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ABSTRACT

HOMOGENIZATION OF DYNAMIC MATERIALS

Hansun Theresa To

DOCTOR OF PHILOSOPHY

Temple University, August, 2004

Professor Yury Grabovsky, Chair

In this work we study the homogenization problem associated with propaga-

tion of long wave disturbances in active materials—materials whose properties

exhibit not only spacial but also temporal inhomogeneities and whose study

was initiated by Lurie in his pioneering works of 1997. We study the possibility

of extending the homogenization procedure developed for ordinary composites

to the case of dynamic materials. We uncover dramatic differences between

the hyperbolic and the elliptic cases. We also compute all exact relations for

3D composite conductors exhibiting the Hall effect.
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NOTATION

Q The set of rational numbers.

Z The set of integers.

Rd d-dimensional real Euclidean space, R = R1.

Ω Open, bounded subset in Rd+1.

Ω̄ Closure of Ω = ∂Ω ∪ Ω, where ∂Ω is a boundary of Ω.

C∞
0 (Ω) The space of infinitely differentiable functions with

compact support in Ω.

L∞(Ω) The space of integrable functions φ : Ω → R,

such that ‖φ‖L∞(Ω) = esssupΩ|φ|.
Hk(Ω) = W k,2(Ω) Hilbert space.

ei = (0, ..., 0, 1, ..., 0) ith standard coordinate vector. e.g. e1 = (1, 0, 0) in R3.

X = (x, t) A typical point in Rd × (0, +∞).

x = (x1, ..., xd) represents a row or column.

φ(X) = φ(x1, ..., xd, t) If φ : Ω → R. We say that φ smooth provided

φ infinitely differentiable.

φ Lipschitz continuous If φ : Ω → R such that |φ(x)− φ(y)| ≤ C|x− y|
for all x,y ∈ Rd+1(Ω) and for some constantC.

∇ = ∇X Gradient vector ∇ = (
∂

∂x1

, ...,
∂

∂xd

,
∂

∂t
).

End(Rd) Space of real d× d matrices.

Sym(Rd) Space of real symmetric d× d matrices.

TrM Trace of the matrix M .

detM Determinant of the matrix M .

MT Transpose of the matrix M .

adjM Adjoint of the matrix M .

A(f) Arithmetic mean of f, A(f) = θf1 + (1− θ)f2.

H(f) Harmonic mean of f, 1/H(f) = θ/f1 + (1− θ)/f2.
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CHAPTER 1

INTRODUCTION

In the rapidly advancing technology of today, new materials with desired

characteristics are in demand. For example, one might need materials that are

light but strong, flexible under some loads but rigid under others. In order to

achieve these goals we can use composite materials.

Composites are mixtures of two or more materials on small length scales.

Composites occur both in nature and in technology. Clouds, fog and rain are

natural composites of air and water. Soil and rocks are other examples. Com-

mon metals are composites. Composites are materials that are homogeneous

on a macroscopic scale but inhomogeneous on a microscopic scale. Our goal is

to understand how microscopic properties influence the macroscopic behavior

of a composite.

We simplify the problem by introducing an averaged description of a com-

posite, replacing the original problem by a simpler averaged problem. This

process is called the homogenization. In homogenization theory, we replace an

equation with oscillating coefficients by a homogenized equation. The proper-

ties of a composite (called effective properties) depend on its microstructure.

It is often difficult to describe the micro-structure of a composite. Therefore it

is important to compute the set of all possible effective properties of composite

materials made from the original materials; this is the so called G-closure set.
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We consider a homogenization problem for active materials whose study

was pioneered by Lurie [2, 10, 11, 12, 13, 14, 15, 16]. We consider the problem

of periodic homogenization for two typical examples: the wave equation and

the Maxwell system, where coefficients oscillate rapidly not only in space but

also in time. Our goal is to examine under what conditions the homogeniza-

tion procedure developed for elliptic systems also works for hyperbolic systems.

Our idea is to place the homogenization problem in the abstract Hilbert space

framework developed by Milton where there are a lot of formal similarities be-

tween the hyperbolic and the elliptic equations. Exploiting these similarities

enables us to establish results for the hyperbolic case that are similar to the

elliptic case. However, there are essential differences. In the hyperbolic case

our results are based on a number of assumptions that are known facts for the

elliptic case but need not hold in general in the hyperbolic case. For example,

the classical theory of existence and uniqueness for the hyperbolic PDEs with

variable coefficients relies in an essential way on the assumption of Lipschitz

continuity of coefficients in the time variable [9]. The nature of our problems

(space-time composites) forces us to deal with hyperbolic equations whose co-

efficients are discontinuous in both space and time. These discontinuities serve

as boundaries separating regions in space-time with different material prop-

erties. Needless to say that one has to be careful in this territory. There are

numerous studies of the homogenization of Maxwell’s equations with coeffi-

cients oscillating in space but not in time. (See [8] and references therein.) It

is the oscillations in time that lead to the new problems.

In this work we distinguish between two types of space-time composites:

activated and kinetic materials [2]. The former are produced by external

mechanisms that alter properties of material points in a pre-determined time-

dependent manner. The latter involve the actual mechanical motion of various

parts of the composite system. This distinction is important when we consider

the electromagnetic phenomena described by Maxwell’s equations. In the case

of the actual mechanical motion we may not neglect the relativistic correc-

tions. Even when the velocities involved are much smaller than the speed of
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light the relativistic corrections are still significant and readily measurable. An

example is the magnetic field produced by a moving charge. This magnetic

field can be understood as a relativistic correction to the electric field. We

note that in the case of activated space-time composites the “interfaces” may

propagate with any velocity (including infinite velocity). This does not con-

tradict the relativistic principle because no information is transmitted along

with the moving interface. The motion of the interface is the apparent motion,

not the actual motion.

The structure of this work is as follows. Chapter 2 deals with general

homogenization theorems for the wave and Maxwell’s equations.

In Chapter 3, we consider a cell problem for periodic composites. We also

compute the effective tensors of rank-one laminates for the one-dimensional

wave equation and the full Maxwell’s system explicitly.

Most G-closure sets have a non-empty interior, however researchers have

found that sometimes G-closure sets have an empty interior, in fact, they lie

on a surface. The equations describing the surface are called exact relations

for effective properties of composites. An exact relation is a relation between

the effective tensor of a composite material and the physical properties of its

constituents, independent of their geometric arrangement. In Chapter 4, we

compute all exact relations for 3-D composites with the Hall effect.
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CHAPTER 2

HOMOGENIZATION FOR

ACTIVE MATERIALS

2.1 Active materials

In this chapter we consider two types of PDE: the wave equation and

Maxwell’s system. We assume that the coefficients in these equations vary

rapidly in both space and time. Our goal is to achieve an effective description of

interaction of such active materials with long waves. This is a homogenization

problem.

We consider the longitudinal wave propagation along elastic bars, described

by the one-dimensional wave equation.

(ρut)t − (kux)x = 0, (2.1)

where the material parameters ρ and k are both space and time dependent.

The model homogenization problem is to study the limit as ε → 0 of the

solution uε of

(ρ(
x

ε
,
t

ε
)uε

t)t − (k(
x

ε
,
t

ε
)uε

x)x = 0, (2.2)
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where ρ(y, τ), and k(y, τ) are piecewise constant and periodic in y and τ.

Similarly, an electromagnetic wave propagating along the z-axis is described

by Maxwell’s equations

∇× E = −Bt, ∇ ·B = 0, ∇×H = Dt, ∇ ·D = 0.

The magnetic and dielectric permeabilities of the material oscillate on a small

length scale in both space and time:

εε = ε(x/ε, t/ε), µε = µ(x/ε, t/ε).

We can compare the orders of magnitude of space and time variables by means

of the characteristic velocity of propagation of disturbances in the material.

In section 2.2 we begin with a simple explicit example of the one dimen-

sional wave equation in a two-phase active medium. We show that under some

circumstances either existence or uniqueness may fail. The conditions for ex-

istence and uniqueness are exactly the conditions of the regular transport of

the wave across the interface [11].

In section 2.3 we consider the homogenization problem for one-dimensional

wave equation.

In section 2.4 we consider a similar homogenization problem for Maxwell’s

equations.

We follow the general outline of Tartar’s proof of the homogenization the-

orem for elliptic equations [22] to establish the homogenization theorem for

hyperbolic equations.

2.2 Non-existence and non-uniqueness in hy-

perbolic problems

The aim of this section is to study the existence and uniqueness of solu-

tions to the one-dimensional wave equation. The conditions for existence and

uniqueness that we obtain are exactly the conditions of the regular transport
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of the wave across the interface [11]. But we also examine what fails if these

conditions are not satisfied. We consider the following initial boundary value

problem :

(ρ(x, t)ut)t − (k(x, t)ux)x = 0, (x, t) ∈ R× (0, +∞)

u(x, 0) = u0(x); ut(x, 0) = v0(x), x ∈ R
(2.3)

where

ρ(x, t) =

{
ρ1, x < vt

ρ2, x > vt,

k(x, t) =

{
k1, x < vt

k2, x > vt,

and where v > 0 is the velocity of the interface separating materials (ρ1, k1)

and (ρ2, k2). Figure 2.1 shows the distributions of the two materials in space

and time.

Let ci =
√

ρi/ki, i = 1, 2 be the two local phase velocities. We have
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(ρ2, k2)(ρ1, k1)

Ω2Ω1

t

x

Γ = {(x, t) : x ∈ R, x = vt}

Figure 2.1: A two phase active medium

{
u1

tt − c2
1u

1
xx = 0 in Ω1

u1(x, 0) = u0(x) ; u1
t (x, 0) = v0(x) for x < 0.

(2.4)
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and {
u2

tt − c2
2u

2
xx = 0 in Ω2

u2(x, 0) = u0(x) ; u2
t (x, 0) = v0(x) for x > 0.

(2.5)

On the interface Γ we also have the continuity of the wave amplitude and the

transmission conditions
{

u2(vt, t) = u1(vt, t) t > 0

vu2
t (vt, t) + c2

2u
2
x(vt, t) = ρ1/ρ2(vu1

t (vt, t) + c2
1u

1
x(vt, t)) t > 0.

(2.6)

By the d’Alembert’s formula, our solution ui has the form

ui(x, t) = fi(x + cit) + gi(x− cit), (x, t) ∈ Ωi (2.7)

with appropriate functions fi, gi for each i = 1, 2. The initial conditions de-

termine f1(ξ), g1(ξ) for ξ < 0 and f2(ξ), g2(ξ) for ξ > 0.

2fi(x) = u0(x) +
1

ci

∫ x

0

v0(ξ)dξ, x < 0 for i = 1, x < 0 for i = 2,

2gi(x) = u0(x)− 1

ci

∫ x

0

v0(ξ)dξ, x < 0 for i = 1, x < 0 for i = 2.

Substituting (2.7) into the first equation (2.6) we obtain

f1((v + c1)t) + g1((v − c1)t) = f2((v + c2)t) + g2((v − c2)t), t > 0. (2.8)

Substituting (2.7) into the second equation (2.6) we obtain

(v + c1)f
′
1((v + c1)t)− (v − c1)g

′
1((v − c1)t)

= α
{
(v + c2)f

′
2((v + c2)t)− (v − c2)g

′
2((v − c2)t)

}
, (2.9)

where α = ρ2c2/ρ1c1. Integrating (2.9) over t we obtain :

f1((v + c1)t)− g1((v − c1)t) = α
{
f2((v + c2)t)− g2((v − c2)t)

}
. (2.10)

The constant of integration in (2.10) is non-essential because fi, gi are

determined up to an additive constant for each i = 1, 2. Finally, solving (2.8)

and (2.10) for f1 and g1 we obtain

{
2f1((v + c1)t) = (1 + α)f2((v + c2)t) + (1− α)g2((v − c2)t),

2g1((v − c1)t) = (1− α)f2((v + c2)t) + (1 + α)g2((v − c2)t)
(2.11)
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for all t > 0. We are now ready to study the existence and uniqueness questions

for (2.4), (2.5), and (2.11).

In order determine u1 in Ω1 = {(x, t) : x < vt, t > 0} we need to know

f1(·) on R and g1(·) on R, if v > c1 or g1(·) on (−∞, 0], if v ≤ c1. In order

determine u2 in Ω2 = {(x, t) : x > vt, t > 0} we need to know f2(·) on (0, +∞)

and g2(·) on R, if v < c2 or g2(·) on [0, +∞), if v ≥ c2. We see now that we

have to consider the following four cases.

Case I: v > max{c1, c2}. We see from (2.11) that f1 and g1 on [0, +∞) are

uniquely determined by f2 and g2 on [0, +∞). Thus, we have a unique solution

for the initial value problem (2.3).

x

t

  Γ

Figure 2.2: v > c1, v > c2.

Case II: c1 < v < c2. The equation (2.11) expresses f1 and g1 on [0, +∞)

in terms of f2 on [0, +∞) and g2 on (−∞, 0]. Thus, choosing g2 on (−∞, 0]

arbitrarily we obtain an infinite family of solutions.
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Figure 2.3: v > c1, v < c2.

Case III: c2 ≤ v ≤ c1. The second equation in (2.11) expresses g1 on (−∞, 0]

in terms of f2 and g2 on [0, +∞). All three functions are determined in the

indicated regions by initial data. Thus, unless initial data is specially chosen,

we will have a contradictory set of constraints. In this case we have non-

existence.

x

  Γ

t

Figure 2.4: v < c1, v > c2.
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Case IV: v < min{c1, c2}. Solving (2.11) for f1 and g2 we obtain

{
(1 + α)f1((v + c1)t) = 2αf2((v + c2)t) + (1− α)g1((v − c1)t)

(1 + α)g2((v − c2)t) = −(1− α)f2((v + c2)t) + 2g1((v − c1)t).
(2.12)

We see that f1 on [0, +∞) and g2 on (−∞, 0] are defined in terms of g1

on (−∞, 0] and f2 on [0, +∞). It follows then that the functions u1 and u2

are uniquely defined on t > 0. Thus we have existence and uniqueness in this

case.

t

x

Γ

Figure 2.5: v < c1, v < c2.

Physical interpretation. The physical interpretation for the first and the

last case, where we have existence and uniqueness was explained by Lurie [14,

p. 289]. Here we give the physical interpretation of the remaining cases. The

physical interpretation of the first and the last case is given here for the sake

of completeness. In the case v > max{c1, c2} the moving interface overtakes

the forward moving wave in region Ω1 and gains on the forward moving wave

in region Ω2. In the coordinate system moving together with the interface

Γ we will see that the forward moving wave in region Ω2 is actually moving

backwards with respect to us and regularly refracts/reflects in the stationary

interface. In fact, every point in space-time (t > 0) is hit by exactly one
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forward moving wave, either from region Ω1 or from region Ω2. This situation

is depicted in Figure 2.2. Thus, we have existence and uniqueness.

In the case c1 < v < c2 the forward moving wave in Ω1 is still slower

than the interface, while the forward moving wave in Ω2 is faster than the

interface. Thus the two forward moving characteristics emanating from the

origin in Figure 2.3 bound the sector in space-time containing Γ that is not

visited by any of the forward moving waves. The solution in that region is not

uniquely determined by the initial data. That is why this case corresponds to

non-uniqueness.

In the case c2 ≤ v ≤ c1 shown in Figure 2.4 the forward wave in Ω1

moves faster than the interface, passes through it and collides with the forward

moving wave in region Ω2 which is moving slower than the interface. In this

case there are points in space-time through which pass two forward waves

leading to contradictory values of the amplitude. Thus we have non-existence

in this case.

In the remaining case v < min{c1, c2} every point in space is again covered

by exactly one forward moving characteristic emanating either from region

Ω1 or Ω2 as shown in Figure 2.5. Thus in this case we have both existence

and uniqueness. We have considered only the forward moving characteristics

because we have assumed that the interface moves forward (v > 0). In this case

every point in space is covered exactly once by the backward characteristics

regardless of which case we are in.

2.3 Homogenization for the wave equation

We study the limit as ε → 0 of the solution uε of

∂

∂t
(ρ(
x

ε
,
t

ε
)uε

t)−∇x · (k(
x

ε
,
t

ε
)∇xuε) = 0;

u(x/ε, 0) = u0(x), ut(x/ε, 0) = v0(x),
(2.13)

where ρ(y, τ), and k(y, τ) are periodic in space-time with a parallelepiped of

periods Q ⊂ Rd+1 and where u0, v0 : Rd −→ R are given Lipschitz functions
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with compact support.
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Figure 2.6: A periodic composite

Definition 1. H1
p (Q) = {h : h is Q− periodic and h ∈ H1

loc(Rd+1)}

Notation 1.

σε = σ(x/ε, t/ε) =

[
k(x/ε, t/ε) 0

0 −ρ(x/ε, t/ε)

]
. (2.14)

Notation 2. Set X = (x, t) ∈ Rd × (0, +∞), and denote ∇ = ∇X .

In our new notation the problem (2.13) becomes

∇ · (σε∇uε) = 0;

uε(x, 0) = u0(x), ∂uε

∂t
(x, 0) = v0(x).

(2.15)

We would like to investigate when does uε converge to the solution u0 of the

homogenized equation

−∇ · (σ∗∇u0) = 0 in Rd × (0, +∞);

u0(x, 0) = u0(x), ∂u0

∂t
(x, 0) = v0(x).

(2.16)

Here σ∗ is defined by its action on an arbitrary vector γ ∈ Rd+1 by

σ∗γ = –

∫

Q

σ(X)(∇w + γ)dX, (2.17)
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where w is the solution of the cell problem

{
∇ · (σ(X)(∇w + γ)) = 0,

w ∈ H1
p (Q).

(2.18)

By contrast with the elliptic case we cannot prove that the cell problem has a

unique solution. Therefore, we are led to make the following assumption.

Assumption 1. We assume that the problem (2.18) has a solution for all

γ ∈ Rd+1. In addition assume that if w0 ∈ H1
p (Q) solves ∇· (σ(X)(∇w0)) = 0

then ∫

Q

σ(X)∇w0(X)dX = 0. (2.19)

Definition 2. If Assumption 1 is satisfied then we say that σ∗ is well-defined.

Our main tool will be the div-curl lemma.

Lemma 2.1. Div-Curl Lemma

Let Ω be an open subset in Rd. Suppose pε and vε converges weakly to p0 and

v0 in L2(Ω;Rd), respectively.

If ∇·pε −→ ∇·p0 in H−1(Ω) strong and ∇×vε = 0. Then pε ·vε ∗
⇀ p0 ·v0

in the sense of measures.

The proof can be found in [21]. We also recall the Riemann-Lebesgue

lemma.

Lemma 2.2. Riemann-Lebesgue Lemma

If f(y) is Q-periodic, L∞(Rd) and g(x) ∈ L1(Rd). Then

∫

Rd

f(nx)g(x)dx −→ –

∫

Q

f(y)dy

∫

Rd

g(x)dx (2.20)

In other words,

f(nx)
∗
⇀ –

∫

Q

f(y)dy weak- ∗ in L∞(Rd).
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Theorem 2.1. Convergence of Arbitrary Solutions

Let Ω ⊂ Rd × (0, T ) be an open and bounded set. Assume that the sequence

uε ∈ H1(Ω) and uε ⇀ u0 in H1(Ω) weak, solves ∇ · (σε∇uε) = 0, where

σε is defined by (2.14). Assume σ∗ is well-defined in the sense of Defini-

tion 2. Then u0 is a solution of the homogenized equation ∇ · (σ∗∇u0) = 0

and σ(x/ε, t/ε)∇uε ⇀ σ∗∇u0 weakly in L2(Ω;Rd+1).

Our proof follows the same steps as the proof of the analogous theorem for

conductivity by Murat and Tartar [21, 20].

Proof. Let pε = σε∇uε. Then pε is bounded in L2(Ω;Rd). Extract a weakly

convergent subsequence of pε in L2(Ω;Rd) and define p0 as its weak limit.

Let w be a solution of (2.18), which exists because σ∗ is well-defined. Set

ψε(X) = ∇w(X/ε) + γ. Then

∇×ψε = 0, ∇ · (σεψ
ε) = 0.

By the Riemann-Lebesgue lemma we have : ψε ⇀ γ, σεψ
ε ⇀ σ∗γ in

L2(Ω;Rd+1) weak. It is easy to see that

ψε · pε = ψε · (σε∇uε) = σεψ
ε · ∇uε, ∀X ∈ Ω. (2.21)

By div-curl lemma, we can pass to the limit in (2.21) and get

γ · p0 = σ∗γ · ∇u0. (2.22)

Thus,

p0 = σ∗∇u0. (2.23)

Moreover, ∇ · pε = 0 and consequently, ∇ · p0 = 0. Thus u0 is a solution

of the homogenized equation ∇ · (σ∗∇u0) = 0.

Theorem 2.2. Periodic Homogenization

Suppose uε solves (2.15). Assume the effective tensor σ∗ is well-defined in the
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sense of Definition 2. Assume there is C(Ω) such that ‖uε‖H1(Ω) ≤ C(Ω)

independent of ε. Then uε ⇀ u0 in H1(Ω) weak, where u0 is the unique

solution of (2.16).

Proof. By our assumption of boundedness we can extract a weakly convergent

subsequence uε′ in H1(Ω) such that uε′ ⇀ u0 in H1(Ω) weak. Apply Theorem

2.1 and conclude that u0 solves (2.16). Since σ∗ is constant, (2.16) has a unique

solution thus uε has a weak limit u0.

Next we show that the assumption of boundedness that was necessary

to establish Theorem 2.2 is satisfied in the case of an activated composite

where the properties appear to be moving with the uniform velocity v. Let

ρε(x, t) = ρ((x− vt)/ε)); kε(x, t) = k((x− vt)/ε)), ρ, k are [0, 1]3-periodic

in space. Let us make a linear change of variables in (2.15). Let X ′ = CX

where C =

[
I −v
0 1

]
, and where I is a 3 × 3 identity matrix. Let u′ε(X

′) =

uε(C
−1X ′), σ′ε(X

′) = Cσε(C
−1X ′)CT . Then u′ε(X

′) satisfies

∇′ · (σ′ε(X ′)∇′u′ε(X
′)) = 0, (2.24)

where ∇′ = ∇X′ . It follows that

σ′ε(X
′) =

[
m(x′/ε) vρ(x′/ε)

vρ(x′/ε) −ρ(x′/ε)

]
,

where x′ = x − vt and m(x′) = k(x′) − (v ⊗ v)ρ(x′). The equation (2.24)

becomes

ρ(x′/ε)
∂2u′ε
∂t2

= ∇x′ ·
(
m(x′/ε)∇x′u

′
ε+ρ(x′/ε)

∂u′ε
∂t
v
)
+ρ(x′/ε)v·∇x′

∂u′ε
∂t

. (2.25)

Let

Eε(t) =

∫

R3

[
1

2
m(x′/ε)∇x′u

ε · ∇x′u
ε +

1

2
ρ(x′/ε)(

∂u′ε
∂t

)2

]
dx′ (2.26)
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then

E ′
ε(t) =

∫

R3

[
m(x′/ε)∇x′u

ε · ∇x′
∂u′ε
∂t

+ ρ(x′/ε)
∂u′ε
∂t

∂2u′ε
∂t2

]
dx′. (2.27)

Using (2.25) and the integration by parts we get

E ′
ε(t) =

∫

R3

[
m(x′/ε)∇x′u

′
ε · ∇x′

∂u′ε
∂t

]
dx′ +

∫

R3

[(
∇x′ ·

(
m(x′/ε)∇x′u

′
ε + ρ(x′/ε)

∂u′ε
∂t
v
)

+ ρ(x′/ε)v · ∇x′
∂u′ε
∂t

)∂u′ε
∂t

]
dx′

=

∫

R3

[
m(x′/ε)∇x′u

′
ε · ∇x′

∂u′ε
∂t

]
dx′ +

∫

R3

[
ρ(x′/ε)

∂u′ε
∂t
v · ∇x′

∂u′ε
∂t

− (m(x′/ε)∇x′u
′
ε + ρ(x′/ε)

∂u′ε
∂t
v) · ∇x′

∂u′ε
∂t

]
dx′

= 0. (2.28)

This implies Eε(t) is independent of t.

Lemma 2.3. Let A = k(x)/ρ(x) be the acoustic tensor. Assume that the

“properties wave” is slower than all of the characteristic speeds, i.e. |v|2 <

‖A(x)−1‖−1 for all x ∈ R3. Then m(x) is a positive definite matrix.

Proof. A symmetric matrix is positive definite if and only if all of its eigenval-

ues are positive. Since k(x) is a positive definite matrix, we can write

k(x)−1/2m(x)k(x)−1/2 = I−(k(x)−1/2v⊗k(x)−1/2v)ρ(x) = I−a⊗a, (2.29)

where a =
√

ρk−1/2v. Thus, the eigenvalues of k(x)−1/2m(x)k(x)−1/2 are

1− |a|2 and 1. We have

|a|2 = |√ρk−1/2v|2 = ρ(k−1/2v,k−1/2v) = (A−1v,v) ≤ ‖A−1‖|v|2 < 1.

(2.30)

So, we have |a|2 < 1. Therefore, m(x) is positive definite.
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Lemma 2.3 implies that there exists α > 0 such that m(x′) ≥ αI, for all

x ∈ R3. Thus we have

Eε(t) =

∫

R3

[
1

2
m(x′/ε)∇x′u

ε · ∇x′u
ε +

1

2
ρ(x′/ε)(

∂u′ε
∂t

)2

]
dx′

≥ 1

2

∫

R3

[
α|∇x′u

ε|2 + β(
∂u′ε
∂t

)2

]
dx′ (2.31)

for some α > 0, β > 0. Therefore

∫

R3

|∇′u′ε(x
′, t)|2dx′ ≤ CEε(t) = CEε(0) ≤ C ′

∫

R3

[
|∇xu0|2 + |v0|2

]
dx′.

(2.32)

We thus conclude that

∀ T > 0,

∫ T

0

∫

R3

|∇′u′ε(X
′)|2dX ′ ≤ C ′T

∫

R3

[
|∇xu0|2 + |v0|2

]
dx′ (2.33)

independent of ε.

Theorem 2.3. Suppose σ(y, τ) = σ(y − vτ) then σ∗ is well-defined in the

sense of Definition 2.

Proof. Let γ = (γx, γt) ∈ R4. When we change variables x′ = x−vt in (2.18)

We obtain




∇ ·

[
m(x′) vρ(x′)

vρ(x′) −ρ(x′)

] ([
∇x′w

wt

]
+

[
γx

γ′t

])
= 0

w(x′, t) is [0, 1]4-periodic,

(2.34)

where γ′t = γx · v + γt and w′(x′, t) = w(x′ + vt, t).

We want to show that for all γ ∈ R4 the equation (2.18) has a solution.

Equivalently, we want to show that for any (γx, γ′t) ∈ R4 the equation (2.34)

has a solution. In fact, we show that there is a unique [0, 1]3-periodic function

w′(x′) such that w′(x′, t) = w′(x′) is a solution of (2.34).
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Substituting w′(x′) for w′(x′, t) in (2.34) we get

{
∇x′ · (m(x′)∇x′w

′(x′)) +∇x′ · (m(x′)γx + ρvγ′t) = 0

w is [0, 1]3-periodic.
(2.35)

This elliptic problem has a unique solution w′ ∈ H1
p ([0, 1]3) because m(x′) is

positive definite by Lemma 2.3.

Finally we show that if w0(X) is a solution of the cell problem (2.18) with

γ = 0 then (2.19) holds. We note that if w0(X) solves (2.18) then w′(X′)

solves (2.34) with γ ′ = 0. Let

< w′ >t (x′) =

∫ 1

0

w′(x′, t)dt

be the time average of w′. Expanding (2.34) we get

∇x′ ·
(
m(x′)∇x′w

′+ρ(x′)v
∂w′

∂t

)
+

∂

∂t

(
ρ(x′)v ·∇x′w

′−ρ(x′)
∂w′

∂t

)
= 0. (2.36)

Averaging (2.36) in time we obtain:

∇x′ ·
(
m(x′)∇x′ < w′ >t

)
= 0 (2.37)

Lemma 2.3 says that m(x′) is positive definite, since we assume that the wave

of properties is slower than any of the characteristic speeds. Consequently,

∇x′ < w′ >t= 0. (2.38)

So, < w′ >t is independent of x′.

Now we make the same change of variables: X ′ = CX in the integral

∫

Q

σ(X)∇xw0(X)dX.

We obtain

∫

Q

σ(X)∇xw0(X)dX =
C−1

detC

∫

Q′
σ′(X ′)∇x′w

′(X ′)dX ′.
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But

σ′(X ′)∇x′w
′(X ′) =

[
m(x′)∇x′w

′(x′, t) + ρ(x′)∂w′
∂t

(x′, t)

ρ(x′)v · ∇x′w
′(x′, t)− ρ(x′)∂w′

∂t
(x′, t)

]
. (2.39)

Therefore,

∫ 1

0

σ′(X ′)∇x′w
′(X ′)dt =

[
m(x′)∇x′ < w′ >t

ρ′(x′)v∇x′ < w′ >t

]
=

[
0

0

]
. (2.40)

Thus, the property (2.19) is proved.

2.4 Homogenization for Maxwell’s system

As before, we denote the points in R4 by X = (x, t). Assume there are

no free charges and no free currents in a given medium. Consider Maxwell’s

system:

{
∇× E = −∂B/∂t, ∇ ·B = 0, ∇×H = ∂D/∂t, ∇ ·D = 0,

D = ε E, B = µ H
(2.41)

where E is the electric field, D is the electric displacement, B is the magnetic

induction, and H is the magnetic field; ε(x, t) and µ(x, t) is the dielectric

permittivity and the magnetic permeability respectively.

In homogenization theory, we consider Maxwell’s equations with oscillating

coefficients.





∇× Eε = −∂Bε/∂t, ∇ ·Bε = 0, ∇×Hε = ∂Dε/∂t, ∇ ·Dε = 0

Dε = εε Eε, Bε = µε Hε,

Bε(x, 0) = B0(x), Dε(x, 0) = D0(x) where ∇ ·B0 = ∇ ·D0 = 0,

(2.42)

where B0(x), D0(x) have compact support and are in L2(R3). Here

εε = ε(x/ε, t/ε); µε = µ(x/ε, t/ε),
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where functions ε(y, τ) and µ(y, τ) are Q-periodic, and Q is a parallelepiped

of periods in the 4-dimensional space-time.

For our purposes it will be convenient to denote

Eε(x, t) = (Eε(x, t),Bε(x, t)) (2.43)

and

Jε(x, t) = (−Dε(x, t),Hε(x, t)). (2.44)

Then the constitutive relations from (2.42) can be written as

Jε(x, t) = L(x/ε, t/ε)Eε(x, t), (2.45)

where

L(y, τ) =

[
−ε(y, τ)I 0

0 1/µ(y, τ)I

]
. (2.46)

The problem is to study the limit as ε → 0 of the solution Eε, Jε of (2.42).

We will show that under the appropriate assumptions Eε ⇀ E∗, Jε ⇀ J∗

weakly in L2 where (E∗, J∗) is the solution of the homogenized equation





∇× E∗ = −∂B∗/∂t, ∇ ·B∗ = 0, ∇×H∗ = ∂D∗/∂t, ∇ ·D∗ = 0

J∗ = L∗E∗,
B∗(x, 0) = B0(x), D∗(x, 0) = D0(x).

(2.47)

where J∗ = (−D∗,H∗) and E∗ = (E∗,B∗). The effective tensor L∗ ∈ Sym(R6)

is defined by its action on the arbitrary vector Ē0 ∈ R6 by

L∗Ē0 = –

∫

Q

L(X)Ē(X)dX, (2.48)

where Ē = (Ē, B̄) solves the periodic cell problem





∇× Ē = −∂B̄/∂t, ∇ · B̄ = 0, ∇× H̄ = ∂D̄/∂t, ∇ · D̄ = 0

J̄(X) = L(X)Ē(X),

Ē is Q-periodic and –

∫

Q

Ē(X)dX = Ē0.

(2.49)

In the hyperbolic case the cell problem may have no solutions or a multi-

plicity of solutions. Therefore it is necessary to require that L∗ be well-defined.
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Definition 3. We say that L∗ is well-defined if the cell problem (2.49) has

solutions for every Ē0 in R6 and

∫

Q

L(X)Ē(X)dX = 0. (2.50)

for every solution Ē(X) of (2.49) with Ē0 = 0.

Theorem 2.4. Convergence of arbitrary solutions for Maxwell’s equa-

tions

Let Ω ⊂ R3 × (0, T ) be open and bounded. Assume that Eε, Jε are the

solutions of (2.42). Suppose Eε ⇀ E∗ in L2(Ω;R6) weakly. Assume L∗ is

well-defined in the sense of definition 3. Then (E∗, J∗) satisfies the partial

differential equations from (2.47).

The proof follows the same outline as for the wave equation [21, 20].

Proof. ¿From the constitutive relation Jε = L(X/ε)Eε we see that Jε is bounded

in L2(Ω). Let Jε′ be a weakly convergent subsequence of Jε. Let J̄0 be its weak

limit. Let (Ē, J̄) be a solution of (2.49) that exists since L∗ is well-defined. By

the Riemann-Lebesgue Lemma,

Ēε = Ē(X/ε)
∗
⇀ Ē0, J̄ε = J̄(X/ε)

∗
⇀ J̄0 = L∗Ē0 in L∞(Ω) weak-* (2.51)

we then have

J̄ε · Eε
∗
⇀ J̄0 · E∗, and Ēε · Jε

∗
⇀ Ē0 · J∗ (2.52)

in the sense of measures [22] by a corollary of the compensated compactness

Theorem [22]. Since L is symmetric, we get

J̄ε · Eε = (L(X/ε)Ēε) · Eε = Ēε · (L(X/ε)Eε) = Ēε · Jε, ∀X ∈ Ω. (2.53)

So, we conclude that

J̄0 · E∗ = Ē0 · J∗. (2.54)
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Thus

J∗ = L∗E∗. (2.55)

Moreover, the pair (E∗, J∗) satisfies the partial differential equations in

(2.47).

Theorem 2.5. Homogenization of Maxwell’s System

Suppose Eε, Jε satisfy (2.42). Assume that the sequence Eε is bounded in

L2
loc(R4;R6). Assume that L∗ is well-defined in the sense of Definition 3. Then

Eε ⇀ E∗, Jε ⇀ J∗ weakly in L2, where (E∗, J∗) is the unique solution of

(2.47) .

Proof. By our assumption we can extract a weakly convergent in L2 subse-

quence (Eε′ , Jε′) such that Eε′ ⇀ E∗, and Jε′ ⇀ J∗. Apply Theorem 2.4 and

conclude that (E∗, J∗) solves (2.47). Since L∗ is constant, (2.47) has a unique

solution. It follows that (Eε, Jε) converges weakly to (E∗, J∗).

Now we show that in the case of an activated space-time composite whose

“properties wave” moves with constant velocity v, the boundedness assump-

tion holds. The proof that L∗ is well-defined for the Maxwell system is very

similar to the proof of the analogous result for the wave equation in Section 2.3.

We therefore omit the details.

We assume that |v| is smaller than the speed of light in any of the ma-

terials in our composite. Suppose that the micro-structure is determined by

the [0, 1]3-periodic functions ε0(y) and µ0(y) describing the local dielectric

permittivity and magnetic permeability respectively. Let

εε(x, t) = ε0(
x− vt

ε
); µε(x, t) = µ0(

x− vt
ε

), (2.56)

for any x ∈ R3, v ∈ R3, t > 0, ε > 0. The propagation of the electromagnetic

waves through such a composite is governed by Maxwell’s system (2.42). Let

us show that there is a constant C̄ independent of ε such that
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∀ t > 0,

∫

R3

{|Dε(x, t)|2 + |Bε(x, t)|2} dx ≤ C̄. (2.57)

Let us the change of variables x′ = x − vt, t′ = t in (2.42). Let E′
ε(x, t) =

Eε(x
′ + vt, t) and similarly for all fields D′

ε, B′
ε, and H′

ε. Then the Maxwell’s

system (2.42) becomes





∇′ × E′
ε = ∇′B′

εv − ∂B′
ε/∂t; ∇′ ·B′

ε = 0

∇′ ×H′
ε = ∇′D′

εv + ∂D′
ε/∂t; ∇′ ·D′

ε = 0

D′
ε = ε0(x

′/ε)E′
ε; B′

ε = µ0(x
′/ε)H′

ε.

(2.58)

Let us denote εε = ε0(x
′/ε) and µε = µ0(x

′/ε). Let

Wε(t) =
1

2

∫

R3

{
εε|E′

ε|2 + µε|H′
ε|2 + 2(v,B′

ε,D
′
ε)

}
dx′ (2.59)

where (v,B′
ε,D

′
ε) is the triple product : (v,B′

ε,D
′
ε) = (v ×B′

ε) ·D′
ε.

In order to compute dWε

dt
it will be convenient to rewrite Wε in terms of D′

ε

and B′
ε only. By the Cauchy-Schwarz inequality |(v,B′

ε,D
′
ε)| ≤ |v||B′

ε||D′
ε| we

get

Wε(t) ≥ 1

2

∫

R3

{
1

εε

|D′
ε|2 +

1

µε

|B′
ε|2 − 2|v||B′

ε||D′
ε)|

}
dx′

=
1

2

∫

R3

{[
1/εε −|v|
−|v| 1/µε

][
|D′

ε|
|B′

ε|

][
|D′

ε|
|B′

ε|

]}
dx′ (2.60)

By our assumptions εε > 0 and 1/εεµε − |v|2 = c2
ε − |v|2 > 0. Thus the

matrix

[
1/ε −|v|
−|v| 1/µε

]
is positive definite. It follows that there is some ν > 0

such that

Wε(t) ≥ 1

ν

∫

R3

{
|D′

ε(x, t)|2 + |B′
ε(x, t)|2

}
dx. (2.61)

Thus we have

∫

R3

{
|D′

ε(x, t)|2 + |B′
ε(x, t)|2

}
dx ≤ ν Wε(t). (2.62)
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Lemma 2.4. Wε(t) is a constant.

Proof. We compute dWε(t)/dt and show that it is zero. Differentiating (2.59)

we get

dWε

dt
=

∫

R3

{
1

εε

D′
ε ·

∂D′
ε

∂t
+

1

µε

B′
ε ·

∂B′
ε

∂t
+ (v,

∂B′
ε

∂t
,D′

ε) + (v,B′
ε,

∂D′
ε

∂t
)

}
dx

We replace ∂D′
ε/∂t and ∂B′

ε/∂t by their expressions from Maxwell’s system

(2.58) and we replace (1/εε)D
′
ε, and (1/µε)B

′
ε by E′

ε and H′
ε respectively. We

obtain
dWε

dt
= I1 + I2 + I3 + I4, (2.63)

where

I1 =

∫

R3

{
E′

ε · ∇′ ×H′
ε −H′

ε · ∇′ × E′
ε

}
dx′

I2 =

∫

R3

{
E′

ε · ∇′D′
εv − (v,∇′ × E′

ε,D
′
ε)

}
dx′

I3 =

∫

R3

{
H′

ε · ∇′B′
εv + (v,B′

ε,∇′ ×H′
ε)

}
dx′

I4 =

∫

R3

{
(v,∇′B′

εv,D
′
ε) + (v,B′

ε,∇′D′
εv)

}
dx′

Now we show that Ij = 0 for all j = 1, . . . , 4.

1. Integration by parts gives
∫

R3

E′
ε · ∇′ ×H′

ε dx′ =
∫

R3

∇′ × E′
ε ·H′

ε dx′. (2.64)

So, I1 = 0.

2. Integration by parts yields

−
∫

R3

(v,∇′ × E′
ε,D

′
ε)dx

′ =

∫

R3

{
(∇′ ·D′

ε)v · E′
ε − (∇′D′

ε)v · E′
ε

}
dx′

= −
∫

R3

(∇′D′
εv · E′

ε)dx
′, (2.65)

because ∇′ ·D′
ε = 0. Thus I2 = 0.
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3. If we replace H′
ε by E′

ε and B′
ε by D′

ε in I2 we will obtain I3. Moreover,

∇′ ·B′
ε = 0. Thus, the calculation we did for I2 also applies to I3.

4. ∇′D′
εv is a directional derivative along v. We can then apply integration

by parts to get
∫

R3

(v,B′
ε,∇′Dεv) dx′ = −

∫

R3

(v,∇′B′
εv,D

′
ε) dx′ (2.66)

So we see that I4 = 0 as well.

Therefore, dWε(t)/dt = 0. Consequently, Wε(t) is a constant. Thus, we

have

W (t) = W (0) ≤ β

∫

R3

{
|D′

ε(x, 0)|2 + |B′
ε(x, 0)|2

}
dx ≤ C̄.

Remark 2.1. The energy bound still holds if the composite moves with non-

uniform velocity, i.e., v = v(t). In that case, let s(t) =

∫ t

0

v(τ) dτ and let

x′ = x−s(t). Then the same formulae hold with v replaced by v(t). However,

when we differentiate W (t) there will be one extra term present :

dWε

dt
=

∫

R3

(v′(t),B′
ε,D

′
ε) dx ≤ CWε.

Thus dWε/dt ≤ CWε(t) and consequently, by Gronwall’s inequality

Wε(t) ≤ eCtWε(0).

Remark 2.2. Strictly speaking, a composite moving with non-uniform velocity

v(t) does not qualify to be called the space-time composite. If v(τ) is periodic

with period 1 and ρ0 is periodic with period [0, 1]3, then ρ0((x − s(t))/ε) has

a period cell that does not shrink to a point as ε → 0. If instead we define

ρ̄(x, t) = ρ0(x − s(t)) and ρε(x, t) = ρ̄(x/ε, t/ε) = ρ0(x/ε − s(t/ε)) then

vε(t) = v(t/ε) and v′ε(t) = v′(t/ε)/ε and the bound on energy cannot be proved

by this method. It may very well be true that the energy is in fact unbounded

as ε → 0.
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CHAPTER 3

CELL PROBLEMS AND

LAMINATE FORMULAE

3.1 Cell problem for 1-dimensional wave equa-

tion

The cell problem (2.18) for the one-dimensional wave equation becomes

{
∂
∂t

(ρ(x, t)(∂u
∂t

+ ξ1)) = ∂
∂x

(k(x, t)(∂u
∂x

+ ξ2))

u(x, t) ∈ H1
p (Q)

(3.1)

Assume that

(ρ(x, t), k(x, t)) =

{
(ρ1, k1), if (x, t) ∈ Q1

(ρ2, k2), if (x, t) ∈ Q2,
(3.2)

where Q1 is a simply connected inclusion in a connected matrix Q2 (see Fig-

ure 3.1). We also assume for simplicity that the period cell Q is a square

[0, 1]2.

Let Qp
1 and Qp

2 denote the Q-periodic extension of Q1 and Q2 to all of R2

respectively. We denote u1(x, t) the restriction of u(x, t) to Q1 and by u2(x, t)

the restriction of u(x, t) to Qp
2.
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Figure 3.1: A periodic array of simply-connected space-time “inclusions”

Theorem 3.1. Assume that c = c2 =
√

k2/ρ2 is irrational. If Q1 is a simply

connected inclusion in a connected matrix Q2 and if ξ1 6= 0 in (3.1), then the

cell problem (3.1) has no solution.

Proof. The key observation here is that since the set Qp
2 is connected, there

exist a single pair of functions f(ξ), g(η) defined on all of R such that for all

(x, t) ∈ Qp
2

u2(x, t) = f(x + ct) + g(x− ct).

We are looking for a solution u ∈ H1
p (Q) to (3.1). This implies that

f ′(x + ct) =
1

2
(
∂u2

∂x
+

1

c

∂u2

∂t
) ∈ L2

loc(Q
p
2)

and

g′(x− ct) =
1

2
(
∂u2

∂x
− 1

c

∂u2

∂t
) ∈ L2

loc(Q
p
2).

From which it follows that {f ′, g′} ⊂ L2
loc(R).

So, {f, g} ⊂ H1
loc(R). The Q-periodicity of u(x, t) can be expressed as follows:

{
f(x + ct + 1) + g(x− ct + 1) = f(x + ct) + g(x− ct)

f(x + ct + c) + g(x− ct− c) = f(x + ct) + g(x− ct)

for all (x, t) ∈ Qp
2.

Now, we change variables:

x + ct = ξ, x− ct = η. (3.3)
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Let Q̃p
2 be the image of Qp

2 under this linear change of variables.

The set Qp
2 is open and connected and so is the set Q̃p

2. Also for any (ξ, η) ∈
Q̃p

2 we have

{
f(ξ + 1) + g(η + 1) = f(ξ) + g(η),

f(ξ + c) + g(η − c) = f(ξ) + g(η).
(3.4)

This is equivalent to

{
f(ξ + 1)− f(ξ) = g(η)− g(η + 1),

f(ξ + c)− f(ξ) = g(η)− g(η − c).
(3.5)

Now fix any ξ0 ∈ R. The line x+ct = ξ0 cannot all lie in the set Qp
1 because

this set is a disjoint union of bounded components. Thus there exists (x0, t0)

such that x0+ct0 = ξ0 and such that (x0, t0) ∈ Qp
2. Since Qp

2 (and Q̃p
2) is an open

set, it follows that there exists ε > 0 such that (ξ0− ε, ξ0 + ε)× (η0− ε, η0 + ε) ∈
Q̃p

2, where η0 = x0 − ct0. But then for any ξ ∈ (ξ0 − ε, ξ0 + ε),

f(ξ + 1)− f(ξ) = g(η0)− g(η0 + 1) = constant. (3.6)

So, f(ξ +1)−f(ξ) is locally constant on R. Therefore, f(ξ +1)−f(ξ) globally

constant. This implies that f ′(ξ + 1)− f ′(ξ) = 0, and so, f ′(ξ) is a 1-periodic

function. A similar analysis applied to the equation

f(ξ + c)− f(ξ) = g(η)− g(η − c). (3.7)

It follows that f ′(ξ) is a c-periodic function.

Then f ′(ξ) = constant = f0 since we have assumed that c /∈ Q.

A similar conclusion holds for g : g′(η) = g0. So,

f(ξ) = f0ξ + α; g(η) = g0η + β (3.8)

and

f(ξ + 1)− f(ξ) = f0; g(η)− g(η + 1) = −g0. (3.9)

Therefore, f0 = −g0.
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Substituting (3.8) into the second periodicity condition (3.5) we get cf0 =

f(ξ + c)− f(ξ) = g(η)− g(η − c) = cg0. This implies that f0 = g0.

Thus we conclude that f0 = g0 = 0. So, u2(x, t) = u0 where u0 is constant

in Qp
2. Since u2(x, t) is defined only up to a constant then without loss of

generality u2(x, t) ≡ 0 in Qp
2. Let U(x, t) = u(x, t) + ξ1x + ξ2t. Then the cell

problem can be written as follows

U1
tt = c2

1U
1
xx, (x, t) ∈ Q1,

U2
tt = c2

2U
2
xx, (x, t) ∈ Q2, (3.10)

and

U1(x, t) = U2(x, t), (x, t) ∈ Γ

ρ1U
1
t nt − k1U

1
xnx = ρ2U

2
t nt − k2U

2
xnx, (x, t) ∈ Γ, (3.11)

where Γ = ∂Q1 and n = (nt, nx) is the unit normal on Γ.

We use D’Alembert’s representation of a solution :

U1(x, t) = f1(x + c1t) + g1(x− c1t), (x, t) ∈ Q1,

U2(x, t) = f2(x + c2t) + g2(x− c2t), (x, t) ∈ Q2.
(3.12)

Lemma 3.1. Condition (3.11) can be written as

{
2f1(x + c1t) = (1 + α)f2(x + c2t) + (1− α)g2(x− c2t), (x, t) ∈ Γ

2g1(x− c1t) = (1− α)f2(x + c2t) + (1 + α)g2(x− c2t), (x, t) ∈ Γ
(3.13)

where α = ρ2c2/ρ1c1.

Proof. Let x = x(s), t = t(s) be a parameterization of Γ. Then N = (Nx, Nt)

= (ṫ,−ẋ) is the normal to Γ at (x(s), t(s)). Using (3.12) we obtain

ρ1U
1
t Nt − k1U

1
xNx =

−ρ1c1(ẋ + c1ṫ)f
′
1(x(s) + c1t(s)) + ρ1c1(ẋ− c1ṫ)g

′
1(x(s)− c1t(s)).

We observe that the right hand side is a full derivative, so

ρ1U
1
t Nt − k1U

1
xNx = ρ1c1

d

ds
(g1(x(s)− c1t(s))− f1(x(s) + c1t(s))).
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Similarly,

ρ2U
2
t Nt − k1U

2
xNx = ρ2c2

d

ds
(g2(x(s)− c2t(s))− f2(x(s) + c2t(s))).

So, the equation (3.11) can be integrated:

f1(x + c1t)− g1(x− c1t) = α(f2(x + c2t)− g2(x− c2t)), (x, t) ∈ Γ. (3.14)

By the continuity of u(x, t) on the smooth boundary we have

f2(x + c2t) + g2(x− c2t) = f1(x + c1t) + g1(x− c1t), (x, t) ∈ Γ. (3.15)

Combining (3.14) with (3.15) we get (3.13).

Recall that we have shown that u2(x, t) ≡ 0 in Q2. This implies that

f2(x + c2t) + g2(x− c2t) = ξ1x + ξ2t. (3.16)

Therefore, {
f ′2(x + c2t) + g′2(x− c2t) = ξ1

c2(f
′
2(x + c2t)− g′2(x− c2t)) = ξ2.

(3.17)

Consequently,

f2(λ) =
1

2
(ξ1 +

ξ2

c2

)λ; g2(λ) =
1

2
(ξ1 − ξ2

c2

)λ, (3.18)

Thus, by (3.13)

2f1(x + c1t) =
1 + α

2
(ξ1 +

1

c2

ξ2)(x + c2t) +
1− α

2
(ξ1 − 1

c2

ξ2)(x− c2t)

= c2(αξ1 +
ξ2

c2

)t + (ξ1 + α
ξ2

c2

)x, (x, t) ∈ Γ, (3.19)

2g1(x− c1t) =
1− α

2
(ξ1 +

1

c2

ξ2)(x + c2t) +
1 + α

2
(ξ1 − 1

c2

ξ2)(x− c2t)

= −c2(αξ1 +
ξ2

c2

)t− (ξ1 − α
ξ2

c2

)x, (x, t) ∈ Γ. (3.20)

Consider (3.19) first. It says that

∀ (x, t) ∈ Γ : f1(x + c1t) = Ax + Bt
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(x , t )0      0

(x , t )0      0

Γ

’      ’   

where

A =
1

2
(ξ1 + α

ξ2

c2

); B =
1

2
c2(αξ1 +

ξ2

c2

). (3.21)

Take (x0, t0) ∈ Γ and consider the line x + c1t = ξ0, where ξ0 = x0 + c1t0.

By our assumption this line will intersect Γ in at least two places (x0, t0) and

(x′0, t
′
0), where x′0 + c1t

′
0 = ξ0. But then we have:

f1(ξ0) = f1(x0 + c1t0) = A(ξ0 − c1t0) + Bt0 = Aξ0 + (B − c1A)t0. (3.22)

On the other hand we may replace (x0, t0) by (x′0, t
′
0). Then we have

f1(ξ0) = Aξ0 + (B − c1A)t′0. (3.23)

Comparing (3.22) and (3.23) we get a contradiction, unless B = c1A. Sim-

ilarly, considering the formula (3.20) we have

g1(x− c1t) = A′x + B′t, (3.24)

where

A′ = −1

2
(ξ1 − α

1

c2

ξ2), B′ = −1

2
(αξ1 +

ξ2

c2

)c2. (3.25)

Consider now the line x − c1t = ζ0 = x0 − c1t0. This line will intersect Γ at

another point (x′′0, t
′′
0). Then x0 − c1t0 = ζ0 = x′0 − c1t

′
0 and

g1(ζ0) = A′(ζ0 + c1t0) + B′t0 = A′ζ0 + (B′ + c1A
′)t0.

Also,

g1(ζ0) = A′ζ0 + (B′ + c1A
′)t′′0,

and we get a contradiction, unless B′ = −c1A
′. So, we get a contradiction,

unless

c2

2
(αξ1 +

ξ2

c2

) =
c1

2
(ξ1 + α

ξ2

c2

) and
c2

2
(αξ1 +

ξ2

c2

) =
c1

2
(α

ξ2

c2

− ξ1) (3.26)
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This implies ξ1 = 0 and ξ2 = αc1ξ2/c2 = ρ2ξ2/ρ1. So,

ξ1 = 0, and either ξ2 = 0 or ρ1 = ρ2.

So, if ξ1 6= 0, and c2 /∈ Q the cell problem (3.1) has no solution.

We remark, that the regular transport conditions [11] (conditions for which

the test problem from Section 2.2 has a unique solution) need not be violated

by structures considered in this section. For example, a periodic array of

rectangles in space-time uses only vertical or horizontal interfaces for which

regular transport conditions always holds. Another example is a periodic array

of rhombuses with slopes of sides corresponding to slow motions. These exam-

ples show that the regular transport conditions are insufficient to guarantee

the existence of solutions to a periodic cell problem.

We conjecture that nucleation or disappearance of a new phase always gen-

erates shock waves. As the wave scatters over the periodic array of inclusions

the strength of the shocks grow.

3.2 Lamination formula

Lamination formula for the 1D wave equation was derived and analyzed

by Lurie in [11] and also in subsequent works [16, 14]. The lamination formula

for the Maxwell system was derived by Dunaevskaya (unpublished, private

communication by Lurie).

The aim of this section is to extend the Hilbert space formalism introduced

by Milton in [19] to the setting of space-time composites. We illustrate its

usefulness by rederiving the lamination formulas for the wave equation and

the Maxwell system in Sections 3.2.1 and 3.2.2 respectively.

Milton observed that the cell problem in various contexts can be written in

terms of two fields: E, the intensity field and J, the flux field. Let Q = [0, 1]d be

the unit cube in Rd. The fields E and J take their values in a finite dimensional
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tensor space T and are related by a linear map L :

J = LE, (3.27)

where L(x) ∈ L∞(Q) ⊗ End(T ). In order to write the cell problem we intro-

duce, following Milton [19], the Hilbert space H = L2(Q)⊗ T .

For conducting composites, for example, T = R3. For the 1-dimensional

wave equation T = R2, and for Maxwell’s system T = R6. The intensity field

E and the flux field J are the electric field and the current density respectively

in the context of conductivity. For Maxwell’s equations E is a pair (E,B) and

J is a pair (−D,H). For the 1-dimensional wave equation E is a pair (ux, ut)

and J is a pair (kux,−ρut). Let E and J be the subspaces of H corresponding

to the differential equations satisfied by E and J. For example, for conductivity

E = {∇φ : φ ∈ H1
p (Q)} (3.28)

J = {j ∈ L2(Q)⊗ R3 : ∇ · j = 0, < j >= 0}. (3.29)

For the 1-dimensional wave equation, the subspaces E and J are given by

(3.28) and (3.29), except R3 is replaced by R2. For the Maxwell’s system

E = {E = (E,B) ∈ L2(Q)⊗ R6 | ∇ ×E = −∂B/∂t, ∇ ·B = 0, < E >= 0}
J = {J = (−D,H) ∈ L2(Q)⊗ R6 | ∇ ×H = −∂D/∂t, ∇ ·D = 0, < J >= 0}.

Finally, let U = R ⊗ T ⊂ H be the space of uniform fields. Then the cell

problem can be written as

E ∈ E ⊕ U , J ∈ J ⊕ U , J = LE, (3.30)

and, the effective tensor L∗ is defined by

L∗ < E >=< J > . (3.31)

Let Γ : H → H be an orthogonal projection onto E . Then there are finite

dimensional orthogonal projection matrices Γ(n), |n| = 1, such that for any

f ∈ H,

Γ̂f(k) =





Γ( k|k|)f̂(k), k ∈ Zd\{0}
0 k = 0.

(3.32)
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In the case of conductivity and 1-dimensional wave equation Γ(n) = n⊗n. In

the case of Maxwell’s system Γ(n) is more complicated and will be computed

in section 3.2.2.

Now consider a simple laminate made of materials L1 and L2 taken in

volume fractions θ and 1−θ. Let n be a unit normal to the layers. Then there

is a nice formula for L∗, the effective tensor of the laminate, due to Milton :

Wn(L∗) = θWn(L1) + (1− θ)Wn(L2), (3.33)

where

Wn(L) =
[
(I− L−1)−1 − Γ(n)

]−1
. (3.34)

This general formula reduces to the lamination formulas for conductivity [23,

24] and elasticity [1] in the corresponding contexts.

In the next two sections we obtain the explicit formulas for the effective

parameters of an activated composite laminate in the contexts of 1-dimensional

wave equation and Maxwell’s system using (3.33).
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Figure 3.2: Rank-1 laminate

3.2.1 Lamination formula for the 1-dimensional wave

equation

In this section we illustrate the usefulness of the machinery developed above

by rederiving the lamination formula for the 1D wave equation [11].
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Recall that for 1-dimensional wave equation we have :

T = R2 (3.35)

E = {∇w : w ∈ H1
p (Q)}

J = {J ∈ L2(Q)⊗ R2 : ∇ · J = 0, < J >= 0},

with a linear map L(x, t) =

[
k(x− vt) 0

0 −ρ(x− vt)

]
.

Suppose n =

[
ξ

η

]
where ξ = 1/

√
1 + v2, η = −v/

√
1 + v2, then

Γ(n) = n⊗ n =

[
ξ2 ξη

ξη η2

]
. (3.36)
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Figure 3.3: One dimensional dynamic laminate

If the two materials that are layered have densities ρ1 and ρ2 and stiffnesses

k1 and k2 respectively, then

L1 =

[
k1 0

0 −ρ1

]
; L2 =

[
k2 0

0 −ρ2

]
. (3.37)

We compute

W(ξ, η)(Lj) =
1

kjξ2 − ρjη2

[
(1− kj)(ξ

2 − ρjη
2) (1− kj)(1 + ρj)ξη

(1− kj)(1 + ρj)ξη (1 + ρj)(η
2 + kjξ

2)

]
(3.38)
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and

L∗ = W−1
(ξ,η)(θW(ξ,η)(L1) + (1− θ)W(ξ,η)(L2)). (3.39)

Suppose L∗ =

[
L∗11 L∗12

L∗21 L∗22

]
. We interpret this L∗ as

[
k∗ 0

0 −ρ∗

]
in the coor-

dinate system moving with velocity v∗.

Then

L∗ =

[
k∗ − ρ∗(v∗)2 −ρ∗v∗

−ρ∗v∗ −ρ∗

]
(3.40)

Thus ρ∗ = −L∗22, v∗ = L∗12/L
∗
22 and k∗ = (detL∗)/L∗22. The computation is

straightforward with Maple software. We simply substitute (3.38) into (3.39)

and ξ = 1/
√

1 + v2, η = −v/
√

1 + v2.

The final result is

ρ∗ = H(ρ)
A(ρ)− γH(k)

H(ρ)− γH(k)
,

v∗ = v
θ(1− θ)(ρ1 − ρ2)(k2 − k1)H(k)

k1k2(A(ρ)− γH(k))
,

k∗ = H(k)
A(ρ)− γA(k)

A(ρ)− γH(k)
, (3.41)

where γ = v2/c2
1c

2
2 and A(f), H(f) denote an arithmetic mean of f and a

harmonic mean of f , respectively.

3.2.2 Lamination formula for Maxwell’s System

In this section we derive the lamination formula for the full Maxwell’s

system by employing the computational machinery of the Hilbert space for-

malism of Milton. Our work is independent from the unpublished results of

Dunaevskaya.

Consider Maxwell’s equations (2.41). Recall that E = (E,B), J = (−D,H)

and

T = R6

E = {E ∈ L2(Q)⊗ R6 | ∇ × E = −∂B/∂t, ∇ ·B = 0, < E >= 0}
J = {J ∈ L2(Q)⊗ R6 | ∇ ×H = −∂D/∂t, ∇ ·D = 0, < J >= 0}.
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The constitutive relation is given by L(x, t) =

[
−ε(x− vt)I 0

0 I/µ(x− vt)

]
.

In terms of the Fourier coefficients we get

E = {(Ê, B̂) ∈ E(ξ, η) ∀ (ξ, η) ∈ R4\{0}},
J = {(−D̂, Ĥ) ∈ J(ξ, η) ∀ (ξ, η) ∈ R4\{0}},

where

E(ξ, η) = {(Ê, B̂) | ξ × Ê = −ηB̂ ; ξ · B̂ = 0},

and

J(ξ, η) =

{
{(−ξ ×H, ηH) | H ∈ R3} if η 6= 0

{(D, tξ) | t ∈ R3, D ∈ R3, D · ξ = 0} if η = 0.

Obviously, for any E ∈ E(ξ, η), J ∈ J(ξ, η), we have

(E,J) = 0. (3.42)

But also dim E(ξ, η) = dim J(ξ, η) = 3. Thus, R6 = E(ξ, η) ⊕ J(ξ, η). Now, let us

compute the projection Γ(ξ, η) onto E(ξ, η)

Γ(ξ, η)

[
u

v

]
= (e,−1

η
ξ × e) + (−1

η
ξ × h,h) (3.43)

where e ∈ R3, h ∈ R3. Thus,

e− 1

η
ξ × h = u ; h− 1

η
ξ × e = v. (3.44)

Solving for e and h we obtain

Γ(ξ, η)

[
u

v

]
= (η2u+ ξ(ξ · u) + ηξ × v, −ηξ × u− ξ × (ξ × v)), (3.45)

provided η2 + |ξ|2 = 1.

Notation 3. Let π(ξ) denote the skew-symmetric matrix such that π(ξ)a =

ξ × a.
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Then in this notation

Γ(ξ, η) =

[
η2I + ξ ⊗ ξ ηπ(ξ)

−ηπ(ξ) −π(ξ)2

]
(3.46)

Let (ε1, µ1), (ε2, µ2) be pairs of dielectric permeability and magnetic per-

mittivity of two materials that we layer. Then

L1 =

[
−ε1I 0

0 I/µ1

]
, L2 =

[
−ε2I 0

0 I/µ2

]
. (3.47)

We want to compute

L∗ = W−1
(ξ, η)(θW(ξ, η)(L1) + (1− θ)W(ξ, η)(L2)). (3.48)

The components of the space-time unit normal (ξ, η) to the layers receive the

following interpretation

ξ =
e1√

1 + v2
, η = − v√

1 + v2
, (3.49)

where v is the normal velocity of the layers and e1 = (1, 0, 0) is the spa-

cial normal to the layers. The computation is a straightforward calculation

with Maple software. We simply substitute (3.47) and (3.49) into (3.48). The

W -transformation is given here by (3.34) and Γ(ξ, η) is given by (3.46). Per-

forming the computation with Maple we obtain L∗ =

[
L∗11 L∗12

−L∗12 L∗22

]
, where

L∗11 =




a1 0 0

0 b1 0

0 0 b1


 , L∗12 =




0 0 0

0 0 d

0 −d 0


 , L∗22 =




a2 0 0

0 b2 0

0 0 b2


 , (3.50)

and where

a1 = −H(ε), b1 = H(ε)
ε1ε2µ1µ2η

2 − A(ε)A(µ)

−η2ε1ε2µ1µ2 + A(µ)H(ε)
,

a2 = 1/H(µ), b2 =
1

H(µ)

−ε1ε2µ1µ2η
2 + H(ε)H(µ)

−η2ε1ε2µ1µ2 + A(µ)H(ε)
,

d =
H(ε)

H(µ)

−η θ µ2(ε2 − ε1)(µ1 −H(µ))

−η2ε1ε2µ1µ2 + A(µ)H(ε)
.

(3.51)
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A(f), H(f) denote an arithmetic mean of f and a harmonic mean of f , re-

spectively.

We may interpret L∗ as the tensor of electromagnetic properties of a moving

dielectric via Minkowski material relations.

D + v∗ ×H = ε∗(E + v∗ ×B), (3.52)

B− v∗ × E = µ∗(H− v∗ ×D). (3.53)

Let v∗ = |v∗|. Then, solving (3.52), (3.53) for D and H we get

(1− v2
∗)µ

∗D = (µ∗ε∗ − v2
∗I)E + (µ∗ε∗ − I)[v∗ ×B− v∗(v∗ · E)], (3.54)

(1− v2
∗)µ

∗H = (I− v2
∗µ

∗ε∗)B + (µ∗ε∗ − I)[v∗ × E + v∗(v∗ ·B)]. (3.55)

We want to identify the constitutive relation

[
−D

H

]
=

[
L∗11 L∗12

−L∗12 L
∗
22

][
E

B

]
. (3.56)

with the Minkowski material relations (3.54) and (3.55). Observe that

L∗11 = b1I + (a1 − b1)e1 ⊗ e1,

L∗12 = dπ(e1),

L∗22 = b2I + (a2 − b2)e1 ⊗ e1. (3.57)

Therefore, we look for ε∗, µ∗ in the form

µ∗ = µ′∗I + µ′′∗e1 ⊗ e1, ε∗ = ε′∗I + ε′′∗e1 ⊗ e1. (3.58)

Substituting D and H from (3.56) and ε∗ and µ∗ from (3.58) into (3.54) and

(3.55) we get

(1− v2
∗)µ

′
∗L

∗
11 = (v2

∗ − µ′∗ε
′
∗)I + (v2

∗(µ
′
∗ε
′
∗ − 1)− µ′∗ε

′′
∗(1− v2

∗))e1 ⊗ e1,

(1− v2
∗)µ

′
∗L

∗
12 = v∗(1− µ′∗ε

′
∗)π(e1),

(1− v2
∗)µ

′
∗L

∗
22 = (1− v2

∗µ
′
∗ε
′
∗)I + (v2

∗(µ
′
∗ε
′
∗ − 1)− µ′′∗(1− v2

∗)
µ′∗ + µ′′∗

)e1 ⊗ e1.

(3.59)
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Substituting (3.57) into (3.59) we get the following equations for ε′∗, ε′′∗, µ′∗, µ′′∗
and v∗.

a1 = −(ε′∗ + ε′′∗), b1 =
v2
∗ − µ′∗ε

′
∗

µ′∗(1− v2∗)
,

a2 =
1

µ′∗ + µ′′∗
, b2 =

1− µ′∗ε
′
∗v

2
∗

µ′∗(1− v2∗)
, d =

v∗(µ′∗ε
′
∗ − 1)

µ′∗(1− v2∗)
.

(3.60)

Solving (3.60) for ε′∗, ε′′∗, µ′∗, µ′′∗ and v∗ we obtain

ε′∗ =
b2v

2
∗ − b1

1 + v2∗
,

ε′′∗ = −b2v
2
∗ − b1

1 + v2∗
− a1,

µ′∗ =
1

b2 − v∗d
,

µ′′∗ =
1

a2

+
1

v∗d− b2

,

v∗ =
b1 + b2 ±

√
(b1 + b2)2 − 4d2

2d
,

(3.61)

where a1, a2, b1, b2 and d are given by (3.51). In the formula for v∗ in (3.61)

we take “+” sign if b1 + b2 < 0 and “−” sign if b1 + b2 > 0.
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CHAPTER 4

EXACT RELATIONS FOR 3D

HALL EFFECT

Consider composites made with conductors exhibiting the Hall effect. The

goal is to describe all exact relations in this physical context. An example of

an exact relation is the set of conductivity tensors that do not exhibit Hall

effect : any mixture made with such materials will not exhibit the Hall effect.

From the geometric point of view, a six dimensional surface consisting of 3×3

symmetric matrices lying in a nine dimensional space of all 3 × 3 matrices is

an exact relation.

We are going to use the general theory of exact relations developed in

[4, 5, 6, 7]. According to the general theory, exact relations passing through a

given reference medium L0 ∈ End+(R3) are in one-to-one correspondence with

all subspaces Π ∈ End(R3) satisfying the condition

KAK ∈ Π for all K ∈ Π and for all A ∈ A, (4.1)

where A = Span{Γ′(n) − Γ′(e1); |n| = 1} and Γ′(n) = L0n⊗n
(L0n,n)

. The exact

relation M corresponding to Π is then given by

M = {L ∈ End+(R3) : L = L0 − [I +KΓ′(e1)]
−1KL0, K ∈ Π}. (4.2)
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In order to simplify the problem of solving (4.1) we make the following trans-

formation :

Π0 = Y −1ΠX−1, A0 = XAY , where X and Y can be any invertible 3× 3

matrices. Then Π0 satisfies

KAK ∈ Π0 for all K ∈ Π0 and for all A ∈ A0. (4.3)

Let σ0 = (L0 +LT
0 )/2 ∈ Sym+(R3). Let X = σ

1/2
0 L−1

0 and Y = σ
1/2
0 then

A0 = Span

{
σ

1/2
0 n⊗ σ1/2

0 n

(L0n,n)
− σ

1/2
0 e1 ⊗ σ1/2

0 e1

(L0e1, e1)
: |n| = 1

}
. (4.4)

Obviously, A0 ⊂ {A ∈ Sym(R3) : TrA = 0}. Suppose B ∈ Sym(R3) is

orthogonal to A0. Then for all |n| = 1

(Bσ
1/2
0 n,σ

1/2
0 n)

(L0n,n)
=

(Bσ
1/2
0 e1,σ

1/2
0 e1)

(L0e1, e1)
.

In other words there is α ∈ R such that for all |n| = 1

(σ
1/2
0 Bσ

1/2
0 n,n) = α(σ0n,n).

Since both σ0 and σ
1/2
0 Bσ

1/2
0 are symmetric we conclude that σ

1/2
0 Bσ

1/2
0 =

ασ0. Thus, B = αI. Therefore,

A0 = {A ∈ Sym(R3) : Tr (A) = 0}. (4.5)

We solve (4.3) with the aid of the computer algebra package Maple.

We can represent a basis of a subspace L ⊂ End(R3) by a matrix, whose

rows are basis elements of L written in terms of the chosen basis for End(R3).

If we row-reduce this matrix to the row-reduced echelon form (rref) then the

rows of rref still form a basis of L. Moreover, there is a unique basis of L that

corresponds to rref. The structure of the rref is defined by the position of

pivots. We go through all possible rref structures and determine all subspaces

with that structure of rref that satisfy (4.1). This is accomplished via the

computer algebra package, Maple that uses the grobner basis technique to
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solve the resulting system of cubic polynomial equations in as many as 20

variables (at the most). The program has returned 62 families of subspaces.

Before we list our results we would like to mention one particularly simple

type of exact relations, the uniform field relations [3, 17, 18]. If the local tensor

L(x) satisfies p vector identities

L(x)ei = ji, i = 1, . . . , p

for some fixed constant vectors e1, . . . , ep and j1, . . . , jp, then L∗ei = ji, i =

1, . . . , p because the pairs of uniform fields (ei, ji) solve the cell problem. In the

language of subspaces Π these exact relations correspond to the annihilators

Ann(L) = {K ∈ End(R3) : Ka = 0 for all a ∈ L},

where L is a subspace of R3 of dimension p ( for a non-trivial exact relation p

must be either 1 or 2 in this context.)

By our design the resulting families of subspaces are parameterized by

Rk, where k is the number of free parameters in Maple output. From the

geometric point of view this is not always natural. For example, the family

Πa = {a⊗v | v ∈ R3}, a 6= 0 is parameterized by RP2. Therefore, in Maple

output this family of subspaces would be replaced by 3 outputs.

Πã = {(1, ã)⊗ v | v ∈ R3}, ã ∈ R2

Πα = {(0, 1, α)⊗ v | v ∈ R3}, α ∈ R
Π∞ = {(0, 0, 1)⊗ v | v ∈ R3}.

This representation corresponds to the cell-decomposition of a CW-complex

RP2 into its CW-cells.

Consequently, I had to go through the Maple output and collect together

all the cells that belong to the same CW-complex in the space of parameters.

At the end the set of subspaces Π satisfying (4.1) is split into the smaller

number of larger families parameterized by various Grassmanians.

Here is the summary of our analysis of the 62 families of subspaces Π

returned by Maple.
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1. There are 9 families of one-dimensional subspaces in the Maple output.

They can be aggregated into one larger family

Π = R(a⊗ b), a ∈ R3 \ {0}, b ∈ R3 \ {0}, (4.6)

We may write the family Π as (Ann((Ra)⊥))T ∩ Ann((Rb)⊥).

2. There are 18 families of two-dimensional subspaces in the Maple output.

They can be aggregated into two larger families

Π = {v ⊗ a | v ∈ L ⊂ R3, dimL = 2}, (4.7)

and

Π = {a⊗ v | v ∈ L ⊂ R3, dimL = 2}. (4.8)

The family of subspaces Π given by (4.7) is equal to Ann((Ra)⊥) ∩
(Ann(L⊥))T and the family of subspaces Π given by (4.8) is equal to

Ann((Ra)⊥)T ∩ Ann(L⊥).

3. There are 9 families of three-dimensional subspaces in the Maple output.

They can be aggregated into three larger families

Π = {v ⊗ a | v ∈ R3}, (4.9)

Π = {a⊗ v | v ∈ R3}, (4.10)

and

Ann(Ra) ∩ Sym(R3). (4.11)

The family of subspaces Π given by (4.9) is equal to Ann((Ra)⊥) and

the family of subspaces Π given by (4.10) is equal to (Ann((Ra)⊥))T .

4. There are 9 families of four-dimensional subspaces in the Maple output.

They can be aggregated into one larger family

Π = {v ⊗ a+w ⊗ b | v ∈ L,w ∈ L, L ⊂ R3, dimL = 2}, (4.12)

The family of subspaces Π given by (4.12) is equal to

Ann(Rc) ∩ (Ann(Rn))T , where c = a× b and n is normal to L.
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5. There are families of 7 six-dimensional subspaces in the Maple output.

They can be aggregated into three larger families

Π = {v ⊗ a+w ⊗ b | v ∈ R3,w ∈ R3}, (4.13)

Π = {a⊗ v + b⊗w | v ∈ R3,w ∈ R3}, (4.14)

and

Π = Sym(R3). (4.15)

The family of subspaces Π given by (4.13) is equal to Ann(Rc), where c =

a×b. The family of subspaces Π given by (4.14) is equal to (Ann(Rc))T .

There are no 5, 7 or 8 dimensional subspaces in the Maple output. The remain-

ing 10 families of subspaces are complex valued and therefore are discarded.

In conclusion we point out that all exact relations for 3D Hall effect are

generated by the exact relation Sym(R3) and the uniform field relations by

means of taking transposes and intersections. The most important result of

this chapter is that aside from the exact relations described above there are

no others.
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their applications. Birkhäuser, Boston, 1997, pp. 9–20.


