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ABSTRACT

Rigorous Experimental Mathematics Applied to the Goulden-Jackson Method ,

Construction of Symmetric Chains and the Sprague-Grundy Function

Xiangdong Wen

DOCTOR OF PHILOSOPHY
Temple University, May, 2005
Professor Shiferaw Berhanu, Chair

Professor Doron Zeilberger, Co-Chair

Experimental mathematics is a type of mathematical investigation in which
computation is used to investigate mathematical structures and identify their fun-
damental properties and patterns. As in other experimental sciences, experimental
mathematics can be used to make mathematical predictions which can then be ver-
ified or falsified on the bases of additional computational experiments.

In this thesis, we apply computer technology to three problems: 1. Discovering
and proving Symmetric Chain Decompositions for Young’s Lattices L(3,n) and
L(4,n); 2. Making Extensions of the Goulden-Jackson Cluster method; 3. Finding

and proving additive periods for the Sprague-Grundy function of Wythoff’s game.
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CHAPTER 1

INTRODUCTION

Nowadays, with the development of computer technology and the enhancement
of the work of mathematicians, a new approach to mathematics, using computing
technology in mathematical research, which is often called experimental mathemat-
ics, has provided new and effective ways for problem-solving. Computers can serve
as a “laboratory” for mathematicians, in which he/she can perform experiments
such as analyzing examples, testing out new ideas, and/or searching for patterns.

Computers have been utilized by mathematicians to solve many problems which
otherwise would be extremely time-consuming or impossible to solve. Mathemati-
cians can use computers to prove theorems automatically, obtain proofs for theo-
rems which are difficult to prove with traditional approaches (e.g. the Four-Color
Problem [28]). Computer graphics are also useful in searching for patterns (e.g.

Cellular Automata [27]). With the help of computers, mathematicians can observe



the structures of different systems with parameters changed, solve differential equa-
tions, and compute integrals.

Computers can perform two main functions in the field of mathematics: carring
out numerical calculations and presenting new areas of research. Thanks to the
efficiency of computers, a mathematician can gather a great amount of different
data and facts concerning the problems of his/her interest. Moreover, with the aid
of computers, mathematicians could carry out different “tests” to find the results
and patterns of mathematical properties.

Experimental mathematics is a type of mathematical investigation in which
computation is used to investigate mathematical structures and to identify their fun-
damental properties and patterns. As in other experimental sciences, experimental
mathematics can be used to make mathematical predictions which can then be veri-
fied or falsified on the basis of additional computational experiments. Borwein and
Bailey ([3],[23]) use the term “experimental mathematics” to mean the methodol-

ogy of doing mathematics that includes the use of computation for:

e Gaining insight and intuition;

Discovering new patterns and relationships;

Using graphical displays to suggest underlying mathematical principles;

Testing and especially falsifying conjectures;

Exploring a possible result to see if it is worth a formal proof;



e Suggesting approaches for a formal proof;
¢ Replacing lengthy hand derivations with computer-based derivations;

e Confirming analytically derived results.

In addition, sometimes it is possible to do compeltely rigorous computer gen-
erated research, for example, in the Wilf-Zeilberger theory([20]). The present
thesis is in a similar vein, but applied to different kinds of problems. In this thesis,

we apply the computer generated research to three problems:

¢ Finding and proving the Symmetric Chain Decompositions for the Young’s

lattices;
e Making extensions of the Goulden-Jackson Cluster method,;

e Finding and proving the additive periods for the Sprague-Grundy function.

1.1 Finding SCD for the Young's L attices

The famous Young’s partition lattice L(m,n) consists of the set of integer-
vectors

(ay,a2, -+ ,am), 0<a; <ay<---<a,<n,

with the order relation

a<b if a;<b for 1=1,2,---,m.



The rank r is defined by
r(ad) = Z a;.
=1

And a chain 07 <3 < --- < v in L(m,n) is called saturated if it skips no ranks

and is called symmetric if
r(v1) + r(v;) = mn.

A Symmetric Chain Decomposition (SCD) of a poset is a way of expressing it
as a disjoint union of saturated symmetric chains.

One of the major problems in order theory is the explicit construction of SCD
for Young’s Lattice for all m and n. In 1989, Kathy O’Hara ([19], see also [30]) as-
tounded the combinatorial world by constructing SCD for the “trivial extension’ of
L(m,n), in which all partitions of one rank are related to the next; but the problem
remains wide open for Young’s lattice itself.

SCDs for L(4,n) and L(3,n) have been constructed by West([26]) and Lind-
strom([15]). In this thesis we explicitly provide complete SCDs for L(4,n) and
L(3,n), which were found with the assistance of our computer. And far more in-
terestingly, The proof is completely automatic without any human help (except for
writing the general Maple program).

We hope the present approach will ultimately lead to computer - generated or at

least computer-assisted constructions of SCDs for L(m,n), or at least for L(5,n).



Meanwhile we are unable to do the case of L(5,n). We also hope the present
methodology will be useful for future attacks on this challenging and tantalizing

problem.

1.2 Making Extensionsof the Goulden-Jackson Clus-

ter Method

LetV = {aj,aq,- - ,aq} be afinite alphabet and B be a finite set of words (on
V). Suppose ¢(n) is the total number of words with length » that avoid the words

in B as factors. The aim is to find the generating function

F&) =Y a(n)t" (1.1)

in an efficient way.

The Goulden - Jackson cluster method ([11],[12]), which is widely used in solving
this kind of problem, has been beautifully explained, extended, and implemented
by J. Noonan and D. Zeilberger ([18]). However, their Maple packages require
that the cardinality of the alphabet is a numeric argument rather than symbolic.
In chapter 3 we extended the method into the latter case, thereby initiating the
Symbolic Goulden-Jackson Method.

Another observation is that much of the information is lost in 1.1, since the



single variable ¢ only accounts for the length . In order to keep track of the order,

we set up the general generating function

glar, az, -+ ,aq) = Z Z Wy Wz W3-+ Wn (1.2)

n=0 wiwsz--wnEL(B)

where the operation “-” is noncommutative. The generating function (1.2) preserves
not only the information of letters in a word but also the order of the letters. Actually
it contains all the information of the language £(B), all the words that avoid words
in B as factors. In chapter 4, we develop the noncommutative Goulden-Jackson
method to find a rational form of the function (1.2).

At Chapter 5 we apply the cluster method to the two dimensional cases.

1.3 Finding and Proving the Additive Periodsfor the

Sprague-Grundy Function of Wythoff’'s Game

Generally experimental mathematics needs the following steps to find certain
properties and rules for mathematical expressions: Given a Problem(n), param-
eterized by integer n, apply a standard (or new) numerical algorithm to get the
Answers(n) forn =1,2,---,100. Then have the human, or much better still, the
machine, guess the symbolic answer Answer(n), for symbolic n. Finally, use the

machine to prove the guess automatically. In chapter 6, we provide a way to use the



computer to find the additive periods for the Sprague-Grundy function of Wythoff’s

game and get an automatic proof.



CHAPTER 2

COMPUTER-GENERATED SCD

FOR L(3,n) AND L(4,n)

2.1 Introduction

Recall that the famous Young’s partition lattice L(m,n) consists of the set of

integer-vectors
(ay,a2, - ,am), 0<a; <ay<---<a,<n,
with the order relation

a<b if a<b for 1=1,2,---,m.



The rank r is defined by

And recall thatachainv; < v <--- <o

=1

in L(m, n) is called saturated if it skips

no ranks and is called symmetric if

r(v1) + r(vg) = mn.

A Symmetric Chain Decomposition(SCD) of a poset is a way of expressing it
as a disjoint union of saturated symmetric chains.

One of the major problems in order theory is the explicit construction of SCDs
for Young’s Lattice for all m and n. In 1989, Kathy O’Hara ([19], see also [30]) as-
tounded the combinatorial world by constructing SCDs for the “trivial extension” of
L(m,n), in which all partitions of one rank are related to the next; but the problem
remains wide open for Young’s lattice itself.

SCDs for L(4,n) and L(3,n) have been constructed by West([26]) and Lind-
strom([15]). In this paper we explicitly provide complete SCDs for L(4,n) and
L(3,n), which were found by the assistance of our computer. And far more in-
terestingly, it is proved completely automatically without using any human help
(except for writing the general Maple program). While our construction for L(4, n)
is not equivalent to West’s construction, it is nevertheless of the similar format. On

the other hand, our construction for L(3,n) is more elegant than Lindstrom’s, since
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it is not split into even and odd cases.

We hope the present approach will ultimately lead to computer-generated, or at
least computer-assisted, constructions of SCDs for L(m,n), or at least for L(5,n).
Meanwhile we are unable to do the case of L(5,n). We also hope the present
methodology will be useful for future attacks on this challenging and tantalizing

problem.

2.2 New SCDsfor L(3,n) and L(4,n)
Theorem 1 Table 2.1 and Table 2.2 give symmetric chain decompositions for

L(3,n)and L(4,n)

respectively, where i, 7 and & are generic non-negative integers and vertical dots
represent that the only component that is not the same gets decreased by 1. For

example,

n—i—3j,n—1—2j,n—7)...(i+j,n—1i—2j4,n—7j)

is a shorthand for the chain:

(n—i—3j—an—i—2jn—7j),a=0...n—2i—4j.
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Table 2.1: A complete SCD for L(3,n)

Cij D
2 +4j <n 2i+4j+3<n
(n-i-3j, n-i-2j, n-j) (n-i-35-1, n-i-2j-1, n-j-1)
(i, n-i-2j, n-j ) (n-i-3j-1, n-i-2j-1, n-i-j-1)
(i+j, i+2j, n-j) (], n-i-2j-1, n-i-j-1)
(i+j, i+2], i+3j) (j, i+2j+1, n-i-j-1)
(], i+2], i+3]) (, i+2j+1, i+3j+2)

Proof: The chains are clearly saturated and symmetric. Thus we only need to prove
that each vector in L(m,n) (m = 3,4) appears only once in the tables. We intro-
duce the commuting indeterminate x1, zs, - - - , z,, and ¢, and define the weight for

avector @ = (ay, a9, - ,ay) in L(m,n) as the following:
W(a@; 1, Tay - Tys ) = (ot)™ ™™ (2 8) ™ 7m0 e (@1 8) 2 (2 0)
For a fixed m, it is easy to see that the total weight,
iw(&), where @ € L(m,n),
n=0

IS a generating function

1
(1 —xot)(1 —qt) -+ (1 — zp0t)

G(t;'xthv T 7'rm) -
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Table 2.2: A complete SCD for L(4,n)
Cijk
20+2j+3k<n
( n-2k-2j-i, n-2K-j-i, n-k-j, n-k)
(k+i, n-2K-j-i, n-k-j, n-k)
( k+i, K+j+i, n-k-j, n-k )
( k+i, K+j+i, 2k+j+i, n-k)
( ki, k+j+i, 2K+j+i, 2k+2j+i)
(k, K+j+i, 2k+j+i, 2k+2j+i)
(k, K+j, 2k+j+i, 2k+2j+i)
Dijk
214+274+3k+3<n
( n-2k-2j-i-1, n-2k-j-i-1, n-k-j-1, n-k)
( n-2k-2j-i-1, n-2k-j-i-1, n-k-i-j-1, n-k)
( n-2k-2j-i-1, n-2k-j-i-1, n-k-i-j-1, n-k-i-1)
(k, n-2k-j-i-1, n-k-i-j-1, n-k-i-1)
(k, K+j, n-k-i-j-1, n-k-i-1)
(k, K+j, 2k+j+i+1,  n-k-i-1)
(k, K+j, 2k+j+i+l, 2k+2j+i+2)
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Each term in the expanded power series of G(t;x1,zs, -+, z,,) has coefficient
1 and corresponds to a unique vector in L(m,n). On the other hand, for each
vector in L(m,n), there is a unique corresponding term in the power series of
G(t; 1,29, - ,2,). Therefore, to prove that each vector in L(m,n) (m = 3,4)
appears only once in the SCDs is the same as to prove that the total weights of the
vectors in the given chains are G(t; z1, z2, x3) and G(t; x1, za, x3, x4) respectively.

The part of summing over all the weights of the vectors is done by computer. [ |

This method of proof can be applied to any conjectured SCD. The difficult part is
to find such decompositions. Here we need human-computer interactions by using
a modified greedy algorithm. Once it is found, the verification part is purely auto-
matic by using the Maple program Lmn. Lmn can also be used to give completely
automatic proofs of the validity of Lindstrom’s and West’s constructions. For gen-

eral m,n, an explicit construction of SCDs of L(m, n) is still an open problem.

2.3 TheMaple Package

The summation of all the weights of the vectors in the given chains is automat-
ically done by computer. The Maple package is available at
http://www.math.temple.edu/"wen/lattice/ .
After downloading the file to the local disk, type

read(““Lmn™);



14

in the Maple workspace. There is detailed on-line help on how to use the procedures
in the package Lmn. Procedures to compute the total weights of the vectors in SCDs

given by Lindstrom[15] and by West[26] are also included in the package Lmn.
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CHAPTER 3

THE SYMBOLIC GJ CLUSTER

METHOD

3.1 Introduction

Let V' be a finite alphabet v = {a;,as, -+, a4} and let B be a finite set of
words (on V). Suppose ¢(n) is the total number of words with length » that avoid

the words in B as factors. The aim is to find the generating function

F&) =Y a(n)t" (3.1)

in an efficient way.

The Goulden-Jackson cluster method([11],[12]), which is widely used in solving
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these kinds of problems, has been beautifully explained, extended, and imple-
mented by J. Noonan and D. Zeilberger ([18]). However, their Maple packages
require that the cardinality of the alphabet is a numeric argument rather than sym-
bolic. In this chapter we extended the method into the latter case, thereby initiating

the Symbolic Goulden-Jackson Method.

3.2 Review of the Goulden-Jackson Cluster M ethod

Recall that a factor of the word w,w, - - - w,, is one of the words

that we shall denote by [7, j]. Two factors [é, j] and [/, ;'] overlap if they have at

least one common letter.

The length of the word w = wywy - - - w, is |w| = n; and the weight of the word w

is weight(w) = tI*! = t™. Obviously, the generating function (3.1) is the same as

where £(B) is the set of all words over V' that avoid the members of B as factors.

A word with some factors marked is called a mar ked word. Here we only consider

the case when the marked factors are the words in B. A marked word can be written
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in the following form:

(w; [i1, 1], [i2, Jols - -+ [4, 4i]), where [i,., j.] , 1 < r < [ are marked factors.

For example, let V' = {1,2,3}, B = {123,231,312} and w = 12312. There are

totally 22 marked words for w:

(12312;), (12312;[1,3)), (12312; ]2, 4]),
(12312;[3, 5]), (12312;[1, 3], [2,4]), (12312;[1,3], [3, 5]),

(12312, [2,4],[3,5]), (12312:[1,3],[2,4],[3, 5]).

Define the weight of a marked word w with marked factors S, S C B as

weight(w, S) = (—1)151vl,

where | S| is the cardinality of S.

Let V* be the set of all words generated by V'; and Let

Bw):=B() J {(w i}

0<i<j<n

We have
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Theorem 2 :

Z weight(w Z Z weight(w, S). (3.2)

weLl(B weV* SCB(w)

Proof: The basic idea in the proof is to use the inclusion-exclusion principle.

ft) = Zweﬁ(B) weight(w)
= Y ey weight(w)0B®) define 00 = 1
= Syere ML+ (-1))50)
= Dwev th! ZSCB(w)(—l)w
= Duevr ZSCB(w)<_1>|S‘t‘w|

= Zwe\/* ZSCB(w) Wght(w’ S)

By the theorem, the calculation of the generating function (3.1) is then transfered
to finding the generating function for the weighted marked words (3.2) which is

much easier to weight-count by the Goulden-Jackson cluster method.

A cluster is a marked word

(w1w2 c Wy [Zl(: 1)7j1]7 [i27j2]7 ) [ilajl(: n)])7

where [i, jx] overlaps with [iy 1, jp1] forall k =1,2,--- 1 — 1.
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A nonempty marked word either ends with a letter that is not part of a cluster, or
ends with a cluster. Peelingoff the maximal cluster, we get a shorter marked word.

Thus we have the following decomposition

M = {empty — word} U MV U MC.

Taking weights on both sides and solving for weight(M), we have

1
1 —dt— weight(C)

f(t) = weight(M) (3.3)

The only step left is to find weight(C).

For a given word w = wyws - - - w,, let HEAD(w) be the set of all proper prefixes:

HEAD(w) = {wiwy - wilk =1,2,--- ;n—1},

and T'AI L(w) be the set of all proper suffixes

TA]L(U)) = {wkwkH .- 'wn|k/’ =23, 7n}a

and let

OVERLAP(u,v) := TAIL(u) N HEAD(v).
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Let u/v denote the operation of chopping the head v from the word . For example:

12321/12 = 321. Let

(u:v) = Z weight(v/x).

2€OVERLAP (u,v)

The set of clusters C can be partitioned into

c=Jcpl,

veEB

where C[v], v € B is the set of clusters whose last entry is v.

Given a cluster in C[v], v € B, it either consists of just v or chopping v results in
a shorter cluster in Clu], u € B if OVERLAP(u,v) is not empty. On the other
hand, given a cluster in C[u], we can always reconstitute the bigger cluster in C[v]

by adding some words in (U, cov prrap..) v/} Hence, there exists a bijection:

Clv] < {(v;[1, [v])} | Clu]OVERLAP(u,v).

ueEB

Taking weights on both sides, we have:

weight(Clv]) = (—1) weight(v) — Z (u: v) weight(Clul). (3.4)

ueB

This is a system of | B| linear equations with | B| unknowns weight(Clv]),v € B.
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After solving these equations we can simply obtain weight(C) by:

weight(C) = Z weight(Clv)).

veEB

Because weight(C) is independent of the cardinality of the alphabet, the symbolic

Goulden Jackson can be easily implemented.

3.3 Symmetric Cases

Given an alphabet V' = {1,2, 3}, let us find the generating function for the
number of words which do not have three consecutive different letters as factors,
i.e.

B = {123,132,213,231, 312, 321}.
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By the original Goulden-Jackson cluster method, we need to set up and solve a

system of | B| = 6 linear equations with six unknowns weight(C[v]), v € B :

e

weight(C[123]) = —t* — t* weight(C[312]) — t* weight(C[321])
—tweight(C[231])

weight(C[132]) —t3 — t2 weight(C[231]) — t? weight(C[213])

—tweight(C[321])

weight(C[213]) —t3 — t* weight(C[312]) — t* weight(C[321])

—t weight(C[132])

weight(C[231]) = —t* — t?weight(C[123]) — 1> weight(C[132])
—t weight(C[312])

weight(C[312]) = —t* — t?weight(C[213]) — 1> weight(C[231])

—tweight(C[123])

weight(C[321]) —t3 — t2 weight(C[123]) — t? weight(C[132])

—tweight(C[213])

By the symmetry of B, all the clusters C[v], v € B, have the same generating
function weight(C[123]). Thus we can reduce these six equations to only one equa-

tion:

weight(C[123]) = —t* — 2t weight(C[123]) — t weight(C[123]).
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After solving it, we have

. . —6¢
weight(C) = 6weight(C123]) = T—— 57—,
and
1 22+t +1
) = 1—3t— =62~ @2yop— 1
- T 1224t

Assuming the cardinality of the alphabet V" is a symbol d, V' = {1,2,3,---d},
let us find the generating function for the number of words which do not have three

consecutive different letters as factors, i.e.

B ={123,124,125, -+ ,d(d — 1)(d — 3),d(d — 1)(d — 2)}.

By the original Goulden-Jackson cluster method, we need to set up and solve a
system of |B| = d(d — 1)(d — 2) linear equations. Using the symmetry of B, we

only need to set up and solve one equation:

weight(C[123]) = —t3 — (d —1)(d — 2)t* weight(C[123])

—(d — 2)t weight(C[123]).



Thus,

and

24

weight(C) = d(d—1)(d — 2) weight(C[123])

—d(d—1)(d —2)t?
1+ (d—1)(d—2)t2+ (d—2)t’

1
) = y
—d(d—1)(d—2)t3
1 —dt - 1+(d—1)(d—2)t2+(d—2)t

(—d*+3d—2)t* + (—d+2)t — 1
(d—2)t2+2t—1 ’

In general, if the set B is invariant under the action of the symmetric group, there

exists a more efficient way to find the generating function (3.1).

Two words u, v are equivalent, u = v if there exists a permutation A\ such that

Au) = v. By symmetry, all the elements in the equivalence class of v have the

same cluster generating function weight(C[v]) .

Define the dimension of a letter v, dim(v) as the number of different letters ap-

pearing in v. Then there are ( d(v)) different words in the equivalence class of v.

dim

Suppose the words set B is partitioned into different equivalence classes

Bla BQ) B37 T uBka
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and by, by, bs, - - - , by, are the representatives respectively. Define (b; : B;) :=

Y e B; (b; : b). Then the system (3.4) can be reduced to:

k
weight(C[bi]) = —weight(b;) — Y (b; : By)weight(C[b;]), i =1,--- k. (3.5)

Jj=1

This is a system of £ linear equations with &£ unknowns

weight(C[b;]), i=1,2,--- k.

Remember that & is the number of different equivalence classes in B. There are
many fewer equations and many fewer unknowns than in the original Goulden-
Jackson cluster method, and thus everything is much more efficient. After solving

the system, we can obtain weight(C) by

weight(C) = Z

k
—1

(dz’nj(bi)) weight(C[bi]). (3.6)

2

Given u = uququs - - - uy, let
HZ(U> = ULUg -+ Uy

and

TZ(U) = Up—j41Up—i42 " Up—1Unp,
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where 0 < 7 < n. It is easy to obtain

min(]bs,|b;])—1

where
1, ifT,(b;) = H,(b;),

0, otherwise.

In the two examples below, the first can still be done with the unextended Goulden-
Jackson, since the number of letters is numeric, 3, but the second one requires the

new extension, since the number of letters is d, i.e. a symbol.

Example 1: Let V' = {1,2,3}. Find the generating function for the number of
words which have neither three consecutive different letters nor three consecutive

same letters as factors, i.e.

B = {123,132,213,231, 312,321, 111, 222, 333}.

The set B is invariant under the symmetric group; and it can be partitioned into two

equivalence classes:

By = {123,132,213,231, 312,321}, B, = {111,222, 333}.
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By the system (3.5) and the equation (3.6), we have

(

weight(C[123]) = —t3 — 2t> weight(C[123]) — t weight(C[123])

—t? weight(C[111])

weight(C[111]) = —t3 — 2t> weight(C[123]) — t* weight(C[111])

—tweight(C[111])

and

weight(C) = 6 weight(C[321]) + 3weight(C[111]).

Solving the system, finally we get

1
t) = S
f) 1 — 3t — weight(C)
1
11— 3t — [6weight(C[321]) + 3weight(C[111])]
3+t
B 2t —1

Example2: LetV = {1,2,3,---,d}. Find the generating function for the number
of words which have neither three consecutive different letters nor three consecutive

same letters as factors.
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By (3.5) and (3.6), we have

(

weight(C[123]) = —t3 — (d — 1)(d — 2)t* weight(C[123])
—(d — 2)t weight(C[123]) — t* weight(C[111])

weight(C[111)) = —t3 — (d — 1)(d — 2)t* weight(C[123])

—t? weight(C[111]) — t weight(C[111])

and
weight(C) = d(d — 1)(d — 2) weight(C[321]) + dweight(C[111]).

Finally,

1
1 — dt — weight(C)
(—d*> +2d)t3 + (—=d®> +2d — 1)t + (1 —d)t — 1
(d-1t2+t—1 '

3.4 Finite Memory Self-Avoiding Walks

The set of so-called self-avoiding walks ([16])can be viewed as a set of words
over the alphabet

V= {17_1a27_27”' 7da _d}v
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which avoid as factors the words with as many i’s as —i’s for each 7 between 1 and

d. In other words, it is a set of words that avoid the ‘bad factors’ in

B={[1,-1],]1,2,-1,-2],[1,2,3,—1,-2,-3],-- - }

and all their images under the action of the group of signed permutations. J. Noonan
([17]) has a detailed discussion about the finite memory self-avoiding walks for
the memory up to 8. We have implemented the procedures for symmetric cases
under signed permutations too. Using our Maple package, we can automatically
get the formula of the generating functions for 2-step, 4-step and 6-step memory
self-avoiding walks. For 8-step memory self-avoiding walks, the package set up a
system of 112 linear equations but our own computer was not big enough to solve

it.

3.5 TheMaple Package

All the procedures are included in the package “SYMBOLIC_GJ”, download-

able from the web address:
http://www.math.temple.edu/~wen/gj/SYMBOLIC GJ .

The main procedures take the cardinality of the alphabet as symbolic input. More-
over the package can be used to compute generating functions for the symmetric

cases and for the finite memory self-avoiding walks.
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CHAPTER 4

THE NONCOMMUTATIVE GJ

CLUSTER METHOD

4.1 Introduction

Let V' = {ay,aq, - ,aq} be afinite alphabet with d letters. Let B be a finite
set of words (on V') and let £(B) denote the set of all words (language) over
that avoid the members of B as factors. Suppose ¢(n) is the total number of words
of length n that avoid the words in B as factors. Then using the Goulden-Jackson

cluster method ([11],[12] [18]), we can efficiently find the generating function

F6) = qln)t. (4.1)

n=0
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However much information is lost, since the single variable ¢ accounts only for the

length . In order to keep track of the order, we set up the general generating function

glar, az, -+ ,aq) = Z Z Wy Wz W3+ -+ Wn (4.2)

n=0 wiwsz--wnEL(B)

where the operation *-” is noncommutative. The generating function (4.2) preserves
not only the information of letters in a word but also the order of the letters. Actually
it contains all the information of the language £(B). In this paper, we develop a
noncommutative Goulden-Jackson method to find a rational form of the function

(4.2).

4.2 The Noncommutative Goulden-Jackson Cluster

Method

The noncommutative Goulden - Jackson cluster method is analogous to the nor-
mal Goulden-Jackson cluster method except that the definitions of the weight of a
word are different. Amazingly the procedures developed in [18] and [24] can all
be applied to the noncommutative case. Here we provide an analogous version to

make it self-contained.

A factor of the word wyws - - - w,, is one of the words w;w;41 - - - wj_jw;, 1 <@ <

J < n, that we shall denote by [, j]. Two factors [z, j] and [i’, j'] overlap if they
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have at least one common letter. The weight of a word w = w;wyws - -+ w, IS
the noncommutative product W(w) = wq - wg - - - - w,. Summing weights of all

the words in £(B),

glar,as, -+ yag) = Y W(w), (4.3)

weL(B)
gives us the general generating function (4.2).

A word with some factors marked is called a marked word. A marked word can

be written in the form:

(w; [i1, 1), [i2, Jol, - -+, [ie, Ji]), where [i,., 5] , 1 <7 <[, are marked factors.

A cluster is a marked word

(w1w2 © 0 W, [21(: 1)7j1]7 [i27j2]7 T [il,jl(: n)])?

where [ix, ji| overlaps with [ix 1, jr41] forall k = 1,2, --- | I—1. The set of clusters

C can be partitioned into

c=Jc,

ueB
where Clul], u € B, is the set of clusters whose first entry is u.

Define the weight, W, of a marked word w = w;ws - - - w, with marked factors
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S,S C B,as

W(w,S) = (=D)¥lwy - wy - ws - -+ - wy, = (1) W (w),

where |S| is the cardinality of S.

Let

w)=B() |J {wliiD}

0<i<j<|w|

Using the inclusion-exclusion principle, we have:

glar,az, - ,a0) = Yyerm W)
= Y W(w)olBe)! ( Define 0° = 1)
= Xpeve W)L+ (=1
= Lueve W) Xge (=D
= Xuers Lscnw(—1) W (w)

= Zwev* ZSCB(U}) W(w> S).

Hence the generating function (4.2) is exactly the same as the generating function
for the weighted marked word.
A nonempty marked word either starts with a letter that is not part of a cluster,

or starts with a cluster. Peelingoff the maximal cluster, we get a shorter marked
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word. Thus we have the following decomposition

M = {empty_word} U MV U MC.

Taking weights on both sides and solving it for 17 (M), we have

1

, S :WM = W
glay,as aq) (M) 1— (a1 +agy + -+ aq) — W(C)

(4.4)

For a given word w = wyws - - - w,, let HEAD(w) be the set of all proper prefixes:

HEAD(w) = {wiwy - wilk =1,2,--- ;n—1},

and T'AI L(w) be the set of all proper suffixes

TA]L(U)) = {wkwkH .- 'wn|k/’ =23, 7n}a

and

OVERLAP(u,v) := TAIL(u)NHEAD(v).

Let «/v denote the operation of chopping the head v off the word «, and let

(u:v) = > W(v/x).

€OV ERLAP (u,v)
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Given a cluster in C[u], u € B, it either consists of just « or chopping its head
w results in a shorter cluster in C[v], v € B if OVERLAP(u,v) is not empty. On
the other hand, given a cluster in C[v], we can always reconstitute the bigger cluster
in C[u] by adding some words in U, covgrrapw,.1v/z}- Hence, there exists a
bijection:

Clu] < {(u; [1, [u])} | ] C[u]OVERLAP(u,v).

veEB

Taking weights on both sides, we have:

W(Clu)) = (=1) W(u) = Y _ (u:v) - W(Cl]). (4.5)

veEB

This is a system of | B| linear equations with | B| unknowns

W(C[v]), ve€B.

The classical method cannot be used to solve the system for the product *“-” in the
equation is noncommutative. Fortunately all the unknowns in the equations are at
the rightmost part of the operand “-” . We can use multiplication on the left to
extract out the unknowns and then use the Gaussian elimination method to solve

the system. This procedure can be done automatically by computer.
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After solving these equations we can obtain W (C) by:

The symbolic method ([24]) can also be implemented because W (C) is independent
of the cardinality of the alphabet.

Example 1. Let V' = {a4,as}, find the generating function for the language
which does not have words in B = {aja;a,} as factors. Using (4.5) we set up a

system of one equation:

W(Clayar1a1]) = —a} — ay - W(Clayara1]) — a3 - W (Clara1a4]).

After solving it, we have

_ 1
W(Claiara1]) = ———— - a°,
Clmaan)) =~ gz o
and
1
glay,az) = .
1—a1—a2+71+a1+a% -ad

This can be simplified further as

1

-(14+ay+a?).
l4+a+a?)-(1—a;—a)+a3 ( 1t a)

g(a17a2) = (
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Example 2: Let V' = {ay,a2} and B = {ajas, asas}. Find the generating
function of the language which does not have words in B as factors. Using (4.5) we

set up a linear system of two equations:

W(Claiaz]) = —ai-ay —ar- W(Clazas))

W (Clasas])) = —a%— ay-W(Clasas))

After solving it, we have

W(Clasaz]) = —17 a3
W(Claras]) = —ay-az+ar- o -a3
And finally we get
(@1, 02) :
glai,az) = .
l—ay—ag+ oy - 03 + a1 -0y — a1 - 72 - @3

4.3 Avoiding Pairs

One of the most interesting problems is to find the generating function for the
language which avoids some pairs of letters as factors. [9] studies the problems of
avoiding reflexive and acyclic relation pairs. These kinds of problems can be solved
as a special case, using the Goulden-Jackson method. But there also exist a direct

way to set up equations and thus to calculate the generating function: Divide the
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whole language into d sublanguages in which the words start with the same letter.
The generating functions for each subgroup satisfy a system of linear equations
which can be solved by the revised Gaussian elimination method. And hence we
can get the generating function for the language by summing up the generating
functions for the sublanguages.

Here we give an example to illustrate how it works.

Example 3: Given an alphabet V' = {a1, a»}, and a set of pairs

B = {alal, agag}.

Find the generating function of the language that avoids words in B as factors.
Let C[a;] be the sublanguage in which each word starts with the letter a;,i = 1, 2.

Then

Clar) = {1} {11 - Claa]}-
Taking weight on both sides we have

W(Cla1]) = a1 + a1 - W(Claz)).

In the same way we can get another equation:

W(Claz]) = az + az - W(Cla1]).
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Thus we can see all the unknowns are at the rightmost part of the operand *“-”. Using
multiplication on the left and also the Gaussian elimination method, we can solve

the system:

W(Cla]) = a1-[1- -+ -(14a)]

W(Clas)) = ——=-(1+a)

Finally the generating function can be calculated by

flai, a2) =1+ W(Clai]) + W(Clay]).

4.4 TheMaple Package

All the procedures are included in the package “NONCOMM_GJ”, download-

able from the web address:
http://www.math.temple.edu/~wen/gj/noncomm/ .

Users can get detailed online help when opening the package with Maple. The
direct way to set up and solve the linear system, to get the generating function for

avoiding pairs, is also included in the package.
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CHAPTER 5

APPLICATION OF THE GJ

CLUSTER METHOD IN TWO

DIMENSIONAL CASES

5.1 Introduction

This chapter was initially inspired by the game tic-tac-toe, which is a two player
game with pencils and paper. Each player may, in turn, put symbols ‘O’ or *X’ (one
player can only put one kind of them) ina 3 x 3 grid. The first player who get 3
symbols in a row (vertically, horizontally or diagonally) wins. Played profession-
ally, the game is a draw. The question is how many end positions there are which

are draws. We then can extend this question to the generalized case: Given a finite
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alphabet (e.g. ‘O’ and “X”), using them to fill out a m x n grid, and avoiding some
certain one dimensional patterns (e.g. ‘OO0’ and “XXX) either horizontally, ver-
tically or diagonally, how many possibilities for the filling are there? Fortunately,

We can use the extended Goulden-Jackson to solve this kind of problem.

5.2 Two Dimensional Cases

With the powerful tool of the Goulden - Jackson Cluster method, and an im-
plementation of the method ([18]), we can solve the problem by constructing the
new vector alphabet and vector bad words. The m x n rectangle can be viewed
as an array of n m-dimensional vectors and here we look at each m dimensional
vector as a vector letter. Altogether there are d™ vector letters. Unfortunately, when
the length of some bad patterns is less than or equal to m, some vector letters are
not good because they may contain one or more bad patterns as a subword. So
we need to subtract all the vector letters which contain bad patterns, which then
leaves us the reduced vector alphabet. Next, we use these vector letters to construct
vector words of length m, and find all the bad vector words, and finally apply the

Goulden-Jackson method to find the generating function.
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5.3 Findingthe Vector Alphabet

Simply using the permutation, we can get all the vector letters. Each vector
letter can be judged according to whether it contains a bad pattern. We then collect
all the vector letters which do not contain bad patterns and construct the vector

alphabet we need.

5.4 Findingthe Bad Vector Words

Again, using the permutation, we can find all the vector words with certain
lengths (equal to the length of the bad patterns). Next, we can judge them one by
one to see whether the patterns appear horizontally or in the two diagonals. Finally,
we collect all the vector words which have at least one bad pattern and those will

constitute the bad words set.

5.5 Applying the Goulden-Jackson Method

The original method has already been described by Nononn and Zeilberger [18].

Thus, we use their package to complete the rest of the computation.



43

5.6 TheMaple Package

The Maple package which computes the vector alphabet and the bad vector

words is downloadable from:
http://www.math.temple.edu/ " wen/gj/twodim/ .

Detailed on - line help is available.
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CHAPTER 6

FINDING AND PROVING THE

ADDITIVE PERIODSFOR THE SG

FUNCTION OF WYTHOFF'S

GAME

6.1 Introduction

Experimental mathematics is a subarea of mathematics which uses computation
to find certain properties and rules for mathematical expressions. Generally it needs
the following steps: Given a Problem(n), parameterized by integer n, apply a stan-

dard (or new) numerical algorithm to get the Answers(n) forn = 1,2,---100.
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Then have the human, or much better still, the machine, guess the symbolic answer
Answer(n) for symbolic n. Finally, use the machine to prove the guess automat-
ically. This chapter will discuss how to use the computer to guess the additive
periods of the Sprague - Grundy function of Wythoff’s game ([13],[10],[22],[29])

and get an automatic computer proof.

6.2 Wythoff’'sGame

Wythoff’s Game (also called Wythoff’s Nim) is an impartial 2-player game
played with 2 piles of counters. Each player may, in turn, remove any number
of counters from either pile, or remove the same number of counters from both
piles. The player who removes the last counter wins.

Let’s use a pair (m,n) to describe a position of the game, where m and n cor-
respond to the numbers of counters in each pile. The legal moves can be written

as:

(i,n) 0<i<m;

(m,n) = 9 (m,i) 0<1i<n;

(m—i,n—1i) 0<i< min(m,n).

\

For each position, we can assign a Grundy value:

G(X) = mex{G(Y) : Y is reachable from X}
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with the initial condition

G(0,0) = 0.

Let mex(.S) be the smallest non-negative integer which is not in S (a finite set

of nonnegative integers). For example:

mex(1,2,3,4) =0,

mex(0,1,2,3) =4,
mex(0,1,4,5) =2 and
mex(2) =0 .

The Grundy value for the position (m, n) may be defined recursively by

{G(i,n), 0<i<m} U
G(m,n) =mex | {G(m,i), 0<i<n} U

{G(m —i,n—14) 0<i< min(m,n)}

The first few values of the Sprague-Grundy function are listed in Table 6.1. The
set of losing positions consists of the zero positions of the Sprague-Grundy function
G(m,n).

Dress, et. al. ([8]) have proved the additive periodicity of rows of the Sprague-
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Table 6.1: Values of Sprague - Grundy Function

mlin|{0[{1](2|3|4|5|6|7| 8|9
0 0(1|2|3|4|5|6|7]8|9
1 112(0(4|5/3]7|8|6 |10
2 2/0(1|5|3(4|8|6|7 11
3 3456201191012
4 415|83(2|7|6/9]0] 1|8

Grundy function of a class of Nim-like games which includes Wythoff’s game.
Howard A. Landman [14] gave a Simple FSM-Based Proof of the additive period-
icity of the Sprague-Grundy Function.

In this chapter, we provide a method using the computer to find and verify auto-

matically the additive periods for the Sprague-Grundy function.

6.3 Computer Guessing

For integers ¢ and j, we can use the computer to generate values

G(m,n),0 < m < itand0 < n <.

If one pile is fixed, let’s say m is fixed, then each non - negative integer will even-
tually appear in the sequence G(m,n),n = 0,1,2,--- ,00. Thus each row is a
permutation of the nonnegative integers.

Using the computer, we can generate a sequence of Grundy values, and check

whether the sequence of some values show additive periodicity. That is, for p =
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1,2,---, we can check whether
G(m,n+ k) =G(m,n) +k
is true for
TL:No,N0+1,"‘ y Whel‘eNO = 1,2,"‘ .

If it always gives the answer true for some p and N,, we can conjecture that the
additive period is p and the starting position is Ny.

Thus the computer can give the guessed additive period p and the start position
Ny after which it shows periodicity. Now it can also prove the conjecture automat-

ically.

6.4 Computer Proof

We know that ([14])

n—2m < G(m,n) <n-+m.

Let’s define

mexg(S, k) = mex{S| J{0,1,2,-- ,k}}.
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Then

G(m,n) = mexg(T,n+m — 1),

where

T = {G(i,n), 0<i<m} (6.1)
J{G(m,n—i), 0<i<3m} (6.2)
U{g(m—i,n—z’) 0<i<m}. (6.3)

Thus, we can use the computer to automatically check whether

G(m,N+p)=G(m,N)+pfor N =Ny, Nog+1,---, Ny + p.

If all are true, then by the induction it’s true for all integers N, N > Nj.

6.5 TheMaple Package

The maple package is downloadable from the web address:

http://www._.math.temple.edu/~wen/wythoff .
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APPENDIX A

SELECTED MAPLE CODE

A.1 SCDsFor Young'sLattices

Sum_of_one_Segment:=proc(n,arrl,arr2,n_lowerbound,n_upperbound,num_pars)
local s,y,size,a,b,r_upper,z,c;
size:=nops(arrl);
a:=[n-arrl[size],seq((arrl[size-t]-arrl[size-t-1]),t=0..size-2),arrl[1]];
b:=[n-arr2[size],seq((arr2[size-t]-arr2[size-t-1]),t=0..size-2),arr2[1]];
for s from 1 to size+l do

if (a[s]-b[s]l<>0)then r_upper:=a[s]-b[s];

fi;

od;

for s from 1 to size+l do
if (a[s]-b[s]l<>0)then z[s]:=r*(a[s]-b[s]1)/(r_upper);
else z[s]:=0;
fi;

od;

for s from 1 to size+l do

c[s]:=b[s]+z[s];

od;

if num_pars=4 then
normal (sum(sum(sum(sum(sum(sum(expression(c,size+l),r=0..infinity),
n=n_Jlowerbound. .n_upperbound), j=0. .infinity),i=0..infinity),
k=0..infinity),1=0._infinity)
-sum(sum(sum(sum(sum(sum(expression(c,size+l),r=r_upper..infinity),
n=n_Jlowerbound. .n_upperbound),j=0..infinity),i=0..infinity),
k=0..infinity),1=0._infinity));
elif num_pars=3 then
normal (sum(sum(sum(sum(sum(expression(c,size+l),r=0..infinity),
n=n_Jlowerbound. .n_upperbound), j=0..infinity),i=0..infinity),
k=0..infinity)
-sum(sum(sum(sum(sum(expression(c,size+l),r=r_upper..infinity),
n=n_lowerbound. .n_upperbound), j=0. . infinity),
i=0..infinity),k=0._infinity));
elif num_pars=2 then



normal (sum(sum(sum(sum(expression(c,size+1),r=0..infinity),
n=n_Jlowerbound. .n_upperbound),j=0..infinity),i=0..infinity)
-sum(sum(sum(sum(expression(c,size+1),r=r_upper..infinity),
n=n_Jlowerbound. .n_upperbound), j=0..infinity), i=0..infinity));
elif num_pars=1 then
normal (sum(sum(sum(expression(c,size+1l),r=0..infinity),
n=n_Jlowerbound. .n_upperbound), i=0. . infinity)
-sum(sum(sum(expression(c,size+l),r=r_upper..infinity),
n=n_Jlowerbound. .n_upperbound), i=0. .infinity));
elif num_pars=0 then
normal (sum(sum(expression(c,size+l),r=0..infinity),
n=n_Jlowerbound. .n_upperbound)-sum(sum(expression(c,size+l),
r=r_upper . .infinity),n=n_lowerbound. .n_upperbound));
fi:
end:

expression:=proc(k,size)
local t,s;
t:=1;
for s from O to size-1 do
t:=t*x[s] k[s+1];
od;
t;
end:

Sum_of_one_chain:=proc(n,arr,n_lower_bound,n_upper_bound, num)
local s,t,y,z,result;
result:=0;
tr=arr[1];t[1]:=t[1]+1;
result:=result
+Sum_of_one_Segment(n,t,arr[1],n_lower_bound,n_upper_bound,num);
for s from 1 to nops(arr)-1 do
result:=result+Sum_of_one_Segment(n,arr[s],arr[s+1],
n_lower_bound, n_upper_bound, num);
od;
normal (result);
end:

sumall_4n_1:=proc(Q

local a,b:

a:=Sum_of_one_chain(n, [
[n-2*k-2*j-i-1,n-2*k-j-i-1,n-k-j-1,n-k],
[n-2*k-2*j-i-1,n-2*k-j-i-1,n-k-i-j-1,n-K],
[n-2*k-2*j-i-1,n-2*k-j-i-1,n-k-i-j-1,n-k-i-1],
[k, n-2*k-j-i-1,n-k-i-j-1,n-k-i-1],
[k, k+j, n-k-i-j-1,n-k-i-1],
[k, k+j, 2*k+j+i+1,n-k-i-1],
[k, k+j,2*k+i+j+1,2*k+2*j+i+2]],2*i+2*j+3*k+3, infinity,3):

b:=Sum_of_one_chain(n, [
[n-2*k-2*j-i,n-2*k-j-i,n-k-j,n-k],
[k+i,n-2*k-j-i,n-k-j,n-k],
[k+i,k+j+i,n-k-j,n-K],
[k+i,k+j+i,2*k+j+i,n-K] ,
[k+i,k+j+i,2*%k+j+i,2*k+2*j+i],
[k,k+j+i,2*k+j+i,2*k+2*J+i],
[k,k+j,2*%k+i+j,2*k+2*j+i]1],2*i+2*j+3*k, infinity,3):

normal (a+b);

end:

sumall_4n_2:=proc()
local a,b:
a:=Sum_of_one_chain(n, [
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n n-k n ,
[n-2*k-2*j-i,n-2*k-j-i,n-k-i-j,n-K],
[n-2*k-2*j-i,n-2*k-j-i,n-k-i-jJ,n-k-1i],

[k, n-2*k-j-i,n-k-i-j,n-k-i],
[k, k+j, n-k-i-j,n-k-i],
[k, k+j, 2*k+j+i,n-k-1i],
[K,k+j,2*%k+i+],2*k+2*j+i]],2*i+2*j+3*K, infinity,3):

b:=Sum_of _one_chain(n, [
[n-2*k-2*j-i-2,n-2*k-j-i-1,n-k-j,n-K],
[k+i+1,n-2*k-j-i-1,n-k-j,n-k],
[k+i+1,k+j+i+1,n-k-j,n-K],
[k+i+1,k+j+i+1,2*k+j+i+1,n-K] ,
[k+i+1,k+j+i+1,2*k+j+i+1,2*k+2*j+i+1],
[k,k+j+i+1,2*k+j+i+1,2*k+2*j+i+1],
[K,k+j+1,2*k+i+j+1,2*k+2*j+i+1]],2*i+2*j+3*k+3, infinity,3):

normal (a+b);

end:

sumall_3n_1:=proc()
local a,b:
a:=Sum_of_one_chain(n, [
[n-i-3*),n-i-2*j,n-j],
[i+j,n-i-2*j,n-j] ,
[i+),i+2%j,n-]],
[i+j,i+2%5,i+3*]1,
[J,i+2*j,i+3*j]],2*i+4*j,infinity,2):
b:=Sum_of_one_chain(n, [
[n-i-3*j-1,n-i-2*j-1,n-j-1],
[n-i-3*j-1,n-i-2*j-1,n-i-j-1] ,
[j,n-i-2*j-1,n-i-j-1],
b,i+2*j+1,n-i-j-1],
[J,i+2*%j+1,i+3*j+2]], 2*i+4*j+3,infinity,2):
normal (a+b);
end:

sumall_3n_2:=proc(Q)
local a,b:
a:=Sum_of_one_chain(n, [
[h-1-3*j-2,n-i-2*j-1,n-}],
[i+j+1,n-i-2%j-1,n-j] ,
[i+)+1,i+2*j+1,n-j],
[i+j+1,i+2*j+1,i+3*j+1],
[O+1, i+2*j+1, i+3*j+1]],2*i+4*j+3, infinity,2):
b:=Sum_of_one_chain(n, [
[h-i-3*),n-i-2*j,n-j],
[n-i-3*j,n-i-2*j,n-1-j] ,
b.n-i-2%j,n-i-j],
L.i+2%5,n-i-j],
O.i+2*%),i+3*j]]. 2*i+4*j,infinity,2):
normal (a+b);
end:

=]

sumall_2n:=proc()
local a:
a:=Sum_of_one_chain(n, [
[n-i,n-i],
[i,n-i],
[i,i]].2*i,infinity,1);
end:

sumall_1n:=proc(Q)
local a:



a:=Sum_of_one_chain(n,[[n],
[0]1].0,infinity,0);
end:

sumall_west :=proc()

local a,b;

a:=Sum_of_one_chain(n, [
[h-3*i-j-2,n-2*i-j-1,n-1,n],
b+1i,n-2*i-j-1,n-i,n] ,
bg+1,i+j+1,n-i,n],
O+1,i+j+1,2%i+j+1,n],
[0,i+j+1,2*i+j+1,n],
[0, i+j+1,2*i+j+1,3*i+j+1],
[0, i+1,2*i+j+1,3*i+j+1]],3*i+2*j+3,infinity,2):

b:=Sum_of_one_chain(n, [
[n-3*i-j,n-2*i-j,n-i,n],
[n-3*i-j,n-2*i-j,n-i-j,n] ,
[0.n-2*i-j,n-i-]J,n],
[0,n-2*i-j,n-i-j,n-j],
[0,1,n-i-j,n-]],
[0.1,2%i+j,n-]],
[0,i,2%i+},3*i+j]],3*i+2*],infinity,2):

normal ((a+b)/(1-x[0]1*x[41));

end:

Sum_of_one_Segment_lind:=proc(n,arrl,arr2,init_n,init_i)
local s,y,size,a,b,r_upper,z,c,expre;
size:=nops(arrl);
a:=[n-arrl[size],seq((arri[size-t]-arril[size-t-1]),
t=0..size-2),arrl[1]];
b:=[n-arr2[size],seq((arr2[size-t]-arr2[size-t-1]),
t=0..size-2),arr2[1]];
for s from 1 to size+l do
if (a[s]-b[s]l<>0)then r_upper:=a[s]-b[s];
fi;
od;
for s from 1 to size+l do
if (a[s]-b[s]l<>0)then z[s]:=normal(r*(a[s]-b[s]1)/(r_upper));
else z[s]:=0;
Ti;
od;
for s from 1 to size+l do
c[s]:=b[s]1+z[s];
od;
expre:=subs(n=2*k+init_n,expression(c,size+l));
r_upper:=subs(n=2*k+init_n,r_upper);
if(init_i<>infinity) then
normal (sum(sum(sum(expre,r=0..infinity),
k=i+l-init_n.._.infinity),i=init_i.._.infinity)
-sum(sum(sum(expre, r=r_upper..infinity),
k=i+l-init_n..infinity),i=init_i..infinity));
else
normal (sum(sum(expre,r=0..infinity),k=0..infinity)
-sum(sum(expre,r=r_upper..infinity),k=0._infinity));
fi;
end:

Sum_of_one_chain_lind:=proc(n,arr,init_n,init_i)
local s,t,y,z,result;
result:=0;
tr=arr[1];t[1]:=t[1]+1;
result:=result+Sum_of_one_Segment_lind(n,t,arr[1],init_n,init_i);
for s from 1 to nops(arr)-1 do
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result:=result
+Sum_of_one_Segment_lind(n,arr[s],arr[s+1],init_n,init_i);
od;
normal (result);
end:

sumall_lind:=proc(Q
local ocl24,0c35,ecl1245,ec36,ed124,ed35,ec;
ocl24:=Sum_of_one_chain_lind(n, [[n-2*i,n,n],[1,2*i+1,n],[0,2*i,n],
[0,i+1,n-i+1],[0,i,n-1],[0,i,i]],1,0);
oc35:=Sum_of_one_chain_lind(n, [[n-2*i-1,n,n],[0,2*i+1,n],
[0.2*i,n-1],[0,i+1,n-i]].1,0);
ecl245:=Sum_of_one_chain_lind(n, [[n-2*i-1,n,n],[1,2*i+2,n],
[1,2*i+1,n-1],[0,2*i,n-1],[0,i,n-i-1],[0,i,n-i-2],[0,i,i]]1.0,0);
ec36:=Sum_of _one_chain_lind(n, [[n-2*i,n,n],[1,2*i+1,n],
[0,2*i+1,n-1],[0,i+1,n-i-1]],0,0):
ed124:=Sum_of_one_chain_lind(n, [[n-2*i,n-1,n-1],[1,2*i,n-1],
[1.2*i-1,n-2],[1,i,n-i-1],[1,i,n-i-2],[1,i,i1].0,1);
ed35:=Sum_of_one_chain_lind(n, [[n-2*i+1,n-1,n-1],[2,2*i,n-1],
[1,2*i,n-2],[1,1+1,n-i-1]],0,1);
ec:=Sum_of_one_chain_lind(n,[[0,n,n],[0,0,n]],0,infinity);
normal ((ocl124+0c35)/ (1-x[0]*x[3]1)
+(ec+ecl245+ec36+ed124+ed35)/(1-x[0]72*x[3]172));
end:

A.2 Symbolic Goulden-Jackson Method

# This part is for SSGJ
# findequ(n,u,seqv,s) get the equations for string u with strings seqv.

# usage: Ffindequ(n,[1,2,3]1,[[1.2,3]1.[1,111.s)

findequ:=proc(n,u,seqv,s)
local i,j,h,t,x,y,m,term,equ,k,v,vset,yset:
equ:=-s~(nops(u)):

for h from 1 to nops(seqv) do
v:=op(h,seqv):

for 1 from 1 to nops(u) do
x:=[op(i--nops(u),uw)]:
if nops(v)> nops(u)-i+l then
y:=[op(1l..nops(u)-i+l,v)]:
if Isostring(x,y) then
vset:=convert(v,set);
yset:=convert(y,set);
m:=nops(convert(v,set) minus yset);
k:=nops(yset);
term:=C(op(v)):
for j from 1 to m do
term:=term*(n-k-j+1):
od:
equ:=equ-term*s~ (nops(u)-nops(y)):
fi:
Tfi:
od:
od:
C(op(u))=equ:
end:
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# kernalarr(Arr) clean Arr with only one copy of iso string left for
# each type. usage:kernalarr([[1,2,3]1.[3,2,1]1,[1,111);

kernalarr:=proc(Arr)
local i,j,ans,isin:
ans:=[];
for 1 from 1 to nops(Arr) do
isin:=0:
for j from 1 to nops(ans) do
if isostring(op(J.,ans),op(i,Arr)) then
isin:=1;
fi:
od:
if isin=0 then
ns:=[op(ans),op(i,Arr)]:
fi:
od:
ans:
end:

# IslsoSubString(arrl,arr2) test whether arr2 is a sub string of arrl.
# usage:lIslsoSubString([1,2,3,4]1,[4.3.2]);

IslsoSubString:=proc(arrl,arr2)
local i1,j;
if nops(arr2)>nops(arrl) then
return false:
fi:

for 1 from 1 to nops(arrl)-nops(arr2)+1 do
if isostring(arr2,[op(i..i+nops(arr2)-1,arrl)]) then
return true:
Tfi:
od:
return false:
end:

# GetOfflsoSupstring(arr) clean the string arr.
# usage:GetOfflsoSupstring([[1,2,2,3],[2,2]11);

GetOfflsoSupstring:=proc(arr)
local 1,j,k,isbigstring,ans;
ans:=[]:
for i from 1 to nops(arr) do

isbigstring:=0:
for j from 1 to nops(arr) do
if i<>j then
if IslsoSubString(op(i,arr),op(J,arr)) then
isbigstring:=1:

fi:
fi:

od:

if isbigstring=0 then
ans:=[op(ans),op(i,arr)]:

fi:
od:
ans:

end:

# SSGJ(n,mistake,s), symbolic symetric goulden Jackson, where n and s
# are symboles, mistake are arrays of mistakes,
# usage:SSGJ(n,[[1,2,3]1,[1,11]1,.s);
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SSGJ:=proc(n,mistake,s)

local i1,j,k,eq,var,res,lu,v,zm,coef,ans,mistakes:

mistakes:=kernalarr(mistake);

mistakes:=GetOfflsoSupstring(mistakes):

eq:={}:

var:={}:

for i from 1 to nops(mistakes) do
eq:= eq union {findequ(n,op(i,mistakes),mistakes,s)}:
var:= var union {C(op(op(i,mistakes)))}:

od:

var:=solve(eq,var):
lu:=1-s*n:

for 1 from 1 to nops(mistakes) do
v:=op(i,mistakes):
zm:==nops(convert(v,set)):
coef:=1:
for j from 1 to zm do
coef:=coef*(n-j+1):
od:
lu:=lu-coef*subs(var,C(op(Vv))):
od:
ans:=normal (1/1u):
collect(numer(ans),s)/collect(denom(ans),s) :
end:

# This part is for SGJ
# SGJ, symbolic goulden-jackson cluster method.
# usage:SGJ(n,{[1.,2,3]1,.[1.11}.s);

SGJ:=proc(n,MISTAKES1,s)

local v,eq, var,i,lu,C,MISTAKES,ans:

MISTAKES : =Hakten(MISTAKES1):

eq:={}:

var:={}:

for i from 1 to nops(MISTAKES) do
v:=op(i,MISTAKES):
eq:= eq union {findeqz(v,MISTAKES,C,s)}:
var:=var union {C[op(V)]1}:

od:
var:=solve(eq,var):
lu:=1-n*s:

for i from 1 to nops(MISTAKES) do
v:=op(i,MISTAKES):

lu:=lu-subs(var,C[op(V)]):

od:
ans:=normal (1/1u):
collect(numer(ans),s)/collect(denom(ans),s) :

end:

# findeqz sets up the equ C[v]= s+t*Sum_u overlap(u,v,x) *C[u]
# usage: findeqz([1,2,3].{[1.2,3].[1,1,1]}.C.s);

findeqz:=proc(v,MISTAKES,C,s)
local eq,i,u:

eq:=-1:

for i from 1 to nops(v) do
eq:=eq*s:

od:

for 1 from 1 to nops(MISTAKES) do
u:=op(i,MISTAKES):
eq:=eqg-overlapz(u,v,s)*C[op(u)]:
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od:
C[op(v)]-eq=0:
end:

# overlapz is a procedure that given two words u and v, and a variable s
# computes the weight-enumerator of all v\suffix(u),

# for all suffixes of u that are prefixes of v, but with uniform weight s
# usage: overlapz([1,2,3,4],[3.4,5,6],s);

overlapz:=proc(u,Vv,Ss)
local i,j,lu,gug:
lu:=0:
for 1 from 2 to nops(u) do
for j from i to nops(u) while (J-i+l<=nops(v)
and op(J,u)=op(J-i+l,v))do
od:
if j-i=nops(v) and u<>v then
ERROR(v, “is a subword of“,u, “illegal input®):

fi:
if j=nops(u)+1 and (i>1 or j>2) then
gug:=1:
gug:=gug*s~(nops(V)-U-1)):
lu:=lu+gug:
fi:
od:
lu:

end:

# Haktenl(B) removes all superflous words
# usage: haktenl1({[1,2,3]1,[0,1,2,3,4]1});

haktenl:=proc(B)
local w,i:
for i from 1 to nops(B) do
w:=op(i,B):
if superflous(B,w)=1 then
RETURN(B minus {w}):
fi:
od:
B:
end:

# issubword(u,v) returns 1 if v is a subword of u, otherwise O
# usage: issubword([1,2,3,4]1,[2,3.4]);

issubword:=proc(u,Vv)
local i1,j:
for i from 1 to nops(u) do
for j from i to nops(u) while (J-i+l<=nops(v) and op(J,u)=op(J-i+1,v))
do:
od:
if j-i=nops(v) then
RETURN(1):
Tfi:
od:
0:
end:

This part is for self avoiding walk.
saw_isostring(u,Vv), judges whether u and v are isostrings,
if u and v are iso return true, otherwise false.

usage: saw_isostring([1,2,-1,-2],[2,1,-2,-1]);
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saw_1isostring:=proc(u,V)
local i,j,t:
if(nops(u)<>nops(v))then
return false;
fi:

for i from 1 to nops(u) do
t:={op(i.v};
for j from i+l to nops(u)do
if op(i,u)=op(Jj,u) then
t:=t union {op(J.,Vv)};
fi:
if op(i,u)=-op(J,u) then
t:=t union {-op(J,Vv)};
fi:
od:
if nops(t)>=2 then return false;
fi:
od:

for i from 1 to nops(v) do
t:={op(i,w};
for j from i+l to nops(v)do
if op(i,v)=op(J,Vv) then
t:=t union {op(,w};
fi:
if op(i,v)=-o0p(,Vv) then
t:=t union {-op(,w};
fi:
od:
if nops(t)>=2 then return false;
fi:
od:
return true:
end:

# saw_TFfindequ(n,u,seqv,s) get the equations for string u with strings
# seqv. usage: saw_findequ(n,[1,2,3],[[1,2,3].[1,1]],.s)

saw_findequ:=proc(n,u,seqv,s)
local i,j,h,t,x,y,m,term,equ,k,v,vset,yset:
equ:=-s"(nops(u)):
for h from 1 to nops(seqv) do
v:=op(h,seqv):
for 1 from 1 to nops(u) do
x:=[op(i..nops(u),u)]:
if nops(v)> nops(u)-i+l then
y:=[op(1l..nops(u)-i+l,v)]:
if saw_isostring(x,y) then
m:=nops(saw_kernal (v))-nops(saw_kernal (y));
k:=nops(saw_kernal(y));
term:=C(op(Vv)):
for j from 1 to m do
term:=term*(n-k-j+1)*2:
od:
equ:=equ-term*s~ (nops(u)-nops(y)):
fi:
fi:
od:
od:
C(op(u))=equ:
end:

62



# saw_kernalarr(Arr) clean Arr with only one copy of iso string left for
# each type. usage:saw_kernalarr([[1,2,3],[3,2,1],[1,111);

saw_kernalarr:=proc(Arr)
local i,j,ans,isin:
ans:=[];
for 1 from 1 to nops(Arr) do
isin:=0:
for j from 1 to nops(ans) do
if saw_isostring(op(J,ans),op(i,Arr)) then
isin:=1;
fi:
od:
if isin=0 then
ans:=[op(ans),op(i,Arr)]:
fi:
od:
ans:
end:

#saw_kernal (Arr):

saw_kernal :=proc(Arr)
local i1,j,k,ans;

ans:=[]:
for 1 from 1 to nops(Arr) do
k:=0;

for j from 1 to nops(ans) do
if op(i,Arr)=op(J,ans) or op(i,Arr)=-op(jJ,ans) then

k:=1;
fi:
od:
if k=0 then
ans:= [op(ans),op(i,Arr)]:
fi:
od:
ans:
end:

# saw_IslsoSubString(arrl,arr2) test whether arr2 is a sub string of arrl.
# usage:saw_IslsoSubString([1,2,3,4],[4.3.2]);

saw_IslsoSubString:=proc(arrl,arr2)
local i1,j;
if nops(arr2)>nops(arrl) then
return false:
fi:
for 1 from 1 to nops(arrl)-nops(arr2)+1 do
if saw_isostring(arr2, [op(i..i+nops(arr2)-1,arrl)]) then
return true:
fi:
od:
return false:
end:

#saw_GetOfflsoSupstring(arr) clean the string arr.
#usage:saw_GetOfflsoSupstring([[1,2,2,3],[2,2]11);

saw_GetOfflsoSupstring:=proc(arr)
local i,j,k,isbigstring,ans;
ans:=[]:
for i from 1 to nops(arr) do
isbigstring:=0:
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for j from 1 to nops(arr) do
if i<>j then
if saw_IslsoSubString(op(i,arr),op(j,arr)) then
isbigstring:=1:
fi:
fi:
od:
if isbigstring=0 then
ans:=[op(ans),op(i,arr)]:
fi:
od:
ans:
end:

# saw_SSGJ(n,mistake,s), symbolic symetric goulden Jackson,
# where n and s are symboles

# mistake are arrays of mistakes,

# usage:saw_SSGJ(n,[[1,-11.[1.2,-1,-21]1.,s);

SAW_SSGJ:=proc(n,mistake,s)
local i1,j,k,eq,var,res,lu,v,zm,coef,ans,mistakes:
mistakes:=saw_kernalarr(mistake);
mistakes:=saw_GetOfflsoSupstring(mistakes):
eq:={}:
var:={}:
for 1 from 1 to nops(mistakes) do
eq:= eq union {saw_findequ(n,op(i,mistakes),mistakes,s)}:
var:= var union {C(op(op(i,mistakes)))}:
od:
var:=solve(eq,var):
lu:=1-2*s*n:
for i from 1 to nops(mistakes) do
v:=op(i,mistakes):
zm:=nops(saw_kernal (v)):
coef:=1:
for j from 1 to zm do
coef:=coef*(n-j+1)*2:
od:
lu:=lu-coef*subs(var,C(op(Vv))):
od:
ans:=normal (1/1u):
collect(numer(ans),s)/collect(denom(ans),s) :
end:

A.3 Noncommutative Goulden-Jackson M ethod

NonCommGJ:=proc(n,MISTAKES, s)
local equ,var,lu,i,v:
equ:=GetEquGJ(MISTAKES,C,s):
var:=GetVarGJ(MISTAKES,C):
var:=MySolve(equ,var):
lu:=1:
for 1 from 1 to n do

lu:=lu-s[[il]:
od:

for 1 from 1 to nops(MISTAKES) do
v:=op(i,MISTAKES):
lu:=lu - subs({op(var)},C[v]):



od:
(1/1u):
end:

GetEquGJd:=proc(B,C,s)
local u,v,p,tempequ,ans,i,]j,k:

ans:=[]:

for 1 from 1 to nops(B) do
u:=op(i,B):
p:=1:

for j from 1 to nops(u) do
p:=p . s[lopG,uw11:

od:

tempequ:=C[u]+p:

for j from 1 to nops(B) do

v:i=op(J,B):
tempequ:=tempequ + NonCommOverlap(u,v,s) . C[v]:
od:
ans:=[op(ans),tempequ]:
od:
ans:
end:

GetVarGJ:=proc(B,C)

local 1i,ans:

ans:=[]:

for 1 from 1 to nops(B) do
ans:=[op(ans),C[op(i,B)]1]:
od:

ans:
end:

NonCommOverlap:=proc(u,V,s)
local i,j,lu,gug,k:
lu:=0:
for 1 from 2 to nops(u) do
for j from i to nops(u) while (J-i+l<=nops(v)
and op(J,u)=op(J-i+l,v))do

od;

if j-i=nops(v) and u<>v then

ERROR(v, “is a subword of“,u,“illegal input®):
fi:

if j=nops(u)+1 and (i>1 or j>2) then
gug:=1:
for k from 1 to i-1 do
gug:=gug . s[[op(k,u)1]:

od:
lu:=lu+gug:
fi:
od:
lu:
end:

GetEquAP:=proc(s,pairs,A,x)
local i,j,result,equ:
result:=[];
for 1 from 1 to nops(s) do
equ:=x[[s[ill]:
for j from 1 to nops(s) do
dequ:=equ+X[[S[i]]] - ALsO111:
od:
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for j from 1 to nops(pairs) do
if op(1,o0p(J.,pairs))= s[i] then
f_equ:=GQU—X[[S[i]]] - ALlop(2,0p(,pairs))]1]:
i:

od:
result:= [op(result), equ-A[[s[il1l]1]:
od:
result:
end:

GetVarAP:=proc(s,A)

local i,j,result:

result:=[]:

for i from 1 to nops (s) do
result:=[op(result),A[[s[i]1]1]1]
od:

result:
end:

HaveElement:=proc(expression,elem)local i:
iT nops(expression) = 1 then
if expression = elem then return(true):
else return(false):
fi:
fi:
for 1 from 1 to nops(expression) do
if HaveElement(op(i,expression),elem) then return(true): fi:
od:
return(false):
end:

MyExpand:=proc(expr)
local 1i,j,ans,leftpart,rightpart,coeffleft,coeffright,temp;
if op(0,expr) = “+° then
ans:=0:
for 1 from 1 to nops(expr) do
ans:=ans+MyExpand(op(i,expr)):
od:
return(ans):
fi:
if op(0,expr) = “.“ then
for 1 from 1 to nops(expr) do
if op(0,op(i,expr))=“+ then
leftpart:=1:
for j from 1 to i-1 do
leftpart:= leftpart . op(J,expr):
od:
rightpart:=1:
for j from nops(expr) to i+l by -1 do
rightpart:= op(J,expr) . rightpart:
od:
ans:=0;
for j from 1 to nops(op(i,expr)) do
ans = ans +MyCoeff(leftpart) *MyCoeff( op(J,op(i,expr)))
* MyCoeff (rightpart)*MyExpand(MyNoCoeff(leftpart)

- MyNoCoeff( op(J.,op(i,expr))) -MyNoCoeff (rightpart)) :

od:

return(ans):

fi:

od:

ans:=1:

for 1 from 1 to nops(expr) do
ans:=ans . MyExpand(op(i,expr)):
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od:
return (ans):
fi:

if op(0,expr) = “*“ then
if type(op(l,expr),complex) then
rightpart:=1:
for 1 from 2 to nops(expr) do
rightpart:=rightpart * op(i,expr):
od:
eturn (op(l,expr) * MyExpand(rightpart)):

fi
fi:

if op(0,expr) = “7° then
if nops(op(l,expr))=1 then
return (expr):
fi:
if op(2,expr)=-1 then
temp:=op(1,expr):
ans:=1:
if op(0,temp)=“.“ then
for 1 from nops(temp) to 1 by -1 do
ans:=ans . (1/MyExpand(op(i,temp))):
od:
return(ans):
fi:
fi:
if op(2,expr)< 0 then
return (expr):
fi:
if type(op(2,expr),even) then
return (MyExpand(MySquare(op(1,expr))~(op(2,expr)/2))):
fi:
if type(op(2,expr),odd) then

return (MyExpand((MySquare(op(1,expr))~((op(2,expr)-1)/2)).

op(l,expr))):
fi:
fi:
return(expr);
end:

AvoidPairs:=proc(s,p,A,X)
local i1, equ,var,ans,res,tempvar,tempequ:
equ:=GetEquAP(s,p,A,X):
var:=GetVarAP(s,A):
ans:=MySolve(equ,var);
res:=[]:

for i from 1 to nops(ans) do
tempvar:=op(1,op(i,ans)):
tempequ:=op(2,op(i,ans)):
res:=[op(res), tempvar
=MyExplicitForm(MyCombineCoeff(MyCombine(tempequ)))]:
#MyPositiveExponentForm##
od:
res:
end:

MyCombineOneVar :=proc(equ,var)
local i,j,k,Havevar, NoVar;
equ:=MyExpand(equ):

67



68

HaveVar:=0:
NoVar:=0:
for 1 from 1 to nops(equ) do
if HaveElement(op(i, equ),var) then
HaveVar :=HaveVar+op(i,equ):
else NoVar:=NoVar+op(i,equ):
fi:
od:
end:

MySquare:=proc(expr)
local i,j,ans:
ans:=0;
if op(0,expr) =“+° then
for 1 from 1 to nops(expr) do
for j from 1 to nops(expr) do
ans:=ans+ op(i, expr) . op(J, expr):
od:
od:
return(ans):
fi:
expr-2:
end:

MySolve:=proc(equ, var)
local havevar,novar,i,j,tempequ,tempvar,havevarequ,novarequ,ans:
if nops(equ) <> nops(var) then
return(“error! number of equtions is not equal to number of
variables®):
fi:

if nops(var) > 1 then

tempvar:=op(1,var):
else
tempvar:=op(var):
fi:

if nops(var) = 1 then
tempequ:=MyExpand(op(1,equ)):

if op(0,tempequ)=“*“ then return([op(var)=0]):

fi:

if op(0,tempequ)=*.“ then return([op(var)=0]):

Tfi:

havevar:=0:

novar:=0:

for 1 from 1 to nops(tempequ) do
if HaveElement(op(i,tempequ),tempvar) then
havevar :=havevar+MyWithoutLastTerm(op(i,tempequ)):
else novar:=novar+op(i,tempequ):
fi:
od:
return([tempvar=-(1/havevar) . novar]):
fi:

havevarequ:=[]:
novarequ:=[]:

for 1 from 1 to nops(equ) do
tempequ:=MyExpand(op(i,equ)):
havevar:=0:
novar:=0:
for j from 1 to nops(tempequ) do
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if HaveElement(op(J ,tempequ),tempvar) then
havevar:=havevar + MyWithoutLastTerm(op(J,tempequ)):
else novar:=novar+op(Jj,tempequ):
fi:
od:
if havevar=0 then novarequ:=[op(novarequ),tempequ]:
else havevarequ:=[op(havevarequ) ,MyExpand((1/havevar) . novar)]:
fi:
od:

for i from 2 to nops(havevarequ) do

novarequ:=[op(novarequ), op(i,havevarequ)-op(l,havevarequ)]:

od:
tempequ:=op(1,havevarequ);
ans:=MySolve(novarequ, [op(2. .nops(var),var)]);
ans:=[op(ans),subs(ans, tempvar=-tempequ)]:
ans:

end:

MyCoeff:=proc(expr)
if op(0,expr) <> “** then return(l):
fi:
if type(op(l,expr),complex) then
return (op(1,expr)):
fi:
return(l):
end:

MyNoCoeff:=proc(expr)
local ans,i:
if op(0,expr) <> “*° then return(expr):
fi:
if type(op(l,expr),complex) then
ans:=1:
for 1 from 2 to nops(expr) do
ans:=ans * op(i,expr):
od:
return(ans):
fi:
return(expr):
end:

MyCombine:=proc(expr)
local 1,j,tempexpr,ans,withf,withoutf :
if op(0,expr) = “+° then
withf:=0:
withoutf:=0;
tempexpr:=MyFirstTerminProduct(op(l,expr)):
for 1 from 1 to nops(expr) do
if MyFirstTermInProduct(op(i,expr))=tempexpr then
withf:= withf + MyNoFirstTermlnProduct(op(i,expr)):
else
withoutf:=withoutf+op(i,expr):
fi:
od:
return( tempexpr . MyCombine(withf) + MyCombine(withoutf)):
fi:

if op(0, expr)=“*“ then
ans:=1:
for 1 from 1 to nops(expr) do
ans:= ans * MyCombine(op(i,expr)):



od:
return(ans):
fi:
if op(0, expr)=“_° then
ans:=1:
for 1 from 1 to nops(expr) do
ans:= ans . MyCombine(op(i,expr)):
od:
return(ans):
fi:
if op(0, expr)=“"° then
return(MyCombine(op(1,expr))~op(2,expr)):
fi:
return(expr):
end:

MyCombineCoeff:=proc(expr)
local 1i,j,tempexpr,ans,withf,withoutf :
if op(0,expr) = “+° then
tempexpr:=1:
for 1 from 1 to nops(expr) do
iT nops(op(i,expr))=1 and type(op(i,expr),complex) and
op(i,expr)<0
then tempexpr:=-1:
fi:
od:
withf:=0:
for 1 from 1 to nops(expr) do
withf:= withf + MyCombineCoeff(tempexpr* (op(i,expr))):

od:
return( tempexpr * withf ):
fi:
if op(0, expr)=“* then
ans:=1:

for 1 from 1 to nops(expr) do
ans:= ans * MyCombineCoeff(op(i,expr)):

od:
return(ans):
fi:
if op(0, expr)=“_° then
ans:=1:
for 1 from 1 to nops(expr) do
tempexpr:=1:

it op(0,(op(i,expr))) = “+° then
for j from 1 to nops(op(i,expr)) do
if type(op({,op(i,expr)),complex) and op(j,op(i,expr))<0
then tempexpr:=-1:
fi:
od:
fi:
ans:= tempexpr*ans . MyCombineCoeff(tempexpr*op(i,expr)):
od:
return(ans):
fi:

if op(0, expr)=“"° then
return(MyCombineCoeff(op(1,expr)) op(2,expr)):
fi:
return(expr):
end:

# MyExplicitForm returns the explicit form of expr
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MyExplicitForm:=proc(expr)
local i,j,ans,tempbase,goodform, locateplace, temp,badform,
leftpart,rightpart, left,right:
if nops(expr) =1 then return(expr): Fi:

if op(0,expr)=“+° then
ans:=0;
for 1 from 1 to nops(expr) do
ans:=ans + MyExplicitForm(op(i,expr)):
od:
return(ans):
fi:

if op(0,expr)=“*“ then
ans:=1;
for 1 from 1 to nops(expr) do
ans:=ans * MyExplicitForm(op(i,expr)):
od:
return(ans):
fi:

if op(0,expr)=“_° then
ans:=1;
for 1 from 1 to nops(expr) do
ans:=ans . MyExplicitForm(op(i,expr)):
od:
return(ans):
fi:

if op(0,expr)=“"* then
if op(2,expr) <> -1 then
return(MyExplicitForm(op(1,expr)) op(2,expr)):
fi:
tempbase:=op(1,expr):
goodform:=MylsGoodExpr (tempbase):

if goodform then
eturn(MyExplicitForm(op(1,expr)) op(2,expr)):

fi

badform:=true:
leftpart:=1:
rightpart:=1:
temp:=tempbase:
while badform do
badform:=false:
left:=1:
right:=1:
left:=MyLeftReciprocalTerm(temp):

if left <> 1 then rightpart:= MyCoeff(left)
* MyCoeff(rightpart) * MyNoCoeff(left) . MyNoCoeff(rightpart):

if op(0,temp)=“+“ then
ans:=0;
for 1 from 1 to nops(temp) do:
ans:= ans +((MyCoeff(left) * MyCoeff (op(i,temp)) *
MyExplicitForm(MyExpand( MyNoCoeff(left)
-MyNoCoeff(op(i,temp)))))):
od:

temp:=ans:
badform:= true:
next:
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fi:
temp:=(MyCoeff(left) * MyCoeff(temp)
* MyExplicitForm(MyExpand(MyNoCoeff(left)

. MyNoCoeff(temp)))):
badform:=true:
next:

fi:

#right:=MyRightReciprocalTerm(temp):
if right <> 1 then leftpart:= leftpart . right:
temp:=MyExpand(temp . right):
badform:= true:
next:
fi:
od:
return (leftpart . (MyExplicitForm( temp))~(-1) . rightpart):
fi:
expr:
end:

A.4 Two Dimensional Goulden-Jackson Method

# AllPermute, gives all possible letters with length n with
# letters 1..d:
AllPermute:=proc(d,n)
local i,A,j,answer:
answer:=[]:
if n<=0 then return ([[11):fi:
A:=AllPermute(d,n-1):
for 1 from 1 to d do
for j from 1 to nops(A) do
answer:= [op(answer), [op(op(.,A)),i]l]l:
od:
od:
answer:
end:
# CollectMistakes_0,compute vertical line mistakes
# Example: CollectMistakes 0(2,[2,2],2);
CollectMistakes_0:=proc(m,pattern,d)
local i1,j,k,l,answer,A,B;
answer:={}:
1 :=nops(pattern):
A:=AllPermute(d,m-1):
if I>m then return({}): fi:
if I=m then return({pattern}): fi:
for 1 from O to m-1 do
k:=i+1;
for j from 1 to nops(A) do
B:=op(J,A):
answer:=answer union {[op(1..i,B),op(pattern),
op(k..nops(B),.B)1}: #,
od:
od:
answer:
end:
# CollectMistakes_1: compute horizental line mistakes
# Example: CollectMistakes 1(2,[2,2],2);
CollectMistakes_1:=proc(m,pattern,d)
local i1,j,k,l,answer,A,B,C,t,beginl,endl,begin2,end2;
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answer:={}:
1:=nops(pattern):
A:z=AllPermute(d, (m-1)*(1)):
for i from O to m-1 do
for j from 1 to nops(A) do
B:=[1]:
C:=op(,A);
for t from 1 to 1 do
beginl:=1+(t-1)*(m-1);
endl:=i+(t-1)*(m-1);
begin2:=endl1+1;
end2:=(t)*(m-1);
B:=[op(B), [op(beginl.._endl,C),op(t,pattern),
op(begin2..end2,C)1]
od:
answer:=answer union {B}:
od:
od:
answer:
end:
# CollectMistakes 2: compute main diagonal mistakes
# Example: CollectMistakes 2(2,[2,2],2);

CollectMistakes_2:=proc(m,pattern,d)
local i,j,k,l,answer,A,B,C,t,beginl,endl,begin2,end2;
answer:={}:

1 :=nops(pattern):
Az=AllPermute(d, (m-1)*(1)):
for 1 from O to m-1 do
for j from 1 to nops(A) do
B:=[1]:
C:=op(,A);
for t from 1 to I do
beginl:=1+(t-1)*(m-1);
endl:=i+(t-1)*(m-1)+t-1;
begin2:=end1+1;
end2:=(t)*(m-1);
B:=[op(B), [op(beginl.._endl,C),op(t,pattern),
op(begin2..end2,C)1]
od:
answer:=answer union {B}:
od:
od:
answer:
end:

# CollectMistakes_3: compute second diagonal mistakes
# Example: CollectMistakes_3(2,[2,2],2);
CollectMistakes_3:=proc(m,pattern,d)
local i1,j,k,l,answer,A,B,C,t,beginl,endl,begin2,end2;
answer:={}:
1 :=nops(pattern):
Az=AllPermute(d, (m-1)*(1)):
for 1 from O to m-1 do
for j from 1 to nops(A) do
B:=[1]:
C:=op(,A);
for t from1 to I d
beginl:=1+(t-1)*(m-1);
endl:=i+(t-1)*(m-1)+1-(t);
begin2:=end1l+1;
end2:=(t)*(m-1);
B:=[op(B), [op(beginl.._endl,C),op(t,pattern),
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op(begin2..end2,C)]]
od:
answer:=answer union {B}:
od:
od:
answer:
end:

# IsFactor, judge whether a small letter is a factor of big letter
IsFactor:=proc(small,big)

local i1,j,k,s:

s:=op(small):

for 1 from 1 to nops(big) do

if s=op(i,big) then return(true): fi:

od:

false:
end:

#collect all the mistakes
Al IMistakes:=proc(m,pattern,d)
local i,j,k,M0,M1,M2,M3,All,isfactor;
M1:=CollectMistakes_1(m,pattern,d):
M2:=CollectMistakes_2(m,pattern,d):
M3:=CollectMistakes_3(m,pattern,d):
All:={}:
for i from 1 to nops(M1) do
isfactor:=false:
for j from 1 to nops(MO) do
if IsFactor(op(j,M0),op(i,M1)) then isfactor:=true: break:fi:
od:
if not isfactor then All:=All union {op(i,M1)}: fi:
od:
return (ALl):
end:

#gives d"m - 1-dimensional mistakes that is the legal vector letters.
AllAlphaBeta:=proc(m,pattern,d)

local A:

A:={op(AllPermute(d,m))}:

A:z=A minus CollectMistakes O(m,pattern,d):

A:
end:

A.5 The Sprague-Grundy Function

# mex, compute the mex of a set
mex:=proc(s)
local 1,j,k;
for 1 from O to max(op(s)) do
if member(i,{op(s)}) then:else
return i;
Tfi:
od:
return max{op(s))+1;
end:

# f(a,b): compute the Sprague-Grundy function
f:=proc(a,b) option remember:

local i,j,k,children;

if a=0 then return b;fi:

if b=0 then return a;fi:



children:=[];

for i from O to a-1 do
children:=[op(children),f(i,b)]:

od:

for i from O to b-1 do
children:=[op(children),f(a,i)]:

od:

for 1 from 1 to min(a,b) do

children:=[op(children),f(a-i,b-1)];

od:
return mex(children):

end:

# optmex,optimized mex function
optmex:=proc(s,m)
local i,j,k;
if nops(s)=0 then return m; Fi:
for i from 0 to max(op(s))-m do
if member(i+m,{op(s)}) then:else
return i+m;
fi:
od:
return max(op(s))+1;
end:

# optf, optimized Sprague-Grundy function
optf:=proc(a,b) option remember:
local 1i,j,k,children,begin,begin2;
if a=0 then return b;fi:
if b=0 then return a;fi:
children:=[];
begin:=0;
if a-2*b-1 >0 then begin:=a-2*b-1;fi:
begin2:=0;
if a-3*b-1 >0 then begin2:=a-3*b-1;Fi:
for 1 from begin2 to a-1 do
children:=[op(children),optf(i,b)];
od:
for i from O to b-1 do
children:=[op(children),optf(a,i)];
od:
for i from 1 to min(a,b) do
children:=[op(children),optf(a-i,b-i)];
od:
return optmex(children,begin):
end:

#expandchain, get the arry of the chain ch.
expandchain:=proc(ch,n)
local 1,j,k,chain,p;
p:=nops(ch);
chain:=[]:
for 1 from O to n-1 do
chain:=[op(chain),ch[i-p*floor(i/p)+1]+p*Floor(i/p)
od:
chain:
end:

#guess the guessing period part
guess:=proc(chain,symbol)
local i1,j,k,num,s,half,form,t;
num:=nops(chain);
half:=Floor(num/2):
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for i1 from half+l to num do
k:=i-half;
if(chain[half]+k=chain[i]) then
s:=0;
for j from half to num-k do
if chain[j]+k <> chain[j+k] then
s:=1;
fi:
if s=1 then break; fi:
od:
if s=0 then
t:=Floor(half/Kk)*k+1:
form:=[]:
for j from t to t+k-1 do
Fform:=[op(form),symbol+chain[j]-t]:
od:
fi:
if s=0 then
for j from half to 1 by -1 do
if chain[j]+k <>chain[j+k] then
return([k,j+1,form]);
fi:
od:
eturn([k,1,form]);
fi:
fi:
od:
return([-11):
end:

symbolchainf:=proc(a,n,chain,symbol) option remember:
local i,j,k,ch;
ch:=guess(chain,symbol)[3]:
expandchain(ch,n);

end:

symbolf:=proc(a,n,symbol) option remember:
local 1,j,k,ch;
ch:=[seq(optf(i,a),i=0..1000)];
symbolchainf(a,n,ch,symbol):

end:

symbolelemf:=proc(a,b,symbol) option remember:
local i1,j,k,ch;
ch:=[seq(optf(i,a),i=0..1000)];
symbolchainf(a,b,ch,symbol)[b]:

end:

# proof, the proving part
proof:=proc(b)
local i,j,k,gue,p,prf,m,ch,guessedchain;
#p:=nops(chain);
ch:=guess([seq(optf(i,b),i=0..1000)],m):
p:=ch[1]:
guessedchain:=expandchain(ch[3],2*p+3*b);
prf:=true:
for i from 1 to p do
if symbolmex(b,3*b+i,m)+p<>symbolmex(b,3*b+i+p,m)
then prf:=false;
fi:
od:
ch,prf:
end:
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symbolmex:=proc(b,a,sym)
option remember: local 1,j,k,elem;
elem:=[1];
for 1 from 1 to a-1 do
elem:=[op(elem),symbolelemf(b,i,sym)]:
od:
for i from O to b-1 do
elem:=[op(elem),symbolelemf(i,a,sym)]:
od:
for i from 1 to min(a-1,b) do
elem:=[op(elem),symbolelemf(b-i,a-i,sym)]:
od:
optmex(elem,sym+a-1-2*b-1):
end:



