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ABSTRACT

COMPUTING GENERATORS FOR RINGS

OF MULTIPLICATIVE INVARIANTS

Marc Stetson Renault

DOCTOR OF PHILOSOPHY

Temple University, August, 2002

Dr. Martin Lorenz, Chair

The study of the relationship between a ring R and its subring of invariants RG

under the action of a group G, invariant theory for short, is a classical algebraic

theme permeating virtually all areas of pure mathematics, some areas of applied

mathematics, notably coding theory, and certain parts of theoretical physics as well.

Although the field of invariant theory is over a century old, one particular branch,

multiplicative invariant theory, has emerged and attracted much attention in the last

35 years. In multiplicative invariant theory one considers a free abelian group A of

finite rank n (A ∼= Zn) on which a group G acts by automorphisms (G → GLn(Z)).

The G-action on A extends uniquely to an action on the group algebra R = k[A]

(R ∼= k[x1, x
−1
1 , . . . , xn, x−1

n ]).

The motivating problem of this dissertation can be summed up as follows:

Let A be a free abelian group of finite rank, let k be any commutative
ring, and let G be a finite group acting multiplicatively on the group alge-
bra k[A]. Construct and implement an efficient algorithm for computing
generators for k[A]G, the subalgebra of multiplicative invariants.

Finding explicit generators for invariants has always been at the heart of clas-

sical invariant theory; in recent years powerful algorithms have been developed for

the computation of invariants in the classical setting. However, very little has been

done for the computation of multiplicative invariants (exceptions include [Lor01] and

[Rei02]).
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In Chapter 3 we provide algorithms for computing generators for k[A]G when G

is a reflection group (§3.3), and in chapter 4 we compute generators for k[A]G when

G is a subgroup of a reflection group (§4.2). The algorithms have been implemented

in the computer algebra system Magma, and the program source code along with

sample output can be found in the appendices.
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CONVENTIONS AND

NOTATION

The following conventions and notation will be used throughout, unless explicitly

stated otherwise. For items with more complete definitions given in the text, we

include the section number where information can be found.

Notation Description See

k a commutative ring

R+ the nonnegative real numbers

Q+ the nonnegative rational numbers

N the nonnegative integers (note 0 ∈ N)

R+S, NS for S a subset of a real vector space, R+S :=
∑

s∈S zss with

zs ∈ R+ almost all zero; similar for NS

2.4.6

S + T { s + t : s ∈ S, t ∈ T }, for S, T subsets of a commutative

monoid

trG(r) for a ring R, a finite group G ⊆ Aut(R), and r ∈ R, this is

the G-trace of r, namely,
∑

g∈G rg

2.2.2

A a free abelian group of finite rank n; note A ∼= Zn 2.2.1

k[A] the group ring of A over k; note k[A] ∼= k[x±1
1 , . . . , x±1

n ] 2.2.1

a, b, c, d elements of A, called monomials or lattice points

f , p, q elements of k[A], called Laurent polynomials
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a∗ the canonical image of a ∈ A in k[A]; a typical f ∈ k[A] can

be uniquely written as f =
∑

a∈A kaa
∗ with the ka ∈ k almost

all zero

2.3.1

G, H finite subgroups of GL(A)

V the R-vector space A⊗Z R of dimension n; we consider A ⊆ V

and GL(A) ⊆ GL(V )

2.4.3

vg the image of v ∈ V under the automorphism g ∈ G ⊆
GL(A) ⊆ GL(V )

2.4.1

vG { vg : g ∈ G }, the orbit of v under G 3.2.1

σG(a)
∑

b∈aG b∗ ∈ k[A]G, the (monomial) orbit sum of a 2.3.2

( , ) a positive-definite, symmetric, bilinear, G-invariant inner

product on V

2.4.3

π the orthogonal projection V � (V G)⊥ 2.4.3

r dim π(V ) 2.4.3

ρ Id−π, the orthogonal projection V � V G 2.4.3

E the r-dimensional R-vector space π(V ) 2.4.3

Hg the hyperplane in V that is fixed by a reflection g ∈ GL(A) ⊆
GL(V )

2.4.1

Ag the infinite cyclic group H⊥
g ∩ A 2.4.3

±ag the two generators for Ag 2.4.3

Φ {±ag : g ∈ G is a reflection }, a crystallographic root system

for E; note Φ ⊆ A ∩ E

2.4.2

∆ a base of Φ 2.4.2

δ an element of ∆, called a simple root

Λ { v ∈ E : v − vg ∈ A ∀ g ∈ G }, the weight lattice; note

ZΦ ⊆ Λ ⊆ E

2.4.4

Λ+, Λ+(∆) {λ ∈ Λ : (λ, δ) ≥ 0 ∀ δ ∈ ∆ }, the set of dominant weights

relative to ∆

2.4.4

λ1, . . . , λr the fundamental dominant weights 2.4.4
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C, C(∆) { v ∈ V : (v, δ) > 0 ∀ δ ∈ ∆ }, the Weyl chamber relative

to ∆

C, C(∆) { v ∈ V : (v, δ) ≥ 0 ∀ δ ∈ ∆ }, the closure of C(∆) in V 2.4.6

v̄ the unique element in the set vG ∩ C 3.2.1

D A ∩ C; note π(D) ⊆ Λ+ ⊆ 1
m

π(D) for some 0 6= m ∈ N 2.4.6

DCC the descending chain condition; an ordered set with DCC has

no infinite sequence a1 > a2 > · · ·
3.2.1

∼ for v, w ∈ V , write v ∼ w if 0 = π(w̄ − v̄) ∈ R+∆ 3.2.1

< for v, w ∈ V , write v < w if 0 6= π(w̄ − v̄) ∈ R+∆ 3.2.1

< for p, q ∈ k[A], write p < q if for each x ∈ HM(p) there exists

some y ∈ HM(q) such that x < y

3.2.1

mi niλi where 0 6= ni ∈ N is minimal such that niλi ∈ π(A) 3.4

KM the zonotope
∑r

i=1[0, mi] ⊆ E 3.4

Z π(A) ∩ KM \ { 0 }, note Z generates D 3.4

X↑T
⋃

t∈T X t, where X ⊆ V and T ⊆ H, a reflection group 4.2

Di Dhi, where { Id = h1, h2, . . . , hu } is a left transversal for G in

H, a finite reflection group

4.2

Di D1 := D, Di := Di \
⋃

j<i Dj↑G for 2 ≤ i ≤ u 4.2

Ωi a minimal set such that Di = Ωi + Di 4.2

Hω the isotropy (stabilizer) subgroup of H for ω 4.2

≺ Given p, f ∈ k[A] write p ≺ f if p < f or if p ≯ f and

min { i : HM(p) ∩ Di 6= ∅ } > min { i : HM(f) ∩ Di 6= ∅ }.
4.2
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CHAPTER 1

INTRODUCTION

1.1 For the Non-mathematician

Invariant theory is part of abstract algebra, a discipline that is largely concerned

with the study of “algebraic structures”. For example, one has the sense that the

integers { . . . ,−2,−1, 0, 1, 2, . . . } are somehow structurally different from the real

numbers (all the numbers on the number line) which are somehow different than

the complex numbers (the set of all numbers of the form a + bi where a and b are

real numbers and i =
√
−1), and so forth. The algebraist describes, exactly and

mathematically, structures such as these.

Within abstract algebra, the invariant theorist studies the set of polynomials (ob-

jects like 5x3 + 2y− 1, or x2y + 3z, for example), which is a type of structure called a

ring. This means, essentially, that one can add, subtract, and multiply polynomials

together to get other polynomials. One can act upon the ring of polynomials, mod-

ifying all polynomials according to a fixed rule. For instance, we can interchange x

and y in all the polynomials. Remarkably, when this happens, some polynomials will

remain unchanged (x2 + y2 = y2 + x2), while others are changed ( 2x− y 6= 2y − x ).

Those polynomials that remain unchanged are said to be invariant and in fact the set

of all the invariant polynomials forms a ring called the ring of invariants (check: if

you add together two invariant polynomials or if you multiply two invariant polynomi-

als, the result is always an invariant polynomial). Acting on the ring of polynomials
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in different ways, i.e., using different rules for how to modify polynomials, creates

different rings of invariants. Invariant theory is the study of these rings of invariants.

It always happens that a ring of invariants contains infinitely many elements, and

yet often all these elements can be described by just a few “generators”, which are in

some sense the building blocks for the entire ring: every element in the ring is a sum

of products of generators. The idea is that if we can find the generators, then we can

describe the entire ring. A helpful analogy may be to consider the English language.

Although infinitely many sentences are possible, every sentence is composed of words

which in turn are composed of different combinations of just 26 letters. The words

correspond to elements of the ring of invariants, and the letters correspond to the

generators of that ring.

Finally, it needs to be noted that invariant theory takes essentially two different

forms: “linear” and “multiplicative”. Traditionally, invariant theory has focused on

the linear case. However, within the last 30 years or so, the study of multiplicative

invariant theory has grown and attracted some keen interest.

History

Historically, great importance has been placed on finding generators. From its

inception, finding explicit generators for rings of invariants has been at the core of

invariant theory.

Isaac Newton noticed a curious thing about the polynomial x2+y2+z2. No matter

how one permutes the variables, the polynomial remains unchanged. However, this

is not true for a polynomial such as 2x + y + z. Polynomials that remain unchanged

in this way are said to be “invariant under permutation”. In fact, the set of all

polynomials in three variables that are invariant under permutation can be described

using just three generating polynomials, x + y + z, xy + xz + yz, and xyz, in that

every invariant is a sum of products of these three polynomials. Waring generalized

this result to polynomials with arbitrarily many variables [Van85, p.77].

The father of modern invariant theory, David Hilbert (1862 – 1943), put invariant

theory into a much more abstract setting, giving it a broader scope and more appli-
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cation. The theory he developed is still valuable to modern theoretical physics, and

has been applied to coding theory as well. As Waring found generators for the ring

of invariants under permutation, so Hilbert sought generators in the more abstract

setting. Although rings of invariants have infinitely many elements, Hilbert proved

that a great number of them have only finitely many generators. However, his results

did not provide a way to actually construct the generators.

Emmy Noether (1882 – 1935), improved Hilbert’s results by showing that a much

larger class of invariant rings, in fact “almost all” invariant rings, have finitely many

generators. Moreover, she created an algorithm that could actually find generators.

However, from a computational point of view, her algorithm is unsatisfactory because

it is extremely inefficient and it creates far more generators than are actually required.

Current Research

Just a few years ago an 80-year-old open question based on Noether’s work con-

cerning the degrees of the generators was resolved independently by Fleischmann and

Fogarty [DK02, §3.7]. Without a doubt, invariant theory is an active area of research;

invariant theory conferences are held and exciting results continue to be published.

Recent developments in invariant theory include an algorithm, implemented by

Gregor Kemper, that efficiently computes generators for some rings of invariants un-

der linear actions. Although much progress has been made in computational linear

invariant theory, there is almost no literature on the computational aspects of mul-

tiplicative invariant theory (exceptions include [Lor01] and [Rei02]). The aim of this

work is to start filling that gap by presenting algorithms for computing generators of

rings of invariants under multiplicative actions.

1.2 A More Mathematical Introduction

The study of the relationship between a ring R and its subring of invariants RG

under the action of a group G, invariant theory for short, is a classical algebraic

theme permeating virtually all areas of pure mathematics, some areas of applied
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mathematics, notably coding theory (e.g., [Slo77] and the references therein), and

certain parts of theoretical physics as well.

In the most traditional setting, the ring R is a polynomial algebra k[x1, . . . , xn]

over a field k and G acts on R via linear transformations of the space of variables V =
∑n

i=1 kxi. This type of action is commonly called a linear action; the resulting algebra

of invariants RG is often referred to as an algebra of polynomial invariants. The ring

theoretic properties of RG have been rather thoroughly explored, especially for finite

groups G. Early work of Hilbert [Hil90, Hil93] and of E. Noether [Noe16, Noe26]

established that RG is an integrally closed affine domain over k and R is a finitely

generated RG-module. More precise structural information is available when the

characteristic of the base field k does not divide the order of G (the nonmodular

case). The invariant algebra RG is then known to be Cohen-Macaulay (Hochster

and Eagon [HE71]). Furthermore, by the Shephard-Todd-Chevalley theorem [ST54],

[Che55], RG is a polynomial algebra over k precisely if G acts as a pseudoreflection

group on V .

More recently, another type of action, usually called a multiplicative action, has

attracted much attention. This action arises from G-lattices, that is, from free abelian

groups A of finite rank n on which the group G acts by automorphisms. The G-action

on A extends uniquely to an action on the group algebra R = k[A]. In explicit terms,

after choosing a Z-basis, A can be viewed as Zn, the G-action on A is given by a

homomorphism G → GLn(Z), and the group algebra R = k[A] becomes the Laurent

polynomial algebra k[x1, x
−1
1 , . . . , xn, x−1

n ].

Multiplicative actions are technically more demanding than their linear counter-

part, mainly due to the lack of a suitable grading on k[A] preserved by the G-action.

In addition, since the action is represented by integer matrices, the subject has an

arithmetic aspect not present in the linear case. Multiplicative actions occur nat-

urally in a variety of contexts including centers and prime ideals of group algebras

(cf. [Ros78]), representation rings of Lie algebras (see [Bou68]), and Noether’s ratio-

nality problem (e.g., [Sal87]).

The motivating problem of this dissertation can be summed up as follows:

Let A be a free abelian group of finite rank, let k be any commutative
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ring, and let G be a finite group acting multiplicatively on the group alge-
bra k[A]. Construct and implement an efficient algorithm for computing
generators for k[A]G, the subalgebra of multiplicative invariants.

Finding explicit generators for invariants is at the core of classical invariant the-

ory. In principle, Noether’s method from [Noe16] (described in Theorem 2.3) can be

adapted to deal with multiplicative (or other) invariants; it is, however, extremely

inefficient. Existing algorithms for linear invariants, implemented in the computer al-

gebra systems Maple and Magma, take advantage of the grading present in the linear

case. One can then use Poincaré series as a powerful tool for a priori calculation of

the number of independent invariants in each degree (Molien’s formula). Since k[A]

admits no suitable G-grading under the multiplicative action, new methods must be

developed.

In Chapter 3 we provide algorithms for computing generators when G is a reflection

group (§3.3) and more generally, when G is a subgroup of a reflection group (Section

4.2). Furthermore, these methods result in an algorithm that rewrites any invariant

as a polynomial in these generators. In the case where G is the symmetric group, this

latter algorithm becomes the classical algorithm for rewriting symmetric polynomials

as polynomials in elementary symmetric polynomials. The algorithms have been

implemented using the computer algebra system Magma, and the program source

code and some sample output can be found in the appendices.
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CHAPTER 2

PRELIMINARIES

2.1 Overview

In §2.2 we will compare linear and multiplicative invariant theory, and examine

some fundamental theorems giving us insight into the structure of invariant rings in

general. Section 2.3 discusses the particulars of the multiplicative setting, describing

some of the main results, and how they motivate the results of Chapter 3. Finally,

§2.4 is more technical in nature, laying down some of the details of reflection groups

and root systems, powerful tools for the computation of generators.

2.2 Invariant Theory

2.2.1 Linear and Multiplicative Invariants

In its most general form, invariant theory considers a ring R, a group G ⊆ Aut(R),

and it studies the structure of the subring of invariants

RG := { r ∈ R : rg = r ∀ g ∈ G }

where the rg denotes the image of r under g.

A major area of study within invariant theory is the study of polynomial invariants,

or linear invariant theory. Consider a free k-module V of finite rank and a group
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G ⊆ GL(V ). The action of G on V extends uniquely to k-algebra automorphisms of

Sym(V ), the symmetric algebra of V .

Sym(V ) = k ⊕ V ⊕ Sym2(V ) ⊕ Sym3(V ) ⊕ · · ·

Here Symm(V ) denotes the m-th symmetric power of V , which consists of the homo-

geneous elements of degree m. The action of G on Sym(V ) is called a linear action.

Once a basis { x1, . . . , xn } for V is fixed, Sym(V ) can be viewed as the polynomial

ring Sym(V ) ∼= k[x1, . . . , xn], and Symm(V ) as the set of homogeneous polynomials

of degree m.

Since G stabilizes V and the action of G is a k-algebra automorphism, G also

stabilizes Symm(V ), thus providing a G-invariant grading of Sym(V ). Consequently

we know the ring of invariants is graded, and tools such as Molien’s theorem allow

one to quickly compute the ring of invariants [Smi95, p.86].

Within the last 35 years or so, a new type of group action on a ring, the multiplica-

tive action (also called exponential, lattice, or monomial action), as started gaining

interest. Consider now a free abelian group A of finite rank, and a group G ⊆ GL(A).

The action of G on A extends uniquely to k-algebra automorphisms of the group ring

k[A]. If we fix a generating set {x1, . . . , xn } for A, then we can view k[A] as the

Laurent polynomial ring k[x±1
1 , . . . , x±1

n ].

Multiplicative actions stabilize a finite rank generating group of units, whereas

linear actions stabilize a finite rank generating k-subspace. In the general multiplica-

tive setting no connected G-invariant grading of k[A] is present (i.e., no G-invariant

grading whose degree 0 component is k).

2.2.2 Basic Theorems of Invariant Theory

We present two theorems that give us insight into the structure of invariant rings.

Both theorems are true for invariant theory in general, so they can be applied to

both the linear and the multiplicative settings. The first theorem is due to Noether

[Noe26]. A proof can be found in [Smi95, p. 26]. Recall that a k-algebra R is called

affine if R is finitely generated, or equivalently, if R is the homomorphic image of some
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polynomial algebra in finitely many variables over k. Also, recall that a commutative

ring is called noetherian if every ideal is finitely generated. More generally, a module

is called noetherian if every submodule is finitely generated.

Theorem 2.1 (Noether’s Finiteness Theorem). Let R be a commutative, affine

k-algebra, where k is any commutative ring. If G ⊆ Autk-alg(R) is a finite group, then

R is a finitely generated RG-module. If additionally k is noetherian, then RG is an

affine k-algebra as well.

The following consequence is used as we explore subgroups of reflection groups in

§4.2. We recall that by Hilbert’s basis theorem, any affine algebra over a noetherian

ring will itself be noetherian. Additionally, a module over a noetherian ring is a

noetherian module if and only if it is finitely generated

Corollary 2.2. If k is noetherian and G ⊆ H are finite groups contained in Autk-alg(R),

then RG is a finitely generated RH-module.

Proof. By the theorem, R is finite over RH . Since k is noetherian, RH is an affine

algebra over k, and by Hilbert’s basis theorem this implies that RH is noetherian.

Thus R is a noetherian RH -module. Submodules of noetherian modules are finitely

generated, so RG is a finitely generated RH-module.

Beyond simply knowing that the ring of invariants is finitely generated, we can

often exhibit an explicit finite set of generators for RG. The following theorem has its

origin in [Noe16], while its current form is due, independently, to Fleischmann [Fle00]

and Fogarty [Fog01], with simplification of the proof due to Benson. The most recent

statement and proof of the theorem can be found in [DK02, Cor. 3.7.4]. If G acts on

R we define the G-trace of r ∈ R as

trG(r) :=
∑

g∈G

rg.

Theorem 2.3 (Noether’s Method for Computing Invariant Generators).

Let R be a commutative, affine k-algebra, where k is any commutative ring, and let

G ⊆ Autk-alg(R) be a finite group such that |G| is invertible in k. If r1, . . . , rm are
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algebra generators for R such that the k-submodule
∑m

i=1 kri of R is G-stable, then

RG is generated by the elements trG(rd1

1 · · · rdm
m ) where (d1, . . . , dm) varies over all

m-tuples of nonnegative integers such that d1 + · · · + dm ≤ |G|.

Remark. The elements r1, . . . , rm as in the above theorem can always be found, for if

X is any finite set of algebra generators of R, then we may assign

{ r1, . . . , rm } :=
⋃

g∈G

Xg.

While this theorem does indeed provide an algorithm for computing generators of

an invariant ring, it is generally extremely inefficient. For example, suppose R is the

polynomial algebra k [x1, . . . , xn] and Sn acts on R by permuting the variables. It is

a classical result that RSn is generated by the n elementary symmetric polynomials

e1, . . . , en defined by

et :=
∑

1≤i1<i2<···<it≤n

xi1xi2 · · ·xit. (2.1)

However, were we to use Noether’s method to find generators for RSn, we would have

to compute trSn
(xd1

1 · · ·xdn
n ) for all possible sums of nonnegative integers d1+· · ·+dn ≤

n! When n = 10 this amounts to
(

10!+10
10

)

≈ 1.09× 1059 trace calculations, despite the

fact that only the 10 elementary symmetric polynomials suffice to generate RS10 .

2.3 Multiplicative Invariants

2.3.1 Set-Up

We start with a free abelian group of finite rank, (A, +), on which a finite group,

G ⊆ GL(A) acts. The G-action on A extends uniquely to an action on the group

algebra k[A], where k is any commutative ring. The operation of addition in A

becomes multiplication in k[A], and we will write a∗ for the canonical image of a

in k[A]. Observe, for instance, that (m − a)∗ = m∗(a∗)−1. Thus, a typical element

f ∈ k[A] can be uniquely written f =
∑

a∈A kaa
∗ with the ka ∈ k almost all zero.
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Definition 2.4. Write f ∈ k[A] as
∑

a∈A kaa
∗ with the ka ∈ k almost all zero. The

set

Supp(f) := { a ∈ A : ka 6= 0 }

is called the support of f .

If we choose a Z-basis { x1, . . . , xn } for A, then A can be viewed as Zn, the G-

action on A is given by an embedding G ↪→ GLn(Z), and the group algebra k[A]

becomes the Laurent polynomial algebra k[(x∗
1)

±1, · · · , (x∗
n)±1]. We will call the ele-

ments of A either lattice points (when we wish to emphasize the lattice structure of

A) or monomials (to emphasize the role of A in k[A]). We will call the elements of

k[A] Laurent polynomials.

Example 2.5. Suppose that A ∼= Z2 with ordered basis {x, y }. For ease of notation

let x = x∗ and y = y∗. so that k[A] = k[x±1,y±1], and g ∈ GL2(Z) is the matrix
(

1 −3
1 −2

)

. As an automorphism of A, g (acting from the right on row vectors) sends x

to x − 3y and y to x − 2y. As an automorphism of k[A], g sends x to xy−3 and y to

xy−2. Thus, for k1, k2 ∈ k,

(k1xy5 + k2x
−2y)g = k1(xy−3)(xy−2)5 + k2(xy−3)−2(xy−2)

= k1x
6y−13 + k2x

−1y4

2.3.2 Orbit Sums

Perhaps the most basic way to create an element of k[A]G is to construct a mono-

mial orbit sum,

σG(a) :=
∑

b∈aG

b∗,

where a ∈ A. One can take the orbit sum of any element of k[A], but our focus shall

rest exclusively on monomial orbit sums and we will simply write “orbit sum” to mean

a monomial orbit sum. Furthermore, when the context is clear, we will suppress the

subscript G.



11

Theorem 2.6. The set of orbit sums {σ(a) : a ∈ A } forms a k-basis for k[A]G.

That is, if A/G denotes a transversal for the G-orbits in A, then

k[A]G =
⊕

a∈A/G

kσ(a).

Proof. Clearly σ(a) ∈ k[A]G. The σ(a) are linearly independent since their supports

are disjoint. If f =
∑

kaa
∗ ∈ k[A]G, and g ∈ G, then f = f g =

∑

ka(a
∗)g =

∑

ka(a
g)∗. Comparing the coefficients of ag on both sides we obtain kag = ka. In

other words, the coefficients kb have the same constant value kaG for all b ∈ aG. It

follows that f =
∑

kaGσ(a) and thus the σ(a) span k[A]G as a k-module.

Corollary 2.7. k[A]G is an affine k-algebra. Furthermore, if H ⊆ GL(A) is finite

and G ⊆ H, then k[A]G is a finitely generated k[A]H-module.

Proof. The structure constants for the orbit sum basis belong to the subring k′ of k

that is generated by 1k. Thus, as a k-algebra, k[A] is defined over k′:

k[A]G = k ⊗k′ R′ where R′ =
⊕

a∈A/G

k′σ(a) = k′[A]G. (2.2)

Clearly k′ is a noetherian ring, so by Noether’s finiteness theorem 2.1, R′ is affine

over the noetherian ring k′, and hence k[A]G is an affine k-algebra.

By Corollary 2.2, k′[A]G is a finitely generated k′[A]H-module. Again from equa-

tion (2.2) it is clear that k[A]G is a finitely generated k[A]H -module.

Remark. The orbit sums σ(a) (a ∈ A) only involve the coefficients 0 and 1 from k,

hence each σ(a) can be viewed as the image of a corresponding orbit sum in Z[A].

Consequently,

k[A]G = k ⊗Z Z[A]G.

Thus, if k → k′ is any ring homomorphism, then

k′[A]G = k′ ⊗k k[A]G. (2.3)

In particular, we may work, whenever convenient, over k = Z, or at the very least

with char(k) = 0.
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Finally, while the set of all orbit sums generates k[A]G as a k-module, one can

always find a finite set of orbit sums that generates k[A]G as an algebra. Indeed, by

Corollary 2.7 above, there are finitely many algebra generators for k[A]G, and each of

these generators is a finite linear combination of orbit sums. Clearly then the (finitely

many) orbit sums occurring in these linear combinations are contained in k[A]G and

generate k[A]G.

Example 2.8. Recall definition (2.1) and let e1, . . . , en denote the n elementary

symmetric polynomials in k[x1, . . . , xn] . Now k[x±1
1 , . . . , x±1

n ] = k[x1, . . . , xn][e−1
n ]

and so

k[x±1
1 , . . . , x±1

n ]Sn = k[x1, . . . , xn]Sn[e−1
n ]

= k[e1, . . . , en, e−1
n ]

Now observe that ei is exactly σSn
(x1x2 · · ·xi), and e−1

n = σSn
((x1 · · ·xn)−1), so we

have found algebra generators for the ring of invariants that are orbit sums.

In Theorem 3.11 we will see how to use orbit sums to generalize this fact to

reflection groups.

2.3.3 Basic Results

We record here some basic results about the structure of rings of multiplicative

invariants to motivate the findings in Chapter 3. The articles [Far84, Far85] are

recommended as a good introduction to multiplicative invariant theory.

One of the most celebrated results of linear invariant theory is the so called

Shephard-Todd-Chevalley theorem [ST54, Che55]; many of the theorems in multi-

plicative invariant theory are the result of finding analogies to the Shephard-Todd-

Chevalley theorem in the multiplicative setting. It should be mentioned that Serre

[Ser67] was also a significant contributor to the Shephard-Todd-Chevalley theorem.

Recall that in the linear setting V is a free k-module of finite rank, and G ⊆ GL(V ).

The group G is called a pseudoreflection group if it is generated by pseudoreflections,

that is, elements g ∈ G such that Id−g has rank 1. Recall that for a k-module V of

finite rank, Sym(V ) can be realized as a polynomial algebra.
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Theorem 2.9 (Shephard-Todd, Chevalley, Serre). Assume G ⊆ GL(V ) is finite

and that k is a field with char(k) - |G|. Then: Sym(V )G is a polynomial algebra over

k if and only if G is a pseudoreflection group.

In the multiplicative setting, the first analogous question one might ask is, when

is k[A]G a group algebra? The following proof is found in [Lor01].

Proposition 2.10. k[A]G is a group algebra if and only if G acts trivially on A.

Proof. Of course “only if” is the only interesting direction. We may assume k to be

a field by fixing a map k → K into a field K and using equation (2.3). The group

of units of k[A] is given by U(k[A]) = U(k) × A. [This follows from the fact that

A is an ordered group (c.f. [Pas71, pp. 112 – 114]). Alternatively, viewing k[A] as

the Laurent polynomial algebra in n indeterminates, one can argue by induction on n

using a degree argument.] Since group algebras are generated, as k-algebras, by units,

and U(k[A]G) = U(k[A])G = U(k) × AG, our hypothesis implies that k[A]G = k[AG].

By Noether’s Finiteness Theorem k[A] is integral over k[A]G, but on the other hand,

A/AG is torsion-free. Thus we must have A = AG, as desired.

At the other extreme, the following theorem, proved independently in [Ste75] and

[Far84], addresses the circumstances under which k[A]G is a polynomial ring. Note

that a group G is called a reflection group if it is generated by reflections, that is,

pseudoreflections g ∈ G such that g2 = Id.

Theorem 2.11. k[A]G is a polynomial ring if and only if G is a reflection group and

A can be realized as a weight lattice whose Weyl group is G.

We shall make a more thorough examination of reflection groups, weight lattices,

etc. in the next section. The above theorem is actually a special case of the next one

[Ste75, Far86].

Theorem 2.12. Let G ⊆ GL(A) be a finite group. Then k[A]G is the tensor product

of a polynomial ring and a group algebra if and only if G acts as a reflection group

on A/AG and A/AG can be realized as a weight lattice whose Weyl group is induced

by G.



14

In fact, we can push the generality even further. The following is implicit in

[Far85] and made explicit in [Lor01].

Theorem 2.13. Let G ⊆ GL(A) be a finite reflection group. Then k[A]G = k[M ] for

some monoid M that can be embedded into Zn for some n.

In [Lor01] Lorenz indicates how to compute a finite set of monoid generators for

such an M , thus producing algebra generators for k[A]G. The converse of the above

theorem is currently an open problem.

In §3.3 we will derive a slightly different set of algebra generators which, while

not generating k[A]G as a monoid algebra, do lend themselves nicely to computation.

Continuing the theme of generalizing the above theorems, §4.2 addresses the issue of

computing algebra generators for k[A]G when G is a subgroup of a reflection group.

The next theorem, due to Z. Reichstein [Rei02] makes use of the recent notion of

a SAGBI basis to create another analog to the Shephard-Todd-Chevalley theorem.

The term SAGBI stands for “Subalgebra Analog to Gröbner Bases for Ideals”, and

was introduced by Robbiano and Sweedler in [RS90]. Such bases are characterized

by the existence of the subduction algorithm, a particularly “nice” algorithm making

it possible to express any element in the subalgebra as a polynomial in the basis

elements.

Theorem 2.14. k[A]G has a finite SAGBI basis if and only if G is a reflection group.

Note that not all subalgebras have SAGBI bases, and even though a finite SAGBI

basis may not exist, there may still exist a finite generating set and an algorithm

capable of expressing subalgebra elements in terms of the generators. This will be

the case when we treat invariants under subgroups of reflection groups.

2.4 Reflection Groups, Root Systems, and Weight

Lattices

We follow the basic notions and notation laid out by Humphries [Hum72, Hum90].
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2.4.1 Reflections

Start with E, a real finite dimensional vector space with a positive definite sym-

metric bilinear form (α, β).

Definition 2.15. A reflection is a linear operator g on E which sends some nonzero

vector α to −α (written exponentially, αg = −α) and fixes pointwise the hyperplane

Hg that is orthogonal to α. Equivalently, a reflection is a linear operator g on E with

rank(g − Id) = 1 such that g2 = Id.

Indeed, since E = Rα⊕Hg, the matrix of a reflection g with respect to a basis of

E obtained by completing α by a basis of Hg is the diagonal matrix diag(−1, 1, . . . , 1).

Thus g2 = Id and rank(g − Id) = 1. Conversely, suppose g ∈ GL(E) satisfies g2 = Id

and rank(g − Id) = 1. Putting L := Im(g − Id) and H := Ker(g − Id) we have

dim L = 1 and dim H +dim L = dim E. Thus L is a line on which g acts as −1 (since

g2 = Id), and H is a hyperplane on which g acts trivially. Thus E = L ⊕ H and by

the G-invariance of ( , ), we must have H ⊆ L⊥ and so H = L⊥.

We label the reflection that takes α to −α by gα and note that gα = gcα for any

c ∈ R.

Definition 2.16. A group G ⊆ GL(E) is called a reflection group if it is generated

by reflections.

Not every element of a reflection group is a reflection, and reflection groups may

contain more reflections than are needed to generate the group.

If gα is a reflection and β ∈ E, then we observe

βgα = β − 2(β, α)

(α, α)
α. (2.4)

The scalar 2(β, α)/(α, α) occurs often enough to warrant an abbreviation, 〈β, α〉.

2.4.2 Root Systems

A subset Φ of E is called a crystallographic root system in E if the following

conditions are satisfied:
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1. Φ is finite, spans E, and does not contain 0.

2. If α ∈ Φ then ±α ∈ Φ, but no other scalar multiples of α are in Φ.

3. If α ∈ Φ, then the reflection gα stabilizes Φ.

4. If α, β ∈ Φ then 〈β, α〉 ∈ Z.

Because of condition (2), Φ is often called a reduced root system (e.g. [Bou68]).

Condition (4) is often called the crystallographic condition.

The lattice ZΦ ⊆ E is called the root lattice. Given a crystallographic root system

Φ in E, the group W generated by the reflections gα (α ∈ Φ) is called the Weyl group

for Φ.

Every root system Φ contains a subset ∆, called a base of Φ such that

1. ∆ is a basis for E,

2. Φ ⊆ N∆ ∪ −N∆.

By the notation N∆, we mean the set of all finite sums
{
∑

δ∈∆ nδδ : nδ ∈ N
}

. The

elements δ ∈ ∆ are called simple roots, and the corresponding reflections gδ in W are

called simple reflections. As a consequence of (2), if δ1, δ2 ∈ ∆ are distinct simple

roots then the angle between them is obtuse, that is, (δ1, δ2) ≤ 0; see [Hum90, p. 9].

2.4.3 Applications to Multiplicative Invariant Theory

To see how these ideas arise in multiplicative invariant theory, embed A ∼= Zn into

the n-dimensional R-vector space

V := A ⊗Z R ∼= Rn

and view G ⊆ GL(A) as a subgroup of GL(V ). We can always construct a G-invariant

inner product on V by taking an arbitrary inner product and “averaging” it over the

group. That is, if [ , ] denotes an arbitrary inner product on V , we define a new inner

product ( , ) by

(α, β) :=
1

|G|
∑

g∈G

[αg, βg].
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Then, for any h ∈ G,

(αh, βh) =
1

|G|
∑

g∈G

[αhg, βhg] = (α, β).

Thus each member of G becomes an orthogonal transformation with respect to this

inner product.

For the remainder of this chapter we assume that

G ⊆ GL(A) is a reflection group.

Observe that V G is exactly the vector space formed by taking the intersection of the

hyperplanes Hg = V 〈g〉 for all the generating reflections g ∈ G. Define π to be the

orthogonal projection of V onto (V G)⊥, and let ρ := Id−π. Assign

E := π(V ) = (V G)⊥ and r := dim E.

It is worth noting that ρ is the usual Reynolds operator,

ρ(v) =
1

|G|
∑

g∈G

vg. (2.5)

(In particular, ρ and π = Id−ρ do not depend on the choice of inner product.) To

see the above equality, denote the right hand side above by ρ′(v) for now and observe

that ρ′(v) ∈ V G. Then ρ′ |V G= IdV G , while for v ∈ E = (V G)⊥ one calculates

(ρ′(v), ρ′(v)) =
1

|G|
∑

g∈G

(vg, ρ′(v))

=
1

|G|
∑

g∈G

(vg, ρ′(v)g)

= (v, ρ′(v))

= 0

Thus ρ′ |E= 0, and hence ρ′ is the orthogonal projection of V to V G, that is, ρ′ = ρ.

Two helpful observations can be made by considering equation (2.5):

v − vg ∈ E for all v ∈ V (2.6)
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and

π(vg) = π(v)g for all v ∈ V. (2.7)

By (2.5), ρ(v − vg) = 0, and so v − vg = π(v − vg) ∈ π(V ) = E, giving us (2.6).

Additionally, ρ(v − vg) = 0 implies ρ(v)g = ρ(v) = ρ(vg). Substituting Id − π = ρ

gives us (2.7).

We proceed now to construct a crystallographic root system Φ ⊆ A for the space

E = π(V ). Note that the construction of Φ that follows depends on the group G.

The following construction is also presented in Algorithm 1.

If g is a reflection in G, the one-dimensional vector space (Hg)
⊥ = ker(g + Id)

meets A to form an infinite cyclic group, denoted Ag. Let ag denote one of the two

possible generators for Ag and define

Φ := {±ag : g is a reflection in G } . (2.8)

Observe that Φ ⊆ E. Furthermore, by construction, we have an inclusion of lattices

ZΦ ⊆ A.

Algorithm 1 Constructing a root system from a reflection group

1: Input: a finite reflection group, G

2: Let X := { g ∈ G : g is a reflection }
3: Let R :=

⋃

g∈X { a generator of Ker(g + Id) }
4: Let Φ := {±a : a ∈ R }
5: Output: Φ

The following lemma is part of the “folklore” of finite reflection groups and its

straightforward proof appears in [Far86].

Lemma 2.17. Φ is a crystallographic root system for E.

Certainly Φ is not the only root system for E, but it is a “maximal” one contained

in A. It is clear that G restricted to E is the Weyl group for Φ.

Constructing a base ∆ for Φ is a simple matter. Note that E 6=
⋃

g Hg where

g runs over the (finitely many) reflections in G, so there exists a vector γ ∈ E not
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fixed by any reflection in G. Let Φ+(γ) denote the set of those roots α ∈ Φ such

that (α, γ) ≥ 0. A root in Φ+(γ) is called indecomposable if it cannot be written as

the sum of two roots also in Φ+(γ). Then the set of indecomposable roots, ∆(γ),

forms a base for Φ. See [Hum72, Thm. 10.1] for the proof of this fact. Algorithm 2

summarizes these ideas.

Algorithm 2 Compute a base for a root system

1: Input: A root system, Φ ⊆ E

2: repeat

3: Choose a random γ ∈ V

4: until (γ, a) 6= 0 for all a ∈ Φ

5: Let Φ+ := { a ∈ Φ : (γ, a) > 0 }
6: Let ∆ := Φ+ \ { a + b : a, b ∈ Φ+ }
7: Output: ∆

Example 2.18. Consider the group G =
〈

g1 = ( 0 1
1 0 ) , g2 =

(

−1 0
−1 1

)〉 ∼= S3, acting (by

right multiplication) on A = Z2. The elements g1 and g2 are reflections, so G is a

reflection group, and there exists a third reflection in G, namely g3 =
(

1 −1
0 −1

)

. The

other elements of G are the identity and two elements of order 3. While g2 and g3 are

not orthogonal reflections with respect to the standard inner product, all reflections

are orthogonal with respect to the inner product induced by the matrix ( 2 1
1 2 ). Figure

2.1 shows lattice A = Z2 ⊆ E = V = R2 and the hyperplanes Hi (intersecting at the

origin) fixed by the reflections gi (i = 1, 2, 3). The points ±ai are then the generators

of the infinite cyclic group H⊥
i ∩ A, and so {±ai : i = 1, 2, 3 } forms a root system

in E = V = R2. Finally, a base ∆(γ) is constructed using, for instance, γ = (1, 2).

In fact, any γ in the open region bounded on the right by H1 and bounded on the

left by H2 will produce the same base.

2.4.4 The Weight Lattice

The root system Φ gives rise to the weight lattice Λ ⊆ E, defined:

Λ := { v ∈ E = π(V ) : v − vg ∈ Ag ∀ reflections g ∈ G } . (2.9)
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    = member of A 
    = member of root system
    = member of a base, ∆ (γ )

H1 H2

H3

a2

γ

a1 a3

-a2

-a3 -a1

Figure 2.1: The root system and base described in Example 2.18.

Equivalently, by (2.4),

Λ = { v ∈ E = π(V ) : 〈v, ag〉 ∈ Z ∀ ag ∈ Φ } . (2.10)

Thirdly, we remark that Λ can be described directly, without reference to Φ as follows:

Λ = { v ∈ E = π(V ) : v − vg ∈ A ∀ g ∈ G } . (2.11)

Indeed, since ag ∈ A, the condition v − vg ∈ Ag for all reflections g ∈ G certainly

implies v − vg ∈ A for all reflections g ∈ G, and since G is generated by reflections,

v − vg ∈ A actually holds for all g ∈ G. Conversely, if v − vg ∈ A holds for all g ∈ G,

the for all reflections g ∈ G we have v − vg ∈ Ker(Id +g) ∩ A = Ag.

Finally, we remark that in the foregoing it suffices to check the conditions for all

simple reflections g ∈ G or all ag ∈ ∆. See [Hum72, p. 67].

By the above definitions for Λ it is clear that

ZΦ ⊆ Λ ⊆ E.



21

Perhaps one of the most useful lemmas for our purposes is the following, again found

in [Far86].

Lemma 2.19. π(A) ⊆ Λ.

Proof. Recalling (2.6), we know a − ag ∈ π(V ) ∩ A for any a ∈ A. Thus, using (2.7),

π(a) − π(a)g = π(a − ag) = a − ag ∈ A. By equation (2.11) it now follows that

π(A) ⊆ Λ.

Fix a base ∆ = { δ1, . . . , δr }, and let gi denote the simple reflection corresponding

to δi (so δi = agi
, and δgi

i = −δi). The fundamental dominant weights (relative to ∆)

are the weights λ1, . . . , λr ∈ Λ defined by

λi − λ
gj

i =







δi if i = j

0 if i 6= j.
(2.12)

Recalling equation (2.4), λ
gj

i = λi − 2(λi, δj)δj/(δj, δj), and hence

2(λi, δj)

(δj, δj)
=







1 if i = j

0 if i 6= j.
(2.13)

Thus {λ1, . . . , λr } is exactly the basis of E that is dual to
{

2
(δ1,δ1)

δ1, . . . ,
2

(δr ,δr)
δr

}

.

The fundamental dominant weights form a Z-basis for the weight lattice Λ:

Λ =
r
⊕

i=1

Zλi.

The monoid Λ+ = Λ+(∆) of dominant weights for ∆ is defined

Λ+ :=

r
⊕

i=1

Nλi. (2.14)

Now it is straightforward to show that

Λ+ = {λ ∈ Λ : (λ, δ) ≥ 0 ∀ δ ∈ ∆ } . (2.15)

Figure 2.2 depicts the dominant weights for a base, continuing example 2.18.
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2.4.5 Computing Fundamental Dominant Weights

In expression (2.12) we knew that λi was in E to begin with. However, any v ∈ V

satisfying

π(v) − vgj =







δi if i = j

0 if i 6= j.
(2.16)

must be contained in E since 0, δi, π(v) ∈ E. Consequently such a v would be a

fundamental dominant weight. Identify A with Zn, and let [π] and [gi] denote the

matrices of the linear transformations π and gi, with respect to the standard basis.

Then we have

π(v) − vgj = v([π] − [gi]).

Thus









λ1

...

λr









([π] − [gi]) =





















0
...

δi

...

0





















and so








λ1

...

λr









r
∑

i=1

([π] − [gi]) =









δ1

...

δr









.

Assign M :=
∑r

i=1([π] − [gi]). Then









λ1

...

λr









=









δ1

...

δr









M−1. (2.17)

One can see from the above equation that λi ∈ Qn for all i, since the entries of M

are rational and each simple root is an element of A = Zn. Consequently,

Λ ⊆ Q ⊗ A. (2.18)



23

Remark. The matrix M above is indeed invertible: with respect to a basis of V

of the form B ∪ { δ1, . . . , δr } where B is any basis of ρ(V ) = V G, the matrix of

M = r[π] −
∑r

i=1[gi] ∈ EndR(V ) is






−r Ids×s

(

2
(δi,δj)

(δj ,δj)

)

i,j=1,...,r







n×n

where s = n− r. Here the matrix in the lower right hand corner is called the Cartan

matrix of Φ. This matrix is nonsingular [Hum72, p. 55], and hence M is nonsingular.

2.4.6 Weyl Chambers

The hyperplanes Hg = V 〈g〉 (g a reflection) partition V into finitely many regions.

Definition 2.20. Let G ⊆ GL(A) be a finite reflection group. The connected com-

ponents of V \ ∪ {Hg : g is a reflection } are open sets called Weyl chambers. Let C
denote a Weyl chamber, and we will call its closure, C a closed Weyl chamber.

Equivalently, suppose Φ = {±ag : g a reflection } ⊆ V is a root system for E =

π(V ) (recall (2.8)), let γ ∈ V be a vector that is not fixed by any reflection g ∈ G,

and define the closed half-space

H+
g (γ) :=







{ v ∈ V : (v, ag) ≥ 0 } if (γ, ag) > 0

{ v ∈ V : (v, ag) ≤ 0 } if (γ, ag) < 0.
(2.19)

Then the intersection of the closed half-spaces H+
g (γ) for all the reflections g ∈ G is

a closed Weyl chamber.

The following lemma can be synthesized from the material in [Hum72, §10.1].

Lemma 2.21. There is a 1-1 correspondence between closed Weyl chambers and

bases of Φ: Given a closed Weyl chamber C, the set

{

a ∈ Φ : (γ, a) ≥ 0 ∀ γ ∈ C
}

⋂

{

a ∈ Φ : (γ, a) = 0 for some 0 6= γ ∈ C
}

forms a base for Φ; given a base ∆, the set

C(∆) = { v ∈ V : (δ, v) ≥ 0 ∀ δ ∈ ∆ } (2.20)
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    = member of base ∆
    = dominant weight (member of Λ+(∆ ))
shaded region is the Weyl chamber relative to ∆

δ 2

λ 1
δ 1

λ 2

Figure 2.2: Dominant weights and a Weyl chamber for a given base.

forms a closed Weyl chamber.

The set C(∆) is called the fundamental closed Weyl chamber relative to ∆.

A cone is a nonempty subset of an R-vector space V that is closed under linear

combinations with coefficients in R+. If S ⊆ V , then

R+S =

{

∑

s∈S

zss with zs ∈ R+ almost all zero

}

is the cone generated by S, and is the smallest cone in V containing S. A cone is

called finitely generated if it can be generated as above by a finite set. A cone is

rational if it has a generating set consisting of vectors in some Q-vector subspace U

of V with dim U = dim V . For example, we will often wish to consider the rational

finitely generated cone R+∆. A rational half-space is a set of the form

H+ = { v ∈ V : (a, v) ≥ β }

for some 0 6= a ∈ U , and β ∈ Q. If C is a cone in V , then its dual cone is the set

C∨ := { v ∈ V : (v, w) ≥ 0 ∀ w ∈ C } .

It is well-known that if C is a finitely generated cone, then (C∨)∨ = C.
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Lemma 2.22. Fix a base ∆ and let C = C(∆).

(a) C is a finitely generated rational cone in V .

(b) The dual cone of C is R+∆.

Proof. (a) It is known [BH93, p. 247] that a cone is finitely generated and rational if

and only if it is the intersection of finitely many rational half-spaces. In our setting,

V = R ⊗Z A ∼= Rn is a R-vector space and U = Q ⊗Z A ∼= Qn is a Q-vector subspace

of V with dim U = dim V . The half-spaces H+
g (γ) where g is a reflection (2.19) are

thus rational half-spaces, since ag ∈ A ⊆ U . Part (b) follows from Lemma 2.21.

We will often want to refer specifically to those elements of a closed Weyl chamber

that belong to A, and so we define

D := A ∩ C(∆) = { a ∈ A : (a, δ) ≥ 0 ∀ δ ∈ ∆ }

The following lemma is well-known.

Lemma 2.23 (Gordan’s Lemma). D is a finitely generated monoid.

Proof. Let C denote the cone R+∆. Then C is a rational convex polyhedral cone in

V and D = C∨ ∩ A. The assertion now follows from [Ful93, Prop. 1, p. 12]

The next two theorems and many related results can be found in [Hum90, §1.8]

and [Hum90, §1.12] respectively. We will use these results extensively.

Theorem 2.24. Let G ⊆ GL(A) ⊆ GL(V ) be a finite reflection group. Then G acts

simply transitively on the closed Weyl chambers of V .

Theorem 2.25. Let G ⊆ GL(A) ⊆ GL(V ) be a finite reflection group and let C ⊆ V

be a closed Weyl chamber. Then C is a fundamental domain for the action of G on

V , i.e., every G-orbit in D intersects C at exactly one point. Consequently, D is a

fundamental domain for the action of G on A.

Applying Theorems 2.6 and 2.25, we see that any f ∈ k[A]G can be written as

f = k0 +k1σ(d1)+k2σ(d2)+ · · ·+ktσ(dt) for some t where each ki ∈ k and 1 6= di ∈ D.
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Furthermore, Supp(σ(di)) ∩ D = { di }, so di is the unique orbit sum representative

in D. Thus, once D is fixed, we have a canonical way of representing orbit sums.

Since C is the intersection of closed half-spaces, it is a submonoid of (Rn, +). The

following lemma describes the role of V G in this monoid.

Lemma 2.26.

(a) V G = ∩Hg over all reflections g ∈ G.

(b) V G is precisely the set of invertible elements in C.

Proof. For (a), vg = v ∀ g ∈ G ⇐⇒ vg = v ∀ reflections g ⇐⇒ v ∈ Hg ∀ reflections.

To prove (b), first suppose that v ∈ V G. Of course −v ∈ V G also, and by Theorem

2.25, v and −v must be contained in every closed Weyl chamber. Conversely, suppose

v,−v ∈ C. Let H+
g denote the closed half-space containing C and bounded by Hg,

so by definition, C = ∩H+
g for all reflections g ∈ G. Since v,−v ∈ C, we must have

v,−v ∈ H+
g for all reflections g ∈ G. Of course v,−v ∈ H+

g implies v,−v ∈ Hg. By

(a) it now follows that v,−v ∈ V G.

Corollary 2.27. π(C) ⊆ C.

Proof. Let v ∈ C. Then π(v) = v+w for some w ∈ V G. Since v, w ∈ C, so is π(v).

From the above lemma it is clear that the monoids π(C) and π(D) have no non-

trivial invertible elements. Note AG = V G ∩ A ⊆ D.

Lemma 2.28. Fix a base ∆. Put Λ+ = Λ+(∆) and C = C(∆).

(a) Λ+ = C ∩ Λ

(b) π(D) ⊆ Λ+ ⊆ 1
m

π(D) for some 0 6= m ∈ N.

Proof. Statement (a) is an immediate consequence of equations (2.15) and (2.20). To

show (b), first notice that by Corollary 2.27 we know π(D) ⊆ C. Also, by Lemma

2.19 we know π(D) ⊆ Λ. Thus, by part (a) above, π(D) ⊆ Λ+.

For Λ+ ⊆ 1
m

π(D) it suffices to show that mλi ∈ π(D) (1 ≤ i ≤ r), since Λ+ =
⊕r

i=1 Nλi (2.14). Of course λi ∈ Q ⊗ A by (2.18), so mλi ∈ A for some 0 < m ∈ N.

Now mλi ∈ C by part (a), and mλi ∈ E, thus mλi = π(mλi) ∈ π(D).
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Definition 2.29. A set F ⊆ C is called a face of C, if there exists some v = vF ∈ R+∆

such that (v, w) = 0 for all w ∈ F , and (v, w) > 0 for all w ∈ C \ F .

Remark. V G is contained in every face of C.

Lemma 2.30.

(a) π(C) ⊆ E is a finitely generated rational cone.

(b) If F is a face of C then π(F ) is a face of π(C). Furthermore, in the notation

from Definition 2.29, we may choose vπ(F ) = vF .

(c) If F is a face of C then π(C \ F ) = π(C) \ π(F ).

Proof. (a) We simply remark without elaboration that π(C) is finitely generated as a

rational cone by the fundamental dominant weights λ1, . . . , λr.

(b) Let F be a face of C and choose v = vF ∈ R+∆ as in Definition 2.29. Let w ∈
π(F ), so w + γ ∈ F for some γ ∈ V G. Then (v, w) = (v, w) + (v, γ) = (v, w + γ) = 0.

If w ∈ π(C) \ π(F ) then w ∈ π(C), so by Corollary 2.27, w ∈ C, and by Lemma

2.26, w + γ ∈ C for all γ ∈ V G. Furthermore, w /∈ π(F ), so w + γ /∈ F for all γ ∈ V G.

Thus w + γ ∈ C \ F for all γ ∈ V G. It now follows that (v, w) = (v, w) + (v, γ) =

(v, w + γ) > 0. Furthermore, it is clear that we can choose vπ(F ) = v = vF .

(c) First suppose that w ∈ π(C \ F ), and so w ∈ π(C). Now w + γ ∈ C \ F for

some γ ∈ V G and so (v, w) = (v, w) + (v, γ) = (v, w + γ) > 0. Since π(F ) is a face of

π(C), this implies w /∈ π(F ). Hence w ∈ π(C) \ π(F ).

If w ∈ π(C) \ π(F ), then of course w ∈ C by Corollary 2.27. Since π(F ) is a

face of π(C), we must have (v, w) > 0 and thus w /∈ F . Now w ∈ C \ F , and so

w = π(w) ∈ π(C \ F ).

2.5 The Hilbert of a Monoid

We prove here a lemma about commutative monoids that will be useful to us in

§3.4. There we will apply these results to the monoid π(D). This lemma is well-

known, but we provide a proof for lack of a suitable reference.

Let (M, +) be a commutative monoid. An element 0 6= m ∈ M is called indecom-

posable if m = a + b (a, b ∈ M) =⇒ a = 0 or b = 0.
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Lemma 2.31. Let (M, +) be a commutative monoid that is

finitely generated,

cancellative (a + c = a + b =⇒ a = b for a, b, c ∈ M),

torsion-free (na = nb =⇒ a = b for a, b ∈ M and 0 6= n ∈ N), and

positive (a + b = 0, a, b ∈ M =⇒ a = b = 0).

Then

(a) There is a monoid homomorphism ϕ : M → N satisfying ϕ(m) > 0 for all

0 6= m ∈ M .

(b) M has finitely many indecomposable elements, say m1, . . . , ms. These elements

generate M , and every generating set for M contains {m1, . . . , ms }.

Proof. (a) See, e.g., [Swa92, Thm. 4.5].

(b) Clearly, all indecomposable elements must be contained in every generating

set of M . Thus, it suffices to show that the indecomposable elements of M do indeed

generate M .

Now consider an element 0 6= m ∈ M . If m is not indecomposable, then write

m = a + b with 0 6= a, b ∈ M . Using part (a), ϕ(a), ϕ(b) < ϕ(m). By induction we

know that a and b can be written as a sum of indecomposable elements of M , and

hence so can m.

The set {m1, . . . , ms } is the unique smallest generating set of M , and it is called

the Hilbert basis of M . An algorithm for computing the Hilbert basis for any finitely

generated, cancellative, torsion-free, positive monoid can be found in [Stu96, Alg.

13.2].
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CHAPTER 3

MULTIPLICATIVE

INVARIANTS UNDER FINITE

REFLECTION GROUPS

3.1 Overview

In this chapter we will describe methods for computing algebra generators for the

ring of multiplicative invariants, k[A]G, where G is a reflection group. We obtain a

result of Farkas [Far86] using an algorithmic approach. In the next chapter we will

extend our methods to obtain generators when G is a subgroup of a reflection group.

3.2 Preliminaries

We will establish a partial order on k[A] that satisfies the descending chain condi-

tion (DCC), and describe orbital polynomials, two tools that will be of major use in

the remaining sections of this chapter. First, however, we recall and fix some notation

(see Section 2.4 for definitions):

G ⊆ GL(A) is a finite reflection group;

V is the R-vector space A ⊗Z R of dimension n;

( , ) is a G-invariant inner product on V ;
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π is the orthogonal projection V → (V G)⊥ = E, and r := dim E;

Φ ⊆ A is the crystallographic root system constructed from G, for E =
π(V ), see (2.8);

∆ is a fixed base of Φ;

Λ is the weight lattice, Λ+ is the set of dominant weights w.r.t. ∆, and
{λ1, . . . , λr } are the fundamental dominant weights;

C := C(∆) = { v ∈ V : (v, δ) ≥ 0 ∀ δ ∈ ∆ } is the closed Weyl chamber
relative to ∆;

D := A∩C = { a ∈ A : (a, δ) ≥ 0 ∀ δ ∈ ∆ }. D is a fundamental domain
for the action of G on A. Recall AG ⊆ D.

3.2.1 A Partial Order

The base ∆ gives rise to a partial order on V . By Theorem 2.25 we know that for

any v ∈ V , the set vG ∩ C consists of a single element. Denote this element by v̄.

{ v̄ } := vG ∩ C (3.1)

Definition 3.1 (A partial order on V ). We write v ∼ w if π(w̄ − v̄) = 0, and we

write v < w if 0 6= π(w̄ − v̄) ∈ R+∆. We write v ≤ w to mean v < w or v = w,

and we write v . w to mean v < w or v ∼ w. In particular, v . w if and only if

π(w̄ − v̄) ∈ R+∆.

Obviously, if v < w then vg < wh for any g, h ∈ G. Now ≤ is a partial order on

V : reflexivity is clear, and transitivity follows from the fact that R+∆ is a positive

monoid (the sum of any two nonzero elements in R+∆ must be nonzero since ∆ is

a linearly independent set). This last fact also implies the antisymmetry of ≤, i.e.,

v < w and w < v is impossible.

The definition of this partial order is similar to, but slightly broader than that

given in [Hum72, p. 47], due to the possibility that V G 6= 0 in our setting. Of course,

the partial order ≤ when restricted to A is a partial order on A.

Lemma 3.2. The set A has the descending chain condition (DCC) with respect to

≤. That is, there exists no infinite sequence a1 > a2 > a3 > · · · with all ai ∈ A.
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Proof. We prove the above lemma in two steps: (1) For all a, b ∈ A we have a < b ⇐⇒
π(ā) < π(b̄), and (2) The set (Λ+, ≤) has DCC. By Lemma 2.28, π(ā), π(b̄) ∈ Λ+, so

these two conditions imply DCC on A.

(1) Observe

π
(

π(b̄) − π(ā)
)

= π
(

π(b̄) − π(ā)
)

= π(b̄) − π(ā) = π(b̄ − ā)

The first equality holds since π(C) ⊆ C (Corollary 2.27) and hence π(v̄) = π(v̄). The

second equality comes from the fact that π is idempotent. Now clearly π(b̄ − ā) ∈
R+∆ ⇐⇒ π

(

π(b̄) − π(ā)
)

∈ R+∆, that is, a < b ⇐⇒ π(ā) < π(b̄).

(2) Let µ ∈ Λ+ be given. We will show that there exist only finitely many λ ∈ Λ+

such that λ ≤ µ. Since Λ+ is a monoid (see, e.g. (2.15)), µ + λ ∈ Λ+.

By Lemma 2.28 and Definition (2.9), Λ+ = Λ ∩ C ⊆ E, so clearly µ = µ̄, λ = λ̄,

π(µ) = µ, and π(λ) = λ. By definition λ ≤ µ =⇒ π(µ − λ) ∈ R+∆, and so we must

have µ − λ ∈ R+∆. In particular, µ − λ can be written as an R+-linear combination

of simple roots δ ∈ ∆.

By equation (2.15), we see that 0 ≤ (µ + λ, µ − λ) = (µ, µ) − (λ, λ). Thus λ is

in the compact set { v ∈ E : (v, v) ≤ (µ, µ) }. Of course λ is also in the discrete set

Λ+. The intersection of a compact set with a discrete one is necessarily finite, thus

only finitely many λ ∈ Λ+ can satisfy λ ≤ µ. This proves DCC on Λ+.

Let F(V ) denote the set of all finite subsets of V . For X, Y ∈ F(V ), define X > Y

if for each y ∈ Y there exists some x ∈ X such that x > y. Note that ∅ < X for all

∅ 6= X ∈ F(V ) The following lemma can be found in [Die00].

Lemma 3.3 (König’s Infinity Lemma). F(A) with the above ordering satisfies

the descending chain condition.

Proof. Suppose for a contradiction that X0 > X1 > X2 > · · · is an infinite chain of

elements in F(A). Let P be the set of all chains of the form y0 > y1 > y2 > · · · > yn

where yi ∈ Xi. Clearly P is an infinite set. Since X0 is finite, there must exist some

x0 ∈ X0 such that infinitely many chains start at x0. Let P0 denote the set of chains

containing x0, and observe that since X1 is finite there must exist some x1 ∈ X1
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such that infinitely many chains in P0 contain x1. Let P1 ⊆ P0 denote the set of

chains containing x1 and determine x2 in the same fashion. The set Pn is infinite

for any n, and so xn+1 gets defined for all n ∈ N, thus creating an infinite chain

x0 > x1 > x2 > · · · of elements in A, and providing the contradiction we seek.

The above definitions and lemma allow us to construct a partial order with DCC

on all of k[A]. Let p ∈ k[A] be written as the finite sum p =
∑

kaa
∗ where ka ∈ k and

a ∈ A. Recall Definition 2.4, that the support of p is Supp(p) = { a ∈ A : ka 6= 0 }.
We define the set of highest monomials of p as

HM(p) = { a ∈ Supp(p) : a ≮ b for all b ∈ Supp(p) }

For example, if f = k1σ(a1) + k2σ(a2) for elements a1, a2 ∈ A with a1 > a2, then

HM(f) = Supp(σ(a1)) = aG
1 , the orbit of a1 under the action of G.

Definition 3.4. For Laurent polynomials p, q ∈ k[A] define p < q if and only if for

each x ∈ HM(p) there exists some y ∈ HM(q) such that x < y. We write p ≤ q to

mean p < q or p = q.

Lemma 3.5. This ordering of Definition 3.4 on k[A] satisfies the descending chain

condition.

Proof. This follows immediately from Lemma 3.3. Note that HM(p) = Supp(p) = ∅

for p = 0.

We finish this section with a technical lemma, a similar version of which can be

found in [Hum90, Lemma 1.12].

Lemma 3.6. If v & w, then π(v̄ − w) ∈ R+∆.

Proof. By hypothesis π(v̄ − w̄) ∈ R+∆. Assume for the moment the following claim:

v̄ − v ∈ R+∆ for all v ∈ V . If the claim is true, then π(w̄ − w) ∈ R+∆. Since R+∆

is a monoid, we get π(v̄ − w̄) + π(w̄ − w) = π(v̄ − w) ∈ R+∆. Thus it only remains

to prove the claim.
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Observe first that indeed v̄ − v ∈ E since for any g ∈ G and γ ∈ V G we get

(vg − v, γ) = (vg, γ)− (v, γ) = (v, γ)− (v, γ) = 0. Hence v̄ − v must be some R-linear

combination of ∆.

Define a new partial order (used only in this proof) on V : write v � w if and

only if w − v ∈ R+∆. It is easy to verify that this satisfies the partial order axioms.

Consider the set L = { vg : g ∈ G, vg � v }. Certainly v ∈ L and L is finite, so

there exists a maximal (w.r.t. ≺) element w ∈ L. If δ1, . . . , δr are the simple roots

we can write w = γ + z1δ1 + z2δ2 + · · · + zrδr for some γ ∈ V G and zi ∈ R. Letting

gi be the simple reflection corresponding to δi and recalling equation (2.4), we see

wgi − w = −(2(w, δi)/(δi, δi))δi. Of course wgi = vg for some g, so by the maximality

of w in L we know that wgi − w /∈ R+∆ \ { 0 } (otherwise wgi � w and wgi � v,

contradicting the maximality of w in L), and hence (w, δi) ≥ 0. This must be true

for all δi, thus proving that w ∈ C and hence w = v̄. Since v̄ � v it finally follows

that v̄ − v ∈ R+∆.

The fact from the above proof that v̄− v ∈ R+∆ for all v ∈ V can be used for the

following result.

Lemma 3.7. Let v, w ∈ V and suppose that v, w ∈ Cg
, and (v + w)` ∈ Ch

for some

g, h, ` ∈ G. Then v`, w` ∈ Ch
.

Proof. Certainly (v + w)`h−1 ∈ C, and also vg−1

, wg−1 ∈ C, so (v + w)g−1 ∈ C. We

know from Theorem 2.25 that the G-orbit of (v+w) intersects C in exactly one point,

so we have

v`h−1

+ w`h−1

= (v + w)`h−1

= (v + w)g−1

= vg−1

+ wg−1

.

Thus,

w`h−1 − wg−1

= vg−1 − v`h−1

. (3.2)

Of course vg−1

= v̄ and wg−1

= w̄, so (using the remark preceding this lemma) the

right-hand side of (3.2) belongs to R+∆, while the left-hand side of (3.2) belongs to

−R+∆. Thus they both must equal 0. That is, v` = vg−1h ∈ Ch
and w` = wg−1h ∈

Ch
.
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3.2.2 Orbital Laurent Polynomials

Definition 3.8. For a finite reflection group G ⊆ GL(A), we say that p ∈ k[A]G is

G-orbital through a if p = p′ + σG(a) and x < a for all x ∈ Supp(p′). (We will omit

the G when the context is clear). For a subgroup H ⊆ G, we say that p ⊆ k[A]H

is H-orbital through a if p = p′ + σH(a) and x < a for all x ∈ Supp(p′), where the

order, <, is determined by G as in Definition 3.1.

Of course orbit sums are orbital. Additionally, if p is orbital through a, then

HM(p) = aG, the orbit of a under G. Furthermore, if f ∈ k[A]G and HM(f) = aG for

some a ∈ A, then f is orbital only if the coefficient on a in f is 1k.

The following technical lemma is not very interesting on its own, but it will be of

use to us in several proofs to come.

Lemma 3.9. Let H1, H2 be subgroups of a reflection group G ⊆ GL(A). Suppose

p ∈ k[A]H1 is H1-orbital through a, and q ∈ k[A]H2 is H2-orbital through b. Let

x ∈ Supp(p) and y ∈ Supp(q). If π(ā + b̄) = π(xg1 + yg2) for some g1, g2 ∈ G, then

xg1 = ā and yg2 = b̄.

Before we present the proof note that ā need not be in the H1-orbit of a, and xg1

need not be in Supp(p).

Proof. Since π(ā + b̄) = π(xg1 + yg2), we can write

π(ā − xg1) = π(yg2 − b̄).

Using Lemma 3.6 we know that the left-hand side above belongs to R+∆, while the

right-hand side belongs to −R+∆. Hence,

π(ā − xg1) = π(yg2 − b̄) = 0.

Since π(ā − xg1) = 0 we can write xg1 = ā + w for some w ∈ V G = Ker(π). Since

ā ∈ C and w ∈ C (Lemma 2.26(b)), xg1 must also be in C. Thus xg1 = xg1 = x̄ and we

can write π(ā− x̄) = 0. By Definition 3.1, this says that a ∼ x. Since p is H1-orbital

through a, we must have x ∈ Supp(σH1
(a)) = aH1 . That is, x = ah for some h ∈ H1.

Now xg1 = x̄ = ah = ā. Similarly, we must have yg2 = b̄.
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Lemma 3.10. If p ∈ k[A]G is orbital through a and q ∈ k[A]G is orbital through b,

then pq is orbital through ā + b̄. In particular, HM(pq) = (ā + b̄)G.

Proof. Write p = p′ + σG(a) and q = q′ + σG(b), with a > x for all x ∈ Supp(p′) and

b > y for all y ∈ Supp(q′). Note that

Supp(pq) ⊆ Supp(p) + Supp(q). (3.3)

We first show that ā + b̄ actually is in the support of pq, with coefficient 1k. This is

immediate from the following claim.

Claim: x + y = ā + b̄ (x ∈ Supp(p), y ∈ Supp(q)) =⇒ x = ā and y = b̄.

Proof of claim: If x + y = ā + b̄, then certainly π(x + y) = π(ā + b̄). By Lemma

3.9 we conclude x = ā and y = b̄, and the claim is proved.

Since ā + b̄ ∈ Supp(pq), and pq is G-invariant, we must be able to write pq =

r′ + σ(ā + b̄) for some r′ ∈ k[A]G. We must now show that for all z ∈ Supp(r′),

z < ā+ b̄. Actually, we will show that if x+ y /∈ (ā+ b̄)G, (x ∈ Supp(p), y ∈ Supp(q))

then x + y < ā + b̄, and by (3.3) this implies our desired result. The proof consists

of our demonstrating two facts: (1) x + y . ā + b̄, and (2) if x + y ∼ ā + b̄, then

x + y ∈ (ā + b̄)G. The proofs of these facts follow below.

(1) We know that x . ā and so xg . ā for all g ∈ G. Thus by Lemma 3.6, for all

g ∈ G,

π(ā − xg) ∈ R+∆. (3.4)

Similarly,

π(b̄ − yh) ∈ R+∆ (3.5)

for all h ∈ G. Now there must exist some ` ∈ G such that x + y = (x + y)` = x` + y`.

Setting g = h = ` and adding equations (3.4) and (3.5) together yield

π(ā + b̄ − (x` + y`)) = π(ā + b̄ − x + y) ∈ R+∆.

By definition, (noting that ā + b̄ ∈ C) this implies x + y . ā + b̄.

(2) If we assume that x + y ∼ ā + b̄ then by Definition 3.1 we get

π(ā + b̄ − x + y) = 0. (3.6)
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We note that ā + b̄ = ā + b̄, and x + y = (x + y)g = xg + yg for some g ∈ G. Thus

equation (3.6) is equivalent to

π(ā + b̄) = π(xg + yg). (3.7)

Applying Lemma 3.9 we conclude xg = ā and yg = b̄. Thus (x+y)g = xg +yg = ā+ b̄

and we have x + y ∈ (ā + b̄)G, as desired.

Finally, we remark that by points (1) and (2) above, if x + y /∈ (ā + b̄)G, then

x + y < ā + b̄, and we conclude that pq is orbital through ā + b̄.

Remark. We record two straightforward observations:

1. If q ∈ k[A]G is orbital through a, then q − σ(a) ∈ k[A]G, and q − σ(a) < σ(a).

2. If f, p ∈ k[A]G such that f =
∑

kiσ(ai) and p < σ(ai) for some ai, then p < f .

3.3 Generators for Invariants Under a Reflection

Group

The following result can be found in [Far86], though we supply a new algorithmic

proof. Recall that D is a finitely generated monoid (Lemma 2.23).

Theorem 3.11. Let { a1, . . . , as } ⊆ D be a generating set for the monoid D, and

let p1, . . . , ps be orbital elements in k[A]G such that pi is orbital through ai. Then

k[A]G = k[p1, . . . , ps].

In particular, if we know that { a1, . . . , as } is a generating set for D, then we can

always choose pi = σ(ai). Section 3.4 addresses the issue of computing an explicit

minimal generating set for D.

The above theorem is proved via Algorithm 3, which rewrites any element of k[A]G

as a polynomial in p1, . . . , ps.

Concerning Algorithm 3, the fact that we can express f as in line 5 is given

following Theorem 2.25. Line 7 uses the fact that a1, . . . , as generate D as a monoid.

Since the pi are orbital through ai, Lemma 3.10 implies q (line 8) is orbital through di.
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Algorithm 3 Rewrite f ∈ k[A]G as polynomial in algebra generators

1: Input: f ∈ k[A]G

2: if f ∈ k then

3: Output: f .

4: end if

5: f = k0 + k1σ(d1) + k2σ(d2) + · · · + ktσ(dt) where ki ∈ k and 0 6= di ∈ D.

6: for i from 1 to t do

7: Write di = n1a1 + n2a2 + · · · + nsas (ni ∈ N).

8: Let q := pn1

1 pn2

2 · · · pns
s .

9: Let ri := q − Rewrite(q − σ(di)).

10: end for

11: Output: k0 + k1r1 + k2r2 + · · ·+ ktrt.

In line 9, observe first that ri = σ(di) since rewriting an expression does not change

its value. Thus the value returned in line 11 is the same as the input, as expressed in

line 5.

The crux of Algorithm 3 now occurs as the algorithm calls itself recursively. By

the remark following Lemma 3.10, we know that (1) the new argument q − σ(di) is

strictly less than σ(di), and hence (2) it is strictly less than f . Since the ordering of

k[A] satisfies DCC (Lemma 3.5), we are assured that the algorithm terminates. This

proves Theorem 3.11.

3.4 Constructing a Minimal Generating Set for

the Monoid D.

By Theorem 3.11, we know that once we have monoid generators for D, we can

create algebra generators for k[A]G. We turn now to the task of constructing a

minimal set of generators for D. Actual computer code for accomplishing this task,

written for the computer algebra system Magma, can be found in Appendix A.

In this section, Lemma 3.14 demonstrates how to lift any generating set for the
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monoid π(D) to a generating set for the monoid D, Lemma 3.15 indicates that π(D)

has a Hilbert basis (i.e., a minimal generating set), Lemma 3.16 shows that this

Hilbert basis lifted to D is a minimal generating set for D, and then finally, Algorithm

4 provides a method for computing the Hilbert basis for π(D).

Let B be a basis for AG, recall that ρ := id − π : V � V G, and consider the

following region contained in ρ(V ),

KB :=
∑

b∈B

[0, b) =

{

∑

b∈B

tbb : 0 ≤ tb < 1

}

. (3.8)

Lemma 3.12. For each y ∈ π(D) there exists a unique d ∈ D such that π(d) = y

and ρ(d) ∈ KB.

Proof. First note that by the construction of KB, for any v ∈ V G there exists a

unique c ∈ AG such that v − c ∈ KB. To see this, fix v ∈ V G = AG ⊗Z R, and write

v =
∑

b∈B zbb where each zb ∈ R. For any c ∈ AG we can write c =
∑

b∈B nbb where

each nb ∈ Z. Now if v − c ∈ KB, then it must be true that 0 ≤ zb − nb < 1 for each

b ∈ B. This uniquely determines each nb = bzbc and hence c is uniquely determined.

To show existence in the lemma, let y ∈ π(D) be given and choose any d′ ∈ D such

that π(d′) = y. By the previous paragraph, there must exist (a unique) c ∈ AG such

that ρ(d′)−c ∈ KB. Let d := d′−c. Then π(d) = π(d′) = y, and ρ(d) = ρ(d′)−c ∈ KB.

For uniqueness, suppose d1, d2 ∈ D such that π(d1) = π(d2) and ρ(d1), ρ(d2) ∈ KB.

If c ∈ AG is the unique element such that ρ(d1) − c ∈ KB, then clearly c = 0 since

ρ(d1) ∈ KB. However, d1 − d2 ∈ AG and ρ(d1) − (d1 − d2) = ρ(d1 − (d1 − d2)) =

ρ(d2) ∈ KB. Thus d1 = d2.

Corollary 3.13. Let X ⊆ π(D) and let X ′ := A ∩ (X + KB) ⊆ D. Then π yields a

bijection X ′ → X.

Remark. To actually compute the set X ′ in the above corollary, we first compute the

finite set KB ∩ρ(A) by applying ρ to a basis of A and using some basic linear algebra.

Then A ∩ (X + KB) = A ∩ (X + (KB ∩ ρ(A))) and, if X finite, the latter expression

can be determined with finitely many calculations.
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Lemma 3.14. Suppose W ⊆ π(D) is given such that W generates π(D), and let

W ′ := A ∩ (W + KB). Then W ′ ∪ {±b : b ∈ B } generates the monoid D.

Proof. Let d ∈ D. By hypothesis, π(d) =
∑

w∈W nww where nw ∈ N. By Corollary

3.13, we know that for each w ∈ W there exists a unique w′ in W ′ such that π(w′) = w.

Thus π(d) =
∑

w∈W nwπ(w′). Since π is a homomorphism of A with KerA(π) = AG,

we get d =
∑

w∈W nww′ + c for some c ∈ AG. Clearly AG is generated by B, and the

lemma is proved.

Lemma 3.15. π(D) has a Hilbert basis.

Proof. Lemma 2.23 tells us that the monoid D is finitely generated, and so the monoid

π(D) must be finitely generated as well. The fact that π(D) is cancellative and

torsion-free follows immediately from the fact that π(D) sits in a real vector space,

namely E = π(V ). Finally, Lemma 2.26(b) assures us that π(D) is positive. Thus all

the hypotheses of Lemma 2.31 are satisfied and π(D) must have a Hilbert basis.

Lemma 3.16. Let W be a Hilbert basis for π(D), let B be a basis for AG, and let

W ′ := A ∩ (W + KB). Then W ′ ∪ {±b : b ∈ B } is a minimal generating set, with

respect to containment, for D.

Proof. By Lemma 2.31(b), W is the unique smallest generating set for π(D), and

by Lemma 3.14, W ′ ∪ {±b : b ∈ B } generates D. For contradiction, assume X (

W ′ ∪ {±b : b ∈ B } generates D. Then π(X) generates π(D), and so π(X) ⊇ W ,

by Lemma 2.31(b). Corollary 3.13 now implies that X ⊇ W ′, and thus X ∩ AG (

{±b : b ∈ B }. By Lemma 2.26(b), the group of invertible elements of D is AG, and

so X ∩ AG must generate AG as a monoid. However, X ∩ AG ( {±b : b ∈ B }, and

clearly no proper subset of {±b : b ∈ B } generates AG as a monoid, giving us our

desired contradiction.

Finally, it only remains to compute the Hilbert basis of π(D). Following [Lor01],

we employ properties of the weight lattice to accomplish this task. Algorithm 4

summarizes the calculations required, assuming A = Zn.

As noted in Lemma 2.28(b), π(D) ⊆ Λ+ = ⊕r
i=1Nλi ⊆ 1

m
π(D) where λ1, . . . , λr

are the fundamental dominant weights and 0 6= m ∈ N. Hence there exist 0 6= ni ∈ N
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such that niλi ∈ π(D). Choose such ni minimal, and let mi := niλi. Consider the

zonotope contained in V ,

KM :=
r
∑

i=1

[0, mi] =

{

r
∑

i=1

timi : 0 ≤ ti ≤ 1

}

. (3.9)

The set

Z := π(A) ∩ KM \ { 0 } (3.10)

is finite and generates π(D).

The Hilbert basis of π(D) then is just the set of indecomposable lattice points in

Z, that is, those z ∈ Z that cannot be written z = x1 + x2 with 0 6= x1, x2 ∈ Z. The

Hilbert basis can thus be computed as Z \ (Z + Z).

Algorithm 4 Compute a Hilbert basis for π(D)

1: Input: a finite reflection group G ⊆ GLn(Z)

2: Construct the root system Φ from G (Algorithm 1)

3: Construct a base ∆ ⊆ Φ for E = π(V ) (Algorithm 2)

4: Compute the fundamental dominant weights λ1, . . . , λr ∈ Qn from equation (2.17)

5: for i = 1 to r do

6: Find the least 0 6= ni ∈ N such that niλi ∈ π(Zn)

7: end for

8: Let Y := {
∑r

i=1 n′
iλi : n′

i ∈ N, 0 ≤ n′
i ≤ ni }

9: Let Z := (π(Zn) ∩ Y ) \ { 0 }
10: Let HB := Z \ { z1 + z2 : z1, z2 ∈ Z }
11: Output: HB.
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CHAPTER 4

MULTIPLICATIVE

INVARIANTS UNDER

SUBGROUPS OF REFLECTION

GROUPS

4.1 Overview

In this chapter we will assume that G is a subgroup of a reflection group H ⊆
GL(A). Our goal is to produce generators for the ring of invariants k[A]G. By

Corollary 2.7 we know that k[A]G is a finitely generated k[A]H -module. We provide

algorithms that will (1) produce the module generators (Algorithm 6, §4.3), and (2)

rewrite any G-invariant as a k[A]H -linear combination of these module generators

(Algorithm 5, §4.2).

Much of the work in this chapter was inspired by [Göb95] in which Göbel examines

classical invariants under subgroups of the symmetric group.

All the notation of the previous chapter remains valid, now with the reflection

group H in place of G. In particular, recall that for a ∈ A we denote the orbit sum of

a under G as σG(a), and we denote the orbit sum of a under H as σH(a). Let ∆ ⊆ A

be a set of simple roots for E = π(V ) as constructed in §2.4, from the reflection group
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H. As before D = { a ∈ A : (a, δ) ≥ 0 ∀ δ ∈ ∆ } is a fundamental domain for the

action of H on A.

4.2 Generators for Invariants Under a Subgroup

of a Reflection Group

Let { Id = h1, h2, . . . , hu } be a left transversal for G in H, so H =
⋃u

i=1 hiG, a

disjoint union. Theorem 2.24 tells us that H acts simply transitively on closed Weyl

chambers, so there are |H| closed Weyl chambers, and each of them can be expressed

as Chig
for some i ∈ { 1, . . . , u } and g ∈ G.

We introduce the following new notation: for a set X ⊆ V and a subset T ⊆ H,

define

X↑T :=
⋃

t∈T

X t

where X t = { xt : x ∈ X }.
For the following definitions and lemma it may be helpful to refer to Figure 4.1.

Let Ci := Chi
and let Di := Dhi, so of course Di = A ∩ Ci. Let D1 := D1 = D, and

define

Di := Di \
⋃

j<i

Dj↑G for i = 2, ..., u (4.1)

Example 4.1. Consider again the finite reflection group from Example 2.18, H =
〈

( 0 1
1 0 ) ,

(

−1 0
−1 1

)〉 ∼= S3, acting (by right multiplication) on A = Z2. Let g = ( 0 1
1 0 )

and consider the subgroup G = 〈g〉. The set
{

h1 = ( 1 0
0 1 ) , h2 =

(

−1 1
−1 0

)

, h3 =
(

−1 0
−1 1

) }

forms a left transversal for G in H. The sets Di (i = 1, 2, 3) are depicted in Figure 4.1.

Note that Di always contains the points of A lying on the boundary of C i, whereas

Di may not.

By Theorem 2.24, the simply transitive action of H on closed Weyl chambers,

we know that for any h ∈ H the set Dh can be expressed as Dhig = Di
g

for some

i ∈ { 1, . . . , u } and g ∈ G.
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    = member of D1 
    = member of D2
    = member of D3

D2

D1
D3

D1

g

D3D2
g g

Figure 4.1: The sets Di (i = 1, 2, 3) described in Example 4.1.

Lemma 4.2.

(a) If Di↑G ∩Dj↑G 6= ∅ then i ≤ j.

(b) A is the disjoint union of the Di↑G for i = 1, ..., u.

(c) Di = Di \ F , where F denotes some union of faces of C i.

(d)
⋃u

i=1 Di is a fundamental domain for the action of G on A.

Proof. (a) If j < i then by (4.1), Di ∩ Dj↑G= ∅. This is exactly the contrapositive

of the statement we wish to prove.

(b) If j < i then by (4.1), Di ∩ Dj↑G= ∅, as in part (a). Thus Di↑G ∩Dj↑G= ∅,

and hence Di↑G ∩Dj↑G= ∅. Now given a ∈ A, let i be minimal so that a ∈ Di↑G

(note that
⋃

i Di↑G=
⋃

h∈H Dh = A ). Then ag ∈ Di for some g and ag /∈ Dj↑G for

j < i. Thus ag ∈ Di \
⋃

j<i Dj↑G= Di. Therefore by (4.1), a ∈ Di↑G.
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(c) Unraveling expression (4.1), we see

Di = Di \
⋃

j<i

(

Di ∩ Dj↑G
)

= Di \
⋃

j<i

(

⋃

g∈G

(

Di ∩ Dj
g)

)

Now Di ∩ Dj
g

= (A ∩ Ci) ∩ (A ∩ Cg

j) = A ∩ (Ci ∩ Cg

j). Note that Ci and Cg

j are two

closed Weyl chambers, and so their intersection must be a mutual face. Specifically,

it is a face of Ci and this proves part (c).

(d) By part (b) we know that the sets Di↑G (1 ≤ i ≤ u) partition A. If a ∈ Di↑G,

then aG∩Di 6= ∅. Since, by Theorem 2.25, Di is a fundamental domain for the action

of H on A, we know that the set aG ∩ Di contains exactly one element. Conversely,

a /∈ Di↑G implies aG ∩ Di = ∅. Thus, given any a ∈ A, the set aG ∩⋃u
i=1 Di always

contains exactly one element, making it a fundamental domain for the action of G

on A.

If Ωi ⊆ A is given such that Di = Ωi + Di, then it must be true that Ωi ⊆ Di

since 0 ∈ Di. In §4.3, Algorithm 6 we construct finite sets Ωi of minimal cardinality

such that Di = Ωi + Di. For instance, observe D1 = { 0 } + D1 and so it suffices for

Ω1 to be { 0 }. Furthermore, if Ω1 = { 0 } then it must be true that 0 /∈ Ωi for i > 1

since the Di’s are disjoint (Lemma 4.2(b)) and Ωi ⊆ Di.

Just as the generators for the monoid D yield algebra generators of k[A]H , we will

find that the elements of the Ωi’s yield generators of k[A]G as a module over k[A]H .

Recall from Definition 3.8 what it means for q ∈ k[A]G to be G-orbital where G is a

subgroup of a reflection group.

Theorem 4.3. Fix Ω1, . . . , Ωu ⊆ A such that Di = Ωi +Di, and let Ω =
⋃u

i=1 Ωi. To

each ω ∈ Ω associate an element qω ∈ k[A]G that is G-orbital through ω (for instance,

qω = σG(ω)), and let Q = { qω : ω ∈ Ω }. Then Q generates k[A]G as a module over

k[A]H .

The proof of this theorem is given by Algorithm 5 below which takes an arbitrary

f ∈ k[A]G and rewrites it as a Q-linear combination of elements of k[A]H .
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Algorithm 5 Rewrite f ∈ k[A]G as a Q-linear combination of H-invariants

1: Input: f ∈ k[A]G.

2: if f ∈ k then

3: Output: f .

4: end if

5: Let Bf := Supp(f) ∩ (
⋃u

i=1 Di).

6: Write f =
∑

b∈Bf
kbσG(b), with kb ∈ k.

7: for b ∈ Bf do

8: Determine i such that b ∈ Di.

9: Find ω ∈ Ωi and a ∈ Di such that b = ω + a.

10: Let sb := qωσH(a) − Rewrite(qωσH(a) − σG(b)).

11: end for

12: Output:
∑

b∈Bf
kbsb.

In line 5, notice that by Lemma 4.2(d),
⋃u

i=1 Di is a fundamental domain for the

action of G on A. Thus, every G-orbit sum in f contains exactly one representative

in Bf , and this is expressed in line 6. In line 9, the fact that there exists such an a

and ω comes from our hypothesis that Di = Ωi + Di.

In line 10, the algorithm calls itself recursively. Note first that sb = σG(b) since

the algorithm only rewrites an invariant; it does not change its value. Secondly, note

that indeed the new argument, qωσH(a)−σG(b), is an element of k[A]G. Thirdly, note

that sb is a Q-linear combination of elements of k[A]H : the first term, qωσH(a) is an

element of Q times an element of k[A]H , and the second term, by recursion, must also

be in the desired form. Finally, the output in line 12 must be a Q-linear combination

of H-invariants since each sb is.

The remainder of this section works toward Corollary 4.8 in which we prove that

the algorithm terminates by showing that σH(a)qω − σG(b) (line 10) is “strictly less

than” f with respect to the following partial order with DCC.

Definition 4.4. Given p, f ∈ k[A] we write p ≺ f if p < f or if p ≯ f and

min { i : HM(p) ∩ Di 6= ∅ } > min { i : HM(f) ∩ Di 6= ∅ }.
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Here, the partial order < on V and the sets HM(·) of highest monomials are

defined as in Section 3.2.1 using the base ∆ for the reflection group H. The relation

≺ satisfies DCC on k[A]G since < has DCC on k[A] and there are only finitely many

Di.

When we multiply an H-orbital and a G-orbital element together, the HM set

of their product has a form that is easy to describe. The following generalizes

Lemma 3.10.

Lemma 4.5. Consider p ∈ k[A]H , and q ∈ k[A]G such that p is H-orbital through

a ∈ Di for some i, and q is G-orbital through ω ∈ Di. Then HM(pq) = (a + ω)HωG

where Hω is the isotropy subgroup in H for ω. Furthermore, for any z ∈ HM(pq),

the coefficient on z∗ in the expansion of pq is 1k.

Proof. We prove the lemma in three steps. We will keep the notation x ∈ Supp(p) and

y ∈ Supp(q), and observe that if z ∈ Supp(pq), then z = x + y for some x ∈ Supp(p)

and y ∈ Supp(q). Furthermore, observe that Di is a monoid and Di ⊆ Di, thus a, ω,

and a + ω are all in Di. Letting hi be a member of the left transversal for G in H we

get

a + ω = (a + ω)h−1

i = ah−1

i + ωh−1

i = ā + ω̄. (4.2)

(1) (a + ω)` ∈ Supp(pq) for all ` ∈ HωG. Furthermore, if z = (a + ω)` then the

coefficient on z∗ in the expansion of pq is 1k.

Suppose that x + y = (a + ω)` for some ` ∈ HωG. Our claim will be proved by

showing that x = a` and y = ω`.

Putting h := `−1h−1
i and using (4.2) we get xh +yh = (a+ω)`h = ā+ ω̄. Certainly

then π(xh + yh) = π(ā + ω̄) and by Lemma 3.9, this implies xh = ā and yh = b̄. Thus

x = a` and y = b` as desired.

(2) If z ∈ Supp(pq), then z . a + ω.

Write z = x + y. By the transitive action of H on the Weyl chambers (Theorem

2.24), there exists h ∈ H such that (x + y)h = x + y ∈ D. Thus

π(a + ω − x + y) = π(ā + ω̄ − (xh + yh)) = π(ā − xh) + π(ω̄ − yh). (4.3)
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By Lemma 3.6, each of the two terms on the right hand side above is in R+∆, and

hence π(a + ω−x + y) ∈ R+∆. By Definition 3.1 this means exactly that x+y . a+ω.

(3) If z ∈ Supp(pq) and z ∼ a + ω, then z ∈ (a + ω)HωG.

Write z as x + y. If x + y ∼ a + ω then, by definition,

π(a + ω − x + y) = 0.

We can write a + ω = ā + b̄ and x + y = (x + y)h for some h ∈ H, and so the above

equation can be rewritten as

π(ā + ω̄) = π(xh + yh).

Applying Lemma 3.9 and expression (4.2), we get xh = ā = ah−1

i and yh = ω̄ = ωh−1

i .

Setting ` = h−1h−1
i , this gives us

x = a` and y = ω` (4.4)

and so

z = x + y = (a + ω)`. (4.5)

From (4.4) it is clear that y ∼ ω. Since q is G-orbital through ω, and y ∈ Supp(q), it

must happen that y = ωg for some g ∈ G. Thus ωg = ω` implying ω = ω`g−1

, and so

`g−1 ∈ Hω. Finally, we can conclude

` ∈ HωG. (4.6)

Equations (4.5) and (4.6) together prove step (3).

Lemma 4.6. Suppose a ∈ Di and ω ∈ Di. Then either

1) (a + ω)HωG \ (a + ω)G = ∅, or

2) (a + ω)HωG \ (a + ω)G ⊆
⋃

j>i Dj↑G.

Proof. Clearly (a + ω)HωG ⊇ (a + ω)G, and so if (a + ω)HωG = (a + ω)G then case (1)

above occurs.

Suppose that (a+ω)HωG ) (a+ω)G, and so there exists some ` ∈ HωG such that

(a + ω)` /∈ (a + ω)G. (4.7)
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By Lemma 4.2(b), there exists a unique j such that (a + ω)` ∈ Dj↑G. If j = i, then

(a + ω)` ∈ Dg
i ⊆ Cg

i for some g ∈ G. But of course, since a + ω ∈ Di, we know that

(a + ω)g ∈ Dg
i ⊆ Cg

i . By Theorem 2.25, the orbit (a + ω)H intersects Cg

i in exactly

one point, and thus (a + ω)` = (a + ω)g. But this contradicts expression (4.7). Thus

(a + ω)` ∈ Dj↑G for some j 6= i.

We will now prove that in fact j > i by showing ω ∈ Di↑G ∩Dj↑G and appealing to

Lemma 4.2(a). By hypothesis, we know that ω ∈ Di ⊆ Di↑G. Claim: ω ∈ Dj↑G.

Once the claim is proved, the proof of the lemma will be complete.

We know that a, ω ∈ Di and (a + ω)` ∈ Dj
g

for some g ∈ G. By Lemma 3.7 this

implies a`, ω` ∈ Dj
g
. Write ` = hg′ for some h ∈ Hω and g′ ∈ G. Then

ωg′ = ωhg′ = ω` ∈ Dj
g
.

Consequently, ω ∈ Dj↑G as needed, and the claim and the proof are complete.

Lemma 4.7. Let notation be given as in Algorithm 5. Then qωσH(a) − σG(b) ≺ f .

Proof. Recall that a ∈ Di, ω ∈ Di, and b = a + ω ∈ Di. We know that HM(σG(a +

ω)) = (a + ω)G and that the coefficient of any element in HM(σG(a + ω)) is 1k. By

Lemma 4.5 we know that HM(qωσH(a)) = (a + ω)HωG and that the coefficient of any

element in HM(qωσH(a)) is 1k.

Claim: if b /∈ HM(f), then for any x ∈ HM(qωσH(a) − σG(a + ω)) there exists

some y ∈ HM(f) such that x < y. To see this, note first that b /∈ HM(f) implies

there exists y ∈ HM(f) such that b < y. Next, x ∈ HM(qωσH(a)−σG(a+ω)) implies

x . a + ω = b. By the transitivity of the partial order, x < y. Now the claim is

proved. By Definition 3.4, qωσH(a)−σG(a+ω) < f , and consequently, Definition 4.4

tells us that qωσH(a) − σG(a + ω) ≺ f .

For the remainder of the proof we may assume a + ω ∈ HM(f). Since f is G-

invariant, this implies (a + ω)G ⊆ HM(f). Consider now the two possibilities in

Lemma 4.6 for the form of (a + ω)HωG \ (a + ω)G.
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case 1: (a + ω)HωG \ (a + ω)G = ∅. Then

x ∈ HM(qωσH(a) − σG(a + ω))

=⇒ x ∈ Supp(qωσH(a) − σG(a + ω)) ⊆ HM(f)

=⇒ x < y for all y ∈ Supp(σG(a + ω))

=⇒ ∃ y ∈ HM(f) such that x < y.

Thus, by Definition 3.4, qωσH(a) − σG(a + ω) < f . Consequently, Definition 4.4 tells

us qωσH(a) − σG(a + ω) ≺ f .

case 2: (a + ω)HωG \ (a + ω)G ⊆
⋃

j>i Dj↑G. Now

x ∈ HM(qωσH(a) − σG(a + ω)) ∩
u
⋃

j=1

Dj

=⇒ x ∈ (a + ω)HωG \ (a + ω)G ∩
⋃

j>i

Dj

=⇒ min { j : x ∈ Dj } > i = min { j : HM(σG(a + ω)) ∩ Dj 6= ∅ }

≥ min { j : HM(f) ∩ Dj 6= ∅ } .

The last inequality above uses the fact that HM(σG(a + ω)) = (a + ω)G ⊆ HM(f).

We finally need to show that in fact qωσH(a) − σG(a + ω) ≯ f . One sees this since

for all x ∈ HM(qωσH(a)) and all y ∈ HM(σG(a + ω)), we have x ∼ y, and so

qωσH(a)− σG(a + ω) . σG(a + ω). Certainly σG(a + ω) ≯ f since Supp(σG(a + ω)) ⊆
Supp(f). Thus we must have qωσH(a) − σG(a + ω) ≺ f

Corollary 4.8. Algorithm 5 eventually terminates.

Proof. The order ≺ satisfies DCC on k[A]G, and every time Algorithm 5 calls itself

in line 10, Lemma 4.7 assures us that the new argument is strictly less than (with

respect to ≺) the argument it received. The base case is handled when f ∈ k, in

which case the algorithm immediately returns f itself.

4.3 Constructing Ωi

We begin by defining what we mean by the notation Ωi.
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Definition 4.9. Ωi is a minimal set (with respect to containment) satisfying

Di = Ωi + Di

Note that Di may not be uniquely determined. The aim of this section is to

construct minimal sets Ωi for (i = 1, . . . , u). Let {Fj }j∈J be some collection of faces

of C, and let F =
⋃

j∈J Fj. It is evident that Di is H-isomorphic to D, and considering

Lemma 4.2(c), Di is H-isomorphic to D \F for some collection of faces. We will find

a finite set Y ⊆ D such that D \F = Y +D, and then modify Y to obtain a minimal

set Ω such that D \ F = Ω + D.

Recall from Definition 2.29 that if Fj is a face of C, then there exists some vj ∈
R+∆ such that (vj, w) = 0 for all w ∈ Fj, and (vj, w) > 0 for all w ∈ C \ Fj. Also,

recall the definition of KB (3.8), and the fact that there is a bijection between any

set X ⊆ π(A) and the set A ∩ (X + KB) by Corollary 3.13.

Lemma 4.10. Let F be some union of faces of C, and suppose that there exists a

set Y ⊆ π(D) such that π(D \ F ) = Y + π(D). Then putting Y ′ := A ∩ (Y + KB),

we get D \ F = Y ′ + D.

Proof. We first show that D \ F ⊇ Y ′ + D. Recall from Corollary 3.13 that Y ′ ⊆ D;

so certainly Y ′+D ⊆ D Write F =
⋃

j∈J Fj for faces Fj of C, and let { vj }j∈J ⊆ R+∆

be chosen so that (vj, w) = 0 for all w ∈ Fj and (vj, w) > 0 for all w ∈ D \ Fj. Let

y′ ∈ Y ′, let d ∈ D. By construction, π(y′) ∈ Y , so our hypothesis π(D\F ) = Y +π(D)

implies π(y′+d) := x ∈ π(D\F ). Thus there exists some x′ ∈ D\F so that π(x′) = x,

and it follows that y′ + d = x′ + c for some c ∈ KerA(π) = AG ⊆ D. For any j ∈ J ,

we get (vj, x
′) > 0 and (vj, c) ≥ 0, and hence

(vj, y
′ + d) = (vj, x

′ + c) = (vj, x
′) + (vj, c) > 0.

That is, y′ + d /∈ Fj for any j, and so y′ + d /∈ F . This proves the inclusion Y ′ + D ⊆
D \ F .

To show D \ F ⊆ Y ′ + D, take any x ∈ D \ F . Then π(x) ∈ π(D \ F ) and

by hypothesis, π(x) = y + π(d) for some y ∈ Y and d ∈ D. By construction of Y ′
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and Corollary 3.13, there exists a (unique) y ′ ∈ Y ′ such that π(y′) = y, and hence

π(x) = π(y′ + d). This implies that x = y′ + d + c for some c ∈ AG = KerA(π). Now

AG ⊆ D , so d + c ∈ D, and containment is shown.

From the above lemma, our problem of finding a set Y ⊆ D such that D \ F =

Y + D reduces to the problem of finding Y ⊆ π(D) such that π(D \ F ) = Y + π(D).

Recall from §3.4 that mi := niλi where λi is a fundamental dominant weight and

0 6= ni ∈ N is minimal such that niλi ∈ π(D). Recall (3.9),

KM :=
r
∑

i=1

[0, mi] =

{

r
∑

i=1

timi : 0 ≤ ti ≤ 1

}

.

and recall from (3.10) that the finite set

Z := π(A) ∩ KM \ { 0 }

generates the monoid π(D). Note that KM and Z are both contained in E = π(V ).

Put

Y := Z \ F ⊆ π(D).

Lemma 4.11. π(D \ F ) = Y + π(D).

Proof. First observe, by Lemma 2.30, that π(F ) is a union of faces for π(C), and

π(D \ F ) = π(D) \ π(F ).

The containment π(D \ F ) ⊇ Y + π(D) is not difficult to see: for any j ∈ J it

happens that (vj, y) > 0 for all y ∈ Y , and also (vj, d) ≥ 0 for all d ∈ π(D). Thus for

all j ∈ J we have (vj, y + d) = (vj, y) + (vj, d) > 0 implying y + d ∈ π(D \ F ).

For the other containment, suppose that x ∈ π(D \F ) = π(D)\π(F ). By Lemma

2.28(b) and formula (2.14)

π(D) ⊆ Λ+ =

r
⊕

i=1

Nλi

and, clearly,
r
⊕

i=1

Nλi ⊆
r
⊕

i=1

Q+λi =
r
⊕

i=1

Q+mi.



52

Thus, since x ∈ π(D), we can write

x =

r
∑

i=1

qimi (4.8)

for some qi ∈ Q+. Let I := { i : 1 ≤ i ≤ r, qi 6= 0 }, and for i ∈ I define

ti :=







1 if qi ∈ N

qi − bqic otherwise

where b c is the greatest integer function. Let

m :=
∑

i∈I

timi

and thus

x = m +
∑

i∈I

(qi − ti)mi. (4.9)

Since qi − ti ∈ N, clearly
∑

i∈I(qi − ti)mi ∈ π(D), and so the lemma will be proved

by showing that m ∈ Y .

Since x ∈ π(A) and
∑

i∈I(qi − ti)mi ∈ π(A) it follows from (4.9) that m ∈ π(A).

Furthermore, since 0 < ti ≤ 1, we know m ∈ KM \{ 0 }. Thus m ∈ π(A)∩KM \{ 0 } =

Z.

Since Y = Z \ F , it only remains to show that m /∈ F . If there is any j ∈ J such

that {mi }i∈I ⊆ Fj, then we see from (4.8) that x ∈ Fj, and so x = π(x) ∈ π(F )

contradicting our hypothesis. Thus, for each j ∈ J there exists some i ∈ I such that

(vj, mi) > 0. Consequently, for each j ∈ J ,

(vj, m) = (vj,
∑

i∈I

timi) =
∑

i∈I

ti(vj, mi) > 0.

Hence, m /∈ Fj for any j, and so m /∈ F . We have now shown that m ∈ Y .

Thus, equation (4.9) expresses x as the sum of an element in Y and an element

in π(D).

We now use the set Y = Z \F to create a minimal subset Ω such that π(D \F ) =

Ω + π(D). If F = ∅ then clearly Ω = { 0 } suffices. For F 6= ∅ consider the set

Ω := Y \ (Y + Z). (4.10)
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Figure 4.2: The sets described in Example 4.12. Note that 0 ∈ Ω1.

Lemmas 4.13 and 4.14 prove that Ω is indeed the set we seek. Recalling Definition

4.9, the definition of Ωi, the following example illustrates how we find the Ωi.

Example 4.12. Recall the groups H, G, and the transversal from Example 4.1, and

consider Figure 4.2. The set Z consists of those lattice points, excluding 0, in the

dashed parallelogram (KM) shown in D1 = D. Let Z2 denote the image of Z in D2

and let Z3 denote the image of Z in D3. Then

Y1 = Z

Y2 = Z2 \ {the boundary points in D1↑G} = Z2

Y3 = Z3 \ {the boundary points in D1↑G and D2↑G}.

The cross at the origin represents the set Ω1 = { 0 }, the three crosses in D2 are the

elements of Ω2, and the single cross in D3 is the only element of Ω3.

Lemma 4.13. Given y ∈ Y , we can write y = ω + d for some ω ∈ Ω and d ∈ π(D).
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Proof. From (4.10) it is clear that for any y ∈ Y , either y ∈ Ω, or y = y ′ + z for some

y′ ∈ Y and z ∈ Z ⊆ π(D). By Lemma 2.31(a), that there is a monoid homomorphism

ϕ : π(D) → N satisfying ϕ(d) > 0 for all 0 6= d ∈ π(D). Since Y ⊆ π(D), we know

that if y = y′ + z, then ϕ(y′) < ϕ(y); by induction we must have y′ = ω + d for some

ω ∈ Ω and d ∈ π(D). Thus y = ω + d + z. Since d + z ∈ π(D), this proves the

lemma.

Lemma 4.14. Let Ω be constructed as in (4.10). Then π(D \ F ) = Ω + π(D).

Furthermore, for any set Ω0 ( Ω, we have π(D \ F ) 6= Ω0 + π(D).

Proof. The fact that π(D \ F ) = Ω + π(D) is an immediate consequence of Lemmas

4.11 and 4.13.

To prove minimality, let ω ∈ Ω \ Ω0. Now ω ∈ Ω ⊆ Y ⊆ π(D \ F ), so assume we

can write

ω = ω0 + d (4.11)

for some ω0 ∈ Ω0 and d ∈ π(D). By choice of ω we know d 6= 0. By the construction

of Ω, we know that for any y ∈ Y , either y ∈ Ω, or y = y ′ + z for some y′ ∈ Y and

z ∈ Z ⊆ π(D), but not both statements can be true. Since ω0 ∈ Y and ω ∈ Ω we

conclude from equation (4.11) that we must have d /∈ Z.

Claim: If 0 6= d ∈ π(D) \ Z and d′ ∈ π(D) then d + d′ /∈ Z. Assuming the

claim true for now, we must equation (4.11) implies that ω /∈ Z since ω0 ∈ π(D).

However, this contradicts the fact that ω ∈ Ω ⊆ Y ⊆ Z, and so expression (4.11) is

not possible. It only remains to prove the claim.

Proof of claim: If d′ ∈ π(D), then d′ = s1m1 + · · · + srmr for si ∈ Q+; see (4.8).

If 0 6= d ∈ π(D) \ Z, then d = t1m1 + · · · + trmr with all ti ∈ Q+, and some ti > 1.

Thus ti + si > 1 for some i, and d + d′ /∈ Z.

Finally, we collect several of the preceding ideas together in Algorithm 6 and

outline those steps required to actually compute the sets Ωi for 1 ≤ i ≤ u.
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Algorithm 6 Computing Ωi

1: Input: A finite reflection group H ⊆ GL(A) and a subgroup G ⊆ H.

2: Using H, compute the set Z ⊆ π(D) as was done in Algorithm 4

3: Compute a left transversal { Id = h1, h2, . . . , hu } for G in H

4: for i from 1 to u do

5: Define Zi := Zhi

6: end for

7: X := ∅

8: Ω1 := 0

9: for i from 2 to u do

10: X := X ∪ Zi−1↑G

11: Y := Zi \ X

12: Ωi := Y \ (Y + Zi)

13: end for

14: if π 6= Id then

15: for i from 1 to u do

16: Ωi := A ∩ (Ωi + KB)

17: end for

18: end if

19: Output:
⋃u

i=1 Ωi
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APPENDIX A

THE PROGRAM SOURCE CODE

The following code, written for the Computer Algebra System Magma, contains

many functions for using integer matrix reflection groups to compute root systems,

fundamental dominant weights, etc. The two main functions are “HB” and “Module-

Gens”, outlined in Sections 3.4 and 4.3 respectively. Commands which are predefined

in Magma are shown in boldface.

// The f o l l ow ing f un c t i on s / procedures are de f ined in t h i s f i l e .

// CheckGroup(˜G : CheckReflectionGroup := true )

// FundamentalDominantWeights(A, G)

// FDW(A, G)

// HB(G)

// I sRe f l e c t i onGroup (G)

// LatticeOfGroup (G)

// LiftToA (X, A, G)

// ModuleGens (G, H : ShowMore := f a l s e )

// Proj (V, A, B)

// r e f l e c t i o n (v , a )

// Ref lect ionsOfGroup (G)

// RootSys (A, G)

// SeqProduct (SS )

// SimpleRoots (A, G)

// SpaceDecomp(A, G)

// Ztope (A, G : ComputeBoundary := f a l s e )
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// Create a l a t t i c e with standard ba s i s and

// G−i n va r i an t inne r product

LatticeOfGroup := function (G)

pdf := ChangeRing(PositiveDefiniteForm(G) , BaseRing (G) ) ;

return Lattice (G! 1 , pdf ) ;

end function ;

// Given a group G, return the s e t o f r e f l e c t i o n s in that group

Ref lect ionsOfGroup := function (G)

Mat := MatrixRing( Integers ( ) , Degree (G) ) ;

return { g : g in G | Rank(Mat ! g − Mat ! 1 ) eq 1 } ;

end function ;

I sRe f l e c t i onGroup := function (G)

return G eq MatrixGroup<Degree (G) ,BaseRing (G) | Ref lect ionsOfGroup (G) >;

end function ;

CheckGroup := procedure (˜G : CheckReflectionGroup := true )

Mat := MatrixRing( Integers ( ) , Degree (G) ) ;

i f exists {g : g in Generators (G) | not IsCoercible (Mat , g ) } then

error ” Error : Your group conta in s matr i ces with noninteger e n t r i e s

. ” ;

end i f ;

i f CheckReflectionGroup and not I sRe f l e c t i onGroup (G) then

error ” Error : The group you entered i s not a r e f l e c t i o n group . ” ;

end i f ;

// Fina l ly , we make sure that the base r ing o f the matrix group

// i s the r a t i o n a l s ( modi fy ing the base r ing i f nece s sa ry ) .

//This a l l ows the group to act on r a t i o n a l l a t t i c e po ints ,

//not j u s t i n t e g r a l ones .
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i f BaseRing (G) ne Rationals ( ) then

G := ChangeRing(G, Rationals ( ) ) ;

end i f ;

end procedure ;

// Input : a l a t t i c e , A, and a group G that ac t s on A

// Output : th r e e vec to r spaces ,

// 1) the ambient space o f A

// 2) the space on which G act s e f f e c t i v e l y

// 3) the space that i s po in tw i s e f i x ed by G

SpaceDecomp := function (A, G)

V := AmbientSpace(A) ;

Mat := MatrixRing( Integers ( ) , Degree (G) ) ;

gens := Generators (G) ;

f ixmat := &+{Mat ! g : g in gens} − #gens ∗Mat ! 1 ;

f i xba s e := Basis (Kernel( f ixmat ) ) ; // l i v e s in A

Fixed := sub< V | [ V! f : f in f i x ba s e ] > ;

Espan := { V! ( b − bˆg ) : b in Basis (A) , g in Generators (G) } ;

E f f e c t i v e := sub<V | Espan>;

return V, E f f e c t i v e , Fixed , f i xba s e ;

end function ;

// Input : a vec to r space V and two subspaces A and B such that V = A ⊕ B

// Output : two p ro j e c t i on maps and a matrix :

// 1) the p r o j e c t i on o f V onto A with ke rne l B

// 2) the p r o j e c t i on o f V onto B with ke rne l A

// 3) the matrix o f the f i r s t p r o j e c t i on ( ac t ing from r i gh t on rows )

Proj := function (V,A,B)

n := Dimension(V) ;

dimA := Dimension(A) ;

dimB := Dimension(B) ;

U := VerticalJoin ( BasisMatrix (A) , BasisMatrix (B) ) ;



62

diag : = [ 1 : i in [ 1 . . dimA ] ] cat [ 0 : i in [ 1 . . dimB ] ] ;

Pr := DiagonalMatrix(Rationals ( ) , n , diag ) ; // pro j wrt g iven ba s i s

P := Uˆ−1 ∗ Pr ∗ U; // pro j wrt standard ba s i s

pi := map<V −> A | v :−> v∗P > ; // pro j onto A along B

rho := map<V −> B | v :−> v − v∗P> ; // pro j onto B along A

return pi , rho ,P;

end function ;

RootSys := function (A,G)

Mat := MatrixRing( Integers ( ) , Degree (G) ) ;

RS := & join{Generators (Kernel(Mat ! r e f + Mat ! 1 ) ) : r e f in

Ref lect ionsOfGroup (G) } ;

return &join{{A! r , −1∗(A! r ) } : r in RS} ;

end function ;

SimpleRoots := function (A,G)

dim := Degree (G) ;

RS := RootSys (A,G) ; // the s e are po in t s in A

gamma := A ! [ i +9 : i in [ 1 . . dim ] ] ;

goodgamma := fa l se ;

while goodgamma eq fa l se do

RootSysPlus := { r : r in RS | InnerProduct(gamma , r ) gt 0 } ;

i f RS eq RootSysPlus join {−1∗ r : r in RootSysPlus} then

goodgamma := true ;

else

gamma := gamma + A ! [ 1 : i in [ 1 . . dim ] ] ;

end i f ;

end while ;

SR := RootSysPlus d i f f { r+s : r , s in RootSysPlus } ;

return [ s r : s r in SR ] ;

end function ;
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r e f l e c t i o n := function (v , a ) // elements o f a common inne r product space

return v − ( (2∗ ( v , a ) ) /(a , a ) ) ∗a ;

end function ;

FundamentalDominantWeights := function (A,G)

SR := SimpleRoots (A,G) ; //a sequence o f l a t t i c e po in t s

V,E,F := SpaceDecomp(A,G) ;

n := Dimension(V) ;

r := Dimension(E) ; // = number o f s imple roo t s

SRel t s : = [ Eltseq (SR [ i ] ) : i in [ 1 . . r ] ] ;

SRmat := Matrix (Rationals ( ) , r , n , SRe l t s ) ;

// c r e a t e the s imple r e f l e c t i o n s in G corresponding

// to the s imple roo t s

e := Basis (A) ; // standard ba s i s e1, ..., en

Ref l : = [ ] ;

for j in [ 1 . . r ] do

seq : = [ Eltseq ( r e f l e c t i o n ( e [ i ] , SR [ j ] ) ) : i in [ 1 . . n ] ] ;

Re f l [ j ] : = Matrix (Rationals ( ) , n , n , seq ) ;

end for ;

, , P := Proj (V, E , F) ; // P i s the matrix o f the p r o j e c t i on

// onto E with ke rne l F .

PGmat := r∗P − &+Ref l ;

DWmat := SRmat ∗ PGmatˆ−1;

return [ V!DWmat[ i ] : i in [ 1 . . r ] ] ;

end function ;

// Short−hand f o r the above func t i on

FDW := FundamentalDominantWeights ;
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// Return the ” Cartes ian Product ” o f a sequence o f sequences

// There ought to be a bu i l t−in func t i on f o r t h i s . . .

SeqProduct := function ( SS ) // SS i s a sequence o f sequences

S : = [ s : s in SS | s ne [ ] ] ;

r := #S ;

P : = [ ] ; // f i n a l product

Od : = [ 1 : i in [ 1 . . r ] ] ; //Odometer

go := true ;

while go do

p : = [ S [ i ,Od[ i ] ] : i in [ 1 . . r ] ] ;

Append(˜P , p ) ;

i := r ;

while i gt 0 and Od[ i ] eq #S [ i ] do i − := 1 ; end while ;

i f i gt 0 then

Od[ i ] + := 1 ;

for j in [ i +1. . r ] do Od[ j ] : = 1 ; end for ;

else

go := fa l se ;

end i f ;

end while ;

return P;

end function ;

//IN : a s e t X o f e lements in π(A)

//OUT: a s e t X’ o f e lements in A such that π(X ′) = X

// X’ i s the s e t A ∩ [X + (ρ(A) ∩ KB)]

LiftToA := function (X, A, G)

V,E,F , Fbas i s := SpaceDecomp(A,G) ;

pi , rho := Proj (V,E,F) ;

AGbasis : = [ A! fb : fb in Fbas i s ] ;

AG := sub<A | AGbasis > ; // the G−f i x ed s ub l a t t i c e o f A
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rhoA := ext<AG | rho (Basis (A) ) >;

Q, p s i := quo<rhoA | AG> ; // t h i s i s f i n i t e

WFmat := Matrix ( [ F ! ( q @@ ps i ) : q in Q ] ) ; //WF = ” weights f i x ed ”

//we now modify WFmat in to WFrepsmat

Bmat := Matrix ( [ F ! b : b in AGbasis ] ) ;

Xmat := Solution (Bmat , WFmat) ;

for i in [ 1 . .NumberOfRows(Xmat) ] do

for j in [ 1 . . NumberOfColumns(Xmat) ] do

Xmat [ i , j ] : = Xmat [ i , j ] − Floor (Xmat [ i , j ] ) ;

end for ;

end for ;

WFrepsmat := Xmat ∗ Bmat ;

WFreps := { WFrepsmat [ i ] : i in [ 1 . .NumberOfRows(WFrepsmat) ] } ;

// WFreps = ρ(A) ∩ KB

return { A! ( x+w) : x in X, w in WFreps | IsCoercible (A, x+w) } ;

end function ;

//IN : La t t i c e A, and an i n t e g r a l matrix r e f l e c t i o n group G

// that ac t s on A

//OUT: 1 ) the s e t (π(A) ∩ KM ) A!0

// 2) the indexed s e t o f ” primary ” monoid gene ra to r s m1, ..., mr

Ztope := function (A, G : ComputeBoundary := fa l se )

V,E,F , Fbas i s := SpaceDecomp(A,G) ; // Fbas i s could be empty

n := Dimension(V) ;

r := Dimension(E) ;

fdw := FDW(A,G) ; // note that #fdw = r

i f n eq r then

// A = pi (A)

Lat := A;

s t r e t c h e r s : = [ LCM( [Denominator( f ) : f in Eltseq ( fdw [ i ] ) ] ) : i in

[ 1 . . r ] ] ;

else

// A != pi (A)

pi , rho := Proj (V,E,F) ;
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AE := sub<A | SimpleRoots (A,G) > ; // AE = A ∩ E

piA := ext<AE | pi (Basis (A) ) >;

Lat := piA ;

s t r e t c h e r s : = [ ] ;

for i in [ 1 . . r ] do

j := 1 ;

while not j ∗ fdw [ i ] in piA do j + := 1 ; end while ;

s t r e t c h e r s [ i ] : = j ;

end for ;

end i f ;

M := { s t r e t c h e r s [ i ]∗ fdw [ i ] : i in [ 1 . . r ] } ;

c o e f f s := SeqProduct ( [ [ 0 . . s t r e t c h e r s [ i ] ] : i in [ 1 . . r ] ] ) ;

Wgts := { &+{c [ i ]∗ fdw [ i ] : i in [ 1 . . r ] } : c in c o e f f s } ;

ZLatPts := { Lat !w : w in Wgts | IsCoercible ( Lat ,w) } ;

Z := ZLatPts d i f f { Lat ! 0 } ;

i f ComputeBoundary then

BdryWgts := { &+{c [ i ]∗ fdw [ i ] : i in [ 1 . . r ] } : c in c o e f f s | 0 in c

} ;

BdryLatPts := { Lat !w : w in BdryWgts | IsCoercible ( Lat ,w) } ;

return Z , M, BdryLatPts ;

else

return Z , M;

end i f ;

end function ;

// A Main Algorithm

//

//IN : A matrix r e f l e c t i o n group G o f rank n .

//OUT: A s e t o f l a t t i c e po in t s in A = Zn whose G−o rb i t sums

// generate the i nva r i an t r ing k[A]G
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HB := function (G)

CheckGroup(˜G) ;

A := LatticeOfGroup (G) ;

V,E,F , Fbas i s := SpaceDecomp(A,G) ; // Fbas i s could be empty

n := Dimension(V) ;

r := Dimension(E) ;

Z , M := Ztope (A,G) ; //note : Z ⊆ π(A) , and 0 /∈ Z .

HilBase := Z d i f f { z1 + z2 : z1 , z2 in Z} ;

i f n eq r then

//make sure elements in M are l i s t e d f i r s t

return SetToIndexedSet (M) join SetToIndexedSet ( Hi lBase ) ;

else

M := SetToIndexedSet ( LiftToA (M, A, G) ) ;

Hi lBase := SetToIndexedSet ( LiftToA ( HilBase , A, G) ) ;

AGbasis := { A! fb : fb in Fbas i s } ;

B := & join { {@ b,−b @} : b in AGbasis } ;

return M join HilBase join B;

end i f ;

end function ;

// A Main Algorithm

//

//IN : i n t e g r a l matrix groups G,H, with G in H, and H a

// r e f l e c t i o n group . Rank(G) = n .

//OUT: a sequence o f s e t s o f l a t t i c e po in t s in A = Zn whose

// G−o rb i t sums se rve as module gene ra to r s f o r k[A]G over k[A]H

ModuleGens := function (G, H : ShowMore := fa l se )

CheckGroup(˜H) ;

CheckGroup(˜G : CheckReflectionGroup := fa l se ) ;

i f G notsubset H then

error ” Error : Arg 1 must be a subgroup o f Arg 2 ” ;

end i f ;

A := LatticeOfGroup (H) ;

V,E := SpaceDecomp(A,H) ;
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n := Dimension(V) ;

r := Dimension(E) ;

T := RightTransversal (H,G) ; // t r a n s v e r s a l f o r H over G

// T[ 1 ] = i d e n t i t y matrix

T := {@ t ˆ −1 : t in T @} ; // Now T i s a LEFT trans . f o r H over G

Zt ,M, BdryPts := Ztope (A,H : ComputeBoundary := true ) ;

//note : Zt ⊆ π(A) , and 0 /∈ Zt

Z : = [ ] ;

B : = [ ] ;

Z [ 1 ] : = Zt ;

B[ 1 ] : = BdryPts ;

for i in [ 2 . .#T] do

Z [ i ] : = ZtˆT[ i ] ;

B[ i ] : = BdryPtsˆT[ i ] ;

end for ;

Used := {} ;

Y := Z [ 1 ] ;

ModGens := [ {V! 0 } ] ; // l a t t i c e po in t s f o r the module gene ra to r s

for i in [ 2 . .#T] do

Used join := & join { (Y meet B[ i −1])ˆg : g in G } ;

Y := Z [ i ] d i f f Used ; //remove some f a c e s o f Z [ i ]

Yi r r educ i b l e s := Y d i f f { y+z : y in Y, z in Z [ i ] } ;

Append(˜ModGens , Y i r r educ i b l e s ) ;

end for ;

i f n gt r then

ModGens : = [ LiftToA ( Yirred , A, H) : Yirred in ModGens ] ;

end i f ;

i f not ShowMore then

ModGens := & join { Yirred : Yirred in ModGens } ;

end i f ;

return ModGens ;

end function ;
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APPENDIX B

SOME SAMPLE OUTPUT

> // The f o l l ow ing f i l e conta in s d e f i n i t i o n s f o r 7 i n t e g e r

> // matrix groups .

> load “MultInvarExamples .m” ;

Loading “MultInvarExamples .m”

Example groups now loaded :

Re f l e c t i on groups : G1 , G2 , G3 , G4

Other matrix groups : H3 , H4

Containment : G2 in G1 , H3 in G3 , H4 in G4

> // The f o l l ow ing f i l e i s p r in t ed in Appendix A, and

> // conta in s f un c t i on s f o r working with r e f l e c t i o n

> // groups and mu l t i p l i c a t i v e i nva r i an t s .

> load “ r e f i n v .m” ;

Loading “ r e f i n v .m”

> G1;

MatrixGroup (2 , Rat iona l F i e ld )

Generators :

[ 0 1 ]

[ 1 0 ]
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[ 1 −1 ]

[ 0 −1 ]

> Order (G1) ;

6

> I sRe f l e c t i onGroup (G1) ;

t rue

> Ref lect ionsOfGroup (G1) ;

{
[−1 0 ]

[−1 1 ] ,

[ 0 1 ]

[ 1 0 ] ,

[ 1 −1 ]

[ 0 −1 ]

}

> // G1 i s a f i n i t e r e f l e c t i o n group o f rank 2 , ac t ing

> // na tu r a l l y on A = Z2 . A submonoid , D , o f A

> // can be found , as de s c r ibed in Chapter 2 . The command

> // HB(G) f i n d s a minimal gene ra t ing s e t f o r D ; when

> // π(A) = A , t h i s gene ra t ing s e t i s the

> // H i l b e r t ba s i s f o r D .

> HB(G1) ;

{@
(−1 2) ,

( 1 1 ) ,

( 0 1 )

@}
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> // Create the l a t t i c e that G na tu r a l l y ac t s on ,

> // with G−i n va r i an t inne r product .

> A1 := LatticeOfGroup (G1) ; A1 ;

Standard La t t i c e o f rank 2 and degree 2

Inner Product Matrix :

[ 2 1 ]

[ 1 2 ]

> RootSys (A1 , G1) ;

{
( 0 1 ) ,

( 1 −1) ,

(−1 0) ,

(−1 1) ,

( 1 0 ) ,

( 0 −1)

}

> // Find a base f o r the above root system .

> SimpleRoots (A1 , G1) ;

[

(−1 1) ,

( 1 0 )

]

> // Since A1 has rank 2 and the r e are 2 s imple roots ,

> // we must have A1G1 = { 0 } .

> // Find the fundamental dominant we ights

> // r e l a t i v e to the base above .

> FDW(A1 , G1) ;

[

(−1/3 2/3) ,

( 1/3 1/3)
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]

> //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

> G2;

MatrixGroup (2 , Rat iona l F i e ld )

Generators :

[ 0 1 ]

[ 1 0 ]

> I sRe f l e c t i onGroup (G2) ;

t rue

> HB(G2) ;

{@
(0 1 ) ,

( 1 1 ) ,

(−1 −1)

@}

> A2 := LatticeOfGroup (G2) ;

> A2 ;

Standard La t t i c e o f rank 2 and degree 2

> // The next command f i n d s the ( r a t i o n a l ) ambient space

> // o f A2 , the ‘ ‘ e f f e c t i v e ’ ’ space , and the space that

> // i s f i x ed under the ac t i on o f G2 . V = E ⊕ F .

> V, E , F := SpaceDecomp(A2 , G2) ;

> E;

Vector space o f degree 2 , dimension 1 over Rat iona l F i e ld

Generators :

(−1 1)
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( 1 −1)

Eche lon ized ba s i s :

( 1 −1)

Inner Product Matrix :

[ 1 0 ]

[ 0 1 ]

> // The f i x ed space f o r G2:

> F ;

Vector space o f degree 2 , dimension 1 over Rat iona l F i e ld

Generators :

( 1 1 )

Eche lon ized ba s i s :

( 1 1 )

Inner Product Matrix :

[ 1 0 ]

[ 0 1 ]

> G2 subset G1 ;

t rue

> // G2 i s a subgroup o f G1 . We now f i nd the module

> // gene ra to r s f o r k[A2]G2 as a module over

> // k[A2]G1 , as de s c r ibed in Chapter 4 .

> ModuleGens (G2 , G1) ;

{
(−1 1) ,

(−1 0) ,

(−1 −1) ,

(−2 1) ,

( 0 0 )

}

> // We can e x p l i c i t l y l i s t the s e t s Ω1, Ω2, Ω3 .
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> ModuleGens (G2 , G1 : ShowMore) ;

[

{
( 0 0 )

} ,

{
(−1 0) ,

(−1 −1) ,

(−2 1)

} ,

{
(−1 1)

}
]

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

> G3;

MatrixGroup (3 , Rat iona l F i e ld )

Generators :

[ 0 1 0 ]

[ 1 0 0 ]

[ 0 0 1 ]

[ 0 0 1 ]

[ 1 0 0 ]

[ 0 1 0 ]

> Order (G3) ;

6

> I sRe f l e c t i onGroup (G3) ;

t rue

> Ref lect ionsOfGroup (G3) ;

{
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[ 0 0 1 ]

[ 0 1 0 ]

[ 1 0 0 ] ,

[ 0 1 0 ]

[ 1 0 0 ]

[ 0 0 1 ] ,

[ 1 0 0 ]

[ 0 0 1 ]

[ 0 1 0 ]

}

> // The elements o f HB(G) are l i s t e d so that any po in t s

> // in AG are l i s t e d l a s t . These po in t s always occur

> // in ±b pa i r s .

> HB(G3) ;

{@
(0 0 1 ) ,

( 0 1 1 ) ,

( 1 1 1 ) ,

(−1 −1 −1)

@}

> A3 := LatticeOfGroup (G3) ;

> SimpleRoots (A3 , G3) ;

[

(−1 1 0) ,

( 0 −1 1)

]

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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> G4;

MatrixGroup (3 , Rat iona l F i e ld )

Generators :

[ 1 0 −1]

[ 0 1 −1]

[ 0 0 −1]

[ 0 1 0 ]

[ 1 0 0 ]

[ 0 0 1 ]

[ 0 0 1 ]

[ 0 1 0 ]

[ 1 0 0 ]

> Order (G4) ;

24

> #Reflect ionsOfGroup (G4) ;

6

> HB(G4) ;

{@
(1 1 1 ) ,

(−1 −1 3) ,

(−1 1 1) ,

( 0 0 1 ) ,

(−1 0 2) ,

( 0 1 1 )

@}

> A4 := LatticeOfGroup (G4) ;

> #SimpleRoots (A4 , G4) ;

3
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

> H3 ;

MatrixGroup (3 , Rat iona l F i e ld )

Generators :

[ 0 0 1 ]

[ 1 0 0 ]

[ 0 1 0 ]

> I sRe f l e c t i onGroup (H3) ;

f a l s e

> H3 subset G3 ;

t rue

> ModuleGens (H3 , G3) ;

{
( 0 0 0 ) ,

(−1 1 0)

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

> H4 ;

MatrixGroup (3 , Rat iona l F i e ld )

Generators :

[−1 1 0 ]

[−1 0 1 ]

[−1 0 0 ]

> I sRe f l e c t i onGroup (H4) ; Order (H4) ;

f a l s e

4
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> H4 subset G4 ;

t rue

> ModuleGens (H4 , G4) ;

{
( 1 0 1 ) ,

( 1 0 0 ) ,

( 2 −1 0) ,

(−2 2 1) ,

(−2 0 −1) ,

(−3 1 0) ,

( 0 0 0 ) ,

(−3 1 2) ,

(−2 0 3) ,

(−1 2 0) ,

( 1 −1 1) ,

(−2 1 1) ,

(−2 1 −1) ,

(−2 1 2) ,

( 0 1 0 )

}

> ModuleGens (H4 , G4 : ShowMore) ;

[

{
( 0 0 0 )

} ,

{
( 2 −1 0) ,

( 1 −1 1) ,

( 1 0 1 ) ,

( 1 0 0 )

} ,

{
(−3 1 0) ,

(−2 1 −1) ,

(−2 0 −1)
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} ,

{
(−2 1 1) ,

(−1 2 0) ,

(−2 2 1)

} ,

{
( 0 1 0 )

} ,

{
(−2 1 2) ,

(−3 1 2) ,

(−2 0 3)

}
]


