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ABSTRACT

Modular Forms Representable As Eta Products

Wissam Raji

DOCTOR OF PHILOSOPHY

Temple University, August, 2006

Professor Marvin Knopp, Chair

In this dissertation, we discuss modular forms that are representable as

eta products and generalized eta products . Eta products appear in many

areas of mathematics in which algebra and analysis overlap. M. Newman

[15, 16] published a pair of well-known papers aimed at using eta-product to

construct forms on the group Γ0(n) with the trivial multiplier system. Our

work here divides into three related areas. The first builds upon the work

of Siegel [23] and Rademacher [19] to derive modular transformation laws for

functions defined as eta products (and related products). The second continues

work of Kohnen and Mason [9] that shows that, under suitable conditions, a

generalized modular form is an eta product or generalized eta product and thus

a classical modular form. The third part of the dissertation applies generalized

eta-products to rederive some arithmetic identities of H. Farkas [5, 6].
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CHAPTER 1

Introduction

1.1 Basic Definitions

By SL2(Z) we mean the group of 2x2 matrices with integral entries and

determinant 1. We call SL2(Z) the modular group Γ(1). We define the action

of an element A ∈ SL2(Z) on the upper half plane H by

Az =
az + b

cz + d
,

where A =

(
a b

c d

)
. For a positive integer N, we define a subgroup of Γ(1);

Γ(N) =

{(
a b

c d

)
: a, b, c, d ∈ Z, b ≡ c ≡ 0 mod N, a ≡ d ≡ 1 mod N, ad− bc = 1

}
.

We call this subgroup the principal congruence subgroup of level N . For any

other subgroup Γ ⊂ Γ(1), if Γ(N) ⊂ Γ for some N ∈ Z, then we call Γ a

congruence subgroup.

Definition 1.1 Let Γ be a subgroup of Γ(1). A fundamental region for Γ is

an open subset R of H such that

1. no two distinct points of R are equivalent with respect to Γ, and

2. every point of H is equivalent to some point in the closure of R.
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Proposition 1.1 The full modular group is generated by S =

(
1 1

0 1

)
and

T =

(
0 −1

1 0

)

Definition 1.2 We say that ν is a multiplier system for the group Γ and

weight k provided ν(M), M ∈ Γ, is a complex-valued function of absolute

value 1, satisfying the following equation

ν(M1M2)(c3τ + d3)
k = ν(M1)ν(M2)(c1M2τ + d1)

k(c2τ + d2)
k,

where M1 =

(
∗ ∗
c1 d1

)
, M2 =

(
∗ ∗
c2 d2

)
and M3 = M1M2 =

(
∗ ∗
c3 d3

)
.

Definition 1.3 Let R be a fundamental region of Γ. A parabolic point (or

parabolic vertex or parabolic cusp) of Γ is any real point q, or q = ∞, such

that q ∈ closure(R), in the topology of the Riemann sphere.

Definition 1.4 Suppose Γ ⊂ Γ(1) such that [Γ(1) : Γ] = µ. Let A1, A2, ..., Aµ

be a set of right coset representatives of Γ in Γ(1). The width of Γ at qj = ∞
is the smallest positive integer λ such that Sλ ∈ Γ. Also, the width of Γ

at any other cusp qj = Aj(∞) is the smallest positive integer λ such that

AjS
λA−1

j ∈ Γ.

Definition 1.5 Let k ∈ R and ν(M) a multiplier system for Γ and of weight

k. A function F (τ) defined and meromorphic in H is a modular form (MF)

of weight k, with multiplier system (MS) ν, with respect to Γ, provided

1. F (Mτ) = ν(M)(cτ + d)kF (τ)

for every M ∈ Γ;

2. The Fourier expansion of F at every cusp qj has the form

F (τ) = σj(τ)
∞∑

n=−n0

an(j)e2πi(n+κj)(A
−1
j τ)/λj ,
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where

σj(τ) = 1 if qj = ∞

σj(τ) = (τ − qj)
−k if qj is finite.

Here λj is the width at qj

and 0 ≤ κj < 1 is determined by

ν(ASλjA−1) = e2πiκj ,

if qj is finite and

ν(Sλj) = e2πiκj ,

if qj is infinity.

If the first nonzero an(j) occurs for n = −n0 < 0, we say F has a pole at qj

of order n0 − κj. If the first nonzero an(j) occurs for n = n0 ≥ 0, we say F is

regular at qj with a zero of order n0 + κj.

To decide whether a given function is a modular form on Γ, it is essential

to determine how this function transforms under the action of Γ. With respect

to the full modular group, it will be enough to determine how the function

transforms under the generators S and T . Usually, it is easier to see how the

function transforms under the action of S. In Chapter 2 of this thesis, we de-

termine the transformation law of θ3(w, τ) under the action of T using Siegel’s

method [23]. Notice that θ3(w, τ) is not a modular form but θ3(0, τ) = θ3(τ)

is. We will see in the (2.1.1) that θ3(τ) is a modular form of weight 1
2
. We then

generalize Siegel’s method to determine the transformation laws for an entire

class of modular forms under Γ0(N). Here Γ0(N) is a congruence subgroup

to be defined later. This class of functions is a product of eta functions with

very important properties to be used in the later chapters. We then impose

some conditions to derive a class of functions which is invariant under Γ0(N).

These kinds of invariant functions were first constructed by Newman [15, 16].

In Chapter 3, we define generalized modular forms and present some theo-

rems derived by Kohnen and Mason. In [9], they impose some conditions upon
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the order of the function at the cusps and prove that the generalized modu-

lar form is representable as an eta product in the form described in Chapter

3. I present another class of functions which generalizes the class presented

in Chapter 3. These well-known functions are called generalized eta products

[20, 21]. We relax the condition of Kohnen and Mason from a condition on the

order of the function at the cusps to a condition on the level of the congruence

subgroup. We then deduce some results on other congruence subgroups. As a

result, we represent generalized modular forms as generalized eta products.

In Chapter 4, we use the fact that the logarithmic derivative of the gen-

eralized eta products will span the space of M2(Γ0(4)) and determine some

arithmetic identities modulo 4 by relating the logarithmic derivative of the

generalized eta functions to Eisenstein series of weight 2. We also determine

arithmetic identities modulo the primes 3 and 7.
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CHAPTER 2

Transformation Laws Of Classes

Of Functions

2.1 Transformation Law of Jacobi θ3(w, τ )

Let w be a complex number. The function θ3(w, τ) is defined by

θ3(w, τ) =
∞∏

n=1

(1− q2n)(1 + 2q2n−1 cos 2w + q4n−2) , (2.1)

where q = eπiτ and τ is in the upper half plane [25]. The transformation law

is given by

θ3

(
w

τ
,
−1

τ

)
= (−iτ)

1
2 e−

w2

πiτ θ3(w, τ) , (2.2)

We give a new, detailed proof using Residue Calculus inspired by Siegel’s proof

of the transformation law of the Dedekind eta function [23]. First, we prove

(2.2) for τ = iy, where w = σ + it and y > 2|t|
π

, and then extend the result to

all τ in the upper half plane by analytic continuation.

We use the logarithmic expansion to prove (2.2). In proving the transfor-

mation law of the logarithmic derivative, we will encounter some problems

with the zeroes of the theta function. The zeroes of θ3(w, τ) are the points

w = π
2

+ πτ
2

+ mπ + nπτ , for m, n ∈ Z.

To solve this problem, we first fix w such that Rew 6= π
2

+ nπ, and prove the
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transformation law for τ = iy. We then extend the result by analytic continu-

ation to the whole τ plane. Once we have it for all w such that Rew 6= π
2
+nπ,

we use analytic continuation in the w plane to extend the result to all w.

Theorem 2.1 If τ = iy and y > 2|t|
π

, where w = σ + it, then θ3(w, τ) satisfies

θ3

(
w

iy
,
i

y

)
= (y)

1
2 e

w2

πy θ3(w, iy) . (2.3)

Proof Fix w such that Rew 6= π
2

+ nπ. Then it is sufficient to prove

log θ3(w, iy)− log θ3

(
w

iy
,
i

y

)
+

w2

πy
= −1

2
log y . (2.4)

If we simplify θ3(w, τ), we get

θ3(w, τ) =
∞∏

n=1

(1− q2n)(e2iw + q2n−1)(e−2iw + q2n−1)

=
∞∏

n=1

(1− q2n)(1 +
q2n−1

e2iw
)(1 +

q2n−1

e−2iw
).
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Since y > 2|t|
π

,
∣∣∣ q2n−1

e2iw

∣∣∣ < 1. Thus the expansion of log θ3(w, iy) is

log θ3(w, iy) =
∞∑

n=1

log(1− q2n) +
∞∑

n=1

log(1 +
q2n−1

e2iw
) +

∞∑
n=1

log(1 +
q2n−1

e−2iw
)

= −
∞∑

n=1

∞∑
m=1

(q2n)m

m
+

∞∑
n=1

∞∑
m=1

(−1)m−1

m

(q2n−1)m

e2imw

+
∞∑

n=1

∞∑
m=1

(−1)m−1

m

(q2n−1)m

e−2imw

= −
∞∑

m=1

1

m

(
q2m

1− q2m

)
+

∞∑
m=1

(−1)m−1

me2imw
q−m

(
q2m

1− q2m

)
+

∞∑
m=1

(−1)m−1

me−2imw
q−m

(
q2m

1− q2m

)
= −

∞∑
m=1

1

m

(
e−2πym

1− e−2πym

)
+

∞∑
m=1

(−1)m−1

m

eπmy

e2imw

(
e−2πym

1− e−2πym

)
+

∞∑
m=1

(−1)m−1

m

eπmy

e−2imw

(
e−2πym

1− e−2πym

)
=

∞∑
m=1

1

m

(
1

1− e2πym

)
+

∞∑
m=1

(−1)m

m
e−2iwm

(
eπym

1− e2πym

)
+

∞∑
m=1

(−1)m

m
e2iwm

(
eπym

1− e2πym

)
.

Thus,

log θ3(
w

iy
,
i

y
) =

∞∑
m=1

1

m

(
1

1− e2πm/y

)
+

∞∑
m=1

(−1)m

m
e−2mw/y

(
eπm/y

1− e2πm/y

)
+

∞∑
m=1

(−1)m

m
e2wm/y

(
eπm/y

1− e2πm/y

)
.

So we have to prove that
∞∑

m=1

1

m

(
1

1− e2πym

)
+

∞∑
m=1

(−1)m

m
e−2iwm

(
eπym

1− e2πym

)
+

∞∑
m=1

(−1)m

m
e2iwm

(
eπym

1− e2πym

)
−

∞∑
m=1

1

m

(
1

1− e2πm/y

)
−

∞∑
m=1

(−1)m

m
e−2mw/y

(
eπm/y

1− e2πm/y

)
−

∞∑
m=1

(−1)m

m
e2wm/y

(
eπm/y

1− e2πm/y

)
+

w2

πy
= −1

2
log y.
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To prove this, consider

Fn(z) = − 1

8z
cot πiNz cot πNz/y +

1

z

(
e−iNz(π/y+2w/y+2w)

1− e−2πiNz/y

)(
eNz(π+2iw)

1− e2πzN

)
,

where N = n + 1
2
.

We will calculate the residues of Fn(z) at the poles z = 0, z = ik
N

and

z = ky
N

for k = ±1,±2, . . ., ±n.

We start by calculating the residue of Fn(z) at z = 0. We use Bernoulli

numbers to calculate the residue of the second part of the function. The

residue at 0 of the first summand of the function is i
24

(
y − 1

y

)
. Now for the

second summand of the function we will use the fact that

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, (2.5)

where B0 = 1, B1 = −1
2

and B2 = 1
6
.

Notice that

1

z

(
e−iNz(π/y+2w/y+2w)

1− e−2πiNz/y

)(
eNz(π+2iw)

1− e2πzN

)
=

−y

4π2iN2z3

(
−2πiNz/y

e−2πiNz/y − 1

)(
2πNz

e2πzN − 1

)
∗ eNz(−iπ/y−2iw/y+π).

Using (2.5) and the Taylor expansion of the exponential function, we see easily

that the residue at z = 0 of the second summand of the function is

−y

4π2iN2
{N2

2

(
−π2

y2
− 4w2

y2
+ π2 − 4πw

y2
− 2π2i

y
− 4πiw

y

)
+

(
−π2N2i

y
− π2N2

3y2
+

π2N2

3

)
+

(
πiN2

y
− πN2

)(
−iπ

y
− 2iw

y
+ π

)
}.

Simplifying the above result, we conclude that the residue of the second sum-

mand at z = 0 is
w2

2π2iy
− i

24

(
y − 1

y

)
.

As a result we obtain

Res[Fn(z), 0] =
w2

2π2iy
.
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We note that

Res[Fn(z),
ik

N
] =

1

8πk
cot

πik

y
− (−1)k

2πik
e2kw/y eπk/y

1− e2πk/y
.

Thus,
n∑

k=−n; k 6=0

z= ik
N

Res [Fn(z),
ik

N
] = 2

n∑
k=1

1

8πk
cot

πik

y
−

n∑
k=1

(−1)k

2πik
e2kw/y eπk/y

1− e2πk/y

−
n∑

k=1

(−1)k

2πik
e−2kw/y e−πk/y

1− e2πk/y

=
1

4πi

n∑
k=1

1

k
− 1

2πi

n∑
k=1

1

k(1− e2πk/y)

− 1

2πi

n∑
k=1

(−1)k

k
e2kw/y eπk/y

1− e2πk/y

− 1

2πi

n∑
k=1

(−1)k

k
e−2kw/y eπk/y

1− e2πk/y
.

The residue of Fn(z) at z = ky
N

is

Res[Fn(z),
ky

N
] = − 1

8πk
cot πiky +

(−1)k

2πik
e−2ikw eπky

1− e2πky
.

Thus,
n∑

k=−n; k 6=0

z= ky
N

Res [Fn(z),
ky

N
] = 2

n∑
k=1

− 1

8πk
cot πiky +

n∑
k=1

(−1)k

2πik
e−2ikw eπky

1− e2πky

+
n∑

k=1

(−1)k

2πik
e2ikw eπky

1− e2πky

= − 1

4πi

n∑
k=1

1

k
+

1

2πi

n∑
k=1

1

k(1− e2πky)

+
1

2πi

n∑
k=1

(−1)k

k
e−2ikw eπky

1− e2πky
+

1

2πi

n∑
k=1

(−1)k

k
e2ikw eπky

1− e2πky
.
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Thus,

2πi

n∑
k=−n

z= ky
N

;z= ik
N

ResFn(z) =
n∑

k=1

1

k

(
1

1− e2πyk

)
+

n∑
k=1

(−1)k

k
e−2iwk

(
eπyk

1− e2πyk

)

+
n∑

k=1

(−1)k

k
e2iwk

(
eπyk

1− e2πyk

)
−

n∑
k=1

1

k

(
1

1− e2πk/y

)
−

n∑
k=1

(−1)k

k
e−2kw/y

(
eπk/y

1− e2πk/y

)
−

n∑
k=1

(−1)k

k
e2wk/y

(
eπk/y

1− e2πk/y

)
+

w2

πy
.

It remains to prove that

lim
n→∞

∮
c

Fn(z)dz = −1

2
log y,

where C is the parallelogram of vertices y, i, −y and−i taken counterclockwise.

Now it is easy to see that limn→∞ zFn(z) is 1
8

on the edges connecting y

to i and -y to -i and the limit −1
8

on the other two edges. Moreover, Fn(z) is

uniformly bounded on C for all n. Hence by the bounded convergence theorem

we have

lim
n→∞

∮
c

Fn(z)dz =

∮
c

zFn(z)
dz

z

=
1

8

[
−
∫ y

−i

dz

z
+

∫ i

y

dz

z
−
∫ −y

i

dz

z
+

∫ −i

−y

dz

z

]
=

1

4

[
−
∫ y

−i

dz

z
+

∫ i

y

dz

z

]
=

1

4

[
−
(

log y +
πi

2

)
+

(
πi

2
− log y

)]
= −1

2
log y.

This completes the proof.
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2.1.1 The Jacobi function θ3(τ)

At w = 0, we have

θ3(τ) =
∞∏

n=1

(1− q2n)(1 + q2n−1)2

The transformation law is given by

θ3

(
−1

τ

)
= (−iτ)

1
2 θ3(τ) . (2.6)

To obtain (2.6) simply set w = 0 in (2.3).

2.1.2 The Function w(z, τ)

Let

w(z, τ) = e
−πiτ
12

∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n−2).

Using the same technique but with different Fn(z), we will be able to prove that

w(τ) is invariant under the transformation τ → −1
τ

. In other words, by defining

a suitable Fn(z), we will be able to prove that w( z
τ
, −1

τ
) = w(z, τ). Following

exactly the same steps in proving the transformation law for Rez 6= π
2

+ nπ

where τ = iy and then using analytic continuation to extend the result, we

find that it is sufficient to prove that log w(z, τ)− log w( z
τ
, −1

τ
) = 0 for τ = iy

and Rez 6= π
2

+ nπ. Using logarithmic expansion we see that

log w(z, iy) =
πy

12
+

∞∑
m=1

(−1)m

m
e2imz eπym

1− e2πym
+

∞∑
m=1

(−1)m

m
e−2imz eπym

1− e2πym
.

So we have to prove that

π

12

(
y − 1

y

)
+

∞∑
m=1

(−1)m

m
e2imz eπym

1− e2πym
+

∞∑
m=1

(−1)m

m
e−2imz eπym

1− e2πym

−
∞∑

m=1

(−1)m

m
e2imz eπm/y

1− e2πm/y
−

∞∑
m=1

(−1)m

m
e−2imz eπm/y

1− e2πm/y
= 0.

Consider

Fn(z) =
1

z

(
e−iNz(π/y+2w/y+2w)

1− e−2πiNz/y

)(
eNz(π+2iw)

1− e2πzN

)
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where N = n + 1
2
.

We repeat the process, calculating the residues of the poles of Fn(z) at z = 0,

z = ik
N

and at z = ky
N

. As a result, we get

2πi

n∑
k=1

Res[Fn(z),
ik

N
] + 2πi

n∑
k=1

Res[Fn(z),
ky

N
]

=
π

12

(
y − 1

y

)
+

n∑
k=1

(−1)k

k
e2ikz eπyk

1− e2πyk

+
n∑

k=1

(−1)k

k
e−2ikz eπyk

1− e2πyk
−

n∑
k=1

(−1)k

k
e2ikz eπk/y

1− e2πk/y

−
n∑

k=1

(−1)k

k
e−2ikz eπk/y

1− e2πk/y
.

It is also easy to show that

lim
n→∞

zFn(z) = 0.

on all the edges of the parallelogram connecting y to i, i to −y, −y to −i

and −i to y. We also see that Fnz is uniformly bounded on C, then by the

bounded convergence theorem, we get

lim
n→∞

∮
c

Fn(z)dz = 0.

By the Residue Theorem, we get

π

12

(
y − 1

y

)
+

∞∑
k=1

(−1)k

k
e2ikz eπyk

1− e2πyk
+

∞∑
k=1

(−1)k

k
e−2ikz eπyk

1− e2πyk

−
∞∑

k=1

(−1)k

k
e2ikz eπk/y

1− e2πk/y
−

∞∑
k=1

(−1)k

k
e−2ikz eπk/y

1− e2πk/y
= 0.

As a result, we get w( z
τ
, −1

τ
) = w(z, τ)

The Function w1(τ)

Letting z = 0 in w(z, τ), we get

w(τ) = e
−πiτ
12

∞∏
n=1

(1 + q2n−1)2.
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Define w1(τ) =
√

w(τ) = e−
πiτ
24

∏∞
n=1(1 + q2n−1). Notice that w1(τ) 6= 0 in

the upper half plane. Thus by the transformation law,w1(
−1
τ

) = ±w1(τ). By

setting τ = i, we obtain

w1(
−1

τ
) = w1(τ).

2.2 Transformation Laws of a Class of Eta Prod-

ucts

Let τ be in the upper half plane and n ∈ Z. The Dedekind eta function is

defined by,

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ ).

Consider

Γ0(n) =

{(
a b

c d

)
: a, b, c, d ∈ Z, c ≡ 0 mod n, ad− bc = 1

}
,

a congruence subgroup of the full modular group.

Suppose n > 1, and let {rδ} and {r′δ} be two sequences of positive integers

indexed by the positive divisors δ of n and suppose that n has g divisors.

Consider the function

g1 = g1(τ) =

g∏
l=1

η(δlτ)rδl

η(τ)
r′δl

.

We prove the transformation law of this function which is given by

g1(V τ) = e−πiδ∗{−i(cτ + d)}
1
2

Pg
l=1 rδl

− 1
2

Pg
l=1 r′δlg1(τ),

where

δ∗ =

g∑
l=1

{
a + d

12c
+ s(−d, c)

}
r′δl
−

g∑
l=1

{
a + d

12cl

+ s(−d, cl)

}
rδl

,

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

)
,
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c = clδl, and V ∈ Γ0(n).

A special case of the above product is given by

f(τ) =

g∏
l=1

(
η(δlτ)

η(τ)

)rδl

.

if we set rδ = r′δ for every δ dividing n in g(τ).

Imposing certain conditions on rδ’s and r′δ’s will make f(τ) a modular function

on Γ0(n). Another interesting special case of this product is given by

f1(τ) =

g∏
l=1

η(δlτ)rδl

if we put
∑

δ|n r′δ = 0 in g(τ).

By imposing different conditions, this time on rδ’s and r′δ’s, we will deduce a

transformation law of f1(τ).

2.2.1 The Transformation law of g1(τ) under Γ0(n)

We give a new, detailed proof using residue calculus of the transformation

law under Γ0(n).

g1(V τ) = e−πiδ∗{−i(cτ + d)}
1
2

Pg
l=1 rδl

− 1
2

Pg
l=1 r′δlg1(τ),

where

g1(τ) =

g∏
l=1

η(δlτ)rδl

η(τ)
r′δl

.

Consider V ∈ Γ0(n). Let a = h′, c = k and d = −h, hence k = klδl where

(h, k) = 1, k > 0, l = 1, 2, ..., g and hh′ ≡ −1( mod k). We will write

τ = (h + iz)/k and as a result V τ = (h′ + iz−1)/k.
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We have to prove

−
g∑

l=1

log η

(
δlh

′ + iδlz
−1

k

)
rδl

+

g∑
l=1

log η

(
δlh + iδlz

k

)
rδl

+

g∑
l=1

πi

12kl

(h′ − h)rδl

+

g∑
l=1

πis(h, kl)rδl
+ log η

(
h′ + iz−1

k

) g∑
l=1

r′δl
− log η

(
h + iz

k

) g∑
l=1

r′δl

− πi

12k
(h′ − h)

g∑
l=1

r′δl
− πis(h, k)

g∑
l=1

r′δl

= −1

2
(

g∑
l=1

rδl
−

g∑
l=1

r′δl
) log z.

The logarithm here is everywhere taken with its principal branch.

Now, from the definition of η(τ),

log η

(
h + iz

k

)
=

πi(h + iz)

12k
+

∞∑
m=1

log(1− e2πihm/ke−2πzm/k)

=
πi(h + iz)

12k
+

k∑
µ=1

∞∑
q=0

log(1− e2πihµ/ke−2πz(qk+µ)/k)

=
πih

12k
− πz

12k
−

k∑
µ=1

∞∑
q=0

∞∑
r=1

1

r
e2πihµr/ke−2πz(qk+µ)r/k

=
πih

12k
− πz

12k
−

k∑
µ=1

∞∑
r=1

1

r
e2πihµr/k e−2πzµr/k

1− e−2πzr
.

Thus we have to prove that

g∑
l=1

kl∑
ν=1

∞∑
r=1

rδl

r
e2πih′νr/kl

e−2πνr/klz

1− e−2πr/z
−

g∑
l=1

kl∑
µ=1

∞∑
r=1

rδl

r
e2πihµr/kl

e−2πzµr/kl

1− e−2πzr

+

g∑
l=1

πrδl

12kl

(
1

z
− z

)
+ πi

g∑
l=1

rδl
s(h, kl)−

g∑
l=1

k∑
ν=1

∞∑
r=1

r′δl

r
e2πih′νr/k e−2πνr/kz

1− e−2πr/z

+

g∑
l=1

k∑
µ=1

∞∑
r=1

r′δl

r
e2πihµr/k e−2πzµr/k

1− e−2πzr
−

g∑
l=1

πr′δl

12k

(
1

z
− z

)
− πis(h, k)

g∑
l=1

r′δl

= −1

2
(

g∑
l=1

rδl
−

g∑
l=1

r′δl
) log z.
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We will define a function and calculate the residues of the function at

the poles and prove that the sum of the residues is equal to the left side of

the above equation. A sort of symmetry is needed between µ and hµ. We

introduce therefore

µ∗ ≡ hµ (modk), (2.7)

1 ≤ µ∗ ≤ k − 1.

Consider the function

Fn(x) = − 1

4ix
cothπNxcot

πNx

z

g∑
l=1

(rδl
− r′δl

) +

g∑
l=1

kl−1∑
µ=1

rδl

x

e2πµNx/kl

1− e2πNx

e−2πiµ∗Nx/klz

1− e−2πiNx/z

−
g∑

l=1

kl−1∑
µ=1

r′δl

x

e2πµNx/k

1− e2πNx

e−2πiµ∗Nx/kz

1− e−2πiNx/z
,

where N = n + 1
2
. We will integrate Fn(x) along the parallelogram with the

vertices z,i,−z,−i and then calculate the residues of this function at its poles

and then compare the two answers using the Residue Theorem.

The function Fn(x) has poles at x = 0, x = ir/N and x = −zr/N for r =

±1,±2,±3, ...,±n.

The function

− 1

4ix
cothπNxcot

πNx

z

g∑
l=1

(rδl
− r′δl

)

has the residue

−
∑g

l=1(rδl
− r′δl

)

12i

(
z − 1

z

)
The residue at x=0 of

g∑
l=1

rδl

x

e2πµNx/kl

1− e2πNx

e−2πiµ∗Nx/klz

1− e−2πiNx/z

is

g∑
l=1

(
1

12
− µ

2kl

+
1

2

µ2

k2
l

)
rδl

zi +

g∑
l=1

(
µ

kl

− 1

2

)(
µ∗

kl

− 1

2

)
rδl

+

g∑
l=1

(
1

12
− µ∗

2kl

+
1

2

µ∗2

k2
l

)
rδl

iz
.

The sum above has to be summed over µ from 1 to kl − 1. Observe also

that µ∗ runs from 1 to kl− 1 for all l = 1, 2, ..., g in the view of (2.7). Also the
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first and the third summation are not difficult to calculate. For the middle

term, observe from (2.7) that

µ∗

kl

=
hµ

kl

−
[
hµ

kl

]
,

for l = 1, 2, 3, ..., g,

so that
kl−1∑
µ=1

(
µ

kl

− 1

2

)(
µ∗

kl

− 1

2

)
= s(h, kl).

The residue of the remaining function

g∑
l=1

kl−1∑
µ=1

r′δl

x

e2πµNx/k

1− e2πNx

e−2πiµ∗Nx/kz

1− e−2πiNx/z

is

g∑
l=1

(
1

12
− µ

2k
+

1

2

µ2

k2

)
r′δl

zi +

g∑
l=1

(
µ

k
− 1

2

)(
µ∗

k
− 1

2

)
r′δl

+

g∑
l=1

(
1

12
− µ∗

2k
+

1

2

µ∗2

k2

)
r′δl

iz
.

Thus the residue at x = 0 of Fn(x) is

g∑
l=1

s(h, kl)rδl
+

g∑
l=1

irδl

12kl

(
z − 1

z

)
− s(h, k)

g∑
l=1

r′δl
−

g∑
l=1

ir′δl

12k

(
z − 1

z

)
The residue of Fn(x) at x = ir

N
is∑g

l=1(rδl
− r′δl

)

4πr
cot

πir

z
− 1

2πi

g∑
l=1

kl−1∑
µ=1

rδl

r
e2πiµr/kl

e2πµ∗r/klz

1− e2πr/z
+

1

2πi

g∑
l=1

k−1∑
µ=1

r′δl

r
e2πiµr/k e2πµ∗r/kz

1− e2πr/z
.

It is easy to see that

h′µ ≡ hh′µ ≡ −µ (modkl),

for l = 1, 2, 3, ..., g,

and

h′µ ≡ hh′µ ≡ −µ (modk).
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As a result we get∑g
l=1(rδl

− r′δl
)

4πir
coth

πr

z
− 1

2πi

g∑
l=1

kl−1∑
µ=1

rδl

r
e−2πih′µ∗r/kl

e2πµ∗r/klz

1− e2πr/z

+
1

2πi

g∑
l=1

k−1∑
µ=1

r′δl

r
e−2πih′µ∗r/k e2πµ∗r/kz

1− e2πr/z
.

The parallelogram contains the poles x = ir
N

for −n ≤ r ≤ −1 and 1 ≤ r ≤ n.

We sum then over the poles and we get∑g
l=1(rδl

− rδ′l
)

2πi

n∑
r=1

1

r

(
2e−2πr/z

1− e−2πr/z
+ 1

)
+

1

2πi

g∑
l=1

kl−1∑
µ∗=1

n∑
r=1

rδl

r
e2πih′µ∗r/kl

e−2πµ∗r/klz

1− e−2πr/z

− 1

2πi

g∑
l=1

kl−1∑
µ∗=1

n∑
r=1

rδl

r
e2πih′(kl−µ∗)r/kl

e−2π(kl−µ∗)r/klz

e−2πr/z − 1

− 1

2πi

g∑
l=1

k−1∑
µ∗=1

n∑
r=1

r′δl

r
e2πih′µ∗r/k e−2πµ∗r/kz

1− e−2πr/z

+
1

2πi

g∑
l=1

k−1∑
µ∗=1

n∑
r=1

r′δl

r
e2πih′(k−µ∗)r/k e−2π(k−µ∗)r/kz

e−2πr/z − 1
.

In the third and fifth sum we replace kl − µ∗ and k− µ∗ by µ∗ and combine it

with the other sum. As a result the residue of Fn(x) at x = ir
N

is given by∑g
l=1(rδl

− rδ′l
)

2πi

n∑
r=1

1

r
+

1

πi

g∑
l=1

k1∑
ν=1

n∑
r=1

rδl

r
e2πih′νr/kl

e−2πνr/klz

1− e−2πr/z

− 1

πi

g∑
l=1

k∑
ν=1

n∑
r=1

r′δl

r
e2πih′νr/k e−2πνr/kz

1− e−2πr/z
.

Similarly, we find the sum of the residues of Fn(x) at x = − zr
N

, r = ±1,±2,±3, ...,±n

is given by

i
∑g

l=1(rδl
− r′δl

)

2π

n∑
r=1

1

r
+

i

π

g∑
l=1

kl∑
ν=1

n∑
r=1

rδl

r
e2πihνr/kl

e−2πνrz/kl

1− e−2πrz

− i

π

g∑
l=1

k∑
ν=1

n∑
r=1

r′δl

r
e2πihνr/k e−2πνrz/k

1− e−2πrz
.
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Thus the sum of all the residues of Fn(x) within the parallelogram is

g∑
l=1

rδl

12kli

(
1

z
− z

)
+

g∑
l=1

s(h, kl)rδl
+

1

πi

g∑
l=1

kl∑
ν=1

n∑
r=1

rδl

r
e2πih′νr/kl

e−2πνr/klz

1− e−2πr/z

− 1

πi

g∑
l=1

kl∑
µ=1

n∑
r=1

rδl

r
e2πihµr/kl

e−2πµrz/kl

1− e−2πrz
−

g∑
l=1

r′δl

12ki

(
1

z
− z

)
−

g∑
l=1

s(h, k)r′δl

− 1

πi

g∑
l=1

k∑
ν=1

n∑
r=1

r′δl

r
e2πih′νr/k e−2πνr/kz

1− e−2πr/z
+

1

πi

g∑
l=1

k∑
µ=1

n∑
r=1

r′δl

r
e2πihµr/k e−2πµrz/k

1− e−2πrz
.

What remains to prove is that

lim
n→∞

∫
C

Fn(x)dx = −(

g∑
l=1

rδl
− r′δl

) log z,

where C is the parallelogram of vertices z,i,−z,−i.

Now on the four sides of C, except at the vertices, the second and the third

summands in Fn(x) goes to zero as n goes to infinity. Now regarding the first

part of the function, it is easy to see that

lim
n→∞

cothπNxcot
πNx

z
= i

on the sides i to −z and −i to z and that

lim
n→∞

cothπNxcot
πNx

z
= −i

on the sides i to z and −i to −z.

Therefore

lim
n→∞

Fn(x) =

∑g
l=1 rδl

− r′δl

4

on the sides i to z and on −i to −z, and

lim
n→∞

Fn(x) = −
∑g

l=1 rδl
− r′δl

4

on the sides i to −z and on −i to z. The convergence of Fn(x) is not uniform

but it is bounded since the denominators of the three summands are bounded
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away from zero and this is because N = n+ 1
2

is not an integer. We then have

lim
n→∞

∫
C

Fn(x)dx =

∑g
l=1 rδl

− r′δl

4

{
−
∫ z

−i

dx

x
+

∫ i

z

dx

x
−
∫ −z

i

dx

x
+

∫ −i

−z

dx

x

}
=

∑g
l=1 rδl

− r′δl

2

{
−
∫ z

−i

dx

x
+

∫ i

z

dx

x

}
=

∑g
l=1 rδl

− r′δl

2

{
−
(

log z +
πi

2

)
+

(
πi

2
− log z

)}
= −(

g∑
l=1

rδl
− r′δl

) log z.

2.2.2 A Special Case of g1(τ)

Let

f(τ) =

g∏
l=1

(
η(δlτ)

η(τ)

)rδl

.

Also suppose that

1

24

g∑
l=1

(δl − 1)rδl
(2.8)

is an integer and

1

24

g∑
l=1

(δ′l − n)rδl
(2.9)

is an integer,

where n = δlδ
′
l,

g∏
l=1

δ
rδl
l (2.10)

is a rational square, and r1 = 0.

It is easy to see that f(τ) is the special case of g1(τ) in which rδ = r′δ for

all δ dividing n. We then have

f(V τ) = e−πiδ∗∗f(τ),

where

δ∗∗ =

g∑
l=1

{{
a + d

12c
+ s(−d, c)

}
−
{

a + d

12cl

+ s(−d, cl)

}}
rδl

.
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Suppose now that (a, 6) = 1 and c > 0. M. Newman [15] using (2.8), (2.9)

and (2.10) showed that

g∑
l=1

{{
a + d

12c
+ s(−d, c)

}
−
{

a + d

12cl

+ s(−d, cl)

}}
rδl

is an even integer. Hence,

f(V τ) = f(τ)

where V ∈ Γ0(n).

In [15], M. Newman mentioned that since S = τ + 1 is in Γ0(n) for every

n, Γ0(n) can be generated by the elements(
a b

nc d

)
,

where (a, 6) = 1. Thus it is necessary to show the invariance of a function

only with respect to these transformations in order to show its invariance for

Γ0(n). Also, it suffices to consider only these substitutions for which both a

and nc are positive.

2.2.3 Another Special Case of g1(τ)

Let

f1(τ) =

g∏
l=1

η(δlτ)rδl ,

where
g∑

l=1

δlrδl
≡ 0 (mod 24) (2.11)

and
g∑

l=1

n

δl

rδl
≡ 0 (mod 24). (2.12)

Let k = 1
2

∑g
l=1 rδl

∈ Z. It is easy to see that f1(τ) is a special case of g1(τ)

where
∑g

l=1 r′δl
= 0. We then have

f1(V τ) = e−πiδ∗∗∗{−i(cτ + d)}kf1(τ),
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where

δ∗∗∗ =

g∑
l=1

{
−a + d

12cl

− s(−d, cl)

}
rδl

.

We have to prove now that the transformation law above is the same as

f1(V τ) = χ(d)(cτ + d)kf1(τ),

where V ∈ Γ0(n) and

χ(d) =

(
(−1)k

∏g
l=1 δ

rδl
l

d

)
.

Since k is an integer, we get

f1(V τ) = e−πiδ∗∗∗(−i)k(cτ + d)kf1(τ)

What remains to prove is that

χ(d) = (−i)ke−πiδ∗∗∗ .

Notice that −ad ≡ −1 (modc). Thus s(−d, c) = −s(a, c).

We have that

δMτ = δ

(
a b

nc1 d

)
τ =

(
a δb

δ′c1 d

)
δτ = M1δτ,

where M ∈ Γ0(n).

Thus η(δMτ) = η(M1δτ) and so

f(Mτ) =

g∏
l=1

η(δlMτ)rδl =

g∏
l=1

η(M1δlτ)rδl .

Assume now that (a, 6) = 1, c > 0 and n = δlδ
′
l. In [15], Newman proved that

s(a, c)− (a + d)/12c ≡ 1

12
a(c− b− 3)− 1

2

{
1−

( c

a

)}
(mod 2),
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where
(

c
a

)
is the generalized Legendre-Jacobi symbol of the quadratic reci-

procity. Write c = c1n. Thus

δ∗∗∗ =

g∑
l=1

{
s(a, δ′lc1)−

(a + d)

12δ′lc1

}
rδl

≡ ac1

12

g∑
l=1

δ′lrδl
− ab

12

g∑
l=1

δlrδl
− 3a

12

g∑
l=1

rδl
− 1

2

g∑
l=1

{
1−

(
δ′lc1

a

)}
rδl

(mod 2)

≡ −2ac1

24

g∑
l=1

δ′lrδl
+

2ab

24

g∑
l=1

δlrδl
+

k

2
+

1

2

g∑
l=1

{
1−

(
δl

a

)}
rδl

(mod 2).

But we are given that
∑g

l=1 δ′lrδl
≡ 0 (mod 24) and

∑g
l=1 δlrδl

≡ 0 (mod 24).

Thus
ac1

12

g∑
l=1

δ′lrδl

and
ab

12

g∑
l=1

δlrδl

are even integers. Therefore, we get

e−πiδ∗∗∗ = eπi 1
2
ke

πi 1
2

Pg
l=1

n
1−
�

δl
a

�o
rδl

= (−i)ke
πi 1

2

Pg
l=1

n
1−
�

δl
a

�o
rδl .

Now,

e
πi 1

2

Pg
l=1

n
1−
�

δl
a

�o
rδl =

g∏
l=1

(
δl

a

)rδl

.

Thus

(−i)ke−πiδ∗∗∗ =

(
(−1)k

∏g
l=1 δ

rδl
l

a

)
.

But ad− bc = 1, as a result we get

(−i)ke−πiδ∗∗∗ =

(
(−1)k

∏g
l=1 δ

rδl
l

d

)
,

and hence

f1(V τ) = χ(d)(cτ + d)kf1(τ)

where χ(d) =

(
(−1)k

Qg
l=1 δ

rδl
l

d

)
.
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2.3 Comments on Generalizing the Proof of

Section (2.1)

In this section, we define θ3(w, τ) in several variables. We call it G(w, τ).

We give several steps in a process that allows us to generalize the proof of the

transformation law of θ3(w, τ) to G(w, τ). So we let w = (w1, w2, w3, ..., ws) ∈
C be a complex s-tuple. The function G(w, τ) is defined by,

G(w, τ) =
∞∏

n=1

(1− q2n)
s∏

r=1

∞∏
n=1

(1 + 2q2n−1 cos 2wr + q4n−2) , (2.13)

where q = eπiτ and τ is in the upper half plane. The transformation law is

given by,

G

(
w

τ
,
−1

τ

)
= (−iτ)

1
2 e−

|w|2
πiτ e

(1−s)πi(τ+(1/τ))
12 G(w, τ) . (2.14)

First, we prove (2.14) for τ = iy, where y > 2|t|
π

, where w = σ+ it, then extend

the result to all τ in the upper half plane by analytic continuation. In proving

the transformation law of the logarithmic derivative, we will encounter some

problems with the zeroes of the theta function. The zeroes of G(w, τ) are at

wr = π
2

+ πτ
2

+ mπ + nπτ , for m, n ∈ Z for any r .

To solve this problem, we first fix wr such that Rewr 6= π
2
+nπ for every r and

prove the transformation law for τ = iy and prove (2.14) using the logarithmic

derivative. We then deduce (2.14) and extend the result by analytic continua-

tion to the whole τ plane. Once we have it for all w such that Rewr 6= π
2

+ nπ

for all r we use analytic continuation in the w space to extend the result to all

w.

Theorem 2.2 If τ = iy and y > 2|t|
π

, where w = (σ1 + it1, σ2 + it2, ..., σs + its)

and | t |= (
∑s

r=1 t2r)
1
2 , the transformation formula is

G

(
w

iy
,
i

y

)
= (y)

1
2 e−(1−s)π(y−1/y)e

|w|2
πy G(w, iy) . (2.15)
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So we follow the same steps as in the proof of θ3(w, τ), by expanding (2.15) in

terms of its Taylor series. As before, we will use residue calculus to prove the

transformation law. To prove this, consider

Fn(z) = − 1

8z
cot πiNz cot πNz/y +

1

z

s∑
r=1

(
e−iNz(π/y+2wr/y+2wr)

1− e−2πiNz/y

)(
eNz(π+2iwr)

1− e2πzN

)
,

where N = n + 1
2
.

We then calculate the residues of Fn(z) at the poles z = 0, z = ik
N

and

z = ky
N

for k = ±1,±2, . . . .

So we get

2πi

n∑
k=−n

z= ky
N

;z= ik
N

ResFn(z) =
n∑

k=1

1

k

(
1

1− e2πyk

)
+

s∑
r=1

n∑
k=1

(−1)k

k
e−2iwrk

(
eπyk

1− e2πyk

)

+
s∑

r=1

n∑
k=1

(−1)k

k
e2iwrk

(
eπyk

1− e2πyk

)
−

n∑
k=1

1

k

(
1

1− e2πk/y

)
−

s∑
r=1

n∑
k=1

(−1)k

k
e−2kwr/y

(
eπk/y

1− e2πk/y

)
−

s∑
r=1

n∑
k=1

(−1)k

k
e2wrk/y

(
eπk/y

1− e2πk/y

)
+
| w |2

πy

− (1− s)π(y − (1/y))

12
.

Note also that

lim
n→∞

∮
c

Fn(z)dz = −1

2
log y,

where C is the parallelogram of vertices y, i, −y and−i taken counterclockwise.

As a result, we get Theorem 2.2 using residue calculus.
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CHAPTER 3

Generalized Modular Forms

Representable As Eta-Products

3.1 Introduction

Let τ be in the upper half plane and n ∈ Z. The Dedekind eta function is

defined by

η(τ) = e
πiτ
12

∞∏
n=1

(1− e2πinτ )

and the Generalized Dedekind η-function is defined by

ηδ,g(τ) = eπiP2( g
δ
)δτ

∏
m>0

m≡g (mod δ)

(1− xm)
∏
m>0

m≡−g (mod δ)

(1− xm),

where x = e2πiτ , τ ∈ H, P2(t) = {t}2−{t}+ 1
6

is the second Bernoulli function,

and {t} = t − [t] is the fractional part of t. Note that ηδ,0(τ) = η(δτ)2 and

that ηδ,δ/2(τ) = η2((δ/2)τ)
η2(δτ)

.

Consider

Γ0(N) =

{(
a b

c d

)
: a, b, c, d ∈ Z, c ≡ 0 mod N, ad− bc = 1

}
,
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Γ1(N) =

{(
a b

c d

)
: a, b, c, d ∈ Z, c ≡ 0 mod N, a ≡ d ≡ 1 mod N, ad− bc = 1

}
,

and

Γ(N) =

{(
a b

c d

)
: a, b, c, d ∈ Z, a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N, ad− bc = 1

}
,

which are congruence subgroups of the full modular group.

Definition 3.1 A generalized modular form (GMF) of weight k on Γ is a

function f(τ) meromorphic throughout the complex upper plane H, which is

also meromorphic at the cusps and satisfies the transformation law

f(Mτ) = ν(M)(cτ + d)kf(τ),

for all M ∈ Γ. Here we allow the possibility that | ν(M) |6= 1.

In [9], Kohnen and Mason presented the proof of the following theorem.

Theorem 3.1 Let f be a GMF of weight 0. Assume that f has no poles or

zeroes in H ∪ Q ∪ ∞. Assume furthermore that Γ is a congruence subgroup

and that the Fourier coefficients at i∞ are rational and are p-integral for all

but a finite number of primes p. Then f is constant.

Afterwards, they considered the subgroup Γ0(N) and proved that a GMF with

its zeroes and poles supported at the cusps, and such that the order of the

function at the cusp is independent of the numerator of that cusp with the

above conditions on the Fourier coefficients, is a classical eta-product. Their

result is given in Theorem 3.2 below. In this chapter we replace the condition

imposed by Kohnen and Mason on the order of the function at the cusp by a

condition on N. We then prove a theorem with conditions at the cusps which

are similar to those of Kohnen and Mason, but on Γ1(N) instead of Γ0(N).
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It will turn out that functions with such conditions upon the order of the

function at the cusps are also representable as eta products on Γ1(N). Finally,

we deduce a similar theorem on Γ(N).

The theorem of Kohnen and Mason on the subgroup Γ0(N) is as follows.

Note that a complete set of representatives of the cusps of Γ0(N) [9] is given

by
a

c
(3.1)

where c divides N and a is taken modulo N , with (a, N) = 1 and the a’s are

inequivalent modulo (c, N
c
).

Theorem 3.2 Let f be a GMF of integral weight k on Γ0(N). Suppose that

the poles and zeroes of f are supported at the cusps. Suppose that the Fourier

coefficients at i∞ are rational and are p-integral for all but a finite number

of primes p. Suppose further that the order of the function f at each cusp of

Γ0(N) is independent of a. Then f is an eta-quotient, i.e. there are integers

M 6= 0 and mt(t | N) such that

fM(τ) = c
∏
t|N

∆(tτ)mt .

where ∆(τ) = η(τ)24.

Notice that fM/
∏

t|N ∆(tτ)mt has Fourier coefficients at i∞ which are rational

and p integral. This is due to the fact that the product in the denominator

has integer coefficients with 1 as a leading coefficient. Theorem 3.2 then easily

follows from Theorem 3.1.

We can now present special cases of this theorem. If N = p, where p is

a prime, we have two cusps for Γ0(p), one with denominator 1 and one with

denominator p, so the condition on the order of the function at the cusps

is automatic. For N square free, this condition is automatic, since for each

divisor of N , we have only one cusp whose denominator is this divisor. To

modify the condition at the order of the cusps we define a class of functions

which is a form on Γ1(N) and then lift it by applying a coset operator.
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We now present another class of functions called the Generalized Dedekind

η-Products. Consider

f(τ) =
∏
δ|N
g

η
rδ,g

δ,g (τ), (3.2)

where 0 ≤ g < δ and rδ,g are integers and may be half integers only if g = 0 or

g = δ
2

(we allow half integers in order to include the ordinary eta products).

In [20], S. Robins proved that (3.2) is a modular function on Γ1(N) by imposing

certain conditions on the rδ,g’s. It will be sufficient for our purposes to note

that the above function is a classical modular form on Γ1(N) with a multiplier

system. For A ∈ Γ1(N), the transformation law of the f(τ) is given by

f(Aτ) = f(τ)eπi
P

µδ,grδ,g ,

where

µδ,g =
δa

c
P2(

g

δ
) +

δd

c
P2(

ag

δ
)− 2s(a,

c

δ
, 0,

g

δ
)

and s(h, k, x, y) is the Meyer sum, a generalized Dedekind Sum, defined by

s(h, k, x, y) =
∑

µ mod k

((
h(

µ + y

k
) + x

))((
µ + y

k

))
.

As usual ((x)) = x− [x]− 1
2

if x is not an integer and 0 otherwise.

3.2 GMF’s on Γ0(N) Representable as Gener-

alized Eta-Products

As we have already pointed out, a complete set of representatives of the

cusps of Γ0(N) is given by
a

c
(3.3)

where c is a positive divisor of N and a runs through integers with 1 ≤ a ≤ N ,

(a,N)=1 that are inequivalent modulo (c, N
c
) . The width of the cusp a

c
in (3.3)

is given by

wa/c =
N

(c2, N)
.
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Theorem 3.3 Let f be a GMF of rational weight k′ on Γ0(N). Suppose that

the poles and zeroes of f are supported at the cusps. Suppose further that the

Fourier coefficients at i∞ are rational and are p-integral for all but a finite

number of primes p and that the rank of(
(δ, c)2P2(ag/(δ, c))

)
(δ|N,0≤g<δ),(c|N,a)

(3.4)

is equal to the number of cusps, where the coloumns of the matrix corresponds

to the cusps a/c of Γ0(N). Then f is a classical modular form.

Remark: Note that the rank of the above matrix is less than or equal to the

number of cusps.

Proof

For given integers rδ,g put

F (τ) =
∏
δ|N

∏
0≤g<δ

ηδ,g(τ)rδ,g ,

F is a modular form on Γ1(N) of weight k =
∑

rδ,0 and by [20],

orda/cF =
wa/c

2

∑
δ|N

∑
0≤g<δ

(δ, c)2

δ
P2

(
ag

(δ, c)

)
rδ,g.

We now consider the cosets of Γ1(N) in Γ0(N). By applying the operator

defined below, we lift the above generalized eta product from a modular form

on Γ1(N) to a modular form on Γ0(N). For βj =

(
aj bj

cj dj

)
and F a function

on H, we define the following operator

F |k βj = (cjτ + dj)
−kF (βjτ).

Let

H(F ) =
∏

j

F |k βj

where {βj} are coset representatives. We see that

F (τ) |k βj = (cjτ + dj)
−k
∏
δ|N

∏
0≤g<δ

ηδ,g(βjτ)rδ,g .
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Recall that F is a modular form on Γ1(N) of weight k. It follows that H(F )

is a modular form on the larger group Γ0(N) of weight k1 =| Γ1(N)\Γ0(N) | k.

We have to determine the order of H(F) at any cusp of Γ0(N). We have to show

first that after we apply the operator we again get an eta product and that the

operator will not affect the order of the function at the cusps as calculated in

[20]. Recall that Robins presented the transformation of ηδ,g under A ∈ Γ0(N).

For g 6= 0 and A =

(
a b

c d

)
∈ Γ0(N) we have,

ηδ,g(Aτ) = eπiµδ,gηδ,ag(τ) (3.5)

where

µδ,g =
δa

c
P2(

g

δ
) +

δd

c
P2(

ag

δ
)− 2s(a,

c

δ
, 0,

g

δ
)

and s(h, k, x, y) is the Meyer Sum, a generalized Dedekind sum.

Thus if βj =

(
aj bj

cj dj

)
and for a given δ where (aj, δ) = 1, if 0 ≤ g < δ,

then ajg will run through a complete set of representatives modulo δ and also

for a given δ, if g1 ≡ −g2 mod δ, then∏
m>0

m≡g1 (mod δ)

(1−xm)
∏
m>0

m≡−g1 (mod δ)

(1−xm) =
∏
m>0

m≡g2 (mod δ)

(1−xm)
∏
m>0

m≡−g2 (mod δ)

(1−xm)

and

P2(
g1

δ
) = P2(

kδ − g2

δ
) = P2(1−

g2

δ
) = P2(

g2

δ
),

by (3.5). Hence

ηδ,g1 = ηδ,g2 .

Recall also that βj ∈ Γ0(N). Also ηδ,0 and ηδ,δ/2 are forms on Γ0(δ) and hence

on Γ0(N). As a result, we have

F (τ) |k βj = νj(cjτ + dj)
−k
∏
δ|N

∏
0≤g<δ

ηδ,g(βjτ)rδ,g

= νj(cjτ + dj)
−k
∏
δ|N

ηδ,0(βjτ)rδ,0

∏
δ|N

∏
0<g<δ

ηδ,g(βjτ)rδ,g

= ν∗j
∏
δ|N

ηδ,0(τ)rδ,0

∏
δ|N

∏
0<g<δ

ηδ,g(τ)rδ,g ,
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where the exponents rδ,g are renamed according to the new values of g and νj

is a constant depending on βj. Thus we have

H(F ) = ν
∏
δ|N

∏
0≤g<δ

ηδ,g(τ)r′δ,g

where again r′δ,g =
∑

j rδ,ajg are new exponents and ν is a constant depending

on βj for all j. Using the condition (3.4), we have to solve now for r′δ,g. To do

this we have to determine the order of H(F ) at the cusps. In [20], it is given

that

orda/c

∏
δ|N

η
rδ,g

δ,g =
wa/c

2

∑
δ|N

(δ, c)2

δ
P2

(
ag

(δ, c)

)
rδ,g.

Thus

orda/cH(F ) =
wa/c

2

∑
δ|N

∑
0≤g<δ

(δ, c)2

δ
P2

(
ag

(δ, c)

)
r′δ,g.

Notice now that the product of two expressions whose Fourier coefficients

are rational and p-integral for all but a finite number of primes has rational

Fourier coefficients that are p-integral for all but a finite number of primes

p. ηδ,g(τ) has Fourier coefficients that are rational and p-integral for all but

a finite number of primes. Thus the Fourier coefficients of H(F ) are rational

and p-integral for all but a finite number of primes since H(F ) turned to be a

generalized eta product. We still want to show that r′δ,g can be chosen so that

orda/cH(F ) = mha/c, (3.6)

for all cusps a/c of Γ0(N). Here ha/c is the order of f at a/c and m is an

appropriate non-zero integer depending only on f . By hypothesis, the rank of(
(δ, c)2P2(ag/(δ, c))

)
(δ|N,0≤g<δ),(c|N,a)

is equal to the number of cusps. Therefore we can choose r′δ,g so that (3.6) is

satisfied, with an appropriate m. Since η does not vanish on H, we find from
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the valence formula applied to H(F ) that the sum of the orders of H(F ) at

the different cusps of Γ0(N) is equal to

k1

12
[Γ(1) : Γ0(N)].

On the other hand, the valence formula is also valid for the GMF f of weight

k′ [8]. We then deduce from (3.6) that

k1 = mk′.

We see that fm/H(F ) is a GMF satisfying all the assumptions of Theorem

3.1. We conclude that fm = cH(F ), as required.

Note that for N = p1p2...pn square-free, the cusps of Γ0(N) are 1/1, 1/p1, 1/p2, ...1/pn

and 1/N . Hence Γ0(N) satisfies the condition at the order of the cusps given

in the paper of Kohnen and Mason.

For N = p2, the condition of Kohnen and Mason fails and the condition of

Thereom 3.3 fails too. This happens because P2(a1g/(δ, c)) = P2(a2g/(δ, c))

for c = p and for all a1 ≡ −a2 mod p for all g and thus

(
(δ, c)2P2(ag(δ, c))

)
(δ|N,0≤g<δ),(c|N,a)

has a rank smaller than the number of cusps.

3.3 GMF’s on Γ1(N) Representable as Eta-Products

Every cusp of Γ1(N) is equivalent to

a

c
(3.7)

where c is taken modulo N and a is taken modulo d = (N, c) and (a, d) = 1.

Moreover, for every cusp of Γ1(N) there exist precisely two fractions a/c of

the above form that are equivalent to that cusp. The width of the every cusp

in (3.7) is given by

wa/c =
N

(c, N)
.
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Theorem 3.4 Let f be a GMF of integral weight k on Γ1(N). Suppose that

the poles and zeroes of f are supported at the cusps and that the Fourier co-

efficients at i∞ are rational and are p-integral for all but a finite number of

primes p. Suppose further that the order of the function f at each cusp of

Γ1(N) is independent of a and for the cusps a1/c1 whose denominator does

not divide N , the function will have the same order at a1/c1 as at those cusps

whose denominators are (c1, N). Then f is an eta quotient, i.e., there are

integers M 6= 0 and mt(t | N) such that

fM(τ) = c
∏
t|N

∆(tτ)mt .

Proof We have

∆(τ) = q
∏
n≥1

(1− qn)24.

For given integers mt put

F (τ) =
∏
t|N

∆(tτ)mt .

Then F is a modular form on Γ1(N) and

orda/cF = wa/c

∑
t|N

(t, c)2

t
mt

 .

Note that the order at every cusp a/c is independent of a and hence F itself

satisfies the order condition given by Theorem 3.4. Moreover the conditions

imposed in the theorem are important since
∑

t|N in the above expression for

orda/c runs only over the divisors of N . We want to show that mt can be

chosen so that

orda/cF = mha/c (3.8)

for all cusps a/c of Γ1(N). Here ha/c is the order of f 12 at a/c and m is an

appropriate non-zero integer depending only on f . Note that by assumption

ha/c is independent of a. Note that in our case for Γ1(N), the denominator of

the cusp is taken modulo N , not as a divisor of N as in the case of Γ0(N). Since
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we are given that the order of the function at the cusp a/c whose denominator

doesn’t divide N is equal to the order of the function at the cusp whose

denominator is (c, N), there are σ0(N) equations. So as in the proof of Mason

and Kohnen, it will be sufficient to prove that the square matrix

AN =
(
(t, c)2

)
t|N,c|N

of size σ0(N)× σ0(N) is invertible. Now using [2], we see that

A′
N = ((t, c))t|N,c|N

is positive definite and hence invertible. The Oppenheim Inequality [9] states

that if two matrices A and B are positive definite matrices, then

| A ◦B | ≥ | B |
∏

i

aii,

where ◦ denotes the Hadamard product of matrices. As a result

| A′
N ◦ A′

N |=| AN | ≥ | A′
N |
∏

i

aii.

Thus our matrix is invertible. We then have established formula (3.8), with

an appropriate m.

Let k1 be the weight of F. Since ∆ does not vanish on H, we find from the

valence formula applied to F that the sum of the orders of F at the different

cusps of Γ(N) is equal to
k1

12
[Γ(1) : Γ1(N)].

On the other hand, the valence formula is also valid for the GMF f 12 of weight

12k [8]. We then deduce from (3.8) that

k1 = 12mk.

Letting M = 12m we see that fm/F is a GMF satisfying all the assumptions

of Theorem 3.1. We conclude that fM = cF , as required.
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We now change one of the conditions in the above theorem from a condition

on the order of the function at the cusps to a condition on the level N of the

congruence subgroup.

Theorem 3.5 Let f be a GMF of integral weight k on Γ1(N), and suppose

that the poles and zeroes of f are supported at the cusps. Suppose that the

Fourier coefficients at i∞ are rational and are p-integral for all but a finite

number of primes p. Suppose further that for the cusps a/c whose denominator

does not divide N , the function will have the same order at a/c as any of those

cusps whose denominators are (c, N) and that the rank of(
(δ, c)2P2(ag/(δ, c))

)
(δ|N,0≤g<δ),(c|N,a)

(3.9)

is equal to the number of cusps whose denominator divides N . Then f is a

classical modular form.

Proof For given integers rδ,g put

F (τ) =
∏
δ|N

∏
0≤g<δ

ηδ,g(τ)rδ,g ,

We want to find rδ,g such that fm = cF for some constant c. F is a modular

form on Γ1(N) of weight k1 =
∑

rδ,0 and by [20],

orda/cF =
wa/c

2

∑
δ|N

∑
0≤g<δ

(δ, c)2

δ
P2

(
ag

(δ, c)

)
rδ,g.

Using the condition (3.9), we have to solve now for rδ,g. Notice now that

the product of two expressions whose Fourier coefficients are rational and p-

integral for all but a finite number of primes has its Fourier coefficients to

be rational and p-integral for all but a finite number of primes. ηδ,g(τ) has

rational Fourier coefficients that are p-integral for all but a finite number of

primes. Thus the Fourier coefficients of F are rational and p-integral for all

but a finite number of primes since F is a generalized eta product. We still

want to show that rδ,g can be chosen so that

orda/cF = mha/c, (3.10)
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for all cusps a/c of Γ0(N). Here ha/c is the order of f at a/c and m is an

appropriate non-zero integer depending only on f . It is given that the rank

of (3.9) is equal to the number of cusps whose denominator divides N . Thus

we have a non trivial solution. Thus we have established formula (3.10), with

an appropriate m. Since η does not vanish on H, we find from the valence

formula applied to F that the sum of the orders of F at the different cusps of

Γ1(N) is equal to
k1

12
[Γ(1) : Γ1(N)].

On the other hand, the valence formula is also valid for the GMF f of weight

k [8]. We then deduce from (3.10) that

k1 = mk.

We see that fm/F is a GMF satisfying all the assumptions of theorem 3.1.

We conclude that fm = cF , as required.

3.4 GMF’s on Γ(N) Representable as Eta-Products

A complete set of representatives of the cusps of Γ(N) is given by:

a

c
(3.11)

where c is taken modulo N and a is taken modulo N and (a, d = (N, c)) = 1.

In this set of representatives, the cusps pair up. The width of the every cusp

a
c

in (3.11) is given by

wa/c = N.

In the case of Γ(N), we can also derive a theorem with strong restrictions at

the order of the function at the cusps and then in a following theorem, we

relax those conditions by imposing a condition on N as in the case of Γ1(N).

Theorem 3.6 Let f be a GMF of integral weight k on Γ(N). Suppose that the

poles and zeroes of f are supported at the cusps and that the Fourier coefficients
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at i∞ are rational and are p-integral for all but a finite number of primes p.

Suppose further that the order of the function f at each cusp a/c of Γ(N) is

independent of a and for the cusps a1/c1 whose denominator does not divide

N , the function will have the same order as those cusps whose denominators

are (c1, N). Then f is an eta quotient, i.e. there are integers M 6= 0 and

mt (t | N) such that

fM(τ) = c
∏
t|N

∆(tτ)mt .

Proof We have

∆(τ) = q
∏
n≥1

(1− qn)24.

For given integers mt put

F (τ) =
∏
t|N

∆(tτ)mt .

Then F is a modular form on Γ(N) and

orda/cF = wa/c

∑
t|N

(t, c)2

t
mt

 .

Note that the order at every cusp a/c is independent of a. We want to

show that mt can be chosen so that

orda/cF = mha/c (3.12)

for all cusps a/c of Γ1(N). Here ha/c is the order of f 12 at a/c and m is an

appropriate non-zero integer depending only on f . Note that by assumption

ha/c is independent of a. It will also be sufficient to prove that the square

matrix

AN =
(
(t, c)2

)
t|N,c|N

of size σ0(N) is invertible. The above matrix is exactly the same matrix that

appeared in the case of Γ1(N). Hence we have established formula (3.12), with

an appropriate m.
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Let k1 be the weight of F. Since ∆ does not vanish on H, we find from the

valence formula applied to F that the sum of the orders of F at the different

cusps of Γ(N) is equal to
k1

12
[Γ(1) : Γ(N)].

On the other hand, the valence formula is also valid for the GMF f 12 of weight

12k [8]. We then deduce from (3.12) that

k1 = 12mk.

Letting M = 12m we see that fm/F is a GMF satisfying all the assumptions

of Theorem 3.1. We conclude that fM = cF , as required. We now change one

of the conditions in the above theorem from a condition on the order of the

function at the cusps to a condition on the level N of the congruence subgroup.

Theorem 3.7 Let f be a GMF of integral weight k on Γ(N), and suppose that

the poles and zeroes of f are supported at the cusps. Suppose that the Fourier

coefficients at i∞ are rational and are p-integral for all but a finite number of

primes p. Suppose further that for the cusps a/c whose denominator does not

divide N , the function will have the same order at a/c as at any of those cusps

whose denominators are (c, N) and that the rank of(
(δ, c)2P2(ag/(δ, c))

)
(δ|N,0≤g<δ),(c|N,a)

(3.13)

is equal to the number of cusps whose denominator divides N . Then f is a

classical modular form.

Proof Follow exactly the proof of Theorem 3.5.
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CHAPTER 4

Arithmetic Identities

4.1 Introduction

In this chapter, we determine arithmetic identities modulo 3, 7 and 4.

The groups associated to the arithmetic identities are Γ0(3), Γ0(7) and Γ0(4).

Notice that the three groups in question all have a fundamental region whose

closure has genus 0, so there exists no nontrivial cusp forms of weight 2 and

trivial multiplier system, i.e., S2(Γ0(n)) = {0} for n = 3, 4, 7. Notice also that

each of Γ0(3) and Γ0(7) has two cusps, so M2(Γ0(3)) and M2(Γ0(7)) have a

basis consisting of one Eisenstein series while M2(Γ0(4)) has three cusps and

hence dimM2(Γ0(4)) = 2 (2 Eisenstein series). To determine the arithmetic

identities, we need to define the following function

δp(n) =
∑
d|n

d=QR (mod p)

1−
∑
d|n

d6=QR (mod p)

1 =
∑
d|N

χ(d)

where p is a prime and χ(d) =
(

d
p

)
is the quadratic character mod p, and QR

stands for a quadratic residue mod p. δp(n) will appear naturally in the Fourier

coefficients of Eisenstein series of weight 1. Then we square Eisenstein series

of weight 1 to get an Eisenstein series of weight 2 which span M2(Γ0(p)) for

p = 3, 7. For n = 4, Vestal [24] determined the basis of M2(Γ0(4)) explicitly.

It turned out that the basis of this vector space is spanned by the logarithmic
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derivative of the generalized Dedekind eta function for certain values of δ and

g. By squaring the Eisenstein series of weight 1 on Γ0(4) and comparing its

coefficients to the coefficients of the logarithmic derivative of the generalized

eta function, we will be able to obtain some arithmetic identities modulo 4.

4.2 Arithmetic Identities Modulo 3

To determine the arithmetic identities modulo 3, notice that the space

M2(Γ0(3)) has no cusp forms. As a result, the space M2(Γ0(3)) is generated

by Eisenstein series.

Eisenstein series of weight 1 [11] is defined by

G1,χ =
∑
m

χ(m)G1,m

where χ is a non trivial Dirichlet character on (Z/NZ)∗ and G1,m is given by

G1,m =
m

N
− 1

2
− qm

1− qm
+

∞∑
ν=1

[
qνN−m

1− qνN−m
− qνN+m

1− qνN+m

]
For our purposes, we need Eisenstein series of weight 1 in the following

form and it is given by the following theorem [11].

Theorem 4.1 Let χ be an odd character, i.e., χ(−1) = −1. Then

G1,χ = B1,χ − 2
∞∑

n=1

∑
d|n

χ(d)qn

where Bm,χ (m ∈ Z,m ≥ 0) is defined by

c∑
a=1

χ(a)
teat

ect − 1
=

∞∑
n=0

Bn,χ
tn

n!
(4.1)

q = e2πiτ ,τ ∈ H.

Let us define our character here:

χ3(n) =


1 n ≡ 1 mod 3

−1 n ≡ −1 mod 3

0 n ≡ 0 mod 3

,
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From (4.1) and the Taylor expansion of ex, it will be easy to see that B1,χ3 =

−1
3
. Thus G1,χ3 can be written as:

G1,χ3 = −1

3
− 2

∞∑
n=1

δ3(n)qn

Now G1,χ3 is a modular form of weight 1 also the multiplier system of G1,χ3 is

±1 [11]. When we square it, we get a modular form of weight 2 with a trivial

multiplier system, since G1,χ3 has a multiplier system of values ±1. As we

mentioned before, dimM2(Γ0(3)) = 1 so the basis consists of one Eisenstein

series. It was shown by Hecke in 1927 that

E2(z) = −π

y
+

π2

3
(1− 24

∞∑
n=1

σ(n)e2πinz),

has the same transformation law as modular forms of weight 2 and trivial

character under elements of M2(Γ(1)) [7]. E2(z) is not holomorphic in H.

However, we have the following theorem [14].

Theorem 4.2 E2(z)−pE2(pz) is a holomorphic modular form of weight 2 on

H with respect to Γ0(p) for any prime p.

Now applying Theorem 4.2, we see that

G2(z) = E2(z)− 3E2(3z) =
π2

3
− 3π2

3
− 8π2

∞∑
n=1

σ(n)e2πinz + 24π2

∞∑
n=1

σ(n)e2πi3nz

=
−2π2

3
− 8π2

∞∑
n=1

σ(n)e2πinz + 24π2

∞∑
n=1

σ(n)e2πi3nz.

G2 is a basis for modular forms of weight 2 since there are no cusp forms of

weight 2 on Γ0(3). Thus G2
1,χ3

= cG2 where c is a complex number. Looking

at the constant term of G1,χ3 and G2, we find out that

G2
1,χ3

(z) = − 1

6π2
G2(z).

Thus (
−1

3
− 2

∞∑
n=1

δ3(n)qn

)2

=
1

9
+

4

3

∞∑
n=1

σ(n)qn − 4
∞∑

n=1

σ(n)q3n. (4.2)
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Lemma 4.1 For n = 3rm, r 6= 0 and (3, m) = 1, we have

4

3
σ(n)− 4σ(3r−1m) =

4

3
σ(m). (4.3)

Proof

4

3
σ(3rm)− 4σ(3r−1m) =

4

3
σ(3r)σ(m)− 4σ(3r−1)σ(m)

= σ(m)[
4

3
(
3r+1 − 1

2
)− 4(

3r − 1

2
)]

=
4

3
σ(m).

Expanding the above series on the left, we get the following equations that

Farkas obtained in [5].

Theorem 4.3 Let n be a positive integer. If n ≡ 1 or n ≡ 2 modulo 3, we

have

δ3(n) + 3
n−1∑
j=1

δ3(j)δ3(n− j) = σ(n).

If n ≡ 0 modulo 3, say n = 3rm with (3,m)=1, then

δ3(n) + 3
n−1∑
j=1

δ3(j)δ3(n− j) = σ(m) = σ′(n),

where

σ′(n) =
∑

d|n, 3-d

d.

Proof The first identity follows directly from (4.2) and the second from (4.2)

and (4.3).

4.3 Arithmetic Identities modulo 7

To determine arithmetic identities modulo 7, we repeat the same process

using the fact that the space M2(Γ0(7)) is also spanned by one Eisenstein

series. We have to define a character modulo 7 to deduce identities similar to
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the identities modulo 3. We now define our character to be Legendre symbol.

Define

χ7(n) =
(n

7

)
=


1 n = QR mod 7

−1 n 6= QR mod 7

0 7 | n

,

.

Now, G1,χ7 is given by

G1,χ7 = −1− 2
∞∑

n=1

δ7(n)qn.

Similarly, we get

G2(z) = E2(z)− 7E2(7z) =
π2

3
− 7π2

3
− 8π2

∞∑
n=1

σ(n)e2πinz + 56π2

∞∑
n=1

σ(n)e2πi7nz

= −2π2 − 8π2

∞∑
n=1

σ(n)e2πinz + 56π2

∞∑
n=1

σ(n)e2πi7nz.

Now G1,χ7 is a modular form of weight 1, so when we square it, we get a

modular form of weight 2 with a trivial multiplier system. G2 is a basis for

modular forms of weight 2 since there are no cusp forms of weight 2 on Γ0(7).

Thus G1,χ7 = cG2 where c is a complex number. Looking at the constant term

of G1,χ7 and G2, we find out that

G2
1,χ7

(z) = − 1

2π2
G2(z).

Thus we get(
−1− 2

∞∑
n=1

δ7(n)qn

)2

= 1 + 4
∞∑

n=1

σ(n)qn − 28
∞∑

n=1

σ(n)q7n. (4.4)

Lemma 4.2 For n = 7rm, r 6= 0 where (7, m) = 1, we have

4σ(n)− 28σ(7r−1m) = 4σ(m) (4.5)
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Proof

4σ(7rm)− 28σ(7r−1m) = 4σ(7r)σ(m)− 28σ(7r−1)σ(m)

= σ(m)[4(
7r+1 − 1

6
)− 28(

7r − 1

6
)]

= 4σ(m).

Theorem 4.4 Let n be a positive integer,n 6≡ 0 modulo 7, we have

δ7(n) +
n−1∑
j=1

δ7(j)δ7(n− j) = σ(n).

If n ≡ 0 modulo 7, say n = 7rm with (7,m)=1, then

δ7(n) +
n−1∑
j=1

δ7(j)δ7(n− j) = σ(m) = σ′(n)

where

σ′(n) =
∑

d|n, 7-d

d.

This is another identity deduced by Farkas [5].

4.4 Arithmetic Identities Modulo 4

Let us define our character here.

χ4(n) =

(
−4

n

)
=


1 n ≡ 1 mod 4

−1 n ≡ −1 mod 4

0 otherwise

,

Now we will consider the Eisenstein series of weight 1 on Γ0(4), when we

square it we will get weight 2 Eisenstein series on Γ0(4). But M2(Γ0(4)) is two

dimensional. In [24], Vestal determined the basis of M2(Γ0(4)) explicitly. We

define now an arithmetic function which will appear in the Fourier expansion

of the logarithmic derivative of the generalized Dedekind eta function. Define

σδ,g by

σ(δ,g)(N) =
∑
d|N

d≡g (mod δ)

d +
∑
d|N

d≡−g(mod δ)

d
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and define δ4,2 by

δ4,2(n) =
∑
d|n

d≡1 mod 4

1−
∑
d|n

d≡−1 mod 4

1.

To present the basis, we use generalized Dedekind η-function ηδ,g(τ) . Recall

that

ηδ,g(τ) = eπiP2( g
δ
)δτ

∏
m>0

m≡g (mod δ)

(1− xm)
∏
m>0

m≡−g (mod δ)

(1− xm),

where x = e2πiτ , τ ∈ H, P2(t) = {t}2−{t}+ 1
6

is the second Bernoulli function,

and {t} = t− [t] is the fractional part of t.

Vestal calculated the logarithmic derivative of ηδ,g(τ):

η′δ,g(τ)

ηδ,g(τ)
= πiδP2(g/δ)− 2πi

∞∑
N=1

σ(δ,g)(N)qN .

For simplicity, let H
(δ,g)
2 denote the normalization of the above series.

H
(δ,g)
2 = 1− 2

δP2(g/δ)

∞∑
N=1

σ(δ,g)(N)qN .

Then H
(δ,g)(τ)
2 ∈ M2(Γ0(δ)). Note that M2(Γ0(4)) is two dimensional, so the

basis of Γ0(4) [24] consists of

H
(4,1)
2 = 1 + 24

∞∑
N=1

σ(4,1)(N)qN

and

H
(4,2)
2 = 1 + 6

∞∑
N=1

σ(4,2)(N)qN .

Vestal proceeds to find that

θ4(τ) =
1

3
H

(4,1)
2 (τ) +

2

3
H

(4,2)
2 (τ),

where

θ(τ) =
∑
n∈Z

e2πin2τ .
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Notice that θ(τ) ∈ M1/2(Γ0(4), νθ) and that ν4
θ ≡ 1. We relate now the above

basis to our Eisenstein series of weight 1. With the character defined above,

we have

G1,χ = −1

2
− 2

∞∑
n=1

∑
d|n

χ(d)qn.

As a result, we get

G1,χ = −1

2
− 2

∞∑
n=1

δ4,2(n)qn,

where

δ4,2 =
∑
d|n

χ(d).

Notice that δ4,2 is the difference between the number of divisors of n congruent

to 1 mod 4 and the number of divisors of n congruent to -1 modulo 4. By a

classical result that goes back to Jacobi

θ2(z) = 1 + 4
∞∑

n=1

δ4,2z
n.

Hence

θ2(τ) = −2G1,χ(τ).

Therefore

4G2
1,χ(τ) =

1

3
H

(4,1)
2 (τ) +

2

3
H

(4,2)
2 (τ).

As a result, we get

4

(
−1

2
− 2

∞∑
n=1

δ4,2(n)qn

)2

=
1

3
H

(4,1)
2 (τ) +

2

3
H

(4,2)
2 (τ).

This leads to the following identity

8δ4,2(n) + 16
n−1∑
j=1

δ4,2(j)δ4,2(n− j) = 8σ(4,1)(n) + 4σ(4,2)(n).

Consequently,

2δ4,2(n) + 4
n−1∑
j=1

δ4,2(j)δ4,2(n− j) = 2σ(4,1)(n) + σ(4,2)(n).

This is a new proof of another identity due to Farkas [6].
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