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ABSTRACT

FQMR: A FLEXIBLE QUASI-MINIMAL RESIDUAL METHOD WITH
INEXACT PRECONDITIONING

Judith Ann Vogel
DOCTOR OF PHILOSOPHY

Temple University, August, 2000

Professor Daniel B. Szyld, Chair

A flexible version of the Quasi-Minimal Residual (QMR) algorithm is pre-
sented which allows for the use of a different preconditioner at each step of
the algorithm. In particular, inexact solutions of the preconditioned equations
are allowed, as well as the use of some (inner) iterative method as a precondi-
tioner. Several theorems are presented relating the norm of the residual of the
new method with the norm of the residual of other methods, including QMR
and FGMRES. Data from numerical experiments is displayed to illustrate the
convergence behavior of the new flexible QMR (FQMR). In particular, it is

shown that FQMR can produce a more accurate solution than QMR.



ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge my advisor Daniel Szyld
for believing in me well-before 1 believed in myself and for all of his hard
work and sacrifices during the research and writing process. His knowledge
and insight has been an invaluable source of guidance and comfort during my
academic career. I am very grateful for the commitment he has shown me
over the last four years, for the way he has included me in his life, and for
introducing me with pride to the academic community. I would also like to
thank my committee, David R. Hill, Jian-Guo Liu, and Yuan Shi for their
patient reading of my dissertation, their insightful comments, and for their
encouragement during this final step of my graduate work. In addition, I would
like to thank five professors who have taught me how to teach and who care
about me as a person as well as a student. They are David Zitarelli, Raymond
Coughlin, Charlie Herlands, Don Plank, and Juan Tolosa. Furthermore, I
would like to thank Hans, Aaron, Andrew, Myra, Amy, and DeForest for their
friendship and support.

There have been several organizations which have given me financial sup-
port during my time here at Temple University. I would like to acknowledge
the Mathematics Department for granting me a teaching assistantship, the
Graduate School for granting me a dissertation completion grant, and the
National Science Foundation for travel money to attend several mathematics
conferences.

Finally and most importantly, I would like to acknowledge my family for
understanding the strain that this process has put on my time and emotions
and especially for their love. I thank my husband Frank; my parents, Tom,
Madge, John, and Linda; my brothers and sisters, Tom, Jennifer, Arthur,
Mike, Rebecca, John, Connie, Mike, and Karen; and my nieces and nephews,
Veda, Kayla, and Michael for bringing so much sunshine into my life.

I would like to say a special word of thanks to my Mom for her prayers for

me, her pride in me, and for all the anxiety she has suffered on my behalf.



vi

The completion of this work is not just the fulfillment of
a dream, it is the fulfillment of a promise. I dedicate this
thesis to the man whom I thank God for every morning.
He is my husband, my best friend, and the love of my life.
Thank you Frank for your devotion, your patience, and
your charm. Thank you for giving me a reason for

finishing and a reason for living.



TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

DEDICATION

LIST OF FIGURES

LIST OF TABLES

1

2

INTRODUCTION

PRELIMINARIES

2.1
2.2

2.3
24

Statement of the Problem . . . .
Direct Methods . . . . . ... ..
2.2.1 Gaussian Elimination . . .
222 ILUO) .. .........
Iterative Methods . . . . . . . ..
Non-Stationary Iterative Methods

KRYLOV SUBSPACE METHODS

3.1
3.2
3.3
3.4
3.5
3.6

GMRES ... ...........
QMR . . . . ...
Convergence Analysis . . . . . . .
Preconditioning . . . . . . .. ..

Flexible Preconditioning . . . . .
FGMRES . ... ... .. .. ..

FLEXIBLE QMR

FQMR AND FGMRES

5.1

Comparison of Residual Norms .

vii

iv

vi

ix



5.2 Bounds on Residual Norms . . . . . . . . . . . .. .. .. ...
5.3 Summary of Results . . . .. ... ... ... .........

6 NUMERICAL RESULTS

6.1 Experiments . .

6.2 Implementation
7 CONCLUSIONS

REFERENCES

viii

45

92

54
%)
68

75

7



LIST OF FIGURES

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

FQMR convergence —100,~y = 10, inner tol. = 0.1 . . . .
FQMR convergence —100,y = 10, inner tol. = 0.01
FQMR convergence: g = 10,y = 1000, inner tol. = 0.1
FQMR convergence: g = 10,v = 1000, inner tol. = 0.01
FQMR convergence: g = 10,v = 1000, inner tol. = 0.01 .
FQMR convergence: g = —1000.1,y=10. . .. ... ... ..
FQMR-~-QMR: g = —100, v = 10, work vs. matrix dimension .
QMR vs. FQMR-QMR: Shermanl matrix . . .. ... .. ..
QMR vs. FQMR-QMR: Shermanb matrix . . ... ... ...

: B =
: B =

X



LIST OF TABLES

6.1 FQMR-QMR. 8 = —100,7 = 10, out. tol. = 10~7. . ... .. 56
6.2 FQMR-QMR. 8 = 10, = 1000, out. tol. =107, . . .. ... 57
6.3 QMR. tolerance = 1077, . . . . . .. ... ... ... ... 58
6.4 FQMR-QMR(ILU(0)). 8 = —-100,y=10. . ... ... .... 58
6.5 FQMR-QMR(ILU(0)). 8 =10,y =1000. . ... ... .... 59
6.6 QMR(ILU(0)). . . . . o o oo it 59
6.7 FQMR-CGNE. 8 = —100,v = 10, out. tol. =107, . . . . .. 60
6.8 FQMR-CGNE. 3 = 10, = 1000, out. tol. =107 . .. ... 60
6.9 Comparison of achievable residual norms for FQMR-QMR and
QMR. . . 64
6.10 FQMR-QMR: 3 = —100,~ = 10, outer tol.= 10™*. . . . . . . 66
6.11 FQMR-QMR: Shermanl Matrix. out. tol. =1077. .. . ... 68
6.12 FQMR-QMR: Shermanb Matrix. . . .. ... ... ... ... 69

6.13 QMR for Sherman Matrices. . . . . ... ... .. ... ... 70



CHAPTER 1

INTRODUCTION

Consider an equation of the form
Ax=Db (1.1)

where A is an n X n nonsingular matrix, x and b are (column) vectors of
length n and x is unknown. A matrix equation such as (1.1) is a classical
representation of a system of linear equations which expresses n equations in
n unknowns. A is referred to as the coefficient matrix, and x is the vector of
unknowns.

Finding good numerical solutions to (1.1) is perhaps the most important
and most studied problem in all of numerical analysis primarily because of
it’s numerous and varied applications to real life problems. The natural world
is comprised of ever changing components. Mathematical models used in the
study of change invariably result in one or more equations of the form (1.1).
Thus, solutions to (1.1) become an important part of investigating practically
every physical phenomenon. We see their widespread applications in biological
and geological research and in the fields of economics and engineering.

Methods used to solve (1.1) fall into several categories. In this thesis,
for background purposes, we give a brief description of direct methods (see
Chapter 2), and then turn our attention to iterative methods with a spe-

cific concentration on Krylov subspace methods. The Quasi-Minimal Residual



method (QMR) [12] is a well-established Krylov subspace method for solving
large systems of linear equations of the form (1.1) in which A is not Hermitian.
The algorithm makes use of a three-term recurrence, and thus, unlike other
Krylov methods for non-Hermitian matrices, such as GMRES [32], storage
requirements are fixed and known a priori.

The strength of Krylov subspace methods is most apparent when used with
a preconditioner. Preconditioning refers to a technique in which the system
(1.1) is replaced by an equivalent system which makes use of an auxiliary
matrix M. In the case of right preconditioning, one solves the equivalent
linear system AM !(Mx) = b with some appropriate preconditioner M; see
Section 3.4

In this thesis, we present a new version of QMR, where the preconditioner
can vary from one QMR iteration to the next. Our approach to a flexible
version of QMR, which we call FQMR, is similar to that of Saad for FGMRES
[29] and of Golub and Ye for Inexact Conjugate Gradients [18].

The new FQMR method, in the same way as the other inexact methods
just mentioned, is not strictly speaking a Krylov subspace method. This is
because the minimization at each step is done over a subspace which is not a
Krylov subspace. Nevertheless, the minimization properties that exist for these
methods takes place over nested subspaces and, therefore, the convergence
theory developed by Eiermann and Ernst [8] applies to these methods as well.

In Chapter 2, we present some classical methodology for solving (1.1). In
Chapter 3, we define and discuss Krylov subspace methods concentrating on
GMRES and QMR for comparison purpose. In Chapter 3, we also develop the-
ory on the convergence of these two Krylov subspace methods, and discusses
how preconditioning a system of linear equations can effect convergence. Fur-
thermore, we investigate the concept of flexible preconditioning in this chapter
ending with details concerning flexible GMRES. In Chapter 4, we present our
newly developed method, flexible QMR. An algorithm is given highlighting its
details, and several properties of this new method are described including the

quasi-minimization property over a certain subspace and a theorem proving



a local orthogonality property. In Chapter 5, we present a theorem relating
the residual norm of FQMR with that of FGMRES, in a way analogous to the
well-known relation between QMR and GMRES. As a corollary we obtain a
new relation between the residual norm of FGMRES and that of QMR, and
we obtain a new relation between the residual norm of FQMR and that of
GMRES. The same techniques are used in Section 5.2 to obtain bounds for
the FQMR residual norm in terms of that of the residual norm obtained in
QMR. As is to be expected, these bounds are in terms of how inexactly each
preconditioned step is solved. In a similar way, new bounds for the FGMRES
residual norm are obtained in terms of that of GMRES. In Chapter 6, we re-
port numerical experiments which display the convergence behavior of FQMR
for several different linear systems of equations. In addition, FQMR inves-
tigated using three different variable preconditioners. These are established
by solving the preconditioning step using three different iterative methods.
Furthermore, we point out a significant advantage of FQMR which entails the
ability to solve a linear system to a greater precision than is possible without
flexible preconditioning. In Chapter 7, we present our conclusions regarding
FQMR and establish a framework for future research.

The new flexible iterative method presented in this thesis, FQMR, provides
the potential of having a preconditioner which is adaptive, i.e., it allows for the
preconditioner to change as it approaches the solution. Such a method has
the added potential of being less computationally expensive than the QMR
method with fixed preconditioner. However, this is not the aim of the proposed
method. Our aim in created FQMR is to provide an alternative to QMR
when variable preconditioning is needed. In so doing, we are providing an
alternative to the other flexibly preconditioned Krylov subspace methods for
solving such problems. Furthermore, we establish in this thesis that FQMR is
able to achieve more accurate solutions than QMR, thus FQMR gives us the
advantage of solving problems to a smaller tolerance when QMR has reached

it full capabilities.



CHAPTER 2

PRELIMINARIES

2.1 Statement of the Problem

The solution of linear systems of the form (1.1) arises in many areas of
science and engineering. The cause and effect of change due to forces, veloci-
ties, energy, temperature, etc. are modeled using partial differential equations
(PDE’s). The discretization of a linear PDE results in an equation of the
form (1.1). The matrix representation of discretizations achieved by finite
difference or finite element methods, for example, are typically sparse with a

banded sparsity pattern.

Definition 2.1 A matriz is sparse if it has a high percentage of zero entries.

Definition 2.2 A matriz is banded with band width m if the (i,j) entry of

the matriz is zero whenever |i — j| > m for some m € Z,.

In this thesis, we concentrate exclusively on the case when A is a large, sparse
matrix. Theoretically, the nonsingularity of A guarantees that (1.1) has a
unique solution which can be written as x = A~'b. Numerical methods, of
the type described in this thesis, find a close approximation to this unique

solution without explicitly forming A~



2.2 Direct Methods

Direct methods consist of executing a finite number of steps all of which
must be completed in order for the solution to be obtained. In theory, a direct
method is designed to yield the exact solution to a linear system of equations.
In practice, however, the nature of numerical solutions implies that an ap-
proximation is obtained. The basic idea behind most direct methods is to first
reduce the linear system Ax = b to an equivalent triangular system. Trian-
gular systems can be solved much more easily than the original problem by
implementing back-substitution in the case of upper-triangular systems and
forward-substitution in the case of lower-triangular systems. The various di-
rect methods that exist are distinguished from each other by the method used
to transform the original matrix A into a triangular form. The development
of direct methods follows a straight-forward logic which is easily implemented.
Furthermore, the continued popularity of direct methods is a result of their
predictable behavior and robustness. For a general discussion of these meth-

ods, see, e.g., [17], [34], and also [6], [15], for sparse direct methods.

2.2.1 Gaussian Elimination

Gaussian elimination is perhaps the most well-known direct method. Gaus-
sian elimination implements an LU factorization of the matrix A by applying
simple linear transformations to A which successively introduce zeros below
the diagonal in each column, thus, transforming A into an upper-triangular
matrix U. Each of the simple linear transformations can be represented as
a unit lower triangular matrix L, meaning a lower triangular matrix with
ones on the diagonal, making the entire process equivalent to the following
representation:

L, 1---LyL{A=U.

Letting L = L; 'Ly -+ L,_," ', produces the factorization

A=1IT,



where L is unit lower-triangular and U is upper-triangular. This factorization

yields the reformulated equation:
L(Uz) =b.

Hence, solving the system Ax = b is equivalent to solving the pair of triangular

systems:

Ly = b
Uz = y. (2.1)

When A is a sparse matrix, a certain amount of fill takes place during the
factorization process in (Gaussian elimination, i.e., zero entries are replaced
with nonzeros. If a matrix A is banded, a banded version of Gaussian elimi-
nation can be implemented. With the implementation of this version, no fill
takes place outside of the band of width m. However, this modification cannot
take advantage of any zeros that are inside the band. These may fill-in with

nonzeros during the process of elimination, see e.g., [6], [19].

2.2.2 ILU(0)

We include here a discussion of Incomplete LU (ILU) factorization that
will be of interest to us in subsequent sections. For a more complete study see,
e.g., [24], [30]. The incomplete LU factorization is reminiscent of the Gaussian
elimination factorization in that it uses A to create a pair of matrices L and
U. However, in ILU the product LU is not intended to exactly equal A. For
a sparse matrix A , an ILU factorization computes a sparse lower triangular
matrix L and a sparse upper triangular matrix U such that certain conditions

are satisfied by the residual matrix
R=LU - A. (2.2)

One such requirement is that R have zero entries in specific predetermined

off-diagonal locations. One algorithm for achieving the ILU factorization of A



consists of performing Gaussian elimination on A and dropping the elements in
the entries which were predetermined to be zero. The various ILU factorization
methods are distinguished from each other by the amount of fill that they allow
in the factorization process.

ILU(0) implements an incomplete LU factorization of A which allows for
zero fill, that is, no fill is permitted, and, therefore, preserves the sparsity
pattern of the matrix A. The ILU(0) factorization of A is defined to be any
pair of matrices, L and U where L is unit lower triangular with the same
sparsity pattern as the lower triangular part of A, and U is upper triangular
with the same sparsity pattern as the upper triangular part of A such that,
R = A— LU is zero in the locations of the nonzero entries of A. We emphasize
here that in the ILU(0) process the factors L and U are not uniquely defined.
Notice that in the definition, L and U are any pair of matrices which satisfy
the given specifications, and no specific method is given for their formulation.
The choice of methodology for forming L and U is left to the discretion of
the individual user. In this thesis, we choose to implement ILU(0) using the
modified version of Gaussian elimination briefly described in this section and

in [30]. Thus, for our purposes, L and U are fixed factors depending only on

A.

2.3 Iterative Methods

One alternative to direct methods is to solve Ax = b by means of an
iterative method. Iterative methods are based on an approximation/correction
schemes and make use of recursively defined algorithms. The objective of
iterative schemes is to get progressively closer to the exact solution at each
iteration. Furthermore, one wants each iterative step to be easily computable.

Iterative methods can be formulated in several ways. We choose to be-
gin with an explanation of classical stationary iterative schemes; see [2], [19],
[30],[36]. As initially stated, iterative methods work by approximating the ex-

act solution and then correcting this estimation until the answer is reasonably



close to the exact solution. To institute such a procedure we need a process
by which the approximation is updated. Stationary iterative methods begin

by writing the linear system Ax = b in an equivalent form
x=Tx+d.

Notice that, in essence, we have transformed (1.1) into a fixed point problem.
Starting with an initial guess Xg, a sequence of approximations x; is generated

that is defined using this equation as an iterative formula:

Xp1 =1Ix+d, k=12 ... (2.3)
This process is implemented with the expectation that

Xp — Xegact @S k — 00 (2.4)

where X4 denotes the exact solution of (1.1)
The convergence of (2.4) depends on iteration (2.3) and on the initial guess
xg. Theorem 2.1 below gives conditions on (2.3) to guarantee convergence of

the approximation sequence assuming that xg is chosen arbitrarily.

Definition 2.3 Given a matriz B, the spectral radius of B, denoted p(B),

is the mazimum modulus of the eigenvalues:
p(B) = {mazx|\| : A € 0(B)},
where o(B) is the set of eigenvalues of B.

Theorem 2.1 The iteration Xx+1 = Txx + d converges to a limit with an
arbitrary choice of the initial approximation Xo, if and only if the p(T) < 1.
Furthermore, a sufficient condition for convergence is that || T ||< 1 for some

matrix norm.

For a proof of this theorem see, e.g., [2] or [36].
The implementation of an iterative method of the form (2.3) requires cri-

teria for stopping the iterates. In establishing that our approximation is close



enough to the actual solution, we wish to measure the distance of our solution
to the exact solution and guarantee that this distance is less than or equal to

a prescribed tolerance €. In other words, we want to have
” Xezact — Xk ||< g, (25)

for some vector norm || - || . The error, &, = X¢gqet — Xk, measures how far the
approximation xj is from the exact solution X.;4. Note, € should be chosen
such that

u<e<l

where p is the machine precision.

Definition 2.4 The machine precision, p , is defined to be the smallest,
positive floating point number such that fl(1+ p) > 1. Here fl(x) stands for
the floating point representation of x. The quantity u is about 10~ for double

precision and 108 for single precision.

The obvious problem with the criteria of error in (2.5) is that Xegacs is unknown.
Thus, we turn our attention to two other ways of determining closeness to
Xezact-

In order for convergence to occur, it is necessary that x;,; be a better
approximation to Xz, than x;. Therefore, one possibility is to stop the

iteration when
| k41— % ||
| x ||

A second option and the one that we will follow in our calculations, is a

<eg

stopping criteria based on the residual of a method.

Definition 2.5 The residual of a system Ax = b is defined to be the vector
b — Ax.

The residual r;, = b — Ax;, measures how well the iterate x; solves the system

(1.1). If the residual is evaluated at x; there is an obvious relationship between
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the residual and the error.

r, = b — AXk
== A(A_lb - Xk)
= A(Xexact - Xk)

= Ag,
The residual stopping criteria requires that
| b— Axy ||< e.

In this thesis, we choose to use the 2-norm in our analysis. Thus, in what
follows, || - || will represent the 2-norm unless explicitly labeled otherwise. The
reader is cautioned that this is not an arbitrary choice for much of the following
analysis depends on this specific choice of norm.

We now discuss a means for transforming the equation Ax = b into the
equivalent form x = 7T'x + d which utilizes the concept of matrix splittings.
Let

A=M-N (2.6)

be a splitting of the matrix A into the sum of two matrices M and —N. In
forming such a splitting, M is required to be nonsingular, and we expect a
system of the form Mz = v to be easily solvable. Substituting this splitting

into (1.1) yields the following equivalent representations:

Ax = b
(M-—N)x = b
Mx = Nx+b
x = M 'Nx+ M 'b. (2.7)

Equation (2.7) is now of the form x = Tx+d withT = M 'N andd = M 'b.
The choices that are used to pick M and N in the original splitting of A, dictate
the iterative method represented by (2.7).
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Next, we define three well-known stationary iterative schemes. These are
Jacobi, Gauss-Seidel, and SOR (successive over-relaxation). In the following

definitions, we assume the decomposition
A=D-FE-F

where D is a diagonal matrix with d; ; = a;;, forall j =1,2,...,n, —E is the
strict lower triangular part of A, —F is the strict upper triangular part of A,

and the diagonal entries of A are assumed to be nonzero.

Definition 2.6 The Jacobi iteration determines the ith component of the
next approxrimation so that the ith component of the residual is annihilated. In

vector form, the Jacobi iteration equation can be written as follows:
Xpi1 = DY (E + F)x; + D7 'b.

Definition 2.7 The Gauss-Seidel iteration corrects the ith component of the
current approximation by also annihilating the ith component of the residual.
However, in Gauss-Seidel, the solution is updated immediately each time the
new component is found. In vector form, the Gauss-Seidel iteration equation
has the form

Xp1 = (D — E) 'Fx; + (D — E) 'b.

Jacobi and Gauss-Seidel are both representable in the form of Equation (2.7);
for Jacobi, M = D and for Gauss-Seidel M = D — F.

Definition 2.8 Successive Over-relaxation method(SOR) is based on

the matrix splitting
wA=(D—-wFE) — (wF+ (1 —w)D),
where w is a real parameter such that w > 1, and is given by the recurrence:

(D — wE)xg41 = [wF + (1 — w)D]x; + wh.
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For a more detailed explanation of these three stationary iterative methods
see, e.g., [2], [30], [36].
For completeness, we include here a description of an iterative scheme

which utilizes an incomplete factorization, such as ILU(0), as outlined in Sec-
tion 2.2.2. Let M in (2.7) be defined by

M = LU,

where L and U correspond to an incomplete factorization of A as described in

Section 2.2.2. Substitution into (2.7) yields the iteration
Xpp1 = UL (LU — A)x, + U 'L™'b,

thus providing a stationary iterative method based on an ILU factorization of

a matrix.

2.4 Non-Stationary Iterative Methods

We now turn our attention to the description of non-stationary iterative
methods. Note that the stationary iterative scheme defined by (2.3) updates
the approximation using a fixed factor M~' at each step; see also (2.7) and
(2.8) below. A generalization of this technique can be created by introducing
a factor ay to (2.3) which in some way imposes a minimization property on
the residual. Consider the following form of the stationary iteration equation
equivalent to (2.7):

Xpy1 = Xp + M~ H(b — Axy). (2.8)

An alternative to (2.8) is then of the form
Xk+1 = Xk + ak(b - Axk), (29)

where a; is a parameter satisfying certain minimization properties. Since ay
can vary from one iteration to the next, the method thus defined is called a

non-stationary method.
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Two iterative methods which are defined as in (2.9) are Orthomin(1)[37]
and the method of Steepest Descent; see e.g., [22], [23]. If in (2.9) we multiply
both sides on the left by —A and then add b to both sides, we get

b — AXk+1 == (b - AXk) - akA(b - Axk)

which is equivalent to

Tpi1 = Ty — apAry.

For Orthomin(1), ay is chosen to minimize the 2-norm of the residual ry; by

setting
a = <I'k, AI'k>
k <AI‘k, AI‘k> )

Here, and in the rest of the thesis, (x,y) = x’y is the Euclidean inner product
for x and y real, and (x,y) = x¥y for x and y complex. The following

definitions are necessary in the development of the next method.

Definition 2.9 Let A® be the conjugate transpose of A, if A = AH then A is

Hermitian.
Definition 2.10 A real matriz is called positive definite if
(Au,u) >0, forallu € R" u #0.

If the matrix A is Hermitian and positive definite, the method of Steepest
Descent can be implemented. The method of Steepest Descent minimizes the

A-norm of the error which is given as

| €rt1 [l 4 = (€r11, Aék+1>1/2-

The error satisfies €51 = € — axry, therefore, it can be shown that the value
of aj that minimizes this error norm is given by

(€, Ary,) _ (re, Th)
(rp, Ar)  (r), Ary)

ap =

The methods Orthomin(1) and Steepest Descent are described in detail in [19].
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Equation (2.9) can be further generalized to take the form
Xk+1 = Xk + axPk, (2.10)

where in the cases described previously the search direction py is defined to
be the residual. If py is allowed to represent other vectors, we have the for-
mulation of some more sophisticated iterative methods such as Orthomin(2)
[37] and the Conjugate Gradient method [21]. Again, see, e.g., [19] for a more
detailed study of these methods. The Conjugate Gradient method is used for
solving Ax = b when A is a Hermitian matrix. For the case when A is not
Hermitian, a variation of this method can be implemented, namely, Conjugate
Gradient for the Normal Equations (CGNE)[21]. CGNE begins by consid-
ering the following equivalent representation of the original system of linear

equations (1.1):

AA™1 = b
x = A'u. (2.11)

Clearly, the solution of (2.11) is also a solution of (1.1). In addition, since
the matrix A is square and nonsingular, the new coefficient matrix AA7 is
symmetric positive definite, and the Conjugate Gradient method can be used
to solve AATu = b for u. Multiplying ATu, then, yields the solution to our
original system of linear equations. We will use an implementation of CGNE
in our numerical experimentation; see Chapter 6. For a more complete study
of CGNE, see, e.g., [30].
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CHAPTER 3

KRYLOV SUBSPACE
METHODS

Krylov subspace methods can also be formulated as in (2.10), however, we
choose to construct them in a manner that leads to a better understanding of

their development.

Definition 3.1 A Krylov subspace K,,(A,b) of dimension m, generated

by a matriz A and a vector b, is defined as
K..(A,b) = span{b, Ab, ..., A™ 'b}.

Krylov subspace methods are comprised of a group of projection-like methods
onto a Krylov subspace. The Conjugate Gradient method described by (2.10)
in Section 2.4 is a Krylov subspace method used to solve Ax = b when A is
Hermitian. Here, we explain two Krylov subspace methods for solving Ax = b
for non-Hermitian matrices. They are Generalized Minimal Residual Method
(GMRES) [32] and Quasi-Minimal Residual Method (QMR) [25] and are par-
ticularly important to the development of this thesis; see also, e.g., [19], [30],
(34].
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3.1 GMRES

GMRES is a Krylov subspace method for solving a system of linear equa-
tions where A is a general non-Hermitian matrix. We begin this section
with some background definitions and algorithms to aid in the description

of GMRES.

Definition 3.2 A matriz A is upper-Hessenberg if a;; = 0 fori > j +1,

i.e., A is an upper-triangular matriz with an additional nonzero subdiagonal.

One can write a complete reduction of A to upper-Hessenberg form, H, by an

orthogonal similarity transformation, V', as follows:
A=VHV* or AV =VH. (3.1)

We next describe the Arnoldi process which performs an incomplete de-
composition of A in which only the first m columns of (3.1) are constructed.

Let V,, be the n x m matrix whose columns are the first m columns of V:
Vin = [Vi|val| .- |V,

and let H,, be the (m + 1) x m upper-left part of H:

hll hlm

I )

hai hojo

hm,m—l hm,m

hm—|—1,m

Note that H,, is also an upper-Hessenberg matrix. The Arnoldi process pro-

duces the matrices V;,,.1, H,, which satisfy the following relation:

The following algorithm implements the Arnoldi process.
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Algorithm 3.1 (Arnoldi)

Given a vector xg as an initial guess
form rg = b — Azy and let vi =ro/(|| ro ||)
for j=1,2,....m
z = Av,
for 1=1,...,j
hi; = vz
z=12—h,;
hjtg =zl
Vit1 = 2/hjq
end for
The Arnoldi iteration is the modified Gram-Schmidt process (see, e.g., [34])
implemented to form the coefficients h; ; and the vectors v; which satisfy the

recursively defined equation
AVm = hl,mvl + ...+ hm’mvm + hm’m+1vm+1. (33)

In this way, the vectors {v;} form orthogonal bases of the successive Krylov

subspaces generated by A and ry. Thus,
K (A, 7o) = span{rg, Arg, ..., A" 'rg} = span{vy,...,vp,}.

We note here that the Arnoldi process requires that all previously com-
puted vectors be saved in order for the orthogonalization to take place. For a
Hermitian matrix A, the Gram-Schmidt process, described in the Arnoldi pro-
cess, would reduce to a three-term recurrence, thereby, forming a tri-diagonal
coefficient matrix in place of H,,, and requiring only the two previously com-
puted vectors be saved. In this case, the algorithm is named the Lanczos
process, and it is the basis for the Conjugate Gradient method; see, e.g., [19],
(34].

We have now established the background needed to present the details of
GMRES. At step m, GMRES approximates X, by the vector

Xm € X0 + Kin(A,1g)
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which minimizes the norm of the residual r,, = b — Ax,,. We start by consid-

ering the following naive approach for solving this minimization problem.

Definition 3.3 Let K,, = [ 1o | Arg | ... | A™ 'ry |. This n X m matriz is

called the Krylov matrix generated by A and ry.
Using this definition, our problem reduces to setting
Xm = Xo + Kimc,
where ¢ € C™ is sought to minimize
| tm = ro = AK e || -

This minimization process can be achieved by using a QR factorization of the
matrix AK,,; see, e.g., [34]
Although the logic of this approach is valid, there are difficulties involved

in its performance.

Definition 3.4 A process, with respect to a given set of data, is called ill-
conditioned if a small relative error in the data causes a large relative error

in the computed solution.

Due to the fact that some entries of K,, can grow much faster than others,
the minimization process for GMRES, as described above, is exceedingly ill-
conditioned.

The alternative to the naive approach makes use of the Arnoldi process.
Using this process, we construct a sequence of matrices V,,, whose columns
Vi,...,Vy span the successive Krylov subspaces K,,(A4,ry). The columns of
Vi form a different basis for the Krylov subspace K,,(A,ry). Additionally,
since the columns of V,,, are orthogonal, the process utilizing V,, in place K,

is no longer ill-conditioned. Thus, instead of x,, = xq + K,,,c, we can write

Xm = X0+ Viu¥m (34)
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and our minimization problem now reduces to finding a vector y € C™ such
that
|ro — AV,y || = minimum. (3.5)

Using (3.2) in (3.5) we obtain
| to — Viny1 Hpy | = minimum, (3.6)

and multiplying on the left of (3.6) by V,2, yields

| V. ro — Hpy || = minimum. (3.7)

Since both terms inside the norm of (3.6) are in the column space of V1,
multiplication by V,X, | does not change the norm. By the construction of V,,,

VH

H 1o =] 1o || €1, where e; = (1,0,0,...)". Hence, (3.7) can be written as
Il ro || € — Hpy || = minimum . (3.8)

Thus, at step m of GMRES, we shall solve minimization problem (3.8) for y,
call the solution y,,, and set x,, = xo + V,,,¥,»- Note that the above equivalent
representations of the minimization problem all explicitly demonstrate that,
at step m, GMRES minimizes the norm of the residual r,, = ry — Ax,, over
all vectors x,, € xo + K,,(A,ry). Note that the analysis in (3.5) — (3.8) only
holds for || - || = || - ||2-

3.2 QMR

Like GMRES, the QMR method solves (1.1) when A is a general non-
Hermitian matrix. For background purposes, we present here an algorithm
for implementing the two-sided Lanczos process. Recall from Section 3.1 that
in order to form an orthonormal basis of K,,(4,r) when A is non-Hermitian
we must save all the previous vectors. For implementing GMRES, there is no
existing three-term recurrence as there is in the Lanczos process. However, if

we require instead that the constructed basis satisfies a biorthogality property,
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it is possible to implement a process similar to the Lanczos process which uses
a pair of three-term recurrences. The reader is cautioned that in the following
description of QMR the same notation is used to represent quantities, vectors,
and matrices, which act similarly to their GMRES counterparts (e.g. Vin, Xm,
etc.). However, the explicit formation of these vectors entails performing a

different set of steps and thus these objects are indeed different.

Definition 3.5 The set of vectors vy,...,v,, and wq, ..., W,, are biorthog-

onal if (v;,w;) = 0 whenever i # j.

The two-sided Lanczos Algorithm shown below uses a pair of three-term
recurrences, one involving A and one involving A, to construct a pair of
biorthogonal bases, {vi,...,vy,} and {wy,...,wp}, corresponding to
K. (A rg) and K,,(A® r), respectively.

Algorithm 3.2 (Two-sided Lanczos)

Given a vector x; as an initial guess
form ro =b — Ax( and choose Ty s.t. (rg, o) #0
set vi = 1o/||rol| and wy = ¢/ (¥, v1)
set fo=v%=0and v =wy =0
for 7=1,2,....m
Compute: Av; and A7w;
a; = (Av;, w;)
Vit1 = Av; — o5V — BV
Wi = Aflw; —a;w; — y_1wi
set 7 = [[Vjall and B = (vji1, W)
Vit = Vi1/7; and Wi = Wy /B

end for

Let V,,, be the matrix whose columns are vy, ..., v, and let W,, be the matrix

whose columns are wy, ..., W,,. Furthermore, let T},,;1 ,, be the (m+1) x m
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tridiagonal matrix of recurrence coefficients

[ ar B ]
"o
Tontim = e Bt |
Tm-1 COm
! Tm ]

and let T},41,, be defined similarly as the following (m + 1) X m matrix

a1 M
B
T m = Ym—1
Bm—l Cm
Brm

Then the following pair of recurrence formulas, in matrix form, illustrates

Algorithm 3.2

AVm - Vm+1Tm+1’m (39)
AHWm = Wm+1Tm+1,m- (310)

We point out that Tm,m, the matrix achieved by dropping the last row of

Tr+1,m, 1s the conjugate transpose of 7;, ,,,, the matrix achieved by dropping

the last row of T}, 11 ,,. Furthermore, the trait of biorthogonality implies that
VIW, =1,

where I is the (m x m) identity matrix.
At step m in the QMR algorithm, the approximate solution x,, is taken to
be of the form
X, = Xo + Vi¥k (3.11)

where y, is chosen to satisfy a minimization property that we describe below.
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From (3.11), we have

rm = Ty— AVmYm
= Ty— Vm—l—le—H,mYm

= Vil vo | €1 = Tngr,mym)- (3.12)

Thus, the norm of r,, satisfies

ltm || = || Vinqr(Ber — Tm—|—1,mYm) I
>~ || Vm+1 |||| ﬁel - Tm+1,mYm ”a (313)

N

where 5 =|| ry || .

In GMRES, because of the orthogonality of the columns of V,,,, we are able
to choose y,, such that the norm of the residual was minimized. In QMR, this
is no longer the case. The non-orthogonality of the columns of V;, in (3.13)
makes it difficult to choose y,, to minimize the norm of the residual. Instead,
QMR chooses y,, to minimize the second factor in (3.13). Thus, in step m of

QMR, the approximation (3.11) is chosen such that y,, satisfies
Ym = arg min || fe; — Tnp1my || - (3.14)
yeC

By this we mean, yy, is equal to the vector y € C™ such that || fe1 —Tn11,my ||
is minimized. Since this method minimizes the norm of a factor of the residual
instead of the norm of the entire residual it is called the quasi-minimal residual

method.

3.3 Convergence Analysis

We claim convergence of GMRES when || r,, || is less than a prescribed
tolerance €. At each step of GMRES, || r,, || is minimized over the Krylov
subspace K,,(A,1q). Notice that for all m,

Km(Aa I'()) C Km+1 (Aa rO);
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i.e., the Krylov subspaces form an increasing nested sequence of subspaces.

From this, we observe that
| T | < 2 || for all m,

i.e., convergence of GMRES is monotonic. This monotonicity is due to the fact
that at each step we are minimizing over increasingly larger nested subspaces

and so || ry, || will either decrease or remain unchanged. Additionally, since
Kn(A, ][ o [) =€,

we are guaranteed convergence, for exact arithmetic, in at most n steps, i.e.,
|| rn ||= 0, since at this point we have all of C".

In QMR, the convergence analysis follows a similar theoretical path. Again,
we are minimizing over a successively larger nested sequence of subspaces,
but in QMR, we are not minimizing || r,, || but are instead minimizing the
norm of a factor of the residual. Therefore, although this factor decreases
monotonically, the norm of residual may not. However, in QMR, provided
that the two-sided Lanczos method does not breakdown, convergence will still
take place, for exact arithmetic, in at most n steps; see [12].

In implementing QMR, convergence will not occur if the two-sided Lanczos
process becomes undefined. If (v,;1,W,;1) = 0 the next iterate will require
division by zero, and the algorithm must terminate. This can happen in two
ways. First, the two-sided Lanczos Algorithm will terminate if v, = 0 or
w;i1 = 0. In this case, the algorithm has generated an invariant subspace,
namely an A-invariant subspace if v;;; = 0 and an AT-invariant subspace if
W,41 = 0, and therefore, no additional progress can be made. In numerical
experiments, it is typical to see this type of breakdown. We refer to this as
regular termination. The second way the two-sided Lanczos process can
become undefined is referred to as serious breakdown. This occurs when
(Vj41,Wjy1) = 0, but both V41 and W, are non-zero. A method known as

the look-ahead Lanczos process deals with this situation by skipping steps in
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which the Lanczos vectors are undefined and continuing the process for future
steps; see, e.g., [12], [20]. This will be a topic of future research, see Chapter 7.
In analyzing convergence, it is not enough to know that a method will
converge. It is also important to know how quickly it will converge. In order for
a Krylov subspace method to be successful, it must converge to a satisfactory
tolerance well before the upper bound of n is reached. In order to investigate
the convergence behavior of GMRES and QMR, we consider these methods
in the context of polynomial approximation problems. We begin by observing
that, at each step of GMRES and QMR, x,, € x¢o + K,,,(A, ry) implies that

Xy, = Xo + qm(A)rO:

where ¢, is a polynomial of degree m — 1. The residual r,, = b — Ax,, can

then be written as
rm = To+ gm(A)ro
= (I — Agm(A))ro
= pm(A)ry, (3.15)
where p,, is the polynomial defined by
Pm(2) =1 — 2qm(2).
Letting,
P,, = {p: pis a polynomial of degree < m with p(0) = 1},

we see that GMRES and QMR can be viewed as minimization problems over

P,,. Using this terminology, the residual r,,, in GMRES satisfies:
m|| = mi A 1
e | = min [[p(A)ro] (3.16)

The relation of GMRES to polynomial approximations can be further ex-
ploited to investigate the minimization of polynomials over the spectrum of
A. Thereby, emphasizing the importance of the distribution of the eigenval-
ues of a matrix. For this result, we need the added assumption that A is

diagonalizable.



25

Theorem 3.1 Assume that A is diagonalizable with eigendecomposition
A = BAB™', where A = diag(\y,--.,\,) s a diagonal matriz of eigenval-

ues and the columns of B are the corresponding right eigenvectors of A. Then

|rm || = min || Bp(A)B_er I
pEPn,
< Kko(B) min [|[p(A)]|| - [|ro]l- (3.17)
pEPn

For a proof of this result; see, e.g., [34].

Definition 3.6 k3(B) = ||B|| - ||B7!|| s the condition number of the

maltriz B.

From this result, one can see that the speed of convergence of GMRES depends
on ky(B) and on finding a low degree polynomial p, such that p is small on
the set of eigenvalues of A with p(0)=1. Due, to the fact that A is non-
Hermitian, we do not have strict guidelines for obtaining information on good
eigenvalue distributions. However, intuitively, we can see that it is beneficial
to have eigenvalues tightly clustered about a single point away from the origin
since a low-degree polynomial cannot equal 1 at the origin and be small, in
absolute value, at many different points distributed around the origin. For a
more detailed explanation of this theory see, e.g., [19], [30]. Similarly, using
these same techniques, we can derive bounds for the QMR residuals which are

essentially the same as the standard bounds for GMRES.

Theorem 3.2 Suppose that the matriz T, ,, generated by m steps of the
two-sided Lanczos process is diagonalizable, and set Ty, = TYT !, where
U = diag(¢r, ..., ¥n) is a diagonal matriz of eigenvalues and the columns of

T are the right eigenvectors of Ty m. Then
Irm || < #2(T)vm +1 min [[p(T)[} - |[ro]l (3.18)

For a proof of this theorem, see [12]. Therefore, the preceding discussion
concerning the eigenvalues for the convergence of GMRES also applies to the

convergence of QMR.



26

3.4 Preconditioning

As discussed in Section 3.3, convergence of iterative methods for solving
(1.1) is dependent on the properties of A. In particular, the location of the
eigenvalues of A play an important role in determining how fast a method
converges. This realization leads us to consider the concept of adapting A in
some way in order to obtain a method which converges faster. If a matrix can
be changed prior to solving a problem so that it has more favorable properties,
we can expect the method used to solve (1.1) to be better behaved. It is this
notion that gives rise to the concept of preconditioning. Consider the following

two equivalent representations of our original system Ax =b (1.1):

M™Ax = M~'b (3.19)
and
AM™'y = b
x = M'y. (3.20)

It should be clear that the solutions to the systems (1.1), (3.19), and (3.20) are
the same, while the convergence analysis of the iterative methods used to solve
these systems use the coefficient matrices A, M A, and AM !, respectively.
Thus, matrix M can be chosen such that M~*A or AM~! have properties
which lead to faster convergence of a specific method. Altering (1.1) as in
(3.19) is the matrix representation of left preconditioning a system of linear
equations, while altering (1.1) as in (3.20) is the matrix representation of right
preconditioning a system of linear equations. In either case, the matrix M
in (3.19) and (3.20) is called a preconditioner.

The matrix M~! is never formed explicitly just as in the solution of (1.1),
A~! is never formed. Instead when M 'v is needed for some vector v, we

solve the corresponding system of linear equations

Mz =v (3.21)
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for z. It is of fundamental importance, for the success of preconditioning,
that (3.21) have a considerable solvability advantage over the original system
Ax =b (1.1).

The choice of a good preconditioner M may not be easy. Ideally, we look for
a matrix M such that the new coefficient matrix AM~! or M~'A has a good
eigenvalue distribution. The preconditioner M should be structured enough so
that (3.21) can be easily solved, while at the same time M should approximate
A, in some sense, so that the iteration for (3.19) or (3.20) converges more
quickly than the iteration method applied to Ax = b in (1.1).

The concept of matrix splitting described in Section 2.3 is a useful technique
in the development of preconditioners. Given a splitting A = M — N as in
(2.6), the matrix M can be used as a preconditioner. An illustration of this
is when M equals the ILU(0) factorization of A. Using M = LU as a right

preconditioner, the linear system (1.1) becomes

ALY 'y = b
x = (LU)_ly.

We will use the preconditioner based on ILU(0) in our numerical experiments

in Chapter 6.

3.5 Flexible Preconditioning

In Section 3.4, a chosen preconditioner M remains fixed throughout the en-
tire implementation of an iterative method. The original theory surrounding
preconditioners (for example, convergence analysis) relied on the fact that M
is fixed. Recently, convergence theory has been developed for specific meth-
ods in which the preconditioner is allowed to vary. The need to allow for a
variable preconditioner arises, e.g., when the solution of (3.21) is not obtained
exactly (say, by a direct method), but is approximated by the use of a sec-
ond (inner) iterative method. This is the case, e.g., when the preconditioner

used is multigrid, such as in [9]. In recent years, several authors worked on
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the idea of preconditioning with a different matrix at each outer iteration of
a Krylov subspace method [1], [18], [26], [29]; see also [5],[14], [16], for other
instances of inner/outer iterations. Preconditioning of this form is referred
to as flexible preconditioning, also known as variable or inexact precondition-
ing. With flexible preconditioning, comes the potential for changing M in
the midst of the implementation process. If such a scenario were possible, a
method could use information gained at one iteration to form a better choice

of the preconditioner used at the next iteration.

3.6 FGMRES

We now discuss the Flexible Generalized Minimal Residual Method (FGM-
RES) [29]. The details of FGMRES will be important in the development and
comparison of FQMR (see Chapter 4). For completeness and for comparison
purposes, we begin by briefly outlining GMRES implemented with a fixed
preconditioner. This development follows closely the work done in Section
3.1 with the matrix A now replaced with AM ™!, since we choose a right pre-
conditioner, and we refer the reader back to this section for the comparison of
several of the following relations. An analogous development is possible for left
preconditioning. The reader is reminded that the vectors v, and r,, formed
here are not the same as those formed in Section 3.1 for we are now working
with a different matrix.

Let xo be the initial guess and rg = b — AM !x, the initial residual. In
GMRES with fixed preconditioner, the Arnoldi method is used to construct
an orthogonal basis corresponding to the Krylov subspace generated by AM 1

and r(y, namely
Kn(AM™" 1r) = span{rg, AM ~'rg, ..., (AM )™ 'ry}.

Let the basis vectors defined by the Arnoldi process on AM™! be
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{v1,va,..., v}, the columns of V,,. The approximation to the solution of

the original linear system Ax = b (1.1) at step m of GMRES is then of the

form
Xm = Xo+ M 'Voym (3.22)
Ym = arg min || [[roller — Huy ||, (3.23)
yeC

where H,, is the upper-Hessenberg coefficient matrix described as in Section
3.1, but now defined with A; ; obtained from the implementation of the Arnoldi
process on AM . Notice the direct comparison of equations (3.22) and (3.23)
to equations (3.4) and (3.8), respectively. Due to the orthogonality of the
columns of V},, y., as described in (3.23) minimizes the norm of the residual.
Additionally, the action of AM~! on a vector v of the Krylov space remains
in the span of V1. Thus, equation (3.2), still holds with AM ! replacing A
giving us

(AM™ YV = Vin 1 Hp. (3.24)

Finally, since implementing GMRES with a fixed preconditioner is merely
an identical process implemented with a different matrix all the convergence
analysis of GMRES still holds for the new matrix AM .
In the construction of FGMRES, the approximation (3.22) is now replaced
by
X = X0 + M ViV,

where M, ! is potentially a different matrix at each iteration m. The details

of FGMRES are given in the following algorithm.
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Algorithm 3.3 (FGMRES)

Given a vector X, as an initial guess
form ro = b — Axg.
set vi = ro/||rol|
set z; = M. 'vy
for 7=1,2,...,m
Compute: w = Az,
for 1 =1,2,...,j
hij = (Aw,v;)
w=w — h;;V;
set By =l w |
Vit =W/hji1;
Zi1 = M\ Vi (3.25)
end for
Xm = X0 + Zm41Ym, Where y, = argmin cn ||fe; — Hy,y||

and Zm—|—1 = [Zl, e ,Zm+1]

In Algorithm 3.3, if M, and M;,, were to be replaced with M, Algorithm
3.3 would be reduced to GMRES with a fixed preconditioner. Thus, there
are many similarities between GMRES and FGMRES. One notable difference
between GMRES and FGMRES is that the action of AM ™' on a vector v €
K (A, rg) is no longer in the span of the columns of V;,,; 1. Thus, (3.24) is

now replaced with the expression
AZm - m-l—lea (326)

where the columns of Z,,, are no longer a basis for a Krylov subspace. However,
using (3.26), we are still able to show an optimality property held by the
approximation x,,. FGMRES finds y,, such that the norm of the residual is

minimized over all vectors x,,, € x¢+span{Z,,}. Notice, we are now minimizing
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over a different subspace, and this subspace span{Z,,} is no longer a Krylov
subspace. Due to this change in subspaces, the convergence results given in
Section 3.3 no longer hold for FGMRES. However, convergence analysis of
this method given in [8] can be applied here using the nested set of subspaces

span{Z,,} C span{Z,,;1} and the minimization properties of FGMRES.
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CHAPTER 4

FLEXIBLE QMR

In this chapter, we present the new flexible QMR algorithm. We begin by
giving a brief description of the standard QMR algorithm implemented with
a fixed right preconditioner M. We comment that the use of right precondi-
tioning was completely arbitrary and the same implementation and analysis
will work similarly for left preconditioning. Let xy be the initial guess and
ro = b — Axj the initial residual. QMR constructs biorthogonal bases corre-

sponding to the Krylov spaces generated by AM ! and (AM )% namely
K (AM™! ry) = span{rg, AM 'rq, ..., (AM )" '}
and
K ((AM™1H ry) = span{rg, M7 Afxy, ... (M~ A")"1pg}.

Let the basis vectors for K,,(AM~!,rq) and K,,,(M~7 A" ;) obtained by the
two-sided Lanczos Algorithm, Algorithm 3.2, on AM ! be {vi,vo,...,vp}
and {wy, W, ..., w,,}, the columns of V,,, and W,,, respectively. Again, we
note that these vectors are different from those constructed in Section 3.2 since
we are working with a different matrix AM ~! and, of course, are different from
those described in Section 3.1 and 3.6. (To avoid confusion in subsequent

sections when vectors from different methods are used concurrently, we will
use a superscript of G,Q,FG, and FQ to label objects obtained in the GMRES,
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QMR, FGMRES, and FQMR methods, respectively.) The approximation to
the solution of (1.1) at step m of QMR with fixed (right) preconditioner is of

the form
Xm = Xo+ M_lvm}’ma Ym = argmyin || ||r0||e1 - Tm+1,my ”’ (41)

where T;,, 11, is the tridiagonal coefficient matrix defined in Section 3.2 but
now for AM~'; see [19] or Algorithm 4.1 below.

By the construction of the two-sided Lanczos, the following relation holds
AMilvm == Vm+1Tm+1,m, (42)
from which it follows that

r, = b-—Ax,
= 19— AM_Imem

= Vm+1(||1'o||e1 - Tm+1,m3’m)- (4-3)

This establishes that the QMR method chooses the approximation x,, in such
a way as to minimize the norm of the second factor of the residual at step m.
Thus, a quasi-minimization of the residual norm takes place. Relation (4.2)
can be rewritten as

AZy, = m+1Tm+1,m7 (44)

where Z,, = M~'V,,. Correspondingly, the approximate solution is of the

form

Xm = Xp + ZmYa Ym = arg II;iIl || ”rO“el - Tm-}-l,m}’m ||
Relation (4.2) illustrates that the action of AM ! on a vector v of the Krylov
subspace is in Km+1(AM_1,r0) a basis of which are the columns of V1,

while relation (4.4) will be useful in comparing QMR with FQMR. With this
background in place, we present the following algorithm for FQMR.
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Algorithm 4.1 (FQMR)

Given a vector X( as an initial guess
form ro = b — Axg and choose #¢ s.t. (rg, o) # 0
set vi = 1o/||ro]| and wy = £o/(Fo, v1)
set z; = Mflvl
set fo=vn=0and vo=wy=0
for 1=1,2,...
Compute: Az; and M; 7 AHw,

a; = (AZz', Wi)

Vi1 = Az — o;vi — Bim1vie (4.5)
Wir1 = M7 Alw, — aywy — o 1wy (4.6)
set i = [[Viga|l set B = (Vit1, Wis1) (4.7)
Vig1r = Vig1/7i (4.8)
Wit1 = Wir1/B;

Zij1 = Mi:_llvﬂ_l (4.9)

end for
X; = Xo + Z;i11yi, Where y; = argminy ||fe; — Ti11,y|| (4.10)

and Z'H—l = [Zl, ceay zz'—|—1]

Note that if we replace M;, M; and M;,,; with M, a fixed preconditioner,
the above algorithm reduces to the standard QMR method. Thus, implemen-
tation of FQMR requires only a slight modification of the code for QMR, and
this is one of the strengths of this new algorithm.

Next we discuss the variable preconditioned steps (4.6) and (4.9) in some
detail. Suppose that the preconditioned equations Mz = v are solved approx-
imately by a second iterative solver. Then if ¢ is the tolerance to which this

inner iteration is solved, we can write (4.9) as z;,; = M ~'v;,1 + €11, with

lesall <e. (4.11)
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Lemma 4.1 If all of the entries of v; are nonzero, then the following two

representations of flexible preconditioning are equivalent:

_ —1
Zi+1 = Mi+1vi+1

Ziy1 = MﬁlViJrl + €it1, leisl| <e.

for some fixed matriz M.

Proof. For z;y1 = Mijrllviﬂ, let A; = M;Lll — M™!, then &; = A;v;,; giving
us z; 1 = M~'vi,1 +¢;. Conversely, if z;., = M~'v;,; +¢;, define a diagonal
matrix A; where the ith diagonal entry is €;/v;,1, and set M:Lll =M1+ A,

K3

.. 1
giving us z;y1 = M Vi

Thus, we write

Z;11 — Mij_llvﬂ_l = M_IVH_l + &;. (412)

A consequence of flexible preconditioning is the relation

AZ}9 = VF—?le-I—l,ma (4.13)

m

where ZF'@ is the matrix whose ith column is zf Q, the vector constructed by
FQMR in (4.9); cf. (4.4). Let us define by K,, the subspace spanned by the
columns of ZF@ which is not a Krylov subspace. Consequently, relation (4.13)
cannot be simplified into a form similar to relation (4.2) since the action AM; ™
on a vector v of the Krylov subspace is no longer in the span of the columns of
Vins1- Using (4.13), however, we can still display a quasi-minimization prop-
erty held by xZ@ over this new subspace Km, and this is why the convergence
theory in [8] applies to FQMR. The proof is identical to the one for QMR as
we show next. For an arbitrary vector in the affine space xg ©+ K, ie., of

the form 279 = x{“ + ZZQy, for some y, we have the following identities
b— Az"? = b— A(x)? + Z'%)
= TIgy— AZTiQy

F F
v, f1(||7°0 Q”el - Tm—|—1,mY)-

m
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Now, since x£@ is chosen to minimize the norm of ||rg @|le; — Tyny1,my, We
see that FQMR maintains the quasi-minimal residual property over the affine
space ng + K.

Another noteworthy observation is that FQMR, by construction, maintains
the three-term recurrence of QMR, therefore, only a small fixed number of
storage vectors are needed to implement FQMR. This is in contrast to other
flexible Krylov subspace methods where the amount of needed storage grows
linearly with each iteration. In order to maintain the three term recurrence,
there is a loss of the global biorthogonality held by the bases generated by
QMR. However, we are able to prove a local biorthogonality property, as shown
in the following theorem. That is, consecutive Lanczos vectors constructed by
the flexible two-sided Lanczos process are biorthogonal. This type of local

biorthogonality is also held by other flexible Krylov subspace methods, e.g.,
Inexact Conjugate Gradient [18].

Theorem 4.1 If the two-sided Lanczos vectors are defined at steps 1, ..., k+1
in Algorithm 4.1, i.e., if (va,wi) #0 fori=1,...,k+1 then

(v,ffl, wi) = 0 and (wiy1, v, %) = 0. (4.14)

Proof. We first note that |[v"?|| = 1 for all i by the choice of v;_; in (4.7).
Likewise (v; ¢, w;) = 1 for all i by the choice of ;_; and f;_;. We prove (4.14)
by induction. For k = 0 the result is obvious since v <

that (4.14) holds for i < k — 1 then

= wy = 0. Assume
<‘~f/ff1awk> = (AMk_lngaWO - ak(VfQ,Wk) - qu(v,f?l, Wk>
= (i'r,ffl,wk> — O = 0
and
M7 AT wy, va) —
M,C_HAHWk,v,fQ) — (AMk_lv,]:Q, W)

M A wy vi9) — (vi@ M P Al w,)

<ﬁ’k—|—1 3 V£Q> =

A~ o~~~

Wi, Vg 0) = (W1, v 9) = 0.
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This concludes the proof.
[

In summary, the new FQMR method as described in Algorithm 4.1 allows for
flexible preconditioning, by permitting the preconditioner to change from step
to step, it maintains a local biorthogonality property and a quasi-minimization
of the residual over a set of nested subspaces. We point out that equivalent
results hold if one replaces the right preconditioner used in Algorithm 4.1
with a left preconditioner. In addition, since we achieve a minimization over
a nested set of subspaces the convergence analysis of [8] applies to this new
algorithm. Furthermore, as in QMR, convergence of FQMR fails when the two-
sided Lanczos process becomes undefined by the creation of invariant subspaces
or by serious breakdown; see Section 3.3.

In the next chapter, expressions will be developed that relate the norm of
the residuals of the FQMR method to the norm of the residual of established
methods such as FGMRES and QMR. In Chapter 6, we give numerical results
to illustrate the performance of our FQMR method.
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CHAPTER 5

FQMR AND FGMRES

5.1 Comparison of Residual Norms

In Chapter 3, we gave details concerning two successful Krylov subspace
method for solving non-Hermitian systems of linear equations, namely,
GMRES and QMR, and in Chapters 3 and 4, we gave the formulation of a flexi-
bly preconditioned version of these methods, namely, FGMRES and FQMR. In
this chapter, we establish a relationship between FQMR and FGMRES which
is reminiscent of a relationship held by QMR and GMRES [25]. As a precursor
to the statement of this relationship we describe the original relationship be-
tween QMR and GMRES. When QMR and GMRES are implemented without
variable preconditioning, we have the following result due to Nachtigal [25],

where ko denotes the condition number using the 2-norm; see also [19], [30].

Theorem 5.1 If & denotes the GMRES residual at step m and 8 denotes
the QMR residual at step m, then

el < ro (Vi) Il (5.1)
where the columns of Vrg 11 are the basis vectors generated by QMR.

This inequality is easily shown since the columns of V¢ '+ constructed by
GMRES and the columns of Vrg 1 constructed by QMR are both bases for the



39

same Krylov subspace. When flexible preconditioning is implemented, this is
no longer the case. (To avoid confusion, let us denote by vfiﬁ and vi9 the
vectors computed by FQMR in (4.8) and by FGMRES in (3.23), respectively.)
However, we can prove a relation similar to (5.1) for FGMRES and FQMR,
but to do so we first need the following lemma which relates the matrices
ZFG and ZFQ whose columns are the bases of the subspaces constructed by

FGMRES and FQMR, respectively.

Lemma 5.1 Let z!'C be the ith column of ZFC | the matriz which contains the

basis generated by FGMRES. Likewise, let zfQ be the ith column of ZEQ. If

ef?

;. © 1s the ith error vector (of the preconditioning equation) defined by

279 = MIVFQ 4 (5.2)
and if €F'C is the ith error vector (of the preconditioning equation) defined by

sz = M_lvfG + efa, (5.3)

then
2% e s™ =1, ..., m, (5.4)

where
S™ = Span{zfQ, (M_lA)jsz, (M_lA)jefG; i=1,...m, j=0,...,m—1}.
Proof. We show (5.4) by induction on m. For m = 1, since

Vi =vi9 = ro/||rol,

we have

— -1_F F F
21O =M+ el =M v+ el =2 — Y+ € 5.



40

Assume that (5.4) holds for ¢ < m, then

FG _ 1 FG’
zm—l—l - M m+1+€m+1

= M_l(m)(AZFG hl,meG — hQ,mng — ...
— him, mv ) + 5m+1

- (hmilm)(MflAz;j;G hy iy MIVEG = by MIVEG —
= B MIVEG 4 hm+1 mere )
= (——)(M 1AzL% — hy ;, 279 + hy 1, €lY — by 2l

h'erl,m
FG FG FG
+ hom€5 % — oo = hmZyC + hipmen + Pont1,mEmi1)s

where the first and last equalities follow from (5.3) and the second equality
follows from the definition of v ,.

By the induction hypothesis and the observation that S™ C S for r < ¢,
we have that z'¢ € S™! for 1 < m . By the definition of S™! ef'¢ ¢ Sm+!
for + < m + 1. Therefore, all that remains to be shown is that the first
term M~1AzE¢ € S™t1. Again by the induction hypothesis, we know that
zh¢ € S™ hence, there are scalars a;, b, j,¢i4, i =1,...m, 5 =0,...,m—1,

such that

zaz FQ+Zb20€Q+ZbZ’ lA FQ+
o+ Z bim_1 (MTA)™ el 4 Z cioer ¢
— i=1

m m
+) e (M A+ ) (M A R
=1 =1
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and therefore
M 'AzFC = Z a; (M1 A4)zF?
+ Z bio(M7' A)el @+ b (M~ A) el + .
i i=1

1-1
.+ E bzm 1 1A m 6562
2
+ E Ci,() lA FG E Czl lA FG+...
1-1
-+ E Ci,m— 1 IA mt E:ZFG

Since (M~'A)eF¢ e ™ and (M'AYel? e S™ for j = 0,...,
(m+1)—1,4 =1,...,m + 1, by definition of S™! all that remains to
show is (M~'A)z]© € S™', for i = 1,...,m. Solving in (4.5) for Az; and
multiplying through by M ! gives

(M 'A)z[? =M 'vi8 +a;M v+ 5 M Y. (5.5)

Next, using the second equality in (4.12) for M ~'v; and substituting this into
(5.5) gives

(M_IA)ZZFQ = 71Zﬂ% — Yi€it+1 + O‘izfQ o;€; + 5@ IZZF 1 ﬁz 1€i—1- (56)
The lemma follows from (5.6), since

(M7'A)z[9 = M 'VE + oMV + B MG

_ FQ FQ FQ
= "iZiy1 — Vi€ z+1+az — e

+ﬂz IZZ 1 ﬂz 15 E Sm+1.
[ |

We remind the reader that expressions (5.2) and (5.3) are equivalent ways of
writing the flexible preconditioning step (4.9) in Algorithm 4.1 and (3.25) in
Algorithm 3.3.
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We can now prove the main result of this chapter. This result is the
counterpart to Theorem 5.1 in the flexible case and attempts to quantify a
relation between the norm of the residual of FQMR and the norm of the
residual of FGMRES in terms of the magnitude of the errors associated with
the inner iterations caused by using a variable preconditioner instead of a fixed

preconditioner.

Theorem 5.2 Assume that matriz V@ mi1 whose columns are the two-sided
Lanczos basis associated with FQMR is of full rank. Let @ and vE¢ be the
residuals obtained after m steps of the FQMR and FGMRES algorithms, re-
spectively, and let the matrices EEQ = [e¥9, ... €F9 and EEC = [eF'C, ... €FY],
where €] @ and eF'C are the ith (inner) tolerance vectors as in (5.2) and (5.3).
Then there exist vectors y ,yz FG c R™ 4 =1,...,m — 1, such that the

following inequality holds
el < o (Vi) (IITFG||+||A5FQ 0l
+ +|[AMTTA)EEQY Q| + ..
A A g Rey e
+ JAERCY N + JAM A ER Sy O + . ..
A A Ry G ).

Proof. Step 1. Consider the set defined by

R={r: r= m+1t t=pe1 —Tniimy; y €C™}

Let y,,, denote the vector y that minimizes ||fe; — Tint1,mY||, and denote by
= Be1 — Tynt1,1¥m- Then by definition we have rf® = V2% t,,. By hypoth-
esis, V 1 is of full rank. Therefore, there is an (m + 1) x (m + 1) nonsingular
matrix U such that W, = Vm +1U is unitary. Then for any member of the
set R,
r=WnU't, t=UWlr

and, in particular, r’9 = W,, ;U ~'t,,, which implies

el < N0 wmll- (5.7)
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From (4.1), it follows that the norm ||t,,|| is the minimum of ||Se; — Tr1mY]||

for all vectors y, and therefore,

bl = NUWZ 2

< JUWE x| <||U||r|| foralreR. (5.8)

Step 2. We now consider

r’C =y — AZFCyEC where y¥¢ minimizes |ro — AZECy||. (5.9)
By Lemma 5.1 there exist vectors y,, yi , Y FGcRr™ §=0,...,m— 1 such
that

rn’ = ro— AZpRy, — AEpCyo ¢ — AMTA)ER Yy @
= AMTTA)TER QYR — AERCY T — A(MTA)ERCYTC
L — AMTTA)™gEGy TG
= 10— VT my. — AEEOyTC — A(MTA)EFy @
L= AMTRA)TERAYER  AEROYTG — A(MTIA)ELCyTE
= AMTIA)ErRGy TG

Ym—1-
By rearrangement of terms
FQ —
o — Vm+1Tm+1,myz -

i+ AELQye @ + AMTTA)EL QYT+ L+ AT AT ey
+AERCYEG + AMTTA)ELCYTC + .+ A(MTTA) T ELCY RS,

Hence,

Vi d(Iroller — Trsrmy:)|l =
IeFCG 4 AEEQyEQ 4 A(M—1A)EFQYT? 4 4 A(MTTA) TPy |
+ AEEGYEG + A(MTA)ELCYTC + .+ A(MTA) TP ERGYTG .
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Let £ = V"9 (Ilroller — Trmy1my=), then

I8 = IV (llroller — Tonrimy:)ll <
[eh?ll + [|AER s Il + 1AM A)Eny 9 + ...
L AMLTIA) ey e
HAER yo Il + [ AM T A EL YT O + ...
4 JA(MTT A ERGyEG . (5.10)

Since € R, by (5.8),
[tmll < NUTE]- (5.11)

Hence, by (5.7), (5.10), and (5.8),

el < Ut

< NUTINU NN + [ AERyg 2Nl + [A(M T A)ERSY 9l + ..
HIAMLT AT Ry |
+HJAEECYEC| £ |A(MTTA)EECYEC 4. ..
LA lALT A ey e ]

and since ko(VE9) = ko(U) = |JU|||U]|, the theorem follows.
m+1

By considering exact solutions of the preconditioned equations (4.12), i.e
if ¢ = 0 in (4.11), or equivalently if M; = M for all 4, then, FQMR and
FGMRES are reduced to QMR and GMRES with fixed preconditioners and
Theorem 5.2 reduces to Theorem 5.1.

There are two other special situations, which we want to highlight. First,
if £FC =0, i.e., efQ = 0 for all 7, then FGMRES reduces to GMRES, and the
following corollary, which follows directly from Theorem 5.2, provides a bound
for the norm of the residual of FQMR in terms of the norm of the residual of

GMRES.
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Corollary 5.1 Let anfl, EFQ and rfQ, be as described in Theorem 5.2, and

let TG be the residual obtained after m steps of the GMRES algorithm. Then
there exist vectors ny eER”, v=1,...,m — 1, such that the following holds

lerlll < Ra(Vind) (Ilrﬁll + A€ %yg Il + [ AM T A) 7%y Ol + ..
AL A Ry e ).

Secondly, if E£Q = 0, i.e., if ef 9 =0 for all 1, then the following corollary,
which is a new result for FGMRES, is also established directly from Theorem
5.2 and relates the norm of the residual of QMR to the norm of the residual
of FGMRES.

Corollary 5.2 Let ngl, EFG and TG be as described in Theorem 5.2, and

let t@ be the residual obtained after m steps of the QMR algorithm. Then

there exist vectors yF'¢ € R™, i =1,...,m — 1, such that the following holds

I8 < ka(Vinsr) (I5C1 + IAERCYE I + AM *A)ERCYTE)| + ...
o AMTAY) T R R )

We end this section with a comment on the hypothesis in Theorem 5.2
that Vnﬁfl be of full rank. This implies that the subspace K,, has dimension
m, i.e., that at each step a new dimension is added. One can see that this
is equivalent to requiring that the two-sided Lanczos method as described in
Algorithm 3.2 does not break down. Note that this hypothesis implies that
the subspaces K,, are nested, and this is precisely the assumption made in [8]

for the convergence proofs.

5.2 Bounds on Residual Norms

Using the same techniques used in Lemma 5.1 and Theorem 5.2, we pro-
vide bounds on the norm of the residual of FQMR in terms of the norm of
the residual of QMR. The following lemma resembles Lemma 5.1 in that we

relate ZXQ to Z9, the matrices whose columns are the basis of the subspaces
generated by FQMR and QMR, respectively; see (4.13) and (4.4).
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Lemma 5.2 Let z; ¢ be the ith column of ZE?, and let 22 be the zth column
of Z9. If ef'? is the ith error vector defined by z, © = M~'v, ? + &, 9 then

72 € S™, i=1,...,m, (5.12)
where 8™ = Span{z. <, (M’lA)jé:fQ; i=1,..,m, j=0,..,m—1}.
Proof. We show (5.12) by induction on m. For m = 1, we have
29 = M9 = M~ v@ = 2I'9 _£l9 c U

Assume that (5.12) holds for ¢ < m, then

ZgH—l = M m+1
= M‘l(vim)(AzQ — Ve = B vl )
= (Lm)( M A28 — 0, M NEQ — B M NG )
= (n%m)( Az — 02 — B lzrcr?z 1)

where the first and last equalities follow from the relation (3.21), and the
second equality follows from the definition of v¥ +1; see (4.5). By the induction
hypothesis and the observation that S” C S* for r < ¢, we have that z2% € §™+!
for i < m . Therefore, all that remains to be shown is that M1 Az% € S™+1.
Again by the induction hypothesis, we know that z% € S™, hence, there are

scalars a;,b;; 1 =1,...m, 7 =0,...,m — 1, such that

i FQ+szoeFQ+sz, A C + .
+szm1 lAmlFQ

and therefore

m

M1Az8 = Y a;(MA) FQ+Zb,0 1A)er @

i=1 =1

i M~ 1A%el? 4 +Zb,m1 Ayl
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Since (M*IA)jefQ e S"lforj=0,....(m+1)—1,i=1,....m+1
by definition of S™*1, all that remains to show is (M~1A)z, ¢ € S™+1 for

K3

i=1,...,m , but this follows from (5.6) since

(M_IA)zfQ = M~ 1Vf+? + oziM_lvFQ + Bi1 M_lviQ

F F
= %z Z+Q1 Vi Z+1+az Q_az Q+Bz 1ZZ 1 Bz 15

Using Lemma 5.2, we now present the following theorem which relates the
norm of the residual of the new FQMR method to the norm of the residual of
the QMR method.

Theorem 5.3 Assume that anffl, the two-sided Lanczos basis assoctated with
FQMR is of full rank. Let tE@ and tQ be the residuals obtained after m
steps of the FQMR and QMR algorithms, respectively, and let the matrices

EFQR = [ef? ... el where e'? are the ith tolerance vectors as in (5.2).

Then there exist vectors ny ER™;, 4=1,...,m— 1, such that the following
bound holds
lenlll < Ra(Vinh) (IIrQII +[|AER Ty Il + [AM A ERy | + .
m—1
LAY TRy ).

Proof. Step 1 of the proof is identical to step 1 of the proof of Theorem 5.2.
Step 2. Consider

r? =1y — AZ9% 9  where y% minimizes ||r, — AZ%y]|. (5.13)
By Lemma 5.2 there exist vectors y,, ny; 1=20,...,m— 1 such that

r = ro— AZIQy, — AEFQyI? — A(MTTA)EEQyTC
m—1
L= AMTTA)TT gy 9

= Io— VTS_HTm—H mYz — AgFQ Yo 07— A(M_IA)ET};QYfQ
=AM tA)"TieReylQ
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By rearrangement of terms

ro — Vo Tmiimy. = t9+AENAy 0+ AMTA)EE QY9 + ...
L+ AMTTA) ey TR

Hence,
Viasi(lroller = Tnyimy)ll =
|x9 + AEFQyEQ 4 A(M 1 A)EFRYEQ
LA AMTIA)" ey |
Let # = V.09 (||ro|le; — Trny1,my.) then

Bl < llesll + 1AERSy 2l + 1AM A)Eny1 Y + . .
L+ AQT A" e Gy .
Since ¥ € R, by (5.8)
[tmll < NUTIE]- (5.14)
Hence, by (5.7) and (5.14) we obtain
el < 1Tl

IO TN R + [ AEn 2y Nl + I AM T A ERCyT | + ..
m—1
HAM AT ERCy |l

A

and since ko (V2 2) = ko (U) = [UY|||U]|, the theorem follows.

Using identical techniques as in Lemma 5.2 and Theorem 5.3 we prove
the following new result relating the norm of the residuals associated with
GMRES and FGMRES. We first present the following lemma which relates
the matrices Zpg to Zg, i.e., the matrices whose columns span the nested

subspaces generated by the FGMRES and GMRES methods, respectively.
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Lemma 5.3 Let zF'C be the ith column of ZEC, and let z§ be the ith column

of ZG. If G is the ith error vector defined by zF'C = M~'vIC + el'? then
z8eS™ i=1,...,m (5.15)
where S™ = Span{zF¢, (M LAY eFC, i=1,..,m, j=0,...,m—1}.
Proof. We show (5.15) by induction on m. For m = 1, we have
28 = M VP = M IvEG = 20 _ g6 c gt

Assume that (5.15) holds for ¢ < m, then

G — 1,G
Zpy1 = M7 v,
— -1 G G G
= M (h m41,m )(AZ hmymvm - hm—l,mvm_l — ... hl,mvl )
- (hm+1,m)( Azm - hmamM Vm - hm—l,mM vm—l ...
e hl,mM_1V?)
— 1 -1 G G G G
= (i) (M ' ABS — hyyn2G — hin1 28y — .. — hymzf),

where the above equalities are a result of Algorithm 3.3. By the induction
hypothesis and the observation that S™ C S* for 7 < ¢, we have that z& € S™*!
for i < m . Therefore, all that remains to be shown is that M *Az& € S™+1.
Again by the induction hypothesis, we know that z& € S™, hence, there are

scalars a;,b;; 1 =1,...m, 7=0,...,m — 1, such that

Zaisz + Zbi,oefG + Zbi,l(M’lA)efG +...
i=1 i=1 i=1
+ 3 b (M A)" T ERE,
and therefore
M™Az8 = Z a; (M7 A)z[ %+ " bio(M A)el @
+ Zb“ M7 Al + Y by (MTTA)TENE
=1

Since (M™'AYef% € 5™ for j = 0,...,(m+1) =1, i=1,....m+1
by definition of S™*! all that remains to show is (M 1A)zl'¢ € S™*L for

1=1,...,m , but this follows since
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-1 FG 1., FG -1 FG -1 FG
(M A) z, = hﬂ_l zM Viq + hmM v, + hi—l,z‘M Vi 1 + ...
1 F
+hy M IvEC
_ FG FG FG FG
= hiy12i0 — hivi€i + hiizi T — hige;

FG FG FG FG
—+ hi,uzifl — hifl,i€i71 + ...+ hl’izl — hl,i€1 .
|

Using Lemma 5.3, we now present the following theorem which provides a new
bound of the residual of FGMRES in terms of the residual of GMRES and how

inexactly each preconditioner is solved.

Theorem 5.4 Assume that V,\'% | the Arnoldi basis associated with FGMRES
is of full rank. Let vEC and t8 be the residuals obtained after m steps of the
FGMRES and GMRES algorithms, respectively, and let EFC = [eFC, ... el

FG

where €, “ are the ith tolerance vectors as in (5.3). Then there exist vectors

yi¢erm; i=1,. — 1, such that the following holds

Iehel < ma(Vi®) (Il + AR ys Ol + A A)ERCy T + ..
m—1
A A Ry G ).

Proof. Step 1. Consider the set defined by
R={r: r=V]%¢; t =pe, — HLy; y € C"}.

Let y,, denote the vector y that minimizes ||ﬁel — HECy||, and denote by
= fBe1 — H:Cy,,. Then by definition we have r;¢ = VG t,,. By hypothe-
sis, V.G, is of full rank. Therefore, there is an (m + 1) x (m + 1) nonsingular
matrix U such that W, = VX +1U is unitary. Then for any member of the
set R,
r=WunU't, t=UWIr

G _

and, in particular, rf¢ = W,,,1U"'t,,, which implies

e 1< T - (5.16)
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From (4.1), it follows that the norm ||t,,|| is the minimum of ||Be; — HECy||

for all vectors y, and therefore,

Itull = NUWryCl
< JUWE x| < ||U||||lr|| for all T € R. (5.17)
Step 2. Consider
r¢ =r;— AZ%y%  where y¢ minimizes ||r, — AZ%y]|. (5.18)
By Lemma 5.3 there exist vectors y,, yF%; i =0,...,m — 1 such that

v = ro— AZL%y. — Ay Y — A(MT ARy
L AMTT AV EEGyEG

= 10— Vo Tmiimys — A&, yo @ = A(M T A)E, 5y ¢
L= AMTAY)T N ERGy TG

Ym—1
By rearrangement of terms
ro = VIO Tirmy, = 10+ AEFOYFG 4 A(M'A)EECYFG 4
o+ AMTIA) TGy EG
Hence,
Vasi(lroller = Tnyimy:)ll =
|eC + AEFCyES + A(MTA)EECyTE + .
A AMTIA)™ ERGy TG |

Let # = V,IC (||lroller — Trnt1,my-) then

8] < eS| + | AEESYEC) + | A(M T A)EECY TS + ...
AT AT ERGyEG )

Since ¥ € R, by (5.17)
[t < UTI]IE]- (5.19)
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Hence, by (5.16) and (5.19) we obtain
[l 1T el
1T TNl + A€y Il + AL A) ey + ..

— m—1
HlAM A ER Syl

<
<

and since £2(V,E%) = ko(U) = ||UTH|||U]], the theorem follows.

We emphasize that the statement of Theorem 5.4 does not involve our
new method FQMR in any way. However, the proof of Theorem 5.4 relies on
the techniques that we developed for investigating relations involving FQMR.
Thus, our analysis of the new FQMR has contributed to the analysis of existing

iterative methods.

5.3 Summary of Results

The analysis done in Chapters 4 and 5 focuses on the new method FQMR
for solving linear systems of equations Ax = b when the matrix A is not Her-
mitian. The discussion of preconditioning in Chapter 3 gives clear motivation

for FQMR. We list below several properties of the new FQMR method:

e The FQMR Algorithm is easily implemented with just small changes to
the original QMR Algorithm.

e The three-term recurrence of the two-sided Lanczos process is maintained
in the flexible case as in QMR, thereby fixing the storage requirements

needed to implement FQMR.

e Asin QMR, FQMR minimizes the norm of a factor of the residual, but

now this minimization is done over the affine space span{Z,}.

We conclude this chapter by highlighting the newly proved theory related to
FQMR or to techniques created in the analysis of FQMR. These are listed

below.
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In FQMR, the vectors associated with two-sided Lanczos process are

shown to satisfy a local biorthogonality property.

A theorem relating the norm of the residual of FQMR to the norm of
the residual of FGMRES is proved . This theorem is similar to the
existing relation which compares the norm of residual of QMR to that of
GMRES, but the new relation is written in terms of the error associated

with each inner iteration.

A theorem relating the norm of the residual of FQMR to the norm of
the residual of GMRES is proved .

A theorem relating the norm of the residual of QMR to the norm of the
residual of FGMRES is proved .

A theorem relating the norm of the residual of FQMR to that of QMR

is proved.

A theorem relating the norm of the residual of FGMRES to that of
GMRES is proved.
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CHAPTER 6

NUMERICAL RESULTS

To illustrate the behavior of FQMR, we performed numerical experiments
for a variety of linear systems, i.e., for various choices of the matrix A in (1.1).
We display the convergence behavior of FQMR for several different variable
preconditioners, i.e., several choices of iterative methods were used to solve
the inner iterations. These are: QMR with no preconditioner, QMR precondi-
tioned with ILU(0), and Conjugate Gradient Normal Equations (CGNE); see
Sections 2.2.2, 2.4, and 3.4 for their description. To distinguish which inner
iteration is being used in an experiment we will label the various implementa-
tions of FQMR as FQMR-QMR, FQMR-QMR(ILU(0)), and FQMR-CGNE,
respectively.

For the experiments reported in this chapter, we demonstrate that FQMR
converges to a prescribed tolerance in a small number of outer iterations.
In addition, we will show that as the theoretical bounds suggest, there is a
close relation between the size of the tolerance used in the inner iteration
and the convergence performance of a method. Specifically, we will show
that a decrease in the inner tolerance, in most cases, dictates a decrease in
the number of outer iterations needed for convergence. When this is not
the case, one or more iterations are not converging. Furthermore, we show
a significant advantage of FQMR regarding the achievable precision in the

outer iterations. FQMR is able to reach a smaller tolerance than QMR with
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a fixed preconditioner. This is true in the cases when QMR breaks down
prematurely and when it stagnates. In addition, we are able to demonstrate
with the data from our experiments that choosing an appropriate iterative
method for solving the preconditioning step depends on the tolerance for the
inner iteration, i.e., a method that does not perform well for an inner tolerance
of 107! may out-perform other methods when the tolerance is changed to 102
The experiments are reported in the next section. In Section 6.2, we provide

details of our implementation of the codes.

6.1 Experiments

To present our numerical results, we begin by considering an example given
in [29], namely a finite difference discretization of the partial differential equa-
tion

—Au + y(2uy + yuy) + Pfu = f (6.1)

on a unit square, where f is such that the exact solution to the discretized
equation Ax = b is x¥ = (1,...,1). The coefficient matrix A of the dis-
cretized problem is a sparse, banded matrix consisting of five nonzero diag-
onals. Choices of the parameters v and § determine the properties A. For
v # 0, A is non-Hermitian, and it is appropriate to implement FQMR.

The descritized problem thus described allows for tests involving matrices
with very different characteristics. We begin by choosing the parameters of
our linear system to produce a test set identical to that used in [29] to display
the convergence results of FGMRES. In one case, we choose § = —100 and
v = 10, to make the system indefinite, and in another, we choose § = 10
and v = 1000 to have a highly nonsymmetric matrix. The mesh is chosen
as in [29] to be of equal size in both dimensions and consisting of 32 nodes.
The corresponding matrix is thus of order 1024. Later in this chapter, we will
consider larger matrices which are also of the form described above, and we

will look at two Sherman matrices taken from [7] which are of a different form.
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For our first set of experiments, we ran FQMR with an outer residual
tolerance of 1077, and for a (variable) preconditioner we used the standard
QMR method with an inner residual tolerance ranging from 10~" to 1077 In all
of our experiments, our stopping criteria uses the two-norm. Recall, that this is
consistent with our theoretical analysis. The results of FQMR-QMR, are given
in Tables 6.1 and 6.2. We list the average number of inner iterations needed
to reach the inner tolerance, the exact number of outer iterations needed to
reach the outer tolerance, and the number of operations used to complete the
solution.

For completeness, we record data from our experiments when the tolerance
for the inner iteration equals the tolerance for the outer iteration. In the
tables below this refers to an inner and outer tolerance of 10~7. We include
this information for the purpose of making a comparison between the work
required by FQMR and the work required by QMR. In practice, this is not
useful information since for this case, the first inner iteration solves the system
to the prescribed tolerance and therefore only one outer iteration is required.

Thus, this is not an example of preconditioning.

Table 6.1: FQMR-QMR. 8 = —100,~v = 10, out. tol. = 10"".

inner tol. | out. it. avg. inner it. oper.
1071 15 97 1.70x 108
102 5 110 6.47x107
1073 2 124 4.35x107
10~ 2 131 3.06x107
1075 2 158 3.70x107
106 2 183 4.28x107
107 1 160 1.87x107

As it can be observed, reducing the inner tolerance, i.e., reducing the value
of € in (4.11), produces a better preconditioner, and the overall convergence
is improved. This is of course consistent with our theoretical bounds, which
depend linearly on €. As is to be expected, the average number of inner
iterations increases. We point out that, due to the increase in inner iterations,

reducing the inner tolerance is only effective when this also reduces the number
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Table 6.2: FQMR-QMR. 8 = 10,~ = 1000, out. tol. = 10",

inner tol. | out. it. avg. inner it. oper.
1071 10 122 1.43x108
102 4 149 7.00x107
1073 3 171 6.02x107
104 2 204 4.77%107
107° 2 230 5.39%107
106 2 248 5.80%107
107 1 292 3.42x107

of outer iterations. Consider the amount of work required when using an inner
tolerance of 107*, 107, and 107% in Tables 6.1 and 6.2. Here reducing the
inner tolerance does not decrease the number of outer iterations, and thus,
the total number of operations increases. We also point out that, since we
are recording the average number of inner iterations, the monotonic increase
in the inner iterations column is not guaranteed; see, e.g., the average inner
iterations associated with inner tolerances 107% and 107 in Table 6.1.

Another important observation comes from looking at the progression of
total number of operations as the inner tolerance decreases from 10! to 1075.
(Note that we exclude the data for an inner tolerance of 107 for this anal-
ysis since it is not strictly speaking a flexible method.) For the remaining
output, we can observe that the amount of required operations in relation to
the inner tolerance will decrease to a point and then begin to increase. This
phenomenom is consistent with the experiments of other inner-outer methods;
see e.g., [31]. In Tables 6.1 and 6.2, the smallest amount of work was achieved
for an inner tolerance of 10~*, and thus this inner tolerance can be viewed as
the optimal choice for implementing this flexible preconditioner. This demon-
strates that the inner iterative method need not be solved to the fullest preci-
sion in order to have a good preconditioner; see [3] for other examples of this
occurrence.

Finally, we comment that when the inner tolerance and the outer tolerance
both equal 10~7, one might expect this to be equivalent to performing unpre-

conditioned QMR using this same tolerance, since only one outer iteration is
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performed. However, the work involved in the implementation of the FQMR
code at least doubles due to the fact that we are calling QMR twice within
each iteration. Compare the output for FQMR-QMR with an inner tolerance
of 1077 in Tables 6.1 and 6.2 to the results for QMR solved to a tolerance of
1077 for the same set of tests recorded in Table 6.3.

Table 6.3: QMR. tolerance = 107",

parameters iterations operations
B =—-100,v =10 151 8.83 x 10°
B =10,y = 1000 265 1.55 x 107

We remind the reader that FQMR is not intended as an alternative to
QMR when the latter works well, but rather as an option when no fixed pre-
conditioner is available, as in [9] and in [28], or when the preconditioner can
be improved from one step to the next with newly available information.

Our next set of experiments uses the same test set, namely the indefinite
system constructed with f = —100 and v = 10 and the highly unsymmet-
ric matrix constructed with § = 10 and v = 1000 but now the inner iter-
ation of FQMR is implemented with QMR(ILU(0)). The results of FQMR-
QMR(ILU(0)) are given in Tables 6.4 and 6.5. We point out that, for an inner
residual tolerance of 107!, FQMR cannot achieve full accuracy in the outer
iteration, thus for this case, QMR(ILU(0)) is not a good preconditioner. For

these tables we list the outer tolerance separately at each step.

Table 6.4: FQMR-QMR/(ILU(0)). 8 = —100,~ = 10.

out. tol. inner tol. | out. it. avg. inner it. oper.
104 1071 126 31 5.96x108
1077 1072 43 36 2.31x108
1077 1073 30 38 1.74x108
107 10~* 35 40 2.09x108
10~ 1075 13 37 7.28 %107
10~ 1076 11 39 6.44x107
10~ 107 11 39 6.44x107
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Table 6.5: FQMR-QMR(ILU(0)). 8 = 10,~ = 1000.

out. tol. inner tol. | out. it. avg. inner it. oper.
10~3 1071 64 31 3.03x108
107 102 8 36 4.37x107
1077 10-3 3 59 2.67x107
10~ 1074 2 78 2.34x107
10~ 1075 2 103 3.08x107
10-7 1076 2 123 3.70x107
10~ 10~ 1 152 2.27x107

Table 6.6: QMR(ILU(0)).

parameters tolerance iterations operations
B =-100,7=10| 1.16x10* 38 2.24 x 10°
B =10, = 1000 107 148 8.66 x 108

We point out an observation regarding Table 6.4. Here a decrease in the
inner tolerance from 107® to 10~7 achieves no improvement in any of the
recorded information. This is a result of the property of invariant subspaces
explained in Section 3.3. For some inner iterations, an A-invariant subspace or
AT_invariant subspace is formed, and thus, the inner iterative method cannot
progress to the full precision. When this occurs, we output the best solution
possible in the inner iteration and allow the outer iteration to continue. With
an inner tolerance of 107, all of the inner iterations have reached their full
potential for precision, and thus, no improvement can be expected from this
point forward.

A comparison of Tables 6.4 and 6.6 displays a significant improvement of
FQMR-QMR(ILU(0)) over QMR(ILU(0)) when 8 = —100, v = 10. If the fixed
preconditioned QMR(ILU(0)) is run on the same data, both an A-invariant
subspace and A”-invariant subspace are formed by iteration 38. This means
that the two-sided Lanczos process breaks down and QMR(ILU(0)) cannot
attain a tolerance beyond 1.16 x 10~*, yet FQMR-QMR(ILU(0)) for this same
problem reaches an outer tolerance of 10~7. This is an important example
for the new FQMR method. It validates that under certain conditions FQMR

can outperform existing methods. We investigate this property further in other



60

experiments in this chapter; see e.g., Figures 6.5 and 6.6.

Table 6.5 follows a pattern similar to Tables 6.1 and 6.2. Notice that
many of the comments regarding Table 6.1 and 6.2 also apply to Table 6.5.
For example, again we see a decrease in the number of outer iterations as
we increase the precision to which the inner iteration is solved. In addition,
comparison of the number of operations required for an inner tolerance of 10~*,
10=°, and 10~° in Table 6.5 shows that when the number of outer iterations
is unchanged the amount of work increases as the inner tolerance decreases.
Once again, in Table 6.5, we see that after decreasing to an inner tolerance
of 107, the amount of work required to reach a solution begins to increase.
Therefore, it is unnecessary and not economical to solve the inner iteration to

the prescribe tolerance of 1075 or 1075.

Table 6.7: FQMR-CGNE. 8 = —100,v = 10, out. tol. = 10~".

inner tol. | out. it. avg. inner it. oper.
101 10 636 4.69x108
102 10 729 5.38x108
1073 8 775 4.57x 108
1074 7 729 3.77x 108
1075 2 565 8.35x107
107° 2 669 9.89x107
1077 2 820 1.21x10%

Table 6.8: FQMR-CGNE. 8 = 10, = 1000, out. tol. = 10~".

inner tol. | out. it. avg. inner it. oper.
1071 15 512 5.67x108
1072 4 209 6.42x107
1073 3 289 6.21x107
1074 2 278 4.02x107
107° 2 423 6.26x107
1076 2 441 6.52x107
1077 2 456 6.75x107

In Tables 6.7 and 6.8 we display the data achieved by implementing FQMR-
CGNE on our two test problems, = —100,7 = 10 and 8 = 10,y = 1000.
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Once again, all of our comments on the previous tables relate to Tables 6.7
and 6.8 as well. We see that the number of outer iterations decreases as the
tolerance for the inner iteration decreases; we see that when the number of
outer iterations is unchanged, there is an increase in the total amount of work;
and we see that the amount of total work reaches a minimum when the inner
tolerance is set at 104, thus making it unnecessary to solve the inner iteration
to a more precise solution.

For a better visualization of the comparison of the three variable precon-
ditioner for FQMR described above, we display the convergence curves of
FQMR-QMR, FQMR-QMR(ILU(0)), and FQMR-CGNE on the same graph.
Figure 6.1 displays the convergence curve for the indefinite problem, (8 =
—100, = 10), using an inner tolerance of 10~!. For this figure, we stop the
outer iteration when a tolerance of 10~* is achieved. Figure 6.2 displays the
convergence curve for the same indefinite problem using an inner tolerance of
1072, Again, we stop the outer iteration when a tolerance of 10~ is achieved.
Notice the effect that the change in inner tolerance has on the convergence
behavior of these methods. While FQMR-QMR is the clear winner for inner
tolerance equal to 10~!. All of the methods perform well for inner tolerance
equal to 1072 with FQMR-QMR(ILU(0)) performing the best. Similar results
are shown in Figures 6.3 and 6.4 which show the same tolerances as in Fig-
ures 6.1 and 6.2 but for the highly unsymmetric problem (8 = 10, = 1000).
Thus, choosing a good iterative method for solving the inner iterations depends

on the choice of the inner tolerance.
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We now turn our attention to investigating examples where FQMR out-
performs QMR. Recall that Table 6.4 and 6.6 display a notable advantage of
FQMR-QMR(ILU(0)) over QMR(ILU(0)). For the indefinite problem,
g = =100, v = 10, FQMR-QMR(ILU(0)) was able to achieve a precision
of 1077 when QMR(ILU(0)) terminated at 1073. For a better visualization of
this observation see Figure 6.5. This progress is not unusual to this particular
problem but is a trend that we saw in all of our implementations of FQMR.
One particularly strong example of this behavior is observed for another ma-
trix, namely the one created with 5 = —1000.1 and v = 10.0. The convergence
curves of QMR and FQMR-QMR for this matrix are shown in Figure 6.6. No-
tice that while QMR stagnates at 1072, we achieve a tolerance of 10~° using
FQMR-QMR for the same number of operations. FQMR-QMR can achieve
an even greater precision if we allow for additional work. A tolerance of 10715
is reached in 7.42 x 10® operations.

In Table 6.9, we further confirm these findings by recording achievable tol-
erance of FQMR and QMR for other choices of the matrix A. Notice that even
when QMR preforms well, i.e., it successfully converges to an appropriately
small tolerance before reaching a plateau, FQMR can be shown to perform
better by reaching an even smaller tolerance. The ability to reach a greater
precision by using a flexible preconditioner was observed both in the case of

breakdown and stagnation.

Table 6.9: Comparison of achievable residual norms for FQMR-QMR and
QMR.

B v | res. norm - QMR | res. norm - FQMR-QMR
-1000 10 10~® 5.2 x1071

1000 10 10-® 6.1 x 1071

100 10 10713 1.42 x10°15

-100 10 1071 1.64 x 1071

10 1000 10712 5.9 x 1071°

We next give the results of our experiments with larger matrices A. We
solve the indefinite problem, f = —100,y = 10, using FQMR-QMR with

varying grid sizes of 32, 64, 100, and 200, giving us matrices of dimension
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1024, 4096, 10000, and 40000, respectively. Table 6.10 records the results for
an outer tolerance of 107%. We give the results for each of the matrix sizes
using the inner tolerances 107!,1072, and 10~3. We point out that for the
total number of outer iterations there is little or no change. Thus, the increase
in work is wholly a result of an increase in inner iterations. Figure 6.7 is a
visualization of the data reported in Table 6.10. From this we can see that
the growth of work in relation the dimension of the matrix is a manageable
factor. By this we mean that although it is not strictly linear, it is definitely

less than quadratic growth.

Table 6.10: FQMR-QMR: 8 = —100,~ = 10, outer tol.= 107%.

inner tol. matrix dimension | out. it. | inner it. operations
107! 1024 5 96 5.63x107
1071 4096 5 187 4.38x108
107! 10000 5 276 1.58x10°
107! 40000 5 1055 2.41x10
102 1024 2 113 3.88x107
102 4096 8 828 3.10x10°
1072 10000 3 1134 3.88x10°
1072 40000 3 1527  2.09x10%
1073 1024 2 124 2.91x107
1073 4096 2 249 4.38x10%
1073 10000 3 1181 4.05%x10°
1073 40000 2 2294 2.09% 10

To emphasize the robustness of the new FQMR method, we end this chap-
ter by examining the implementation of FQMR on two matrices whose struc-
ture is different from the previous examples. These are the Shermanl matrix
and the Sherman) matrix given in [7]. These examples are taken from the
Harwell-Boeing set of sparse test matrices. They are the first and fifth matrix
from the Sherman collection, respectively. Both represent oil reservoir simu-
lations, with Shermanl coming from a black oil simulation with shale barriers
on a 10 x10 x 10 grid with one unknown per grid point, and Sherman5 com-
ing from a fully implicit black oil simulator on a 16 x 23 x 3 grid with three

unknowns per grid point. The Shermanl matrix is of dimension 1000 and has
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3750 nonzeros, and the Sherman) matrix is of dimension 3312 and has 20793
NnoNzeros.

Table 6.11 displays the convergence behavior of FQMR-QMR for the Sher-
manl matrix, and Table 6.12 displays the convergence behavior of FQMR-
QMR for the Shermanb matrix. Notice that for both of these matrices the
convergence behavior of FQMR-QMR remains comparable to what we have
seen in all of the previous examples. A decrease in inner tolerance dictates a
decrease in the number of outer iterations; when the outer iteration remains
unchanged, a smaller inner tolerance forces an increase in total number of op-
erations; and the trend of monotonicity in the inner iteration column is not
guaranteed due to the fact that we are recording the average inner iteration.
Also, if we compare the amount of work needed for an inner tolerance of 10~7
in Tables 6.11 and 6.12 to the amount of work listed to compute QMR to this
same tolerance in Table 6.13, we see that once again FQMR requires approx-

imately twice as much work as QMR. Finally, Tables 6.11 and 6.12 display a
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consistency with our other examples in that the total number of work required
for solving the problems reaches a minimum when the inner tolerance is 10~
for Table 6.11 and 107> for Table 6.12. Thus, once more we see an optimal
preconditioner for our implementation is achieved when using a less precise
inner iteration.

To emphasize the property that we have observed in FQMR of achiev-
ing a better precision than QMR, we display full convergence results of both
QMR and FQMR-QMR on the Sherman matrices. Figure 6.8 shows a com-
parison of QMR and FQMR-QMR implemented on the Shermanl matrix.
Although QMR reaches a completely satisfactory tolerance of 7.7 x10~ % |
FQMR-QMR can achieve the even better tolerance of 2.8 x107'6. Figure 6.9
displays this advantage to a greater effect. Here for the Sherman5 matrix,
QMR can only achieve a tolerance of 2.0 x1078 while FQMR-QMR reaches
3.5 x10716. Therefore, once again, FQMR can outperform QMR when an

extremely precise solution is required.

Table 6.11: FQMR-QMR: Shermanl Matrix. out. tol. = 1077.

inner tol. | out. it. avg. inner it. oper.
1071 111 98 1.07x10°
102 10 148 1.47x108
1073 4 189 7.50%107
1074 2 180 3.56x107
1075 2 272 5.40%107
1076 2 327 6.28x107
10~ 1 281 2.78x107

6.2 Implementation

Our implementation of FQMR made use of the existing code by Freund and
Nachtigal for implementing QMR, namely zugmz; see [12] and [13]. FQMR
implements zugmz in its outer iteration. A few minor changes to the zugmz

code were required for it to perform correctly.



Table 6.12: FQMR-QMR: Shermanb Matrix.

out. tol. inner tol. | out. it. avg. inner it. oper.
10~2 101 15 138 8.89x 108
1073 1072 2 570 4.09%108
1077 1073 16 2495 1.70x 1010
107 1074 3 1475 1.90x10°
10~7 1073 2 1832 1.57x10?
10~7 106 2 2069 1.77x10°
10~ 107 1 2923 1.25x10?
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Figure 6.8: QMR vs. FQMR-QMR: Shermanl matrix
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Table 6.13: QMR for Sherman Matrices.

Matrix tolerance iterations operations
Shermanl 107 396 1.96 x 107
Sherman5b 1077 148 2.57 x 108
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Figure 6.9: QMR vs. FQMR-QMR: Sherman5 matrix

The first change requires that, in addition to saving the vectors needed
for the three-term recurrence in the two-sided Lanczos process, one additional
vector of storage is needed to save Mj’lvj prior to multiplying by A. The
zugmz code does not need this vector in implementing QMR because it is
written without any preconditioner and thus v; is equal to Av;_; which is
already one of the vectors saved in the two-sided Lanczos process. The second
change to the zugmz code involves the way in which it performs the matrix-
vector multiplication Ax. The zugmaz code performs the multiplication of the
matrix A times a vector x externally with a recursively defined return step.
It brings with it information as to whether we need a multiplication by A or
AT and then calls azb or atzh, respectively, outside of the main program. In

implementing FQMR we leave these as external calls in which azb and atzb
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also implements the flexible preconditioning step, i.e., these will also call the
predetermined iterative method used to solve the inner iterations. In zugmrz,
the final call of azb is for the purpose of computing the residual, since we do
not want this call to implement the inner iterative method, this must not be
returned to the main program but instead must be done internally.

The code for solving the inner iterations in FQMR comes from several
places. To implement FQMR-QMR, we wrote Azugmz and Atzugmz. These
programs are essentially identical to zugmz with the changes that we have
already described. The algorithm Azugmz is needed to avoid having a program
call itself. In addition, Azugmz chooses a different starting auxiliary vector
Wy. In numerical runs, we found that when the same choice of w, was used
for both the inner and outer iterations the second inner iteration did not
converge. Atzugmz is written as a variation of zugmaz which solves the linear
system ATx = b. Since the original QMR code zugmaz is written with the
matrix multiplication outside of the main program, a standard pseudo-code

for implementing FQMR-QMR is as follows:

10 CALL zugmaz(rhs,output,info)
revcom = info(2)
colx = info(3)
colb = info(4)
IF (revcom.EQ.1) THEN
20 CALL Azugmz(vecs(1,colx),Aoutput,Ainfo)
Arevcom = Ainfo(2)
Acolx = Ainfo(3)
Acolb =Ainfo(4)
IF (Arevcom.EQ.1) THEN
CALL azb(Avecs(1,colx),Avecs(1,colb))
GO TO 20
ELSE IF (revcom.EQ.2) THEN
CALL atzb(Atvecs(1,colx),Atvecs(1,colb))
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GO TO 20
END IF
CALL azb(Aoutput,vecs(1,colb))
GO TO 10
ELSE IF (revcom.EQ.2) THEN
CALL atzb(vecs(1,colx),tempvec)
30 CALL Atzugmaz(tempvec,vecs(1,colb),Atinfo)
Atrevcom = Atinfo(2)
Atcolx = Atinfo(3)
Atcolb = Atinfo(4)
IF (Atrevcom.EQ.1) THEN
CALL atzb(Atvecs(1,colx),Atvecs(1,colb))
GO TO 30
ELSE IF (revcom.EQ.2) THEN
CALL azb(Avecs(1,colx),Avecs(1,colb))
GO TO 30
END IF
GO TO 10
END IF

Here the parameters x and y of zugmz(x,y,info), Azugmz(x,y,info), and
Atzugmz(x,y,info) represent the inputed right hand side, and the outputted an-
swer, respectively, and azb(x,y) and atzb(x,y) perform Ax =y and ATx =y,
respectively.

To implement FQMR-QMR/(ILU(0)), we wrote original code for forming
the incomplete LU factors of A, and then used forward and back substitution
to complete the solution. FQMR-QMR(ILU(0)) uses the same pseudo-code
as above with the additional fixed preconditioner ILU(0) implemented within
the inner loop.

The implementation of FQMR-CGNE can be described more easily than

the two implementation of FQMR describe above since we are not calling the
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same algorithm in both the inner and outer iterations. For the implementation
of CGNE we used the CGNE code taken from the SPLIB software package [4].
We give the following example of a pseudo-code for FQMR-CGNE.

10 CALL zugmz(rhs,output,info)

revcom = info(2)

colx = info(3)

colb = info(4)

IF (revcom.EQ.1) THEN
CALL cgne(vecs(1,colx),Aoutput)
CALL azb(Aoutput,vecs(1,colb))
GO TO 10

ELSE IF (revcom.EQ.2) THEN
CALL atzb(vecs(1,colx),tempvec)
CALL cgne(tempvec,vecs(1,colb))
GO TO 10

END IF

Original runs for FQMR-CGNE displayed an un-typical relation between the
inner and outer iterations. Investigation into the cause of this irregularity
showed that when the CGNE method does not converge, the output of CGNE
is not an approximation to the original system. Nevertheless, earlier iterates
of CGNE provide some approximation to the solution. Thus, we corrected
this problem and achieved the more reasonable data in Tables 6.7 and 6.8,
by saving the approximation formed at iteration 100 of CGNE to be used as
output in the case of divergence. The precise choice of 100 iterations was
arbitrary.

One significant advantage of QMR over other Krylov subspace methods
such as GMRES is that storage for QMR is fixed and known a prior. Our
implementation of FQMR shows that this property is also held by FQMR. We
showed in Chapter 4, that the algorithm for FQMR maintains the three-term

recurrence of the two-sided Lanczos process. In addition, the QMR algorithm,
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zugmz, produces the QMR update by means of a QR factorization which is
implemented by another three term recurrence. This technique was first used
in [27]. In FQMR, this technique is still used within each of the codes zugmz,
Azugmz, and Atzugmz. Thus, in implementing FQMR, zugmaz requires ten
vectors of storage, and Azugmz and Atzugmz combined require ten vectors of
storage. Note that Azugmz and Atzugmaz can use the same vectors for storage
since they are called separately from each other. Since QMR requires nine
vectors of storage, we see that FQMR-QMR requires twice as much storage
as QMR plus the one additional vector needed in both the outer and inner
iteration described previously. This is in contrast to FGMRES-GMRES which

requires 2 * j storage vectors at step j [29].
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CHAPTER 7

CONCLUSIONS

In this thesis, we developed a new method for solving large sparse nonsin-
gular systems of linear equations Ax = b when the matrix A is not Hermitian.
Clear motivation was given for this flexible version of QMR (FQMR), and the
method was shown to be easily implemented with only minor changes to the
existing QMR code.

Theoretical bounds on the norm of the residual of FQMR at each step
were given in relation to the norm of the residual of existing methods. These
bounds are (as is to be expected) in terms of how inexactly each inner iteration
is solved. Using the methodology developed to produce such bounds, we have
also contributed to the analysis of FGMRES [29]. The advantage of FQMR
is that the variable preconditioner can be less onerous. Furthermore, there is
the potential of great gains, in cases of an adaptive preconditioner.

Theoretical analysis showed that FQMR converges to the solution of the
linear system, as long as the new vectors generated at each step are linearly
independent of the previous ones, and numerical experiments confirmed this
fact. Furthermore, FQMR was shown to be a robust method in that it achieved
convergence for a variety of different linear systems. Numerical experiments
also showed that not solving the inner iteration precisely could, in fact, make
for a better preconditioner. This was demonstrated by the fact that as the

inner tolerance decreased the total number of operations would also decrease
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to a point, but would then increase from this point on. The inner tolerance
for which the total number of operations is minimal can be thought of as the
optimal choice for that particular implementation of FQMR.

Perhaps the most remarkable achievement of FQMR, is its ability to achieve
a more precise solution than QMR. This progress was seen in each of the
recorded experiments. FQMR achieved a better precision when QMR termi-
nated prematurely and when it reached a level of stagnation. It was shown
that FQMR outperformed QMR in this manner even when QMR achieved an
acceptable tolerance.

Several aspects of FQMR and the techniques developed in this thesis de-

serve further study. These include:

e A study of FQMR where QMR uses the look-ahead Lanczos process: see,
e.g., [19], [20], and [25].

e A study of flexible transpose-free QMR][10].

e An investigation into creating other flexible Krylov subspace methods,
e.g., BiCG [33] and BiCGSTAB [35], and a study of their relation to
FQMR.
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