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ABSTRACT

SOME NON-ABELIAN COVERS OF KNOT COMPLEMENTS

Timothy Morris

DOCTOR OF PHILOSOPHY

Temple University, May, 2019

Professor Matthew Stover, Chair

Let K be a tame knot embedded in S3. We address the problem of finding

the minimal degree non-cyclic cover p : X → S3 � K. When K has non-

trivial Alexander polynomial we construct finite non-abelian representations

ρ : π1 (S
3 �K) → G, and provide bounds for the order of G in terms of

the crossing number of K, which is an improvement on a result of Broaddus

in this case. Using classical covering space theory along with the theory of

Alexander stratifications we establish an upper and lower bound for the first

betti number of the cover Xρ associated to the ker(ρ) of S3�K, consequently

showing that it can be arbitrarily large, which provides an effective proof of

a result involving peripheral subgroup separation. We also demonstrate that

Xρ contains non-peripheral homology for certain computable examples, which

mirrors a famous result of Cooper, Long, and Reid when K is a knot with

non-trivial Alexander polynomial.
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CHAPTER 1

INTRODUCTION

In 1987 Hempel [20] showed that the fundamental groups of Haken 3-

manifolds are residually finite, i.e.,
⋂

H = {1} where H ranges over the finite

index normal subgroups of the fundamental group of the 3-manifold. It follows

that all topological 3-manifolds with single a torus boundary component are

residually finite. A consequence of residual finiteness is that the fundamental

group admits a rich family of finite quotients, and therefore a knot manifold M

has an abundance of finite sheeted covers with varying topological properties.

For the remainder of this dissertation MK always denotes the manifold

S3 � K, and ΓK = π1 (MK). There is a very well known construction which

describes an infinite family of finite covers of a knot complement, namely those

which arise from the kernels of finite cyclic quotients, known as cyclic covers.

Such quotients come from the following construction. Denote Γab
K = ΓK/[ΓK ,ΓK ].

Since Γab
K

∼= Z, for a knot K, there exists a homomorphism ΓK → Z/nZ. The

kernel of this homomorphism corresponds to a regular cover, Xn, typically

called the n-fold cyclic cover of M .1

When K is a non-trivial knot, residual finiteness ensures the existence of

non-abelian quotients of ΓK . Thus, there exist covers ofMK which do not arise

from the cyclic quotients of H1 (MK) described above. In this dissertation we

1A similar, but different notion, is the cyclic covers of S3 branched over the knot K. We
do not discuss these covers.
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address the following question.

Question 1.1. What is the minimal degree non-cyclic cover of MK?

The first systematic treatment of this problem was due to Broaddus [8].

In his thesis, he constructs explicit finite non-cyclic covers of the knot com-

plements and provides an upper bound on the degree. Kuperberg [24] later

decribed the growth rate of the degree of non-abelian covers as being NP mod-

ulo the Generalized Reimann Hypothesis. We improve on these results when

K has non-trivial Alexander polynomial.

Other than Broaddus’s and Kuperberg’s work there is little in the literature

that directly addresses the problem of minimal degree non-cyclic covers of knot

complements. Moreover, Broaddus and Kuperberg both relate the degree of

the non-cyclic covers to combinatorial invariants of the knot. Let D denote

any diagram of K, recall that the crossing number of a knot is defined to be

cK = min|{Crossings of D}|,

where the minimum is taken over all diagrams, D, of the knot. Broaddus

proved the following:

Theorem 1.1. (Broaddus, [8]) For all non-trivial knots K, there exists an

explicit function b : N3≥ → N, 2 and there exists a finite non-cyclic cover Z of

MK, with [MK : Z] ≤ b(cK).

Similarly, Kuperberg proves the following result about the existence and

order of finite non-abelian quotients of the group ΓK . In the following “pol”

and “exp” represent the existence of a polynomial and exponential functions

in the variable cK .

Theorem 1.2. (Kuperberg, [24]) If K is a non-trivial knot, then there exists

a finite quotient G of ΓK with

|G| = exp(exp(pol(cK))).

2N3≥ denotes Natural numbers greater than 3.
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Assuming the Generalized Reimann Hypothesis, one has

|G| = exp(pol(cK)).

Furthermore due to Fox’s [14] work on dihedral coverings of knot comple-

ments, we know that when the determinant of a knot |Δ(−1)| �= 1 there exists

an irregular cover Y → MK . This cover has degree bounded by |Δ(t)|.
Now let δ ≈ 1.83929 be the inverse of

δ−1 = −1

3
− 2

3
3
√

17 + 3
√
33

+
3
√

17 + 3
√
33

3
.

Stoimenow [36] then proved,

Theorem 1.3. (Stoimenow, [36])

For all knots K

|Δ(−1)| ≤ δcK−1.

So it follows that what |Δ(t)| �= 1 there exists a non-cyclic cover with

degree at most 2cK−1. We establish a larger bound, for all knots with non-

trivial Alexander polynomial. Furthermore we also improve this result in terms

of the degree of the cover in the results of Broaddus and Kuperberg, and drop

the reliance on the Generalized Reimann Hypothesis, for a knot K with non-

trivial Alexander polynomial. Explicitly, we establish an upper bound similar

to the result of Broaddus, however our construction yields a computationally

simpler bound, in the sense that the lower bound established by Broaddus

exceeds computational capability of current computer software on a standard

desktop computer even for cK = 3. Furthermore the bound we establish is of

the class exp(pol(cK)), however both exp and pol are explicitly given.

1.1 Theorem 1

In Chapter 4 we prove the following Theorem.
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Theorem 1. If K is a knot with crossing number cK and non-trivial Alexander

polynomial, then there exists a regular non-abelian cover Xρα of MK with

[MK : Xρα ] ≤ 24c
2
K ,

and there exists an irregular non-cyclic cover Yρα with

[MK : Yρα ] ≤ 22c
2
K .

Notice that Theorem 1 addresses the minimality of regular non-cyclic cov-

ers, providing explicit constructions and bounds. This has not been previously

studied in the literature. We we strengthen the conclusion of Theorem 1 for

certain important families of knots.

Theorem 1.4.

1. If K is a twist knot with 2n half twists, then

[MK : Yρα ] ≤ 16n2.

2. If K is a fibered knot, with non-trivial Alexander polynomial we have

[MK : Yρα ] ≤ 2cK .

3. For knots with Alexander polynomial of degree n (it follows that n ≤
cK − 1,) hence we have

[MK : Yρα ] ≤ 22n
2

.

As we have mentioned, the Alexander polynomial is a well known invariant

of the knot group, denoted Δ(t), defined in 1923 by J.W. Alexander [2]. Since

then many authors have formulated equivalent definitions of the Alexander

Polynomial ([2], [12], [10], [34], [31]). In order to prove Theorem 1 we gener-

alize the construction due to de Rham [10], which which simultaneously de-

fines the Alexander polynomial and constructs representations to affine-linear
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groups over C. Using this point of view we are able to construct explicit, fi-

nite, metabelian representations of the knot group by generalizing de Rham’s

construction to an arbitrary finite field.

For α ∈ F̂p (the notation κ̂ denotes the algebraic closure of the field κ,) we

can construct the following subgroup of Aff
(
F̂p

)
. Let

Gα = 〈αz, z + 1〉 < Aff
(
F̂p

)
,

since every α ∈ F̂p is contained in a finite extension of Fp, this group is finite.

1.2 Theorem 2

Our generalization of de Rham’s theorem is:

Theorem 2. For all knots K, there exists a surjective homomorphism ρα :

ΓK → Gα if and only if α is a non-zero root of Δ(t) (mod p). The homomor-

phism ρα satisfies:

• ρα (ΓK) is metabelian, in particular non-abelian.

• |ρα (ΓK) | = npd, where d = degFp
(α) and n = ordF∗

pd
(α) (the order of α

in the group of units of Fpd.)

A metabelian group G is group such that [G,G] is abelian. Furthermore

the quotients in Theorem 2 being metabelian should come as no suprise. The

group ΓK/Γ′′
K
∼= Z � Γ′

K/Γ′′
K, is a metabelian group, and such finite metabelian

quotients of the knot group have been extensively studied. Fox, Artin, Hartley,

and Neuwirth are the pioneers in the study of metabelian covers of knots. Fox

[14], [11] describes the fundamental group of the branched cover corresponding

to metacyclic representations for doubled knots. M. Artin [3] computed the

first homology groups for the same covers described in [11] in his senior thesis

at Princeton. R. Hartley [18] provided a necessary and sufficient criterion for

a knot to admit a finite quotient to a specific class of metabelian groups; this

criterion is given in terms of the abelianization of the fundamental group of
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the finite cyclic covers. Lastly L. P. Neuwirth [31] provided a criterion in terms

of the Alexander polynomial similar to what we will describe to ensure that a

knot group surjects onto a metacylic group. More recently, a general study of

metabelian representations to SL(n,C) has been a fruitful area; for example

see [15], [6], [22], [29], and [30].

1.3 Theorem 3

We then turn our attention to the topological properties of the regular

covers Xρα . From a computational point of view, the construction of Xρα pro-

vides us with a large family new manifolds to examine and draw new intuition

from. There are many questions to address with regards to these regular cov-

ers. For this dissertation we focus on the groups H1 (Xρα), in particular the

computation of β1 (Xρα).

In an homage to Thurston’s work on the virtual properties of 3-manifolds,

Ian Agol’s 2014 ICM address [1] highlighted the current state of the art for

determining those properties of 3-manifolds. His address was focused on es-

tablishing a connection between results of Haglund and Wise and current geo-

metric methods to answer 4 of Thurston’s list of 24 problems involving virtual

properties of 3-manifolds. One question of Thurston’s involved the virtual first

betti number. The virtual first betti number is defined to be

vβ1(M) = sup{β1(X) | X → M is a finite cover},

Thurston asks the question: Can a closed aspherical M have vβ1(M) = ∞?

Agol goes on to answer this question in the positive, a consequence of the

Virtual Special theorem for closed manifolds. However for manifolds, M with

non-empty incompressible boundary it is a consequence of the The Seifert

Fiber Theorem, The Torus Theorem, and facts about peripheral subgroup

separation of Long and Niblo [27] that vβ1(M) = ∞. Furthermore the seminal

paper of D. Cooper, D. Long, and A. Reid [9] from 1997 showed that for
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bounded 3 manifolds “non-peripheral” homology becomes unbounded in finite

covers.

There is an extensive understanding of the topological and algebraic prop-

erties of finite cyclic covers of knot complements. In particular, complete

information of the first homology groups of the cyclic covers Xn can be de-

termined directly from the Alexander polynomial of the knot K. Ralph Fox

[13] using his free differential calculus showed that both the free rank (the first

betti number) and the order of the torsion subgroup of H1(Xn) can be directly

computed from the Alexander polynomial. In particular, the first betti num-

ber of the Xn is 1 except when Δ(t) has an nth root of unity as a root [12].

An immediate consequence of this is that β1(Xn) ≤ deg(Δ(t)) + 1, for any n.

The results of [9] provide the existence of covers with arbitrarily large betti

number, and by such covers cannot be the cyclic covers of a knot complement.

We then turn our attention to the computation of β1(Xα), as a first step

in understanding such covers. In §5.1 we compute a lower bound for β1(Xα)

providing us with an alternate proof of Long and Niblo’s result [27] in the case

of a knot complement with non-trivial Alexander polynomial.

1.4 Theorem 3

Theorem 3. Let p be a prime such that Δ(t) (mod p) is non-trivial, α ∈ F̂p a

root of Δ(t) (mod p) with d = degFp
(α), and ordF∗

pd
(α) = n. Then the covers

Xρα satisfy

pd − 1 + β1(Xn) ≤ β1(Xρα) ≤ (n(cK − 1))(pd − 1) + β1 (Xn) .

The lower bound is a direct computation of the number of boundary com-

ponents of the cover Xρα , along with basic facts about finite covering spaces.

The upper bound here is a consequence of E. Hironaka’s theory of Alexander

stratifications and jumping loci [21].

An immediate corollary of Theorem 3 is:
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Theorem 1.5. (Long, Niblo [27]) When K is a knot with non-trivial Alexan-

der polynomial,

vβ1(MK) = ∞.

We will show in §5 there are knots for which Xα has non-peripheral ele-

ments in first homology suggesting that our methods often lead to concrete

constructions of covers whose non-peripheral first homology becomes arbitrar-

ily large. It is possible from these computations that the covers Xρα might

provide a concrete construction to the famous result of Cooper, Long, and

Reid in this case.

Finally we also study torsion in the first homology groups of these covers.

For any compact manifold X the first homology group H1(X;Z) is a finitely

generated abelian group, thus is isomorphic to the group Zβ1(X)⊕T (H1(X;Z)),

here T (H1(X;Z)) is the torsion subgroup. The study of T (H1(Nj;Z)) for finite

sheeted covers Nj of a 3-manifold N is recently of significant interest. Fox’s

results [13] include an explicit formula for the order of the torsion subgroup

of T (H1(Xn,Z)). This has lead to many results describing the growth of

torsion in finite cyclic covers. In particular Gordon [17] showed linear growth

in the torsion subgroup of H1(Xn) as n → ∞ for infinite classes of knots.

Independently Riley [33], Gonzalez-Acuña and Short [16] , and Weber [37]

were able to build on Gordon’s work to show exponential growth of the order

of torsion through the cyclic covers of a non-trivial knot complement.

The torsion subgroup of H1(Nj) is of particularly importance when covers

Nj arrange into a tower of covers

· · · → Nj → · · · → N1 → N

so that Ni → Ni−1 is finite sheeted for all i. Recent work of H. Baik, D.

Bauer, I. Gekhtman, U. Hamenstädt, S. Hensel, T. Kastenholz, B. Petri, and

D. Valenzuela [4] showed that exponential torsion growth is a generic property

of random 3-manifolds. Furthermore, when the 3-manifold is endowed with a

hyperbolic metric and
⋂∞

i=1 π1(Ni) = {1} the asymptotics of torsion growth is
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conjectured to have close relationship with the hyperbolic volume of M . N.

Bergeron and A. Venkatesh conjectured [5] (Conjecture 1.3) describing this

asymptotic growth phenomenon. The only cases for which there are complete

results in this direction are in the case of the cyclic covers of hyperbolic knot

complements this is due to T. Lê [25] and independently J. Raimbault [32],

where the towers of cyclic covers are not exhaustive, but a similar behavior

is exhibited. We will conclude the dissertation providing tables of computa-

tions and highlighting certain relationships between the torsion subgroups of

H1(Xα;Z) and H1(Xn;Z).
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CHAPTER 2

THE ALEXANDER

POLYNOMIAL

2.1 Background

2.1.1 The Alexander Polynomial

Let ΔK(t) denote the Alexander polynomial of K, when the knot itself

is undersood we will drop the K and write Δ(t). See [31] or [34] for some

of the many definitions. We use the notation Γ′ = [Γ,Γ], Γ′′ = [Γ′,Γ′], and

Γ(i) = [Γ(i−1),Γ(i−1)] for the ith iterated commutator subgroup. The classical

definition of the Alexander Polynomial due to Alexander considers the split

short exact sequence:

1 → Γ′
K/Γ′′

K → ΓK/Γ′′
K → Z → 1.

The group ΓK/Γ′′
K is a semi-direct product Z � Γ′

K/Γ′′
K, hence Γ′

K/Γ′′
K is a finitely

generated Z[t, t−1] module [2]. Alexander proved that the annihilator of the

module is a principal ideal in Z[t, t−1], so it is generated by a single Laurent

polynomial, Δ(t). Furthermore since Γ′
K/Γ′′

K is a finitely generated Z[t, t−1]

module, there exists a presentation matrix A(t) of rank k over Z[t, t−1], called

the Alexander matrix. The ith Alexander ideal is then the principal ideal



11

generated by the (k − i) minors of A(t), and therefore Δ(t) is the generator

(up to multiplication by a unit of Z[t, t−1]) of the zeroth Alexander ideal. We

denote by Δi(t) the generator of the ith Alexander ideal, thus Δi(t) is the ith

invariant factor of A(t).

The Alexander Polynomial with coefficients in an general field κ.

Denote by ι, the canonical ring homomorphism ι : Z → κ for any field κ,

determined by

1Z → 1κ.

We are using the convention that 1R is the unit in the unital ring R. Consid-

ering the images of the coefficients of the entries of A(t) under ι, we denote

the resulting matrix by Aκ(t). Thus Aκ(t) presents Γ′
K/Γ′′

K as a (Z/ker(ι)) [t, t−1]

module. Note that ker(ι) = pZ for p = 0 or a prime (p is the characteristic

of κ). Assuming that p is prime, and consequently non-zero, up to field iso-

morphism it follows that Aκ(t) = AFp(t), and presents Γ′
K/Γ′′

K as an Fp[t, t
−1]

module. Furthermore since Fp[t, t
−1] is a principal ideal domain we define

Δ(p,i)(t) to be the ith invariant factor of Aκ(t), hence Δp(t) = Δp0(t). We

call Δp(t) the Alexander Polynomial with coefficients in Fpd . For p = 0, the

image is isomorphic to Z so this construction yields the classical Alexander

polynomial Δ(t). In §3 we verify that Δp(t) and Δ(t) (mod p) are equivalent.

The Topological Interpretation of the Alexander polynomial

For any knot K, the abelianization Γab
K is isomorphic to Z. Furthermore

let X∞ denote the cover of MK corresponding to Γ′
K . This is often called the

infinite cyclic cover of MK . By a construction of Seifert there is a spanning

surface Σ ⊂ MK and ∂Σ = K, this subsurface is orientable, and has genus

g ≥ 1. This surface is dual to the generator of H1 (MK). Let Σ be a Seifert

surface for the knot K. The infinite cyclic cover is constructed by first cutting

MK open along Σ the resulting manifold, which we denote by Y0, and taking

one copy, {Yi}∞i=−∞, for each integer. The “top” of Yi, which we denote Σi+1,
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is glued to the “bottom” of Yi+1 also denoted Σi+1 via the i + 1 power of the

glueing map represented by the arrows in 2.1. For a full visual representation

of the infinite cyclic cover see figure 2.1 below.

Figure 2.1: The infinite cyclic cover X∞

The the deck group of the cover X∞ is Z ∼= Γab
K . We assume that it

is generated by and element t. Furthermore t acts on X∞ by taking Σi to

Σi+1, and Yi to Yi+1. Since t acts on π1(X∞) ∼= Γ′
K it descend to and action

of H1(X∞), since π1(X∞)′ is characteristic. Therefore H1(X∞) is a finitely

generated Z[t, t−1] module and by Alexander’s theorem [2] the annihilator is

principal, generated by a single Laurent polynomial Δ(t). This discussion is

just the topological analogue of the discussion in 2.1.1.

2.1.2 Facts About the Alexander polynomial

Lemma 2.1. (Rolfsen, [34]) Let K be a knot, then its Alexander polynomial,

Δ(t) satisfies:

1) Δ(t) = t±iΔ(t−1) for some i ≥ 0.

2) Δ(1) = ±1.
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We are able to summarize the above lemma in language that will be useful

to the purposes of this dissertation.

Proposition 2.1 ([34]). Let Δ(t) = Σl
i=−kait

i be the Alexander polynomial of

a knot K and define deg(Δ(t)) = l + k, then

1) Δ(1) = ±1,

2) al−j = aj−k for j = 0, . . . , l+k
2

− 1,

3) degQ(Δ(t)) ≤ cK − 1, where cK is the crossing number of K.

Proof. The properties 1) and 2) are immediate consequences of Lemma 2.1.

The third property is an observation of the fact that in the Wirtinger pre-

sentation of the knot K there are exactly cK − 1 generators, so an Alexander

matrix can be written as a cK × cK − 1 matrix, thus degQ(Δ(t)) ≤ cK − 1.

We say Δ(t) is trivial if Δ(t) = ±tn.

Lemma 2.2. Suppose Δ(t) is non-trivial. Then it has at least 3 non-zero

coefficients.

Proof. Suppose Δ(t) has one non-zero coefficient a0. Then by 2.1(1), Δ(1) =

a0 = ±1, hence Δ(t) is trivial. Thus, Δ(t) has at least 2 non-zero coefficients

a0 and a1 and by 2) they must be equal however, since Δ(1) = ±2a0 which

cannot be 1, and the lemma follows.

2.1.3 de Rham’s Construction

We, however, bring attention to a definition of Δ(t) due to de Rham [10].

The definition of de Rham is of particular importance to us because it allows

us to simultaneously define Δp(t) and construct non-abelian representations

to finite groups.

For a field κ de Rham’s construction begins by attempting to define a

homomorphism,

ϕ : ΓK → Aff(κ) = {tz + x | t ∈ κ∗, x ∈ κ}.
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Using the Wirtinger presentation for ΓK , we have that given a diagram of K

with n crossings

ΓK = 〈x1, x2, . . . xn | xixj(i) = xj(i)xi+1 or xi+1xj(i) = xj(i)xi〉. (2.1)

It is important to note that this is a balanced presentation (the number of

generators is equal to number of relators). See Figure 2.2 for the definition of

xj(i) and the relations in ΓK .

xj(i)

xj(i)xi

xi+1

(+)

xj(i)

xj(i)xi

xi+1

(−)

Figure 2.2: The two cases for relations in ΓK .

Now, ϕ : ΓK → Aff(κ), thus each generator of ΓK must satisfy xk → tkz+yk

with tk ∈ κ∗ and yk ∈ κ for 1 ≤ k ≤ n. There are two equations that could

hold, one coming from each case of the relations:

titj(i)z + tiyj(i) + yi = tj(i)ti+1z + tj(i)yi+1 + yj(i) (+)

ti+1tj(i)z + ti+1yj(i) + yi+1 = tj(i)tiz + tj(i)yi + yj(i) (−)

Analyzing the the coefficient of z we have titj(i) − tj(i)ti+1 = 0, hence ti = ti+1

for all i, renaming tk := t for all k. The equations simplify to

(t− 1)yj(i) + yi − tyi+1 = 0 (+)

(t− 1)yj(i) − tyi + yi+1 = 0. (−)

Let Aκ(t) ∈ Matn×(n−1) (κ[t, t
−1]) be the presentation matrix for the above

equations. The matrix A(t) will denote the above presentation matrix when
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κ has characteristic 0, and in the case of de Rham κ = C. The polynomial

Δκ(t) ∈ κ[t, t−1] is defined to be the largest invariant factor of Aκ(t). We

will show in section 2.2, that Δκ(t) ≡ Δ(t) (mod p) when κ is the finite field

Fp. In fact Δκ(t) can be taken to be a polynomial in κ[t]; we will often use

this fact without explicitly stating it. Thus we are able to conclude that

there exists a homomorphism ϕ : ΓK → Aff(κ(α)) if and only if α is a root

of Δκ(t) in some finite extension of κ as described above for some non-zero

(y1, y2, . . . , yn) ∈ κ(α)n. In other words (y1, y2, . . . , yn) is a non-zero vector

contained in the kernel of Aκ(α).

Suppose that α is a non-zero root of Δp(t) and α ∈ Fpd , here d = degFp
(α).

Recall the definition of the group Gα

Gα = 〈αz, z + 1〉 < Aff
(
Fpd

)
.

It follows that if ordF∗
pd
(α) = n then

Gα = {αiz + y | 0 ≤ i ≤ n− 1, and y ∈ Fpd} ∼= 〈α〉� Fpd

We will simplify notation and denote the homomorphism ϕ by ρα to indicate

that this homomorphism only depends on the root α of Δp(t).

Proposition 2.2. Suppose that α ∈ Fpd is a non-zero root of Δp(t), then

ρα(ΓK) = Gα.

Proof. We first consider an alternate presentation of ΓK , using the presentation

2.1, denote by Rj the relations for ΓK . The new generating set is defined to be

{si}ni=1, with si := xix
−1
1 for i �= 1 and s1 = x1. New relations, R′

j, are formed

from the relations Rj by setting R′
j(s1, . . . , sn) := Rj(s1, s2x1, . . . , snx1). With

this presentation we have that each si for i ≥ 2 is an element of Γ′
K , since the

image [si] of si in H1 (MK) is [xi]− [x1] = 0.

We have ρα(s1) = αz + y1 and we may assume that up to conjugation in

Aff(Fpd), we have y1 = 0. However for i �= 1, since si ∈ Γ′
K we have

ρα(si) ∈ ρα (Γ
′
K) < {z + yi ∈ Aff(Fpd) | yi ∈ Fpd}



16

therefore if i ≥ 2, then ρα(si) = z + yi with all yi ∈ Fpd . By construction of

ρα there is a non-zero vector (y1, . . . , yn) contained in the kernel of AF
pd
(α),

so we may assume that yj is non-zero. Furthermore, by definition

{ρα(sk1sjs−k
1 )}dk=0 = {z + αkyj}dk=0.

Now sj and sk1sjs
−k
1 have infinite order in ΓK and the images z+yj and z+αkyj

have additive order p. We have that αkyj �= 0 for all 0 ≤ k ≤ d. Also αkyj �=
αlyj for all k �= l with 0 ≤ k ≤ d and 0 ≤ l ≤ d. Otherwise, if αkyj = αlyj, then

without loss of generality assume k > l, so that
(
αk−l − 1

)
yj = 0. However

this cannot be the case because degFp
(α) < ordF∗

pd
(α). So we conclude that

ρα(Γ
′
K) = Fpd . All that is left to do is to determine the image of the powers

of s1, but these are precisely the affine maps αkz for 0 ≤ k ≤ ordF∗
pd
(α), we

conclude that ρα(ΓK) = Gα
∼= 〈α〉� Fpd .

For the rest of this dissertation the image ρα(ΓK) is denoted by Gα, it is

clear that Gα
∼= 〈α〉� (Z/pZ)d, and that |Gα| = ordF∗

pd
(α)pd.

2.1.4 Examples

These examples will be lengthy and while we could simplify, we do not. It

will be important to see how each part of 2.1.3 fits into the computation of

the homomorphism.

Example 2.1. The trefoil.

Figure 2.3: The trefoil 31
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The Wirtinger presentation of the trefoil is

ΓK = 〈x0, x1, x2 | x1x0 = x2x1, x2x1 = x0x2, x0x2 = x1x0〉.

Let p be a prime number and d some positive integer; it will become clear

what d should be by the end of this computation. There is a homomorphism

ρα : ΓK → Aff(Fpd) if and only if

x0 → α0z + b0,

x1 → α1z + b1,

x2 → α2z + b2.

Furthermore we may assume up to conjugation of the image of ρα in Aff(Fpd)

that b0 = 0. So we have

x0 → α0z,

x1 → α1z + b1,

x2 → α2z + b2.

Now since

x1x0 = x2x1,

x2x1 = x0x2,

x0x2 = x1x0,

it follows that

α1α0z = α2α1z,

α2α1z = α0α1z,

α0α2z = α1α0z,

and we conclude that α0 = α1 = α2 = α.
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Now we have that a homomorphism ρα : ΓK → Aff(Fpd) exists if and only

if the following equations hold

α2z + b1 = α2z + αb1 + b2,

α2z + αb1 + b2 = α2z + αb2,

α2z + αb2 = α2z + b1.

Simplifying these equations we obtain:

(α− 1)b1 + b2 = 0,

−αb1 + (α− 1)b2 = 0,

b1 − αb2 = 0.

This is described by the presentation matrix:⎛⎜⎜⎝
α− 1 1

−α α− 1

1 −α

⎞⎟⎟⎠ .

Recall that this is a matrix over Fp[α, α
−1], and it follows that a repre-

sentation ρα : ΓK → Aff(Fpd) exists for some non-zero b1, b2 if and only if

the largest invariant factor of the above matrix is generates the zero ideal of

Fp[α, α
−1]. The largest invariant factor of this matrix is the ideal generated

by α2 − α+ 1, which is precisely the Alexander polynomial modulo the prime

p. This ideal must be the zero ideal, thus α must be a root of Δ(t) (mod p).

Furthermore d is the degree of the root α over Fp and p in this case can be

any prime.
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Example 2.2. The figure 8 knot.

Figure 2.4: The Figure 8

We begin with the fiber bundle presentation for the figure 8 knot com-

plement. We use this specific presentation of the figure 8 because defining a

homomorphism such as in de Rham’s construction does not depend on the

presentation of the fundmental group.

ΓK = 〈t, x, y | txt−1 = xyx, tyt−1 = yx〉

Let p be a prime number and d some positive integer; it will become clear

what d should be by the end of this computation. There is a homomorphism

ρα : ΓK → Aff(Fpd) if and only if

t → α0z + b0,

x → α1z + b1,

y → α2z + b2

We may assume up to conjugation of the image of ρα in Aff(Fpd) that

b0 = 0. Furthermore since Γ′
K = 〈x, y〉 and Aff(Fpd)

′ = {z + b | b ∈ Fpd} it

follows that α1 = α2 = 1 ∈ F∗
pd
, so we rename α0 = α. We have

t → αz,

x → z + b1,

y → z + b2
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From the first relation, txt−1 = xyx, we have

αz + αb1 = αz + 2b1 + b2,

0 = (2− α)b1 + b2.

From the second relation, tyt−1 = yx, we have

αz + αb2 = αz + b1 + b2,

0 = b1 + (1− α)b2.

It is important to note that the coefficients of the b1, b2 are elements of Fpd .

Now we have the presentation matrix for the above relations, viewed as a

matrix over Fpd [α, α
−1]:(

2− α 1

1 1− α

)(
b1

b2

)
=

(
0

0

)
Therefore the above equation holds for(

b1

b2

)
�=

(
0

0

)
if and only if the largest invariant factors of the matrix(

2− α 1

1 1− α

)
generate the zero ideal. The largest invariant factor is (Δp(α)) = (α2−3α+1)

this is the zero ideal if and only if α is a non-zero root of Δp(t). The positive

integer d is then seen to be the degree of the extension Fp(α)/Fp. So in this case

d = 1 or 2.

Suppose that p = 11. Then we have that Δp(t) = (t − 5)(t − 9). If

α = 5 ∈ F11, hence d = 1, and it follows that the homomorphism ρα is

completely described in the following way.

t → 5z,

x → z + 1,

y → z + 3
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as elements of Aff (F11).

In figure 2.5 on page 21 the homeomorphism φ represents the monodromy

of the figure 8 knot as presented as a fiber bundle over the circle, with fiber

a once punctured torus. A quick check in MAGMA shows that the kernel of

the homomorphism ρα is given by,

〈t5, x11, yx−3, {xiyx−3x−i}10i=1〉 � ΓK .

This allows us to compute H1 (Xρ5), which is isomorphic to

Z11 ⊕ Z/11Z.

2.2 Fox’s Free Differential Calculus

We investigate a defintion of Δ(t) due to Fox [12]. This description is given

in [21], and we recall it here to expand on the details and adapt the definition

to allow the derivative to take coefficients in an arbitray field κ. In this section

we will explicitly show that the definition of Δ(t) due to de Rham agrees with

the classical definition of Δ(t).

Let Λr(Z) = Z[t1, t
−1
1 , . . . , tr, t

−1
r ], the ring of integral Laurent polynomials

in r variables. The Fox derivative can be defined in the following way. Suppose

Fr is the free group on r generators i.e.

Fr = 〈x1, . . . , xr〉.

Furthermore, denote ab : ΓK → Γab
K as the canonical abelianizing homomor-

phism. Define the mapping Di : Fr → Z[Fr], to be

Di(xj) = δij

Di(uv) = Di(u) + uDi(v).

The map ab : Fr → F ab
r induces a mapping (D1, . . . , Dr) : Fr → Λr(Z)

r

which we call the Fox Derivative, and the Di are the ith partials. If we define
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φ

x

y
φ5

ỹ

x̃

Xρα

S3 � 81

Figure 2.5: The cover Xρα of the figure 8 for p = 11 and α = 5.
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the knot group ΓK in the following way,

ΓK = 〈Fr | Rj for j = 1, . . . , s〉

we obtain the following

Fs → Fr
q−→ ΓK .

Let q∗ be the induced mapping q∗ : Z[F ab
r ] → Z[Γab

K ]. We are able to form the

Alexander matrix of r × s partials also known as the Jacobian of ΓK

M(Fr,Rj) = [q∗Di(Rj)].

Using the presentation (1) for ΓK from §2.1.3, with Γab
K

∼= 〈t〉 we have

q∗Di(Ri) = 1 or − t,

q∗Di+1(Ri) = −t or 1,

q∗Dj(i)(Ri) = t− 1,

q∗Dk(Ri) = 0 otherwise

Theorem 2.1 (Fox [12]). The ith Alexander ideal (Δi(t)) is the ideal generated

by the (r− i)× (r− i) minors of M(Fr,Rj), thus Δ(t) is the largest invariant

factor of M(Fr,Rj).
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CHAPTER 3

HOMOMORPHISMS FROM

ROOTS OF Δ(t) (mod p)

Recall the presentation matrixA(t), as seen in §2.1.3 is defined over Z[t, t−1].

The following corollary summarizes the equivalence of Fox’s Jacobian and de

Rham’s matrix A(t). We may evaluate the entries of M(Fr,Rj) by the canon-

ical homomorphism ι : Z → κ, and the resulting matrix M(Fr,Rj)Fp has

entries which lie in κ[Γab
K ].

Corollary 3.1 (de Rham [10]). For the knot group ΓK with the Wirtinger

presentation (2.1), M(Fr,Rj) = A(t).

Furthermore the generalization of Fox’s Jacobian and de Rham’s presenta-

tion matrix AFp(t) to the finite field Fp yields a similar result.

Corollary 3.2. For the knot group ΓK with the Wirtinger presentation (2.1),

M(Fr,Rj)Fp = AFp(t).

Theorem 3.1. Δ(p,i)(t) ≡ Δi(t) (mod p)

Proof. Let the knot group ΓK have presentation 〈Fr|{Rj}〉. Since Δi(t) is

a principal generator for the ideal generated by the (r − i) × (r − i) minors

of M(Fr,Rj) let (f1, . . . , fk) = (Δi(t)) for fj ∈ Z[t, t−1] i.e, the fj are the

(r − i)× (r − i) minors of M(Fr,Rj). Let (q1, . . . , qk) = (Δ(p,i)(t)), where the
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qj ∈ Fp[t, t
−1] are the (r − i)× (r − i) minors of M(Fr,Rj)Fp , and ι : Z → Fp

be the canonical ring homomorphism. Corollaries 3.1 and 3.2 give us that

evaluating ι at the coefficients of the entries of M(Fr,Rj) is the matrix AFp(t).

Furthermore denote ι(f) for f ∈ Z[t, t−1], the image of f after evaluating ι on

the coefficients of f . Similarly if S is a matrix over Z[t, t−1] then ι(S) denotes

the matrix with entries in Fp[t, t
−1], having evaluated f at the coefficients of

the entries of S. Each fj comes from a determinant of a (r − i) × (r − i)

sub-matrix Sj, and since ι is a homomorphism we have that

ι(fj) = ι(Det(Sj)) = Det(ι(Sj)) = qj.

Therefore the image of (Δi(t)) = (f1, . . . , fk) under ι is (q1, . . . , qk) = (Δ(p,i)(t)),

the image of Δi(t) under ι is Δi(t) (mod p). Hence we conclude that Δ(p,i)(t) ≡
Δi(t) (mod p).

Fix a root of Δp(t) and let ρα be the associated homomorphism. We recall

for the reader that the image of ρα is the group Gα constructed in §2.1.3, that
Gα

∼= 〈α〉�Fpd , and that this semidirect product is defined via multiplication

by α ∈ F∗
pd
.

Theorem 2. There exists a homomorphism ρα : ΓK → GL2 (Fp(α)) for p

a prime if and only if α is a non-zero root of Δ(t) (mod p) in some finite

extension of Fp. This representation satisfies:

• ρα (ΓK) is metabelian, in particular non-abelian.

• |ρα (ΓK) | = npd, where n = ordF∗
p(α)(α) and d = [Fp(α) : Fp].

Proof. It follows from Theorem 3.1 that if α is a root of Δ(t) (mod p) in the

extension Fp(α) ∼= Fpd , for d = [Fp(α) : Fp], then α is also a root of Δp(t).

Hence by Proposition 2.2, such a representation ρα : ΓK → Gα exists if and

only if α is a non-zero root of Δ(t) (mod p).
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CHAPTER 4

BOUNDING THE COVERS IN

TERMS OF CROSSING

NUMBER

4.1 Bounds on the coefficients of Δ(t)

In this section we provide conditions depending only on the crossing num-

ber cK on the size of the smallest prime p so that Δp(t) is a non-trivial polyno-

mial when Δ(t) is non-trivial. In particular this allows us to provide an upper

bound on the index for which cover corresponding to ker(ρα) exists. In other

words we will provide a bound on the prime p so that a representation ρα of

ΓK onto Gα exists.

For such a representation ρα to exist, Δp(t) must be a non-constant Alexan-

der polynomial, so that there are non-zero roots in some extension of Fp. In

this section we find a bound on the smallest prime in terms of the crossing

number cK , for which this holds. Consider the matrix A(t) ∈ Matn (Z[t, t
−1])

in §2.1.3, and notice that it satisfies the following criteria;

1) The entries are in the set {0, 1, t, t− 1}.

2) In each row the entries 1, t, t− 1 occur at most once, if at all.
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3) No row is the zero vector.

Lemma 4.1. Suppose M(t) is an matrix in MatnZ[t, t
−1] is an n× n, for an

n ≥ 1, is a matrix satisfying criteria 1), 2), and 3), then for any coefficient,

a, of the determinant of M(t) we have |a| ≤ 4n−1.

Proof. We proceed by induction on the size of the matrix M(t). In the base

case n = 1, the largest coefficient is 40 = 1. As an induction hypothesis,

suppose for all k with n ≥ k ≥ 1 that for any matrixM(t) satisfying criteria 1),

2), and 3,) a coefficient a of the determinant of M(t) must satisfy |a| ≤ 4k−1.

Now consider the case k = n + 1. Denote by Bk−1(t), Ck−1(t), and Dk−1(t)

the (k− 1)× (k− 1) cofactor corresponding to 1,−t and (t− 1) along the first

row of M(t), respectively. Then we have

det(M(t)) = ±det(Bk−1(t))± tdet(Ck−1(t))± (t− 1)det(Dk−1(t)).

Since Bk−1(t), Ck−1(t), and Dk−1(t) all satisfy criteria 1), 2), and 3), it follows

by the induction hypothesis that if b is any coefficient of det(Bk−1(t)), c is

any coefficient of det(Ck−1(t)), and d is any coefficient of det(Dk−1(t)), that

|b| ≤ 4n−1, |c| ≤ 4n−1, and |d| ≤ 4n−1. Let a be any coefficient of det(M(t)),

it follows from the above equation that

|a| ≤ 4n−1 + 4n−1 + 4n−1 + 4n = 4n.

The lemma follows.

Lemma 4.2. If p ≥ 4cK−2 and Δ(t) is non-trivial, then Δ(t) is non-trivial in

Fp[t].

Proof. The first observation is that the Wirtinger presentation for ΓK has cK

generators since, there is exactly one generator for each crossing. Furthermore,

(2.1) can be simplified to have cK − 1 generators. Since Δ(t) is the largest

invariant factor of the matrix A(t), by Lemma 2.2 there are at least three

non-zero coefficients of Δ(t). Furthermore any non-zero minor computed from
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A(t) comes from a sub-matrix S(t) that satisfies criteria 1), 2), and 3). We

have

det(S(t)) =
k∑

i=0

sit
i, si ∈ Z

and

Δ(t) =
d∑

i=0

ait
i.

It follows that s0 and sk are non-zero, because, the leading and ending co-

efficients of Δ(t) are non-zero and, since Δ(t) is the largest invariant factor

of A(t), it must divide any maximal rank non-zero minor coming from A(t).

Therefore the absolute values of the coefficients satisfy a0 | s0 and ad | sk.
Further, by Lemma 4.1, |s0| ≤ 4cK−2 and |sk| ≤ 4cK−2, so we have |a0| ≤ 4cK−2

and |ad| ≤ 4cK−2. If p ≥ 4cK−2, then ad �= 0 (mod p) and a0 �= 0 (mod p). It

follows that Δp(t) is non-constant, and by Theorem 3.1 Δp(t) ≡ Δ(t) (mod p)

is non-trivial.

We are now ready to prove Theorem 1:

Theorem 4.1. If K is a knot with non-trivial Alexander polynomial, then

there exists a regular non-abelian cover Xρα of MK with

[MK : Xρα ] ≤ 42c
2
K−cK ,

and there exists an irregular non-cyclic cover Yρα with

[MK : Yρα ] ≤ 4c
2
K−2cK .

Proof. Let Δ(t) be the non-trivial Alexander polynomial for a knotK. Let p be

a prime such that 4cK−1 ≤ p ≤ 2·4cK−1−2 which exists by Bertrand’s postulate.

By Theorem 4.2, it follows that Δp(t) is non-trivial, hence there exists a non-

zero root α in some finite extension Fpd . Furthermore by §2.1.3 there exists a

surjective homomorphism ρα : ΓK → Gα. Let Xρα be the connected covering

space of MK corresponding to ker(ρα). The index [M : Xρα ] is ord(α)p
d. We
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have the following;

[M : Xρα ] = ord(α)pd,

≤ (pd − 1)(pd),

≤ (pcK−1 − 1)(pcK−1),

≤ ((2 · 4cK−2 − 2)cK−1 − 1)((2 · 4cK−2 − 2)cK−1).

The above bound is optimal for this argument, and the theorem follows from

a simplification of the above.

If we take the subgroup of Gα generated by α and construct the cover

corresponding to ρ−1
α (〈α〉), which has index[

ΓK : ρ−1
α (〈x〉)] = [Gα : 〈α〉] = pd.

We obtain a new non-cyclic cover ofMK which we denote Yρα , which is irregular

because Gα is non-abelian. A similar computation follows;

[M : Yρα ] = pd,

≤ (pd),

≤ (pcK−1),

≤ (2 · 4cK−2 − 2)cK−1).

Again the above is optimal and the theorem follows from a simplification.

4.2 Special Cases

There are many infinite families of knots for which the Alexander polyno-

mial takes on a specific form and the proof of Theorem 1 can be sharpened.

Similarly there are certain properties of Alexander polynomials of knots which

allow us rephrase Theorem 1 and simplify the bounds.

Fibered Knots

A knot K is fibered if the complement MK is a fiber bundle over the circle.

In this case the fundamental group is of the form ΓK = 〈t〉 � π1(Σg), where
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Σg is the Seifert surface of K arising from Seifert’s algorithm. By [34], the

Alexander polynomial must be monic, and its degree is bounded above by 2g.

Corollary 4.1. If K is a fibered knot of genus g, with non-trivial Alexander

polynomial, then for all primes p the representation ρα : ΓK → Gα exists and

[MK : Yρα ] ≤ 22g.

Proof. Since ΔK(t) is monic, it is non-trivial modulo 2.

A Family of Two Bridge Knots J(k, l)

The double twist knots which we denote J(k, l) are a family of two bridge

knots which have exactly two half-twist regions as seen in figure 4.1 below.

Each region has k and l half-twists in their respective regions, we make the

assignment that a twist is positive if it a right hand twist and negative if it is

a left hand twist.
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l

k

Figure 4.1: The Knot J(k, l)

The J(k, l) are knots if kl is even otherwise they are two component links.

Furthermore every knot J(k, l) is isotopic to a knot J(k, l) with l even.

Lemma 4.3 (Lemma 7.3 [28]). For all non-zero integers k and even integers

l = 2n, the knot J(k, l) has Alexander polynomial:

ΔJ(k,l)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nmt2 + (1− 2mn)t+ nm, if k = 2m

mt2n + (1 + 2m)(−t2n−1 + · · · − t) +m, if k = 2m+ 1 and l > 0

(m+ 1)t−2n + (1 + 2m)(−t−2n−1 + · · · − t) +m+ 1, if k = 2m+ 1 and l < 0
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Corollary 4.2. If J(k, l) is a twist knot with l = 2n, then for primes

p ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mn, if k = 2m

m+ 1, if k = 2m+ 1 and l = 2

2, if k = 2m+ 1 and l > 2

2, if k = 2m+ 1 and l < 0

ΔJ(k,l)(t) (mod p) is non-trivial and the surjective homomorphism ρα :

ΓK → Gα exists, and

[MK : Yρα ] ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(2mn)2 − 4mn+ 4, if k = 2m

(2m)2, if k = 2m+ 1 and l = 2

22n−1, if k = 2m+ 1 and l > 2

22n, if k = 2m+ 1 and l < 0

Proof. One considers the coefficients for Δ(t) from Lemma 4.3, and computes

the smallest degree in absolute value for which the Δp(t) would have at least

3 non-zero terms.
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Pretzel Knots K(p, q, r)

p q r

Figure 4.2: The pretzel knot K(p, q, r).
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The Alexander polynomial of a pretzel knot K(p, q, r) (figure 4.2) , with

p, q, r odd numbers is known and satisfies [26];

ΔK(p,q,r)(t) =
1

4

(
(pq + qr + rp)(t2 − 2t− 1) + t2 + 2t+ 1

)
.

Corollary 4.3. Suppose K(p, q, r) is a pretzel knot, normalized so that p is

largest, and pq + qr + pr �= 1, so ΔK(p,q,r)(t) is non trivial then there exists a

non-cyclic cover Yρα and:

[MK : Yρα ] ≤ 4p2

Dihedral Covers of Alternating Knots

Proposition 4.1 ([14]). For primes p||Δ(−1)|, there exists a homomorphism

onto the dihedral group D2p if and only if m|Δ(−1)| �= 1.

This proposition is not stated in this way in Fox’s article, in [31] on may find

this exact statement. It is also possible to generalize the approach we describe

in this dissertation to arrive at this conclusion, to be more precise. When we

reduce the Alexander polynomial modulo |Δ(−1)| = n, we have that n−1 is a

root with multiplicative order 2. We are then able to construct a representation

of the knot group to the finite dihedral group 〈(n− 1)z, z + 1〉 � Aff (Z/nZ).

This proposition is a direct generalization of the the dihedral covers for

two bridge knots described above. Furthermore the resulting non-cyclic cover

Yρα has degree |Δ(−1)|. The following result of Stoimenow [36] allows us to

bound the degree of the non-cyclic cover Yρα in terms of the crossing number.

Lemma 4.4 ([36]). For K a knot which admits an alternating diagram,

|ΔK(−1)| =≤ 2cK−1.

The following theorem is a consequence of the fact that the determinant

of a knot, |Δ(−1)|, is equal to the number of spanning trees of the dual graph

of the checkerboard coloring of an alternating diagram due to Kauffman [23].

Proposition 4.2 ([23]). If K is an alternating knot and |Δ(−1)| = 1, then

K is the unknot.
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Theorem 4.2. Let K be a knot such that |ΔK(−1)| �= 1 with crossing number

cK, then there exists a regular non-abelian cover Xρα of MK with,

[MK : Xρα ] ≤ 2cK ,

and there exists an irregular non-cyclic cover Yρα of MK with,

[MK : Yρα ] ≤ 2cK−1.

This is a large improvement on the bound provided by Theorem 1 when K

is alternating. Furthermore this non-cyclic cover is not minimal (in general),

for instance the knots 41 and 52. There are examples for this non-cyclic cover

(coming from a dihedral representation) which are minimal i.e. 31 and 61.

Knots With Non-trivial Alexander Polynomial

To finish the section on special families we note that using crossing number

does not provide us with a good estimate on the degree of a root of the Alexan-

der polynomial. The degree of the Alexander polynomial is as a polynomial

in Z[t] is a more accurate bound in particular if the degree of Δ(t) is n, then

cK − 1 ≥ n [34].

Corollary 4.4. Let K be a knot with non-trivial Alexander polynomial of

degree d, then for all primes p ≥ 4d the representation ρα : ΓK → Gα exists

and

[MK : Yρα ] ≤ 22d
2

.
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CHAPTER 5

BOUNDS ON THE FIRST

BETTI NUMBER

5.1 Lower Bound for β1(Xρα)

First recall that we define the multiplicative order of α to be n and d =

degFp
(α), for α a non-zero root of Δp(t). Since

ΓK → Gα → Z/nZ → 1,

we have ker(ρα) < ker (ΓK → Z/nZ), so Xρα → Xn is a regular covering space

with deck group ker (Gα → Z/nZ) ∼= (Z/pZ)d, see figure 5.1 below. We may ar-

range the covers in the following commutative diagram of covers. The dashed

arrows denote irregular covers and the solid arrows are regular, the correspond-

ing deck group and index denoted above the arrows.

We first prove a lemma which relates classical results of cyclic covers of

knot complements with the the covers Xρα . First we recall the famous results

of Fox and Burau [13].

Theorem 5.1 ([13]). If Xn is the n-fold cyclic cover of a knot complement

MK, then we have the following

1) β1(Xn) = 1 + |{ξ ∈ C | ξn = 1, Δ(ξ) = 0}|,
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Xρα

Yρα

Xn

MK

n

npd

pd

pd

n

Figure 5.1: Commutative Diagrams of Xρα and Yρα .

2) |Torsion(H1(Xn;Z))| =
∏

{ξ∈C | ξn=1, Δ(ξ) �=0} Δ(ξ)

First observe that ΓK may be presented as 〈t〉 � Γ′
K which is a direct

consequence of the split exact sequence

1 → Γ′
K → ΓK

ab−→ Z → 1

hence the letter t can be represented by a meridian of the knot K. Now,

since π1(Xn) ∼= ker(ΓK → Z/nZ) we have that π1(Xn) ∼= ab−1(nZ), and as a

consequence we have

1 → L → ab−1(nZ)
ab|ab−1(nZ)−−−−−−→ nZ → 1.

In the above L = ker(ab−1(nZ) → nZ), thus

π1(Xn) ∼= 〈tn〉� L.

When analyzing the first statement in Theorem 5.1, the “ + 1” in β1(Xn) is

exactly the contribution from the letter tn, which we will call the meridian of

Xn. Now suppose that c ∈ H1(Xn;Z) is a class which generates a free factor

coming from and element of {ξ ∈ C | ξn = 1, Δ(ξ) = 0}. Let {c1, . . . , cj} be

the collection of all such classes, i.e., the j roots of unity which are also roots

of Δ(t). It follows that

H1(Xn;Q) = spanQ{[tn], c1, . . . , cj} ∼= Qj+1.
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The subspace spanQ{c1, . . . , cj} is the subgroup of non-peripheral free homol-

ogy classes of Xn. The classes ci will be called non-peripheral generators of

H1(Xn;Q).

Lemma 5.1. If q : Xρα → Xn is the cover constructed in §5.1, let {c1, . . . , cj}
be the collection of non-peripheral generators of H1 (Xn;Q) and for each 1 ≤
i ≤ j let γi ∈ π1(Xn) be a representative of ci. Furthermore assume that

γi ∈ ker
(
π1(Xn) → (Z/pZ)d

) ∼= π1 (Xρα) .

Then any lift γ̃i of γi to Xρα has non trivial image in H1 (Xρα ;Q).

Proof. Let [γ̃i] be the image of γ̃i ∈ H1 (Xρα ;Q). Since q(γ̃i) = γi, if q
∗ :

H1 (Xρα ;Q) → H1 (Xn;Q) is the induced mapping then q∗([γ̃i]) = ci. It follows

that [γ̃i] is a non-trivial element of H1 (Xρα ;Q).

Lemma 5.2. If q : Xρα → Xn is the cover constructed above, let {c1, . . . , cj}
be the collection of non-peripheral generators of Xn and for each 1 ≤ i ≤ j let

γi ∈ π1(Xn) be a representative of ci. Furthermore assume that

γi /∈ ker
(
π1(Xn) → Z/pZd

) ∼= π1 (Xρα) .

Then
[
γ̃p
i

]
is non trivial in H1 (Xρα ;Q).

Proof. We have by definition that q∗(γ̃
p
i ) = γp

i , furthermore [γp
i ] = pci. It then

follows that q∗
([

γ̃p
i

])
= pci, thus

[
γ̃p
i

]
is non-trivial in H1 (Xρα ;Q).

Lemma 5.3. Suppose that γi and γk are π1(Xn) representatives of distinct

classes in H1 (Xn;Q) satisfying the following conditions:

1) [γi] �= r [γk] for all r ∈ Q,

2) γ̃i and γ̃k are any lifts of γi and γk respectively in Xρα.

Then [γ̃i] �= r [γ̃k] in H1 (Xρα ;Q) for all r ∈ Q.

Proof. Suppose that [γ̃i] = r [γ̃k] for some r in Q, then q∗([γ̃i]) = q∗(r [γ̃k]) and

thus [γi] = r [γk] which is a contradiction.
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The following proposition is a direct consequence of this series of lemmas.

We have that every non-peripheral generator ci of Xn will lift and generate a

free summand of H1 (Xρα ;Q), and along with a computation of the number of

boundary components, we will establish a lower bound on β1 (Xρα).

Proposition 5.1. If K is a knot with non-trivial Alexander polynomial, Xρα

the associated non-abelian cover, and Xn the cyclic cover subordinate to Xρα,

we have

β1 (Xn) ≤ β1 (Xρα) .

Proposition 5.2. The number of torus boundary components of Xρα is pd.

Proof. Denote by Γn by π1 (Xn), and note that by the above there exists

p : Γn → (Z/pZ)d. Suppose that 〈t, λ〉 generate the peripheral subgroup of ΓK ,

it follows that 〈tn, λ〉 generate the image of π1(∂Xn) ↪→ Γn, where ∂Xn denotes

the single boundary component of Xn. The number of boundary components

of Xα is equal to pd/|p(〈tn, λ〉)|. Since α(tn) = 1 it follows that ϕ(tn) = 1. Since

λ bounds a Seifert surface F in M , and hence π1(F ) ↪→ ΓK is contained in

Γ′
K and it follows that λ also bounds the lift of F to Xn. Therefore λ ∈ Γ′

n,

p(λ) = 1, and we have |p(〈tn, λ〉)| = 1. The number of boundary components

of Xρα is thus pd.

By the half lives-half dies Lemma [19] the collection of lifts of meridi-

nal boundary curve tn, denoted {t̃n1, . . . , t̃npd} contribute to β1 (Xρα). Using

Propositions 5.1 and 5.2 along with Lemmas 5.1, 5.2, and 5.3 we obtain the

following lower bound.

Theorem 5.2. If K is a knot with non-trivial Alexander polynomial, and

ρα : ΓK → Gα is the representation constructed in §2.1.3, then

pd + β(Xn)− 1 ≤ β1 (Xρα) .
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5.2 Alexander Stratifications and The Upper

Bound for β1(Xρα)

Recall the notation for the finitely presented group

ΓK = 〈Fr | Rj for j = 1, . . . , s〉.

The character group of ΓK is defined to be Γ̂K = Hom(ΓK ,C
∗). For any

f ∈ Γ̂K , the r × s matrix M(Fr,Rj)(f) defined in §2.2 is given by evaluation

by f . The Alexander stratification of Γ̂K is

Vi(ΓK) = {f ∈ Γ̂K | rank(M(Fr,Rj)(f)) < r − i}.

The Vi are the subsets of Γ̂K defined by the ideals of the (r− i)×(r− i) minors

of M(Fr,Rj). The nested sequence of algebraic subset Γ̂K ⊃ V1 ⊃ · · · ⊃ Vr is

called the Alexander stratification of Γ̂K .

The reason for introducing the Alexander stratification is to apply the

following theorem.

Theorem 5.3 (Hironaka [21]). Suppose that p : Y → X is a covering space

of connected manifolds and

π1(X)/p∗π1(Y ) = A

is a finite abelian group. Let q : π1(X) → A be the quotient map and q̂ : Â ↪→
Γ̂K the induced inclusion map. Then

β1(Y ) =
r−1∑
i=1

|Vi(π1(X)) ∩ q̂(Â� 1̂)|+ β1(X).

Since A is a finite abelian group every element of Â is determined by a root

of unity, therefore |Â| = |A|. An immediate consequence of this observation

and Theorem 3.2 is the following corollary.

Corollary 5.1. Let Xρα be as above, let Xn denote the n-fold cyclic cover

of the knot complement, and r = rank (π1(Xn)). Then p : Xρα → Xn is a



41

covering map with deck group A, an elementary abelian p group, for p the

smallest prime so that Δp(t) is non-trivial, then

β1(Xρα) =
r−1∑
x=1

|Vi(π1(Xn)) ∩ q̂(Â� 1̂)|+ β1(Xn) ≤ (r − 1)(pd − 1) + β1(Xn).

This completes the proof of Theorem 3, we remark that the following

Theorem is not Theorem 3 as stated. Specifically since the rank (π1(Xn)) ≤
n(cK − 1) it is an immediate consequence of the following.

Theorem 5.4. Let K be a knot with non trivial Alexander polynomial and

ρα : ΓK → Gα be the representation constructed in §2.1.3 for some root α ∈ Fpd

with ordF∗
pd
(α) = n, and r be the number of generators in a presentation of

Γn. Then

pd + β1 (Xn)− 1 ≤ β1(Xρα) ≤ (r − 1)(pd − 1) + β1 (Xn) .

We have established an upper bound for the betti number of Xρα . When

K is fibered we are able to improve this bound, since in this case Γ′
K is a free

group on 2g letters, where g is the genus of K. Therefore

ΓK = 〈t, x1, . . . , x2g | txit
−1 = wi for i = 1, . . . , 2g〉,

the wi are words in the xi. This gives us a presentation

Γn = 〈tn, x1, . . . , x2g | tnxit
n = ui〉,

where ui is a word in the xj coming from the rule that txit
−1 = wi. Thus there

are 2g relations and 2g + 1 variables. We have that have that the Fox partial

D0(t
nxit

nu−1
i ) is 1− xi, where the zeroth index is regarded as the index of the

generator tn.

Lemma 5.4. Let Xn be the n-fold cyclic cover of a fibered knot complement,

with presentation described above. If p : Y → Xn is a regular covering space

with finite abelian deck group A and q : π1(Xn) → A with tn ∈ ker(q), then

V(2g+1)−1(π1(Xn)) ∩ q̂(Â� 1̂) = ∅
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Proof. Assume by way of contradiction that f ∈ V2g(π1(Xn))∩ q̂(Â� 1̂), hence

f(x) = a(q(x)) for all x ∈ Kn and some a ∈ Â � 1̂. Furthermore since

f ∈ V2g(π1(Xn)), we have D0(t
nxit

nu−1
i )(f) = 0 for all i = 1, . . . , 2g. Thus

f(xi) = 1 and xi ∈ ker(q) for all i = 1, . . . , 2g. However A is a non-trivial

quotient of Kn, hence with tn ∈ ker(q) at least 1 generator xj is not contained

in the kernel of q. We have reached a contradiction, thus

V(2g+1)−1(π1(Xn)) ∩ q̂(Â� 1̂) = ∅.

Corollary 5.2. Let be α a root of Δp(t) of order n and degree d over Fp,

for a fibered knot of genus g. If Xρα → Xn the associated regular cover and

q : Kn → Fpd then

β1(Xα) =

2g−1∑
x=1

|Vi(π1(Xn)) ∩ q̂(Â� 1̂)|+ β1(Xn) ≤ (2g − 1)(pd − 1) + β1(Xn).

Proof. All that we need to show is that tn ∈ ker(q), however this follows

directly from the fact that tn ∈ ker(α), and ker(q) = ker(α).

This corollary is particularly interesting when we consider the figure 8

or trefoil knot complements, denoted 41 and 31 in the Rolfsen–Thistleswaithe

table [34]. These knots are fibered and have genus 1, and furthermore β1(Xn) =

1 for all n > 1. In this case Theorem 3.1 and Corollary 5.2 say that for any

prime p and α a root of Δp(t) of order n and degree d

pd + β1(Xn)− 1 ≤ β1(Xρα) ≤ pd + β1(Xn)− 1. (5.1)

Therefore, for the figure 8, β1(Xρα) = pd, and since Δ(t) = t2−3t+1, we have

that β1(Xρα) = p if Δ(t) factors modulo p and β1(Xρα) = p2 if Δ(t) does not

factor modulo p.
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For the trefoil we have Δ(t) = t2 − t+ 1, hence

β1 (Xρα) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p+ 2 if 6|n, and Δp(t) factors

p2 + 2 if 6|n, and Δp(t) is irreducible

p if 6 � n, and Δp(t) factors

p2 if 6 � n, and Δp(t) is irreducible

In particular the bound in Corollary 4.5 is sharp, and more surprising is

that this is not the only case for which it is sharp. It is sharp for 31, 51, as in

Chapter 6, in the tables.
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CHAPTER 6

COMPUTATIONS OF

HOMOLOGY AND

QUESTIONS

6.1 Some Questions

The computations in this section were done using both Sagemath [35] and

Magma [7]. The following table below can be interpreted in the following way.

For each knot there will be 2 rows, the upper row is H1 (Xρα) and the lower

row is H1 (Xn) of the cyclic cover Xn subordinate to Xρα . The notation used

in the table may be understood in the following way:

[0r0 , nr1
1 , . . . , nrk

k ] ↔ Zr0 ⊕ (Z/n1Z)
r1 ⊕ · · · ⊕ (Z/nkZ)

rk .

Blank spaces in the table below indicate that MAGMA timed out in the com-

putation of the abelianization of the kernels of ρα, and ∅ indicates that Δ(t)

is trivial modulo p.

Question 6.1. What is |Torsion (H1 (Xρα ;Z)) |?

It would be nice to compute the order of the torsion in terms of an invariant

of the knot or the covers Xn or Xρα , to mirror the classical computation of
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torsion for the cyclic covers Xn. There are many examples below for which

|Torsion (H1 (Xρα ;Z)) | =
|Torsion (H1 (Xn;Z)) |

pd
. (6.1)

Recall that pd is the degree of the cover Xρα → Xn.

For example equation 6.1 holds for 31 and the primes 2 and 3, for the other

primes in the table first homology of the cyclic covers of 31 is torsion free. The

same behavior is seen in the knot 51, for the prime 5 this is the case and for the

other primes first homology of the cyclic covers is torsion free. For the knot 41

equation 6.1 holds for each prime presented in the table below. The knot 52

exhibits the same behavior, except for the prime 3 here the order of the torsion

is larger than that of the cyclic cover. In the knot 61 equation 6.1 holds for all

primes in the table, much like 41. The knot 62 sees equation 6.1 hold for one

root of Δ(t) (mod 11) but not the other root of the same polynomial, 63 also

exhibits this behavior for the primes 13 and 7.

Question 6.2. What feature of a knot makes 6.1 hold? For which primes does

it hold?

The for the knots 31, the (3, 2) torus knot, and 51, the (5, 2) torus knot,

the upper bound for β1 (Xρα) described in equation 6.1 is realized for certain

values of p. Specifically the primes 3, 7, and 11 for 51 and 5, 7, 11, and 13 for

31. For 31 there is no torsion in H1 (Xρα ;Z) for primes such that ordF∗
pd
(α) is

6 = 2 · 3. Similarly for 51 and primes such that ordF∗
pd
(α) is 10 = 5 · 2. This

phenomomenon also holds for one computable case of the (7, 2) torus knot,

not appearing in the table below. What is even more interesting is that all

the roots of the Alexander polynomial of the torus knot T (p, q) are pq roots

of unity [26].

Question 6.3. If T (p, q) is a torus knot, is the upper bound in Corollary 5.2

for β1 (Xρα) realized for certain primes p, and is H1 (Xρα ;Z) torsion free for

these primes?
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In many cases below the lower bound for β1 (Xρα) is realized however for

the knot 63 and the prime 2 it is not, and neither is the upper bound. This

phenomenon is also demonstrated in the the knot 62 for the primes 2 and 3.

Question 6.4. For what knots is the upper bound in Theorem 3 or Corollary

5.2 realized? Similarly what knots is the lower bound of Theorem 3 realized?

Another important feature of the table below is the light blue colored cells

are indicating which metabelian covers Xρα produce the minimal degree non-

cylic cover as the quotient Yρα . It can be a seen that a for a few examples Yρα

is the minimal degree non-cyclic cover for the knot in Question.

Question 6.5. For the knots 52, 62 and 63 what is the minimal degree non-

cyclic cover? Is the cover somehow related to Yρα?

Question 6.6. What feature must a knot have to make Yρα the minimal degree

non-cyclic cover?

6.2 Minimal Degree Non-cyclic Covers vs. Yρα

In what follows is a list of knots up to 7 crossings, and the number next to

each knot is the minimal degree of a non-cyclic cover. The yes or no indicates

if Yρα is the minimal degree non-cyclic cover, and Δ(t) (mod p) is written next

to this which is used to determine whether Yρα is minimal.

• 31, 3: Yes, ((t+ 1)2, 3)

• 41, 4: Yes, (t
2 + t+ 1, 2)

• 51, 5: Yes, ((t+ 1)4, 5)

• 52, 5: No, ((2) ∗ (t2 + t+ 1), 5)

• 61, 3: Yes, ((−1) ∗ (t+ 1)2, 3)

• 62, 5: No, ((t
2 + t+ 1)2, 5)
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• 63, 5: No, (t
4 + 2 ∗ t3 + 2 ∗ t+ 1, 5)

• 71, 7: Yes, ((t+ 1)6, 7)

• 72, 4: Yes, (t
2 + t+ 1, 2)

• 73, 4: Yes, (t ∗ (t2 + t+ 1), 2)

• 74, 3: Yes, ((t+ 1)2, 3)

• 76, 6: No, (t
2, 2), ((−1) ∗ (t4 + t3 + t2 + t+ 1), 3)

• 77, 3: Yes, ((t+ 1)4, 3)

6.3 Table of Homology

Now we give our table of computations for H1(Xρα) and H1(Xn). Recall

that the table can be interpreted in the following way. For each knot there

will be 2 rows, the upper row is H1 (Xρα) and the lower row is H1 (Xn) of the

cyclic cover Xn subordinate to Xρα . The notation used in the table may be

understood in the following way:

[0r0 , nr1
1 , . . . , nrk

k ] ↔ Zr0 ⊕ (Z/n1Z)
r1 ⊕ · · · ⊕ (Z/nkZ)

rk .

Blank spaces in the table below indicate that MAGMA timed out in the com-

putation of the abelianization of the kernels of ρα, and ∅ indicates that Δ(t)

is trivial modulo p. A blue shaded cell indicates that this is a minimal degree

non-cyclic cover of a knot.
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2 3 5 7 11 13

31
[04] [03] [027] [09] [0123] [015]

[0, 22] [0, 3] [03] [03] [03] [03]

41
[04, 22] [09, 5] [05] [049, 32, 5] [011, 11] [0169, 5, 292]

[0, 42] [0, 32, 5] [0, 5] [0, 32, 5, 72] [0, 112] [0, 5, 132, 292]

51
[026] [0245] [05] [07205] [035]

[0, 24] [05] [0, 5] [05] [05]

52
∅ [09, 24, 7] [025] [07] [011, 11] [0169]

∅ [0, 33] [0, 52] [0, 7] [0, 11, 11] [0, 132]

61
∅ [03, 3] [05, 9, 5] [07, 7] [011, 9, 11, 312] [013, 3, 27, 52, 72, 13]

∅ [0, 9] [0, 9, 52] [0, 72] [0, 9, 112, 312] [0, 3, 27, 52, 72, 132]

62
[021, 4] [017, 28, 32, 11] [025, 53] [011]; [0121, 52, 1118, 1212, 2324, 4312]

[0, 24] [0, 34, 11] [0, 52] [0, 11]; [0, 52, 113]

63
[031, 25, 4] [09, 34, 13] [07, 7]; [049, 32, 1317] [013]; [0169, 528, 1338, 1694, 432, 18128]

[0, 44] [0, 32, 13] [0, 72]; [0, 32, 72, 13] [0, 13]; [0, 133, 432]

Table 6.1: Table of H1 (Xρα)
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