
MULTIPLE INTERVAL METHODS FOR ODES WITH AN
OPTIMIZATION CONSTRAINT

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Xinli Yu
May,2020

iii

c�
by

Xinli Yu

May,2020

All Rights Reserved

iv

ABSTRACT

MULTIPLE INTERVAL METHODS FOR ODES WITH AN

OPTIMIZATION CONSTRAINT

Xinli Yu

DOCTOR OF PHILOSOPHY

Temple University, May,2020

Professor Daniel B. Szyld, Chair

We are interested in numerical methods for the optimization constrained

second order ordinary di↵erential equations arising in biofilm modelling. This

class of problems is challenging for several reasons.

One of the reasons is that the underlying solution has a steep slope, making

it di�cult to resolve. We propose a new numerical method with techniques

such as domain decomposition and asynchronous iterations for solving certain

types of ordinary di↵erential equations more e�ciently. In fact, for our class of

problems after applying the techniques of domain decomposition with overlap

we are able to solve the ordinary di↵erential equations with a steep slope

on a larger domain than previously possible. After applying asynchronous

iteration techniques, we are able to solve the problem with less time. We

provide theoretical conditions for the convergence of each of the techniques.

The other reason is that the second order ordinary di↵erential equations are

coupled with an optimization problem, which can be viewed as the constraints.

We propose a numerical method for solving the coupled problem and show that

it converges under certain conditions.

An application of the proposed methods on biofilm modeling is discussed.

The numerical method proposed is adopted to solve the biofilm problem, and

we are able to solve the problem with larger thickness of the biofilm than

possible before as is shown in the numerical experiments.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to give the deepest and most sincere grat-

itude possible to my advisor Prof. Daniel B. Szyld. He has always been very

patient and enthusiastic and I have found his advice and support invaluable.

I feel very fortunate and privileged for being a student of such a great mentor

and mathematician. Without his coaching, this research project would have

never been completed.

I would like to thank Prof. Isaac Klapper. He has been a constant source

of inspiration and guidance. A considerable amount of my knowledge comes

from Prof. Klapper.

I also owe my special thanks to my thesis committee members Prof. Gillian

Queisser, Prof. Bettina Buttaro, and the Director of Graduate Studies, Prof.

David Futer, for their insightful comments and encouragement, but also for

the hard question which incented me to widen my research from various per-

spectives.

I would like to thank Dr. Tianyu Zhang from Center of Biofilm Engineering

at Montana State University for helping me with thesis related knowledge. I

would also like to thank Dr. Cristal Zúñiga from the University of California

San Diego for helping me with data collection and sending me the metabolic

network models for performing flux balanced analysis.

I would also like to thank all the Temple math faculty who I have encoun-

tered in some way or another. My knowledge of mathematics has grown so

much in the past years and I owe that to the professors of the many classes I

have taken as a graduate student at Temple.

I would like to thank my friends, Dr. Fayçal Chaouqui, Dr. Francisco Vil-

larroya for being supportive during my studies.

Finally, I would like to thank my parents and my entire family for their

love and support.

vi

To my parents.

vii

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENT v

DEDICATION vi

LIST OF FIGURES ix

LIST OF TABLES x

1 INTRODUCTION 1
1.1 Motivation of the Problem . 2
1.2 Boundary Value Problems . 2

1.2.1 Numerical Approaches: The Shooting Method 3
1.2.2 Numerical Approaches: The Finite Di↵erence Method . 5

1.3 Boundary Value Problem Coupled with Optimization Problem 7
1.3.1 Nonlinear Programming 8

2 A METHOD FOR THE BOUNDARY VALUE PROBLEM 11
2.1 Problem Formulation . 11
2.2 Equivalent Form of an Homogeneous Problem 12
2.3 Fixed Point Iteration and Proof of Convergence 14
2.4 Implementation Details . 17
2.5 Convergence of the Implementation 20

3 DOMAIN DECOMPOSITION METHODS 28
3.1 Background and Motivation 28
3.2 Domain Decomposition Method Application 30
3.3 Numerical Experiment . 38

4 ASYNCHRONOUS METHODS 42
4.1 Background and Motivation 42

viii

4.1.1 Computational and Mathematical Models 43
4.1.2 Convergence Theory 45
4.1.3 Results on Nonlinear Equations 46

4.2 Application of Asynchronous Methods 46
4.3 Numerical Experiments . 50

5 OPTIMIZATION CONSTRAINED ODE: APPLICATION TO
BIOFILM MODELING 55
5.1 Background and Motivation 55
5.2 Optimization Constrained ODE: Biofilm System Example . . . 57
5.3 Computational Method . 65
5.4 A Second Biofilm Model Example 73
5.5 Conclusion . 79

6 CONCLUSION 81

REFERENCES 83

ix

LIST OF FIGURES

3.1 Representation of the problem considered by H. A. Schwarz.
Available from: URL:Public Domain, https://commons.wikimedia.
org/wiki/File:Ddm_original_logo.png####/media/File:Ddm_

original_logo.png . 29
3.2 Domain Decomposition on the interval [a, b] 31
3.3 Representation of discretization 32
3.4 k = 100 in (3.10) solved without overlap domain decomposition 40
3.5 k = 100 in (3.10) solved with overlap domain decomposition . 41

5.1 Glucose, Oxygen and Lactate concentration density as com-
puted by 100 subdomains . 63

5.2 Glucose, Oxygen and Lactate concentration density without
overlap domain decomposition 64

5.3 Right boundary condition discretization. 70
5.4 Oxygen concentration and S.aureus and S. epidermidis popu-

lation . 77
5.5 Logarithm of oxygen concentration and S.aureus and S. epider-

midis population . 78
5.6 Glucose concentration and S. aureus and S. epidermidis popu-

lation . 79

x

LIST OF TABLES

2.1 Newton-Cotes Formulas . 19

3.1 Comparison of error in results of di↵erent methods 39

4.1 Comparison of error in results of di↵erent methods 51
4.2 Comparison of residual in results of di↵erent methods 51
4.3 Comparison of computational time in results of di↵erent methods 52
4.4 The numerical result of Example 2 54

1

CHAPTER 1

INTRODUCTION

In this thesis, we are interested in numerical methods for the optimiza-

tion constrained second order ordinary di↵erential equations (ODEs) arising

in microbial biofilm modelling [76]. The underlying solution of the ordinary

di↵erential equations arising in microbial biofilm modelling has a steep slope,

making it di�cult to resolve. In this thesis, we propose a new numerical

method with techniques such as domain decomposition and asynchronous it-

erations for solving ordinary di↵erential equations more e�ciently. We provide

theoretical conditions for the convergence of each of the techniques. In biofilm

modelling, the ordinary di↵erential equations are often coupled with an op-

timization problem, we present an iteration algorithm to solve the coupled

problem and show that it converges under certain conditions.

My contribution is to use domain decomposition methods and in particular

the introduction of overlap in the discretization for the ODE. With this novel

idea we are able to solve bigger multi-scale problem with steeper slope than

previously possible. We also provide theoretical developments giving condi-

tions for the convergence of the proposed methods.

To solve the second order ordinary di↵erential equations coupled with an

optimization problem, we use an alternating scheme in which we fix the value

of the constraints, solve the ODE, then use this solution as data for the op-

timization problem, giving rise to new constraints and we repeat the process.

2

Again, we propose conditions under which this process converges.

An application is the kinetic free modeling of the biofilms [76], communities

of microbes living and interacting at close quarters in self-secreted polymeric

matrices [17]. Using the proposed method, we are able to solve the model with

larger thickness of the biofilm than possible before.

1.1 Motivation of the Problem

Microbial biofilms are defined as clusters of microbial cells living in self-

produced extracellular polymeric substances (EPS), which are always attached

to various kinds of surfaces. Models of microbial community dynamics gener-

ally rely on a sub-scale model for microbial metabolisms. In systems such as

distributed multispecies communities like biofilms, where it is not reasonable

to simplify to a small number of limiting substrates, tracking the large number

of active metabolites likely requires measurement or estimation of large num-

bers of kinetic and regulatory parameters. Alternatively, a largely kinetics-free

methodology is proposed in [76] combining cellular level constrained, steady

state metabolic flux analysis with macroscale microbial community models.

The methodology easily allows coupling of macroscale information, including

measurement data, with cell-scale metabolism.

The ODE problem arising in the biofilm modelling is challenging because

the slope of the biofilm modeling solution is sometimes steeper than in other

applications. We review some possible methods for the boundary value prob-

lem in section 1.2.

1.2 Boundary Value Problems

In the field of di↵erential equations, a boundary value problem is a di↵eren-

tial equation together with a set of additional constraints, called the boundary

conditions [74]. A solution to a boundary value problem is a solution to the

3

di↵erential equation which also satisfies the boundary conditions. In the next

two subsections, we review two methods for solving boundary value problems.

1.2.1 Numerical Approaches: The Shooting Method

The shooting method [4, 16, 32, 38, 39, 57, 62] is a method for solving

a boundary value problem by reducing it to the solution of an initial value

problem. Roughly speaking, we “shoot” out trajectories in di↵erent directions

until we find a trajectory that has the desired boundary value. This will be

clarified by the following illustration of the shooting method.

We will first introduce the shooting method for the boundary value problem

as follows, then we will introduce the multiple shooting method.

Let x(z;C) denote the solution of the initial value problem
8
>><

>>:

ẍ(z) = f(x(z))

x(a) = A

ẋ(a) = C

(1.1)

Define the function F (C) as the di↵erence between x(b;C) and the specified

boundary value B with F (C) = x(b;C)� B.

If F has a root C⇤ then the solution x(z;C⇤) of the corresponding initial

value problem is also a solution of the boundary value problem. Conversely, if

the boundary value problem has a solution x(z), then x(z) is also the unique

solution x(z;C⇤) of the initial value problem where C⇤ = ẋ(a), thus C⇤ is a

root of F .

This root can be found by any root-finding method given that certain

method-dependent prerequisites are satisfied. This often will require an initial

value for C. Typically, finding the root analytically is impossible and iterative

methods such as Newton’s method are used for this task.

The application of the shooting method for the numerical solution of bound-

ary value problems su↵ers from several drawbacks.

For a given initial value C the solution of the initial value problem (1.1)

obviously must exist on the interval [a, b] so that we can evaluate the function

4

F whose root is sought.

For highly nonlinear or unstable ODEs, this requires the initial value of C

to be extremely close to an actual but unknown solution. Initial values that are

chosen slightly o↵ the true solution may lead to singularities or breakdown of

the ODE solver method. Choosing such solutions is inevitable in an iterative

root-finding method, however. Even the computation of the initial value to full

machine accuracy does not guarantee that C can be determined accurately [68].

Finite precision numerics may make it impossible to find initial values that

allow for the solution of the ODE on the whole time interval. The nonlinear-

ity of the ODE e↵ectively becomes a nonlinearity of F , and requires a root-

finding technique capable of solving highly nonlinear systems. Such methods

typically converge slower as nonlinearities become more severe. The boundary

value problem solver’s performance su↵ers from this. Even stable and well-

conditioned ODEs may make for unstable and ill-conditioned BVPs. A slight

alteration of the initial value of C may generate an extremely large step in the

ODEs solution and thus in the values of the function F whose root is sought.

Non-analytic root-finding methods can seldom cope with this behavior [35].

This might be improved by the multiple shooting method [15, 16, 44].

The multiple shooting method partitions the interval (a, b) by introducing

additional grid points

za = z
0

< z
1

< · · · < zN = zb

The method starts by providing initial values of y at all grid points zk with

1 k N .

The influence of inaccurate initial data can be made arbitrary small by a

reduction of the interval size. The dillemma is that one does not know the

initial values of y at points zk, 1 k N .

Denote these values by Ck. Let y(k)(z) denote the solution emanating from

the k-th grid point, that is, the solution of the initial value problem

5

8
>>>>>>>><

>>>>>>>>:

ẏ(1)(z) = f(y(1)(z)), y(1)(z
1

) = A

ẏ(2)(z) = f(y(2)(z)), y(2)(z
2

) = C
1

...

ẏ(N)(z) = f(y(N)(z)), y(N)(zN) = CN�1

ẏ(N+1)(z) = f(y(N+1)(z)), y(N+1)(zN + 1) = CN .

All these solutions can be pieced together to form a continuous trajectory

if the values y match at the grid points. Thus, solutions of the boundary value

problem correspond to solutions of the following system of N equations:

8
>>>>>>>><

>>>>>>>>:

ẏ(1)(z
1

; a,A) = C
1

...

ẏ(N�1)(zN�1

; zN�2

, CN�2

) = CN�1

ẏ(N)(zN ; zN�1

, CN�1

) = CN

ẏ(N+1)(b; zN , CN) = B.

The central N � 2 equations are the matching conditions, and the first

and last equations are the conditions y(z
0

) = A and y(zN+1

) = B from the

boundary value problem. The multiple shooting method solves the boundary

value problem by solving this system of equations. Typically, a modification

of Newton’s method is used for the latter task.

However, some of the same drawbacks for single shooting method we dis-

cussed above still exists and it is even more expensive than the single shooting

method.

1.2.2 Numerical Approaches: The Finite Di↵erence Method

In numerical analysis, finite-di↵erence methods (FDMs) are discretizations

used to solve di↵erential equations by approximating them with di↵erence

equations that approximate the derivatives.

FDMs convert a linear ordinary di↵erential equations (ODEs) or nonlinear

partial di↵erential equations (PDEs) into a system of equations that can be

6

solved by matrix algebra techniques. The reduction of the di↵erential equation

to a system of algebraic equations makes the problem of finding the solution

to a given ODE/PDE ideally suited to modern computers [31].

The error in a method’s solution is defined as the di↵erence between the

approximation and the exact analytical solution. The two sources of error

in finite di↵erence methods are round-o↵ error, the loss of precision due to

computer rounding of decimal quantities, and truncation error or discretiza-

tion error, the di↵erence between the exact solution of the original di↵erential

equation and the exact quantity assuming exact arithmetic (that is, assuming

no round-o↵).

The finite di↵erence method relies on discretizing a function on a grid. To

use a finite di↵erence method to approximate the solution to a problem, one

must first discretize the problem’s domain. This is usually done by dividing

the domain into a uniform grid. This means that finite-di↵erence methods

produce sets of discrete numerical approximations to the solution of the ODE

and its derivative, often in a “time-stepping” manner.

An expression of general interest is the local truncation error of a method.

Typically expressed using big-O notation, local truncation error refers to the

error from a single application of a method. That is, it is the quantity f 0(zi)�f 0
i

if f 0(zi) refers to the exact value and f 0
i to the numerical approximation. The

remainder term of a Taylor polynomial is convenient for analyzing the local

truncation error. Using the Lagrange form of the remainder from the Taylor

polynomial for f(z
0

+ h), which is

Rn(z0 + h) =
f (n+1)(⇠)

(n+ 1)!
hn+1,

where z
0

< ⇠ < z
0

+ h,

The dominant term of the local truncation error can be calculated, for

example, again using the forward-di↵erence formula for the first derivative,

knowing that

f(zi) = f(z
0

+ ih),

7

f(z
0

+ ih) = f(z
0

) + f 0(z
0

)ih+
f 00(⇠)

2!
(ih)2,

and with some algebraic manipulation, this leads to

f(z
0

+ ih)� f(z
0

)

ih
= f 0(z

0

) +
f 00(⇠)

2!
ih,

and further noting that the quantity on the left is the approximation from the

finite di↵erence method and that the quantity on the right is the exact quantity

of interest plus a remainder, clearly that remainder is the local truncation error.

A final expression of this example and its order is:

f(z
0

+ ih)� f(z
0

)

ih
= f 0(z

0

) +O(h).

This means that, in this case, the local truncation error is proportional to

the step size. The quality and time complexity of simulated FDM solutions

depend on the discretization equation selection and the step sizes (time and

space steps). The data quality and time complexity increase significantly with

smaller step size [36]. Therefore, a reasonable balance between data quality

and simulation duration is necessary for practical usage. Large time steps are

useful for increasing simulation speed in practice. However, time steps which

are too large may create instabilities and a↵ect the data quality [34, 60].

The von Neumann and Courant-Friedrichs-Lewy criteria are often evalu-

ated to determine the numerical method stability [34, 60].

1.3 Boundary Value Problem Coupled with

Optimization Problem

The modelling of biofilm often consists coupled system of di↵erential equa-

tions and optimization. A detailed biofilm system example is described in

Chapter 5, and the biofilm system model described in Chapter 5 is a system

8

of ODEs coupled with an optimization problem. Next we give a brief review

about optimization.

Mathematical optimization or mathematical programming is the selection

of a best element (with regard to some criterion) from some set of available

alternatives. Optimization problems of sorts arise in all quantitative disciplines

from computer science and engineering to operations research and economics,

and the development of solution methods has been of interest in mathematics

for centuries [5, 26, 45].

Optimization theory provides algorithms to solve well-structured optimiza-

tion problems along with the analysis of those algorithms. This analysis in-

cludes necessary and su�cient conditions for the existence of optimal solu-

tions. Optimization problems are expressed in terms of variables (degrees of

freedom) and the domain; objective function to be optimized; and, possibly,

constraints. The generalization of optimization theory and techniques to other

formulations constitutes a large area of applied mathematics. More generally,

optimization includes finding “best available” values of some objective func-

tion given a defined domain (or input), including a variety of di↵erent types

of objective functions and di↵erent types of domains.

1.3.1 Nonlinear Programming

In particular, we shall consider the nonlinear programming. Nonlinear pro-

gramming (NLP) is the process of solving an optimization problem where some

of the constraints or the objective function are nonlinear. An optimization

problem is one of calculation of the extrema (maxima, minima or stationary

points) of an objective function over a set of unknown real variables and condi-

tional to the satisfaction of a system of equalities and inequalities, collectively

termed constraints. It is the sub-field of mathematical optimization that deals

with problems that are not linear.

Let n,m, and p be positive integers. Let X be a subset of Rn, let f, gi,

and hj be real-valued functions on X for each i in {1, . . . ,m} and each j in

9

{1, . . . , p}, with at least one of f, gi, and hj being nonlinear.

A nonlinear maximization problem is an optimization problem of the form

max f(z)

subject to gi(z) 0 for each i 2 {1, . . . ,m}

hj(z) = 0 for each j 2 {1, . . . , p}

z 2 X.

A nonlinear minimization problem is defined in a similar way. There are

several possibilities for the nature of the constraint set, also known as the

feasible set or feasible region.

An infeasible problem is one for which no set of values for the choice vari-

ables satisfies all the constraints. That is, the constraints are mutually con-

tradictory, and no solution exists; the feasible set is the empty set.

A feasible problem is one for which there exists at least one set of values

for the choice variables satisfying all the constraints.

An unbounded problem is a feasible problem for which the objective func-

tion can be made to be better than any given finite value. Thus there is no

optimal solution, because there is always a feasible solution that gives a better

objective function value than does any given proposed solution.

If the objective function f is linear and the constrained space is a polytope,

the problem is a linear programming problem, which may be solved using well-

known linear programming techniques such as the simplex method [5, 26, 45].

If the objective function is concave (maximization problem), or convex

(minimization problem) and the constraint set is convex, then the program is

called convex and general methods from convex optimization can be used in

most cases [5, 26, 45].

If the objective function is quadratic and the constraints are linear, quadratic

programming techniques are used.

If the objective function is a ratio of a concave and a convex function (in the

maximization case) and the constraints are convex, then the problem can be

10

transformed to a convex optimization problem using fractional programming

techniques.

Several methods are available for solving nonconvex problems. One ap-

proach is to use special formulations of linear programming problems. Another

method involves the use of branch and bound techniques, where the program

is divided into subclasses to be solved with convex (minimization problem)

or linear approximations that form a lower bound on the overall cost. With

subsequent divisions, at some point an actual solution will be obtained whose

cost is equal to the best lower bound obtained for any of the approximate solu-

tions. This solution is optimal, although possibly not unique. The algorithm

may also be stopped early, with the assurance that the best possible solution is

within a tolerance from the best point found; such points are called ✏-optimal.

Terminating to ✏-optimal points is typically necessary to ensure finite termi-

nation. This is especially useful for large, di�cult problems and problems

with uncertain costs or values where the uncertainty can be estimated with an

appropriate reliability estimation [5, 45].

Under di↵erentiability and constraint qualifications, the Karush–Kuhn–T-

ucker (KKT) conditions provide necessary conditions for a solution to be op-

timal. Under convexity, these conditions are also su�cient. If some of the

functions are non-di↵erentiable, subdi↵erential versions of KKT conditions

are available [45, 56].

In Chapter 2 we propose a method for the solution of boundary value

problems including a Green’s function approach, and in Chapter 3 we ap-

ply the domain decomposition technique on the numerical method proposed

in Chapter 2. In Chapter 4 we consider asynchronous methods and apply

the asynchronous technique to the numerical method proposed in Chapter 3.

In Chapter 5 we solve the optimization constrained boundary value problem

arising in biofilm modelling and propose a numerical algorithm to decouple

the ODE and the optimization and show that the algorithm converges with

theoretical guarantee.

11

CHAPTER 2

A METHOD FOR THE

BOUNDARY VALUE

PROBLEM

In this chapter, we discuss solving the second order boundary value problem

in Rn. We show that we can use solutions of an homogeneous problem to build

the solution of the inhomogeneous problem.

2.1 Problem Formulation

We consider the solution of second order boundary value problem, i.e.,

ẍ(z) = f(x(z)),

where x : R ! Rn and

x(z) = (x
1

(z), x
2

(z), ..., xn(z))
T

f : Rn ! Rn, i.e.,

f(x(z)) = (f
1

(x
1

(z), . . . , xn(z)), f2(x1

(z), . . . , xn(z)), . . . , fn(x1

(z), . . . , xn(z)))
T .

The boundary conditions are

xi(a) = Ai, xi(b) = Bi, i = 1, 2, ..., n.

12

Note that the explicit form of f may be unknown, but we can evaluate f at

any point. Thus we have
8
>>>>><

>>>>>:

ẍ
1

(z) = f
1

(x
1

(z), x
2

(z), . . . , xn(z))

ẍ
2

(z) = f
2

(x
1

(z), x
2

(z), . . . , xn(z))
...

ẍn(z) = fn(x1

(z), x
2

(z), . . . , xn(z))

(2.1)

with boundary conditions xi(a) = Ai, xi(b) = Bi, i = 1, . . . , n. Denote by

A = (A
1

, . . . , An)
T

B = (B
1

, . . . , Bn)
T .

The boundary value problem of a system of ordinary di↵erential equations can

be expressed as 8
>><

>>:

ẍ(z) = f(x(z))

x(a) = A

x(b) = B.

(2.2)

2.2 Equivalent Form of an Homogeneous Prob-

lem

For the boundary value problem

(
ÿ(z) = f(y(z))

y(a) = 0,y(b) = 0,
(2.3)

we can consider integral equation formulation (IEF) obtained from Green’s

function approaches [8, 11, 42, 21]. For example, Green’s function for isother-

mal linear reaction in a sphere is obtained and the resulting Fredholm integral

equation is solved via a successive approximation technique [58]. The time-

marching process for nonlinear dynamic analysis is carried out through an

algorithm based on the Green’s function of the mechanical system in nodal

coordinates [61].

13

The solution for (2.3) can be expressed equivalently as the Integral equation

form by

y(z) =

Z b

a

G(z, s)f(y(s))ds,

where the Green’s function G(z, s) for this system is given by (see, e.g., [10])

G(z, s) =

(
(z�a)(s�b)

b�a
a z s b

(z�b)(s�a)
b�a

a s z b.
(2.4)

However, homogeneous boundary conditions are rarely encountered in prac-

tice. The idea is to use a shift function h to convert the boundary condition

xi(a) = Ai, xi(b) = Bi, i = 1, . . . , n

to homogeneous boundary conditions

yi(a) = 0, yi(b) = 0, i = 1, . . . , n.

Consider the linear mapping

h
A,B(z) =

aB� bA+ (A�B)z

a� b
· (2.5)

The mapping satisfies

h
A,B(a) = A, h

A,B(b) = B

and

ḧ
A,B(z) = 0.

If x(z) is the solution of (2.2), with the change of variables

y(z) = x(z)� h
A,B(z),

we can write (2.2) in terms of y(z) as

8
>><

>>:

ÿ(z) + ḧ
A,B(z) = f(y(z) + h

A,B(z))

y(a) + h
A,B(a) = A

y(b) + h
A,B(b) = B

(2.6)

14

Simplifying with the properties of h
A,B, the equation becomes

(
ÿ(z) = f(y(z) + h

A,B(z))

y(a) = 0,y(b) = 0.
(2.7)

Let

F(y(z)) = f((y + h
A,B)(z)). (2.8)

Thus we can convert the non-homogeneous boundary conditions problem

into a new problem of homogeneous boundary conditions and in this chapter,

we will only consider homogeneous boundary conditions.

(
ÿ(z) = F(y(z))

y(a) = 0,x(b) = 0
(2.9)

and the expression for the solution y is

y(z) =

Z b

a

G(z, s)F(y(s))ds. (2.10)

2.3 Fixed Point Iteration and Proof of Con-

vergence

Consider the expression (2.10) for the solution of the homogeneous ODE (2.9),

we can define a fixed point iteration

y(k+1)(z) =

Z b

a

G(z, s)F(y(k)(s))ds, (2.11)

where y(k) is the k � th iteration and F is defined in (2.8).

Define the operator T as

y(k+1) = T (y(k)) =

Z b

a

G(z, s)F(y(k)(s))ds·

Theorem 2.1 Let K = maxi Ki when Ki is the constant such that the follow-

ing inequality holds,

(Fi(y1(s), ..., yn(s))� Fi((Ty)1(s), ..., (Ty)n(s))) Ki max
i

|yi(s)� (Ty)i(s)| ,

15

then the fixed point iteration (2.11) is convergent for any initial function y(0)(z)

and converges to a unique solution i↵

K(b� a)2

8
< 1 ·

Proof. To show convergence of the fixed point iteration, we consider a general

vector y = (y
1

, ..., yn) and its image under T , Ty = ((Ty)
1

, ..., (Ty)n).

Since Ki is the constant for Fi such that the following inequality holds,

(Fi(y1(s), ..., yn(s))� Fi((Ty)1(s), ..., (Ty)n(s))) Ki max
i

|yi(s)� (Ty)i(s)| .

Then the following inequality holds,

|(Ty)i(z)� (T � Ty)i(z)|

=

����
Z b

a

G(z, s) (Fi(y1(s), ..., yn(s))� Fi((Ty)1(s), ..., (Ty)n(s))) ds

����

Z b

a

|G(z, s)|Ki max
i

|yi(s)� (Ty)i(s)| ds

 Kky � Tyk
Z b

a

|G(z, s)| ds,

where K = maxi Ki and kyk = maxi [maxatb |yi(t)|]. Furthermore,

Z b

a

|G(z, s)|ds =
����
z � a

b� a

Z a

z

(s� b)ds

����+
����
z � b

b� a

Z z

a

(s� a)ds

����

=
(z � a)(z � b)2 + (b� z)(z � a)2

2(b� a)

=
(z � a)(z � b)[(z � b)� (z � a)]

2(b� a)

=
(z � a)(b� z)

2
 (b� a)2

8
· (2.12)

Thus,

|(Ty)i(z)� (T � Ty)i(z)|
K(b� a)2

8
ky� Tyk

Taking maximum of i and a z b on both sides, we obtain

16

kTy� T � Tyk K(b� a)2

8
ky� Tyk·

So the iteration converges under the norm

kyk = max
i

max
atb

|yi(z)|
�

if
K(b� a)2

8
< 1.

Next, we show that it converges to a unique solution. Suppose we have two

di↵erent fixed point iteration solution x and y such that Tx = x and Ty = y

so we have

kTx� Tyk = kx� yk. (2.13)

We have

|(Tx)i(z)� (Ty)i(z)|

=

����
Z b

a

G(z, s) (fi(x1

(s), ..., xn(s))� fi(y1(s), ..., yn(s))) ds

����

Z b

a

|G(z, s)|Ki max
i

|xi(s)� yi(s)| ds

 Kkx� yk
Z b

a

|G(z, s)| ds·

Thus by (2.12),

|(Tx)i(z)� (Ty)i(z)|
K(b� a)2

8
kx� yk·

Taking maximum of i and a t b on both sides, we get

kTx� Tyk K(b� a)2

8
kx� yk· (2.14)

From (2.13) and (2.14), we have

kx� yk K(b� a)2

8
kx� yk

17

From the hypothesis, we have

K(b� a)2

8
< 1,

so this gives

kx� yk K(b� a)2

8
kx� yk < kx� yk,

which is a contradiction. Thus the fixed point iteration is unique. For the

converse, assuming that
K(b� a)2

8
� 1,

one can easily find y(0) so that the method will not converge. ⌅

2.4 Implementation Details

The Green’s function formulation is a suitable framework to derive nu-

merical schemes incorporating both accuracy and non-local information in the

whole domain to solve nonlinear di↵erential equations [1, 33]. In this section,

we will discuss some implementation details.

As we have shown in (2.11), the fixed point iteration to evaluate is

y(k+1)(z) =

Z b

a

G(z, s)F(y(k)(s))ds. (2.15)

First discretize the interval (a, b) into N + 1 sub-intervals with step-size

b� a

N + 1
·

Denote the discretization points by

{a, z
1

, z
2

, ..., zN , b}

and the solution at the discretization points z
1

, z
2

, ..., zN results in a matrix of

size n⇥N and denote this matrix by Y , whereN is the number of discretization

points and n is the number of equations; see (2.1).

18

Thus Y (k) is the solution values for y(z) at discretization points z
1

, .., zN

at iteration k. The matrix Y (k) is of size n⇥N , and the i-th column denotes

the value of y(k)(z) at the discretization points zi.

Y (k) =
⇣

y(k)(z
1

), . . . ,y(k)(zN)
⌘

n⇥N

=

0

BBBBB@

y(k)
1

(z
1

) y(k)
1

(z
2

) · · · y(k)
1

(zN)

y(k)
2

(z
1

) y(k)
2

(z
2

) · · · y(k)
2

(zN)
...

...
. . .

...

y(k)n (z
1

) y(k)n (z
2

) · · · y(k)n (zN)

1

CCCCCA

n⇥N

We should then use the recurrence (2.15) to get Y (k+1) which is the dis-

cretization of y(k+1)(z) at points {z
1

, z
2

, ..., zN}, i.e.,

Y (k+1) =
⇣

y(k+1)(z
1

), . . . ,y(k+1)(zN)
⌘

n⇥N

=

0

BBBBB@

y(k+1)

1

(z
1

) y(k+1)

1

(z
2

) · · · y(k+1)

1

(zN)

y(k+1)

2

(z
1

) y(k+1)

2

(z
2

) · · · y(k+1)

2

(zN)
...

...
. . .

...

y(k+1)

n (z
1

) y(k)n (z
2

) · · · y(k+1)

n (zN)

1

CCCCCA

n⇥N

.

We can obtain the i-th column of the Y (k+1) by the letting the z = zi in

formula (2.15). This result in

Y (k+1)(:, i) = y(k+1)(zi) =

Z b

a

G(zi, s)F(y
(k)(s))ds. (2.16)

To approximate the integration, many di↵erent quadrature rules can be

used, for example, midpoint rule, trapezoidal rule, Simpson’s rule or other

Newton-Cotes rules etc.

19

Table 2.1: Newton-Cotes Formulas

f corresponds to G(zi, s)F(y(k)(s)) above
Common Name Formula Error Term e
Trapezoidal Rule h

2

(f
0

+ f
1

) � 1

12

h3f (2)(⇠)
Simpson’s Rule h

3

(f
0

+ 4f
1

+ f
2

) � 1

90

h5f (4)(⇠)
Simpson’s 3/8 Rule 3h

8

(f
0

+ 3f
1

+ 3f
2

+ f
3

) � 3

80

h5f (4)(⇠)
Boole’s Rule 2h

45

(7f
0

+ 32f
1

+ 12f
2

+ 32f
3

+ 7f
4

) � 8

945

h7f (6)(⇠)

The only values we know from the last iteration k of (y(k)(s)) are the values

at the discretization points, which are in the matrix Y (k).

Thus we also use these point values {a = z
0

, z
1

, z
2

, ..., zN , b = zN+1

} for the

numerical integration.
Z b

a

G(zi, s)F(y
(k)(s))ds

=h

NX

j=0

wjG(zi, zj)F(y
(k)(zj))

!
+ e, (2.17)

where h = b�a
N+1

, wj are weights from the Newton-Cotes formula and e is the

error term for the chosen Newton-Cotes formula. Some examples of closed

Newton-Cotes Formulas are given in the Table 2.1.

Since for any i, by definition of G(z, s)

G(zi, a) =
(zi � b)(a� a)

b� a
= 0

G(zi, b) =
(zi � a)(b� b)

b� a
= 0,

thus in (2.17), when j = 0 and j = N we have the summand is 0. When

implemented, the following formula start from j = 1 to j = N � 1 can be used

Y (k+1)(:, i) = h
N�1X

j=1

wjG(zi, zj)F(y
(k)(zj). (2.18)

We can write out the form of the matrix G explicitly shown as in the

following steps, and we write each matrix element in the matrix G explicitly.

20

For i j, we have

G(zi, zj) = G(zj, zi) =
(zi � a)(zj � b)

b� a

=
(a+ ih� a)(a+ jh� b)

b� a
=

ih(a� b+ jh)

b� a

= � ih(N + 1� j)h

(N + 1)h
= � i(N + 1� j)h

N + 1
·

The formula for (i, j)-th element of the matrix G is then

G =

(
� i(N+1�j)h

N+1

when i j

� j(N+1�i)h
N+1

when i > j
,

G =
h

N + 1

0

BBBBBBBB@

�N �N + 1 . . . �2 �1

�N + 1 �2N + 2
. . . �4 �2

...
...

. . .
...

...

�2 �4
. . . �2N + 2 �N + 1

�1 �2 . . . �N + 1 �N

1

CCCCCCCCA

.

Denote by W the diagonal matrix with wjh on the diagonal. We have

Y (k+1) = GW · F(Y (k)). (2.19)

For non-homogeneous boundary conditions, we can do a similar implemen-

tation as follows

X(k+1) = GW · f(X(k)) +H
A,B, (2.20)

where the i-th row of the matrix H
A,B is given by

H
A,B(i, :) =

aB� bA+ (A�B)zi
a� b

(1, 1, . . . , 1)

=

a� zi
a� b

B+
zi � b

a� b
A

�
(1, 1, . . . , 1).

2.5 Convergence of the Implementation

In this section, we discuss convergence of the numerical method we imple-

mented.

21

From [7, 48] we obtain the following Lemma 2.1,

Lemma 2.1 The eigenvalues of G are the reciprocal of eigenvalues of a tridi-

agonal matrix T which is given by

T =

0

BBBBB@

� 2

h
1

h

1

h
� 2

h

. . .
. 1

h

1

h
� 2

h

1

CCCCCA

N⇥N

,

where h is the step size with

h =
b� a

N + 1
·

Proof: For any

i = 2, ..., N � 1,

the (i, i)-th element of G(s) is

�i(N + 1� i)h

N + 1
,

the (i, i+ 1)-th element of G(s) is

�i(N + 1� i� 1)h

N + 1

and the (i, i� 1)-th element of G(s) is

�(i� 1)(N + 1� i)h

N + 1
,

and we can check that

(�2)
�i(N + 1� i)h

N + 1
+

�i(N + 1� i� 1)h

N + 1

+
�(i� 1)(N + 1� i)h

N + 1
= h.

For i = 1, we only need to consider the (i, i)-th and (i, i + 1)-th element of

G(s), we have

(�2)
(�N)h

N + 1
+

(�N + 1)h

N + 1
= h.

22

For i = N, we only need to consider the (i, i)-th and (i, i � 1)-th element of

G(s), we have
�(�1 +N)h

N + 1
� 2

N(�1)h

N + 1
= h.

For

j = 2, ..., N � 2

and i < j, the (i, j)-th element is

�i(N + 1� j)h

N + 1
,

the (i, j + 1)-th element is

�i(N + 1� j � 1)h

N + 1
,

and the (i, j + 2)-th element is

�i(N + 1� j � 2)h

N + 1
.

So we have

�i(N + 1� j)h

N + 1
� 2

�i(N + 1� j � 1)h

N + 1

+
�i(N + 1� j � 2)h

N + 1
= 0

For any i < j with j = N � 1, we only need to consider (i, j)-th and

(i, j + 1)-th element, which are

� i(N + 1� (N + 1))h

N + 1

and

� i(N + 1�N)h

N + 1

respectively, and we have

� i(N + 1� (N + 1))h

N + 1
+ 2

i(N + 1�N)h

N + 1
= 0·

For j = 3, ..., N � 1 and i > j, the (i, j)-th element is

�j(N + 1� i)h

N + 1
,

23

the (i, j � 1)-th element is

�(j � 1)(N + 1� i)h

N + 1

and the (i, j � 2)-th element is

�(j � 2)(N + 1� i)h

N + 1
·

So we have

�i(N + 1� j)h

N + 1
� 2

�i(N + 1� j � 1)h

N + 1
+

�i(N + 1� j � 2)h

N + 1
= 0.

For any i > j with j = 2, we only need to consider (i, j)-th and (i, j�1)-th

element, which are
�2(N + 1� i)h

N + 1

and

�(N + 1� i)h

N + 1

respectively, and we have

2
(N + 1� i)h

N + 1
+

�2(N + 1� i)h

N + 1
= 0.

So we proved the eigenvalues of G is the reciprocal of eigenvalues of a

tridiagonal matrix T. ⌅

Corollary 2.1 From Lemma 2.1 we can conclude GT = I, i.e., T�1 = G.

Theorem 2.2 The eigenvalues of G are

h

2

1

(cos(k⇡
N+1

)� 1)
, k = 1, . . . , J,

where h is the step size with

h =
b� a

N + 1
·

24

Proof. Let pN be the characteristic polynomial of

hT = h

0

BBBBB@

� 2

h
1

h

1

h
� 2

h

. . .
. 1

h

1

h
� 2

h

1

CCCCCA

N⇥N

=

0

BBBBB@

�2 1

1 �2
. . .

. 1

1 �2

1

CCCCCA

N⇥N

.

The matrix T is a special case of Toeplitz matrix, and there are many results

about the eigenvalues and eigenvectors of Toeplitz matrices [6, 51]. It is well

known that the tridiagonal Toeplitz matrix has eigenvalues which are related

to zeros of the Chebyshev polynomials of the second kind. Thus, after a simple

transformation, the characteristic equations of successive orders of the tridi-

agonal Toeplitz matrix satisfy the three point Chebyshev recurrence formula

[24, 30].

The pN satisfies the following equations:

p
0

(x) = 1, p
1

(x) = x+ 2

and by co-factor expansion

pN(x) = (x+ 2)pN�1

(x)� pN�2

(x).

The Chebyshev polynomials of the second kind [41, 23] are defined by the

recurrence relation

U
0

(y) = 1, U
1

(y) = 2y,

UN(y) = 2yUN�1

(y)� UN�2

(y).

By a change of variable y = x/2+1, pN is related to the Chebyshev polynomials

of the second kind [41, 23] by

pN(x) = UN(x/2 + 1).

For k = 1, . . . , N , the roots of the Chebyshev polynomials are given by

cos

✓
k⇡

N + 1

◆
.

25

Thus by the change of variable formula, the eigenvalues of hT are

2

✓
cos

✓
k⇡

N + 1

◆
� 1

◆
.

That is the eigenvalues of T are

2

h

✓
cos

✓
k⇡

N + 1

◆
� 1

◆
.

Thus the eigenvalues of G, which are the reciprocal of the eigenvalues of G

are
h

2

1�
cos(k⇡

N+1

)� 1
� , k = 1, . . . , N. ⌅

Theorem 2.3 Let K be such that for any Y
1

, Y
2

the following inequality holds,

|F(Y
1

)� F(Y
2

)| K · |Y
1

� Y
2

| .

The numerical method given by the iteration (2.19)

Y (k+1) = GW · F(Y (k)).

converges when

⇢(K) <

✓
1� cos

✓
⇡

N + 1

◆◆
2(N + 1)2

(b� a)2w
, (2.21)

where (b � a) is the interval size and w is the largest weight element of the

quadrature rule, i.e.,

w = max
1jN

wj 1.

Proof. By Lemma 2.1, the eigenvalues of G are

h

2

1

(cos(k⇡
N+1

)� 1)
, k = 1, . . . , N, (2.22)

where h is the step size with

h =
b� a

N + 1
·

26

We want to find the spectral radius ofG, it is known that the spectral radius of

a square matrix is the largest absolute value of its eigenvalues. Thus spectral

radius of G is attained at the maximum value

max
k=1,...,N

�����
h

2

1�
cos
�

k⇡
N+1

�
� 1
�
����� ·

The above maximum is attained at k = 1 and the maximum value is

h

2

1

(1� cos(⇡
N+1

))
·

Thus the spectral radius of G is

⇢(G) =
h

2

1�
1� cos

�
⇡

N+1

��

=
(b� a)

2(N + 1)

1�
1� cos

�
⇡

N+1

�� ·

Assume that there exists a matrix K, such that for any Y
1

, Y
2

the following

inequality holds,

|F(Y
1

)� F(Y
2

)| K · |Y
1

� Y
2

| .

So we have

��Y (k+1) � Y (k)
�� =

��GW · F(Y (k))�GW · F(Y (k�1))
��

 GW ·K ·
��Y (k) � Y (k�1)

�� .

Since we have

⇢(GW ·K) ⇢(G)⇢(W)⇢(K)

=
(b� a)

2(N + 1)

1�
1� cos

�
⇡

N+1

��⇢(W)⇢(K)

From the assumption of the quadrature rules, it follows that

⇢(W) = wh =
w(b� a)

N + 1
,

where w is some constant. Thus

⇢(GW ·K) (b� a)2w

2(N + 1)2
1�

1� cos
�

⇡
N+1

��⇢(K).

27

The iteration converges if

⇢(GW ·K) < 1.

A su�cient condition for the iteration converges is

(b� a)2w

2(N + 1)2
1

(1� cos(⇡
N+1

))
⇢(K) < 1,

i.e.,

⇢(K) <

✓
1� cos(

⇡

N + 1
)

◆
2(N + 1)2

(b� a)2w
· ⌅

In practice, if we apply the algorithm on a large interval, i.e., b � a is a

large number, We can use the domain decomposition method by dividing the

large interval (a, b) into several smaller intervals and solve independently on

each smaller interval.

The challenge is that we do not know the boundary values of the smaller

intervals if we divide (a, b) into smaller intervals, since the only known bound-

ary conditions are at points a and b. We will address this challenge by adding

a small overlap between the adjacent intervals and use the result from last

round iteration in the neighboring intervals as the boundary values for the

next iteration.

28

CHAPTER 3

DOMAIN DECOMPOSITION

METHODS

3.1 Background and Motivation

Domain decomposition methods solve a boundary value problem by split-

ting it into smaller boundary value problems on subdomains and iterating to

coordinate the solution between adjacent subdomains. A coarse problem with

one or few unknowns per subdomain is used to further coordinate the solution

between the subdomains globally. The problems on the subdomains are in-

dependent, which makes domain decomposition methods suitable for parallel

computing. Domain decomposition methods are typically used as precondi-

tioners for Krylov space iterative methods, such as the conjugate gradient

method or GMRES [66].

The Schwarz alternating method is an overlapping domain decomposition

method which was first formulated by H.A.Schwarz and served as a theoretical

tool: its convergence for general second order elliptic partial di↵erential equa-

tions was first proved much later, in 1951, by Solomon Mikhlin. The problem

considered by Schwarz was a Dirichlet problem (with Laplace’s equation) on

a domain consisting of a circle and a partially overlapping rectangle as shown

in Figure 3.1. To solve the Dirichlet problem on one of the two subdomains

29

Figure 3.1: Representation of the problem considered by H. A. Schwarz. Avail-
able from: URL:Public Domain, https://commons.wikimedia.org/wiki/

File:Ddm_original_logo.png#/media/File:Ddm_original_logo.png

(the rectangle or the circle), the value of the solution must be known on the

border: since a part of the border is contained in the other subdomain, the

Dirichlet problem must be solved jointly on the two subdomains. An iterative

algorithm is introduced:

1. Make a first guess of the solution on the circle’s boundary part that is

contained in the square.

2. Solve the Dirichlet problem on the circle.

3. Use the solution in step 2 to approximate the solution on the square’s

boundary.

4. Solve the Dirichlet problem on the square.

5. Use the solution in step 4 to approximate the solution on the circle’s

boundary, then go to step 2.

30

In non-overlapping methods, the subdomains intersect only on their in-

terface. In primal methods, such as Balancing Domain Decomposition and

BDDC, the continuity of the solution across subdomain interfaces is enforced

by representing the value of the solution on all neighboring subdomains by

the same unknown. In dual methods, such as FETI, the continuity of the

solution across the subdomain interface is enforced by Lagrange multipliers.

The FETI-DP method is a hybrid between a dual and a primal method [25].

Non-overlapping domain decomposition methods are also called iterative

substructuring methods.

Mortar methods are discretization methods for partial di↵erential equa-

tions, which use separate discretizations on nonoverlapping subdomains. The

meshes on the subdomains do not match on the interface, and the equality

of the solution is enforced by Lagrange multipliers, judiciously chosen to pre-

serve the accuracy of the solution. In engineering practice in the finite element

method, continuity of solutions between non-matching subdomains is imple-

mented by multiple-point constraints.

Finite element simulations of moderate size models require solving linear

systems with millions of unknowns. Several hours per time step is an average

sequential run time, therefore, parallel computing is a necessity. Domain de-

composition methods embody large potential for a parallelization of the finite

element methods, and serve a basis for distributed, parallel computations [20].

3.2 Domain Decomposition Method Applica-

tion

To apply the domain decomposition method for the boundary value prob-

lem on a large interval size b� a, the idea is to partition the interval [a, b] into

p overlapping sub-intervals. The illustration is shown in Figure 3.2. Let us

consider the solutions on each of the p overlapping sub-intervals

[a, zr1], [zl2 , zr2], . . . , [zlp , b]

31

Figure 3.2: Domain Decomposition on the interval [a, b]

where the zlj denotes the left boundary point on the j-th subdomain and zrj

denotes the right boundary point on the j-th subdomain. We will consider the

boundary value problems on the subdomains as follows

8
>><

>>:

ẍ
1

(z) = f(x
1

(z))

x
1

(a) = A

x
1

(zr1) = x
2

(zr1)

(3.1)

8
>><

>>:

ẍ
2

(z) = f(x
2

(z))

x
2

(zl2) = x
1

(zl2)

x
2

(zr2) = x
3

(zr2)
8
>><

>>:

ẍ
3

(z) = f(x
3

(z))

x
3

(zl3) = x
2

(zl3)

x
3

(zr3) = x
4

(zr3)

...
8
>><

>>:

ẍp(z) = f(xp(z))

xp(zlp) = xp�1

(zlp)

xp(b) = B.

To solve the boundary value problems (3.1) on each subdomains

[a, zr1], [zl2 , zr2], . . . , [zlp , b]

when implemented, we apply the formula (2.20) in Chapter 2. We discretize

each subdomain such that there are N interrior discretization points in each

subdomain and an illustration is shown in Figure 3.3. Hence the grid points

32

Figure 3.3: Representation of discretization

are

a < z
0

< z
1

< · · · < zpN < b.

We can handle discretizations with di↵erent numbers of nodes in each sub-

domain, but for simplicity, we develop our method with the same number of

points N .

Denote the total number of discretization points in the original domain

[a, b] by J , then we have J = pN , where p is the number of subdomains and

N is number of interior discretization points on each subdomain. We solve the

boundary value problem on each sub-interval using the method in Chapter 2.

As in Figure 3.3, we have

zl1 = a zr1 = zN+1

zl2 = zN zr2 = z
2N+1

zl3 = z
2N zr3 = z

3N+1

· · ·

zlp = zpN zrp = b.

We now describe the domain decomposition numerical methods as the follow-

ing equations, i.e., the equations solved at iteration k + 1 are
8
>><

>>:

ẍ
1

(z) = f(x
1

(z))

x
1

(a) = A

x
1

(zN+1

) = x
2

(zN+1

)

(3.2)

33

8
>><

>>:

ẍ
2

(z) = f(x
2

(z))

x
2

(zN) = x
1

(zN)

x
2

(z
2N+1

) = x
3

(z
2N+1

)
8
>><

>>:

ẍ
3

(z) = f(x
3

(z))

x
3

(z
2N) = x

2

(z
2N)

x
3

(z
3N+1

) = x
4

(z
3N+1

)

...
8
>><

>>:

ẍp(z) = f(xp(z))

xp(z(p�1)N) = xp�1

(z
(p�1)N)

xp(b) = B.

For the ODE on each subdomain, we implement the iteration method (2.20)

that we presented in Chapter 2 for nonhomogeneous boundary value condi-

tions. Now apply (2.20) on each subdomain. Note that in (2.20) the subscript

of H
A,B, A is the left boundary values and B is the right boundary value. So

when we apply (2.20) on the first subdomain, the left boundary value is A

and the right boundary value is xk
2

(zN+1

), i.e., the solution of the second sub-

domain xk
2

(·) evaluated at the right end point of the first subdomain (zN+1

).

So consider the iteration (2.20), the approximation to the solution for the first

subdomain can be represented as

Xk+1

1

= GW · F(Xk
1

) +H
A,xk

2(zN+1)
.

Similar reasoning holds for all other subdomains. Therefore we can write the

iterative method with the multiple domains as
8
>>>>>>>><

>>>>>>>>:

Xk+1

1

= GW · F(Xk
1

) +H
A,xk

2(zN+1)

Xk+1

2

= GW · F(Xk
2

) +H
x

k
1(zN),xk

3(z2N+1)

Xk+1

3

= GW · F(Xk
3

) +H
x2

k
(z2N),xk

4(z3N+1)

...

X(k+1)

p = GW · F(Xk
p) +H

x

k
p(zpN),B

(3.3)

34

with

Xs =
�
x(z

(s�1)N+1

),x(z
(s�1)N+2

), . . . ,x(z
(s+1)N)

�
; s = 1, 2, . . . , p.

Define matrices Ĝ and Ŵ as follows,

Ĝ =

0

BBBBBBBB@

G
. . .

G
. . .

G

1

CCCCCCCCA

,

Ŵ =

0

BBBBBBBB@

W
. . .

W
. . .

W

1

CCCCCCCCA

.

Let us define the following two matrices C and Ĥ,

C =

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

NA NA . . . NA NA

(N � 1)A (N � 1)A . . . (N � 1)A (N � 1)A
...

... . . .
...

...

A A . . . A A

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

B B . . . B B

2B 2B . . . 2B 2B
...

...
...

...
...

NB NB . . . NB NB

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

J⇥J

.

35

Ĥ =
1

N + 1

0

BB@

1

2
...

N

N
...

2

1

1

2
...

N

N
...

2

1

1

2
...

N
. . .

. . .

N
...

2

1

1

CCA

.

Theorem 3.1 The domain decomposition iterative method (3.3) converges for

any initial values X0 if

⇢((K+ (ĜŴ)�1Ĥ)) <
2(pN + 1)

(b� a)

N + 1

w

✓
1� cos

✓
⇡

N + 1

◆◆
, (3.4)

where p is the total number of subdomains, N is number of discretization points

on each subdomain, (b � a) is the interval size and w is the largest weight

element of the quadrature rule, i.e.,

w = max
1jN

wj 1.

36

and K is such that for any X
1

, X
2

the following inequality holds,

|F(X
1

)� F(X
2

)| K · |X
1

�X
2

| . (3.5)

Proof. Consider (3.3) and by the definition of

H
A,B(i, :) =

aB� bA+ (A�B)zi
a� b

(1, 1, . . . , 1)

=

a� zi
a� b

B+
zi � b

a� b
A

�
(1, 1, . . . , 1).

Denote by 1T = (1, 1, . . . , 1), we have for 1 i N , the following holds
8
>>>>>>>>><

>>>>>>>>>:

H
A,x2

(k)
(zN+1)

(i, :) =
⇣

a�zi
a�zN+1

x
2

(k)(zN+1

) + zi�zN+1

a�zN+1
A
⌘
1T

H
x1

(k)
(zN),x3

(k)
(z2N+1)

(i, :) =
⇣

zN�zi+N

zN�z2N+1
x
3

(k)(z
2N+1

) + zi+N�t2N+1

zN�z2N+1
x
1

(k)(zN)
⌘
1T

H
x2

(k)
(z2N),x4

(k)
(z3N+1)

(i, :) =
⇣

z2N�zi+2N

z2N�z3N+1
x
4

(k)(z
3N+1

) + zi+2N�z3N+1

z2N�z3N+1
x
2

(k)(z
2N)
⌘
1T

...

H
xp

(k)
(zpN),B(i, :) =

⇣
zpN�zi+pN

zpN�b
B+ zi+pN�b

zpN�b
x
p

(k)(zpN)
⌘
1T.

Simplify
8
>>>>>>>><

>>>>>>>>:

H
A,x2

(k)
(zN+1)

(i, :) =
�

i
N+1

x
2

(k)(zN+1

) + i�N�1

N+1

A
�
1T

H
x1

(k)
(zN),x3

(k)
(z2N+1)

(i, :) =
�

i
N+1

x
3

(k)(z
2N+1

) + i�N�1

N+1

x
1

(k)(zN)
�
1T

H
x2

(k)
(z2N),x4

(k)
(z3N+1)

(i, :) =
�

i
N+1

x
4

(k)(z
3N+1

) + i�N�1

N+1

x
2

(k)(z
2N)
�
1T

...

H
xp

(k)
(zpN),B(i, :) =

�
i

N+1

B+ i�N�1

N+1

x
p

(k)(zpN)
�
1T.

Define

Xk = (Xk
1

, Xk
2

, ..., Xk
p)

T .

Now (3.3) can be represented as

Xk+1 = ĜŴ · F
�
Xk
�
+ Ĥk +C. (3.6)

From the hypothesis (3.5) we have

��Xk+1 �Xk
��

⇣
ĜŴ ·K+ Ĥ

⌘
·
���Xk �Xk�1

���

= ĜŴ(K+ (ĜŴ)�1Ĥ)
���Xk �Xk�1

���

37

The method converges if the spectral radius of ĜŴ(K+(ĜŴ)�1Ĥ) is less

than 1. Thus using the fact that ⇢(MN) = ⇢(M)⇢(N), the method converges

if

⇢((K+ (ĜŴ)�1Ĥ)) <
1

⇢(ĜŴ)
.

Since Ĝ and Ŵ are block diagonal matrices with block element G and W.

From (2.22) we know the spectrum radius of Ĝ is

⇢(Ĝ) = ⇢(G) =
h

2

1�
1� cos(⇡

N+1

)
�

=
(b� a)

2(pN + 1)

1�
1� cos(⇡

N+1

)
� ·

Similarly,

⇢(Ŵ) = ⇢(W) =
w

N + 1
,

Thus the implementation converges if

⇢((K+ (ĜŴ)�1Ĥ)) <
2(pN + 1)

(b� a)

N + 1

w

✓
1� cos

✓
⇡

N + 1

◆◆
.

where p is the total number of subdomains, and N is number of discretization

points on each subdomain. ⌅
Note that the bound (3.4) is dependent on the number of subdomains p,

the number of discretization points on each subdomain N and the interval size

b�a. In general, the larger the bound (3.4), the larger the class of problems for

which the method converges. If b� a is small, then the bound (3.4) is larger.

Also we can increase the number of the subdomains p to obtain a larger bound

in (3.4). In the biofilm example in Chapter 5, we found that by increasing the

number of subdomains p, we can obtain the solution of the ODE on a larger

spacial domain than previously possible.

38

3.3 Numerical Experiment

In this section, a numerical example is presented illustrating the e↵ective-

ness of the domain decomposition method with overlap. The approximate

solution before and after applying the overlap domain decomposition tech-

nique is presented. The numerical results obtained are compared with the

analytical solution.

Example 1. We consider the following second order ODE defined on the

interval [0, b]:

ẍ(z) = 100x(z) (3.7)

with boundary value conditions

(
x(0) = 1

x(b) = e
p
100b.

(3.8)

The true solution x(z) is

x(z) = e
p
100z. (3.9)

We ran an implementation of the algorithm with domain decomposition

and without domain decomposition, and the result is illustrated in the Table

3.1.

Example 2. We consider the following second order ODE defined on the

interval [0, 3]:

ẍ(z) = kx(z) (3.10)

with boundary value conditions

(
x(0) = 1

x(3) = 0.
(3.11)

The true solution x(z) is

x(z) =
e
p
kz � e6

p
k�

p
kz

1� e6
p
k

. (3.12)

39

Table 3.1: Comparison of error in results of di↵erent methods

Interval
size

Original
method

Method
with over-
lap domain
decompo-
sition

0.5 1.87e-07 1.24e-09
1 2.97e-06 7.50e-09
1.5 1.89e-05 2.18e-08
2 1.71e-02 2.47e-08
2.5 2.69e-02 3.47e-08
3 1.89e-01 5.78e-08

For k = 100 in ODE (3.10), the result obtained by method with overlap

domain decomposition technique is shown in Figure 3.5, the result obtained

by original method without the overlap domain decomposition technique is

shown in Figure 3.4. The result shows that by applying the overlap domain

decomposition technique, we can solve problem of more steep slope than pre-

viously possible, for example, the case when k = 100 as is illustrated in Figure

3.4 and Figure 3.5.

40

Figure 3.4: k = 100 in (3.10) solved without overlap domain decomposition

41

Figure 3.5: k = 100 in (3.10) solved with overlap domain decomposition

42

CHAPTER 4

ASYNCHRONOUS METHODS

4.1 Background and Motivation

With the advent of parallel computers, many new algorithms were de-

vised or rediscovered for the new architectures. An important concept in the

design of parallel algorithms is that of load balancing, which simply means

that the work has to be approximately equally distributed among processors.

Otherwise, some processors finish their task much earlier than others, and

the waiting time (also called idle time) degrades the performance of the algo-

rithm. This concept has been widely accepted as a requirement for e�cient

algorithms, and has dictated for example that when the geometric domain of a

physical problem is divided into subdomains (to be processed by the di↵erent

processors), each should be of approximately the same size. In contrast to load

balancing, the idea of asynchronous methods is to avoid processor idle time by

eliminating as much as possible synchronization points, i.e., points at which a

processor must wait for information from other processors. In this way, prob-

lems which naturally would decompose into processes of very di↵erent size,

e.g., those with unstructured meshes, can do so without di�culty. The price

one pays for this freedom is that some processors will perform extra computa-

tions, and it is only when the load is not well balanced, or when communication

between the processors is slow, that this approach is advantageous [29].

43

Since the publication of the pioneering paper in 1969 by Chazan and Mi-

ranker [18], the theory and application of asynchronous iterations has been

studied and used by many authors. For early surveys of asynchronous itera-

tive methods, see [2, 13, 14, 27] (see also the papers [59, 63]).

4.1.1 Computational and Mathematical Models

The computational and mathematical models of asynchronous methods in

this section follows from [29]. Assume that we are given a product space

E = E
1

⇥ . . . ⇥ Em and an application H : E ! E whose components are

denoted Hi, i.e., we have

H : E ! E, x = (x
1

, . . . , xm) ! ((Hx)
1

, . . . , (HX)m), (4.1)

where xi, (Hx)i = Hi(x) 2 Ei, i = 1, . . . ,m. The problem at hand is to find a

fixed point of H. A standard procedure is to approximate such fixed point by

variants of the the successive procedure

xk+1 = H(xk), k = 0, 1, (4.2)

Computational Model 4.2.1:

while not at convergence do
read x from common memory

compute xnew
i = Hi(x) for i 2 Jj

overwrite xi in common memory with xnew
i , i 2 Jj

if convergence then
break;

end

end

Assume for now that we are working with a (shared memory) parallel

computer with p processors P
1

, . . . , Pp (p m), and associate a block of

components Jj ✓ 1, . . . ,m with each processor Pj. Then a parallel variant

44

of the successive approximation procedure (4.2) can be implemented as in

Computational Model 4.2.1 (pseudocode for processor Pj):

If processors would wait for each other to complete each run through the

loop we would indeed get a (parallel synchronous) implementation of the suc-

cessive approximation scheme (4.2). Since here processors do not wait, we

actually get a much less structured iterative process where, due to di↵erent

run times for each loop, processors get out of phase. At a given time point,

di↵erent processors will have achieved di↵erent numbers of iterations (the it-

eration number k in (4.2) looses its meaning in this context). No idle time

occur, since processors never wait for each other.

In order to mathematically analyze the Computational Model 4.2.1, we now

step the iteration counter k by 1 each time x is read from the common memory

by some processor Pj(k). Then this x is made up of components each of which

has been written back to memory as the result of the computation belonging to

some earlier iteration. We therefore have x = (xs1(k)
1

, . . . , xsm(k)
m) with iteration

counts sl(k) 2 N
0

, l = 1, . . . ,m, prior to k, indicating the iteration when

the lth component just read was computed. A set Ik is defined indicating

which components are computed at the kth iteration, i.e., Ik = Jj(k). Using

these sets, and under the very weak assumptions explained further below, the

Computational Model 4.2.1 can be modeled mathematically according to the

following definition; see, e.g., [64],

Definition 4.1 For k 2 N, let Ik ✓ {1, . . . ,m} and (s
1

(k), . . . , sp(k)) 2 Nm
0

such that

si(k) k � 1 for i 2 {1, . . . ,m}, k 2 N,

lim
k!1

si(k) = 1 for i 2 {1, . . . ,m}, (4.3)

|{k 2 N : i 2 Ik}| = 1 for i 2 {1, . . . ,m}.

Given an initial vector x0 2 E = E
1

⇥ . . .⇥ Em, the iteration

xk
i =

8
<

:
xk�1

i for i 62 Ik

Hi(x
s1(k)
1

, . . . , xsm(k)
m) for i 2 Ik

(4.4)

45

is termed an asynchronous iteration (with strategy Ik, k 2 N and delays di(k) =

k � si(k), i = 1, . . . , n, k 2 N).

The first hypothesis of (4.3) simply indicates that only components computed

earlier (and not later ones) are used in current approximation. The second

indicates that as the computation proceeds, eventually one reads newer infor-

mation for each of the components. The third one indicates that no component

fails to be updated as time goes on.

4.1.2 Convergence Theory

From [29], a general convergence theorem for the asynchronous iteration

(4.4) is the following result of Betsekas [12].

Theorem 4.1 Assume that there are sets Ek ✓ E which satisfy

(a) Ek = Ek
1

⇥ . . .⇥ Ek
m, k 2 N

0

, (box condition)

(b) H(Ek) ✓ EK+1 ✓ Ek, k 2 N
0

, (nested sets condition)

(c) there exists x⇤ such that

yk 2 Ek, k 2 N) lim
k!1

yk = x⇤

(synchronous convergence condition).

Then for an initial vector x0 the sequence of asynchronous iterates xk from

(4.4) converges to x⇤, the unique fixed point of H, provided assumptions (4.3)

holds.

From [29], there are several special cases of Theorem 4.1 which merit further

discussion. First consider the case where each component space Ei is a normed

linear space (Ei, k · ki). Define k · kw the weighted max-norm on E given as

kxkw =
m

max
i=1

kxiki
wi

, (4.5)

where w = (w
1

, . . . , wm) is a positive vector, i.e., wi > 0 for i = 1, . . . ,m. From

[28, 64], the following theorem holds by setting Ek = {x 2 E : kx � x⇤k
�k · kx0 � x⇤kw} and apply Theorem 4.1. The following theorem is known as

El Tarazi’s theorem [3].

46

Theorem 4.2 Assume that there exists x⇤ 2 E such that H(x⇤) = x⇤. More-

over, assume that there exists � 2 [0, 1] and w 2 Rm positive, such that we

have

kH(x)� x⇤kw �kx� x⇤k
2

. (4.6)

Then, for any initial vector x0, the asynchronous iterates xk converges to x⇤,

the unique common fixed point of H.

Corollary 4.1 [9] Assume that H satisfies kHx � x⇤kw < kx � x⇤kw with

respect to x⇤. Then the asynchronous iterates xk from (4.4) converge to x⇤,

the unique common fixed point of H.

4.1.3 Results on Nonlinear Equations

Assume that we are given a nonlinear system of equations

F (x) = 0

where F : DF ✓ Rn ! Rn Assume that this equation has exactly one solution

x⇤ and let H : DH ✓ Rn ! Rn be an iteration function for this problem, i.e.,

x⇤ is the unique fixed point of H. Not too surprisingly, the following local

version of Corollary 4.1 can be shown to hold [22, 29].

Lemma 4.1 Assume that x⇤ lies in the interior of DH and that H is Fréchet

di↵erentiable at x⇤. If ⇢(|H 0(x⇤)|) < 1 then there exists a neighborhood N of

x⇤ such that the asynchronous iterates (4) converge to x⇤; provided x0 2 N .

4.2 Application of Asynchronous Methods

In Chapter 3 we applied the domain decomposition techniques, and we

solved the system of nonlinear equations by an iteration method (3.3).

Now we would like to apply asynchronous iteration to solve the fixed point

iteration (3.3). Assume si(k), i = 1, 2, . . . , p, satisfies the Definition 4.1. Thus

47

we have 8
>>>>>>>>><

>>>>>>>>>:

Xk
1

= GW · F(Xs1(k)
1

) +H
A,x

s2(k)
2 (zN+1)

Xk
2

= GW · F(Xs2(k)
2

) +H
x

s1(k)
1 (zN),x

s3(k)
3 (z2N+1)

Xk
3

= GW · F(Xs3(k)
3

) +H
x2

s2(k)
(z2N),x

s4(k)
4 (z3N+1)

...

Xk
p = GW · F(Xsp(k)

p) +H
x

sp�1(k)

p�1 (zpN),B.

(4.7)

To apply the theory of asynchronous methods introduced in Section 4.1 on

(3.6), define the operator H as

H(X) = ĜŴ · F(X) + Ĥ ·X +C, (4.8)

where Ĝ and Ŵ are defined as the block diagonal matrix with diagonal el-

ements G and W and Ĝ,Ŵ and Ĥ are defined in the Chapter 3. Assume

that we are given a product space E = E
1

⇥ · · · ⇥ Ep and the application

H : E ! E whose components are denoted Hi, i.e., we have

H : E ! E, X = (X
1

, . . . , Xp) ! ((HX)
1

, . . . , (HX)p),

where Xi, (HX)i = Hi(X) 2 Ei, i = 1, . . . , p.

Theorem 4.3 Assume that F is Fréchet di↵erentiable at a particular point

X⇤, then H : E ! E defined in (4.8) is also Fréchet di↵erentiable at the

particular point X⇤. Also the following relation holds,

H 0(X⇤) = ĜŴ · F0(X⇤) + Ĥ

Proof. From the problem assumption we know F is Fréchet di↵erentiable at

a particular point X, so that

F(X +�X) = F(X) + F0(X)�X + e(�X),

and the error term e(�X) satisfies

lim
�X!0

ke(�X)k
k�Xk = 0.

48

Notice that

H(X +�X) = ĜŴ · F(X +�X) + Ĥ ·X + Ĥ ·�X +C

= ĜŴ (F(X) + F0(X)�X + e(�X)) + Ĥ ·X + Ĥ ·�X +C

= ĜŴ · F(X) + Ĥ ·X +C| {z }
H(X)

+ ĜŴ · F0(X)�X + Ĥ ·�X| {z }
H0

(X)�X

+ ĜŴ · e(�X)| {z }
small

.

Assume that there exists a fixed point X⇤ of H such that H(X⇤) = X⇤.

This suggests that H is di↵erentiable at X⇤ and that H 0(X) is the linear

transformation defined by

H 0(X⇤) = ĜŴ · F0(X⇤) + Ĥ.

To prove that this is true, we only need to show that

lim
�X!0

kĜŴ · e(�X)k
k�Xk = 0

Then

kĜŴ · e(�X)k
k�Xk kĜŴkke(�X)k

k�Xk

which approaches 0 as �X ! 0. ⌅

Theorem 4.4 The asynchronous method converges if

kF0(X⇤)k
⇣
1� kĤk

⌘ 2(pN + 1)

(b� a)

N + 1

w

✓
1� cos(

⇡

N + 1
)

◆
, (4.9)

where p is the number of subdomains, N is the number of discretization points

on each subdomain.

Proof. Lemma 4.1 is used in this proof. From Theorem 4.3, we have

H 0(X⇤) = ĜŴ · F0(X⇤) + Ĥ.

49

From Lemma 4.1, the su�cient condition for convergence of asynchronous

method is ⇢(|H 0(X⇤)|) < 1. Thus the equivalent su�cient condition for con-

vergence of asynchronous method is

⇢
⇣���ĜŴ · F0(X⇤) + Ĥ

���
⌘
< 1.

Since for any vector induced matrix norm,

⇢
⇣���ĜŴ · F0(X⇤) + Ĥ

���
⌘
< kF0(X⇤)kkĜŴk+ kĤk

= kF0(X⇤)kkĜŴk+ kĤk

Thus it is su�cient to consider the condition

kF0(X⇤)kkĜŴk+ kĤk < 1.

This is equivalent to

kF0(X⇤)k 1� kĤk
kĜŴk

=
⇣
1� kĤk

⌘ 2(pN + 1)

(b� a)

N + 1

w

✓
1� cos

✓
⇡

N + 1

◆◆
.

where p is the number of subdomains, N is the number of discretization points

on each subdomain. ⌅
Note that the bound (4.9) is also dependent on the number of subdomains

p, the number of discretization points on each subdomain N and the domain

size b � a. In general, the larger the bound (3.4), the larger the class of

problems for which the method converges. If b � a is small, the bound (4.9)

is larger. Also we can increase the number of the subdomains p to obtain a

larger bound in (4.9). The bound (4.9) is similar to the bound (3.4) except for

one extra term. The advantage of asynchronous method is that it can make

e�cient use of computation resources, avoid processor idle time and speed up

the computation.

50

4.3 Numerical Experiments

In this section, a few numerical examples are presented illustrating the

performance of the asynchronous methods. The numerical results obtained

are compared with the analytical solution for each example. These are found

to be in good agreement with each other.

Example 1. We will consider the following coupled second order ODE

system of two equations defined on the interval (0, b), where b > 0 is some

arbitrary constant:

(
ü(z) = �u(z)v(z)� u3(z) + 2 + z2ez + z6

v̈(z) = v(z)� u2(z) + z4
(4.10)

with boundary value conditions
8
>>>>><

>>>>>:

u(0) = 0

u(b) = b2

v(0) = 1

v(b) = eb.

(4.11)

The true solution u(z), v(z) are

(
u(z) = z2

v(z) = ez.
(4.12)

We apply the shooting method, the nonlinear finite di↵erence method and

the integral method on this example with di↵erent values of b, i.e., di↵erent

interval size, and compare the accuracy of each numerical solution.

In Table 4.1, we compare the error of the numerical results between four

di↵erent methods. The error of the solutions for several di↵erent interval sizes

from 5 to 35 are shown. In Table 4.2, we compare the residual of the numerical

result between the four di↵erent methods. The residual of the solutions for

several di↵erent interval sizes from 5 to 35 are shown. In Table 4.3, we compare

the computational time of the four di↵erent methods. The computational time

of the methods for several di↵erent interval sizes from 5 to 35 are shown.

51

Table 4.1: Comparison of error in results of di↵erent methods

Interval
size

Asynchronous
Finite-
di↵erence
method

Shooting
method

Integral
method

Asynchronous
Integral
method

5 2.52e-07 5.17e-9 1.98e-07 2.62e-07
10 1.21e-06 2.75e-04 1.49e-06 2.11e-06
15 2.06e-06 3.66e-02 1.22e-06 2.06e-06
20 9.80e-06 7.87e-02 3.64e-06 6.75e-05
25 1.98e-05 8.64e-02 4.50e-06 9.07e-05
30 4.59e-05 4.56e-02 1.49e-05 3.20e-05
35 3.64e-05 6.85e-02 2.72e-05 6.40e-05

Table 4.2: Comparison of residual in results of di↵erent methods

Interval
size

Asynchronous
Finite-
di↵erence
method

Shooting
method

Integral
method

Asynchronous
Integral
method

5 1.13e-10 1.56e-10 1.06e-10 1.39e-10
10 5.25e-09 3.96e-05 4.02e-09 5.43e-09
15 1.15e-09 9.45e-03 1.06e-09 1.58e-09
20 7.45e-08 5.24e-03 4.50e-08 7.64e-08
25 9.05e-08 3.56e-02 7.90e-08 1.46e-07
30 5.90e-07 8.43e-02 7.03e-08 1.24e-07
35 9.06e-07 9.84e-02 9.05e-07 2.35e-07

52

Table 4.3: Comparison of computational time in results of di↵erent
methods
Interval
size

Asynchronous
Finite-
di↵erence
method

Shooting
method

Integral
method

Asynchronous
Integral
method

5 125s 87s 164s 132s
10 327s 389s 379s 308s
15 2519s 4122s 3684s 3099s
20 6480s 8050s 7135s 6320s
25 15924s 23748s 19562s 17510s
30 31935s 58365s 40624s 31374s
35 69428s 97004s 82257s 69399s

This numerical example shows that the finite di↵erence and integral method

perform better than the shooting method, especially on large intervals. For

example, when the interval size is 35, i.e., the interval is (0, 35). The slope

of the true solution is very large, approximately e35. The shooting method

performs very badly when the slope is large. In conclusion, finite di↵erence

methods and the integral methods are better in the extreme case when the

slope is very large, which is also the case we are more likely to encounter in

mathematical modelling of biofilm.

For asynchronous computations, we simulate how the algorithm runs on

multiple processors or multiple computers by using MATLAB Parallel Com-

puting Toolbox. You can run multiple MATLAB workers (MATLAB com-

putational engines) on a single machine to execute applications in parallel,

with Parallel Computing Toolbox. This approach allows more control over

the parallelism than with built-in multithreading, and is often used for coarser

grained problems such as running parameter sweeps in parallel.

In our example, each processor is responsible for updating the appointed

subdomain. We simulate communications and random delays in the algorithm.

For configuration of random delay, the algorithm adopts several ranges for

di↵erent delay levels, and a discrete distribution indicating the percentage

53

of processors at each delay level. For example, we can input ranges [0.6, 1],

[0.2, 0.6], [0, 0.2] for high/medium/low delays, and a distribution (0.2, 0.4, 0.4),

then 20% of the processors will have a high random delay in range from 60% to

100% of the computation time, and 40% of the processors will have a random

delay in range from 20% to 60% of the computation time, and 40% of the

processors will have a random delay in range from 0 to 20% of the computation

time. For results shown in the Table 4.1-4.3, seven threads are used with the

following random delay setups: thread one has 60% random delay, thread two

and five have 40% random delay, thread three and four have 15% random

delay, thread six has 65% random delay and thread seven has 30% random

delay.

Example 2 Consider the equation
(

ü(z) = �zu(z)� 2zv(z)� 4 cos (z) + (4z � 2z2 � 2) sin (z)

v̈(z) = �v(z)� z2u(z) + 2(4� z2 + z3) sin (z)� (⇡2 � 1) sin (⇡z)
(4.13)

with boundary value conditions
8
>>>>><

>>>>>:

u(0) = 0

u(1) = 0

v(0) = 0

v(1) = 0.

(4.14)

The true solution u(z), v(z) are
(

u(z) = 2 sin (z)(1� z)

v(z) = sin (⇡z).
(4.15)

In Table 4.4, the error, residual and computational time of the four meth-

ods are shown separately. From the experiment results in the Table 4.4, we

can see the asynchronous finite di↵erence method and asynchronous integral

method is similar in terms of computational time. We can see that however,

finite di↵erence is slightly better in terms of error and residual attained. Note

that applying the asynchronous technique on the integral method results in a

improvement in terms of computational time compared to synchronous integral

method.

54

Table 4.4: The numerical result of Example 2

Category Asynchronous
Finite-
di↵erence
method

Shooting
method

Integral
method

Asynchronous
Integral
method

Error 2.6124e-04 2.2998e-02 5.2361e-03 5.9702e-03
Residual 6.8301e-09 4.8107e-04 1.7903e-09 4.8233e-09
Time 169s 575s 298s 173s

55

CHAPTER 5

OPTIMIZATION

CONSTRAINED ODE:

APPLICATION TO BIOFILM

MODELING

5.1 Background and Motivation

Biofilms are a collective of one or more types of microorganisms that can

grow on many di↵erent surfaces. Microorganisms that form biofilms include

bacteria, fungi and protists. A biofilm is an assemblage of surface-associated

microbial cells that is enclosed in an extracellular polymeric substance matrix.

The biofilm consists of about 85–96% water, which means that only 2–5% of

the total biofilm volume is detectable on dry surfaces [69].

Biofilms have been extensively studied over the past 20 years. Microbio-

logical, physical, chemical, and microscopic methods have been applied to the

study of biofilms. Mathematical models are powerful tools for understanding

the function and evolution of biofilms in diverse communities, and early e↵orts

on the mathematical modeling of biofilms can be traced back to the 1980s; see,

e.g., [53, 54]. These studies are centered mostly on the steady-state biofilm

56

growth dynamics, and kinetic models are used to model them. The studies

focused on modeling biofilms’ thickness and spatial distribution of microbial

species and substrate concentration. In [76], kinetics-free methods are used

in modeling the biofilm where the classic kinetics functions are replaced by

cell-level steady state metabolic pathway models.

Kinetic models have been developed in the past for modeling biofilms [73].

Kinetic models are based on the evaluation of the kinetic constants of the

chemical reactions used to simulate the biological process. For example, in

modeling the kinetics of the solid-state fermentation process, the parameters

such as specific growth rate, process yield, process productivity, process control

criteria, strategy for the production of a particular product, are involved [55].

For kinetic modeling approach, all reaction pathways can be decomposed

into a series of elementary reaction steps, each of which is either unimolecular

or bimolecular. By simulating each key step of a reaction, one can thus con-

struct a model of the original pathway, independent of its complexity [70]. In

kinetics modeling approach, most studies employ the reaction rate equations

(RRE) to model biochemical systems. In the RRE, one simply defines the

changes in the concentrations (or equivalently the number of molecules) as a

function of time and location [52].

In [76], the authors propose a new approach, namely a systematic approach

to model biofilm system in which a steady state kinetics dynamics is adopted.

The advantage is that the model does not rely on information might be un-

available such as the kinetic rate parameters. Also, in [76] one stated goal is

that of maximizing the biomass production, that is, an optimization approach

is used. Additionaly, in [76] the environmental conditions can be imposed by

setting constraints on the reaction fluxes.

Biofilm modeling is an important area of study. Microbial biofilms are ubiq-

uitous in nature and clinical and public health microbiologists have recognized

that biofilms should be studied to understand a number of infectious disease

processes [40]. According to a study, the formation and persistence of surface-

attached microbial communities, known as biofilms, are responsible for 75%

57

of human microbial infections (National Institutes of Health [43]). Biofilm

formation is a complicated dynamical process governed by various physical,

chemical principles and biological protocols. In conclusion, biofilm modeling

is both an important topic and a complex system to study [75].

5.2 Optimization Constrained ODE: Biofilm

System Example

We illustrate a model of biofilms by presenting a system of a single species

biofilm taken from [76]. The biofilm is grown on a nutrient base, and it is

considered to be glucose here. The biofilm is also exposed to oxygen from the

top.

There are three kinds of internal (to the cells) metabolism in the biofilm

growing process.

1). Glucose and oxygen together produced biomass through full respiration.

2). Lactate and oxygen together produced biomass through full respiration.

3). Glucose itself produced the lactate and biomass through fermentation

without oxygen.

There are also three kinds of exchange between internal and external (to

the cells) metabolites in the biofilm growing process: 1). Exchange of oxygen;

2). Exchange of glucose; 3). Exchange of lactate.

The model we consider is presented in the following. Denote the exter-

nal (to cells) concentrations of oxygen, glucose and lactate by C
1

, C
2

, C
3

and

denote the three fluxes of oxygen, glucose and lactate between interior and

exterior of cells by e
1

, e
2

, e
3

. We begin with the ODE part,

Dk
d2

dz2
Ck(z) = �ek(z), k = 1, 2, 3, (5.1)

58

with z 2 (0, L) and

e
1

(z) = ��
1

(z)� �
3

(z),

e
2

(z) = ��
1

(z)� �
2

(z),

e
3

(z) = �
2

(z)� �
3

(z),

(5.2)

with boundary conditions

C
1

|z=0

= 0, C
2

|z=0

= C0

2

, C
3

|z=0

= 0, (5.3)

C
1

|z=L = CL
1

,
@C

2

@z
|z=L = 0,

@C
3

@z
|z=L = 0. (5.4)

The boundary conditions are representations of the biofilm growing on top

of an agar base made of glucose with exposure from above to oxygen. For

the concentration of oxygen, C
1

at z = 0 being 0 means that the oxygen

concentration at the bottom of the biofilm is zero, and C
1

at z = L being

CL
1

means that the oxygen concentration on the top of the biofilm is equal

to the air concentration. For the concentration of glucose C
2

at z = 0 being

CL
2

means that the glucose concentration at the bottom of the biofilm is equal

to the glucose nutrient base concentration, and the derivative of C
2

at z = L

being 0 means that the glucose cannot be exchanged between the biofilm and

the air. For the concentration of lactate C
3

at z = 0 being 0 means that all

lactate is consumed at the bottom of biofilm, and derivative of C
3

at z = L

being 0 means that the lactate cannot enter from biofilm to air.

The optimization part can be summarized as below. We maximize for each

of the z’s as follows,

max
�1(z),�2(z),�3(z)

Y
Glu

�
1

(z) + Y
Ferm

�
2

(z) + Y
Lac

�
3

(z). (5.5)

with the constraints

�j(z) � 0, j = 1, 2, 3,

and �0s satisfy the constraints

�ek(z)
⌘kCk(z)

Kk + Ck(z)
, k = 1, 2, 3, (5.6)

59

The inflow of the fluxes is bounded by the right hand side of equation

(5.6). The �’s are flux amplitudes produced by each of three metabolites, i.e.,

glucose full respiration, lactate full respiration and glucose fermentation. The

optimization goal is to maximize the total biomass production rate of the three

metabolites in the biofilm system with the inflow bounds and nonnegative flux

amplitudes of each of the metabolisms.

The spatial domain [0, L] is discretized into n sub-intervals of size L/n.

Denote

� = (�T
1

,�T
2

,�T
3

)T ,

C = (CT
1

,CT
2

,CT
3

)T .

�j = (�j,1, . . . , �j,n)
T , 1 j 3,

Ck = (Ck,1, . . . , Ck,n)
T , 1 k 3.

A given flux � determines the right hand side of the di↵erential equation (5.1)

through (5.2), and the corresponding concentration profiles C are obtained by

solving the di↵erential equation (5.1). The mapping from � to C is denoted

by a function C = C(�).

We will use the notations of the following formulas. There are n objective

functions, one for each interval. Denote

~�i = (�
1,i, �2,i, �3,i)

T ,

which is the flux vector � on the i-th sub-interval.

The optimization problem can be equivalently described on the i-th subin-

terval by

max
�1,i(z),�2,i(z),�3,i(z)

Y
Glu

�
1,i(z) + Y

Ferm

�
2,i(z) + Y

Lac

�
3,i(z). (5.7)

with the constraints

�j(z) � 0, j = 1, 2, 3,

and �0s satisfying the constraints

A · ~�i Bi(�,C(�)), k = 1, 2, 3, (5.8)

60

where

A =

0

BB@

1 0 1

1 1 0

0 �1 1

1

CCA ,

Bi(�,C(�)) =

0

BB@

B
1,i

B
2,i

B
3,i

1

CCA =

0

BB@

⌘1C1,i

K1+C1,i

⌘2C2,i

K2+C2,i

⌘3C3,i

K3+C3,i

1

CCA ,

The optimization step involves looping over all sub-intervals, and we used

an alternating scheme to solve this, namely we solve for the ODE problem first

and the optimization problem second, using the result to solve a new ODE and

continue alternating between the ODE problem and the optimization problem:

Initialization:

Pick an initial �(0)

Let �̃
(0)

= �(k)

Solve for C(�(k)) from the ODE problem

for i = 1 to n (loop over subintervals) do
Solve the optimization problem

max�1,i,�2,i,�3,i YGR�1,i + YGF�2,i + YLR�3,i

subject to A · ~�i Bi(�
(k),C(�(k))), ~�i � 0

set �̃
(i)

as �̃
(i�1)

with i-th component replaced by ~�i.

end

�(k+1) = �̃
(n)

Do until k�(k+1) � �(k)k < 10�6k�(k)k

Theorem 5.1 (Contraction-Mapping Theorem) [46] Suppose that G : D ⇢
Rn ! Rn maps a closed set D

0

⇢ D into itself and that

kGx�Gyk ↵kx� yk, x, y 2 D
0

,

for some ↵ < 1. Then, for any x0 2 D
0

, the sequence x(k+1) = Gxk, k =

0, 1, . . . , converges to the unique fixed point x⇤ of G in D
0

and

kxk � x⇤k [↵/(1� ↵)]kxk � xk�1k, k = 1, 2,

61

Proof. See 12.2.1 in [46].

Theorem 5.2 If
⌘
max

L2

8
< 1,

where ⌘
max

= max{⌘
1

, ⌘
2

, ⌘
3

} and L is the right boundary of the domain [0, L],

consider the operator ~B : R3n ! R3n in (5.9):

~B(k)(�) = (B
1

(�(k),C(�(k)))T , . . . , Bn(�
(k),C(�(k)))T)T

with

Bi(�,C(�)) = (B
1,i(�,C(�)), B

2,i(�,C(�)), B
3,i(�),C(�))T .

Then

k ~B(k+1) � ~B(k)k < k�(k+1) � �(k)k

and the iteration converges as k ! 1.

Proof. By (5.4), we know

Bi(�,C(�)) = (B
1,i(�,C(�)), B

2,i(�,C(�)), B
3,i(�,C(�))T

=

✓
⌘
1

[g(�e
1

)]i
K

1

+ [g(�e
1

)]i
,

⌘
2

[g(�e
2

)]i
K

2

+ [g(�e
2

)]i
,

⌘
3

[g(�e
3

)]i
K

3

+ [g(�e
3

)]i

◆T

where

g(�ek) =

Z L

0

Gk(z, x)(�ek(x))dx, k = 1, 2, 3

and Gk(z, x) is the corresponding Green’s function for the di↵erential equa-

tion. Furthermore, the notation [g(�ek)]i is the g(�ek) evaluated at the i-th

discretization point zi = iL/n. From (5.2), we know that

|e(k+1)

1

� e(k)
1

| = |� �(k+1)

1

(z)� �(k+1)

3

(z) + �(k)
1

(z) + �(k)
3

(z)|

 |�(k+1)

1

� �
1

(k)|+ |�(k+1)

3

� �(k)
3

|

Similarly we can have

|e(k+1)

2

� e(k)
2

| |�(k+1)

1

� �(k)
1

|+ |�(k+1)

2

� �(k)
3

|

62

|e(k+1)

3

� e(k)
3

| |�(k+1)

2

� �(k)
1

|+ |�(k+1)

3

� �(k)
3

|

Thus

|e(k+1

j � e(k)j | 2k�(k+1) � �(k)k. (5.9)

We have under maximum norm,

k ~B(k+1) � ~B(k)k = max
i

kBi(�
(k+1) � �(k))k

 max
1in

max
1j3

kBj,i(�
(k+1))� Bj,i(�

(k))k

= max
1in

max
1j3

⌘j[g(�e(k+1)

j)]i

Kj + [g(�e(k+1)

j)]i
�

⌘j[g(�e(k)j)]i

Kj + [g(�e(k)j)]i

!

= max
1in

max
1j3

kj⌘j
⇣
[g(�e(k+1)

j)]i � [g(�e(k)j)]i
⌘

⇣
Kj + [g(�e(k+1)

j)]i
⌘⇣

Kj + [g(�e(k)j)]i
⌘

 max
1in

max
1j3

⇣⌘j
2

⇣
[g(�e(k+1)

j)]i � [g(�e(k)j)]i
⌘⌘

 max
z2R

max
1j3

⌘j
2

✓Z L

0

Gj(z, x)(�e(k+1)

j (x))dx�
Z L

0

Gk(z, x)(�e(k)j (x))dx

◆

 ⌘
max

2
max
z2R

max
1j3

Z L

0

|Gj(z, x)|
����e(k+1)

j (x) + e(k)j (x)
��� dx

 ⌘
max

2

✓
max
z2R

max
1j3

Z L

0

|Gj(z, x)| dx
◆
2k�(k+1) � �(k)k by(5.9)

= ↵k�(k+1) � �(k)k

where

↵ = ⌘
max

✓
max
z2R

max
1j3

Z L

0

|Gj(z, x)| dx
◆

From (2.12), we have

↵ ⌘
max

L2

8
.

Thus if

⌘
max

L2

8
< 1,

then ↵ < 1 and the method converges. ⌅
Figure 5.1 below is the result for glucose, oxygen and lactate concentration

density with respect to biofilm thickness. The numerical result in Figure 5.1

63

Figure 5.1: Glucose, Oxygen and Lactate concentration density as computed
by 100 subdomains

is obtained with a MATLAB 2019a implementation run on a DELL XPS 15

9570 with Windows 10 64-bit, an Intel Core i7 processor, and 32GB of RAM.

The number of subdomains p = 100, the number of discretization points on

each subdomain N = 10. An initial approximation is used as follows

C
1

(z) = CL
1

z/L, C
2

(z) = C0

2

, C
3

(z) = 0.

Note that we obtained di↵erent results when we did not apply the over-

lap domain decomposition technique, as shown in Figure 5.2, where we used

domain size p = 1 and N = 5000 discretization points. One possible reason

is that the system could have several di↵erent solutions satisfying the con-

straints. In other words, using the overlap domain decomposition technique

64

Figure 5.2: Glucose, Oxygen and Lactate concentration density without over-
lap domain decomposition

can find the solution where the slope of the particular solution is very steep

on a large domain as is discussed in previous chapters.

The underlying biological meaning of Figure 5.1 is that at the bottom of the

biofilm, when the oxygen level is low, glucose fermentation produces lactate

and biomass without oxygen. Then the lactate produced by glucose fermen-

tation di↵uses to the upper part of the biofilm. As the oxygen concentration

gradually increases in the upper part of the biofilm, the lactate respiration

produces biomass with small amount of oxygen . At the top, when the oxygen

level is high, all the lactate remaining are respired to produce biomass.

65

5.3 Computational Method

In this section, we discuss some computational methods for solving the

problem of the just described biofilm model.

We will consider the problem in two parts, the first part is the ODE part

and the second part is the optimization part.

ODE part:

The ODE in the biofilm optimization constrained ODE problem is de-

scribed in the equation (5.1) and the boundary conditions (5.3), (5.4).

To solve this problem, first the spatial domain [0, L] is divided into p over-

lapping subdomains with equal length as in Figure 3.2. Each one of the sub-

domains is solved with Dirichlet boundary data taken from the neighboring

subdomain in the previous step.

Dirichlet boundary condition in two subdomains case

Suppose Ĉk, k = 1, 2, 3, is the true solution for the ODE problem (5.5).

Consider the error function ek = Ck � Ĉk. We have the domain (0, L) is

decomposed into two subdomains ⌦
1

= (0, r
1

) and ⌦
2

= (l
2

, L) with l
2

< L.

Let e1k(n) and e2k(n) denote the error in the first and second subdomains at the

n-th iteration for k = 1, 2, 3. The errors satisfy

d2e1k(n+1)

dz2
= 0

e1k(n+1)

(0) = 0

e1k(n+1)

(r
1

) = e2k(n)(r1).

and
d2e2k(n+1)

dz2
= 0

e2k(n+1)

(l
2

) = e1k(n)(l2)

e2k(n+1)

(L) = 0.

Then we get

e1k(n+1)

(z) = e2k(n)(r1)
z

r
1

66

e2k(n+1)

(z) = e1k(n)(l2)
L� z

L� l
2

Thus we have

e2k(n+1)

(r
1

) = e2k(n�1)

(r
1

)
L� r

1

L� l
2

l
2

r
1

Let � = r
1

� l
2

denotes the size of the overlap, we have

e2k(n+1)

(r
1

) = e2k(n�1)

(r
1

)
L� r

1

L� l
2

l
2

r
1

=
1� �/(L� l

2

)

1 + �/l
2

e2k(n�1)

(r
1

)

Thus if the overlap � > 0 then we have

1� �/(L� l
2

)

1 + �/l
2

< 1·

Then the Dirichlet boundary condition in the neighboring subdomains makes

the solution converge to the true solution, which is continuous and di↵eren-

tiable.

Now we consider p subdomains. Let Cj
k denotes the k-th concentration on

the j-th subdomain, then we consider the following problems on each subdo-

main on p subdomains.

ODE for the first subdomain: Let C1

k denotes the k-th concentration

on the first subdomain and C2

k denotes the k-th concentration on the second

subdomain. The ODE in the biofilm optimization constrained ODE problem

we are solving on the first subdomain is

Dk
d2

dz2
C1

k(z) = �e1k(z), k = 1, 2, 3, (5.10)

with boundary conditions

C1

k |z=0

= 0,

C1

k |z= ˆN+1

= C2

k |z= ˆN+1

,

k = 1, 2, 3.

ODE for the j-th subdomain with 1 < j < p: Let Cj
k denotes the

k-th concentration on the j-th subdomain where 1 < j < p. The ODE in

67

the biofilm optimization constrained ODE problem we are solving on the j-th

subdomain is

Dk
d2

dz2
Cj

k(z) = �ejk(z), k = 1, 2, 3, (5.11)

with boundary conditions

Cj
k|z=(j�1)

ˆN = Cj�1

k |z=(j�1)

ˆN ,

Cj
k|z=j ˆN+1

= Cj+1

k |z=j ˆN+1

,

k = 1, 2, 3,

i.e., each one of the subdomains is solved with Dirichlet boundary data taken

from the neighboring subdomain in the previous step.

ODE for the p-th subdomain:

Let Cp
k denotes the k-th concentration on the p-th subdomain and Cp�1

k

denotes the k-th concentration on the (p � 1)-th subdomain. The ODE in

the biofilm optimization constrained ODE problem we are solving on the last

subdomain is

Dk
d2

dz2
Cp

k(z) = �epk(z), k = 1, 2, 3, (5.12)

with boundary conditions

Cp
k |z=(p�1)

ˆN = Cp�1

k |z=(p�1)

ˆN , k = 1, 2, 3,

Cp
1

|z=p ˆN+1

= CL
1

,
@Cp

2

@z
|z=p ˆN+1

= 0,
@Cp

3

@z
|z=p ˆN+1

= 0.

Finite Di↵erence Method for the ODE:

Below we discuss the finite di↵erence method, note this is an approxima-

tions to the true ODE solution [4, 19, 23, 38, 49, 65, 67].

The spatial domain [0, L] is divided into p overlapping subdomains with

equal length and finite di↵erence method is employed for the ODE problem on

each spatial subdomain. To apply finite di↵erences, each spatial subdomain is

divided into N̂ sub-intervals.

68

Recall that second-order center-di↵erence approximations of d2

dz2
Ck(z) at

grid point i is

d2

dz2
Ck(zi) =

Ck(zi+1

)� 2Ck(zi) + Ck(zi�1

)

�z2
+O(�z2).

Replacing d2

dz2
Ck(z) by the second-order centered-di↵erence approximation and

evaluating all terms at interior grid point i gives

Ck(zi+1

)� 2Ck(zi) + Ck(zi�1

)

�z2
+O(�z2) = �ek(zi), i = 2, . . . , p� 1.

We will use Dirichlet boundary conditions for the neighboring subdomains.

Finite di↵erence method of the ODE part for the first subdomain:

For the approximation solution on the first subdomain, the interior finite

di↵erence is
C1

k(zi+1

)� 2C1

k(zi) + C1

k(zi�1

)

�z2
= �e1k(zi)

where 1 i N̂ . Since the Dirichlet boundary condition is given on the left

end boundary is when i = 1

C1

k(z2)� 2C1

k(z1) + C1

k(z0)

�z2
= �e1k(z1)

and C1

k(z0) = 0 is given.

Similarly, for the right end boundary condition the Dirichlet boundary

condition is also given, i.e., when i = N̂ we have

C1

k(z ˆN+1

)� 2C1

k(z ˆN) + C1

k(z ˆN�1

)

�z2
= �e1k(z1)

and C1

k(z ˆN+1

) = C2

k(z ˆN+1

) is given.

Finite di↵erence method of the ODE part for the j-th subdomain

with 1 < j < p:

We discuss approximation solution on the j-th subdomain with 1 < j < p.

The interior finite di↵erence is

Cj
k(zi+1

)� 2Cj
k(zi) + Cj

k(zi�1

)

�z2
= �ejk(zi)

69

where (j�1)N̂+1 i jN̂ for each subdomain. Since the Dirichlet boundary

condition is given on the left end boundary is when i = (j � 1)N̂ + 1

Cj
k(z

(j�1)

ˆN+2

)� 2Cj
k(z

(j�1)

ˆN+1

) + Cj
k(z

(j�1)

ˆN)

�z2
= �ejk(z

(j�1)

ˆN+1

)

and Cj
k(z

(j�1)

ˆN) = Cj�1

k (z
(j�1)

ˆN) is given.

Similarly, for the right end boundary condition the Dirichlet boundary

condition is also given, i.e., when i = jN̂ we have

Cj
k(zj ˆN+1

)� 2Cj
k(zj ˆN) + Cj

k(zj ˆN�1

)

�z2
= �ejk(zj ˆN)

and Cj
k(zj ˆN+1

) = Cj+1

k (zj ˆN+1

) is given.

Finite di↵erence method of the ODE part for the p-th subdomain:

We discuss the approximation solution on the p-th subdomain, the interior

finite di↵erence is

Cp
k(zi+1

)� 2Cp
k(zi) + Cp

k(zi�1

)

�z2
= �epk(zi)

where (p� 1)N̂ + 1 i pN̂ + 1 for the p-th subdomain. Since the Dirichlet

boundary condition is given on the left end boundary is when i = (p�1)N̂ +1

Cp
k(z

(p�1)

ˆN+2

)� 2Cp
k(z

(p�1)

ˆN+1

) + Cp
k(z

(p�1)

ˆN)

�z2
= �epk(z

(p�1)

ˆN+1

)

and Cp
k(z

(p�1)

ˆN) = Cp�1

k (z
(p�1)

ˆN) is given.

For the Neumann boundary condition on the right hand side, consider the

finite di↵erence grid in the neighborhood of point zp ˆN+1

, which is illustrated

in Figure 5.3. In Figure 5.3 the point zp ˆN+2

is outside the domain, the point

zp ˆN+1

is on the right boundary of the domain and the point zp ˆN is inside the

domain. To evaluate the second order centered-di↵erence approximation at

the right boundary point we need to use the point zp ˆN+2

outside the domain.

The second order centered-di↵erence approximation at boundary point

zp ˆN+1

is given by the following equation evaluated at i = pN̂ + 1

Cp
k(zp ˆN+2

)� 2Cp
k(zp ˆN+1

) + Cp
k(zp ˆN)

�z2
= �epk(zp ˆN+1

),

70

zp ˆN zp ˆN+2

zp ˆN+1

Figure 5.3: Right boundary condition discretization.

where the point zp ˆN+2

is outside of the solution domain. The value of zp ˆN+2

is unknown. It can be approximated by expressing the derivative boundary

condition at point zp ˆN+1

in finite di↵erence form as follows:

d2

dz
Cp

k(zp ˆN+1

) =
Cp

k(zp ˆN+2

)� Cp
k(zp ˆN)

2�z
+O(�z2).

Solving for Cp
k(zp ˆN+2

) gives

Cp
k(zp ˆN+2

) = Cp
k(zp ˆN) + 2�z

d2

dz
Cp

k(zp ˆN+1

) +�zO(�z2)

Truncating the remainder term yields an expression for Cp
k(zp ˆN+2

):

Cp
k(zp ˆN+2

) = Cp
k(zp ˆN) + 2�z

d2

dz
Cp

k(zp ˆN+1

)

Substituting and simplifying yields the desired finite di↵erence

Cp
k(zp ˆN) + 2�z d2

dz
Cp

k(zp ˆN+1

)� 2Cp
k(zp ˆN+1

) + Cp
k(zp ˆN)

�z2
= �epk(zp ˆN+1

),

where d2

dz
Cp

k(zp ˆN+1

) is already given, thus we have

2Cp
k(zp ˆN)� 2Cp

k(zp ˆN+1

) = ��z2epk(zp ˆN+1

)� 2�z
d2

dz
Cp

k(zp ˆN+1

).

Optimization part:

Consider the following optimization problem for each z:

max
�1(z),�2(z),�3(z)

YGR�1

(z) + YGF�2

(z) + YLR�3

(z).

71

such that

�
1

(z) � 0, �
2

(z) � 0, �
3

(z) � 0

�
1

(z) + �
3

(z) ⌘
1

C
1

(z)

K
1

+ C
1

(z)

�
1

(z) + �
2

(z) ⌘
2

C
2

(z)

K
2

+ C
2

(z)

��
2

(z) + �
3

(z) ⌘
3

C
3

(z)

K
3

+ C
3

(z)
·

(5.13)

The optimization and ODE are related to each other by the variable �k, k =

1, 2, 3, in the optimization and the right hand side of the ODE ek(z), k = 1, 2, 3,

as follows:

e
1

(z) = ��
1

(z)� �
3

(z),

e
2

(z) = ��
1

(z)� �
2

(z),

e
3

(z) = �
2

(z)� �
3

(z).

(5.14)

Optimization part for j-th subdomain:

Let �j
k denotes the parameters �k for the j-th subdomain. Consider the

following optimization problem for each z:

max
�j
1(z),�

j
2(z),�

j
3(z)

YGR�
j
1

(z) + YGF�
j
2

(z) + YLR�
j
3

(z).

such that

�j
1

(z) � 0, �j
2

(z) � 0, �j
3

(z) � 0

�j
1

(z) + �j
3

(z) ⌘j
1

Cj
1

(z)

K
1

+ Cj
1

(z)

�j
1

(z) + �j
2

(z) ⌘j
2

Cj
2

(z)

K
2

+ Cj
2

(z)

��j
2

(z) + �j
3

(z) ⌘j
3

Cj
3

(z)

K
3

+ Cj
3

(z)
·

(5.15)

Method for the optimization

The interior-point methods (also referred to as barrier methods) [50, 71, 72]

can be used for the optimization (5.15). For simplicity, denote f(x) by

f(x) = � (YGRx1

+ YGFx2

+ YLRx3

)

72

and denote the constraints ci, i = 1, . . . , 6 by

c
1

= x
1

c
2

= x
2

c
3

= x
3

c
4

=
⌘j
1

Cj
1

(z)

K
1

+ Cj
1

(z)
� x

1

� x
3

c
5

=
⌘j
2

Cj
2

(z)

K
2

+ Cj
2

(z)
� x

1

� x
2

c
6

=
⌘j
3

Cj
3

(z)

K
3

+ Cj
3

(z)
+ x

2

� x
3

.

The optimization (5.15) is equivalent to the following optimization.

min f(x) subject to ci(x) � 0 for i = 1, . . . , 6. (5.16)

First the logarithmic barrier function associated with the optimization (5.16)

is

B(x, µ) = f(x)� µ
6X

i=1

log(ci(x)). (5.17)

Here µ is a small positive scalar, sometimes called the “barrier parameter”.

As µ converges to zero the minimum of B(z, µ) should converge to a solution

of (5.16). The barrier function gradient is

gb = g � µ
6X

i=1

1

ci(z)
rci(x) (5.18)

where g is the gradient of f(x), and rci is the gradient of ci.

In addition to the original (“primal”) variable z we introduce a Lagrange

multiplier inspired dual variable �

ci(x)�i = µ, i = 1, . . . , 6. (5.19)

We try to find those (xµ,�µ) for which the gradient of the barrier function

is zero. Applying (5.19) to (5.18), we get an equation for the gradient:

g � AT� = 0, (5.20)

where the matrix A is the Jacobian of the constraints c(x).

73

The intuition behind (5.20) is that the gradient of f(x) should lie in the

subspace spanned by the constraints’ gradients.

Applying Newton’s method to (5.19) and (5.20), we get an equation for

(x,�) update (px, p�). Because of (5.16), (5.19) the condition � � 0 should be

enforced at each step. This is done by choosing appropriate ↵:

(x,�) ! (x+ ↵px,�+ ↵p�).

Relation between optimization and ODE:

On each of the subdomain, the optimization and ODE are related to each

other by the variable �j
k, k = 1, 2, 3 in the optimization and the right hand side

of the ODE ejk(z), k = 1, 2, 3 as follows:

ej
1

(z) = ��j
1

(z)� �j
3

(z),

ej
2

(z) = ��j
1

(z)� �j
2

(z),

ej
3

(z) = �j
2

(z)� �j
3

(z).

(5.21)

5.4 A Second Biofilm Model Example

In this model, we consider two types of bacteria, Staphylococcus aureus (S.

aureus) and Staphylococcus epidermidis (S. epidermidis). S. epidermidis is a

Gram-positive bacterium, and one of over 40 species belonging to the genus

Staphylococcus. It is part of the normal human flora, typically the skin flora,

and less commonly the mucosal flora. It is a facultative anaerobic bacteria. S.

aureus is a Gram-positive, round-shaped bacterium that is a member of the

Firmicutes, and it is a usual member of the microbiota of the body, frequently

found in the upper respiratory tract and on the skin.

Consider the following model

d2Ci(z, t)

dz2
=

⌘Ci(z, t)

K + Ci(z, t)
Bi(z, t), i = 1, 2 (5.22)

with boundary conditions

Ci(0, t) = 0, i = 1, 2

74

Ci(10
�3, t) = 4⇥ 10�4, i = 1, 2,

where C
1

represents the oxygen concentration for S. aureus, C
2

represents the

oxygen concentration S. epidermidis, B
1

represents the population of S. aureus

and B
2

represents the population of S. epidermidis.

Additionally, the bacteria population Bi(z, t) satisfies

dBi(z, t)

dt
= ri(z, t)Bi(z, t), i = 1, 2 (5.23)

with initial conditions

Bi(z, 0) = 1, i = 1, 2

where r
1

is the growth rate of S. aureus and r
2

is the growth rate of S. epi-

dermidis. The growth rates r
1

(z, t), r
2

(z, t) are not fixed parameters like ⌘, K,

instead the growth rates r
1

, r
2

are derived from the open source optimization

software COnstraints Based Reconstruction and Analysis (COBRA)1.

The openCOBRA project is an open preject which provides a repository for

people to contribute directly to the open project. The openCOBRA project

also makes it easier for people to access to the many core features of COBRA.

The openCOBRA project can be used in Matlab, Python, Julia and some

other languages.

For this example, we use flux balance analysis (FBA), which we briefly

introduce next; and in fact, we use the FBA function of the COBRA soft-

ware. FBA is a mathematical approach for analyzing the flow of metabolites

through a metabolic network [47]. Kinetic parameters and concentration of

the metabolites in the system are rarely required in flux balance analysis. FBA

is based on two assumptions, one is that the system is in a steady state and

the concentrations stay the same, and the other one is the system is optimized

for a biological goal because of the evolution, for example, maximizing the

growth rate or minimizing resource consumption rate. Concentration changes

are represented as the product of the stoichiometric matrix S and the vec-

tor of unknown fluxes v. The product is set to be zero to represent that the

1The openCOBRA project, Available from: https://opencobra.github.io/

75

changes are zero and the system is steady. Linear programming is then used

to calculate a solution of fluxes corresponding to the steady state [37].

The linear programming (LP) problem (5.24) below can be used to estimate

the vector of unknown fluxes,

min
v

cTv

s.t. Sv = 0

l v u

(5.24)

where c 2 Rn is a vector and cTv is optimized based on the opitmization

assumption of FBA. S 2 Rm⇥n is a stoichiometric matrix, where m is the

number of molecular species and n is the number of reactions. Sv = 0 means

the system is in a balance state. The FBA consists of finding a v that optimizes

the objective function while satisfying all the constraints. The u represents

the upper bound and l represents the lower bound [47].

FBA can find an optimal flux vector v that both satisfy the optimization

and the steady state assumptions we introduced earlier. We need to set a

upper bound and lower bound for the flux vector in (5.24).

Calculating growth rate under aerobic conditions by COBRA:

The preparation of a metabolic network for a FBA process needs lots of

work and can take months or years. The aerobic model metabolic network is

provided by courtesy of Dr. Cristal Zuniga from the University of California

San Diego.

First we need to rename the model to avoid confusion. Rename the model

also makes it easier for future references. We are considering the aerobic model,

so we rename the model as “modelaerobic”.

modelaerobic = model ;

The ‘changeRxnBounds’ function changes the flux constraints of the lower

(’l’), upper (’u’), or both the bounds (’b’), of the specified reaction. Here, we

will change the maximal uptake of oxygen to min
⇣
0,� ⌘iCi(z,t)

Ki+Ci(z,t)

⌘
and denote

it by ‘flux’.

76

modelaerobic =

changeRxnBounds (modelaerobic , ‘ EX o2 [smp] ’ , f lux , ‘ l ’) ;

The function ‘optimizeCbModel’ can be used to maximize or minimize for

a objective reaction by specifying the optimization type parameter and it will

return a solution, and the solution optimizes the system while satisfying the

constraints.

FBAaerobic = optimizeCbModel (modelaerobic , ’max ’)

We then can get the growth rates of the two types of bacteria by using

Biomass = find (modelaerobic . c) ;

Growthrate = FBAaerobic . x (Biomass) ;

After we get the growth rate from COBRA by inputting the oxygen bound

for each type of bacteria, we then solve for the population for each type of

bacteria and then use it get a new oxygen bound and we iterate the above

process until convergence. To summarize, we solved this system using the

iteration steps.

Initialization:

Let B(0)

i (z, t) = ones(m,n), ✏ = 1e� 4

for k = 1 to 1 do

Solve for C(k)
i (z, t) with parameter B(k�1)

i (z, t)

Solve for r(k)i (z, t) with parameter C(k)
i (z, t) (This step is obtained

from COBRA)

Solve for B(k)
i (z, t) with parameter r(k)i (z, t)

if kB(k)
i (z, t)� B(k�1)

i (z, t)k < ✏ then
break;

end

end

C
1

(z, t) = C(k)
1

(z, t), r
1

(z, t) = r(k)
1

(z, t), B
1

(z, t) = B(k)
1

(z, t)

Figure 5.4, 5.5 and 5.6, show the oxygen, logarithm of oxygen and glucose

concentration on the domain, we can see the oxygen concentration increases

77

Figure 5.4: Oxygen concentration and S.aureus and S. epidermidis population

78

Figure 5.5: Logarithm of oxygen concentration and S.aureus and S. epider-
midis population

79

Figure 5.6: Glucose concentration and S. aureus and S. epidermidis population

and glucose decreases near the right boundary of the domain. The figures also

show the population of S. aureus and S. epidermidis, we can see that the S.

epidermidis has a larger population than S. aureus. We can also see there is a

population increasing near the right boundary of the domain where has higher

oxygen concentration and moderate glucose concentration.

5.5 Conclusion

From the numerical simulations, we can get some insight from the biofilm

modeling problem. For the first model, we can see that when oxygen level is

low, glucose fermentation is the major metabolic process going on. We can also

see that when oxygen is high, lactate respiration is the major metabolic process

80

producing biomass. For the second model, we can see that the oxygen and

glucose are both important factors in the biofilm growth and how the correlate

with the biofilm growth. We can see from the result that the bacteria needs a

proper concentration range of both oxygen and glucose for a large growth rate

and oxygen is essential in the biofilm growth.

81

CHAPTER 6

CONCLUSION

In this thesis, we have considered the second order ODEs with optimization

constraints arising in biofilm modeling. The major theoretical contribution of

this thesis is that we propose a new numerical method with techniques such

as domain decomposition and asynchronous iterations. We also presented

theoretical conditions for the convergence of each of the techniques.

In addition to the theoretical results on the convergence of the method,

we performed a variety of numerical experiments. These experiments were

performed with a variety of parameters, for di↵erent domain sizes, as well as

various slopes of the underlying solution, on which we ran the algorithm with

and without each of the domain decomposition and asynchronous iterations

techniques.

As expected from the proven theoretical results, we are able to solve big-

ger multi-scale problems with steeper slope than previously possible with the

domain decomposition technique and solve the problem more e�ciently with

the asynchronous technique.

Moreover, in biofilm modeling, the ordinary di↵erential equations are often

coupled with an optimization problem, we present an alternating scheme in

which we fix the value of the constraints, solve the ODE, then use this solution

as data for the optimization problem, giving rise to new constraints and we

repeat the process. Again, we propose conditions under which this process

82

converges.

As an application, we applied the algorithm to the biofilm modeling prob-

lems. From the numerical experiments, we can get biology insights like how

metabolic process is a↵ected by oxygen concentration, and how the growth of

biofilm bacteria is a↵ected by various factors such as glucose and oxygen.

We can see that, both in theory and in the considered numerical exper-

iments, the numerical methods developed can be applied to this problem of

solving second order ODEs with optimization constraints.

83

REFERENCES

[1] José Álvarez-Ramı́rez, Francisco J. Valdés-Parada, and Jesus Álvarez.

A Green’s function formulation for finite-di↵erences schemes. Chemical

Engineering Science, 62(12):3083–3091, 2007.

[2] Dganit Amitai, Amir Averbuch, Moshe Israeli, Samuel Itzikowitz, and Eli

Turkel. A survey of asynchronous finite-di↵erence methods for parabolic

PDEs on multiprocessors. Applied Numerical Mathematics, 12(1-3):27–

45, 1993.

[3] Mohamed-Naim Anwar and Mouhamed Nabih El Tarazi. Asynchronous

algorithms for Poisson’s equation with nonlinear boundary conditions.

Computing, 34(2):155–168, 1985.

[4] Uri M. Ascher, Robert M. Mattheij, and Robert D. Russell. Numerical

Solution of Boundary Value Problems for Ordinary Di↵erential Equations.

SIAM, Philadelphia, 1994.

[5] Mordecai Avriel. Nonlinear Programming: Analysis and Methods.

Prentice-Hall, Englewood Cli↵s, NJ, 1976.

[6] Erwin H. Bareiss. Numerical solution of linear equations with Toeplitz

and vector Toeplitz matrices. Numerische Mathematik, 13(5):404–424,

1969.

[7] Wayne W. Barrett. A theorem on inverse of tridiagonal matrices. Linear

Algebra and its Applications, 27:211–217, 1979.

84

[8] György Barton. Elements of Green’s functions and propagation: poten-

tials, di↵usion, and waves. Oxford University Press, Oxford, 1989.

[9] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors.

Journal of the ACM, 25(2):226–244, 1978.

[10] Selçuk Ş. Bayin. Mathematical Methods in Science and Engineering. Wi-

ley Online Library, 2006.

[11] James V. Beck, Kevin D. Cole, Abdolhossein S. Haji-Sheikh, and Bahman

Litkouhl. Heat conduction using Green’s function. Taylor & Francis,

Philadelphia, 1992.

[12] Dimitri P. Bertsekas. Distributed asynchronous computation of fixed

points. Mathematical Programming, 27(1):107–120, 1983.

[13] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed

Computation: Numerical Methods. Prentice-Hall, Englewood Cli↵s, NJ,

1989.

[14] Dimitri P. Bertsekas and John N. Tsitsiklis. Some aspects of parallel and

distributed iterative algorithms—a survey. Automatica, 27(1):3–21, 1991.

[15] Seetharama M. Bhat and Debasish Ghose. Performance of parallel shoot-

ing method for closed loop guidance of an optimal launch vehicle trajec-

tory. Optimization and Engineering, 1(4):399–435, 2000.

[16] Tuncer Cebeci and Herbert B. Keller. Shooting and parallel shooting

methods for solving the falkner-skan boundary-layer equation. Journal of

Computational Physics, 7(2):289–300, 1971.

[17] William G. Characklis. Fouling biofilm development: a process analysis.

Biotechnology and Bioengineering, 102(2):310–347, 2009.

[18] Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear Algebra

and its Applications, 2(2):199–222, 1969.

85

[19] Eusebius J. Doedel. Finite di↵erence collocation methods for nonlinear

two point boundary value problems. SIAM Journal on Numerical Anal-

ysis, 16(2):173–185, 1979.

[20] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An Introduction

To Domain Decomposition Methods: Algorithms, Theory, And Parallel

Implementation. SIAM, Philadelphia, 2015.

[21] Dean G Du↵y. Green’s functions with applications. CRC Press, Boca

Raton, FL, 2015.

[22] Mouhamed Nabih El Tarazi. Some convergence results for asynchronous

algorithms. Numerische Mathematik, 39(3):325–340, 1982.

[23] Elsayed M. Elbarbary and Maher El-Kady. Chebyshev finite di↵erence

approximation for the boundary value problems. Applied Mathematics

and Computation, 139(2-3):513–523, 2003.

[24] Mohamed Elouafi. On a relationship between Chebyshev polynomials and

Toeplitz determinants. Applied Mathematics and Computation, 229:27–

33, 2014.

[25] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and

Daniel Rixen. FETI-DP: a dual–primal unified FETI method—part I: A

faster alternative to the two-level FETI method. International Journal

for Numerical Methods in Engineering, 50(7):1523–1544, 2001.

[26] Christodoulos A. Floudas and Panos M. Pardalos. Encyclopedia Of Op-

timization, volume 1. Springer, New York, 2001.

[27] Andreas Frommer. Parallele asynchrone iterationen in: J. Herzberger

(Ed.) Wissenschaftliches Rechnen, Akademie, Berlin, 1995, pp. 187-231

(Chapter 4).

[28] Andreas Frommer and Daniel B. Szyld. Asynchronous two-stage iterative

methods. Numerische Mathematik, 69(2):141–153, 1994.

86

[29] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Jour-

nal Of Computational and Applied Mathematics, 123:201–216, 2000.

[30] Michael J.C. Gover. The eigenproblem of a tridiagonal 2-Toeplitz matrix.

Linear Algebra and its Applications, 197:63–78, 1994.

[31] Christian Grossmann, Hans-Görg Roos, and Martin Stynes. Numerical

Treatment Of Partial Di↵erential Equations. Springer, New York, 2007.

[32] Sung N. Ha. A nonlinear shooting method for two-point boundary value

problems. Computers & Mathematics with Applications, 42(10-11):1411–

1420, 2001.

[33] Eliseo Hernández-Mart́ınez, Francisco J. Valdés-Parada, and José

Álvarez-Ramı́rez. A Green’s function formulation of nonlocal finite-

di↵erence schemes for reaction–di↵usion equations. Journal of Compu-

tational and Applied Mathematics, 235(9):3096–3103, 2011.

[34] Joe D. Ho↵man and Steven Frankel. Numerical Methods For Engineers

And Scientists. CRC Press, Boca Raton, FL, 2018.

[35] Raymond W. Holsapple, Ram Venkataraman, and David Doman. New,

fast numerical method for solving two-point boundary-value problems.

Journal of Guidance, Control, and Dynamics, 27(2):301–304, 2004.

[36] Arieh Iserles. A First Course In The Numerical Analysis Of Di↵erential

Equations. Cambridge University Press, Cambridge, 2009.

[37] Kenneth J Kau↵man, Purusharth Prakash, and Jeremy S Edwards.

Advances in flux balance analysis. Current opinion in biotechnology,

14(5):491–496, 2003.

[38] Herbert B. Keller. Numerical Methods For Two-point Boundary-value

Problems. Courier Dover Publications, New York, 2018.

87

[39] Addolorata Marasco and Antonio Romano. Scientific Computing with

Mathematica R�: Mathematical Problems for Ordinary Di↵erential Equa-

tions. Springer, New York, 2001.

[40] Philip D Marsh. Dental plaque as a biofilm and a microbial community–

implications for health and disease. In BMC Oral health, volume 6, page

S14. BioMed Central, 2006.

[41] John C. Mason. Chebyshev polynomials of the second, third and fourth

kinds in approximation, indefinite integration, and integral transforms.

Journal of Computational and Applied Mathematics, 49(1-3):169–178,

1993.

[42] Yuri A. Melnikov. Green’s functions in applied mechanics. Computational

Mechanics Publications, Southampton, 1995.

[43] Sylvie Miquel, Rosyne Lagrafeuille, Bertrand Souweine, and Christiane

Forestier. Anti-biofilm activity as a health issue. Frontiers in microbiology,

7:592, 2016.

[44] David D. Morrison, James D. Riley, and John F. Zancanaro. Multiple

shooting method for two-point boundary value problems. Communica-

tions of the ACM, 5(12):613–614, 1962.

[45] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer,

New York, 2006.

[46] James M. Ortega and Werner C. Rheinboldt. Iterative Solution of Non-

linear Equations in Several Variables. SIAM, Philadelphia, 2000.

[47] Je↵rey D. Orth, Ines Thiele, and Bernhard Ø. Palsson. What is flux

balance analysis? Nature Biotechnology, 28(3):245, 2010.

[48] Dan Erik Petersen. Block tridiagonal matrices in electronic structure cal-

culations. PhD thesis, Dept. of Computer Science, Copenhagen Univer-

sity, 2008.

88

[49] Michael B. Porter and Edward L. Reiss. A note on the relationship be-

tween finite-di↵erence and shooting methods for ode eigenvalue problems.

SIAM Journal on Numerical Analysis, 23(5):1034–1039, 1986.

[50] Florian A. Potra and Stephen J. Wright. Interior-point methods. Journal

of Computational and Applied Mathematics, 124(1-2):281–302, 2000.

[51] Lothar Reichel and Lloyd N. Trefethen. Eigenvalues and pseudo-

eigenvalues of Toeplitz matrices. Linear Algebra and its Applications,

162:153–185, 1992.

[52] Haluk Resat, Linda Petzold, and Michel F Pettigrew. Kinetic modeling

of biological systems. In Computational Systems Biology, pages 311–335.

Springer, 2009.

[53] Bruce E Rittmann and Perry L McCarty. Evaluation of steady-state-

biofilm kinetics. Biotechnology and Bioengineering, 22(11):2359–2373,

1980.

[54] Bruce E Rittmann and Perry L McCarty. Model of steady-state-biofilm

kinetics. Biotechnology and bioengineering, 22(11):2343–2357, 1980.

[55] Jose A Rodŕıguez-León, Júlio C de Carvalho, Ashok Pandey, Carlos R

Soccol, and Daniel E Rodŕıguez-Fernández. Kinetics of the solid-state

fermentation process. In Current Developments in Biotechnology and Bio-

engineering, pages 57–82. Elsevier, 2018.

[56] Andrzej P. Ruszczyński. Nonlinear Optimization. Princeton University

Press, Princeton, NJ, 2006.

[57] David A. Sánchez. An alternative to the shooting method for a certain

class of boundary value problems. The American Mathematical Monthly,

108(6):552–555, 2001.

89

[58] Robert E. Schilson and Neal R Amundson. Intraparticle di↵usion and

conduction in porous catalysts—I: Single reactions. Chemical Engineering

Science, 13(4):226–236, 1961.

[59] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel com-

puting: From dataflow to multithreading. Parallel and Distributed Com-

puting Practices, 1(1):3–30, 1998.

[60] Gordon D. Smith. Numerical Solution Of Partial Di↵erential Equations:

Finite Di↵erence Methods. Oxford University Press, Oxford, 1985.

[61] Daphne Soares and Webe J. Mansur. A time domain FEM approach

based on implicit Green’s functions for non-linear dynamic analysis. Inter-

national Journal for Numerical Methods in Engineering, 62(5):664–681,

2005.

[62] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis.

Springer, New York, 2013.

[63] Yangfeng Su, Amit Bhaya, Eugenius Kaszkurewicz, and Victor S.

Kozyakin. Further results on convergence of asynchronous linear iter-

ations. Linear Algebra and its Applications, 281(1-3):11–24, 1998.

[64] Daniel B. Szyld. Di↵erent models of parallel asynchronous iterations with

overlapping blocks. Computational and Applied Mathematics, 17:101–115,

1998.

[65] Ikram A. Tirmizi and Edward H. Twizell. Higher-order finite-di↵erence

methods for nonlinear second-order two-point boundary-value problems.

Applied Mathematics Letters, 15(7):897–902, 2002.

[66] Andrea Toselli and Olof Widlund. Domain Decomposition Methods-

Algorithms And Theory. Springer, New York, 2006.

[67] Lloyd N. Trefethen. Finite di↵erence and spectral methods

for ordinary and partial di↵erential equations. Available at

90

http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html, un-

published text, 1996.

[68] Oskar Von Stryk and Roland Bulirsch. Direct and indirect methods for

trajectory optimization. Annals of Operations Research, 37(1):357–373,

1992.

[69] Gun Wirtanen, ERNA STORGARDS, and Maria Saarela. 4.2 detection

of biofilms in the food and beverage industry. 2000.

[70] Olaf Wolkenhauer, Peter Wellstead, Kwang-Hyun Cho, Ramon Grima,

and Santiago Schnell. Modelling reaction kinetics inside cells. Essays in

biochemistry, 45:41–56, 2008.

[71] Margaret Wright. The interior-point revolution in optimization: history,

recent developments, and lasting consequences. Bulletin of the American

Mathematical Society, 42(1):39–56, 2005.

[72] Stephen J. Wright. Interior point methods for optimal control of dis-

crete time systems. Journal of Optimization Theory and Applications,

77(1):161–187, 1993.

[73] Shang-Tian Yang, Xiaoguang Liu, and Yali Zhang. Metabolic

engineering–applications, methods, and challenges. In Bioprocessing for

Value-Added Products from Renewable Resources, pages 73–118. Elsevier,

2007.

[74] Valentin F. Zaitsev and Andrei D. Polyanin. Handbook of Exact Solutions

For Ordinary Di↵erential Equations. CRC Press, Boca Raton, FL, 2002.

[75] Tianyu Zhang, Breana Pabst, Isaac Klapper, and Philip S. Stewart. Gen-

eral theory for integrated analysis of growth, gene, and protein expression

in biofilms. PloS one, 8(12):e83626, 2013.

91

[76] Tianyu Zhang, Albert Parker, Ross P. Carlson, Phil S. Stewart, and Isaac

Klapper. Flux-balance based modeling of biofilm communities. bioRxiv,

page 441311, 2018.

