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ABSTRACT

Frobenius Reciprocity and Grothendieck Groups of Hopf Galois Extensions

Loretta FitzGerald Tokoly

Doctor of Philosophy

Temple University, 1999

Doctoral Advisory Committee Chair: Dr. Martin Lorenz

Let A � B be an H-Galois extension where H is a �nite dimensional Hopf

algebra over a commutative �eld K. We study the Grothendieck groups G0(B)

and K0(B) of �nitely generated and �nitely generated projective, respectively,

modules over B. Via tensor products, both G0(B) and K0(B) are shown

to become modules over the Grothendieck ring G0(H) of H. This allows us

to prove: If H is involutory and not semisimple and A is commutative with

no non-trivial idempotents and 1 =2 [B;B], then for every �nitely generated

projective B-module P , rank (PA) is divisible by char K. A similar result

is proved for G0(B) in the situation where B = A#H is a smash product.

Namely: If p = char K divides [H] 2 G0(H), 1 =2 [B;B] and all �nitely

generated projective modules of A are stably free, then the image of K0(B)

under the Cartan map in is contained in p � Z[AB] + annG0(B)([H]). As a

consequence, we deduce that B cannot be Morita equivalent to a noetherian

domain. The result for G0(B) depends on a version of Frobenius reciprocity

for modules over smash products which we establish here.
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CHAPTER 1

INTRODUCTION

Hopf algebras and quantum groups. A Hopf algebra H is an

enriched algebra over a commutative �eld K. Two important and \natural"

examples of Hopf algebras are group algebras and enveloping algebras of Lie

algebras. A feature of a Hopf algebra is self duality. Besides the usual algebra

map of multiplication m : H 
 H ! H there is the map of comultiplication

� : H ! H 
 H and along with the algebra unit map u : K ! H there

is a counit map " : H ! K. The current de�nition of Hopf algebra also

includes an endomorphism S : H ! H called the antipode. For cases where

the Hopf algebra is a group algebra, the antipode of the group element g is

its group inverse g�1. For Hopf algebras in general, the antipode is analogous

to the group inverse and is often thought of as a substitute for the inverse

map in groups. The various structure maps are required to satisfy a system

of compatibility axioms, for whose precise statements we refer to the standard

texts on the subject, [Abe], [Mont] and [Sw]. As a consequence of these axioms,
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when H is �nite dimensional, the duals of the structure maps of H make the

linear dual H� = HomK(H;K) of H into an Hopf algebra as well. It is the

�nite dimensional case which is of greatest interest here.

What is now called Hopf algebras was derived from the work of Hopf [H]

published in 1941, on the homology of manifolds. A manifold M admit-

ting a product M � M ! M induces a multiplication map on homology

H�(M) 
 H�(M) ! H�(M) while the diagonal map M ! M �M yields a

comultiplication: H�(M) ! H�(M) 
 H�(M). Hopf proved in [H] that the

homology of classical groups is the same as the homology of a product of odd

dimensional spheres. The structure theorem of Hopf concerning such algebras

was generalized by Borel [B], and others. Sometime later, Hopf algebras arose

naturally in the theory of group schemes: A�ne Hopf algebras with commuta-

tive multiplication are precisely the algebras representing a�ne group schemes

[CPS]. Hopf algebras were used by Hochschild and Mostow [HM] in represen-

tation theory as representation rings of Lie groups and in studies by Larson

[L67]. By the end of the 1960's, Hopf algebras were being studied in their own

right as abstract algebraic systems in the seminal works by [MM] and [Sw].

Interest in applications of Hopf algebras was renewed in the mid 1980's

when Drinfeld [Dr] and Jimbo [J] independently introduced the notion of quan-

tum groups . These are now usually de�ned as Hopf algebras for which neither

the multiplication nor the comultiplication is commutative . The term \quan-

tum" refers to the potential non-commutativity of the underlying structure

maps. Quantum groups arose as symmetries of quantum statistical systems,

in particular, the Quantum Yang-Baxter Equation (QYBE) in statistical me-

chanics.
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Invariant theory and Galois extensions. The topic of invariant

theory, in essence, is the study of the relationship between a ring S and its

subring of invariants R = SG under the action of a group G by automorphisms.

Alternatively, R is often taken to be the subring of constants R = Sg for the

action of a Lie algebra g by derivations on S. This is a classical algebraic theme

which permeates virtually all areas of pure mathematics. Invariant theory is

also found in some areas of applied mathematics, notably coding theory (see

[Sl] and the references given there), and certain parts of physics as well (e.g.

[Ma]). Both types of actions, group actions by automorphisms and actions of

Lie algebras by derivations, can be simultaneously treated under the common

roof of Hopf algebra actions on rings. The monograph [Mont] gives a concise

introduction to Hopf algebras and their invariant theory.

An early example of invariant theory is classical Galois theory. In this

case, the ring S is assumed to be a commutative �eld and G is a �nite group

of automorphisms on S. The main theorem of Galois theory, in its present

formulation, sets up a one-to-one correspondence between the subgroups of G

and the �elds lying between S and the �xed �eld R = SG. This correspondence

behaves well in various ways; in particular, it matches normal subgroups of G

with intermediate �elds that are normal over R.

In developing Hopf Galois theory, Chase and Sweedler [CS] replaced the

�nite group G of automorphisms by a �nite dimensional Hopf algebra H act-

ing not necessarily by automorphisms. They did this in hopes of shedding

light on inseparable �eld extension and rami�ed extensions of rings. Chase
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and Sweedler began with what we now call a commutative right H-comodule

algebra B. As we see in Chapter 2, B is then a left H�-module. The set of

H�-invariants for B is de�ned by BH�

= fa 2 Bjf � a = "(f)a; 8f 2 H�g. For
H �nite dimensional the H�-invariants coincide with the H-coinvariants. A

right extension B � A = BH�

is said to be a Hopf or H-Galois extension if

a certain Morita context that is associated with the H�-action on B is \well

behaved"; details will be presented in Chapter 2. With these de�nitions Chase

and Sweedler constructed a theory which stated that the correspondence be-

tween subHopf algebras of H and the sub�elds of B containing A was injective

rather than bijective (as in the classical case) [Ch]. They were also unable to

state any normality relationships, though Ligon [Li] later partially �lled in this

gap.

Frobenius reciprocity and Grothendieck groups. The tech-

nique of induced representations is one of the most important in representation

theory. Frobenius de�ned for any subgroup L of a �nite group G and any class

function � : L ! C , the induced class function �G : G ! C and established

that the inner product formula

(�G; �) = (�; �jL)

for any class function � : G ! C . This is the original form of Frobenius

reciprocity. If W is an KL-module and V is a KG-module, then an abstract

version, equivalent to the original formula in case K = C , is the linear isomor-

phism

HomKG(W 
KL KG; V ) �= HomKL(W;V jKL):
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For K = C both express the fact that dimensions of the Hom spaces are

identical. Mackey in [M] proved the strongest version, sometimes also called

the Tensor Product Theorem:

V 
K (W 
KL KG) �= (V jL 
K W )
KL KG:

This is an isomorphism of KG-modules; the previous version of Frobenius

reciprocity follows by taking G-�xed points. Frobenius reciprocity in the last

form cannot readily be extended to algebras in general and has usually been

used only in the context of group algebras. A version for skew group rings

was shown by Lorenz [Lo86]. Frobenius Reciprocity is related to the so-called

Fundamental Theorem of Hopf Modules which perhaps explains our success in

extending Frobenius Reciprocity to some H-Galois extensions.

Grothendieck Groups were introduced by Grothendieck in 1955; they had

far reaching a�ects in many branches of algebraic thought. In particular,

Grothendieck groups provided an ideal framework for the development of group

representation theory and are now equally useful in the representation theory

of quantum groups. We �nd that the Grothendieck groups of A, B and H are

intimately connected. In Sections 4.7 and 4.8 we �nd that, under certain con-

ditions, knowing what the isomorphism classes of modules over A and H look

like, we can make predictions concerning some isomorphism classes of modules

over B.

Main Results. In this thesis, we consider general �nite H-Galois exten-

sions, that is, H will be assumed to be �nite dimensional. In this setting, we

prove in Section 3.3 that for any (right) B-module V , restricting V to A then
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inducing back up to B has the same e�ect as tensoring the original module

V by H. This fact can be thought of as a rudimentary (but useful) form of

Frobenius reciprocity for Hopf Galois extensions. Further, we show if W is

a right H-module then V 
W is a B-module with V 
 W projective when

V is projective. Moreover, if W is �nitely generated, then V 
W is �nitely

generated (resp. pseudo-coherent, resp. coherent) when V is �nitely generated

(resp. pseudo-coherent, resp. coherent). This allows us to provide an arith-

metic restriction on the possible ranks of projective A-modules resulting from

restricting a projective B-module:

Theorem Let A � B be a right H-Galois extension and assume that

(a) A is commutative without idempotents 6= 0; 1.

(b) H is involutory, not semisimple. (So, in particular, p = charK is posi-

tive, in fact, a divisor of dimK H.)

(c) 1 =2 [B;B].

Then p = charK divides rank(PA) for every �nitely generated projective B-

module P .

The most specialized H-Galois extension is the smash product B = A#H

that is associated with an action of H on A. Smash products include but

are not limited to skew group rings (when H is a group algebra), di�erential

polynomial rings (when H is the enveloping algebra of a Lie algebra), and

the smash product H#H� which is known as the Heisenberg double in the

quantum group literature. For smash products we prove a generalized version

of Mackey's Frobenius reciprocity theorem. We also use the above results to

describe the image of the Cartan map from K0(B) to G0(B) under certain
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conditions:

Theorem Assume that B = A#H a smash product and assume that

(a) p = charK divides [H] 2 G0(H)

(b) K0(A) = Z[A]

(c) 1 =2 [B;B].

Then c(K0(B)) � p � Z[AB] + annG0(B)([H]).

The latter result easily yields examples of simple noetherian rings that are not

Morita equivalent to a domain (\Faith's Conjecture").

We assume that the reader is not an expert in H-Galois extensions and

so in Chapter 2, we lay out its foundations and give some examples of the

various types of H-Galois extensions. Further, in Chapter 4, we present the

basic underlying ideas from the theory of Grothendieck groups.
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CHAPTER 2

PRELIMINARIES

2.1 Overview

We present here some of the basics of Hopf algebras, H-invariants and H�-

coinvariants. We familiarize the reader with H-Galois extensions by de�nition

and examples. A brief description of the Morita context is given as this gives

rise to many known properties of H-Galois extensions. It is also shown that if

the set A of H-coinvariants in B is commutative then the categories of modules

of A and of B#H� are equivalent.

2.2 Notations and Conventions

For general background on Hopf algebras the standard texts are [Abe] and

[Sw]. For more recent developments in the �eld and especially for the material

on smash and crossed products and on H-Galois extensions we use [Mont].
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Throughout this thesis we will keep the following notations:

K denotes a commutative �eld,


 represents 
K ,
H will be a Hopf algebra over K with counit ", antipode S,

and comultiplication 4 : H ! H 
H, 4(h) =Ph1 
 h2.

Recall that if H is �nite dimensional (over K) or pointed, then S is bijective.

The inverse of the antipode, if de�ned, will be denoted S�1.

B is a right H-comodule algebra with structure map

� = �B : B ! B 
H, b 7!P
b0 
 b1 (cf. [Mont, 4.1.2]).

A = BcoH is the set of H-coinvariants of B, i.e.,

A = fa 2 B j �(a) = a
 1g:

In this situation, one also says that A � B is a right H-extension. When

H is �nite dimensional, right H-comodule algebras are identical with left H�-

module algebras, that is,K-algebras that are acted on by the dual Hopf algebra

H�. The action is given by f � b = P b0hf; b1i for f 2 H�; b 2 B; see [Mont,

p. 41]. Here, and in the following,

hf; hi means f(h), for h 2 H, f 2 H�,

A left H�-module becomes a right H-comodule in the following manner. Let

ff1; :::; fng be a basis for H� then its dual basis fx1; :::; xng is a basis for

H. De�ne the right H-comodule structure on B as �B(b) = �n
i=1hfi; bi 
 xi.

Under the identi�cation of right H-comodule algebras B with left H�-module

algebras, the H-coinvariants A = BcoH of B become the H�-invariants BH�

in

B. Here, for any left H-module M , the H-invariants in M are de�ned by
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MH = fm 2M j h �m = "(h)m for all h 2 Hg.

Similarly for right modules. For BH�

in particular, one uses the counit "H� of

H� that is given by "H�(f) = hf; 1i. Finally, for a ring R,

ModR will denote the category of right R-modules,

modR is the category of �nitely generated right R-modules, and

projR is the category of �nitely generated projective right

R-modules.

Similarly, RMod denote the category of left R-modules, etc.

Further notations will be introduced as we go along.

2.3 Hopf Galois Extensions

For completeness we give de�nitions and some well known facts aboutH-Galois

extensions here.

De�nition. With A and B as above, the extension A � B is called right

H-Galois if the map � : B
AB ! B
H, b0
A b 7! (b0
1)�(b) =P b0b0
 b1
is bijective.

As usual, we shall denote the inverse of � as ��1. If H is �nite dimensional

or, more generally, whenever S is bijective, then the map � 0 : B
AB ! B
H,

b
 b0 7! �(b)(b0 
 1) =
P
b0b

0 
 b1 is also bijective; cf. [Mont, p. 124].

A right H-Galois extension A � B will be called �nite if B is �nitely

generated as left and right module over A. In fact, it su�ces to assume that

AB is �nitely generated:
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Lemma 1. The following are equivalent for a right H-Galois extension

A � B:

(i) AB is �nitely generated.

(ii) H is �nite dimensional.

(iii) AB and BA are both �nitely generated and projective.

Proof. The last assertion obviously implies the �rst. Now assume AB �nitely

generated. Then B(B
AB) is �nitely generated as well, and hence via � so is

B(B
H) �= BB
dimK H . The latter condition forces H to be �nite dimensional.

The proof that �nite dimensionality of H implies that AB and BA are both

�nitely generated and projective will be given in (2.3.2) below; see the remark

following Theorem 1.

When S is bijective, one can use the isomorphism � 0 in place of � to show

that �nite generation of BA also implies that H is �nite dimensional.

2.3.1 Standard Examples

We describe some basic examples here. The �rst one is included so as to justify

the terminology, while the second will play a fundamental role later on in this

thesis. Further examples will be discussed in (2.4).

Classical Galois Field Extensions

Let G be a �nite group of automorphisms of a �eld E � K, and let F = EG

denote the �xed sub�eld of this action. Then E is a (left) module algebra for
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the group algebra KG, and hence a (right) (KG)�-comodule algebra. The �eld

extension F � E, Galois in the sense of �eld theory, is in fact also Galois in

the sense of the above de�nition. For a detailed veri�cation, we refer to [Mont,

8.1.2].

Crossed products and smash products

Assume that H measures the K-algebra A, that is, there is a K-linear map

H 
 A ! A, denoted h 
 a 7! h � a, satisfying h � 1 = "(h)1 and h � (aa0) =
P
(h1 � a)(h2 � a0) for all h 2 H, a; a0 2 A. Suppose further that there is a

map � 2 HomK(H
H;A) that is convolution invertible; cf. [Mont, 1.4]. Then

the crossed product A#�H is the K-vector space A 
 H endowed with the

following multiplication:

(a#h)(a0#h0) =
X

a(h1 � a0)�(h2; h01)#h3h02

for a; a0 2 A and h; h0 2 H. Here, as is customary, we have written a#h for

a
h. This multiplication makes A#�H an associative K-algebra with identity

element 1 = 1A#1H precisely if A is a twisted H-module via the given action

and � is a cocycle. Explicitly, for h; k; l 2 H and a 2 A,

h � (k � a) =
X

�(h1; k1)(h2k2 � a)��1(h3; k3) ; (2.1)

and

X
[h1 � �(k1; l1)]�(h2; k2l2) =

X
�(h1; k1)�(h2k2; l) : (2.2)

In this case, A = A#1 is a subalgebra of B = A#�H (while H need not be a

subalgebra).
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In the special case where the cocycle � is trivial, that is,

�(h; k) = "(h)"(k)1

holds for all h; k 2 H, equation (2.1) just says that A is a left H-module,

and hence a left H-module algebra, and (2.2) becomes trivial. In this case,

B = A#�H is simply denoted B = A#H and is called a smash product ; see

also Section 3.5

Crossed products B = A#�H are right H-comodule algebras via � =

IdA#�4 : B = A#�H ! A#�H 
 H = B 
 H, a#h 7! P
a#h1 
 h2.

Right H-extensions of the form A � B = A#�H are called cleft. See [Mont,

7.1, 7.2] for all this, in particular [Mont, Theorem 7.2.2]. All cleft extensions

A � B = A#�H are Galois; in fact, cleft extensions are precisely those right

H-Galois extensions that enjoy the so-called (right) normal basis property;

cf. [Mont, Corollary 8.2.5].

2.3.2 The Finite Dimensional Case

Throughout this section, H is assumed �nite dimensional.

Morita contexts

Morita contexts provide a means for the transfer of structure between the

module categories of two rings, say R and S. Speci�cally, a Morita context for

R and S is given by bimodules RVS and SWR and bimodule maps

[ ; ] : V 
S W ! R and ( ; ) :W 
R V ! S

13



satisfying the associativity conditions

[v; w]v0 = v(w; v0) and (w; v)w0 = w[v; w0]

for v; v0 2 V , w;w0 2 W . If both maps are bijective, the rings R and S are

called Morita equivalent ; tensoring with the bimodules V and W yields and

equivalence of the module categories of R and S in this case. Good references

for this material are [Ba68, Chapter II] and [McCR].

We note in particular the following lemma which is a reformulation of

[Ba68, Theorem II.3.4].

Lemma 2. In the above setting, assume that the map [ ; ] : V 
S W ! R is

surjective. Then:

(i) [ ; ] is an isomorphism.

(ii) V and W are generators as R-modules.

(iii) V and W are �nitely generated and projective as S-modules.

(iv) The map ( ; ) induces bimodule isomorphisms V �= HomS(W;S) and

W �= HomS(V; S).

(v) The ring homomorphisms End(VS)  � R �! End(SW )op, induced by

the bimodule structures, are isomorphisms.

The Morita context associated with an H-action

Returning to Hopf algebras, let A be a left H-module algebra, with H-action

H�A! A written as (h; a) 7! h�a. Then there is a Morita context between the
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smash product B = A#H and the algebra of H-invariants AH . The requisite

bimodules are both a�orded by A which carries two bimodule structures, AHAB

and BAAH . Here, in both cases, AH acts simply by multiplication in A. The

left B-action on A is given by

(a#h) � a0 = a(h � a0)

for a; a0 2 A, h 2 H, while the de�nition of the right B-action on A requires

slightly more care; cf. Section 4.8. To de�ne the bimodule maps, �x a nonzero

left integral t of H (i.e. ht = "(h)t) holds for all h 2 H) and de�ne

[ ; ] : A
AH A! B = A#H; [a; a0] = ata0;

( ; ) : A
B A! AH ; (a; a0) = t � (aa0) :

The map A! AH , a 7! t � a, is called the (left) trace map for H on A. Since

t is unique up to a scalar multiple, the choice of t is inessential.

Finite Galois Extensions

We shall give several equivalent reformulations of the notion of right H-Galois

extension for �nite dimensional H. Recall that right H-comodule algebras

B are identical with left H�-module algebras, and A = BcoH = BH�

. In

particular, we can form the smash product B#H�. The operative fact in the

following well known theorem (see [Mont, Theorem 8.3.3]) is (iv) which states

that Galois extensions can be characterized by the surjectivity of the map [ ; ]

in the above Morita context between A and B#H�. Much of the result is

therefore a consequence of Lemma 2.
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Theorem 1. Let H be a �nite dimensional Hopf algebra and B a right H-

comodule algebra. Then the following are equivalent:

(i) A = BcoH � B is a right H-Galois extension.

(ii) (a) The map � : B#H� ! End(BA), a#h
� 7! (b 7! a(h� � b)), is an

algebra isomorphism, and

(b) B is a �nitely generated projective right A-module

(iii) B is a generator for the category B#H� Mod of left B#H�-modules.

(iv) If 0 6= t is a left integral for H then the map [ ; ] : B 
A B ! B#H�

given by [b; b0] = btb0 is surjective.

(v) For any M 2 B#H� Mod, consider B
AMH�

as a left B#H�-module by

letting B#H� act on B via �. Then the map � : B
AMH� !M , given

by b
m0 7! b �m0, is a left B#H�-module isomorphism.

Finally, we note that the left-handed version of (ii)(b) above is also true.

Namely, for right H-Galois extensions A � B, Lemma 2 implies that B is also

�nitely generated and projective as left A-module. This completes the proof

of Lemma 1.

The commutative case

The following Corollary, in the special case of group actions, is due to Aus-

lander and Goldman [AG2, Proposition A.3]. The following is presented by

Kreimer and Takeuchi though in di�erent form. [KT, Prop. 1.9 and Cor. 1.10]

[DT].
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Corollary 1. Let A � B be a right H-Galois extension, with H �nite dimen-

sional. Assume that A is commutative. Then the trace map B ! A = BH�

is

surjective. In particular, A and B#H� are Morita equivalent.

Proof. Since the trace map is left and right A-linear, its image is an ideal of

A which we shall denote by t. So t = (B;B), in the notation of the Morita

context. Since [B;B] = B#H�, by part (4) of the Theorem, the associativity

condition for Morita contexts yields

B = [B;B]B = B(B;B) = Bt :

Inasmuch as B is �nitely generated as right A-module, by part (2b) of the

Theorem, the \Cayley-Hamilton Theorem" [E, Corollary 4.7] implies that there

is an element a 2 t such that B(1 � a) = 0. Thus, a = 1 2 t, and so t = A.

This proves surjectivity of the trace map. Hence, both maps in the Morita

context are surjective and therefore actually bijective, cf. [Ba68, Chapter II].

Therefore, the Morita context yields an equivalence.

2.4 Further Examples

2.4.1 BA Faithfully Flat, Not H-Cleft

De�nition. The A-module B is said to be faithfully at if B
AX = 0 implies

X = 0, for any left A-module X.

[Mont, p.128] Let B = M3(K). Let a; b; c; d; e; u; v; w; x 2 K. Let A = B1

17



be the set of matrices with the con�guration

0
BBB@

a b 0

c d 0

0 0 e

1
CCCA

and let Bg be the set of matrices with the con�guration

0
BBB@

0 0 u

0 0 v

w x 0

1
CCCA

Then B is a Z2-graded algebra and A is clearly a direct summand of BA.

Hence, B is a right H-comodule algebra for H = KZ2, and BA is faithfully

at as a right A-module. However, note that B is not a crossed product since

dimB = 9 6= 5 � 2 = dimA1 � dimH.

2.4.2 Basic H-Galois Extension

The following example summerizes an example of Kreimer [K, Ex. 1.9]. Let B

be the ring of 3� 3 matrices over a �eld F of characteristic 2. Let ei;j denote

the element of B with 1 in the (i; j)-position and 00s elsewhere, (1 � i; j � 3):

Let � be the inner automorphism of B determined by e1;2 + e2;1 + e3;3. Then

for b 2 B; � switches the �rst and second rows, then the �rst and second

columns of b. We note that � generates a subgroup G of order 2 in the group

of all automorphisms of B. Let A be a subgroup of G-invariant elements of

B, then A � B is an H-Galois extension, but since the characteristic F is 2,
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(1B(ai;j)+ �(ai;j)) has a 0 in the a3;3 position. Therefore there is no element c

of B such that (1B + �)(c) = Id3�3 and so B is a �nitely generated projective

right A-module which is not faithfully at as a right or left A-module; see [KT,

Prop. 1.9].

2.4.3 Separable Field Extension, Not Classically Galois

Whenever an extension �eld E over K is Galois in the classic sense, we have

[E : K] = jGj where G is the Galois group. Then K � E is also H-Galois

where H is the group ring (KG)�; cf Section 2.3.1. If E is a separable �eld

extension then the degree [E : K] in part determines whether or not E is

an H-Galois extension, The following remarks are from [GPa], the example

follows [Mont 8.1.5]. If E is a separable extension and [E : K] = 2, then E

is always classically Galois over K. If [E : K] = 3 or 4 then EjK is always

H-Galois, but if [E : K] = 5 then there are separable extensions which are

not H-Galois. The extensions of degree 3 or 4 are called \almost classically

Galois"; they have the property that the subHopf algebras of H are in bijective

correspondence with the intermediate �elds of E over K.

For any k, let Hk denote the Hopf algebras with algebra structure given by

Hk = k[c; s]=(c2 + s2 � 1; cs) and with coalgebra structure given by

�c = c 
 c � s 
 s, �s = c 
 s + s 
 c; "(c) = 1, "(s) = 0; S(c) = c; and

S(s) = �s. Hk is called the circle Hopf algebra. Now let F = Q and E = F (!)

where ! is the real fourth root of 2; F � E is not Galois for any group G.

However, it is (Hk)
�-Galois for k = Q. In this case Hk acts on E as follows:
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c � 1 = 1; c � ! = 0; c � !2 = �!2; c � !3 = 0; s � 1 = 0; s � ! = �!, s � !2 = 0,

s � !3 = !3. As shown in [GPa], Q � E is (Hk)
�-Galois. Further, when

k = Q(i), Hk
�= kZ4 the group algebra. In fact Q � E is also H�-Galois

for a second Hopf algebra H; this second Hopf algebra is a Q( 2
p�2)-form of

Q[Z2 � Z2]. Thus an extension can be Hopf Galois with two di�erent Hopf

algebras.
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CHAPTER 3

MODULES AND

FROBENIUS RECIPROCITY

Throughout this chapter, we assume that H is �nite dimensional. The nota-

tions B and A = BcoH of (2.2) remain in e�ect.

3.1 Overview

In this chapter we look at the creation of \new" right B-modules from existing

B- and H-modules. Speci�cally we show that the tensor product of a right

B-module V and a rightH-moduleW can be made into a rightB-module. Cer-

tain properties continue to hold after tensoring: We prove in Section 3.4 that

if the original B-module is projective (resp, pseudo-coherent, resp. coherent)

then its tensor product with a �nitely generated H-module is also projective

(resp. pseudo-coherent, resp. coherent). For those not familiar with the terms

we de�ne coherent and pseudo-coherent.
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If U is a A-module then the operation IndBA U is of special interest. Doi and

Takeuchi [DT] showed that when H has a bijective antipode and for A � B is

H-Galois, if there is an H-comodule map � : H ! B such that �(1H) = 1B,

then the category of right A-modules is equivalent to the category of right

B-modules - right H-comodules.

As mentioned before, Frobenius reciprocity originally arose in the context

of character theory over a �eld. Our motivation stems from Zalesskii and

Neroslavskii's [ZN] construction of a simple noetherian ring which is not a

domain but contains no non-trivial idempotents. This construction was in

response to a conjecture by Faith [F], answering the conjecture in the nega-

tive. Lorenz used results from skew group rings [Lo85] and later Frobenius

reciprocity for skew group rings [Lo86] to circumvent the need for the di�cult

computations of Zalesskii and Neroslavskii's work and to provide examples of

simple noetherian rings with zero divisors but without non-trivial idempotents

which were in addition not Morita equivalent to a domain. We extend Frobe-

nius reciprocity to smash products of Hopf algebras which are a generalization

of skew group rings. Our version mimics that of Lorenz.

3.2 Tensor Products of B- and H-Modules

Let V be a right B-module and let W be a right H-module. Then V 
 W

becomes a right B-module by putting

(v 
 w) � b =
X

vb0 
 wb1
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for v 2 V , w 2 W , and b 2 B. The module axioms are straightforward to

verify, as are the following basic properties:

Functoriality: If f : V ! V 0 is a B-module map and g : W ! W 0 is an

H-module map, then f 
 g : V 
W ! V 0 
W 0 is a B-module map.

Associativity: If W and W 0 are right H-modules then, viewing W 
W 0 as

right H-module via 4, we have V 
 (W 
W 0) �= (V 
W )
W 0.

3.3 Special Cases

We describe some important special cases of the above construction. In partic-

ular, we discuss B-modules V that are induced from A-modules. By de�nition,

these are B-modules of the form V = U 
A B, where UA is a right A-module.

Lemma 3. Let V be a right B-module and W a right H-module. View V 
W
as a right B-module as in (3.2). Then:

The case W = H: Assume that A � B is right H-Galois. Then,

V 
A B �= V 
H

as right B-modules.

The case of induced B-modules: If UA is a right A-module, then

(U 
A B)
W �= (U 
W )
A B

as right B-modules. Here, U 
W is a right A-module via (u 
 w)a =

ua
 w; so U 
W �= U (dimKW ). In particular, B 
W �= B(dimKW ).
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Proof. First note that, in the special case where V = B and W = H, the

bijection � : B 
A B ! B 
 H, b0 
A b 7!=
P
b0b0 
 b1 of (2.3) is in fact

a (B;B)-bimodule map. Here, the left actions of B, for both B 
A B and

B
H, are given by multiplication, while the right actions are: multiplication

on B 
A B and the above right B-module action on B 
H.

For general V , the map � : V ! V 
 H, v 7! v 
 1 is right A-linear, as

a
 1 =
P
a0
 a1 holds for all a 2 A. Thus we have the \induced" B-module

map � = � 
A IdB : V 
A B ! V 
 H; explicitly, �(v 
A b) = �(v)b =
P
vb0 
 b1. Therefore, as right B-modules,

V 
A B �= V 
B (B 
A B) �= V 
B (B 
H) �= V 
H ;

where the second isomorphism is given by IdV 
B�. This establishes the case
W = H.

We now turn to the case of induced modules V = U 
A B. In particular,

taking U = AA, the asserted isomorphism implies the isomorphism B 
W �=
B(dimKW ).

We construct a map � : (U 
W )
A B ! (U 
A B)
W as follows. The

canonical map � : U ! U 
A B, u 7! u 
A 1, gives rise to the map of A-

modules  = �
 IdW : U 
W ! (U 
AB)
W , u
w 7! (u
A 1)
w. Since
(U 
A B)
W is in fact a B-module,  in turn induces a map of B-modules

� =  
A IdB : (U 
W )
A B �! (U 
A B)
W
(u
 w)
A b 7!

X
(u
A b0)
 wb1
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For the inverse map, we de�ne

� : (U 
A B)
W �! (U 
W )
A B
(u
A b)
 w 7!

X
(u
 wS�1b1)
A b0

This map is indeed well-de�ned: The formula is obviously linear in u, w, and

b. Moreover, the map is clearly K-balanced, that is, �((u 
A b)k 
 w) =

�((u 
A b) 
 kw) holds for all k 2 K. To verify A-balancedness, we use the

formula a
 1 =
P
a0 
 a1. With this, we calculate for a 2 A

�((u
A ab)
 w) =
X

(u
 wS�1(a1b1))
A a0b0
=

X
(u
 wS�1(b1)S�1(a1))
A a0b0

=
X

(u
 wS�1(b1))
A S�1(a1)a0b0
=

X
(u
 wS�1b1)
A ab0

and

�((ua
A b)
 w) =
X

(ua
 wS�1b1)
A b0
=

X
(u
 wS�1b1)a
A b0

=
X

(u
 wS�1b1)
A ab0 ;

as required. It remains to check that � and � are indeed inverse to each other.

We will carry out the veri�cation of the identity �� � = Id(U
AB)
W ; the check
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of � � � = Id(U
W )
AB can be handled in an entirely analogous fashion.

(� � �)((u
A b)
 w) = �
�X

(u
 wS�1b1)
A b0
�

=
X

(u
A (b0)0)
 (wS�1b1)(b0)1

=
X

(u
A b0)
 w(S�1b2)b1
=

X
(u
A b0)
 w"(b1)

= (u
A b)
 w ;

as required. This completes the proof of the lemma.

3.4 Projective, Coherent, and Pseudo-coherent

Modules

We recall some general de�nitions.

De�nition. A module M over a ring R is called projective if M is a direct

summand of some free R-module R
(I)
R . Following [SGA6, I.2.9], M is called

pseudo-coherent (or of type FP1) if there is an in�nite resolution

: : :! Pn ! : : :! P1 ! P0 !M ! 0 ;

where all Pn are �nitely generated projective R-modules. The module M is

called coherent (or of type FP ) if the resolution can be chosen so that all

Pn = 0 for large enough n; in this case the resolution is called �nite.

Obviously, pseudo-coherent modules are �nitely generated (in fact, �nitely

presented). Conversely, if the ring R is right noetherian, then every �nitely
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generated R-module is pseudo-coherent (but not necessarily coherent). For

any ring R, �nitely generated projective modules are clearly coherent, and

coherent modules are obviously pseudo-coherent.

We now study these notions especially for the B-modules V 
W , where V

continues to denote a right B-module and W a right H-module.

Proposition 1. If both V and W are �nitely generated then so is V 
 W .

Moreover, if V is projective then V 
 W is likewise projective, for any W .

Finally, if V is pseudo-coherent (resp., coherent) and W is �nitely generated,

then V 
W is pseudo-coherent (resp., coherent).

Proof. For �nite generation, note that if V and W are �nitely generated then

V 
W is a homomorphic image of Bn 
Hm for suitable �nite n and m. But

Bn 
 Hm �= (B 
 H)nm and B 
 H �= B(dimK H), by Lemma 3. Since H is

assumed �nite dimensional, B(dimK H) is �nitely generated as a B-module, and

hence so is V 
W .

For the transfer of projectivity, it su�ces to consider the special case V =

B, since the functor ( : )
W commutes with direct sums. But B 
W is free

as right B-module, by Lemma 3, and so the proof is complete.

Finally, if

P : : : :! Pn ! : : :! P1 ! P0 ! V ! 0 ;

is a projective resolution of V , with all Pn are �nitely generated, then

P
W : : : :! Pn 
W ! : : :! P1 
W ! P0 
W ! V 
W ! 0 ;

is a resolution of V 
W , and all Pn 
W are �nitely generated projective, by

the foregoing. This proves our assertion about pseudo-coherent modules, and

27



the proof for coherent modules is analogous, starting with a �nite resolution

P. The proof of the proposition is thus complete.

3.5 Smash Products

3.5.1 Basic De�nitions of Smash Products

Recall one de�nes the smash product of a left H-module algebra A and a

Hopf algebras H to be the K-vector space A
H. Writing a#h = a
 h, the
multiplication of A#H is then de�ned by the rule

(a#h)(b#l) = �a(h1 � b)#h2l: a; b 2 A; h; l 2 H

This makes A#H an associative K-algebra with identity 1A#1H . Identifying

A with A#1 � A#H and H with 1#H � A#H, we can view both A and H

as subalgebras of A#H. As an example, we mention that if K is viewed as the

trivial H-module algebra, via h�c = "(h)c, then K#H �= H asK-algebras. For

B �= A#H, clearly A � B is an H-Galois extension, because smash products

are special cases of crossed products; see Section 2.3.1.

Recall, we say L is a subHopf algebra of a Hopf algebraH if L is a subalgebra

of H and �(L) � L
 L and S(L) � L.

3.5.2 Tensor Products

Let A1 and A2 be H-module algebras. Then A1
A2 becomes a module algebra

over the Hopf algebra H 
H ([Sw],p. 49) by de�ning

(h
 l) � (a1 
 a2) = h � a1 
 l � a2 (h; l 2 H; a1 2 A1; a2 2 A2):
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Indeed, this action certainly makes A1 
 A2 a left module over H 
 H, and

(h 
 l) � 1A1
A2 = (h 
 l) � (1A1 
 1A2) = h � 1A1 
 l � 1A2 = "(h) 
 "(l) =

"(h)"(l)1A1
A2. Further, for a1; b1 2 A1 and a2; b2 2 A2 and h; l 2 H, one

computes

(h
 l) � [(a1 
 a2)(b1 
 b2)] = (h
 l) � (a1b1 
 a2b2)
= h � a1b1 
 l � a2b2
=

X
(h1 � a1)(h2 � b1)
 (l1 � a2)(l2 � b2)

=
X

((h1 
 l1) � (a1 
 a2))((h2 
 l2) � (b1 
 b2))
=

X
((h
 l)1 � (a1 
 a2))((h
 l)2 � (b1 
 b2)):

Thus the axioms of an H-module algebra are all satis�ed. Consequently, we

can now talk about the smash product (A1 
 A2)#(H 
H).

Lemma 4. (i) Putting Bi = Ai#H, we have an isomorphism of K-algebras

T : B1 
 B2 ! (A1 
 A2)#(H 
H); a1#h
 a2#l 7! (a1 
 a2)#(h
 l).

(ii) The maps fi : Bi ! (A1 
 A2)#(H 
H) (i = 1; 2) that are de�ned by

f1(a1#h) = (a1 
 1A2)#�h and f2(a2#h) = (1A1 
 a2)#�h

are K-algebra embeddings.

Proof. (i) It is clear that T is a K-linear isomorphism which matches up the

identities of both algebras, and so it su�ces to check that T is multiplicative.

Multiplication in A1 
 A2#H 
 H is given by the following formula with
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a1; b1 2 A1 and a2; b2 2 A2, h; h
0; l; l0 2 H, :

(a1 
 a2#h
 h0)(b1 
 b2#l 
 l0) =
X

(a1 
 a2)[(h
 h0)1 � (b1 
 b2)]
#(h
 h0)2(l 
 l0)

=
X

(a1 
 a2)[(h1 
 h01) � (b1 
 b2)]
#(h2 
 h02)(l 
 l0)

=
X

(a1 
 a2)[(h1 � b1)
 (h01 � b2)]
#(h2 
 h02)(l 
 l0)

=
X

a1(h1 � b1)
 a2(h01 � b2)#h2l 
 h02l0

and multiplication in B1 
 B2 is given by the following formula,

(a1#h
 a2#h0)(b1#l 
 b2#l0) = (a1#h)(b1#l)
 (a2#h
0)(b2#l

0)

=
X

a1(h1 � b1)#h2l 
 a2(h01 � b2)#h02l0

Since the �nal two expressions in both calculations correspond to each other

under T , the proof of (i) is complete.

(ii) We concentrate of f1, the map f2 being completely analogous. First, as

K-linear map f1 is the tensor product of the map �1 : A1 ! A1 
 A2;

a1 7! a1 
 1A2, with �. Since both of these maps are injective, so is f1.

Further, f1 respects the identities, since both �1 and � do. It remains to

check multiplicativity. Recall that

�H
H(�h) = �(
X

h1 
 h2)
=

X
(h1 
 h2)1 
 (h1 
 h2)2

=
X

(h11 
 h21)
 (h12 
 h22)
=

X
h1 
 h3 
 h2 
 h4
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Thus

f1(a#h)f1(b#l) = (a
 1A2#�h)(b 
 1A2 
�l)

=
X

(a
 1A2)[(�h)1 � b
 1A2 ]#(�h)2(l1 
 l2)
=

X
(a
 1A2)[(h1 � b)
 (h3 � 1A2)]#(h2 
 h4)(l1 
 l2)

=
X

(a(h1 � b1)
 "(h3)1A2)#h2l1 
 h4l2
=

X
a(h1 � b1)
 1A2#h2"(h3)l1 
 h4l2

=
X

a(h1 � b1)
 1A2#h2l1 
 h3l2 (�)

and, on the other hand,

f1((a#h)(b#l)) = f1(
X

a(h1 � b)#h2l)
=

X
a(h1 � b)
 1A2#�(h2l)

=
X

a(h1 � b)
 1A2#(h2l1 
 h3l2) (��)

Comparing (*) and (**) we have our desired result.

3.6 Frobenius Reciprocity

In the setting of Section 3.5.2, assume Vi are right Bi-modules (i = 1; 2). The

the tensor product V1
V2 is a module over B1
B2. Hence V1
V2 is a module
over each Bi = Ai#H via the maps fi and T

�1 of Lemma 4. Speci�cally, for

B1,

(v1 
 v2)(a1#h) = (v1 
 v2)T�1(a1 
 1A2#�h)

= (v1 
 v2)(
X

a1#h1 
 1A#h2)

=
X

v1(a1#h1)
 v2(1A2#h2);
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where v1 2 V1; v2 2 V2; a1 2 A1; and h 2 H. Similarly for B2.

We have the following extension of the classic Frobenius reciprocity iso-

morphism for group rings (e.g. [S], Theorem 2.2) which mimics the version for

skew group rings in [Lo86].

Theorem 2. Let L be a subHopf algebra of H and let Ci = Ai#L � Bi, for

i = 1; 2. If V is a B1-module and W is a C2-module then, as Bi-modules,

(V jC1 
W )
Ci Bi
�= V 
 (W 
C2 B2).

Proof. Let  : W !W 
C2 B2 denote the K-linear map given by

 (w) = w 
C2 1B2 = w 
C2 (1A2#1H),

and de�ne

� = IdV 
  : V jC1 
W ! V 
 (W 
C2 B2)

�(v 
 w) = v 
 (w 
C2 (1A2#1H)):

This is clearly a C1 
 C2-module map, because IdV is a C1-module map

and  is a C2-module map. Therefore, � can be viewed as a module map over

each Ci, using fi and T
�1. Since V 
 (W 
C2 B2) is a module over Bi (via fi

and T�1), we obtain a Bi-module map

g : (V jC1 
W )
Ci Bi ! V 
 (W 
C2 B2)

(v 
 w)
Ci ai#h 7! �(v 
 w) � (ai#h).

We claim that g is in fact an isomorphism, that is g is bijective. Note that, as

modules over H = 1#H � Bi and L = 1#L � Ci, we have

(V 
W )
Ci BijH �= (V 
W )
L H
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and

V 
 (W 
C2 B2)jH �= V 
 (W 
L H)

Furthermore,

g((v 
 w)
L h) = �vh1 
 (w 
L h2):

De�ne f : V 
 (W 
L H)! (V 
W )
L H by

f(v 
 (w 
L h)) = �(vS(h1)
 w)
L h2

To see that this map is well-de�ned, note that f is clearly additive in v; w; and

h and that f is K-balanced since f(vc
 (w 
L h)) = f(v 
 (cw 
L h)) holds
for all scalars c 2 K. Furthermore, if x 2 L then

f(v 
 (w 
L xh)) = �(vS(x1h1)
 w)
L x2h2
=

X
(vS(h1)S(x1)
 w)
L x2h2

=
X

(vS(h1)S(x1)
 w)x2 
L h2
=

X
(vS(h1)S(x1)x2 
 wx3)
L h2

=
X

(vS(h1)"(x1)
 wx2)
L h2
=

X
(vS(h1)
 w"(x1)x2 
L h2

=
X

(vS(h1)
 wx)
L h2
= f(v 
 (wx
L h)):

So f is well-de�ned. Finally, to check that f is indeed the required inverse for
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g, we compute

f � g((v 
 w)
L h) = f(
X

vh1 
 (w 
L h2))
=

X
(vh1S(h2)
 w)
L h3

=
X

(v"(h1)
 w)
L h2
=

X
(v 
 w)
L "(h1)h2

= (v 
 w)
L h

and

g � f(v 
 (w 
L h)) = g(
X

vS(h1)
 w)
L h2
=

X
vS(h1)h2 
 (w 
L h3)

=
X

v"(h1)
 (w 
L h2)
=

X
v 
 (w 
L "(h1)h2)

= v 
 (w 
L h)

So f � g and g � f are identity maps which completes the proof.

Letting IndBiCi = (:)
Ci Bi denote the induction map, as usual, and ResBiCi the

restriction map, the above isomorphism can also be written as follows:

IndBiCi(Res
B1

C1
V 
W ) �= V 
 IndB2

C2
W:
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CHAPTER 4

THE GROTHENDIECK

GROUPS G0 AND K0

4.1 Overview

In this chapter after reviewing the basics of Grothendieck groups, in Sections

4.3 and 4.4, how we may consider G0(H) a ring (non-commutative, in general)

and how G0(B) and K0(B) are G0(H)-modules. We describe the character

map G0(H) ! H� and the Hattori-Stallings trace map, i.e. a ring theoretic

analogue of the character map. Putting these pieces together in Section 4.7,

we then prove that, if K is a splitting �eld for H the following holds.

Theorem Let A � B be a right H-Galois extension and assume that

(a) A is commutative without idempotents 6= 0; 1.

(b) H is involutory, not semisimple. (So, in particular, p = charK is posi-

tive, in fact, a divisor of dimK H.)
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(c) 1 =2 [B;B].

Then p = charK divides rank(PA) for every �nitely generated projective B-

module P .

As in the last chapter, here too, we show a special result for a smash product

B �= A#H a smash product. If fact, under certain technical assumptions we

will be able to characterize the image of the Cartan map c : K0(B)! G0(B).

This will then allow us to purpose examples of noetherian rings that are not

Morita equivalent to a domain.

4.2 Main De�nitions

We recall a few de�nitions from classical algebraic K-theory. Good references

for this material are [Ba68], [Ro], and [W].

4.2.1 G0

The Grothendieck group G0(R) of a ring R is an additive abelian group that is

associated with the category ps: cohR of all pseudo-coherent right R-modules;

see (3.4). Traditionally, G0(R) is only considered for right noetherian rings

R, in which case ps: cohR = modR, the category of �nitely generated right R-

modules; the present de�nition for general rings R is taken from [W, Chapter

II].

Speci�cally, let F be the free additive abelian group on the isomorphism

classes of the pseudo-coherent right R-modules. We note that every pseudo-

coherent (indeed, every �nitely generated) R-module is a homomorphic image
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of some free R-module Rn. Hence, the collection of isomorphism classes of

pseudo-coherent R-modules forms a set and F is well-de�ned. For each V in

ps: cohR, we let hV i denote the isomorphism class of V . With this notation,

we can now state the following

De�nition. The Grothendieck group G0(R) is de�ned to be the factor group

F=R, where R is the subgroup of F that is generated by all elements of the

form hBi � hAi � hCi, with A, B, and C modules in ps: cohR, so that there

exists a short exact sequence 0! A! B ! C ! 0.

The image of hV i in G0(R) is written [V ]; every element of G0(R) has the

form [V ]� [W ] for suitable V , W in ps: cohR.

4.2.2 K0

The Grothendieck group K0(R) is de�ned in the same way as G0(R), except

that the category projR of all �nitely generated projective right R-modules

replaces the category ps: cohR. Alternatively, one can use the category cohR

of all coherent right R-modules in place of ps: cohR; this leads to the same

group K0(R). Since short exact sequences of projective modules are split, the

de�nition, when formulated for projR, takes the following form

De�nition. The Grothendieck group K0(R) is de�ned to be the factor group

P=S, where P is the free abelian group on the isomorphism classes of modules

in projR and S is the subgroup of P that is generated by all elements of the

form hBi � hAi � hCi, with A, B, C in projR, so that B
�= A� C.

Using [V ] to denote elements of K0(R), in analogy with G0(R), every el-

ement of K0(R) again has the form [V ] � [W ] for suitable V , W in projR.
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Moreover, [V ] = [W ] holds in K0(R) if and only if V and W are stably iso-

morphic, that is, V � Rn �= W � Rn holds for some �nite n.

A pleasant property of K0(R) is its unproblematic behavior under change

of rings. To wit:

Functoriality: Induction. Let � : R ! S be a ring homomorphism. Then,

for any �nitely generated projective right R-module P , the module

IndSR(P ) = P 
RS is �nitely generated projective over S. Since ( : )
RS
respects direct sums, we obtain a well-de�ned group homomorphism,

often called induction or base change from R to S,

IndSR : K0(R)! K0(S) ; [P ] 7! [P 
R S] :

Functoriality: Restriction. Let � : R! S again be a ring homomorphism,

but now assume that S becomes a coherent right R-module via �. Then

the restriction map PS 7! P
��
R
yields an exact functor projS ! cohR,

and this functor in turn induces a homomorphism, called restriction or

transfer from S to R,

ResSR : K0(S)! K0(R) ; [P ] 7! [P
��
R
] :

4.2.3 The Cartan Map

The inclusion projR ,! ps: cohR induces a map on the level of Grothendieck

groups, the so-called Cartan map. Explicitly,

c = cR : K0(R)! G0(R); [V ] 7! [V ] :

Despite this seemingly trivial formula, the Cartan map is neither injective nor

surjective in general.
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4.2.4 The Hattori-Stallings Trace Map

If P is a �nitely generated projective module over the ring R then P �= eRn

for some n and some idempotent matrix e = (ei;j) 2Mn(R). Putting

r(P ) =
nX
i=1

ei;i + [R;R] 2 R=[R;R]

one obtains a well-de�ned additive map r = rR : K0(R) ! R=[R;R], the so-

called Hattori-Stallings trace map; see [Ba76, W]. The group T (R) = R=[R;R]

is called the trace group of R.

A basic property of the Hattori-Stallings trace map is its

Functoriality: If � : R! S is a ring homomorphism then

r(IndSR(P )) = T (�)(r(P )) 2 T (S) ;

where T (�) : T (R)! T (S) sends r+[R;R] to �(r)+ [S; S]. This is clear

from the de�nitions.

4.2.5 Ranks

Assume that R is commutative. Then, for each prime ideal p of R, the local-

ization Rp exists. Since all �nitely generated projectives over the local ring

Rp are free, one has K0(Rp) = h[Rp]i �= Z, and hence the induction map

Ind
Rp

R : K0(R) ! K0(Rp) can be viewed as a homomorphism K0(R) ! Z.

This map is called the rank map at p and denoted rankp. Explicitly,

rankp : K0(R)� Z ; [P ] 7! dimQ(R=p)

�
(P=Pp)
R=p Q(R=p)

�
;

where Q(R=p) denotes the �eld of fractions of R=p.

The following lemma is a reformulation of [W, Chapter II, Proposition 2.5].
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Lemma 5.
T

p
Ker(rankp) � Ker(r), where p runs over all prime ideals of R.

Proof. By de�nition of rankp, the intersection
T

p
Ker(rankp) is precisely the

kernel of the mapK0(R)!
Q

p
K0(Rp) that is given the induction maps Ind

Rp

R .

The lemma is thus a consequence of the commutative diagram

K0(R)

rR

��

//
Q

p
K0(Rp)

Q
p
rRp

��

R
� � can: //

Q
p
Rp

Several comments are in order. First, since all rings under consideration are

commutative, their trace groups are the actual rings; so T (R) = R and simi-

larly for Rp. Thus, commutativity of the diagram follows from functoriality of

the Hattori-Stallings trace map. Finally, the \canonical" map R ! Q
p
Rp is

injective, by [Bou, Cor. 2 Ch II.3.3].

Special case: Rings without idempotents

Assume now that R is commutative with no idempotent elements except 0

and 1. Then it is known that rankp : K0(R) ! Z is the same map for all

primes p; e.g., [W, Chapter I, Exercises 2.4, 2.5]. Hence, in this case, one has

a well-de�ned map

rank : K0(R)� Z ;

given by rank = rankp for any p. By Lemma 5, Ker(rank) � Ker(r), and so

we obtain the following factorization of the Hattori-Stallings trace map.
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Corollary 2. If R is commutative without idempotents 6= 0; 1, then the Hattori-

Stalling trace map rR factors through rank, that is,

K0(R)

rR

55
rank // // Z

can: // R :

4.3 The Case of H-comodule Algebras

For the remainder of this chapter, we assume that

B is a right H-comodule algebra, with coinvariants A = BcoH , as in

(2.2). Moreover, we continue to assume that H a �nite dimensional

Hopf algebra.

By Proposition 1, the tensor product 
 yields bifunctors


 : ps: cohB �modH ! ps: cohB ; (V;W ) 7! V 
W

and


 : projB �modH ! projB ; (V;W ) 7! V 
W :

As these functors are exact in both arguments, they induce group homomor-

phisms

G0(B)�G0(H)
��! G0(B) and K0(B)�G0(H)

��! K0(B) ;

both given by the formula ([V ]; [W ]) 7! [V 
W ]. In particular, the diagram

K0(B)�G0(H)

cB�IdG0(H)

��

� // K0(B)

cB
��

G0(B)�G0(H) � // G0(B)

is commutative.
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4.4 The Grothendieck Ring G0(H)

In the special case where B = H, the constructions of (4.3) make G0(H) into

an associative ring (in general non-commutative), with identity element [K],

the class of the \trivial" H-module K = K". Explicitly, multiplication in

G0(H) is given by the formula

[W1] � [W2] = [W1 
W2] :

This ring is called the Grothendieck ring ofH in the literature, e.g., [Lo97, NR].

The function

dim : G0(H)! Z ; [W ] 7! dimKW

is a ring homomorphism, called the dimension map. Finally, G0(H) has a

canonical ring antiautomorphism

( : )� : G0(H)! G0(H) ; [W ] 7! [W �] ;

whereW � = HomK(W;K) is viewed as rightH-module via (fh)(w) = f(wS(h))

for f 2 W �, w 2 W , and h 2 H.

Returning to generalH-comodule algebras B, we record for future reference

the following proposition.

Proposition 2. The tensor product maps � : G0(B) � G0(H) ! G0(B) and

� : K0(B)�G0(H)! K0(B) of (4.3) de�ne G0(H)-module structures on G0(B)

and on K0(B). The Cartan map cB : K0(B)! G0(B) is a G0(H)-module map.

Proof. This is all straightforward. E.g., the associativity axiom for modules is

a consequence of the associativity isomorphism noted in (3.2), and the fact that

cB is a module map is immediate from the commutative diagram in (4.3).

42



4.5 The Character Map

The character map ch : G0(H)! H� is de�ned by [V ] 7! chV , where

chV (h) = traceV=K(v 7! vh) ;

the trace of the K-linear endomorphism v 7! vh of V . The character algebra

R(H) is theK-subalgebra ofH� that is generated by the image of the character

map.

In the following proposition, which is identical with [Lo97, Prop. 3.6], we

list some fundamental properties of the character map.

Proposition 3. (i) The character map ch : G0(H) ! H� is a ring homo-

morphism which satis�es chV � = S�(chV ) and chV (1) = dimK V .

(ii) The character algebra R(H) is contained in ([H;H]+ radH)?, the space

of all linear forms on H that vanish on the space of Lie commutators

[H;H] and on the Jacobson radical radH of H. If K is a splitting �eld

for H then R(H) = ([H;H] + radH)?, and ch induces an isomorphism

of K-algebras

IdK 
 ch : K 
ZG0(H)
�=�! R(H) :

4.6 Some Standard Examples

4.6.1 Finite Group Algebras

Let H = KG be the group algebra of the �nite group G and assume that K

is a splitting �eld for KG. Then

R(H) �= KT (G)reg � H� = KG :
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Here, T (G)reg denotes the set of p-regular conjugacy classes, that is, the conju-

gacy classes of elements of G whose order is not divisible by p = charK. Also,

for any set I, KI denotes the algebra of functions f : I ! K, with \pointwise"

addition and multiplication of functions.

Furthermore, via Brauer characters,

G0(H) � G0(H)
Z C �= C
T (G)reg :

The standard reference for this extensively investigated case is [CR].

4.6.2 Duals of Finite Group Algebras

The case where H = (KG)�, with G a �nite group as above, is straightforward:

G0(H) = ZG and R(H) = H� = KG.

4.7 Application to H-Galois Extensions:

Ranks of Projectives

Recall that the Hopf algebra H is said to be involutory if the antipode S has

order 2, that is, S2 = Id. By results of Larson and Radford, one knows that,

for H involutory,

H and H� are both semisimple if and only if p = charK does

not divide dimK H. Moreover, H is semisimple if and only if the

\regular" character chH : H ! K, that is, the character of the

regular H-module HH , is not the zero map.
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This is proved in [LR87, Theorem 1] and [LR87, Proposition 1(c)].

Now assume that A � B be a right H-Galois extension. Then, by Theo-

rem 1, we know that BA is �nitely generated projective. Consequently, for any

�nitely generated projective right B-module P , the restriction PA is �nitely

generated projective over A. The following result gives an arithmetic restric-

tion on the possible ranks of the projective A-modules arising in this fashion.

We assume that K is a splitting �eld for H.

Theorem 3. Let A � B be a right H-Galois extension and assume that

(a) A is commutative without idempotents 6= 0; 1.

(b) H is involutory, not semisimple. (So, in particular, p = charK is posi-

tive, in fact, a divisor of dimK H.)

(c) 1 =2 [B;B].

Then p = charK divides rank(PA) for every �nitely generated projective B-

module P .

Proof. By Proposition 3, the character map ch : G0(H) ! H� has kernel

pG0(H). As remarked above, condition (b) on H implies that the regular

character chH vanishes. Consequently,

[H] = pX for some X 2 G0(H).

Now let P be a �nitely generated projective right B-module. Our goal is to

show that

p j rank(PA) :
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To this end, consider the following commutative diagram which combines func-

toriality of the Hattori-Stallings trace map with Corollary 2 :

K0(B)
rB // B=[B;B]

K0(A)

rA

;;

IndBA

OO

rank // Z
can: // A

can:

OO

Since 1 =2 [B;B], by hypothesis (c), the map Z! T (B) = B=[B;B] has kernel

pZ. Thus our assertion becomes

rB(P 
A B) = 0 :

But, by Lemma 3 (case W = H), we know that [P 
A B] = [P ][H], and this

in turn implies that

rB(P 
A B) = rB([P ][H]) = prB([P ]X) = 0 ;

as desired.

Special cases

The Theorem applies in particular to the case where A = K � B = H. Note

that hypotheses (a) and (c) are trivially satis�ed here. Thus, the theorem

yields the following previously known facts; part (i) is [Lo97, Theorem 2.3(b)]

and (ii) is [L71, Theorem 4.3].

Corollary 3. Assume that H is involutory. Then:

(i) If H is not semisimple then p j dimK P holds for all �nitely generated

projective H-modules P .
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(ii) If dimK H is not divisible by p then H is semisimple.

Proof. In both assertions, we may extend scalers to a splitting �eld of H, if

necessary; so the theorem applies. For (i), just note that rank = dimK if

A = K. Part (ii) follows from (i) by taking P = H.

We remark that (ii) above is false in general if H is not involutory; a

counterexample is provided by the so-called Sweedler algebra (cf. [Lo97, 4.1]).

Thus, the involutory hypothesis in (b) is necessary for the Theorem to hold.

4.8 Application for the Smash Product:

Image of the Cartan Map

For the remainder of this chapter, we assume that B �= A#H a smash product.

We continue to assume that H is �nite dimensional.

4.8.1 A as a B-module

Recall from Section 2.3.2 if B �= A#H is a smash product, we have A as both

a left and a right B-module. This follows [Mont] p.53.

Let a; b 2 A; h 2 H then A is a left B-module via

(b#h)! a = b(h � a).

Further A is a right B-module as follows:

a b#h = ��(h2)(S
�1(h1) � ab)

= ��(h3)(S
�1(h2) � a)(S�1(h1) � b)
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where � is the distinguished grouplike element of H�. With these module

actions we can state the following corollary of Lemma 3.

Corollary 4. If B �= A#H is a smash product and A is a (right) B-module

as above, then we have A
H �= B as right B-modules.

The proof is immediate from the Lemma 3.3 (case W = H) applied to

V = AB. Written in Grothendieck group terms, Lemma 3.3 can be stated as

saying that the map

IndBA �ResBA : G0(B)! G0(A)! G0(B)

is multiplication by [H] 2 G0(H).

4.8.2 Image of the Cartan Map

Recall from Section 4.2.2 that since BA is �nitely generated projective over A,

the restriction map ResBA : K0(B)! K0(A) is well-de�ned.

The condition that K0(A) = Z[A] we saw before in Section 4.2.5. It is

another was of saying that all �nitely generated projective modules are stably

free. Here Q is said to be stably free when Q�Am �= An for suitable m;n 2 Z.
It must be noted that not all stably free modules are free (e.g., [P90, p.165-

67]). The following gives us the image of K0(B) under the Cartan map under

the speci�ed conditions.

Theorem 4. Assume that B = A#H a smash product and assume that

(a) p = charK divides [H] 2 G0(H)

(b) K0(A) = Z[A]
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(c) 1 =2 [B;B]

then c(K0(B)) � p � Z[AB] + annG0(B)([H]).

Proof. Let [P ] 2 K0(B). We know from the above discussion that P jA is

�nitely generated projective over A, so in K0(A), [PA] = n[A] for some n 2 Z,
by hypothesis (b). Thus IndBA �ResBA[P ] = n[B] holds in K0(B).

On the other hand, as above we have by hypothesis (a) [H] = pX for some

X 2 G0(H) and by Lemma 3: IndBA �ResBA[P ] = [P ][H] so we deduce that

[P ][H] = p[P ]X = n[B]

Applying the Hattori-Stallings trace: r : K0(B)! B=[B;B], we have

0 = p � r([P ]X) = nr([B]) = n + [B;B]

In view of hypothesis (c) this implies that p divides n. By Corollary 4 [B] =

[AB][H] holds in G0(B), that is, after applying the Cartan map the equality

[P ] � [H] = n[B] can be expressed as

([P ]� n[AB ]) � [H] = 0

or

[P ] 2 n[AB ] + annG0(B)([H]).

Since p divides n, this proves our theorem.
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4.9 Application: Noetherian Rings

4.9.1 Goldie's Reduced Rank

For any right noetherian ring R, Goldie's reduced rank function is a homo-

morphism:

� = �R : G0(R)! Z

which can be de�ned as follows. Let N be the nilpotent radical of R, that

is, the largest nilpotent ideal of R. Then R=N is a semiprime noetherian ring

and Goldie's Theorem (cf. [P90, p. 258]) implies that R=N has a semisim-

ple Artinian classical right ring of quotients Q. If V is a �nitely generated

R=N -module, then V 
R=N Q is a �nitely generated Q-module and hence the

composition length lenQ(V 
R Q) is well-de�ned. Goldie's reduced rank �R is

de�ne as the composite map:

� : G0(R)
�=�! G0(R=N)

:
R=NQ�! G0(Q)
lenQ(:)�! Z

here lenQ is the composition length of the module over Q.

4.9.2 Noetherian Rings Not Morita Equivalent

to a Domain

Corollary 5. Let B = A#H be given with H 6= K local involutory. Assume

(b) and (c) of Theorem 4 are satis�ed. Then B is not Morita equivalent to a

noetherian domain.

Proof. First note that our hypothesis on H implies that the trivial module, K,

is the only simple H-module. So G0(H) =< [K] > and [H] = (dimK H)[K].
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Furthermore, H is not semisimple, and hence charK = p > 0 and divides

dimK H; see Section 4.7. Thus condition (a) in Theorem 4 is satis�ed.

Now, suppose B is Morita equivalent to a noetherian domain, say D. The

equivalence is given by the tensor product : 
B PD, where BPD is a (B;D)-

bimodule with suitable properties ([Ba68]). In particular, : 
B PD, yields an
isomorphism K0(B) �= K0(D) and G0(B) �= G0(D) which makes the following

diagram commute:

K0(B)

�=
��

cB // G0(B)

�=
��

K0(D)
cD // G0(D)

The Theorem therefore implies that cD(K0(D)) � p�G0(D)+annG0(D)(dimK H).

Now since D is a noetherian domain, Goldie's reduced rank function � :

G0(D)! Z satis�es �([D]) = 1. On the other hand, [D] belongs to cD(K0(D)).

Futhermore annG0(D)(dimK(H)) is contained in the torsion subgroup of G0(D)

and hence in Ker �. So � sends p �G0(D) + annG0(D)(dimK(H)) to pZ, contra-

dicting �([D]) = 1.
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