ≡ m̂ mod n impliesm = m̂. We

must have

0 = φ(yx− ζtxy) = ŷf (αx̂+ β(ŷfm − 1))− ζt(αx̂+ β(ŷfm − 1))ŷf

= ((ζ̂)f t̂ − ζt)αx̂ŷf + (1− ζt)βŷf (ŷfm − 1).

Thus, since ζt 6= 1 and ŷfm 6= 1 (as n - mt), we must have β = 0. Also, since

α 6= 0, we have (ζ̂)f t̂ = ζt. Since ζ and ζ̂ are primitive nth roots of unity, ζ̂ = ζe

for some e ∈ (Z/nZ)×. Therefore, ef t̂ ≡ t mod n, and just as form = m̂, we see

that t = t̂.

Not only do the Hopf algebras just presented include Taft algebras; they also

include the coradically graded generalized Taft algebras.

Definition 4.1.6. For natural numbers n,N satisfying N | n, a primitive N th root

of unity q ∈ k, and α ∈ k arbitrary, the generalized Taft algebra T (n,N, α) is

the Hopf algebra generated by a grouplike element g and a (g, 1)-skew primitive

element x, subject to the relations

gn = 1, xN = α(gN − 1), gx = qxg.

Note that, if ζ is a primitive nth root of unity with ζ
n
N = q, then T (n,N, α)

is a lifting of Hn(ζ, 1,
n
N
) in the sense that gr(T (n,N, α)) ∼= Hn(ζ, 1,

n
N
) (Sec-

tion 2.1.3).
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Corollary 4.1.7. The Hopf algebra Hn(ζ,m, t) is isomorphic to a generalized Taft

algebra of the form T (n,N, 0) if and only if m = 1. In this case, q = ζt, and

N = n/t. Moreover, any generalized Taft algebra of the form T (n,N, 0) can be

realized as such.

Proof. Assume m = 1. Then N = n/t and q = ζt is a primitive N th root of

unity by definition. Define a homomorphism φ : Hn(ζ, 1, t) → T (n,N, 0) by

y 7→ g and x 7→ x. We see that φ is surjective, so by a dimension count, φ is an

isomorphism. Moreover, we see that any generalized Taft algebra, T (n,N, 0) is

isomorphic Hn(ζ, 1, n/N), where ζ is chosen so that ζt = q.

Now, assume thatHn(ζ,m, t) is isomorphic to a coradically graded generalized

Taft algebra T (n,N, 0) ∼= Hn̂(ζ̂ , 1, n/N). By Proposition 4.1.5,m = 1.

Now the following consequence is clear.

Corollary 4.1.8. The Hopf algebra Hn(ζ,m, t) is isomorphic to a Taft algebra if

and only ifm = t = 1. In that case, Hn(ζ,m, t) ∼= Tn(ζ). Thus, if n is prime, then

every Hopf algebra of the form Hn(ζ,m, t) is a Taft algebra.

Proof. Assume m = t = 1. Then N = ord(ζmt) = n, so by Corollary 4.1.7,

Hn(ζ,m, t) ∼= T (n, n, 0) = Tn(q). By the same proposition, q = ζt = ζ .

On the other hand, assume Hn(ζ,m, t) ∼= Tn(q) = T (n, n, 0). By Corol-

lary 4.1.7,m = 1 and n = n/t, so t = 1.

A consequence of Lemma 4.1.4 and Corollary 2.5.3 is the following:

Corollary 4.1.9. A left Hn(ζ,m, t)-module M is inner-faithful if and only if

G(Hn(ζ,m, t)) = 〈y〉 acts faithfully onM and x ·M 6= 0.

Proof. The forward direction is clear. Assume, then, that 〈y〉 acts faithfully and that
x ·M 6= 0. Then every nonzero multiple of yb − 1 does not act by zero for every b.

Thus, we only need to check that each nonzero element of kx+ k(ym − 1) acts by

nonzero by Corollary 2.5.3 and Lemma 4.1.4. Since x and ym−1 do not act by zero,

this is equivalent to showing that x does not act as any nonzero scalar multiple of

ym−1. LetMi = {a ∈M : y ·a = ζ ia} denote the eigenspaces of the action of y on
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M . Note that if u ∈Mi, then x ·u ∈Mi+t, since y · (x ·u) = ζtx · (y ·u) = ζ i+tx ·u.
If x ·Mi = 0 for all i, then x ·M = 0, contradicting our hypothesis. Thus, choose

i and u ∈ Mi such that x · u 6= 0. Then (ym − 1) · u = (ζmi − 1)u ∈ Mi, but

x · u ∈ Mi+t. Since n - mt, Mi 6= Mi+t. Thus, x · u is not equal to any nonzero
scalar multiple of (ym − 1) · u.

Our next goal is to answer Question 1.3.3 forHn(ζ,m, t). That is, we are inter-

ested in the existence of structuresA(Hn(ζ,m, t)) as in Notation 1.3.2, and whether

or not such structures can be extended to admit actions of D(Hn(ζ,m, t)). Before

considering this, we computeD(Hn(ζ,m, t)) explicitly. This is made easier by first

giving a nice presentation of the dual.

4.2 The dual and double of Hn(ζ,m, t)

4.2.1 The dual Hn(ζ,m, t)
∗

In [9], Beattie computed the duals of quantum linear spaces. As an application

of [9, Corollary 2.3], we get the following result:

Lemma 4.2.1. [9] As Hopf algebras, Hn(ζ,m, t)
∗ ∼= Hn(ζ, t,m).

Proof. As a reminder,Hn(ζ,m, t) ∼= B(V )#kΓ, for Γ a cyclic group of order n and
V = kx ∈ Γ

ΓYD with x ∈ V χ
g . Recall from the discussion before Definition 4.1.3,

for y a generator of Γ, g and χ are defined by g = ym and χ(y) = ζt. Thus, by [9,

Corollary 2.3], Hn(ζ,m, t)
∗ ∼= B(W )#kΓ̂, with W = kx̂, and x̂ ∈ V g

χ . Since Γ

is abelian, Γ̂ ∼= Γ. Recalling the construction of Hn(ζ,m, t) in Section 4.1, we see

that switching χ and g amounts to switchingm and t. Hence, we get the result that

Hn(ζ,m, t)
∗ ∼= Hn(ζ, t,m).

Since we have a presentation of the dual, for computing the double, we would

like to know the dual pairing betweenHn(ζ,m, t) andHn(ζ, t,m). Thus, we exhibit

a perfect duality between these two Hopf algebras.
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Proposition 4.2.2. With y, x denoting the generators of Hn(ζ,m, t), and Y,X the

generators Hn(ζ, t,m), the bilinear form defined by

〈X iY j, xky`〉 = δi,k (i)q! ζ
j`, (4.1)

is a perfect duality.

In particular, we get that the dual pairing is given on generators by

〈Y, y〉 = ζ, 〈Y, x〉 = 0, 〈X, y〉 = 0, 〈X, x〉 = 1.

Note the following equalities, which will be useful for our calculations:

∆(X iY j) =
i∑

s=0

(
i

s

)
q

X i−sY ts+j ⊗XsY j and (4.2)

S(xiyj) = S(yj)S(xi) = (−1)iy−jqi−1y−imxi = (−1)iqi−1ζ−ti(im+j)xiy−im−j.

(4.3)

Proof of Proposition 4.2.2. We show that (4.1) is a duality, i.e. that (2.12) holds.

First, we check that

〈XaY b, xiyjxky`〉 = 〈(XaY b)(1), x
iyj〉〈(XaY b)(2), x

ky`〉. (4.4)

On the one hand,

〈XaY b, xiyjxky`〉 = ζtjk〈XaY b, xi+kyj+`〉 (4.1)
= δa,i+k (a)q! ζ

tjk+b(j+`).

On the other hand, we have

〈(XaY b)(1), x
iyj〉〈(XaY b)(2), x

ky`〉

(4.2)
=

a∑
s=0

(
a

s

)
q

〈Xa−sY ts+b, xiyj〉〈XsY b, xky`〉

(4.1)
=

a∑
s=0

(
a

s

)
q

δa−s,i (a− s)q! ζ
(ts+b)j δs,k (s)q! ζ

b`

= δa,i+k

(
a

k

)
q

(i)q! (k)q! ζ
tjk+bj+b`.
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Now (4.4) follows since when a = i+ k, we have
(
a
k

)
q
= (a)q !

(i)q !(k)q !
.

The proof that 〈XaY bXcY d, xiyj〉 = 〈XaY b, (xiyj)(1)〉〈XcY d, (xiyj)(2)〉 fol-
lows similarly. We also have by (4.1) that 〈XaY b, 1〉 = δa,0 = ε(XaY b) and

〈1, xiyj〉 = δ0,i = ε(xiyj).

Finally, we have that

〈XaY b, S(xiyj)〉 (4.3)
= (−1)iqi−1ζ−ti(im+j)〈XaY b, xiy−im−j〉
(4.1)
= δa,i (a)q! (−1)iqi−1ζ−ti(im+j) ζ−b(im+j)

= δa,i (a)q! (−1)aqa−1ζ−ma(at+b) ζ−j(at+b)

(4.1)
= (−1)aqa−1ζ−ma(at+b)〈XaY −at−b, xiyj〉
(4.3)
= 〈S(XaY b), xiyj〉.

Therefore, we have a duality. To show that this duality is perfect, we need to show

that the maps φ : Hn(ζ, t,m) → Hn(ζ,m, t)
∗ and ψ : Hn(ζ,m, t) → Hn(ζ, t,m)∗

defined by φ(u)(x) = 〈u, x〉 = ψ(x)(u) are injective. By a dimension count, veri-

fying just one of these claims suffices. Let

f =
N−1∑
a=0

n−1∑
b=0

αa,bX
aY b (αa,b ∈ k) ,

and suppose φ(f) = 0. Then for any i, j,

0 = φ(f)(xiyj) = 〈f, xiyj〉 =
N−1∑
a=0

n−1∑
b=0

αa,b〈XaY b, xiyj〉

=
N−1∑
a=0

n−1∑
b=0

αa,b δa,i (a)q! ζ
bj =

n−1∑
b=0

αi,b (i)q! ζ
bj.

Let βi,j denote
∑n−1

b=0 αi,b ζ
bj . By the above, for every i, j, βi,j = 0. Thus, for any

fixed i and k,

0 =
n−1∑
j=0

ζ−jkβi,j =
n−1∑
j=0

ζ−jk

n−1∑
b=0

αi,b ζ
bj =

n−1∑
b=0

(
n−1∑
j=0

ζ(b−k)j

)
αi,b = n αi,k.

The last equality follows because for ξ a non-identity nth root of unity,
∑n−1

j=0 ξ
j = 0,

and ζb−k 6= 1 for all b 6= k. Thus, since each αi,j = 0, we have f = 0, so φ is

injective. Hence, we have proven that the duality is perfect.
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Remark 4.2.3. In [20, Section 2], Krop and Radford give an algebra presentation of

the dual of any liftingH of a quantum linear space. In their notation, forHn(ζ,m, t),

we have x = v1, y
m = a1, X = ξ1, and Y =

∑n−1
i=0 ζ

iεyi . They also compute an

algebra presentation of D(H) in the case that the datum D is “simply linked” [20,

Sections 3.2, 4]. The only Hopf algebra we consider that satisfies this condition is

uq(sl2) (Chapter 6).

4.2.2 The Drinfel’d double D(Hn(ζ,m, t))

Now we begin with the computation ofD(Hn(ζ,m, t)). By Lemma 2.3.2, as an

algebra,D(Hn(ζ,m, t)) is generated by the generators ofHn(ζ,m, t) and of its dual,

and has the relations of both. We only need to find how these generators “commute”

with each other, i.e. how to in general write an element as a linear combination of

monomials with X and Y to the left of x and y. To find these relations, we use

(2.17) .

Proposition 4.2.4. TheDrinfel’d doubleD(Hn(ζ,m, t)) ofHn(ζ,m, t) is generated

by grouplike elements y and Y , a (ym, 1)-skew primitive element x, and a (1, Y t)-

skew primitive element X , subject to the relations

yn = Y n = 1, xN = XN = 0, yx = ζtxy, Y X = ζmXY,

yY = Y y, xY = ζmY x, yX = ζ−tXy, xX −Xx = Y t − ym,

where N = ord(ζmt) = n
gcd(n,mt)

.

Proof. The generators and first row of relations follow from Lemma 2.3.2. The

remaining relations come from moving generators of one across generators of the

other, which is done as follows. First, note that

∆2(x) = ym ⊗ ym ⊗ x+ ym ⊗ x⊗ 1 + x⊗ 1⊗ 1, ∆2(y) = y ⊗ y ⊗ y,

∆2(X) = Y t ⊗ Y t ⊗X + Y t ⊗X ⊗ ε+X ⊗ ε⊗ ε, ∆2(Y ) = Y ⊗ Y ⊗ Y,

and that S−1(x) = −xy−m. Thus, using (2.17) and (4.1), we have the following

computations

yY = 〈Y, y−1〉〈Y, y〉Y y = ζ−1ζY y = Y y,
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xY = 〈Y,−xy−m〉〈Y, ym〉Y ym + 〈Y, 1〉〈Y, ym〉Y x,+〈Y, 1〉〈Y, x〉Y 1 = ζmY x,

yX = 〈Y t, y−1〉〈X, y〉Y ty + 〈Y t, y−1〉〈ε, y〉Xy + 〈X, y−1〉〈ε, y〉εy = ζ−tXy,

xX = 〈Y t,−xy−m〉〈X, ym〉Y tym + 〈Y t,−xy−m〉〈ε, ym〉Xym

+ 〈X,−xy−m〉〈ε, ym〉εym

+ 〈Y t, 1〉〈X, ym〉Y tx + 〈Y t, 1〉〈ε, ym〉Xx + 〈X, 1〉〈ε, ym〉εx

+ 〈Y t, 1〉〈X, x〉Y t1 + 〈Y t, 1〉〈ε, x〉X1 + 〈X, 1〉〈ε, x〉ε1

= − ym +Xx+ Y t.

4.3 The possible structures of A(Hn(ζ,m, t))

We will see that Hn(ζ,m, t)-module algebra structures on A(Hn(ζ,m, t)) as in

Notation 1.3.2 do not always exist, depending on the value ofm and t. For consid-

ering actions ofHn(ζ,m, t) on A(Hn(ζ,m, t)), we will use an infinite-dimensional

Hopf algebra for which Hn(ζ,m, t) is a quotient. For an integer n > 0, a primitive

nth root of unity ζ ∈ k, andm, t ∈ Z both dividing n, we define

H̃n(ζ,m, t) = k〈y, x | yn = 1, yx = ζtxy〉,

with y grouplike, and x a (ym, 1)-skew primitive element. It is clear thatHn(ζ,m, t)

is the quotient of H̃n(ζ,m, t) by the Hopf ideal generated by x
N . The following

technical lemma will help us determine when structures as in Notation 1.3.2 do

exist. We will see that the obstruction comes from the condition that xN acts by

zero. We again use the notation from Remark 2.5.7 for eigenspaces of the action of

y: Ai = {a ∈ A | y · a = ζ ia}, noting that by a dimension count Ai = kui for all i.

Lemma 4.3.1. Let A = k[u]/(un − 1) and suppose A is an H̃n(ζ,m, t)-module

algebra with y · u = ζu and x · u 6= 0. Then there exists nonzero γ ∈ k such that

for any p, q > 0,

x · up = γ (p)ζm up+t and xq · up = γq

(
q−1∏
i=0

(p+ it)ζm

)
up+qt.

In particular, xN · up = 0 if and only if n/m divides p+ it for some 0 ≤ i < N .
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Proof. First, since yx · u = ζtxy · u = ζt+1x · u, we see that x · u ∈ At+1 = kut+1.

Thus, there exists nonzero γ ∈ k such that x · u = γu1+t. We have established the

first equality for the case p = 1. Thus, we proceed by induction, assuming the result

for p− 1. We compute:

x · up = (ym · u)(x · up−1) + (x · u)(1 · up−1)

= (ζmu)(γ (p− 1)ζm up−1+t) + (γut+1)(up−1)

= γ [ζm (p− 1)ζm + 1] up+t = γ (p)ζm up+t.

This establishes the first result for all p, as well as the second equality in the case

q = 1. We now prove the second equality for all q and p, by induction on q. Assume

the result for q − 1. Then we compute:

xq · up = x · (xq−1 · up) = x ·

(
γq−1

(
q−2∏
i=0

(p+ it)ζm

)
up+(q−1)t

)

= γq−1

(
q−2∏
i=0

(p+ it)ζm

)
γ (p+ (q − 1)t)ζm up+(q−1)t+t

= γq

(
q−1∏
i=0

(p+ it)ζm

)
up+qt.

The final statement holds as (n)q = 0 if and only if ord(q) | n, and as ord(ζm) =
n/m.

Proposition 4.3.2. There exist Hn(ζ,m, t)-module algebra structures on

A(Hn(ζ,m, t)) as in Notation 1.3.2 if and only if one of the following equivalent

conditions holds:

(a) gcd(t, n/m) = 1

(b) gcd(mt, n) = m

(c) n/m = N (= ord(ζmt))

In particular, if t = 1, then there are Hn(ζ,m, t)module algebra structures on

A(Hn(ζ,m, t)) as in Notation 1.3.2. On the other hand, if these structures exist,

we must have that t|m, and in this case, the module structure is given by y · u = ζu

and x · u = γut+1 for some nonzero γ ∈ k.
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Proof. The equivalence of the three conditions follows from elementary group the-

ory and number theory. First, assume these conditions hold. Then by definition,

A(Hn(ζ,m, t)) = k[u]/(un − 1). For any nonzero γ ∈ k, by defining y · u = ζu

and x · u = γu1+t, it is easy to check that A(Hn(ζ,m, t)) is a H̃n(ζ,m, t)-module

algebra. In order to get aHn(ζ,m, t)-module algebra structure, we need only check

that xN acts by zero. By Lemma 4.3.1, we must check that for each p, we get that

n/m divides p + it for some 0 ≤ i < N . By assumption, n/m = N is relatively

prime to t. Thus, for any value of p, {p + it}N−1
i=0 consists of N distinct values

mod N . Thus, for exactly one value of i, we have p + it ≡ 0 mod N . Therefore,

xN · up = 0 for all p, so we have an Hn(ζ,m, t)-module algebra structure. By

Corollary 4.1.9, this action is inner-faithful.

On the other hand, fix an Hn(ζ,m, t)-module algebra structure on

A := A(Hn(ζ,m, t)) ∼= k[u]/(un − 1).

Since theHn(ζ,m, t)-module structure on A(Hn(ζ,m, t)) is inner-faithful, by Cor-

ollary 4.1.9, x · u 6= 0. By pulling back along the projection

H̃n(ζ,m, t) → Hn(ζ,m, t),

A is a H̃n(ζ,m, t)-module algebra, with x
N · u = 0. Thus, by Lemma 4.3.1, we

have x ·u = γut+1. Moreover, by the same lemma, 1+ it ≡ 0 mod n/m for some

0 ≤ i < N . That is, we can write 1 = −it + bn/m for some i, b ∈ Z. Therefore,
gcd(t, n/m) = 1.

Proposition 4.3.2 generalizesMontgomery and Schneider’s result (stated in The-

orem 1.3.1), which examines the Taft algebras (the case thatm = t = 1). Note that

in their work, x acts by lowering the degree of u rather than raising it. This is due

to the fact that they use the relation xy = ζyx rather than yx = ζxy. By Corol-

lary 4.1.7 and Corollary 4.1.8, we obtain the following result for coradically graded

generalized Taft algebras, in general.

Corollary 4.3.3. Consider a coradically graded generalized Taft algebra

T (n,N, 0) = Hn(ζ, 1, n/N) for someN dividing n. Then T (n,N, 0)-module alge-
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bra structures on A(T (n,N, 0)) as in Notation 1.3.2 exist if and only if n = N , i.e.

if and only if T (n,N, 0) is a Taft algebra.

Thus, we have answered Question 1.3.3(a,b) for coradically graded generalized

Taft algebras. Wewill consider the non-coradically graded generalized Taft algebras

in Chapter 5.

4.4 Extensions to D(Hn(ζ,m, t))

Recall that the Hopf algebra Hn(ζ,m, t) is determined by a primitive n
th root

of unity ζ in k and two positive integer divisors of n: m, which is used to define

the coalgebra structure, and t which is used to define the algebra structure. It is also

assumed that n - mt. We now assume Hn(ζ,m, t)-module algebra structures on

A(Hn(ζ,m, t)) as in Notation 1.3.2 exist (that is, that gcd(t, n/m) = 1, by Propo-

sition 4.3.2) and explore when such structures extend to beD(Hn(ζ,m, t))-module

algebras. Recall from Section 4.2.2 that D(Hn(ζ,m, t)) is generated by grouplike

elements y and Y , a (ym, 1)-skew primitive element x, and a (1, Y t)-skew primitive

element X , subject to the relations

yn = Y n = 1, xN = XN = 0, yx = ζtxy, Y X = ζmXY,

yY = Y y, xY = ζmY x, yX = ζ−tXy, xX −Xx = Y t − ym

where N = ord(ζmt) = n/m.

Theorem 4.4.1. Fix an Hn(ζ,m, t)-module algebra structure on the algebra A :=

A(Hn(ζ,m, t)) = k[u]/(un − 1) as in Notation 1.3.2. If the action of Hn(ζ,m, t)

extends to make A a D(Hn(ζ,m, t))-module algebra, then there exists a nonzero

scalar γ and scalar δ ∈ k, and a natural number 0 < d < n withm ≡ −dt mod n

such that:

y · u = ζu, Y · u = ζdu, x · u = γu1+t, and X · u = δu1−t.

Ifm 6= n/2 (that is, if N 6= 2), then γ and δ are related by the identity

γδ =
ζ−m − 1

(n− t)ζm
.
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In this case, the action ofX on A is determined by theHn(ζ,m, t)-module algebra

structure, and if further, t = 1, then the action of Y is as well.

On the other hand, ifm = n/2, there is no such equation relating γ and δ.

Conversely, the conditions imposed above on δ and d are sufficient to define a

D(Hn(ζ,m, t))-module algebra structure on A.

Wewill need the following lemma about q-symbols in the proof ofTheorem 4.4.1.

It follows from the definitions.

Lemma 4.4.2. Let q 6= 1 ∈ k. Then the following statements hold.

(a) Suppose that ord(q) = n and p ≡ r mod n for integers p, r > 0. Then

(p)q = (r)q;

(b) If ord(q)|m and 0 ≤ p ≤ m, then (p)q−1 = −q(m− p)q.

Proof of Theorem 4.4.1. All actions of Hn(ζ,m, t) on A(Hn(ζ,m, t)) as in Nota-

tion 1.3.2 are given by Proposition 4.3.2. In particular, y ·u = ζu, and x ·u = γu1+t

for some nonzero γ ∈ k. Since yY ·u = Y y·u = ζY ·u, we see that Y ·u ∈ A1 = ku.
Thus, Y · u = δu for some δ ∈ k. However, because Y n must act by the identity, δ

must be an nth root of unity. That is, δ = ζd for some 0 ≤ d < n.

On one hand, xY · u = ζdx · u = ζdγu1+t. On the other hand, ζmY x · u =

ζmγY · u1+t = ζm+d(1+t)γu1+t. Therefore, since γ 6= 0, it must be the case that

d ≡ m + d(1 + t) mod n. That is, m ≡ −dt mod n. In particular, this implies

d 6= 0.

We also have yX · u = ζ−tXy · u = ζ1−tX · u, showing that X · u ∈ A1−t =

ku1−t. Thus, X · u = δu1−t for some δ ∈ k. One sees by induction that X · up =

δ (p)ζdtu
p−t. Thus, on one hand, by Lemma 4.3.1 and Lemma 4.4.2,

(xX −Xx) ·u = δx ·u1−t− γX ·u1+t = δγ(n+1− t)ζmu
n+1− γδ(1+ t)ζdtu

n+1,

and on the other hand, (Y t − ym) · u = (ζdt − ζm)u. Therefore, since m ≡ −dt
mod n, we have

ζ−m − ζm = γδ ((n+ 1− t)ζm − (1 + t)ζ−m) .
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Note that ord(ζm) divides n and that 1 < 1 + t ≤ n. Thus, using Lemma 4.4.2,

(n+ 1− t)ζm − (1 + t)ζ−m = ζm(n− t)ζm + 1 + ζm(n− 1− t)ζm

= (ζm + 1)(n− t)ζm .

Therefore, if ζm 6= −1 (or equivalently, ifm 6= n/2), then since (ζm+1)(ζ−m−1) =

ζ−m − ζm, we have

γδ =
ζ−m − 1

(n− t)ζm
.

If ζm = −1, then ζ−m − ζm = 0, so we gain no new restrictions on δ.

We also have Y X ·u = δY ·u1−t = δζd(1−t)u1−t, and ζmXY ·u = ζm+dX ·u =

δζm+du1−t. Therefore, δ = 0 or m + d ≡ d(1 − t) mod n. However, we already

knowm ≡ −dt mod n, so we have no further restrictions on δ or d.

Finally, we must have XN · up = 0 for all p. A simple calculation shows that

XN · up = δN

(
N−1∏
i=0

(p+ i(n− t))ζdt

)
up−Nt.

If δ = 0, we are done. Otherwise, XN · up = 0 if and only if ord(ζdt) divides

some element of {p + i(n − t)}N−1
i=0 . Since ord(ζ

dt) = ord(ζm) = n/m = N and

gcd(t, N) = 1 by Proposition 4.3.2, the set consists of N distinct values mod N .

Therefore, N divides exactly one of them. Thus, XN · up = 0 for all p.

The converse statement, that the conditions imposed on δ and d are sufficient

for making A(Hn(ζ,m, t)) a D(Hn(ζ,m, t))-module algebra, is straightforward to

check.

Note that this result generalizes the work of Montgomery and Schneider (stated

in Theorem 3.1.2) and shows that there are other Hopf algebras closely related to

Taft algebras, for which there is a unique extension of the action of H on A(H) to

D(H), namely Hn(ζ,m, 1) for anym | n withm 6= n/2.

Corollary 4.4.3. Suppose Hn(ζ,m, t)-module algebra structures on the algebra

A := A(Hn(ζ,m, t)) as in Notation 1.3.2 exist. Ifm 6= n/2 (e.g., if n is odd), then

there are precisely t ways to extend this action to make A aD(Hn(ζ,m, t))-module
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algebra. In particular, if t = 1, then the desired Hn(ζ,m, t)-module algebra struc-

ture on A(Hn(ζ,m, t)) exists, and the way to extend the action to D(Hn(ζ,m, t))

is unique.

Ifm = n/2, then in order to extend the action of Hn(ζ,m, t) on A to an action

of D(Hn(ζ,m, t)), there are t ways to define the action of the generator Y and the

choice for the action of X is parametrized by k.

Proof. By Proposition 4.3.2, t|m. Thus, there are t distinct choices for d such that
0 < d < n and m ≡ −dt mod n. If m 6= n/2, the action of X is fixed by

Theorem 4.4.1. Otherwise, any choice of δ ∈ k will suffice to define the action of
X .

While the Hopf algebras Hn(ζ,m, t) generalize the Taft algebras as bosoni-

zations of quantum linear spaces over finite cyclic groups, there are other coradically

graded generalizations and directions to consider for further study. We discuss this

in Chapter 7.
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CHAPTER 5

NON CORADICALLY-GRADED

GENERALIZED TAFT

ALGEBRAS

Let n ∈ N, n ≥ 2, and let N | n. Let q ∈ k be a primitive N th root of unity.

Recall that the generalized Taft algebra T (n,N, α) [Definition 4.1.6] is generated

by g ∈ G(T (n,N, 1)) and x ∈ Pg,1(T (n,N, 1)), subject to the relations

gn = 1, xN = α(gN − 1), gx = qxg,

for some α ∈ k. If α = 0, then T (n,N, 0) ∼= Hn(ζ, 1,
n
N
) [Corollary 4.1.7]. If

α 6= 0, then by scaling x, we can assume without loss of generality that α = 1.

In this section, we consider the generalized Taft algebras which are not of the form

Hn(ζ,m, t) and hence covered by the previous section, i.e. we consider the non

coradically-graded generalized Taft algebras T (n,N, 1). As stated in Section 4.1,

T (n,N, 1) is a lifting of Hn(ζ, 1,
n
N
), i.e. gr(T (n,N, 1)) ∼= Hn(ζ, 1,

n
N
).

The proof of the following is standard and follows similarly to the proof of

Lemma 4.1.4.
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Lemma 5.0.1. For b ∈ {0, 1, . . . , N − 1}, we have that

Pgb,1(T (n,N, 1)) =

kx+ k(gb − 1), if b = 1,

k(gb − 1), otherwise.

Corollary 5.0.2. A left T (n,N, 1)-module M is inner-faithful if and only if

G(T (n,N, 1)) = 〈g〉 acts faithfully and x ·M 6= 0.

Proof. The proof is essentially the same as that of Corollary 4.1.9.

5.1 The possible structures of A(T (n,N, 1))

Since G(T (n,N, 1)) is cyclic of order n, the module algebra A(T (n,N, 1)) in

Notation 1.3.2 is isomorphic to k[u]/(un − 1) as an algebra. (See Remark 2.5.7.)

We determine all such possible T (n,N, 1)-module algebra structures. Let ζ ∈ k be
a primitive nth root of unity so that ζ

n
N = q.

Proposition 5.1.1. LetA = k[u]/(un−1). By defining g ·u = ζu and x·u = γu
n
N
+1

for γ ∈ k satisfying γN = −(1 − ζ)N , we obtain that A = A(T (n,N, 1)) is a

T (n,N, 1)-module algebra as in Notation 1.3.2. Moreover, this gives all possible

T (n,N, 1)-module algebra structures on A(T (n,N, 1)).

Proof. For the first statement, it is easy to check that A, as defined, will be a

T (n,N, 1)-module algebra. By Corollary 5.0.2, since x · u 6= 0, the action on

A is inner-faithful.

To see that these are the only possible T (n,N, 1)-module algebra structures on

A as in Notation 1.3.2, fix such a structure. By Remark 2.5.7, we have that

A =
n−1⊕
i=0

Ai where Ai = {a ∈ A | g · a = ζ ia} = kui.

Now, since g ·(x·u) = qx·(g ·u) = ζ
n
N
+1x·u, we have that x·u ∈ A n

N
+1 = ku n

N
+1.

Therefore, x · u = γu
n
N
+1 for some γ ∈ k. We must also have that xN · u =

(gN − 1) · u = (ζN − 1) · u. Inductively, we have

xN · u = γN

(
N−1∏
i=0

(
in

N
+ 1

)
ζ

)
u.
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Thus, we must have

γN

(
N−1∏
i=0

(
in

N
+ 1

)
ζ

)
= ζN − 1. (5.1)

Now, we have

N−1∏
i=0

(
in

N
+ 1

)
ζ

=
N−1∏
i=0

ζ
in
N

+1 − 1

ζ − 1
=

∏N−1
i=0 (ζqi − 1)

(ζ − 1)N
=

(−1)N−1
(
ζN − 1

)
(ζ − 1)N

.

The last equality follows from the fact that q, being a primitive N th root of unity,

satisfies ζN − 1 =
∏N−1

i=0 (ζ − qi). Therefore, from (5.1), we see that γN = −(1−
ζ)N .

5.2 The dual and double of T (n,N, 1)

We must now compute the Drinfel’d double of T (n,N, 1) so that we can ex-

amine the extensions of actions of T (n,N, 1) on A to actions of D(T (n,N, 1)).

First, we compute a presentation of the dual. We proceed in a similar fashion to

Section 4.2.

5.2.1 The dual T (n,N, 1)∗

Definition 5.2.1. Let ζ ∈ k be a primitive nth root of unity chosen so that ζ
n
N = q,

and letKζ(n,N) denote the algebra generated by G and X , subject to the relations

Gn = 1, XN = 0, GX = ζXG.

By a Diamond Lemma argument,Kζ(n,N) has basis {X iGj}0≤i<N, 0≤j<n.

We will show that Kζ(n,N) is a Hopf algebra which is isomorphic as a Hopf

algebra to T (n,N, 1)∗. For making calculations easier, we introduce the following

notation.

Notation 5.2.2. Let N ∈ N and q ∈ k a primitive N th root of unity. For 0 ≤ i <

j < N ∈ N, define (̃
i

j

)
q

=
(i)q!

(i+N − j)q!(j)q!
.
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For 1 ≤ i < j < N , these satisfy the equation(̃
i

j

)
q

=

(̃
i− 1

j

)
q

+ qi−j
˜(i− 1

j − 1

)
q

= qj
(̃
i− 1

j

)
q

+
˜(i− 1

j − 1

)
q

(5.2)

We will need the following technical lemma to prove that Kζ(n,N) is a Hopf

algebra.

Lemma 5.2.3. With q a primitive N th root of unity and 0 ≤ a < d < N„

a∑
c=0

(
a

c

)
q

qc(c−d)

(d− c)q!(N − d+ c)q!
=

(̃
a

d

)
q

.

Proof. First, we note that the left hand side of the equation is equivalent to(̃
a

d

)
q

a∑
c=0

qc(c−d)

(
a+N − d

c+N − d

)
q

(
d

c

)
q

. (5.3)

Thus, we have only to show that the above summation is equal to 1 for 0 ≤ a < d <

N . We show this for 0 ≤ a < d ≤ N . To this end, if d < N , then the summation is

equivalent to

a−1∑
c=0

qc(c−d)

[(
a+N − d− 1

c+N − d− 1

)
q

+ qc−d

(
a+N − d− 1

c+N − d

)
q

](
d

c

)
q

+ qa(a−d)

(
d

a

)
q

=
a∑

c=0

qc(c−d)

(
a+N − d− 1

c+N − d− 1

)
q

(
d

c

)
q

+
a∑

c=0

qc(c−d−1)

(
a+N − d− 1

c+N − d− 1

)
q

(
d

c− 1

)
q

=
a∑

c=0

qc(c−d−1)

(
a+N − d− 1

c+N − d− 1

)
q

(
d+ 1

c

)
q

.

The problem is thus reduced to proving the summation in (5.3) is equal to 1 for

d = N . Since qN = 0, we have
(
N
c

)
q
= 0 for each 0 < c ≤ a, so the problem is

reduced to the obvious fact that q0
(
a
0

)
q

(
N
0

)
q
= 1.
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Proposition 5.2.4. By defining

∆(G) = G⊗G+ (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

XN−aG1+an
N ⊗XaG,

∆(X) = G
n
N ⊗X +X ⊗ 1,

ε(G) = 1, ε(X) = 0,

S(G) = G−1, S(X) = −G
−n
N X,

the algebra Kζ(n,N) from Definition 5.2.1 is a Hopf algebra.

Proof. First, we check that∆ and ε, as defined, are algebra maps. Using induction,

we see that

∆(Gd) = Gd ⊗Gd + (ζdN − 1)
N−1∑
a=1

(̃
0

a

)
q

XN−aGd+an
N ⊗XaGd. (5.4)

In particular, ∆(Gn) = Gn ⊗Gn = 1⊗ 1 = ∆(1). Similarly, from (2.9), we get

∆(Xa) =
a∑

b=0

(
a

b

)
q

Xa−bG
nb
N ⊗Xb. (5.5)

Since qN = 1, by (2.10), ∆(XN) = XN ⊗ 1 + Gn ⊗XN = 0. Finally, we check

the relation GX = ζXG. On the one hand, using (5.2),

∆(GX) = ζG1+ n
N ⊗XG+ ζXG⊗G

+ ζ(ζN − 1)
N−2∑
a=1

(̃
0

a

)
q

XN−aG1+
(a+1)n

N ⊗Xa+1G

+ ζ(ζN − 1)
N−1∑
a=2

qa
(̃
0

a

)
q

XN−a+1G1+an
N ⊗XaG

= ζG1+ n
N ⊗XG+ ζXG⊗G

+ ζ(ζN − 1)
N−2∑
a=1

˜( 1

a+ 1

)
q

XN−aG1+
(a+1)n

N ⊗Xa+1G.
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On the other hand, we have

∆(XG) = G1+ n
N ⊗XG+XG⊗G

+ (ζN − 1)
N−2∑
a=1

q−a

(̃
0

a

)
q

XN−aG1+
(a+1)n

N ⊗Xa+1G

+ (ζN − 1)
N−1∑
a=2

(̃
0

a

)
q

XN−a+1G1+an
N ⊗XaG

= G1+ n
N ⊗XG+XG⊗G

+ (ζN − 1)
N−2∑
a=1

˜( 1

a+ 1

)
q

XN−aG1+
(a+1)n

N ⊗Xa+1G.

Thus, it is clear that ∆(GX − ζXG) = 0. That ε is an algebra map is clear. Note

that to show ∆ and ε define a coalgebra structure, we know only need to check the

commutativity of (2.2) when applied to G and X . The second diagram is surely

commutative, and for the first, we need the following fact.

Claim. For 0 ≤ a < N and 0 ≤ b < n,

∆(XaGb) =
a∑

c=0

(
a

c

)
q

Xa−cGb+ cn
N ⊗XcGb

+ (ζbN − 1)
N−1∑
c=a+1

(̃
a

c

)
q

Xa+N−cGb+ cn
N ⊗XcGb.

Proof of Claim. First, recall (5.4) and (5.5) for formulas for ∆(Gb) and ∆(Xa)

respectively. Combining these and recalling that XN = 0, we get
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∆(XaGb) =
a∑

c=0

(
a

c

)
q

Xa−cG
cn
N

+b ⊗XcGb

+ (ζbN − 1)
a∑

c=0

N+c−a−1∑
d=c+1

(
a

c

)
q

qcd

(d)q!(N − d)q!

Xa−c+dGb+
(c−d)n

N ⊗XN+c−dGb

=
a∑

c=0

(
a

c

)
q

Xa−cG
cn
N

+b ⊗XcGb

+ (ζbN − 1)
N−a−1∑
d=1

(
a∑

c=0

(
a

c

)
q

qc(c+d)

(c+ d)q!(N − c− d)q!

)
Xa+dGb− dn

N ⊗XN−dGb

=
a∑

c=0

(
a

c

)
q

Xa−cG
cn
N

+b ⊗XcGb

+ (ζbN − 1)
N−a−1∑
d=1

(a)q!

(a+ d)q!(N − d)q!
Xa+dGb− dn

N ⊗XN−dGb.

The last equality follows from Lemma 5.2.3. �

Now, we compute both X(1)(1) ⊗X(1)(2) ⊗X(2) and X(1) ⊗X(2)(1)X(2)(2) as

G
n
N ⊗G

n
N ⊗X +G

n
N ⊗X ⊗ 1 +X ⊗ 1⊗ 1.

Using the claim above, we compute G(1)(1) ⊗G(1)(2) ⊗G(2) as

∆(G)⊗G+ (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

∆(XN−aG1+an
N )⊗XaG

= G⊗G⊗G+ (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

XN−aG1+an
N ⊗XaG⊗G

+ (ζN − 1)
N−1∑
a=1

N−a∑
c=0

(̃
0

a

)
q

(
N − a

c

)
q

XN−a−cG1+
(a+c)n

N ⊗XcG1+an
N ⊗XaG

+ (ζN − 1)2
N−1∑
a=1

N−1∑
c=N−a+1

(̃
0

a

)
q

˜(N − a

c

)
q

X2N−a−cG1+
(a+c)n

N ⊗XcG1+an
N ⊗XaG.



61

Similarly, we compute G(1) ⊗G(2)(1) ⊗G(2)(2) as

G⊗∆(G) + (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

XN−aG1+an
N ⊗∆(XaG)

= G⊗G⊗G+ (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

G⊗XN−aG1+an
N ⊗XaG

+ (ζN − 1)
N−1∑
a=1

a∑
c=0

(̃
0

a

)
q

(
a

c

)
q

XN−aG1+an
N ⊗Xa−cG1+ cn

N ⊗XcG

+ (ζN − 1)2
N−1∑
a=1

N−1∑
c=a+1

(̃
0

a

)
q

(̃
a

c

)
q

XN−aG1+an
N ⊗Xa+N−cG1+ cn

N ⊗XcG.

Through manipulation of the sums and indices, one sees that the above are equiv-

alent. Therefore, we have shown that Kζ(n,N) is a bialgebra. It is an easy check

that S is indeed an antipode.

The following is an easy consequence of (5.4).

Corollary 5.2.5. The elementG
n
N , and so each of {Gan

N }a∈Z is grouplike. Thus, we
also have X ∈ P

G
n
N ,1

(Kζ(n,N)).

Proposition 5.2.6. With g, x denoting the generators of T (n,N, 1), and G,X the

generators Kζ(n,N), the bilinear form defined by

〈XaGb, xigj〉 = δa,i (a)q! ζ
bj, (5.6)

is a perfect duality. Therefore, T (n,N, 1)∗ ∼= Kζ(n,N).

In particular, we get that the dual pairing is given on generators by

〈G, g〉 = ζ, 〈G, x〉 = 0, 〈X, g〉 = 0, 〈X, x〉 = 1.

Proof of Proposition 5.2.6. First, on the one hand, for 0 ≤ a, c, i < N , we have

〈XaGbXcGd, xigj〉 = ζbc〈Xa+cGb+d, xigj〉 = δa+c,i (i)q! ζ
bc+bj+dj.
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On the other hand, using ∆(xigj), which is computed using (2.9),

〈XaGbXcGd, xigj〉 =
i∑

k=0

(
i

k

)
q

〈XaGb, xi−kgj+k〉〈XcGd, xkgj〉

=

(
i

c

)
q

δa,i−c (i− c)q! (c)q! ζ
bc+bj+dj.

By the definition of q-binomial symbols, these are equivalent.

Next, for 0 ≤ a, i, k < N , we have

〈XaGb, xigjxkg`〉 = (a)q! q
jk ζbj+b`

(
δa,i+k + δa,i+k−N(ζ

bN − 1)
)
.

On the other hand, using the claim in the proof of Proposition 5.2.4,

〈XaGb, xigjxkg`〉 =
a∑

c=0

(
a

c

)
q

〈Xa−cGb+ cn
N , xigj〉〈XcGb, xkg`〉

+ (ζbN − 1)
N−1∑
c=a+1

(̃
a

c

)
q

〈Xa+N−cGb+ cn
N , xigj〉〈XcGb, xkg`〉

=

(
a

k

)
q

δa−k,i (a− k)q! (k)q! q
jk ζbj+b`

+ (ζbN − 1)

(̃
a

k

)
q

δa+N−k,i (a+N − k)q! (k)q! q
jk ζbj+b`.

Thus, these are equivalent. We also have

〈XaGb, 1〉 = δa,0 = ε(XaGb), 〈1, xigj〉 = δ0,i = ε(xigj).

Thus, we have a duality between the underlying bialgebras. To see that it is a duality

between Hopf algebras, we compute

〈S(XaGb), xigj〉 = (−1)a q
−a(a+1)

2 ζ−ab 〈XaG
−an
N

−b, xigj〉

= (−1)a q
−a(a+1)

2 ζ−ab δa,i (a)q! ζ
−bj q−aj

= (−1)i q
−i(i+1)

2
−ij δa,i (a)q! ζ

b(−i−j)

= (−1)i q
−i(i+1)

2
−ij 〈XaGb, xig−i−j〉 = 〈XaGb, S(xigj)〉.

To see that the duality is perfect, we must show that the map

φ : Kζ(n,N) → T (n,N, 1)∗
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defined by φ(u)(x) = 〈u, x〉 is injective. Let f =
∑N−1

a=0

∑n−1
b=0 αa,bX

aGb with

αa,b ∈ k and suppose φ(f) = 0. Then for any 0 ≤ i < N and 0 ≤ j < n,

0 = φ(f)(xigj) = 〈f, xigj〉 =
N−1∑
a=0

n−1∑
b=0

αa,b〈XaGb, xigj〉

=
N−1∑
a=0

n−1∑
b=0

αa,b δa,i (a)q! ζ
bj = (i)q!

n−1∑
b=0

αi,b ζ
bj.

Let βi,j denote
∑n−1

b=0 αi,b ζ
bj , each of which is 0. Then, for any fixed 0 ≤ i < N

and 0 ≤ k < n,

0 =
n−1∑
j=0

ζ−jkβi,j =
n−1∑
j=0

ζ−jk

n−1∑
b=0

αi,b ζ
bj =

n−1∑
b=0

(
n−1∑
j=0

ζj(b−k)

)
αi,b = nαi,k.

Therefore, since each αi,k = 0, we have f = 0, so φ is injective, and the duality is

perfect.

5.2.2 The double D(T (n,N, 1))

We can now prove the following result.

Proposition 5.2.7. The Drinfel’d double D(T (n,N, 1)) of T (n,N, 1) is generated

by g, x, G, and X , subject to the relations

Gn = gn = 1, xN = gN − 1, XN = 0, gx = qxg, GX = ζXG

gG = Gg, gX = q−1Xg, xX −Xx = G
n
N − g,

xG− ζGx = (ζN − 1)

(̃
0

1

)
q

XN−1G
(
G

n
N − qg

)
The coalgebra structure is determined by

∆(x) = g ⊗ x+ x⊗ 1, ∆(g) = g ⊗ g, ∆(X) = 1⊗X +X ⊗G
n
N

∆(G) = G⊗G+ (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

XaG⊗XN−aG1+an
N ,

ε(g) = ε(G) = 1, ε(x) = ε(X) = 0.
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Proof. The generators and top row of relations follow from Lemma 2.3.2. For the

rest, first recall that in Kζ(n,N) and T (n,N, 1), we have

∆2(X) = G
n
N ⊗G

n
N ⊗X +G

n
N ⊗X ⊗ 1 +X ⊗ 1⊗ 1,

∆2(g) = g ⊗ g ⊗ g, ∆2(x) = g ⊗ g ⊗ x+ g ⊗ x⊗ 1 + x⊗ 1⊗ 1,

S−1(g) = g−1, S−1(x) = −xg−1.

Thus, using (2.17) and (5.6), we have the following computations:

gX = 〈G
n
N , g−1〉〈X, g〉G

n
N g + 〈G

n
N g−1〉〈1, g〉Xg + 〈X, g−1〉〈1, g〉g = q−1Xg,

xX = 〈G
n
N , g−1〉〈X, g〉G

n
N g + 〈G

n
N ,−xg−1〉〈1, g〉Xg + 〈X,−xg−1〉〈1, g〉g

+ 〈G
n
N , 1〉〈X, g〉G

n
N x + 〈G

n
N , 1〉〈1, g〉Xx + 〈X, 1〉〈1, g〉x

+ 〈G
n
N , 1〉〈X, x〉G

n
N + 〈G

n
N , 1〉〈1, x〉X + 〈X, 1〉〈1, x〉1

= −g +Xx+G
n
N .

The remaining computations are in A.1.1 in Appendix A.

5.3 Extensions to D(T (n,N, 1))

Now that we have a presentation of D(T (n,N, 1)), we come to the result that

extensions of actions of T (n,N, 1) on A(T (n,N, 1)) to actions of D(T (n,N, 1))

only exist for particular choices of n and N .

Theorem 5.3.1. An action of T (n,N, 1) on A := A(T (n,N, 1)) as in Proposi-

tion 5.1.1 extends to an action ofD(T (n,N, 1)) on A if and only if N = 2 and n
2
is

odd. In that case, the action is given by

(a) G · u = ζau for some odd a ∈ N, and

(b) X · u = δu, where δ ∈ k satisfies γδ = ζ − 1.

Proof. It is straightforward to check that ifN = 2 and n
2
is odd, the given equations

define an action of D(T (n,N, 1)) on A(T (n,N, 1)).
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Now suppose we have an action of T (n,N, 1) on A(T (n,N, 1)) which extends

to an action of D(T (n,N, 1)). By Proposition 5.1.1, we have A = k[u]/(un − 1),

with g · u = ζu, and x · u = γu
n
N
+1 where γN = −(1 − ζ)N . By the relation

gX = q−1Xg, we have that

g ·X · u = q−1X · g · u = ζ1−
n
NX · u.

Therefore, X · u ∈ A1− n
N
= ku1− n

N , so X · u = δu1−
n
N for some δ ∈ k. Similarly,

by the relation gG = Gg, we have g ·G ·u = G ·g ·u = ζG ·u, soG ·u ∈ A1 = ku.
Since Gn = 1, we have G · u = ζau for some unique a ∈ {0, 1, . . . , N − 1}.

Throughout this proof, we will interpret the q-symbol (s)q (for s a negative num-

ber) as (t)q, where t ≡ s (mod ord(q)) and t > 0. Now, inductively, we have

XN · u = δN
(∏N−1

j=0

(
1− jn

N

)
qa

)
u. Since XN = 0, we must have δ = 0 or some(

1− jn
N

)
qa

= 0. If δ = 0, then X acts by zero, in which case (xX −Xx) · u = 0,

while (G
n
N − g) · u = (qa − ζ)u, a contradiction since ord(qa)|N and ord(ζ) = n.

Therefore, there must be some j such that
(
1− jn

N

)
qa

= 0. That is, qa 6= 1 and

gcd(ord(qa), n
N
) = 1.

We show that, in fact, ord(qa) = N . Note that

Xord(qa) · us = δord(q
a)

ord(qa)−1∏
j=0

(
s− jn

N

)
qa

us−
ord(qa)n

N = 0.

The last equality follows from the fact that each s− jn
N
is distinct mod ord(qa), and

thus one of them is congruent to 0 mod ord(qa). Thus, Xord(qa) acts by zero. Now

suppose for a contradiction that ord(qa) 6= N . Then, since ord(qa)|ord(q) = N ,

we have ord(qa) ≤ N
2
, so for any a ∈ {1, 2, . . . , N − 1}, we have a ≥ ord(qa) or

N − a ≥ ord(qa). Thus,

G · u2 = (G · u)2 + (ζN − 1)
N−1∑
a=1

(̃
0

a

)
q

(XaG · u)
(
XN−aG1+an

N · u
)
= ζ2au2.

Using induction, we see that G · us = ζsaus for any s. Thus,

0 = (GX − ζXG) · u = δζa(q−a − ζ)u1−
n
N .
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Since, δ 6= 0, we must have ζ = q−a, another contradiction. Therefore, ord(qa) =

N .

Hence, we must have gcd(N, n
N
) = 1 as well as gcd(N, a) = 1, the latter fol-

lowing from the fact that q is a primitive N th root of unity.

From the equation (xX −Xx) · us = (G
n
N − g) · us, we get that for all s,

γδ

[(
s− n

N

)
ζ
(s)qa −

(
s+

n

N

)
qa
(s)ζ

]
= qas − ζs. (5.7)

For s = 1 and s = n− 1, this yields respectively

γδ

[(
1− n

N

)
ζ
−
(
1 +

n

N

)
qa

]
= qa − ζ; (5.8)

γδ

[
−q−a

(
−1− n

N

)
ζ
+ ζ−1

(
−1 +

n

N

)
qa

]
= q−a − ζ−1.

From this, we get that

qa − ζ

ζ
(
− n

N

)
ζ
− qa

(
n
N

)
qa

=
qa − ζ(

− n
N

)
ζ
−
(
n
N

)
qa

,

giving q−1 = q
an
N . Applying (5.7) to s = n

N
yields

−γδ
(
2n

N

)
qa

( n
N

)
ζ
= q−1 − q.

Comparing this with (5.8), and using the fact that q−1 = q
an
N yields that q2 = 1.

Therefore, N = 2, and since gcd(n
2
, 2) = 1, we also have n

2
is odd. Hence, the first

statement is proven.

To see that δ must be as specified, apply (5.8) to get

γδ =
−1− ζ(
1− n

N

)
ζ

=
(−1− ζ)(ζ − 1)

−ζ − 1
= ζ − 1.
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CHAPTER 6

THE FROBENIUS-LUSZTIG

KERNEL uq(sl2)

The next algebra we study is the Frobenius-Lusztig kernel, uq(sl2). It is well-

known that uq(sl2) contains two isomorphic copies of Taft algebras, which generate

the whole algebra. In a sense, the Taft algebra Tn(q) is like a Borel subalgebra

of uq(sl2). More precisely, with the decomposition, Tn(q) ∼= B(V )#kΓ as at the

beginning of Chapter 4,B(V ) ∼= u+q (sl2) ([6, Theorem 4.3]).

Definition 6.0.1. Let n ≥ 3 be an odd integer and let q ∈ k be a primitive nth root of

unity. The quantum group Uq(sl2), often called the quantized universal enveloping

algebra of sl2, is the Hopf algebra generated by grouplike elements K and K−1, a

(1, K)-skew primitive elementE, and a (K−1, 1)-skew primitive elementF , subject

to the relations

KK−1 = K−1K = 1, KE = q2EK,

KF = q−2FK, EF − FE =
K −K−1

q − q−1
.

The Frobenius-Lusztig kernel uq(sl2) is then the quotient of Uq(sl2) by the (Hopf)

ideal generated by Kn − 1, En, and F n. Note that {EiF jK`}0≤i,j,`<n is a basis of

uq(sl2).
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6.1 The dual and double of uq(sl2)

Using the fact that uq(sl2) is factorizable, [29, Theorem 2.9] gives that the dou-

bleD(uq(sl2)) ∼= uq(sl2)⊗uq(sl2) as an algebra. However, the coproduct becomes

much more complicated. Similarly, as mentioned in Remark 4.2.3, Krop and Rad-

ford provide a presentation of D(uq(sl2)) in [20]. However, the generators of this

presentation also have a complicated coproduct. For the method that we use to ex-

tend actions of a Hopf algebra, it is better to have an uncomplicated coproduct, so

we provide here a different presentation for D(uq(sl2)).

This presentation is computed by first showing that uq(sl2) is dual to a quotient

of the quantized coordinate ring Oq(SL2).

This result is well-known (see [11, III.7.10]), but we include here an explicit

proof for completion, something which is seemingly absent in the literature.

Definition 6.1.1. The quantum group Oq(SL2) is the Hopf algebra generated by

a, b, c, d subject to the relations

ba = qab, ca = qac, db = qbd, dc = qcd, bc = cb,

ad = q−1bc+ 1, da = qbc+ 1,

with coalgebra structure and antipode given by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d,

∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0,

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

One can easily verify that the ideal J generated by an − 1, bn, cn, and dn − 1 is

a Hopf ideal, so we define Oq(SL2) := Oq(SL2)/J.

In Oq(SL2), the generators a and d are invertible. Using this, the relation da =

qbc+1 becomes vacuous. Also, we can use the relation ad = q−1bc+1 to eliminate

the generator a from the algebra presentation of Oq(SL2). If we do so, all other
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relations involving a become vacuous, so we have

Oq(SL2) ∼= k〈b, c, d | bn, cn, dn − 1, bc− cb, db− qbd, dc− qcd〉

as algebras. Thus, the finite set {bicjd`}0≤i,j,`≤n−1 is a basis for Oq(SL2), and

dimk(Oq(SL2)) = n3.

The first step toward showing that Oq(SL2) ∼= uq(sl2)
∗ is exhibiting a duality

between Oq(SL2) and Uq(sl2). This is done in [18, VII.4] and we recall the duality

here. Let V1,1 denote the highest weightUq(sl2)-module with basis v0, v1 determined

by

E · v1 = v0, F · v0 = v1, K · v0 = qv0, K · v1 = q−1v1,

E · v0 = F · v1 = 0.

In other words, if ρ : Uq(sl2) → Endk(V1,1) denotes the representation, then, iden-

tifying Endk(V1,1) with M2(k) on the ordered basis {v0, v1}, we have

ρ(E) =

(
0 1

0 0

)
, ρ(F ) =

(
0 0

1 0

)
, and ρ(K) =

(
q 0

0 q−1

)
.

Now, for any element u ∈ Uq(sl2), define

ρ(u) =

(
A(u) B(u)

C(u) D(u)

)

to get four elements A, B, C, and D of Uq(sl2)
∗.

Theorem 6.1.2 ([18, VII.4.4]). Let φ : Oq(SL2) → Uq(sl2)
∗ be defined by φ(a) =

A, φ(b) = B, φ(c) = C, φ(d) = D. Then φ is a Hopf algebra map, and the bilinear

form 〈u, x〉 = φ(u)(x) realizes a duality between the Hopf algebras Oq(SL2) and

Uq(sl2).

Lemma 6.1.3. For the map φ : Oq(SL2) → Uq(sl2)
∗ given in Theorem 6.1.2, we

have that Im(φ) ⊆ uq(sl2)
∗.

Proof. We only need to show that A, B, C, and D all vanish on the (Hopf) ideal

I of Uq(sl2) generated by K
n − 1, En, and F n, which amounts to showing that
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ρ(En) = ρ(F n) = ρ(Kn − 1) = 0. We have that ρ(En) = ρ(F n) = 0 because

ρ(E) and ρ(F ) each have nilpotency order 2, while n ≥ 3. That ρ(Kn − 1) = 0

follows because q is an nth root of unity.

We now have a Hopf algebra map φ : Oq(SL2) → uq(sl2)
∗. We wish to show

that φ induces an isomorphism of Hopf algebras φ : Oq(SL2) → uq(sl2)
∗. To do

this, we will need the following calculations, which can be verified using the pairing

from Theorem 6.1.2.

Lemma 6.1.4. For i, j nonnegative integers,

〈an, Ei〉 = 〈dn, Ei〉 = δi,0, 〈an, F j〉 = 〈dn, F j〉 = δj,0,

〈bn, Ei〉 = 〈bn, F j〉 = 0.

Proposition 6.1.5. Themap φ induces aHopf algebramap φ : Oq(SL2) → uq(sl2)
∗

determined by φ = φ ◦ π, where π : Oq(SL2) → Oq(SL2) is the usual projection.

Hence, the bilinear form 〈u, x〉 = φ(u)(x) realizes a duality between the Hopf

algebras Oq(SL2) and uq(sl2).

Proof. We need to show that φ vanishes on an − 1, bn, cn, and dn − 1. Note that

(b⊗c)(a⊗a) = q2(a⊗a)(b⊗c), and that q2 is a primitive nth root of unity because n

is odd. Thus, by [28, Corollary 7.2.2],∆(an) = (a⊗a+b⊗c)n = an⊗an+bn⊗cn,
and similarly for∆(bn),∆(cn), and∆(dn). Thus, using Lemma 6.1.4 and the duality

of Theorem 6.1.2, we compute for i, j, and k nonnegative integers,

〈an, EiF jK`〉 = 〈an, EiF j〉〈an, K`〉+ 〈bn, EiF j〉〈cn, K`〉 = 〈an, EiF j〉

= 〈an, Ei〉〈an, F j〉+ 〈bn, Ei〉〈cn, F j〉 = δi,0δj,0,

〈bn, EiF jK`〉 = 〈an, EiF j〉〈bn, K`〉+ 〈bn, EiF j〉〈dn, K`〉 = 〈bn, EiF j〉 = 0,

〈cn, EiF jK`〉 = 〈cn, EiF j〉〈an, K`〉+ 〈dn, EiF j〉〈cn, K`〉 = 〈cn, EiF j〉 = 0,

〈dn, EiF jK`〉 = 〈cn, EiF j〉〈bn, K`〉+ 〈dn, EiF j〉〈dn, K`〉 = 〈dn, EiF j〉

= 〈cn, Ei〉〈bn, F j〉+ 〈dn, Ei〉〈dn, F j〉 = δi,0δj,0.

We have thus shown that φ vanishes on bn and cn. Now, since ε is an algebra map,

we have that 〈1, EiF jK`〉 = ε(EiF jK`) = ε(E)iε(F )jε(K)` = δi,0δj,0. Thus, φ

also vanishes on an − 1 and dn − 1.
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At this point, we want to establish that the duality just formed betweenOq(SL2)

and uq(sl2) is a perfect duality. We do this by showing that φ is surjective, for which

we will need the following technical computation.

For the basis {EiF jK`} of uq(sl2), we let {pi,j,`} denote the dual basis of

uq(sl2)
∗. Because Kn = 1 in uq(sl2), we will take the last argument of these basis

elements modulo n.

Now via elementary computations we have in terms of the dual basis {pi,j,`} of
uq(sl2)

∗, that

BsCtDr = [s]q! [t]q!
n−1∑
`=0

q−`(r+s−t)−rsps,t,`. (6.1)

For details of this computation, see A.2.1 in Appendix A.

Proposition 6.1.6. The map φ : Oq(SL2) → uq(sl2)
∗ is surjective, and hence is an

isomorphism. Thus, the bilinear form 〈u, x〉 = φ(u)(x) realizes a perfect duality

between Oq(SL2) and uq(sl2). Therefore, uq(sl2)
∗ ∼= Oq(SL2).

Proof. We show that each basis element pi,j,k of uq(sl2) is in the image of φ. In

particular, for fixed integers 0 ≤ s, t, k ≤ n− 1, we show that

n [s]q! [t]q! ps,t,k =
n−1∑
r=0

q(k+s)r+(s−t)kBsCtDr.

We compute via (6.1)

n−1∑
r=0

q(k+s)r+(s−t)kBsCtDr =
n−1∑
r=0

q(k+s)r+(s−t)k [s]q! [t]q!
n−1∑
`=0

q−`(r+s−t)−rsps,t,`

= [s]q! [t]q!
n−1∑
`=0

(
n−1∑
r=0

q(k−`)(r+s−t)

)
ps,t,`.

If k 6= `, then since qk−` is an nth root of unity not equal to 1,

n−1∑
r=0

q(k−`)(r+s−t) = 0.

On the other hand, if k = `, then
∑n−1

r=0 q
(k−`)(r+s−t) = n.
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In the presentation provided byKrop and Radford in [20], we have v1 = E, v2 =

K−1F, d =
∑n−1

i=0 q
−iεKi , b = qξ1d, and c = q2ξ2d

−1. (See Remark 4.2.3.) Now

that we have established that uq(sl2)
∗ ∼= Oq(SL2), we can prove the following.

Theorem 6.1.7. The Drinfel’d double D(uq(sl2)) of uq(sl2) is generated as an al-

gebra by a, b, c, d, E, F, K subject to the relations

an = dn = Kn = 1, bn = cn = En = F n = 0,

ba = qab, db = qbd, ca = qac, dc = qcd, bc = cb, ad = q−1bc+ 1,

KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1
,

Ka = aK, Kb = q−2bK, Kc = q2cK, Kd = dK,

Ea = q−1aE − q−1c, Eb = q−1bE + q−1aK − q−1d,

Ec = qcE, Ed = qdE + qcK,

Fa = q−1aF + b, F b = qbF,

Fc = q−1cF = aK−1 + d, Fd = qdF − q2bK−1

The comultiplication and counit are given by

∆(a) = a⊗ a+ c⊗ b, ∆(b) = b⊗ a+ d⊗ b,

∆(c) = a⊗ c+ c⊗ d, ∆(d) = b⊗ c+ d⊗ d,

∆(K) = K ⊗K, ∆(E) = K ⊗ E + E ⊗ 1, ∆(F ) = 1⊗ F + F ⊗K−1,

ε(a) = ε(d) = ε(K) = 1, ε(b) = ε(c) = ε(E) = ε(F ) = 0.

The antipode is given by

S(a) = d, S(b) = −q−1b, S(c) = −qc, S(d) = a,

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF.

As pointed out above, the generator a (or d) could be eliminated from the pre-

sentation, using the relation ad = q−1bc + 1 and the fact that a and d are invert-

ible. While doing so would significantly lower the number of relations, it would

complicate both the relations between generators of uq(sl2) and Oq(SL2) and the

comultiplication of the latter.
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Proof of Theorem 6.1.7. The comultiplication and antipode and most of the rela-

tions of the generators follow from (2.15) and Lemma 2.3.2. For the relations in-

volving elements of both uq(sl2) and its dual, we use (2.17) and the perfect duality

established in Proposition 6.1.6. Note that

∆2(a) = a⊗ a⊗ a+ a⊗ b⊗ c+ b⊗ c⊗ a+ b⊗ d⊗ c,

∆2(E) = 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K,

∆2(F ) = K−1 ⊗K−1 ⊗ F +K−1 ⊗ F ⊗ 1 + F ⊗ 1⊗ 1,

S−1(E) = −K−1E, S−1(F ) = −FK.

For example, we have

Ea = 〈a(1), S−1(E(3))〉〈a(3), E(1)〉a(2)E(2)

= 〈a,−K−1E〉〈a, 1〉a1 + 〈a,K−1〉〈a, 1〉aE + 〈a,K−1〉〈a,E〉aK

+ 〈a,−K−1E〉〈c, 1〉b1 + 〈a,K−1〉〈c, 1〉bE + 〈a,K−1〉〈c, E〉bK

+ 〈b,−K−1E〉〈a, 1〉c1 + 〈b,K−1〉〈a, 1〉cE + 〈b,K−1〉〈a,E〉cK

+ 〈b,−K−1E〉〈c, 1〉d1 + 〈b,K−1〉〈c, 1〉dE + 〈b,K−1〉〈c, E〉dK

= q−1aE − q−1c.

Fa = 〈a,−FK〉〈a,K−1〉aK−1 + 〈a, 1〉〈a,K−1〉aF + 〈a, 1〉〈a, F 〉a1

+ 〈a,−FK〉〈c,K−1〉bK−1 + 〈a, 1〉〈c,K−1〉bF + 〈a, 1〉〈c, F 〉b1

+ 〈b,−FK〉〈a,K−1〉cK−1 + 〈b, 1〉〈a,K−1〉cF + 〈b, 1〉〈a, F 〉c1

+ 〈b,−FK〉〈c,K−1〉dK−1 + 〈b, 1〉〈c,K−1〉dF + 〈b, 1〉〈c, F 〉d1

= q−1aF + b.

The rest of the relations follow similarly and are in A.2.2 in Appendix A.

6.2 The possible structures of A(uq(sl2)) and exten-

sions to D(uq(sl2))

To help us determine when an action of uq(sl2) is inner-faithful, we have the

following standard fact.
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Proposition 6.2.1. Let 0 ≤ b < n. Then

PKb,1(uq(sl2)) =

k(K−1 − 1) + kF + kEK−1, if b = n− 1

k(Kb − 1), otherwise.

The following is a direct result of Corollary 2.5.3 and Proposition 6.2.1.

Corollary 6.2.2. A uq(sl2)-module algebra is inner-faithful if and only ifG(H) acts

faithfully, and if no nonzero element of k(K−1−1)+kF+kEK−1 acts by zero.

We now consider uq(sl2)-module algebra structures on A(uq(sl2)) as in Nota-

tion 1.3.2. By definition, A = k[u]/(un− 1). To see the possible module structures

ofA, we use the following result of Montgomery and Schneider. The original state-

ment was for q a primitive 2nth root of unity. However, their proof is also valid for

the case we are interested in, since it only relies on the fact that q2 is a primitive

nth root of unity so that H1 = k〈K−1, F 〉 ∼= Tn(q
−2) and H2 = k〈K−1, EK−1〉 ∼=

Tn(q
2).

Proposition 6.2.3 ([24, Corollary 3.2]). Let A be an n-dimensional k-algebra with
no non-zero nilpotent elements, and assume thatA is a uq(sl2)-module algebra such

that F · A 6= 0 (or that E · A 6= 0). Then there exists u ∈ A and β, γ, δ ∈ k, all
nonzero, such that

(a) A = k(u), un = β, and K · u = q2u;

(b) F · u = γ1 and E · u = δu2;

(c) γδ = −q.

Moreover u is unique up to a scalar multiple.

We point out here that by Corollary 6.2.2, the assumption that F · A 6= 0 or

E · A 6= 0 is necessary for the action to be inner-faithful, and that the actions on A

described are in fact inner-faithful, because no nonzero element of k(1 − K−1) +

kF + kEK−1 acts by zero. Therefore, by scaling u, Proposition 6.2.3 classifies the

uq(sl2)-module algebra structures on A(uq(sl2)) as in Notation 1.3.2. It turns out
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that the action of uq(sl2) on A extends to an action of D(uq(sl2)) in two distinct

ways.

Theorem6.2.4. Fix a uq(sl2)-module algebra structure on the algebraA(uq(sl2)) =

k[u]/(un − 1) as in Notation 1.3.2 by

K · u = q2u, F · u = γ1, E · u = δu2,

with q a primitive nth root of unity, and γδ = −q. Recall the presentation of

D(uq(sl2)) as in Theorem 6.1.7. If the action of uq(sl2) on A extends to an action

ofD(uq(sl2)) so thatA is aD(uq(sl2))-module algebra, then the action is specified

by one of the following two conditions:

(i) a · u = qu, b · u = γ(q − q−1)1, c · u = 0, d · u = q−1u, or

(ii) a · u = q−1u, b · u = 0, c · u = γ−1(q − q−1)u2, d · u = qu.

Conversely, by defining the action of a, b, c, and d by either (i) or (ii), an action of

uq(sl2) on A extends to an action of D(uq(sl2)).

Proof. Since K · u = q2u, we use notation similar to that in Remark 2.5.7 :

Ai = {a ∈ A | K · a = q2ia} = kui.

First, sinceKa = aK, we haveK · a · u = a ·K · u = q2a · u, so a · u ∈ A1 = ku.
Similarly, since Kb = q−2bK, Kc = q2cK, and Kd = dK, we get that b · u ∈ A0,

c · u ∈ A2, and d · u ∈ A1. Therefore, there exists θa, θb, θc, θd ∈ k such that

a · u = θau, b · u = θb1, c · u = θcu
2, and d · u = θdu.

Now, note that c · 1 = ε(c) = 0. Thus, since bc = cb and ad = q−1bc + 1, we

compute that

θaθdu = (ad) · u = q−1c · (b · u) + 1 · u = q−1θbc · 1 + u = u.

Therefore, θd = θ−1
a . Using the fact that an = 1, for some integer i, we have θa = qi

and θd = q−i. Note that b · u2 = (b · u)(a · u) + (d · u)(b · u) = θbθau + θdθbu =

θb(θa + θd)u. Thus,

θcθb(θa + θd)u = (bc) · u = (cb) · u = θbc · 1 = 0.
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Since θa = qi is an odd root of unity, θa 6= −θd(= −θ−1
a ). Thus, we must have

θb = 0 or θc = 0. (6.2)

We also compute, using a · 1 = ε(a) = 1 and d · 1 = ε(d) = 1, that

θaγ1 = (Fa) · u = q−1(aF ) · u+ b · u = (q−1γ + θb)1 and

θdγ1 = (Fd) · u = q(dF ) · u− q2(bK−1) · u = (qγ − θb)1,

which shows that

θa = q−1 + θbγ
−1 and θd = q − θbγ

−1. (6.3)

Therefore,

1 = θaθd = (q−1 + θbγ
−1)(q − θbγ

−1) = 1 + (q − q−1)θbγ
−1 − θ2bγ

−2,

implying that 0 = θbγ
−1(q − q−1 − θbγ

−1). Since γ 6= 0, we have

θb = 0 or θb = γ(q − q−1).

The former will correspond to (ii) and the latter to (i). In case (i), by (6.2), θc = 0,

and by (6.3), θa = q and θd = q−1. On the other hand, in case (ii), by (6.3),

θa = q−1 and θd = q. Also, using the fact that γδ = −q, Ea = q−1aE − q−1c, and

a · u2 = (a · u)2 + (c · u)(b · u) = q−2u2, we have

−γ−1u2 = q−1δu2 = (Ea) · u = q−1(aE) · u− q−1c · u

= q−1δa · u2 − q−1θcu
2 = −(q−2γ−1 + q−1θc)u

2.

Therefore, γ−1 = q−2γ−1 + q−1θc, which implies θc = γ−1(q − q−1). Therefore,

we have shown that an action of D(uq(sl2)) is specified by either (i) or (ii).

It is straightforward to check the converse: that A is aD(uq(sl2))-module alge-

bra with either of these structures.
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CHAPTER 7

FUTURE DIRECTIONS

We wish to briefly mention some future directions for further research. As we

have seen, there are multiple ways to generalize Taft algebras, but we have only

examined a couple of generalizations, namely quantum linear spaces of rank 1 over

cyclic groups, Hn(ζ,m, t) [Chapter 4], and generalized Taft algebras, T (n,N, 1)

[Chapter 5]. We could also consider quantum linear spaces of higher rank and/or

over abelian, non-cyclic groups. Or more generally, we could consider bosoniza-

tions of Nichols algebras (of Cartan type) in the Yetter-Drinfeld category Γ
ΓYD for

some abelian group Γ. We saw that the answer to Question 1.3.3(c) for the Hopf

algebras Hn(ζ,m, 1) is 1, i.e. that there is a unique way to extend an action of

Hn(ζ,m, 1) on A := A(Hn(ζ,m, t)) to an action of D(Hn(ζ,m, 1)) on A [Coro-

larry 4.4.3]. This generalizes Theorem 3.1.2, that there is a unique way to extend

the action of Tn(q) on A(Tn(q)) to an action ofD(Tn(q)) on A(Tn(q)). One way of

characterizing the condition t = 1 is that χ generates Γ̂ in the quantum linear space

R(g;χ) ∈ Γ
ΓYD. (See Sections 2.4 and 4.1 on quantum linear spaces.) This leads

to the following:

Question 7.0.1. What can be said about Question 1.3.3 for bosonizations of quan-

tum linear spaces of higher rank and/or over abelian non-cyclic groups? In particu-

lar:
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• Is there a unique extension of an action ofH := kΓ#R(g1, . . . , gθ;χ1, . . . χθ)

on A(H) to an action of D(H) on A(H) if and only if Γ̂ is generated by

χ1, . . . , χθ?

• If so, is there a condition for bosonizations of braided vector spaces of differ-

ent Cartan types (i.e. other than Aθ
1, which give quantum linear spaces) that

generalizes the condition that χ1, . . . , χθ generates Γ̂, and which guarantees

that there is a unique extension ofH onA(H) to an action ofD(H) onA(H)?

Another future direction comes from the results about actions of uq(sl2). Recall

that Tn(q) can be considered as a Borel subalgebra of uq(sl2): with the decomposi-

tion, Tn(q) ∼= B(V )#kΓ as at the beginning of Chapter 4, we haveB(V ) ∼= u+q (sl2)

([6, Theorem 4.3]). Perhaps unsurprisingly, while Tn(q) had a unique extension of

its action on A(Tn(q)) to its double, uq(sl2) has exactly two extensions of its action

on A(uq(sl2)) to its double. That is, the answer to Question 1.3.3(c) for uq(sl2) is

precisely twice the answer for Tn(q). We are led to the following.

Question 7.0.2. For a semisimple finite-dimensional Lie algebra g, is the answer to

Question 1.3.3(c) for uq(g) twice what the answer would be for a Borel subalgebra?

Depending on the answers to Questions 7.0.1 and 7.0.2, it is possible that there

are more general things to be said about Question 1.3.3 for pointed Hopf algebras in

general. To gather examples to look for patterns, one could start by considering the

actions of finite-dimensional pointed Hopf algebras presented in work of Etingof

and Walton [15, 16].

Alternatively, one could consider semisimple Hopf algebras. The case of group

algebras is answered in Remark 1.3.4. A good place to begin after that would be

small-dimensional examples, such as the Kac-Paljutkin algebraH8 of dimension 8.

Toward a final future direction, throughout this work, we computed presenta-

tions of duals and doubles of Hopf algebras which may be of independent interest.

The method for computing these presentations makes use of the fact that a pointed

Hopf algebra H is generated by grouplike and skew primitive elements if G(H) is
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abelian [8, Theorem 2], which are precisely the Hopf algebras considered in Ques-

tion 1.3.3. We could use this method to compute nice presentations of duals and

Drinfel’d doubles of more pointed Hopf algebras with an abelian group of group-

like elements.
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APPENDIXA

EXTRACALCULATIONS

There are some calculations that we would like to include that would be too

unwieldy in their proper place in the manuscript, so we include the calculations

here and refer to them in the text.

A.1 Calculations from Chapter 5

Some of the relations of D(T (n,N, 1)) are long to compute and were skipped

in the text. They are included here for completeness.

A.1.1 Remainder of the proof of Proposition 5.2.7

We would like to show that the relations

gG = Gg and xG− ζGx = (ζN − 1)

(̃
0

1

)
q

XN−1G
(
G

n
N − qg

)
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hold in D(T (n,N, 1)). Recall that in Kζ(n,N) and T (n,N, 1), we have

∆2(G) =G⊗G⊗G+ (ζN − 1)
N−1∑
i=1

(̃
0

i

)
q

G⊗XN−iG1+ in
N ⊗X iG

+ (ζN − 1)
N−1∑
i=1

i∑
j=0

(̃
0

i

)
q

(
i

j

)
q

XN−iG1+ in
N ⊗X i−jG1+ jn

N ⊗XjG

+ (ζN − 1)2
N−1∑
i=1

N−1∑
j=i+1

(̃
0

i

)
q

(̃
i

j

)
q

XN−iG1+ in
N ⊗XN+i−jG1+ jn

N ⊗XjG,

∆2(g) = g ⊗ g ⊗ g, ∆2(x) = g ⊗ g ⊗ x+ g ⊗ x⊗ 1 + x⊗ 1⊗ 1,

S−1(g) = g−1, S−1(x) = −xg−1.

Thus, using (2.17) and (5.6), we have the following computations:

gG = 〈G, g−1〉〈G, g〉Gg + (ζN − 1)
N−1∑
i=1

(̃
0

i

)
q

〈G, g−1〉〈X iG, g〉XN−iG1+ in
N Gg

+ (ζN − 1)
N−1∑
i=1

i∑
j=0

(̃
0

i

)
q

(
i

j

)
q

〈XN−iG1+ in
N , g−1〉〈Xj, g〉X i−jG1+ jn

N Gg

+ (ζN − 1)2
N−1∑
i=1

N−1∑
j=i+1

(̃
0

i

)
q

(̃
i

j

)
q

〈XN−iG1+ in
N , g−1〉〈XjG, g〉

·XN+i−jG1+ jn
N g

= ζ−1ζGg

= Gg.
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xG = 〈G,−xg−1〉〈G, g〉Gg

+ (ζN − 1)
N−1∑
i=1

(̃
0

i

)
q

〈G,−xg−1〉〈X iG, g〉XN−iG1+ in
N Gg

+ (ζN − 1)
N−1∑
i=1

i∑
j=0

(̃
0

i

)
q

(
i

j

)
q

〈XN−iG1+ in
N ,−xg−1〉〈Xj, g〉X i−jG1+ jn

N Gg

+ (ζN − 1)2
N−1∑
i=1

N−1∑
j=i+1

(̃
0

i

)
q

(̃
i

j

)
q

〈XN−iG1+ in
N ,−xg−1〉〈XjG, g〉

·XN+i−jG1+ jn
N g

+ 〈G, 1〉〈G, g〉Gx

+ (ζN − 1)
N−1∑
i=1

(̃
0

i

)
q

〈G, 1〉〈X iG, g〉XN−iG1+ in
N Gx

+ (ζN − 1)
N−1∑
i=1

i∑
j=0

(̃
0

i

)
q

(
i

j

)
q

〈XN−iG1+ in
N , 1〉〈Xj, g〉X i−jG1+ jn

N Gx

+ (ζN − 1)2
N−1∑
i=1

N−1∑
j=i+1

(̃
0

i

)
q

(̃
i

j

)
q

〈XN−iG1+ in
N , 1〉〈XjG, g〉XN+i−jG1+ jn

N x

+ 〈G, 1〉〈G, x〉G

+ (ζN − 1)
N−1∑
i=1

(̃
0

i

)
q

〈G, 1〉〈X iG, x〉XN−iG1+ in
N G

+ (ζN − 1)
N−1∑
i=1

i∑
j=0

(̃
0

i

)
q

(
i

j

)
q

〈XN−iG1+ in
N , 1〉〈Xj, x〉X i−jG1+ jn

N G

+ (ζN − 1)2
N−1∑
i=1

N−1∑
j=i+1

(̃
0

i

)
q

(̃
i

j

)
q

〈XN−iG1+ in
N , 1〉〈XjG, x〉XN+i−jG1+ jn

N

= −(ζN − 1)
˜( 0

N − 1

)
q

qXN−1Gg + ζGx + (ζN − 1)

(̃
0

1

)
q

XN−1G1+ n
N

= ζGx+ (ζN − 1)

(̃
0

1

)
q

XN−1G(G
n
N − qg).
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A.2 Calculations from Chapter 6

Two long computations have been omitted from Chapter 6, the proof of (6.1),

which is instrumental in proving that uq(sl2)
∗ ∼= Oq(SL2), and the computation of

some of the relations ofD(uq(sl2)) from Theorem 6.1.7. These are not particularly

complicated or long. There are just many of them.

A.2.1 Proof of (6.1)

Recall that the set {EiF jK`}0≤i,j,`≤n−1 is a basis for uq(sl2) and that we denote

the dual basis for uq(sl2)
∗ by {pi,j,`}0≤i,j,`≤n−1. BecauseK

n = 1 in uq(sl2), we will

consider the last argument of these basis elements modulo n.

PropositionA.2.1. In uq(sl2)
∗, multiplication of the dual basis elements is given by

the following:

pa,b,c ∗ pA,B,C =


α pA+a,B+b,C−a

if A+ a < n, B + b < n,

and C − a ≡ c+B mod n

0 otherwise,

where α = q−2aB
(
A+a
a

)
q2

(
B+b
B

)
q2

Proof. We have the following preliminary calculations. First, by (2.9),

∆(Ei) = (1⊗ E + E ⊗K)i =
i∑

s=0

(
i

s

)
q2
(1⊗ E)i−s(E ⊗K)s

=
i∑

s=0

(
i

s

)
q2
Es ⊗ Ei−sKs;

∆(F j) = (F ⊗ 1 +K−1 ⊗ F )j =

j∑
t=0

(
j

t

)
q2
(F ⊗ 1)j−t(K−1 ⊗ F )t

=

j∑
t=0

(
j

t

)
q2
F j−tK−t ⊗ F t.
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Finally, ∆(K`) = K` ⊗K`. Therefore,

∆(EiF jK`)

=

(
i∑

s=0

(
i

s

)
q2
Es ⊗ Ei−sKs

)(
j∑

t=0

(
j

t

)
q2
F j−tK−t ⊗ F t

)(
K` ⊗K`

)
=

i∑
s=0

j∑
t=0

(
i

s

)
q2

(
j

t

)
q2
EsF j−tK`−t ⊗ Ei−sKsF tK`

=
i∑

s=0

j∑
t=0

q−2st

(
i

s

)
q2

(
j

t

)
q2
EsF j−tK`−t ⊗ Ei−sF tK`+s.

Since (pa,b,c ⊗ pA,B,C)(E
sF j−tK`−t ⊗Ei−sF tK`+s) is nonzero only if a = s, b =

j − t, A = i − s, B = t, c ≡ ` − t mod n and C ≡ ` + s mod n, the only

possible nonzero term of (pa,b,c∗pA,B,C)(E
iF jK`), when expressed using the above

sum, is the term where s = a and t = B. The above equations show that this

term is only actually nonzero if we also have that B + b = j, A + a = i, and

c+B ≡ C − a (mod n) .

The products of certain basis elements will be needed later, so we list them here.

Corollary A.2.2. For integers 0 ≤ x ≤ n − 2, 0 ≤ s, t ≤ n − 1, and arbitrary

integers ` andm,

px,0,` ∗ p1,0,m =


(
x+1
1

)
q2
px+1,0,`, ifm− x ≡ ` (mod n)

0, otherwise

, (A.1)

p0,1,m ∗ p0,x,` =


(
x+1
1

)
q2
p0,x+1,`, if ` ≡ m+ x (mod n)

0, otherwise

, (A.2)

p0,0,` ∗ p0,0,m = δ`,mp0,0,`, (A.3)

ps,0,m ∗ p0,t,` =

q−2stps,t,m+t, if `− s ≡ m+ t (mod n)

0, otherwise

, (A.4)

ps,t,m ∗ p0,0,` =

ps,t,m, if `− s ≡ m (mod n)

0, otherwise

(A.5)
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Proof. This follows directly from Proposition A.2.1.

LemmaA.2.3. In terms of the basis {pi,j,`}0≤i,j,`≤n−1 of uq(sl2),

B =
n−1∑
`=0

q−`p1,0,`, C =
n−1∑
`=0

q`p0,1,`, and D =
n−1∑
`=0

q−`p0,0,`.

Proof. Using Theorem 6.1.2, we compute

B(EiF jK`) = 〈b, EiF jK`〉 = 〈a,EiF j〉〈b,K`〉+ 〈b, EiF j〉〈d,K`〉

= q−`〈b, EiF j〉 = q−`
[
〈a,Ei〉〈b, F j〉+ 〈b, Ei〉〈d, F j〉

]
= q−` [δi,1δj,0]

C(EiF jK`) = 〈c, EiF jK`〉 = 〈c, EiF j〉〈a,K`〉+ 〈d,EiF j〉〈c,K`〉

= q`〈c, EiF j〉 = q`
[
〈c, Ei〉〈a, F j〉+ 〈d,Ei〉〈c, F j〉

]
= q` [δi,0δj,1]

D(EiF jK`) = 〈d,EiF jK`〉 = 〈c, EiF j〉〈b,K`〉+ 〈d,EiF j〉〈d,K`〉

= q−`〈d,EiF j〉 = q−`
[
〈c, Ei〉〈b, F j〉+ 〈d,Ei〉〈d, F j〉

]
= q−` [δi,0δj,0]

LemmaA.2.4. In terms of the basis {pi,j,`}0≤i,j,`≤n−1 of uq(sl2), for

1 ≤ s, t, j ≤ n− 1.

Bs = [s]q!
n−1∑
`=0

q−s`ps,0,`, Ct = [t]q!
n−1∑
`=0

qt`p0,t,`, and Dr =
n−1∑
`=0

q−r`p0,0,`.

Proof. We proceed by induction, appealing to LemmaA.2.3 for the base case. The

cases when s, t, or j = 0 are trivial.

Bs = Bs−1 ∗B = [s− 1]q!

(
n−1∑
`=0

q−(s−1)`ps−1,0,`

)(
n−1∑
m=0

q−mp1,0,m

)
(A.1)
= [s− 1]q!

(
s

1

)
q2

n−1∑
`=0

q−(s−1)`−(`+s−1)ps,0,`

(2.11)
= [s− 1]q! q

s−1

[
s

1

]
q

n−1∑
`=0

q−s`−(s−1)ps,0,` = [s]q!
n−1∑
`=0

q−s`ps,0,`.
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Ct = C ∗ Ct−1 = [t− 1]q!

(
n−1∑
m=0

qmp0,1,m

)(
n−1∑
`=0

q(t−1)`p0,t−1,`

)
(A.2)
= [t− 1]q!

(
t

1

)
q2

n−1∑
`=0

q(t−1)`+`−t+1p0,t,`

(2.11)
= [t− 1]q! q

t−1

[
t

1

]
q

n−1∑
`=0

qt`−(t−1)p0,t,` = [t]q!
n−1∑
`=0

qt`p0,t,`.

Dr = Dr−1 ∗D =

(
n−1∑
`=0

q−(r−1)`p0,0,`

)(
n−1∑
m=0

q−mp0,0,m

)
(A.3)
=

n−1∑
`=0

q−r`p0,0,`.

Proposition A.2.5.

BsCtDr = [s]q! [t]q!
n−1∑
i=0

q−i(r+s−t)−rsps,t,i

Proof. We begin by computing BsCt. By Lemma A.2.4,

BsCt = [s]q! [t]q!

(
n−1∑
i=0

q−sips,0,i

)(
n−1∑
`=0

qt`p0,t,`

)
(A.4)
= [s]q! [t]q!

n−1∑
i=0

q−2st−si+t(i+s+t)ps,t,i+t

= [s]q! [t]q!
n−1+t∑
i=t

q−2st−s(i−t)+t(i+s)ps,t,i

= [s]q! [t]q!
n−1∑
i=0

qi(t−s)ps,t,i.

Thus, again using Lemma A.2.4,

BsCtDr = [s]q! [t]q!

(
n−1∑
i=0

qi(t−s)ps,t,i

)(
n−1∑
`=0

q−r`p0,0,`

)

= [s]q! [t]q!
n−1∑
i=0

qi(t−s)−r(i+s)ps,t,i (by Equation A.5)

= [s]q! [t]q!
n−1∑
i=0

q−i(r+s−t)−rsps,t,i.
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A.2.2 Remainder of the proof of Theorem 6.1.7

We would like to show the relations of D(uq(sl2)) involving elements of both

uq(sl2) and its dual. We use (2.17) and the perfect duality established in Proposi-

tion 6.1.6. Note that

∆2(a) = a⊗ a⊗ a+ a⊗ b⊗ c+ b⊗ c⊗ a+ b⊗ d⊗ c,

∆2(b) = a⊗ a⊗ b+ a⊗ b⊗ d+ b⊗ c⊗ b+ b⊗ d⊗ d,

∆2(c) = c⊗ a⊗ a+ c⊗ b⊗ c+ d⊗ c⊗ a+ d⊗ d⊗ c,

∆2(d) = c⊗ a⊗ b+ c⊗ b⊗ d+ d⊗ c⊗ b+ d⊗ d⊗ d,

∆2(E) = 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K, ∆2(K) = K ⊗K ⊗K,

∆2(F ) = K−1 ⊗K−1 ⊗ F +K−1 ⊗ F ⊗ 1 + F ⊗ 1⊗ 1,

S−1(E) = −K−1E, S−1(F ) = −FK.

Thus, we compute:

Eb = 〈a,−K−1E〉〈b, 1〉a1 + 〈a,K−1〉〈b, 1〉aE + 〈a,K−1〉〈b, E〉aK

+ 〈a,−K−1E〉〈d, 1〉b1 + 〈a,K−1〉〈d, 1〉bE + 〈a,K−1〉〈d,E〉bK

+ 〈b,−K−1E〉〈b, 1〉c1 + 〈b,K−1〉〈b, 1〉cE + 〈b,K−1〉〈b, E〉cK

+ 〈b,−K−1E〉〈d, 1〉d1 + 〈b,K−1〉〈d, 1〉dE + 〈b,K−1〉〈d,E〉dK

= q−1bE + q−1aK − q−1d.

Ec = 〈c,−K−1E〉〈a, 1〉a1 + 〈c,K−1〉〈a, 1〉aE + 〈c,K−1〉〈a,E〉aK

+ 〈c,−K−1E〉〈c, 1〉b1 + 〈c,K−1〉〈c, 1〉bE + 〈c,K−1〉〈c, E〉bK

+ 〈d,−K−1E〉〈a, 1〉c1 + 〈d,K−1〉〈a, 1〉cE + 〈d,K−1〉〈a,E〉cK

+ 〈d,−K−1E〉〈c, 1〉d1 + 〈d,K−1〉〈c, 1〉dE + 〈d,K−1〉〈c, E〉dK

= qcE.



92

Ed = 〈c,−K−1E〉〈b, 1〉a1 + 〈c,K−1〉〈b, 1〉aE + 〈c,K−1〉〈b, E〉aK

+ 〈c,−K−1E〉〈d, 1〉b1 + 〈c,K−1〉〈d, 1〉bE + 〈c,K−1〉〈d,E〉bK

+ 〈d,−K−1E〉〈b, 1〉c1 + 〈d,K−1〉〈b, 1〉cE + 〈d,K−1〉〈b, E〉cK

+ 〈d,−K−1E〉〈d, 1〉d1 + 〈d,K−1〉〈d, 1〉dE + 〈d,K−1〉〈d,E〉dK

= qdE + qcK.

Fb = 〈a,−FK〉〈b,K−1〉aK−1 + 〈a, 1〉〈b,K−1〉aF + 〈a, 1〉〈b, F 〉a1

+ 〈a,−FK〉〈d,K−1〉bK−1 + 〈a, 1〉〈d,K−1〉bF + 〈a, 1〉〈d, F 〉b1

+ 〈b,−FK〉〈b,K−1〉cK−1 + 〈b, 1〉〈b,K−1〉cF + 〈b, 1〉〈b, F 〉c1

+ 〈b,−FK〉〈d,K−1〉dK−1 + 〈b, 1〉〈d,K−1〉dF + 〈b, 1〉〈d, F 〉d1

= qbF.

Fc = 〈c,−FK〉〈a,K−1〉aK−1 + 〈c, 1〉〈a,K−1〉aF + 〈c, 1〉〈a, F 〉a1

+ 〈c,−FK〉〈c,K−1〉bK−1 + 〈c, 1〉〈c,K−1〉bF + 〈c, 1〉〈c, F 〉b1

+ 〈d,−FK〉〈a,K−1〉cK−1 + 〈d, 1〉〈a,K−1〉cF + 〈d, 1〉〈a, F 〉c1

+ 〈d,−FK〉〈c,K−1〉dK−1 + 〈d, 1〉〈c,K−1〉dF + 〈d, 1〉〈c, F 〉d1

= q−1cF − aK−1 + d.

Fd = 〈c,−FK〉〈b,K−1〉aK−1 + 〈c, 1〉〈b,K−1〉aF + 〈c, 1〉〈b, F 〉a1

+ 〈c,−FK〉〈d,K−1〉bK−1 + 〈c, 1〉〈d,K−1〉bF + 〈c, 1〉〈d, F 〉b1

+ 〈d,−FK〉〈b,K−1〉cK−1 + 〈d, 1〉〈b,K−1〉cF + 〈d, 1〉〈b, F 〉c1

+ 〈d,−FK〉〈d,K−1〉dK−1 + 〈d, 1〉〈d,K−1〉dF + 〈d, 1〉〈d, F 〉d1

= qdF − q2bK−1.

Ka = 〈a,K−1〉〈a,K〉aK + 〈a,K−1〉〈c,K〉bK

+ 〈b,K−1〉〈a,K〉cK + 〈b,K−1〉〈c,K〉dK = aK.

Kb = 〈a,K−1〉〈b,K〉aK + 〈a,K−1〉〈d,K〉bK

+ 〈b,K−1〉〈b,K〉cK + 〈b,K−1〉〈d,K〉dK = q−2bK.
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Kc = 〈c,K−1〉〈a,K〉aK + 〈c,K−1〉〈c,K〉bK

+ 〈d,K−1〉〈a,K〉cK + 〈d,K−1〉〈c,K〉dK = q2cK.

Kd = 〈c,K−1〉〈b,K〉aK + 〈c,K−1〉〈d,K〉bK

+ 〈d,K−1〉〈b,K〉cK + 〈d,K−1〉〈d,K〉dK = dK.
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A◦, 16

A#H , 24

Ai, 34

algebra, 23

action of H on an, 24

inner-faithful, 32

associative, 13

generalized Taft, 41, 54

group, 3

H-module, 24

Hopf, 18, 26

smash product, 24

Sweedler, 20, 36

Taft, 6, 19, 35

universal enveloping, 3

antipode, 18

B(V ), 31

B◦, 18

Bcop, 18

bi-ideal, 18

bialgebra, 18, 26

coradically graded, 20

lifting of a, 20

dual, 18

filtered, 20

graded, 20

pointed, 20

biproduct, 27

Bop, 18

Bop cop, 18

bosonization, 27



95

braided vector space, 31

Cartan type, 32

diagonal type, 31

C0, 15

cA,B, 26

C\H , 24

Cn(k), 16
coalgebra, 23

coaction of H on a, 24

coassociative, 13

cocommutative, 16

comatrix, 16

coopposite, 16

coradical of a, 15

coradically graded, 16

filtered, 15

graded, 16

H-comodule, 24

pointed, 15

simple, 15

smash coproduct, 24

tensor product, 16

coideal, 15

comodule, 17

comultiplication, 14

convolution, 18

coproduct, 14

counit, 14

∆, 13

D(H), 29

Drinfel’d double, 29

duality, 22

perfect, 22

ε, 14

filtration

bialgebra, 20

coalgebra, 15

coradical, 15

Hopf algebra, 20

G(C), 15

generalized Taft algebra, 41, 54

gr(B), 20

gr(C), 16

grading

bialgebra, 20

coalgebra, 16

Hopf algebra, 20

grouplike, 4, 15

H-comodule coalgebra, 24

H-module algebra, 24

inner-faithful, 32

H◦, 19

Hcop, 19

Hn(ζ,m, t), 39

H̃n(ζ,m, t), 47

homomorphism

bialgebra, 18

coalgebra, 15

Hop, 19
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Hop cop, 19

Hopf algebra, 18, 26

braided, 26

coradically graded, 20

lifting of a, 20, 28

filtered, 20

generalized Taft, 41, 54

graded, 20

pointed, 20

diagram of a, 28

rank of a, 28

quasitriangular, 28

Sweedler, 20, 36

Taft, 6, 19, 35

k-algebra, 13
k-bialgebra, 18
k-coalgebra, 13
k-Vect, 23
kG, 3, 19
Kζ(n,N), 56

AM, 17

MA, 17

CM, 17

MC , 17

HM, 23

algebra in, 24

HM, 24

coalgebra in, 24

Mn(k), 16
module, 16

H-Hopf, 25

inner-faithful H , 32

Yetter-Drinfel’d, 25

monoidal category, 23

algebra in a, 23

braided, 26

bialgebra in a, 26

Hopf algebra in a, 26

coalgebra in a, 23

comonoid in a, 23

monoid in a, 23

rigid, 23

Nichols algebra, 31

Cartan type, 32

rank of a, 31

Oq(SL2), 68

Oq(SL2), 68

Pg,h(C), 15

product

convolution, 18

quantum binomial coefficients, 21

quantum linear space, 32

quantum Yang-Baxter equation, 5

ρ, 17

R((g1, . . . , gθ;χ1, . . . , χθ), 39

S, 18

S◦, 19

Set, 23
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skew primitive, 15

smash coproduct, 24

smash product, 24

subcoalgebra, 15

Sweedler Hopf algebra, 20

Sweedler notation, 14

Taft algebra, 6, 19, 35

T (n,N, α), 41, 54

Tn(q), 6, 19, 35

U(g), 3, 19

Uq(sl2), 67

uq(sl2), 67

Γ
ΓYD, 25
H
HYD, 25

Hopf algebra in, 26

HYDH , 28

Yetter-Drinfel’d module, 25


