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ABSTRACT

Stochastic Differential Equations: Some Risk and Insurance Applications

Sheng Xiong

DOCTOR OF PHILOSOPHY

Temple University, May 2011

Professor Wei-Shih Yang, Chair

In this dissertation, we have studied diffusion models and their applica-

tions in risk theory and insurance. Let Xt be a d-dimensional diffusion process

satisfying a system of Stochastic Differential Equations defined on an open set

G ⊆ Rd, and let Ut be a utility function of Xt with U0 = u0. Let T be the

first time that Ut reaches a level u∗. We study the Laplace transform of the

distribution of T , as well as the probability of ruin, ψ (u0) = Pr {T <∞},
and other important probabilities. A class of exponential martingales is con-

structed to analyze the asymptotic properties of all probabilities. In addition,

we prove that the expected discounted penalty function, a generalization of

the probability of ultimate ruin, satisfies an elliptic partial differential equa-

tion, subject to some initial boundary conditions. Two examples from areas

of actuarial work to which martingales have been applied are given to illus-

trate our methods and results: 1. Insurer’s insolvency. 2. Terrorism risk. In

particular, we study insurer’s insolvency for the Cramér-Lundberg model with

investments whose price follows a geometric Brownian motion. We prove the

conjecture proposed by Constantinescu and Thommann [1].

Keywords: Stochastic differential equation, Ruin theory, Martingale, Diffu-

sion processes, Point processes, Terrorism risk.

MSC: 91B30, 60H30, 60H10
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CHAPTER 1

INTRODUCTION

In actuarial risk management it is an important issue to estimate the per-

formance of the portfolio of an insurer. Ruin theory, as a branch of actuarial

science that examines an insurer’s vulnerability to insolvency, is used to an-

alyze the insurer’s surplus and ruin probability which can be interpreted as

the probability of insurer’s surplus drops bellow a specified lower bond. Most

of the techniques and methodologies adopted in ruin theory are based on the

application of stochastic processes. In particular, diffusion processes have been

of great interest in modeling an insurer’s surplus. In this dissertation, we have

studied diffusion models and their applications in risk theory and insurance.

Let Xt be a d-dimensional diffusion process satisfying a system of Stochas-

tic Differential Equations defined on an open set G ⊆ Rd, and let Ut be a utility

function of Xt with U0 = u0. Let T be the first time that Ut reaches a level u∗.

We study the Laplace transform of the distribution of T , as well as the prob-

ability of ruin, ψ (u0) = Pr {T <∞}, and other important probabilities. A

class of exponential martingales is constructed to analyze the asymptotic prop-

erties of all probabilities. In addition, we prove that the expected discounted

penalty function, a generalization of the probability of ultimate ruin, satis-

fies an elliptic partial differential equation, subject to some initial boundary

conditions. Two examples from areas of actuarial work to which martingales

have been applied are given to illustrate our methods and results: 1. Insurer’s
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insolvency. 2. Terrorism risk. In particular, we study insurer’s insolvency for

the Cramér-Lundberg model with investments whose price follows a geometric

Brownian motion. We prove the conjecture proposed by Constantinescu and

Thommann [1].

The thesis is organized as follow: in chapter 3 and 4, we study the in-

surer’s surplus and terrorism risk based on continuous stochastic processes.

We construct a class of exponential martingales to analyze the asymptotic

properties of ruin probability and other important probabilities. Moreover, we

show the Laplace transform of the distribution of T satisfies an elliptic partial

differential equation subject to some boundary condition.

In chapter 5, we study a conjecture in the Cramér-Lundberg model with

investments. By assuming there is a cap on the claim sizes, we prove that the

probability of ruin has at least an algebraic decay rate if 2a/σ2 > 1. More

importantly, we show that the probability of ruin is certain for all initial capital

u, if 2a/σ2 ≤ 1.
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CHAPTER 2

PRELIMINARY

This chapter provides a minimal amount of basic theory of Stochastic Cal-

culus and Risk Theory & Insurance necessary to describe and prove our results.

Almost all of the results recorded here are either well known or are easily de-

duced from well known results.

2.1 Martingale theory

Definition 2.1.1. Let (Ω;F ;P) be a probability space and let G be a sub-

sigma field of F . If X is an integrable random variable, then the conditional

expectation of X given G is any random variable Z which satisfies the following

two properties:

(1) Z is G-measurable;

(2) if Λ ∈ G, then ∫
Λ

Z dP =

∫
Λ

X dP .

We denote Z by E[X | G].

Remark 2.1.1. It is implicit in (2) that Z must be integrable.

Theorem 2.1.1. Let X and Y be integrable random variables, a and b real

numbers. Then

(i) E[E[X | G]] = E[X].
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(ii) If X is G-measurable, E[X | G] = X a.e.

(iii) E[aX + bY | G] = aE[X | G] + bE[Y | G].

(v) If X ≥ 0 a.e., E[X | G] ≥ 0 a.e.

(vi) If X ≤ Y a.e., E[X | G] ≤ E[Y | G] a.e.

(vii)Suppose Y is G-measurable and XY is integrable. Then

E[X | G] = Y E[X | G] a.e.

(viii) If Xn and X are integrable, and if either Xn ↑ X, or Xn ↓ X, then

E[Xn | G]→ E[X | G] a.e.

Jensen’s inequality for expectations:

Theorem 2.1.2. Let X be a r.v. and φ a convex function. If both X and

φ(X) are integrable, then

φ(E[X]) ≤ E[φ(X)].

Jensen’s inequality for conditional expectations:

Theorem 2.1.3. Let X be a r.v. and φ a convex function on R. If both X

and φ(X) are integrable, then

φ(E[X | G]) ≤ E[φ(X) G] a.e.

Definition 2.1.2. A filtration on the probability space (Ω;F ;P) is a sequence

{Fn;n = 0, 1, 2, . . .} of sub-sigma fields of F such that for all n,Fn ⊂ Fn+1.

Definition 2.1.3. Given a probability space (Ω;F ;P), a stochastic process is

a collection of random variables {Ft}t≥0 with ’time’ index.

That is a fairly general definition—it is almost hard to think of something

numerical which is not a stochastic process. However, we have something more

specific in mind.
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Definition 2.1.4. A stochastic process X = {Xn;n = 0, 1, 2, . . .} , is adapted

to the filtration (Fn) if for all n,Xn is Fn-measurable.

Definition 2.1.5. A process X = {Xn;Fn, n = 0, 1, 2, . . .} , is a martingale

if for each n = 0, 1, 2, . . . ,

(i) Fn, n = 0, 1, 2, . . . is a filtration and X is adapted to Fn;

(ii) for each n,Xn is integrable;

(iii) for each n,E[Xn+1 |Fn] = Xn.

The process X is called a submartingale if (iii) is replaced by for each n,

E[Xn+1 |Fn] ≥ Xn.

It is called a supermartingale if (iii) is replaced by for each n,

E[Xn+1 |Fn] ≤ Xn.

Example 2.1.1. Let Zn;n = 0, 1, 2, . . . be a sequence of independent random

variables with mean 0. Let Xn = Z1 + Z2 + · · · + Zn and X0 = 0. Let

Fn = σ(X0, X1, . . . , Xn), Then

(a) X = {Xn;Fn, n = 0, 1, 2, . . .} is a martingale.

(b) If E[Zn+1 |Fn] ≥ Zn, then X is a submatingale.

(c) If E[Zn+1 |Fn] ≤ Zn, then X is a supermatingale.

Proof

E[Xn+1 |Fn] = E[Xn + Zn+1 |Fn] = E[Xn |Fn}+ E[Zn+1 |Fn].

Since Xn is Fn-measurable, E[Xn |Fn] = Xn . Since Zn+1 and Fn are inde-

pendent, E[Zn+1 |Fn] = E[Zn+1] = 0. Therefore E[Xn+1 |Fn] = Xn.

Example 2.1.2. Let X = {Xn;Fn, n = 0, 1, 2, . . .} be a martingale. Let

Wn ≤ Wn+1be a sequence of Fn adapted random variable. Then {Xn +

Wn;Fn, n = 0, 1, 2, . . .} is a submartingale. In short, a martingale plus an

increasing adapted sequence is a submartingale.
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Proof

E[|Yn|] = E[|E[Y |Fn}|] ≤ E[E[|Y | |Fn}] = E[|Y |] <∞,

where the inequality follows from Jensen’s inequality. Hence

E[Yn+1 |Fn] = E[E[Y |Fn+1] |Fn] = E[Y |Fn] = Yn.

Definition 2.1.6. (Xn) is called uniformly integrable (UI) if

lim
A→∞

sup
n

∫
|Xn|>A

|Xn|dP = 0.

Note that

(1) Suppose E|X| < ∞. Then limA→∞
∫
|X|>A |X|dP = 0., by the Dominated

Convergence Theorem.

(2) Suppose E|X| < ∞. Then for all ε > 0, there exists δ > 0 such that∫
A
|X|dP < ε whenever P (A) < δ.

The martingale in the following example is uniformly integrable.

Example 2.1.3. Let Fn, n = 0, 1, 2, . . . be a filtration. Let E[|Y |] < ∞. Let

Yn = E[Y |Fn]. Then Y = {Yn;Fn, n = 0, 1, 2, . . .} is a martingale.

The above examples are very important because we will see all the sub-

martingales must be of Example 2.1.2 (Doob’s Decomposition Theorem) and

all UI martingales must be of Example 2.1.3.

Theorem 2.1.4. Suppose X = {Xn;Fn, n = 0, 1, 2, . . .} is a martingale (su-

permartingale, submartingale). Then for all m ≤ n, we have

E[Xn+1 |Fn] = Xn, a.s.(martingale),

E[Xn+1 |Fn] ≤ Xn, a.s.(supermartingale),

E[Xn+1 |Fn] ≥ Xn, a.s.(submartingale).

Theorem 2.1.5. Suppose X = {Xn;Fn, n = 0, 1, 2, . . .} is a martingale. Let φ

be a convex function such that E[φ(Xn)] <∞. Then for all n, {φ(Xn);Fn, n =

0, 1, 2, . . .} is a submartingale.
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Definition 2.1.7. Let Fn, n = 0, 1, 2, . . . is a filtration. A random variable

τ : Ω → (0, 1, 2, . . . ,∞) is called a stopping time (with respect to Fn, n =

0, 1, 2, . . .) if {ω ∈ Ω, τ(ω) ≤ i} ∈ Fn, for all i = 0, 1, . . . .

Example 2.1.4. Let X0, X1, . . . be a sequence of random variables. Let Fn =

σ(X0, X1, . . . , Xn). Let B be a Borel subset of R. The first hitting time of B
by (Xn) is defined by τB = min(0 ≤ n,Xn ∈ B). Since

{τB = i} = {X0 ∈ B, X1 ∈ B, . . . , Xi−1 6∈ B, Xi ∈ B} ∈ Fi.

Therefore, τB is a stopping time with respected to {Fn, n = 0, 1, 2, . . .}.

It is clear that the event that the first hitting time of B by (Xn) occurs at

i only depends on the outcomes of X0, X1, . . . , Xi. This is the property that

motivates the definition of general stopping times.

Theorem 2.1.6. Let X = {Xn;Fn, n = 0, 1, 2, . . .} be a martingale (sub-

martingale, supermartingale). Let 0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τm ≤ N be a sequence

of stopping times. Then {Xτn ;Fτn , n = 0, 1, 2, . . .} is a martingale (submartin-

gale, supermartingale).

Consider stochastic processes indexed by closed half-line R+ = {t; t ≥ 0}.
Let (Ω;F ;P) be a probability space and (Ft)t∈R+ be a filtration of F . Assume

that the probability space is complete, and that each σ−field Ft contains all

of the P-null sets. Let Ft+ = ∩s>tFs and Ft− = σ(∩s<tFs).

Definition 2.1.8. (Ft) is said to be right-continuous if (Ft+) = (Ft), for all

t ∈ R+. A process (Xt) is right-continuous if Xt(ω) is right-continuous as a

function of t, for P-a.e. ω.

Definition 2.1.9. A filtration on the probability space (Ω;F ;P) is a collection

{Ft; 0 ≤ t <∞} of sub-sigma fields of F such that s ≤ t, implies Fs ⊂ Ft.

Definition 2.1.10. Let {Ft; 0 ≤ t < ∞} is a filtration. A random variable

τ : Ω → R
⋃
{∞} is called a stopping time (with respect to Ft) if {ω ∈

Ω, τ(ω) ≤ t} ∈ Ft, for all t ≥ 0.
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Definition 2.1.11. (Martingale in continuous time)

Let (Ω;F ;P) be a probability space and {Ft}t≥0 be a filtration of F . An adapted

family {Xt}t≥0 of random variables on this space with E[|Xt|] <∞ for all t ≥ 0

is a martingale if, for any s ≤ t,

E[Xt| Fs] = Xs.

Theorem 2.1.7. (Doob’s continuous Stopping Theorem)

Let Mt be a continuous martingale with respect to a filtration (Ft)t∈R+. If τ is

a stopping time for Ft. Then the process defined by

Xt = Mt∧τ

is also a martingale relative to Ft.

Definition 2.1.12. The continuous-time stochastic process {Wt : 0 ≤ t < T}
is called a Standard Brownian Motion (or Wiener Process) on [0, T ) if

1. W0 = 0;

2. Wt is almost surely continuous;

3. Wt has independent increments with Gaussian distribution

Wt −Ws ∼ N (0, t− s) for 0 ≤ s ≤ t < T.

Example 2.1.5. If {Wt}t≥0 is a Standard Brownian Motion generating the

filtration {Ft}t≥0, then

1. Wt is an Ft-martingale.

2. W 2
t is an Ft-martingale.

3. exp
(
σWt − σ2

2
t
)

is Ft-martingale. (called an exponential martingale).

Definition 2.1.13. (Local Martingale)

Let (Ω;F ;P) be a probability space and {Ft}t≥0 be a filtration of F . Let

X : [0, ∞) × Ω → S be an {Ft}t≥0-adapted stochastic process. Then X is

called an {Ft}t≥0-local Martingale if there exists a sequence of {Ft}t≥0-stopping

times τk : Ω→ [0,∞) such that
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1. the τk are almost surely increasing: P (τk < τk+1) = 1;

2. the τk diverge almost surely: P (τk →∞ as k →∞) = 1;

3. the stopped process

1{τk>0}Xt
τk := 1{τk>0}Xmin{t,τk}

is an {Ft}t≥0-martingale for every k.

Theorem 2.1.8. Let Mt be a local martingale with respect to a filtration

(Ft)t∈R+. If τ is a stopping time for Ft. Then the process defined by

Xt = Mt∧τ

is also a local martingale relative to Ft.

Remark 2.1.2. In mathematics, a local martingale is a type of stochastic

process, satisfying the localized version of the martingale property. Every mar-

tingale is a local martingale; every bounded local martingale is a martingale;

however, in general a local martingale is not a martingale, because its expec-

tation can be distorted by large values of small probability. In particular, a

diffusion process without drift is a local martingale, but not necessarily a mar-

tingale.

Theorem 2.1.9. (The Optional Stopping Theorem)[22]

Let (Xt)t∈R+ be a right-continuous supermartingale relative to a right-continuous

filtration (Ft)t∈R+. Suppose there exits an integrable random variable Y such

that Xt ≥ E[Y |Ft], for all t ∈ R+. Let S and T be stopping times such that

S ≤ T . Then (XS, XT ) is a two-term supermartingale relative to FS,FT .

2.2 The Itô integral

The Itô calculus is about systems driven by white noise, which is the deriva-

tive of Brownian motion. To find the response of the system, we integrate the

forcing, which leads to the Itô integral, of a function against the derivative of

Brownian motion.
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Definition 2.2.1. Let Ft be the filtration generated by Brownian motion up

to time t, and let F (t) ∈ Ft be an adapted stochastic process. we define the

following approximations to the Itô integral

Y∆t(t) =
∑
tk<t

F (tk)∆Wk, (2.2.1)

with the usual notions tk = k∆t, and ∆Wk = W (tk+1) −W (tk). If the limit

exists, the Itô integral is

Y (t) = lim
∆t→0

Y∆t(t). (2.2.2)

Example 2.2.1. The simplest interesting integral is

Y (T ) =

∫ T

0

W (t)dW (t).

The correct Itô answer is∫ T

0

W (t)dW (t) = lim
∆t→0

Y∆t(t)=
1
2

(
W (t)2 − T

)
. (2.2.3)

Lemma 2.2.1. Itô’s Formula with Space and Time Variable

For any function f(w, t) ∈ C1,2(R+×R), we have the following representation

df(W (t), t) = ∂wf(W (t), t)dW (t) + 1
2
∂2
wf(W (t), t)dt+ ∂tf(W (t), t)dt. (2.2.4)

or written as the Itô differential form

f(W (T ), T )− f(W (0), 0) =

∫ T

0

∂wf(W (t), t)dW (t)

+

∫ T

0

(
∂2
wf(W (t), t) + ∂tf(W (t), t)

)
dt

Suppose X(t) is an adapted stochastic process with

dX(t) = a(t)dW (t) + b(t)dt.

Then X is a martingale if and only if b(t) = 0. We call a(t)dW (t) the martin-

gale part and b(t)dt drift term. For the martingale part, we have the following

Itô isometry formula:

E

[(∫ T2

T1

a(t)dW (t)

)2
]

=

∫ T2

T1

E[a(t)2]dt. (2.2.5)
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2.3 Stochastic differential equations

The theory of stochastic differential equations (SDE) is a framework for

expressing dynamical models that include both random and non random forces.

Solutions to Itô SDEs are Markov processes in that the future depends on the

past only through the present.

Definition 2.3.1. An Itô stochastic differential equation takes the form

dX(t) = a(X(t), t)dt+ σ(X(t), t)dW (t). (2.3.1)

Remark 2.3.1. A solution is an adapted process that satisfies (2.3.1) in the

sense that

X(T )−X(0) =

∫ T

0

a(X(t), t)dt+

∫ T

0

σ(X(t), t)dW (t), (2.3.2)

where the first integral on the right is a Riemann integral and the second is an

Itô integral.

As in the general Itô differential, a(X(t), t)dt is the drift term, and σ(X(t), t)dW (t)

is the martingale term. We often call σ(x, t) the volatility.

Definition 2.3.2. a geometric Brownian motion is a stochastic process that

satisfies the SDE

dX(t) = µX(t)dt+ σX(t)dW (t), (2.3.3)

with initial data X(0) = 1.

Since

X(t) = eµt−σ
2t/2+σW (t) (2.3.4)

satisfies (2.3.3), which implies that a geometric Brownian motion has the above

representation.

Remark 2.3.2. Steele [15] pointed out a paradox of risk without possibility

of rewards for the geometric Brownian motion: if 2µ
σ2 < 1, then X(t) → 0 as

t → ∞ a.s., despite the fact that the expected value of X(t) goes to positive

infinity.
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Definition 2.3.3. a diffusion process is a solution to a stochastic differential

equation. It is a continuous-time Markov process with continuous sample paths.

Definition 2.3.4. The backward equation is

∂tf(x, t) + a(x, t)∂xf(x, t) +
σ2(x, t)

2
∂2
xf(x, t) = 0. (2.3.5)

Definition 2.3.5. The Forward equation is

∂tu(x, t) = −∂x (a(x, t)u(x, t)) + 1
2
∂2
x

(
σ2(x, t)u(x, t)

)
. (2.3.6)

Definition 2.3.6. The generator of an Itô process is the operator containing

the spatial part of the backward equation1

L(t) = a(x, t)∂x + 1
2
σ2(x, t)∂2

x.

For a general continuous time Markov process, the generator is defined by

the requirement that

d

dt
E[g(X(t), t)] = E [(L(t)g)(X(t), t) + gt(X(t), t)] , (2.3.7)

for a sufficiently rich (dense) family of functions g.

This applies not only to diffusion processes, but also to jump diffusions,

continuous time birth/death processes, continuous time Markov chains, etc.

Definition 2.3.7. Let (X,BX) be a measurable space. By a point function

p on X we mean a mapping p : Dp ⊂ (0,∞) 7→ X, where the domain Dp

is a countable subset of (0,∞). p defines a counting measure Np(dtdx) on

(0,∞)×X by

Np((0, t]× U) = ]{s ∈ Dp; s ≤ t, p(s) ∈ U}, t > 0, U ∈ BX .

A point process is obtained by randomizing the notion of point function.

Let ΠX be the totality of point functions on X and B(ΠX) be the smallest

σ-field on ΠX with respect to which all p 7→ Np((0, t] × U), t > 0, U ∈ BX ,
are measurable.

1Some people include the time derivative in the definition of the generator.
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Definition 2.3.8. A point process p on X is a (ΠX , B(ΠX))-valued ran-

dom variable, that is, a mapping p : Ω 7→ ΠX defined on a probability space

(Ω;F ;P) which is F|B(ΠX)-measurable.

A point process is called Poisson if Np(dtdx) is a Poisson random measure

on (0,∞)×X.

Definition 2.3.9. Let (Ω;F ;P) be a probability space and (F)t≥0 be a filtra-

tion. A point process p = (p(t)) on X defined on Ω is called Ft-adapted if

every t > 0 and U ∈ B(X), Np(t, U) =
∑

s∈Dp, s≤t IU(p(s)) is Ft-measurable.

p is called σ-finite, if there exist Un ∈ B(X), n = 1, 2, . . . , such that Un ↑ X
and E[Np(t, Un)] <∞, for all t > 0 and n = 1, 2, . . . .

For a given Ft-adapted, σ-finite point process p, let

Γp = {U ∈ B(X), E[Np(t, U)] <∞, for all t > 0 and n = 1, 2, . . .}.

We define

Definition 2.3.10. An Ft-adapted point process p on (Ω;F ;P) is said to

be of the class (QL) (Quasi left-continuous) if it is σ-finite and there exists

N̂p = (N̂p(t, U)) such that

(i) for U ∈ Γp, t 7→ N̂p(t, U) is a continuous (F)t-adapted increasing process,

(ii) for each t and a.e. ω ∈ Ω, t 7→ N̂p(t, U) is a σ-finite measure on (X,BX),

(iii) for U ∈ Γp, t 7→ N̂p(t, U) = Np(t, U)− N̂p(t, U) is a Ft-martingale.

we introduce the following classes:

Fp = {f(t, x, ω); f isFt−predictable and for each t > 0,

∫ t+

0

∫
x

|f1(s, x, ·)|Np(dsdx) <∞}

Fp
2 = {f(t, x, ω); f isFt − predictable and for each t > 0,

E

[∫ t+

0

∫
x

|f1(s, x, ·)|2Ñp(dsdx)

]
<∞}

Fp
2,loc = {f(t, x, ω); f is Ft − predictable and there exist a sequence of

Ft−stopping timesσn such that σn ↑ ∞ a.s. and I[0,σn](t)f(t, x, ω) ∈ Fp2, n = 1, 2, . . .}.
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Definition 2.3.11. An Ft-adapted stochastic process Xt defined on (Ω;F ;P)

is called a semi-martingale if it is expressed as

Xt = X0 +Mt + At +

∫ t+

0

∫
x

f1(s, x, ·)Np(dsdx)

+

∫ t+

0

∫
x

f2(s, x, ·)Ñp(dsdx)

Where

(i) X0 is an F0-measurable random variable.

(ii) Mt is a local martingale.

(iii) At is a continuous Ft-adapted process such that a.s. A0 = 0 and t 7→ At

is of bounded variation on each finite interval.

(iv) p is an Ft-adapted point process of the class (QL) on some state space

(X,BX), f1 ∈ Fp and f2 ∈ Fp2,loc such that f1f2 = 0.

Define a d-dimensional semi-martingale Xt = (Xt
1, Xt

2, . . . , Xt
d) by

Xt = X0 +Mt + At +

∫ t+

0

∫
x

f(s, x, ·)Np(dsdx)

+

∫ t+

0

∫
x

g(s, x, ·)Ñp(dsdx)

Where f = (f 1, f 2, . . . , fd) and g = (g1, g2, . . . , gd). Then

Theorem 2.3.1. (Itô’s formula). Let F be a function of class C2 on Rd

and X(t) a d−dimentional semi-martingale given above. Then the stochastic

process F (X(t)) is also a semi-martingale (with respect to (Ft)t≥0) and the
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following formula holds:

F (Xt)− F (X0) =
d∑
i=1

∫ t

0

Fi
′(Xs) dM

i(s) +
d∑
i=1

∫ t

0

Fi
′(Xs) dA

i(s)

+
1

2

d∑
i,j=1

∫ t

0

Fij
′′(Xs) d〈M i,M j〉(s)

+

∫ t+

0

∫
X

[F (Xs− + f(s, x, ·))− F (Xs−)] Np(dsdx)

+

∫ t+

0

∫
X

[F (Xs− + g(s, x, ·))− F (Xs−)] Ñp(dsdx)

+

∫ t+

0

∫
X

{[F (Xs− + g(s, x, ·))− F (Xs−)]

−
d∑
i=1

gi(s, x, ·)Fi′(Xs)} Ñp(dsdx).

2.4 Ruin theory and risk models

Ruin theory studies an insurer’s vulnerability to insolvency based on stochas-

tic models of the insurer’s surplus. The most important questions are the time

of ruin at which the surplus becomes negative for the first time, the surplus

immediately before the time of ruin and the deficit at the time of ruin. In

most cases, the principal objective of the classical model and its extensions

was to calculate the probability of ultimate ruin.

Ruin theory was first introduced in 1903 by the Swedish actuary Filip

Lundberg [2], then it received a substantial boost with the articles of Powers

[3] in 1995 and Gerber and Shiu [4] in 1998, which introduced the expected

discounted penalty function, a generalization of the probability of ultimate

ruin. This fundamental work was followed by a large number of papers in

the ruin literature deriving related quantities in a variety of risk models. The

interested reader can read more in Asmussen [5], Embrechts et al. [7], Gerber

et al. [16] and Ren [17].

The following is a brief introduction of ruin models that relate to my dis-
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sertation.

(1) The Cramér Lundberg model

Gerber, H.U. and Shiu in [4] studied the Cramér Lundberg ruin model.

Let u denote the insurer’s initial surplus, assume the premium received in a

continuous constant rate c, per unit time, and the aggregate claims constitute

a compound Poisson process:

S(t) =

N(t)∑
j=1

xj,

where N(t) is a Poisson process with parameter λ, and xj’s are i.i.d with pdf

p(x) and cdf P (x). Then the insurer’s surplus, u(t), at time t, is modeled by

the following stochastic process:

u(t) = u+ ct− S(t) = u+ ct−
N(t)∑
j=1

xj.

Definition 2.4.1. The time of ruin is defined to be T = inf{t |u(t) < 0}.

As mentioned previously, technical ruin of the insurance company occurs when

the surplus becomes negative (or below a given threshold). Therefore, the

definition of the infinite time probability of ruin is

ψ(u) = Pr {T <∞|u}

Definition 2.4.2. The adjustment coefficient is defined as the smallest strictly

positive solution (if it exists) of the Lundberg fundamental equation

λ+ δ − cξ = λp̂(ξ) = λ

∫ ∞
0

e−ξxp(x) dx.

The main result related to my work is

Theorem 2.4.1. (Lundburg’s asympototic formula)

ψ(u) ∼
c− λ

∫∞
0
xp(x) dx

λ
∫∞

0
yeRyp(y) dy − c

e−Ru,

as u→∞. Where −R is the negative root of Lundberg foundamental equation.
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(2) Powers’ Diffusion Model

Powers in [3] studied a diffusion model. Let u∗ ∈ (0, u0) be the infimum of

the set of capitalization levels at which the insurer is considered solvent, L(t)

be cumulative incurred losses to time t, Y (t) be cumulative investment income

to time t, P (t) be cumulative earned premium to time t, X(t) be cumulative

earned losses to time t, T = inf{t |u(t) ≤ u∗} be the time of insolvency, u0 be

the initial net worth, u(t) be the net worth at time t, W (t) be the interrupted

net worth at time t, bL(·) and bY (·) be positive nondecreasing functions. Under

the following assumptions

• P (t) = (1 + π)L(t)

• X(t) = εLL(t) + εpP (t)

• dS(t) = g(S(t))dt+H(S(t))[dZL(t), dZY (t)]T

• The process S(t) satisfies the Lipschitz condition.

where

S(t) = [L(t), Y (t)]T

g(S(t)) = [λu(t), νu(t)]T

H(S(t)) =

[
bL(u(t)) 0

0 bY (u(t))

]
.

Then Power proposed a diffusion model

du(t) = αu(t)dt+ b(u(t))dZ(t)

where Z(t) is a standard Brownian motion and

α = cLλ+ cY ν

b(u(t)) =
√
c2
Lb

2
L(u(t)) + c2

Y b
2
Y (u(t)).

The main result related to my work are

Theorem 2.4.2. Define

W (t) =


u(t), if t ≤ T

0 if t ≥ T.
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Then the Laplace transform of the probability distribution of T , ϕz(u0) =

E[e−zT |u0], for z > 0, may be expressed as

ϕz(u0) =
η1(+∞)η2(u0)− η2(+∞)η1(u0)

η1(+∞)η2(u∗)− η2(+∞)η1(u∗)

where η1(u) and η2(u) are two linearly independent solutions of the second

order linear differential equation

zϕz(u)− αuϕ′z(u)− 1

2
b2(u)ϕ′′z(u) = 0.

and

Corollary 2.4.1. Let the net worth process be given by W (t). If b(·)2 is

concave downward, then the probability of ruin, ψ(u0) = Pr{T < +∞| u0} ,

is bounded above as follows:

Ψ(u0) ≤
2u
∗

u0
+ 1

α

∫∞
u0

b2(y)
y3
dy

(1− u∗

u0
)2

.

Remark 2.4.1. This corollary shows that the decay rate of ruin probability is

polynomial. Later in my dissertation, we can show the decay rate is exponential

by martingale approach.

(3) Jiandong Ren’s Model

Ren in [17] studied a six dimensional diffusion model. Let D(t) cumulative

paid losses to time t, and R(t) be cumulative earned premium to time t. Let

L(t), P (t), Y (t), X(t) be as above. Set

V (t) = [L(t), D(t), P (t), R(t), Y (t), U(t)]T

dZ(t) = [dZL(t), dZD(t), dZR(t), dZY (t)]T

Define
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A =



0 0 0 0 0 λ

δ −δ 0 0 0 0

0 0 0 0 0 (1 + π)λ

0 0 ρ −ρ 0 0

ν −ν ν −ν 0 ν

cY ν −cY ν cY ν + cRρ −cY ν − cRρ 0 cY ν + cLλ+ cPλ(1 + π)



S =



σL(·) 0 0 0

0 σD(·) 0 0

0 0 0 0

0 0 σR(·) 0

0 0 0 σY (·)
cLσL(·) 0 cRσR(·) cY σY (·)


.

Then Jingdong’s model can be written as

dV (t) = AV (t)dt+ SdZ(t).

His main results are

Theorem 2.4.3. If let

γ1(t) =
L(t)−D(t)− P (t)−R(t)

u(t)

and

γ2(t) =
P (t)−R(t)

u(t)

and assume

γ1(t)→ γ1 and γ2(t)→ γ2 where γ1, γ2 are constants, if we denote the implied

net worth process by û(t) then

dû(t) = αû(t)dt+ σ(û(t))dZ(t) (2.4.1)

where

α = cY ν(1 + γ1) + cLλ+ cPλ(1 + π) + cRργ2
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and

σ(û(t)) =
√
c2
Lσ

2
L(u(t)) + c2

Y σ
2
Y ((1 + γ1)û(t)) + c2

Rσ
2
R(γ2û(t)).

Theorem 2.4.4. If σL(·) =
√
βL, σD(·) =

√
βD, σR(·) =

√
βR, σY (·) =

√
βY

are constants, then the stochastic differential equations :

dV (t) = AV (t)dt+ SdZ(t)

posses solution:

V (t) = eAt
[
C +

∫ t

0

e−AτSdZ(τ)

]
where C = V (0) = [0, 0, 0, 0, 0, u0]T , and

S =



√
βL 0 0 0

0
√
βD 0 0

0 0 0 0

0 0
√
βR 0

cL
√
βL 0 cR

√
βR cY

√
βY


.

Theorem 2.4.5. If the ISDs (infinitesimal standard deviation) σ∗ are propor-

tional to the infinitesimal drifts, then

dû(t) = αû(t)dt+
√
β(û(t))dZ(t)

where

α = cY ν(1 + γ1) + cLλ+ cPλ(1 + π) + cRργ2

and √
β =

√
c2
LβL + c2

Y βY ((1 + γ1)2 + c2
RβRγ

2
2 .

The interested reader can read more on these subjects in [24] by Klugman et

al. (2004); [25] by Gerber (1979); [26] by Denuit and Charpentier (2004); [27]

by Kaas et al. (2001), among others.



21

2.5 Lanchester equations

This section and the following section are quoted from [30] written by

Powers. Because my work on terrorism risk (chapter 4) partially was advised

by Powers.

During the First World War F. W. Lanchester described one of the simplest,

and most enduring, mathematical attrition models of force-on-force combat in

[18] in 1916, which may be described by a system of differential equations of

the form

dA = −k1A
α1Dδ1dt (2.5.1)

dD = −k2A
α2Dδ2dt (2.5.2)

where A = A(t) ≥ 0 and D = D(t) ≥ 0 denote, respectively, the sizes of

the attackers and defenders forces at time t ≥ 0;A(0) = A0 and D(0) =

D0 are known boundary conditions; k1, k2 are positive real-valued parameters

denoting, respectively, the defender and attacker effective destruction rates;

and k1, k2 and δ1, δ2 are real-valued parameters reflecting the fundamental

nature of the combat under study. In his original formulation, Lanchester

(1916) considered two cases one for ancient-warfare, in which α1 = 1, δ1 =

1, α2 = 1, δ2 = 1, and one for modern-warfare, in which α1 = 0, δ1 = 1, α2 =

1, δ2 = 0. The principal conclusion to be drawn from Lanchester’s original

analysis is that the ratio of the opposing armies’ initial forces (i.e., D0

A0
) plays

a greater role in modern combat (with unaimed fire). The results are stated

as the Lanchester’s linear law and square law respectively.

2.6 Ad Hoc models for terrorism risk

Following the terrorist attacks of September 11, 2001, the United States

Congress passed the Terrorism Risk Insurance Act (TRIA) of 2002 to “es-

tablish a temporary Federal program that provides for a transparent system

of shared public and private compensation for insured losses resulting from
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acts of terrorism”. In return for requiring U.S. property-liability insurers to

include terrorism coverage in certain critical lines of business, the legislation

supplemented private reinsurance coverage for terrorism-related losses through

the end of 2005. Two subsequent extensions of TRIA have carved out a far

from “temporary” role for the U.S. federal government in financing terrorism

risk. As Powers noted in [31], a necessary condition for private insurers and

reinsurers to remain in the terrorism-risk market is the industry’s confidence

that total losses can be forecast with sufficient accuracy.

Major in [29] proposed that the conditional probability of destruction of a

target i, given that target i is selected for attack by terrorists, can be expressed

as

pi = exp(−AiDi√
Wi

)(
A2
i

A2
i +Wi

) (2.6.1)

where Ai denotes the size of the forces assigned by the terrorists to attack

i, Di denotes the size of the forces assigned by government (and possibility

private security) to defend i, and Wi denotes the value of i as a target (which is

assumed to have a square-root relationship to the target’s physical presence).

In this formulation, the first factor on the right-hand side of equation (2.6.1)

represents the probability that the terrorists avoid detection prior to their

attack (derived from a simple search model), and the second factor represents

the probability that the terrorists are then successful in destroying the target

(derived from a dose-response model).

Powers and Shen in [32] replaced the above formula with

pi = exp(−A
s
iD

s
i

V s
i

)(
Aci

Aci +Dc
i

) (2.6.2)

where Vi denotes the (three-dimensional) physical volume of target i, and

s > 1, c ∈ (0, 1) are scale parameters. The biggest conceptual difference

between equations (2.6.1) and (2.6.2) is the substitution of a power of Di

for a power of Wi in the denominator of the second factor (representing the

terrorists’ probability of success in destroying the target once they have avoided

detection).
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CHAPTER 3

RUIN ON DIFFUSION

MODELS

3.1 Ruin on generalized Powers model

In this section, we reinvestigate Corollary 2.1 in [3] by using martingale

approach, and obtain a better upper bound on the probability of ruin. Our

result shows that the probability of ruin exponentially decay as the initial net

worth u0 →∞.

Let n be a positive integer. We will use u∗ to denote the infimum of the

set of capitalization levels at which the insurer is considered solvent. Set

τn = inf{t ≥ 0; Ut ∈ (u∗, n)c}

be the first time for the net worth process Ut going out of the interval (u∗, n).

Set

T = inf{t ≥ 0; Ut ≤ u∗}

be the time of the insolvency, and

ψ(u0) = Pru0{T <∞}

be the probability of ruin. These notation will be fixed throughout this chap-

ter. Also, we will keep the assumptions and notation in [3] regarding the
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stochastic differential equation

dUt = αUtdt+ b(Ut)dZt. (3.1.1)

Instead of working directly on Powers Model, we will work on the generalized

Powers Model:

dUt = αUβ
t dt+ b(Ut)dZt, (3.1.2)

where β ≥ 1.

Lemma 3.1.1. Let θ be any positive real number, α > 0, β ≥ 1 and b(x), a

nonnegative continuous function, defined as in SDE (3.1.2). Set

Xt = Ut − U0 −
∫ t

0

αUβ
s ds,

and

Yt = exp

(
−θXt −

1

2
〈−θX〉t

)
.

Then Xt∧τn and Yt∧τn are L2-martingales.

Proof. Integrating SDE (3.1.2), we have

Ut = U0 +

∫ t

0

αUβ
s ds+

∫ t

0

b(Us) dZs. (3.1.3)

Then

Xt = Ut − U0 −
∫ t

0

αUβ
s ds =

∫ t

0

b(Us) dZs

is a local martingale, and so

Yt = exp

(
−θXt −

1

2
θ2

∫ t

0

b2(Us) ds

)
= exp

(
−θUt + θU0 + θ

∫ t

0

αUβ
s ds−

1

2
θ2

∫ t

0

b2(Us) ds

)
is also a local martingale. The L2-norm of Xt∧τn can be computed as follows:

‖Xt∧τn‖2
L2 = E

[(∫ t∧τn

0

b(Us)dZs

)2
]

= E

[∫ t∧τn

0

b2(Us)ds

]
. (3.1.4)
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Note that Ut∧τn is bounded by n and that the function b(x) is continuous. It

follows that b2(Us) is bounded for 0 ≤ s ≤ t ∧ τn. Hence the integral on the

right hand side of (3.1.4) is bounded for each t, and so Xt∧τn is a L2-martingale.

Next, since b(Us) is bounded for 0 ≤ s ≤ t ∧ τn, moreover, t ∧ τn ≤ t, we have

|Xt∧τn| = |Ut∧τn−U0−
∫ t∧τn

0

αUβ
s ds| ≤ |Ut∧τn|+U0+|

∫ t

0

αUβ
s ds| ≤ n+U0+αnβt

for each t. So |Yt∧τn| ≤ c(t, n), where c(t, n) is a constant depending on t and

n. It now follows that Yt∧τn is also a L2-martingale.

Lemma 3.1.2. Suppose that b(x) is increasing and continuous twice differen-

tiable, and that g(x) = b2(x) is concave down on [u∗,∞) and g′(u∗) > 0. Then

there exists a positive real number θ0 = min
{

2αu∗β

g(u∗)
, 2αβu∗β−1

g′(u∗)

}
such that

K(θ) := lim
n→∞

Eu0

[
exp

(∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

)
| Uτn = u∗

]
≥ 1.(3.1.5)

for any θ ∈ [0, θ0].

Proof. Set h(x) = αxβ − 1
2
θg(x). Then h′(x) = αβxβ−1 − 1

2
θg′(x). Now

solve the following inequality system:

h′(u∗) ≥ 0

h(u∗) ≥ 0.

We get the solution: θ ∈ [0, θ0]. Since g(x) is concave down on [u∗,∞) and

β ≥ 1, so h′′(x) is nonnegative and h′(x) is increasing on [u∗,∞). Hence for

any θ ∈ [0, θ0], we have

h′(x) ≥ h′(u∗) ≥ 0, ∀x ≥ u∗.

It follows that h(x) is increasing on [u∗,∞). Hence for any θ ∈ [0, θ0], we have

h(x) ≥ h(u∗) ≥ 0, ∀x ≥ u∗.

Now since Us ≥ u∗ on [0, τn], hence the integrand

θαUβ
s −

1

2
θ2b2(Us) = θ{αUβ

s −
1

2
θb2(Us)} = θh(Us) ≥ 0, ∀θ ∈ [0, θ0].



26

It now follows that

K(θ) : = lim
n→∞

Eu0

[
exp

(∫ τn

0

(
θαUβ

s −
1

2
θ2b2(Us)

)
ds

)
| Uτn = u∗

]
≥ Eu0 [1 | Uτn = u∗] = 1

for any θ ∈ [0, θ0].

Theorem 3.1.1. Let α > 0, β ≥ 1 and b(x), a nonnegative continuous

function, defined as in SDE (3.1.2). Suppose further that b(x) is increas-

ing and continuous twice differentiable, and that g(x) = b2(x) is concave

down on [u∗,∞), and g′(u∗) > 0. Then there exists a positive real number

θ0 = min
{

2αu∗β

g(u∗)
, 2αβu∗β−1

g′(u∗)

}
such that the probability of ruin

ψ(u0) ≤ exp (−θ(u0 − u∗)) (3.1.6)

for any θ ∈ [0, θ0].

Proof. If ψ(u0) = 0, then (3.1.6) holds for any θ. It is sufficient to show

(3.1.6) assuming ψ(u0) > 0. It follows from Lemma (3.1.1) that 1 = E[Y0] =

E[Yt∧τn ], for each t ≥ 0. Hence

lim
t→∞

E[Yt∧τn ] = 1.

On the other hand, it follows from Fatou’s lemma that

E[Yτn ] ≤ lim
t→∞

E[Yt∧τn ].

Therefore

Eu0

[
exp

(
−θUτn + θU0 +

∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

)]
= EYτn ≤ 1.

However, since

Eu0

[
exp

(
−θUτn + θU0 +

∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

)]
=Pr{Uτn = u∗}eθ(u0−u∗)Eu0

[
exp

(∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

) ∣∣∣∣ Uτn = u∗
]

+ Pr{Uτn = n}eθ(u0−n)Eu0

[
exp

(∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

) ∣∣∣∣ Uτn = n

]
,
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and the second term is nonegative, we have

Pr{Uτn = u∗}eθ(u0−u∗)Eu0

[
exp

(∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

) ∣∣∣∣ Uτn = u∗
]
≤ 1.

By lemma (3.1.2),

K(θ) := lim
n→∞

Eu0

[
exp

(∫ τn

0

{θαUβ
s −

1

2
θ2b2(Us) }ds

) ∣∣∣∣ Uτn = u∗
]
≥ 1,

for any θ ∈ [0, θ0].

Therefore we have

ψ(u0) = lim
n→∞

Pr{Uτn = u∗} ≤ exp (−θ(u0 − u∗)) .

The proof is completed.

Remark 3.1.1. In the case of 0 < β < 1, if we assume g(·) = b2(·) is a

function of uβt , then it can be reduced to the above case where β = 1, that

is, the probability of ruin ψ(u0) also exponentially decays in the case where

0 < β < 1.

3.2 Laplace transform of PDF of the first exit

time

In this section, we introduce a general system of m dimensional stochas-

tic differential equations and use its infinitesimal operator to form a partial

differential equation. Then we show that the Laplace transform Eu0

[
e−zT

]
of

the probability distribution of ruin time T is the unique solution that satisfies

the partial differential equation. Also we discuss under what conditions the

solution exists.

We consider the following stochastic differential equations:

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dBs,
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or namely,

X i
t = X i

0 +

∫ t

0

bi(Xs) ds+
m∑
j=1

∫ t

0

σij(Xs) dBs,

where Bt = (B1
t , B

2
t , ..., B

m
t )> is a standard m dimensional Brownian Motion,

where σ = (σij)d×m is a d ×m matrix. and where b = (b1, b2, ..., bd)
>, Xt are

column vectors.

Let a = (aij)d×m = σσT and A be the infinitesimal operator w.r.t the

stochastic differential equations above. namely,

Af(x) =
1

2

∑
i,j

aij(x)Dijf(x) +
∑
i

bi(x)Dif(x),

and let V (x) = Ex
[
e−zT

]
, where T = inf{t ≥ 0 |Xt /∈ G}. We will show that

V (x) = Ex
[
e−zT

]
is the unique solution that satisfies

(a) AV (x)− zV (x) = 0,∀x ∈ G.
(b) V (y) = 1,∀y ∈ ∂G.

Remark 3.2.1. The definition of T is equivalent to T′ = inf{t > 0 |Xt /∈ G}
for ∀x ∈ G, since G is open. If y ∈ ∂G, then Py(T = 0) = 1 and V (y) = 1 is

always true.

This proof is essentially taken from section 4.6. in [23]. Since the proof for

general case in [23] is far more complicated, we put a simplified proof in our

case for reader’s convenience.

Theorem 3.2.1. If U(x) satisfies (a), then Mt = U(Xt)e
−zt is a local mar-

tingale on [0, T ).

Proof: Applying Itô’s formula gives

U(Xt)e
−zt − U(X0) =

∫ t

0

e−zs
∑
i

bi(Xs)DiU(Xs) ds− z
∫ t

0

e−zsU(Xs) ds

+

∫ t

0

e−zs
1

2

∑
i,j

aij(Xs)DijU(Xs) ds+ local mart.

=

∫ t

0

e−zs(AU(Xs)− zU(Xs)) ds+ local mart.
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for t < T . It follows from (a) that Mt = U(Xt)e
−zt is a local martingale on

[0, T ).

Assume G is a bounded connected open set from now on.

Theorem 3.2.2. If there is a solution satisfying both (a) and (b) that is

bounded, then it must be V (x) = Ex
[
e−zT

]
.

Proof: By Theorem 3.2.1, Ms = U(Xs)e
−zs is a local martingale on [0, T ).

Let s↗ T ∧ t and using the bounded convergence theorem gives

U(x) = EM0 = EMT∧t = Ex
[
e−zT ; T ≤ t

]
+ Ex

[
e−zt; T > t

]
.

As t→∞, the first term approaches to V (x) = Ex[e
−zT ]. Since {T > t} ∈ Ft,

the definition of conditional expectation and Markov property imply

Ex
[
U(Xt)e

−zT ;T > t
]

= ExEx
[
U(Xt)e

−zT |Ft; T > t
]

= Ex
[
U(Xt)e

−ztEx
[
e−zT

]
; T > t

]
.

For all y ∈ G, since G is a bounded, open connected set, we have

Ey
[
e−zT

]
≥ e−zPy(T ≤ 1) ≥ ε > 0.

Hence replace Ex
[
e−zT

]
by ε in the equation above, we have

Ex
[
|U(Xt)|e−zt; T > t

]
≤ ε−1Ex

[
|U(Xt)|e−zT ; T > t

]
≤ ε−1‖U‖∞Ex

[
e−zT ; T > t

]
→ 0.

as t→∞, by Dominated Convergence Theorem, since Px(T <∞) = 1. Going

back to the first equation in the proof, we have shown the solution must be

V (x).

Theorem 3.2.3. If V (x) ∈ C2, then it satisfies (a) in G.

Proof: The Markov property implies that

Ex
[
e−zT | Fs∧T

]
= e−z(s∧T )EX(s∧T )

[e−zT ] = e−z(s∧T )V (Xs∧T ).
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Since the left-hand side is a bounded local martingale on [0, T ) and hence is a

UI (uniformly integrable) martingale. So is e−z(s∧T )V (Xs∧T ). Applying Itô’s

formula to e−z(s∧T )V (Xs∧T ) gives

de−z(s∧T )V (Xs∧T ) = [AV (Xs∧T )− zV (Xs∧T )] e−z(s∧T )d(s ∧ T ) + local mart.

However, the first term is continuous and locally of bounded variation, it must

be zero, that is,∫ t∧T

0

[AV (Xs∧T )− zV (Xs∧T )] e−z(s∧T ) d(s ∧ T ) ≡ 0.

Since V (x) ∈ C2, it follows that

AV (Xs∧T )− zV (Xs∧T ) ≡ 0, PX0 a.s.

For if it were 6= 0 at some point X0, by continuity, then it would be > 0 (< 0)

on an open ball D(X0, r) for some r > 0. If we choose s(ω) to be the first exit

time from the ball D(X0, r), then the integral would be positive(or negative),

a contradiction.

Theorem 3.2.4. If G is a bounded connected open set, then V (x) ∈ C2 hence

satisfies (a).

Proof: Follows from theorem (3.6) in [23].

3.3 Applications

Let

τn = inf{t ≥ 0; Ut ∈ (u∗, n)c}

be the first time for the net worth process Ut going out of the interval (u∗, n).

Let

T = inf{t ≥ 0; Ut ≤ u∗}

be the time of the insolvency. We apply the theorem (3.2.2) to the following

three examples.
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Example 3.3.1. Powers’ one dimensional Diffusion Model.

Powers proved in [3] that Ut is the homogeneous diffusion process specified by

the unique solutions of the SDE

dUt = αUtdt+ b(Ut)dZt.

It is a one dimensional diffusion model. In Theorem 1 in [3], Powers proved

that ϕz(u0) = Eu0

[
e−zT

]
can be expressed as two linear independent solutions

of the following ODE:

zϕz(u)− αuϕ′z(u)− 1

2
b2(u)ϕ′′z(u) = 0 (3.3.1)

He referred Darling and Siegert’s (1953) proof. However, Applying our Theo-

rem (3.2.2) to Powers’ model on the open set Gn = (u∗, n), Eu0 [e−zτn ] satisfies

(3.3.1). Let n go to infinity, then ϕz(u0) = limn→∞Eu0 [e−zτn ] by Bounded

Convergence Theorem. It is not hard to prove the Powers’ result about ϕz(u0)

on G = (u∗,∞).

Remark 3.3.1. For the generalized powers’ model, ϕz(u0) = Eu0

[
e−zT

]
can

be expressed as two linear independent solutions of the following ODE:

zϕz(u)− αuβϕ′z(u)− 1

2
b2(u)ϕ′′z(u) = 0.

Example 3.3.2. Powers’ two dimensional Diffusion Model.

Powers constructed a two dimensional SDE’s Model in [3]:

dSt = g(St)dt+H(St)
[
dZt

L, dZt
Y
]>

where

St = [Lt, Yt]
> , g(St) = [λUt, νUt]

>

H(St) =

[
bL(Ut) 0

0 bY (Ut)

]
.

Based on some further assumptions, he successfully converted it into the one

dimensional diffusion model in example (3.3.1). However, if apply our The-

orem (3.2.2) to this model on the open set G = {(x1, x2) ∈ R2 | n > u0 =
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cLx1 +cY x2 > u∗, x1 > 0, x2 > 0}, we can conclude that V (x1, x2) = Eu0 [e−zτn ]

satisfies the following partial differential equation

zV (x1, x2)− λuVx1 − νuVx2 −
1

2
b2
L(u)Vx1x1 −

1

2
b2
Y (u)Vx2x2 = 0 (3.3.2)

on G. Note that V (x1, x2) only depends on u0, not the point (x1, x2). So if

we put ϕz(u) = V (x1, x2), where u = cLx1 + cY x2, then the equation (3.3.2)

implies the equation (3.3.1).

Similarly, we can apply our Theorem (3.2.2) to Ren’s multi-dimensional

model [17] as well.

Example 3.3.3. Ren’s six-dimensional Diffusion Model.

Let V (u0) = Eu0 [e−zτn ], then it satisfies the following partial differential equa-

tion:

zV (x)− λx6Vx1 − δ(x1 − x2)Vx2 − λ(1 + π)x6Vx3 − ρ(x3 − x4)Vx4

− v(x1 − x2 + x3 − x4 + x6)Vx5 − [cY v(x1 − x2 + x3 − x4 + x6)

+ cRρ(x3 − x4)− cPλ(1 + π)x6 − cLλx6]Vx6 −
1

2
(1 + c2

L)σ2
LV11

− 1

2
σ2
DV22 −

1

2
(1 + c2

R)σ2
RV33 −

1

2
(1 + c2

Y )σ2
Y V44 + cLcRσLσRV13

+ cLcY σLσY V14 − cY cRσY σRV34 = 0

on any open bounded domain such that 0 < u∗ < u0 < n.

Remark 3.3.2. Note that Ren obtained (2.4.1) by assuming that the ratios

x1−x2+x3−x4

x6
→ γ1, x3−x4

x6
→ γ2, as the time t→∞. In turn, (2.4.1) holds only

for large t in his paper.

Although our theorem only applies to the bounded domain, it is good

enough for industry practices if n is large enough. In some cases, see example

1, the conclusion can be extended to unbounded domains.
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CHAPTER 4

TERRORISM RISK

4.1 Stochastic formulation

For terrorism combat, the choice of a Lanchester approach might seem

somewhat ill-advised. The conflict is far from deterministic; terrain plays a

major role; and the asymmetries of objectives (instilling fear vs. maintaining

stability), information (surprise attacks vs. constant vigilance), and weaponry

(suicide bombers, airplanes, etc. vs. a more conventional arsenal) are extreme.

However, one crucial aspect of terrorist attacks tends to offset many of these

apparent difficulties: the fact that such attacks are extremely localized in

both space and time. These limitations-to both a small physical domain and

a short time duration-tend to homogenize various complex characteristics of

the problem, permitting more effective modeling.

Lemma 4.1.1. If 0 ≤ α1 < 1, 0 ≤ δ2 < 1, then the Lanchester equations are

equivalent to the following system

dÃ = −K1D̃
αdt (4.1.1)

dD̃ = −K2Ã
δdt (4.1.2)

where α > 0 and δ > 0 are constants.
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Remark 4.1.1. The Lanchester equations can be always reduced to a simpler

form. If α1 = 1 or δ2 = 1, then the only difference is that D̃α or Ãδ will be

replaced by an exponential function form.

Proof: Divid (2.5.1) by Aα1 on both sides, then combine A−α1 with dA, we

have

dA1−α1 = −k1(1− α1)Dδ1dt.

Similarly, we divid (2.5.2) by Dδ2 on both sides, then combine D−δ2 with

dD, we have

dD1−δ2 = −k2(1− δ2)Aα2dt

Now let Ã = A1−α1 , D̃ = D1−δ2 , K1 = k1(1 − α1) and K2 = k2(1 − δ2),

then the above two equations can be rewritten as:

dÃ = −K1D̃
αdt

dD̃ = −K2Ã
δdt

where α = δ1
1−δ2 and δ = α2

1−α1
.

Based on the lemma (4.1.1), We propose the following SDE model

dÃ = −K1D̃
αdt+ σ1(Ã, D̃)dZ1(t) (4.1.3)

dD̃ = −K2Ã
δdt+ σ2(Ã, D̃)dZ2(t) (4.1.4)

on the open set S = {(x, y) ∈ R2 | x > 0, y > 0}, where σ1(Ã, D̃), σ2(Ã, D̃)

are nonnegative continuous functions, Z1(t) and Z2(t) are standard Brownian

motions. α and δ are parameters in (0,∞).

Let

T = inf{t ≥ 0; min{Ã(t), D̃(t)} ≤ 0}
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be the first time that the stochastic process Ã(t) or D̃(t) exits from domain S

and

ψD = Pr{T <∞, Ã(T ) ≤ 0, D̃(T ) > 0}

ψA = Pr{T <∞, D̃(T ) ≤ 0, Ã(T ) > 0}

be the probability that Defender or Attacker will win the combat respectively.

In this chapter, we will study the Laplace transform of the probability

distribution of the first passage time T , ruin probability and the asymptotic

behavior of the probabilty of target destruction.

4.2 Laplace transform of the PDF of first pas-

sage time

Let n be a positive integer. Set

Dn = {(x, y) ∈ R2 | x2 + y2 < n2, x ≥ 0, y ≥ 0}

τn = inf{t ≥ 0; Ut ∈ (Dn)c}

be the first time for the process Ut going out of the region Dn.

Theorem 4.2.1. For the above Lanchester SDEs, V n(Ã0, D̃0) = EÃ0,D̃0
[e−zτn ],

satisfies the following partial differential equation in Dn:

zV n(x1, x2) +K1x
α
2V

n
x1

+K2x
δ
1V

n
x2
− 1

2
σ2

1(x1, x2)V n
x1x1
− 1

2
σ2

2(x1, x2)V n
x2x2

= 0,

(4.2.1)

subject to the boundary condition V n(y) = 1 for ∀y ∈ ∂D. Furthermore, if

let V (Ã0, D̃0) = EÃ0,D̃0

[
e−zT | T <∞

]
, then V n(Ã0, D̃0) → V (Ã0, D̃0) as

n→∞.

Proof: Apply theorem (3.2.2), we have (4.2.1). By Dominated Convergence

Theorem, we have V n(Ã0, D̃0)→ V (Ã0, D̃0) as n→∞.
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Corollary 4.2.1. Let u =
√
K2x1 +

√
K1x2 , if we further assume that

σ1(x1, x2) and σ2(x1, x2) are functions of u, and α = δ = 1, then the PDE

(4.2.1) implies the folloing ODE:

zV n(u) +
√
K1K2u(V n)′(u)− 1

2
{K2σ

2
1(u) +K1σ

2
2(u)}(V n)′′(u) = 0, (4.2.2)

subject to the boundary condition above.

Proof: Note that

Vx1 = (V n)′(u)
∂u

∂x1

=
√
K2(V n)′(u), Vx2 = (V n)′(u)

∂u

∂x2

=
√
K1(V n)′(u),

V n
x1x1

= K2(V n)′′(u), V n
x2x2

= K1(V n)′′(u).

Plug in (4.2.1), we have

zV n(u)+K1

√
K2x2(V n)′(u)+K2

√
K1x1(V n)′(u)−1

2
{K2σ

2
1(u) +K1σ

2
2(u)}(V n)′′(u) = 0

Combination of the second and third terms gives us (4.2.2).

4.3 Ruin is for certain

In this section, it is shown that the ruin is certain almost surely.

We rewrite the above stochastic differential equations as follow:

dUt = GVtdt+HdZt (4.3.1)

where

Ut =
[
Ã(t), D̃(t)

]>
, Vt =

[
Ãδ(t), D̃α(t)

]>
, dZt = [dZ1(t), dZ2(t)]>

G =

[
0 −K1

−K2 0

]
,

H =

[
σ1(·) 0

0 σ2(·)

]
.
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Recall that

Dn = {(x, y) ∈ R2 | x2 + y2 < n2, x ≥ 0, y ≥ 0},

τn = inf{t ≥ 0; Ut ∈ (Dn)c}.

Lemma 4.3.1. Let θ = [θ1, θ2]> , where θ1, θ2 are real numbers. Set

Xt = Ut − U0 −
∫ t

0

GVs ds,

and

Yt = exp(−θ>Xt −
1

2
〈−θ>X〉t).

Then Yt∧τn is a L2-martingale which implies that E[Yτn ] ≤ 1.

Proof. Integrating SDE (4.3.1), we have

Ut = U0 +

∫ t

0

GVs ds+

∫ t

0

H dZs. (4.3.2)

Then

Xt = Ut − U0 −
∫ t

0

GVs ds =

∫ t

0

H dZs

and so

Yt = exp(−θ>Xt −
1

2
〈−θ>X〉t)

= exp(−θ>Ut + θ>U0 +

∫ t

0

θ>GVs ds−
1

2

∫ t

0

(θ>H)>(θ>H) ds)

is a local martingale. The expectation of L2-norm of Xt∧τn can be computed

as follows:

E‖Xt∧τn‖2
L2 = ||E

(∫ t∧τn

0

H dZs

)2

||L1 = E

∫ t∧τn

0

||H>H||L1 ds. (4.3.3)

Note that ||Ut∧τn||∞ is bounded by n and that the function σ1(x), σ2(x) are

continuous. It follows that σ2
1, σ

2
2 are bounded for 0 ≤ s ≤ t ∧ τn. Hence the

integral on the right hand side of (4.3.3) is bounded for each t.
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Next, since σ1(x), σ2(x) are bounded for 0 ≤ s ≤ t∧τn, moreover, t∧τn ≤ t,

we have

||Xt∧τn||∞ = ||Ut∧τn − U0 −
∫ t∧τn

0

GVs ds||∞

≤ ||Ut∧τn||∞ + ||U0||∞ + ||
∫ t

0

GVs ds||∞

≤ n+ max{Ã0, D̃0}+ max{K1, K2}tnα+δ

for each t. So |Yt∧τn| ≤ c(t, n), where c(t, n) is a constant depending on t and

n. It now follows that Yt∧τn is a L2-martingale.

It then follows that 1 = E[Y0] = E[Yt∧τn ], for each t ≥ 0. Hence

lim
t→∞

E[Yt∧τn ] = 1.

On the other hand, it follows from Fatou’s lemma that

E[Yτn ] ≤ lim
t→∞

E[Yt∧τn ] = 1.

Theorem 4.3.1. Let G and H be defined as in SDE (4.3.1). Suppose that

σ1(·) and σ2(·) are functions of Ãδt and D̃α
t , denote gi(x, y) = σi

2(·), i = 1, 2.

If |gi(x, y)/y| ≤ C, ∀ x, y > 0, i = 1, 2. Then we have

i) Pr{||Uτn|| = n} ≤ exp(−K1

2C
(δn −max(Ã0, D̃0))) for large n,

ii) PrÃ0,D̃0
{T <∞} = 1,

where δn =
n−
√
Ã2

0+D̃2
0√

2
.

Proof. It follows from Lemma (4.3.1) that

EÃ0,D̃0

[
exp(−θ>Uτn + θ>U0 +

∫ τn

0

{θ>GVs −
1

2
(θ>H)>(θ>H)} ds)

]
= E[Yτn ] ≤ 1.

Notes that

1 ≥E[Yτn ]

=Pr{Ãτn ≤ 0} · r · E[M | Ãτn ≤ 0, D̃τn > 0]

+ Pr{D̃τn ≤ 0} · r · E[M | Ãτn > 0, D̃τn ≤ 0 ]

+ Pr{|Uτn| = n} · r · E[M | |Uτn| = n ]
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where r = eθ
>U0 , and where

M = exp(−θ>Uτn +

∫ τn

0

{θ>GVs −
1

2
(θ>H)>(θ>H)} ds)

and since all terms are nonegative, we have

Pr{|Uτn| = n} · r · E [M | |Uτn| = n ] ≤ 1 (4.3.4)

Let

F (x, y) = F (Ãδ, D̃α) = θ>GVs −
1

2
(θ>H)>(θ>H)

= −θ1K1y − θ2K2x−
1

2
θ2

1g1(x, y)− 1

2
θ2

2g2(x, y)

= −θ2K2x+ y{−θ1K1 −
1

2
θ2

1g1(x, y)/y − 1

2
θ2

2g2(x, y)/y},

if we pick θ1 = θ2 = −K1

2C
, then

F (x, y) ≥ −θ2K2x+ y{−θ1K1 −
1

2
(θ2

1 + θ2
2)C} ≥ −θ2K2x−

1

2
θ1K1y ≥ 0,

for any x ≥ 0, y ≥ 0.

Now pick n such that δn > max(Ã0, D̃0) in Dn. Denote the part of ∂Dn in

the 1st quadrant by Cn, let A1 = {Cn|Ãτn − Ã0 > δn}, A2 = {Cn|D̃τn − D̃0 >

δn}, since (4.3.4) holds for any θ = [θ1, θ2]>, especially holds for θ1 = θ2 = −K1

2C
.

Hence we have

K(θ) : = E

[
exp(θ>U0 − θ>Uτn +

∫ τn

0

F (x, y) ds)

∣∣∣∣ |Uτn| = n

]
= E

[
1A1exp(θ>U0 − θ>Uτn +

∫ τn

0

F (x, y) ds)

∣∣∣∣ |Uτn| = n

]
+ E

[
1A2−A1exp(θ>U0 − θ>Uτn +

∫ τn

0

F (x, y) ds)

∣∣∣∣ |Uτn| = n

]
.

≥ E
[
1A1e

K1
2C

(δn−D̃0) + 1A2−A1e
K1
2C

(δn−Ã0)| |Uτn| = n
]

≥ e
K1
2C

(δn−max(Ã0,D̃0))E [1A1 + 1A2−A1| |Uτn| = n] ≥ e
K1
2C

(δn−max(Ã0,D̃0)).

Hence

Pr{|Uτn| = n} ≤ 1

K(θ)
≤ e−

K1
2C

(δn−max(Ã0,D̃0))
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for large n, which is part i). Now let n→∞, we have

lim
n→∞

Pr{|Uτn| = n} = 0.

and since

PrÃ0,D̃0
{T <∞} < PrÃ0,D̃0

{|Uτn| = n}, ∀ n.

Therefore

PrÃ0,D̃0
{T <∞} = 1− PrÃ0,D̃0

{T =∞} ≥ 1− lim
n→∞

Pr{|Uτn| = n} = 1.

Remark 4.3.1. The above theorem shows that Pr{|Uτn| = n} exponentially

decays, and the ruin probability for terrorism risk is equal to 1. That is, the

terrorism combat will end within finite time.

4.4 Asymptotical behavior of ruin probability

In this section, by using martingale approach, we obtain an upper bound

on the probability of ruin. Our result shows that the probability of ruin of

each side exponentially decay as the initial Ã0 or (D̃0) →∞.

Theorem 4.4.1. Let G and H be defined as in SDE (4.3.1). Suppose that σ1(·)
and σ2(·) are functions of Ãδt and D̃α

t , denote gi(x, y) = σi
2(·), i = 1, 2,then

1a) If |gi(x, y)| ≤ Cmin(1, y), ∀ x, y > 0, i = 1, 2, δ > α, then there exist

θ1 > 0, θ2 < 0, such that

ψD ≤ e
−θ1Ã0

2
−θ2D̃0(1 + e

−θ1Ã0
2 ) (4.4.1)

for large Ã0 and fixed D̃0 > 0.

1b)If |gi(x, y)| ≤ Cmin(1, y), ∀ x, y > 0, i = 1, 2, δ ≤ α, then there exist

θ1 > 0, θ2 < 0, such that

ψD ≤ e
−θ1Ã0

2
−θ2D̃0 + e−λÃ

δ+ δ
α

0 . (4.4.2)
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for large Ã0 and fixed D̃0 > 0.Where λ = K2

CC02δ+
δ
α−1

> 0, and C0 = (−θ2K2

2θ1K1
)
−1
α .

2a) If |gi(x, y)| ≤ Cmin(1, x), ∀ x, y > 0, i = 1, 2, δ < α, then there exist

θ1 < 0, θ2 > 0, such that

ψA ≤ e
−θ2D̃0

2
−θ1Ã0(1 + e

−θ2D̃0
2 ) (4.4.3)

for large D̃0 and fixed Ã0 > 0.

2b)If |gi(x, y)| ≤ Cmin(1, y), ∀ x, y > 0, i = 1, 2, δ ≥ α, then there exist

θ1 < 0, θ2 > 0, such that

ψA ≤ e
−θ2D̃0

2
−θ1Ã0 + e−λD̃

δ+ δ
α

0 . (4.4.4)

for large D̃0 and fixed Ã0 > 0.Where λ = K1

CC02α+α
δ
−1 > 0, and C0 = (−θ1K1

2θ2K2
)
−1
δ .

Proof. Part 1). By the above assumption, we have

F (x, y) = −θ1K1y − θ2K2x−
1

2
θ2

1g1(x, y)− 1

2
θ2

2g2(x, y)

≥ −θ1K1y − θ2K2x−
1

2
(θ2

1 + θ2
2)C.

Denote L1(x, y) = −θ1K1y− θ2K2x and L2(x, y) = −θ1K1y− θ2K2x− 1
2
(θ2

1 +

θ2
2)C. Then we have L2(x, y) ≤ F (x, y) ≤ L1(x, y), hence the curve F (x, y) = 0

will be governed by the curves L1(x, y) = 0 and L2(x, y) = 0. Pick θ1 > 0, θ2 <

0, we will divide into two cases to prove the theorem.

Case I, assume δ > α.

Let A1 = {(Ã, D̃) | Ã = Ã0

2
, 0 ≤ D̃ ≤ θ1Ã0

−2θ2
}, A2 = {(Ã, D̃) | θ1Ã + θ2D̃ =

0, n ≥ Ã ≥ Ã0

2
}, A3 = {(Ã, D̃) | Ã = n, 0 ≤ D̃ ≤ θ1n

−θ2}, A4 = {(Ã, D̃) | Ã ≥
Ã0

2
, D̃ = 0} and Let En be the region bounded by A1, A2, A3 and A4 (See figure

1). Define

νn = inf{t ≥ 0; Ut ∈ (En)c},

F+ := {(Ã, D̃) | F (x, y) > 0, Ã ≥ 0, D̃ ≥ 0}.

Then En ⊆ F+ if Ã0 is large enough. We will assume En ⊆ F+ from now on.

A similar argument as Lemma (4.3.1) will yield that E[Yνn ] ≤ 1. That is,
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(Ã0, D̃0)

Ã

D̃

F +

n

A2

A4

Ã0
2

L1(x, y) = 0

F (x, y) = 0

L2(x, y) = 0

A3
A1

θ1Ã + θ2D̃ = 0

En

Figure 4.1: Case I—Ruin probability

1 ≥ EÃ0,D̃0

[
exp(−θ>Uνn + θ>U0 +

∫ νn

0

F (x, y) ds)

]
=Pr{Ut hits A1}eθ1Ã0+θ2D̃0E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A1

]
+ Pr{Ut hits A2}eθ1Ã0+θ2D̃0E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A2

]
+ Pr{Ut hits A3}eθ1Ã0+θ2D̃0E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A3

]
+ Pr{Ut hits A4}eθ1Ã0+θ2D̃0E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A4

]
.

Notes that

E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A1

]
≥ e

−θ1Ã0
2 ,

and

E

[
exp(−θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A2

]
= E

[
exp

∫ νn

0

F (x, y) ds

∣∣∣∣ Ut hits A2

]
≥ 1.
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We have

Pr{Ut hits A1} ≤ e
−θ1Ã0

2
−θ2D̃0 ,

and

Pr{Ut hits A2} ≤ e−θ1Ã0−θ2D̃0 .

Let n→∞, then the above inequality still holds, we have

Pr{Ut hits Â2} ≤ e−θ1Ã0−θ2D̃0 ,

where Â2 = {(Ã, D̃) | θ1Ã+ θ2D̃ = 0, Ã ≥ Ã0

2
}.

Since Ut has to hits either A1 or Â2 first before it hits D̃-axis, hence

ψD ≤ Pr{Ut hits A1}+ Pr{Ut hits Â2} ≤ e
−θ1Ã0

2
−θ2D̃0(1 + e

−θ1Ã0
2 ). (4.4.5)

Case II, assume δ ≤ α.

Let En denote the region in 1st quadrant surrounded by

Ã = Ã0

2
, L2(x, y) = 0, Ã2 + D̃2 = 1 and q = 0. Let A1, A2, A3, A4 denote the

boundary of En corresponding to the four curves (see figure 2). Let νn and

F+ be defined as case I, then En ⊆ F+.

Ã

D̃

A1

A2

(Ã0D̃0)
A3

A4

nÃ0

F (x, y ) = 0

F +

L2(x, y ) = 0

En

L1(x, y ) = 0

Figure 4.2: Case II—Ruin probability

Similarly to case I, we have

Pr{Ut hits A1} ≤ e
−θ1Ã0

2
−θ2D̃0 ,
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and

Pr{Ut hits A2}E
[
exp(θ>U0 − θ>Uνn +

∫ νn

0

F (x, y) ds)

∣∣∣∣ Ut hits A2

]
≤ 1.

However, since the above inequality holds for any θ1 and θ2, we have

Lemma 4.4.1. For fixed θ1, θ2, P r{Ut hits Â2} ≤ e−λÃ
δ+ δ

α
0 for large Ã0, where

Â2 = {(Ã, D̃) | − θ1K1y − θ2K2x− 1
2
(θ2

1 + θ2
2)C = 0, Ã ≥ Ã0

2
}.

We will prove this lemma later.

Since Ut has to hits either A1 or Â2 first before it hits D̃-axis, hence

ψD ≤ Pr{Ut hits A1}+ Pr{Ut hits Â2} ≤ e
−θ1Ã0

2
−θ2D̃0 + e−λÃ

δ+ δ
α

0 . (4.4.6)

Now let’s complete the proof of the above lemma.

Fixed θ̂1 = −4λÃ
δ+ δ

α
−1

0 < 0 and θ̂2 = θ̂12
δ
αC0Ã

1− δ
α

0 < 0, then we have

a) D̃ = (
−θ2K2Ãδ−(θ21+θ22)C/2

θ1K1
)

1
α ≥ 1

C0
Ã

δ
α ≥ 1

C0
2−

δ
α Ã

δ
α
0 , on A2;

b) F̂ (x, y) ≥ −θ̂1K1y− θ̂2K2x− 1
2
(θ̂1

2
+ θ̂2

2
)C ≥ −θ̂2K2x− 1

2
(θ̂1

2
+ θ̂2

2
)C ≥ 0,

on En;

c)−θ̂2(D̃νn − D̃0) ≥ θ̂2( 1
C0

2
−δ
α Ã

δ
α
0 − D̃0) ≥ −θ̂1Ã0 + θ̂2D̃0, on En;

d)−θ̂1(Ãνn − Ã0) ≥ −θ̂1
−Ã0

2
. on En;

for large Ã0.

Notes that F̂ (x, y) denotes the integrand associated with θ̂1, θ̂2. Hence for

large Ã0, we have

−θ̂2(D̃νn − D̃0)− θ̂1(Ãνn − Ã0) ≥ −θ̂1
Ã0

2
+ θ̂2D̃0 ≥ −θ̂1

Ã0

4
.

The second inequality holds because −θ̂1
Ã0

2
dominated the summation

−θ̂1
Ã0

2
+ θ̂2D̃0.

Therefore on En, we have

Pr{Ut hits A2} ≤ eθ̂1Ã0/4.
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Let n→∞, we have

Pr{Ut hits Â2} ≤ eθ̂1Ã0/4 ≤ e−λÃ
δ+ δ

α
0 .

The lemma follows.

Proof of Part 2). By symmetry of Ã and D̃, Part ii) is also true.

Case I: Assume δ < α. Pick θ1 < 0, θ2 > 0. The proof of this case is similar

to case I in Part i):

Case II: Assume δ ≥ α. Pick θ1 < 0, θ2 > 0. The proof of this case is similar

to case II in Part i).

Remark 4.4.1. gi(x, y) can be functions like C arctan ay arctan bx, Cy arctan(ax/y),

Cye−ay arctan bx, Cxe−ax arctan by and so on, where C > 0, a > 0, b > 0.

Remark 4.4.2. If there exists a 0 < γ < δ such that gi(x, y) ≤ CÃγ, or

gi(x, y) ≤ CÃδ, but C < 2θ2K2

θ21+θ22
, the theorem still holds. The idea is that

−θ2K2Ã
δ has to dominate −θ2K2Ã

δ− 1
2
(θ2

1g1(x, y)+θ2
2g2(x, y)) for large Ã > 0.
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CHAPTER 5

THE CRAMER LUNDBERG

MODEL WITH RISKY

INVESTMENTS

In this chapter, we consider the same model as that in [14]. In the case

of ρ := 2a/σ2 > 1, we provided an upper bound for the ruin probability.

In the case of large volatility, i.e. ρ := 2a/σ2 ≤ 1. We combine a martingale

argument and a reduction argument to prove that the ruin probability is equal

to 1 without any assumption on the distribution of the claim size as long as it

is not identically zero.

5.1 Cramer Lundberg model with risky invest-

ments

When an insurance company invests in a risky asset whose price follows a

geometric Brownian motion, the risk process is given by

Xt = X0 +

∫ t

0

aXsds+

∫ t

0

σXsdWs +

∫ t

0

csds−
N(t)∑
j=1

ξj, (5.1.1)
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or

dXt = (aXt + ct)dt+ σXtdWt − dPt, (5.1.2)

where Wt is the Wiener process (standard Brownian motion), N(t) is a Pois-

son process with intensity λ, and the claim sizes ξi; i = 1, 2, 3, ..., are in-

dependent, identically distributed positive random variables, having the den-

sity function p(x), with positive mean µ and finite variance. Moreover, we

assume that Wt, N(t), ξi are independent and the filtration is defined as

Ft = σ{Ws, Ns,
∑Ns

i=1 ξi, 0 ≤ s ≤ t}. Furthermore, ct = c(t,X) is a bounded

nonnegative (Ft)-adapted process (i.e. 0 ≤ ct ≤ c) such that (5.1.1) has a

unique strong solution, see e.g., Chapter 14 [11]. X0 is the initial capital and

Pt =
∑N(t)

j=1 ξj. The capital Xt is continuously invested in a risky asset, with

relative price increments dXt = aXtdt + σXtdWt, where a > 0 and σ > 0 are

the drift and volatility of the returns of the asset.

We will assume that the claim size is bounded by a constant M > 0

throughout the entire section. In insurance, M can be understood as the limit

or cap of a policy. We will drop this assumption in the next section. Let

Tu∗ = inf{t > 0; Xt < u∗} be the first time that Xt < u∗, and let

ψu∗(u) = P (Tu∗ <∞ |X0 = u)

be the probability of ruin at level u∗, where 0 ≤ u∗ < u. If u∗ = 0, we denote

the probability of ruin by ψ(u). We will discuss the probability of ruin on the

Cramér-Lundberg model with investments based on (1) ρ = 1 and (2) ρ < 1.

We first prove the following

Lemma 5.1.1. Let Xt be a stochastic process that satisfies (5.1.2). If ct =

c ≥ 0 is a constant for all t and 0 ≤ v ≤ u, then

ψ(v) ≥ ψ(u).

Proof. We first derive a closed form of the strong solution for (5.1.2).

Let Yt = exp{(σ2

2
− a)t − σWt}. By Itô’s formula [10], dXtYt = XtdYt +
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YtdXt + dXtdYt, and simple calculation yields dXtYt = dVt
u, where Vt

u =

u+
∫ t

0
Yscs ds−

∫ t
0
Ys dPs. Integrating both sides, we have XtYt = Vt

u. Hence

Xt = Y −1
t Vt

u (5.1.3)

is a strong solution of (5.1.1) and (5.1.2) with initial condition X0 = u.

Now suppose ct = c ≥ 0 is a constant for all t. Let Zt = Y −1
t Vt

v, then

Zt ≤ Xt, ∀ t ≥ 0, since 0 ≤ v ≤ u. Hence

ψ(u) = P (Xt < 0, for some 0 < t <∞ |X0 = u)

≤ P (Zt < 0, for some 0 < t <∞ |Z0 = v).

Note that Zt also satisfies (5.1.2) with initial condition Z0 = v. Hence

P (Zt < 0, for some 0 < t <∞ |Z0 = v) = ψ(v).

Therefore

ψ(v) ≥ ψ(u).

Our main tool is Itô’s formula for semimartingales with a jump part. Let

t1 < t2 < t3 < ... be the times where the Poisson process N(t) has a jump

discontinuity. Then the jump discontinuities for Pt are also at ti with jump

size ξi. Following the notations on P. 43 [10], for t > 0, and a Borel subset U

of R, we let

Np((0, t]× U) = ]{i; ti ≤ t, ξi ∈ U}.

Then Np((0, t]×U) defines a random measure Np(dtdx) on the Borel σ-algebra

on [0,∞)×R. Note that

Np(dtdx) =
∞∑
i=1

δti(dt)δξi(dx), (5.1.4)

where δti is the Dirac δ-function centered at ti (probability measure concen-

trated at one point ti). It follows that∫ t

0

∫ ∞
0

f(s, x)Np(dsdx) =
∑
i;ti≤t

f(ti, ξi), (5.1.5)
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and therefore ∫ t

0

∫ ∞
0

xNp(dsdx) =
∑
i;ti≤t

ξi = Pt. (5.1.6)

It is well-known, see e.g. P. 60 and P. 65 [10], that there exists a continuous

process N̂p((0, t]× U) such that

Ñp((0, t]× U) = Np((0, t]× U)− N̂p((0, t]× U), (5.1.7)

is a martingale. In our case

N̂p((0, t]× U) = E[Np((0, t]× U)].

E[Np((0, t]×U)] defines a measure, np(dtdx), called the mean (intensity) mea-

sure of Np(dtdx) and it is given by np(dtdx) = λp(x)dtdx.

Assume that ct = c is a constant, then equation (5.1.1) can be written as

Xt = X0 +

∫ t

0

aXsds+

∫ t

0

σXsdWs + ct−
∫ t

0

∫ ∞
0

xNp(dsdx). (5.1.8)

By (5.1.3), equation (5.1.8) has a strong solution for each fixed initial condition

(see Chapter 14 in [11]) and it is a semimartingale by Definition 4.1, P. 64 [10].

By (5.1.3) and direct calculation, we have

Xt+s = Ȳ −1
t Xs + Ȳ −1

t

∫ t

0

cȲudu− Ȳ −1
t

∫ t

0

ȲudP̄u, (5.1.9)

where

Ȳt = e−(a−σ
2

2
)t−σW̄t , (5.1.10)

W̄t = Wt+s −Ws, (5.1.11)

P̄t = Pt+s − Ps. (5.1.12)

Note that W̄t and P̄t are independent of {Xv; 0 ≤ v ≤ s} and therefore

given {Xv; 0 ≤ v ≤ s}, Xt+s depends on Xs only. This implies that Xt is

a Markov process. Moreover, since W̄t = Wt+s −Ws and Wt have the same

distribution, and P̄t = Pt+s − Ps and Pt have the same distribution, we have

P (Xt+s ∈ U |Xs = x) = P (Xt ∈ U |X0 = x), (5.1.13)
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for all t > 0, and all Borel sets U . Therefore, Xt, t ≥ 0 is a Markov process with

a stationary transition function. By (5.1.3) and the Dominated Convergence

Theorem, Xt, t ≥ 0 is a Feller process (see e.g. P. 52 [6]). Moreover, since the

sample paths of Xt are right continuous with left limits, Xt, t ≥ 0 is a strong

Markov process, see e.g. Theorem 3.10 [6].

5.2 An upper bound for ruin probability when

ρ > 1

From now on, we assume ct = c throughout the chapter unless otherwise

specified. In the following lemma, we first prove that Xt exits from any finite

interval [0, n) with probability one. This result will be used in the next three

lemmas.

Lemma 5.2.1. Consider the process Xt on [0, n), where n is a positive integer,

and let

τn = inf{t ≥ 0 : Xt 6∈ [0, n)}

be the first exit time from the interval [0, n). Then τn is finite a.s. for any

X0 = u.

Proof. Let Pu denote the probability measure given the initial condition

X0 = u. Since τn = 0 for u 6∈ [0, n), it is sufficient to consider the case

0 ≤ u < n. Our first step is to show that Pn({X1 < 0}) > 0. By (5.1.3), it is

equivalent to show that

P

(∫ 1

0

YsdPs −
∫ 1

0

cYsds > L

)
> 0,

for any L > 0.

Let δ > 0, and consider the event

Aδ = { sup
0≤s,s′≤1,|s−s′|≤δ

|Ws −Ws′| <
e−σ

2/2−σ/2

2σ
, sup

0≤s≤1
|Ws| ≤

1

2
}.
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By the uniform continuity of the path (Wt, 0 ≤ t ≤ 1), there exists δ0 > 0 such

that P (Aδ) > 0, for any 0 < δ < δ0. We also consider the event

A′δ = {0 < s1 < s2 < · · · < sN < 1, ||Γ|| < δ,N >
L

ηe−σ/2
, min

1≤i≤N
ξi > cδ + η},

where Γ = {0, s1, s2, · · ·, sN , 1}, si’s are jump times of Nt up to t = 1, N = N1,

||Γ|| = maxi=2,...,N{s1, si − si−1, 1 − sN} denotes the norm of the partition Γ

on [0, 1] and η > 0 is a constant. Since ξ is not identically zero, there exist

δ1 > 0 and η > 0 such that

P (ξ > cδ1 + η) > 0.

Then for all δ < δ1, we have

P (A′δ) > 0.

Since {Wt, t ≥ 0} and {Nt, t ≥ 0, ξi, i = 1, 2, 3...} are independent, Aδ and A′δ

are independent, and therefore P (Aδ ∩ A′δ) > 0, for all 0 < δ < min{δ0, δ1}.
Let δ2 = min{δ0, δ1, e

−σ2/2−σ/2/(σ2 − 2a), e−σ
2/2−σ/2}. If 0 < δ < δ2, and

Aδ ∩ A′δ occurs, then

sup
0≤s,s′≤1,|s−s′|<δ

|Ys − Ys′ | ≤ 1,

∫ 1

0

cYsds ≤ c
N∑
1

Ysi(si − si−1) + 2c,

and

inf
0≤s≤1

Ys ≥ e−σ/2.

Hence ∫ 1

0

YsdPs −
∫ 1

0

cYsds ≥
N∑
1

Ysiξi − c
N∑
1

Ysi(si − si−1)− 2c

≥
N∑
1

Ysi(ξi − c(si − si−1))− 2c

≥
N∑
1

Ysi(ξi − cδ)− 2c

≥ e−σ/2ηN − 2c ≥ L− 2c.
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Since L is arbitrary, we have thus proved Pn({X1 < 0}) ≡ C1 > 0. By the

Markov property at X1, X2, ...Xk, we have

Pu(0 ≤ X1 < n, 0 ≤ X2 < n, ..., 0 ≤ Xk < n})

= Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk)]

= Eu[Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk)|X1, ..., Xk−1]]

= Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk−1)EXk−1
[1[0,n)(X1)]]

≤ Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk−1)EXk−1
[1[0,∞)(X1)]].

By the comparison of the initial conditions using (5.1.3) , the above

≤ Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk−1)En[1[0,∞)(X1)]]

≤ (1− C1)Eu[1[0,n)(X1)1[0,n)(X2)...1[0,n)(Xk−1)]

≤ (1− C1)k, ∀k,

by repeating the same argument. This implies Pu(∩∞k=1{0 ≤ Xk < n}) = 0

and therefore Pu(∪∞k=1{Xk 6∈ [0, n)}) = 1. Therefore τn is finite Pu-a.s.

Theorem 5.2.1. Consider the model given by (5.1.8), assume that ρ > 1 and

c > λµ. Then

ψ(u) ≤
(
L

u

)ρ−1

∀ u ≥ L,

where L = M( c
λµ

)
1
ρ (( c

λµ
)

1
ρ − 1)−1.

Remark 5.2.1. This theorem shows that the probability of ruin has at least an

algebraic decay rate if 2a/σ2 > 1. In fact, we obtain a slightly stronger result

in the proof below:

ψL(u) ≤
(
L

u

)ρ−1

∀ u ≥ L.

Proof. Let F (x) = x1−ρφ(x), and φ(x) is a C∞ function such that φ(x) = 1

for L − ε < x < n + ε and φ(x) = 0 for x ≤ L − 2ε or x ≥ n + 2ε. Here ε

is chosen so small that L − 2ε > 0. The function F is a C∞ function with



53

compact support ⊂ [L− 2ε, n+ 2ε]. Applying Itô’s formula [10], we have

F (Xt)− F (X0) =

∫ t

0

F ′(Xs)(aXs + c) ds+

∫ t

0

F ′(Xs)σXsdWs

+
1

2

∫ t

0

F ′′(Xs)σ
2Xs

2 ds

+

∫ t

0

∫ M

0

F (Xs− − x)− F (Xs−) Np(dsdx).

Note that since F is a C∞ function with compact support ⊂ [L− 2ε, n + 2ε],∫ t
0
F ′(Xs)σXsdWs is a martingale. We consider the process Xt on [L, n), where

n is an integer (> L), and let

τn = inf{t > 0 : Xt 6∈ [L, n)}

be the first exit time from the interval [L, n). Then

F (Xt∧τn)− F (X0) =

∫ t∧τn

0

(1− ρ)(Xs)
−ρ(aXs + c) ds+

∫ t∧τn

0

(1− ρ)(Xs)
−ρσXsdWs

+
1

2

∫ t∧τn

0

(1− ρ)(−ρ)(Xs)
−ρ−1σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

[(Xs− − x)1−ρ − (Xs−)1−ρ] Np(dsdx).

Hence

F (Xt∧τn) = F (X0) + mart. +

∫ t∧τn

0

(1− ρ)(Xs)
−ρ(aXs + c) ds

+
1

2

∫ t∧τn

0

(1− ρ)(−ρ)(Xs)
−ρ−1σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

[(Xs− − x)1−ρ − (Xs−)1−ρ] N̂p(dsdx)

≤ F (X0) + mart. +

∫ t∧τn

0

(1− ρ)(Xs− −M)−ρ(−x)λp(x)ds.

Here, and through-out this chapter, mart. denotes a martingale at time t.

The above inequality holds because

(Xs−−x)1−ρ−(Xs−)1−ρ ≤ (1−ρ)(Xs−−x)−ρ(−x) ≤ (1−ρ)(Xs−−M)−ρ(−x), ∀Xs− ≥M.

Notes that



54

(Xs− −M)−ρ ≤ (Xs−)−ρ
c

λµ
, ∀ Xs− ≥ L.

Hence

F (Xt∧τn) ≤ F (X0) + mart. +

∫ t∧τn

0

(1− ρ)(Xs− −M)−ρ(−x)λp(x)ds

≤ F (X0) + mart. +

∫ t+

0

∫ M

0

(1− ρ)
c

λµ
(Xs−)−ρ(−x)λp(x)dxds

= F (X0) + mart. (5.2.1)

for any t ≥ 0 and Xs− > L. Taking expectation on both sides of the above

inequality, and by the Optional Stopping Theorem, we have

E[F (Xτn)] ≤ E[F (X0)]. (5.2.2)

Since ξj > 0 for all j = 1, 2, . . ., we have Xτn = n or Xτn < L. Moreover, since

F (x) is decreasing. By Lemma 5.2.1, P (τn <∞) = 1 a.s. Let t→∞, and by

the Dominated Convergence Theorem, we have

E[F (Xτn)] ≥ 1

Lρ−1
P (Xτn < L |X0 = u) +

1

nρ−1
P (Xτn = n |X0 = u).

Hence

1

Lρ−1
P (Xτn < L |X0 = u) +

1

nρ−1
P (Xτn = n |X0 = u) ≤ 1

uρ−1
.

Therefore

P (Xτn < L |X0 = u) ≤
(
L

u

)ρ−1

.

Let n go to infinity, we have

ψL(u) ≤
(
L

u

)ρ−1

.

Since ψ(u) ≤ ψL(u), we have

ψ(u) ≤
(
L

u

)ρ−1

∀ u ≥ L.
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5.3 Ruin at certain level of u∗ > 0

By using a martingale argument, we prove that the price of the risky asset

will drop below a threshold with probability one for all initial capital u, if

ρ ≤ 1 and the distribution of the claim size has a bounded support.

Lemma 5.3.1. Consider the model given by (5.1.8) and assume that ρ < 1.

Then there exists u∗ > 2M, such that

ψu∗(u) = 1, ∀ u ≥ u∗.

Proof. Let F (x) = xαφ(x), where 0 < α < 1−ρ, and φ(x) is a C∞ function

such that φ(x) = 1 for M − ε < x < n + ε and φ(x) = 0 for x ≤ M − 2ε or

x ≥ n+2ε. Here ε is chosen so small that M−2ε > 0. The function F is a C∞

function with compact support ⊂ [M − 2ε, n+ 2ε]. Applying Itô’s formula, we

have

F (Xt)− F (X0) =

∫ t

0

F ′(Xs)(aXs + c) ds+

∫ t

0

F ′(Xs)σXsdWs

+
1

2

∫ t

0

F ′′(Xs)σ
2Xs

2 ds

+

∫ t

0

∫ M

0

F (Xs− − x)− F (Xs−) Np(dsdx).

Note that since F is a C∞ function with compact support ⊂ [M − 2ε, n+ 2ε],∫ t
0
F ′(Xs)σXsdWs is a martingale. Let u∗ = max(2M, 2c/σ2(1− ρ− α)). We

consider the process Xt on [u∗, n), where n is an integer (> u∗), and let

τn = inf{t > 0 : Xt 6∈ [u∗, n)}

be the first exit time from the interval [u∗, n). Then

F (Xt∧τn)− F (X0) =

∫ t∧τn

0

α(Xs)
α−1(aXs + c) ds+

∫ t∧τn

0

α(Xs)
α−1σXsdWs

+
1

2

∫ t∧τn

0

α(α− 1)(Xs)
α−2σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

(Xs− − x)α − (Xs−)α Np(dsdx).
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Hence

F (Xt∧τn) = F (X0) + mart. +

∫ t∧τn

0

α(Xs)
α−1(aXs + c) ds

+
1

2

∫ t∧τn

0

α(α− 1)(Xs)
α−2σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

(Xs− − x)α − (Xs−)α N̂p(dsdx)

≤ F (X0) + mart. + α

∫ t∧τn

0

(Xs)
α

(
σ2

2
(ρ+ α− 1) + cX−1

s

)
ds

≤ F (X0) + mart.

∀ t ≥ 0. The above inequality holds because (Xs−−x)α ≤ (Xs−)α, ∀Xs− ≥M.

Hence

F (Xt∧τn) ≤ F (X0) + mart. (5.3.1)

Taking expectation on both sides of the above inequality, and by the Optional

Stopping Theorem, we have

E[F (Xt∧τn)] ≤ uα.

By Lemma 5.2.1, P (τn < ∞) = 1 a.s. Let t → ∞, and by the Dominated

Convergence Theorem, we have

E[F (Xτn)] ≤ uα.

Note that by (5.1.3) with ct = c for all t, Xt−Xt− ≤ 0. Therefore, for X0 < n,

if Xτn ≥ n then Xτn = n. Since F is increasing in [M,n) and u∗ −M ≥ M ,

we have

E[F (Xτn)] ≥ (u∗ −M)αP (Xτn < u∗ |X0 = u) + nαP (Xτn = n |X0 = u).

Hence

(u∗ −M)αP (Xτn < u∗ |X0 = u) + nαP (Xτn = n |X0 = u) ≤ uα.

Therefore

P (Xτn = n |X0 = u) ≤
(u
n

)α
.
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Let n go to infinity, we have

ψu∗(u) = 1− lim
n→∞

P (Xτn = n |X0 = u) ≥ 1− lim
n→∞

(u
n

)α
= 1, ∀ u ≥ u∗.

Lemma 5.3.2. Consider the model given by (5.1.8) and assume that ρ = 1.

Then there exists u∗ > 2M + 4, such that

ψu∗(u) = 1 ∀ u ≥ u∗.

Proof. Let F (x) = φ(x) ln lnx, where φ(x) is a C∞ function such that

φ(x) = 1 for M + 4 − ε < x < n + ε and φ(x) = 0 for x ≤ M + 4 − 2ε or

x ≥ n+ 2ε. Here ε is chosen so small that M + 4− 2ε > M + 3. The function

F is a C∞ function with compact support ⊂ [M + 4 − 2ε, n + 2ε]. Applying

Itô’s formula, we have

F (Xt)− F (X0) =

∫ t

0

F ′(Xs)(aXs + c) ds+

∫ t

0

F ′(Xs)σXsdWs

+
1

2

∫ t

0

F ′′(Xs)σ
2Xs

2 ds

+

∫ t

0

∫ M

0

F (Xs− − x)− F (Xs−) Np(dsdx).

Note that since F is a C∞ function with compact support ⊂ [M+4−2ε, n+2ε],∫ t
0
F ′(Xs)σXsdWs is a martingale. Let ũ be the solution of σ2x = 2c lnx, and

u∗ = max(2M + 4, ũ). We consider the process Xt on [u∗, n), where n is an

integer (> u∗), and let

τn = inf{t > 0 : Xt 6∈ [u∗, n)}

be the first exit time from the interval [u∗, n). Then we have

F (Xt∧τn)− F (X0) =

∫ t∧τn

0

(Xs lnXs)
−1(aXs + c) ds+

∫ t∧τn

0

(Xs lnXs)
−1σXsdWs

+
1

2

∫ t∧τn

0

(− lnXs − 1)(Xs lnXs)
−2σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

[ln ln(Xs− − x)− ln lnXs− ] Np(dsdx).
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Hence

F (Xt∧τn) = F (X0) + mart. +

∫ t∧τn

0

(Xs lnXs)
−1(aXs + c) ds

+
1

2

∫ t∧τn

0

(− lnXs − 1)(Xs lnXs)
−2σ2Xs

2 ds

+

∫ t∧τn

0

∫ M

0

[ln ln(Xs− − x)− ln lnXs− ] N̂p(dsdx)

≤ F (X0) + mart. +

∫ t∧τn

0

(
cX−1

s −
σ2

2 lnXs

)
(lnXs)

−1ds.

The above inequality holds because ln ln(Xs− − x) ≤ ln lnXs− , ∀Xs− ≥ M.

Hence

F (Xt∧τn) ≤ F (X0) + mart. (5.3.2)

Taking expectation on both sides of the above inequality, and by the Optional

Stopping Theorem, we have

E[F (Xt∧τn)] ≤ ln lnu.

By Lemma 5.2.1, P (τn < ∞) = 1 a.s. Let t → ∞, and by the Dominated

Convergence Theorem, we have

E[F (Xτn)] ≤ ln lnu.

Since F (x) is increasing in (M + 4− ε, n+ ε) and u∗ −M ≥M + 4, we have

E[F (Xτn)] ≥ ln ln(u∗ −M)P (Xτn < u∗ −M |X0 = u)

+ ln lnnP (Xτn = n |X0 = u).

Hence

ln ln(u∗−M)P (Xτn < u∗−M |X0 = u)+ ln lnnP (Xτn = n |X0 = u) ≤ ln lnu.

Therefore

P (Xτn = n |X0 = u) ≤ ln lnu

ln lnn
.

Let n go to infinity, we have

ψu∗(u) = 1− lim
n→∞

P (Xτn = n |X0 = u) ≥ 1− lim
n→∞

ln lnu

ln lnn
= 1, ∀ u ≥ u∗.
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5.4 Ruin at the level of zero

From the last section, we have proved that the price of the risky asset will

drop below a threshold with probability one for all initial capital u, if ρ ≤ 1

and the distribution of the claim size has a bounded support. In this section,

assuming that ct is a constant c and using a reduction argument, we will prove

that the ruin probability is equal to one if ρ ≤ 1 and the distribution of the

claim size has a bounded support. First we prove the following reduction

lemma.

Lemma 5.4.1. (Reduction Lemma) Let u∗ > 0 be any positive real number

and [0,M ], 0 < M < ∞ be the support of the distribution for ξ1. Suppose

ψu∗(u) = 1, for all u ≥ u∗. Then

ψK(u) = 1, ∀ u ≥ K = max(u∗ − M

2
, 0).

Remark 5.4.1. u∗ > 0 in the above Lemma is any positive real number, it

needs not be the one defined in Lemma 5.3.1 or Lemma 5.3.2.

Proof. Our first step is to show that for any 0 < C1 < 1, there exists a

β0 = β0(M,C1) such that P
(
Xt ≤ u∗ + M

8
, ∀ 0 ≤ t ≤ β0 | X0 = u

)
≥ C1 > 0,

for all u∗ ≥ u ≥ K.

Let Yt, Vt be the same as in Lemma 5.1.1, and Xt = Y −1
t Vt

u the solution

of (5.1.8). Define Zt
u∗ = Y −1

t

(
u∗ + c

∫ t
0
Ys ds

)
. Since dZt

u∗ = (aZu∗
t + c)dt+

σZu∗
t dWt, Zt

u∗ is a diffusion process. By continuity of Zt
u∗ , we have

lim
β→0

sup
0≤s≤β

|Zsu
∗ − u∗| = 0, a.s.

Hence for all ε > 0 and all 0 < C1 < 1, ∃ β0 = β0(ε, C1) > 0, s.t.

P

(
sup

0≤s≤β0

|Zsu
∗ − u∗| < ε

)
≥ C1 > 0.

In particular, choose ε = M
8
, ∃ β0 = β0(M,C1) > 0, s.t.

P

(
Zt

u∗ ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0

)
≥ C1 > 0.
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Let δ be the time that the first jump occurs. Our next step is to show that

there exists C2 = C2(C1,M) > 0 such that

P (Xδ < K | X0 = u) ≥ C2 > 0, ∀ K ≤ u ≤ u∗.

Note that ∀ K ≤ u ≤ u∗, by (5.1.3) with cs = c, we have Zt
u∗ ≥ Zt

u ≥
Xt, ∀ t ≥ 0, and therefore

P

(
Xt ≤ u∗ +

M

8
, ∀ 0 ≤ t ≤ β0, δ < β0, ξ1 >

3M

4
| X0 = u

)
≥ P

(
Zt

u∗ ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0, δ < β0, ξ1 >

3M

4

)
.

Since Zt
u∗ depends on Wt, δ depends on N(t) only, and Wt, N(t) and ξi are

assumed to be independent processes, the above probability is equal to

= P

(
Zt

u∗ ≤ u∗ +
M

8
, ∀ 0 ≤ t ≤ β0

)
P (δ < β0)P

(
ξ1 >

3M

4

)
≥ C1P (δ < β0)P

(
ξ1 >

3M

4

)
= C2 > 0,

since [0,M ] is the support of the distribution of ξ1 and therefore P (ξ1 >
3M
4

) >

0. On the other hand,

P

(
Xt ≤ u∗ +

M

8
, ∀ 0 ≤ t ≤ β0, δ < β0, ξ1 >

3M

4
| X0 = u

)
≤ P

(
Xt ≤ u∗ +

M

8
, ∀ 0 ≤ t < δ, δ < β0, ξ1 >

3M

4
| X0 = u

)
≤ P

(
Xδ ≤ u∗ +

M

8
− 3M

4
= u∗ − 5M

8
< u∗ − M

2
≤ K | X0 = u

)
.

Hence

P (Xδ < K | X0 = u) ≥ C2 > 0, ∀ K ≤ u ≤ u∗.

Our final step is to show that

ψK(u) = 1, ∀ u ≥ K = max(u∗ − M

2
, 0).

Define

T1 =


inf{t > δ, Xt ≤ u∗}, if Xδ ≥ K

∞, if Xδ < K.
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Note that the infimum of an empty set is ∞. But by the assumption

ψu∗(u) = 1, for all u ≥ u∗, we have T1 = ∞ if and only if Xδ < K. Let

B = {Xt ≥ K, ∀ 0 ≤ t < ∞}. We will apply the strong Markov property at

T1 on B. To this end, we define the shift operator θs as follows (see e.g. P. 99

[6]). For a sample path of X = (Xt, t ≥ 0), θs maps a sample path to a sample

path defined by

(θsX)t = Xs+t, t ≥ 0. (5.4.1)

Thus θsX is the path that is obtained by cutting off the part of X before time

s and then shift the time so that the time s for X becomes time 0 for the new

path θsX. For a random time S(X) with values in [0,∞], we define

(θSX)t = (θS(X)X)t = XS(X)+t, t ≥ 0, if S(X) <∞. (5.4.2)

We also define the shift operator θs which maps a function of path to a function

of path. Let F (X) be a function of path. Define

(θsF )(X) = F (θsX), (5.4.3)

and

(θSF )(X) = F (θSX), if S(X) <∞. (5.4.4)

Now consider the event B, we have

P (B| X0 = u∗) = E[1B1T1<∞ | X0 = u∗] + E[1B1T1=∞ | X0 = u∗]

= E[1B1T1<∞ | X0 = u∗]

= E[1T1<∞θT1 [1B] | X0 = u∗],

since if T1 < ∞, then 1B is invariant under the shift operator θT1 . In what

follows, we denote Ex[1B] = E[1B| X0 = x]. By the strong Markov property
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of Xt (see e.g. Theorem 3.11 [6]), we have

E[1T1<∞θT1 [1B] | X0 = u∗] = E[1T1<∞EXT1
[1B] | X0 = u∗]

≤ E [1T1<∞Eu∗ [1B] | X0 = u∗]

= E[1T1<∞ | X0 = u∗]Eu∗ [1B]

≤ (1− C2)E[1B | X0 = u∗]

= P (B| X0 = u∗)(1− C2).

The first inequality holds since K ≤ XT1 ≤ u∗ on {T1 <∞}. Hence we have

P (B| X0 = u∗) ≤ P (B| X0 = u∗)(1− C2).

Therefore P (B| X0 = u∗) = 0, i.e. ψK(u∗) = 1. Since u ≤ u∗, by Lemma

5.1.1,

ψK(u) ≥ ψK(u∗) = 1.

The proof is completed.

Theorem 5.4.1. Consider the model given by (5.1.8) and assume that ρ ≤ 1.

Suppose also the jump distribution has support [0,M ],M > 0. Then

ψ(u) = 1, ∀ u ≥ 0.

Proof. By Lemma 5.3.1, Lemma 5.3.2 and the Reduction Lemma 5.4.1,

ψK1(u) = 1, ∀ u ≥ K1 = max(u∗ − M
2
, 0). Applying the Reduction Lemma

5.4.1 again, with u∗ replaced by K1, we have

ψK2(u) = 1, ∀ u ≥ K2 = max(K1 −M, 0) = max(u∗ − 2
M

2
, 0).

Repeating this argument N = d2u∗

M
e times, we have

ψKN (u) = 1, ∀ u ≥ KN = max(u∗ −NM

2
, 0) = 0,

i.e.,

ψ(u) = 1, ∀ u ≥ 0.

We have thus finished the ruin probability problem for the case of ρ ≤ 1,

ct = c and the distribution of the claim size has a bounded support.

Finally, we prove our main theorem:
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Theorem 5.4.2. Let

Xt = X0 +

∫ t

0

aXsds+

∫ t

0

σXsdWs +

∫ t

0

csds−
N(t)∑
j=1

ξj, (5.4.5)

where Wt is the standard Brownian motion, a > 0, σ ≥ 0, N(t) is a Poisson

process with intensity λ, and the claim sizes ξi; i = 1, 2, 3, ..., are independent,

identically distributed non-negative random variables, with positive mean and

finite variance. We assume that Wt, N(t), ξi are independent processes. Let

the filtration Ft = σ{Ws, Ns,
∑Ns

i=1 ξi; 0 ≤ s ≤ t}. Let ct = c(t,X) be a bounded

nonnegative (Ft)-adapted process. Suppose ρ := 2a
σ2 ≤ 1. Then the ruin proba-

bility

ψ(u) = 1, ∀ u ≥ 0.

Proof. Our first step is to extend Theorem 5.4.1 to the case where the

same assumptions hold except that the claim size has an unbounded support.

Let M > 0 be a large constant, define

ξ̂i =


ξi, if ξi ≤M

M, if ξi > M,

and P̂t =
∑N(t)

j=1 ξ̂j . Let Yt, Vt be the same as in Lemma 5.1.1, and Xt = Y −1
t Vt

u

be the solution of (5.1.8). Define

Zt = Y −1
t

(
u+ c

∫ t

0

Ys ds−
∫ t

0

Ys dP̂s

)
,

then Zt ≥ Xt, ∀ t ≥ 0. Hence

ψ(u) = P (Xt < 0, for some 0 < t <∞ | X0 = u) (5.4.6)

≥ P (Zt < 0, for some 0 < t <∞ | Z0 = u). (5.4.7)

On the other hand, since dZt = (aZt + c)dt+σZtdWt−dP̂t, Zt satisfies (5.1.8)

with bounded claim size distribution. Hence, by Theorem 5.4.1,

P (Zt < 0, for some 0 < t <∞ | Z0 = u) = 1, ∀ u ≥ 0.
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Therefore

ψ(u) = 1, ∀ u ≥ 0.

Next we prove the general situation where ct is bounded but not necessarily

a constant.

Let Xt = Y −1
t Vt

u be the solution of (5.1.2) given by (5.1.3). Define

Zt = Y −1
t

(
u+ c

∫ t

0

Ys ds−
∫ t

0

Ys dPs

)
,

where ct ≤ c for all t. Then Zt ≥ Xt, ∀ t ≥ 0. Hence

ψ(u) = P (Xt < 0, for some 0 < t <∞ | X0 = u) (5.4.8)

≥ P (Zt < 0, for some 0 < t <∞ | Z0 = u). (5.4.9)

On the other hand, by Ito’s formula, dZt = (aZt + c)dt + σZtdWt − dPt, i.e.,

Zt satisfies (5.1.8). Hence, by the result of the first step, we have

P (Zt < 0, for some 0 < t <∞ | Z0 = u) = 1, ∀ u ≥ 0.

Therefore

ψ(u) = 1, ∀ u ≥ 0.
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