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In this dissertation we study the following general problem:

Suppose S is a Cohen-Macaulay ring and G is a finite group acting
by automorphisms on S. When is the subring of G-invariants S¢
again Cohen-Macaulay?

The Cohen-Macaulay condition is one of the central notions in commutative
algebra; it will be discussed in detail in Chapter 2 below. Our main focus in
this thesis is on the case where S = k[z}!,..., 2] is a Laurent polynomial
algebra and G acts by k-algebra automorphisms on S in such a way that each
variable z; is sent to a monomial 27" 25" ... 2" depending on i and the act-
ing group element from G. Actions of this type are known as multiplicative

actions. (Occasionally, they are also called “purely monomial” or “exponen-

tial” actions; see, e.g., [Bousy].) Article [LP] initiated the investigation of the



iv
Cohen-Macaulay property of multiplicative invariants. In Chapters 3 and 4,
we give an account of [LP] with some simplifications. In Chapter 5, we use this
material and direct computations to determine all multiplicative invariants in
dimension 3 that are Cohen-Macaulay, with the exception of two cases that re-
main open. This classification is our main contribution to the Cohen-Macaulay

problem for invariant rings.
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CHAPTER 1

Introduction

When a finite group G' acts on a commutative Noetherian ring S, many

properties of S are inherited by the ring of invariant elements
S¢={seS|g(s)=sforallgeG}.

For example, if S is a normal domain, then so is S¢. In this dissertation we
try to understand to what extent the Cohen-Macaulay property passes from
S to S¢.

In the classical literature of invariant theory, S is a polynomial algebra
klx1,...,z,] over a field k and the group G acts by sending each variable
x; to a k-linear combination of all variables. This type of action is known
as a linear action; these actions provide the setting of the ground-breaking
works of D. Hilbert and E. Noether. A crucial feature of linear actions is that

S = k[zy,...,z,] is equipped with a non-trivial grading (by “total degree”)



which is preserved under the G-action. This need not be the case for arbitrary
group actions. One such instance is when G acts multiplicatively. For these
actions, S is a Laurent polynomial algebra k[zi!,...,z*!] (which is Cohen-
Macaulay) and the elements of G act by sending each variable x; to a monomial
xMxy? ...z depending on 7 and the acting group element from Gj see, e.g.,
Lorenz [Loy, Los, Los] and Farkas [F;, Fa, F3).

The definition of Cohen-Macaulay rings is rather technical. It involves
two constants, the height and the depth, each defined for an arbitrary ideal

a of a commutative Noetherian ring S. The notion of height is essentially

topological; it is related to the dimension of the set
V(I)={p| pis a prime ideal of S with p D a} ,

endowed with the so-called Zariski topology. On the other hand, depth is
purely algebraic and measures the length of a maximal regular sequence con-
tained in a; for detailed definitions, see Chapter 2 below. Depth is always
bounded above by height. If equality holds for all ideals a, then the ring S is
called Cohen-Macaulay. In 1916 Macaulay [M] showed that polynomial alge-
bras over a field are Cohen-Macaulay. Later in 1945, Cohen [Co] generalized
this result and proved that regular local rings are Cohen-Macaulay. Subse-
quently, it turned out that Cohen-Macaulay rings form a rather wide class of
commutative Noetherian rings which nevertheless enjoys some very desirable

properties. The equality of an algebraic and a topological constant, as pos-



tulated in the definition of Cohen-Macaulay rings, allows in particular for a
powerful dimension theory.

Returning to rings of invariants, if the order of GG is invertible in S and S is
Cohen-Macaulay then S¢ is easily seen to be Cohen-Macaulay as well. Also,
height(a) = height(a N S) holds in this case, for any ideal a in S. Thus, the
Cohen-Macaulay property of invariant rings S¢ is problematic only when the
order of GG is not invertible in S; this is called the modular case. Some depth
estimates for modular actions were found by Ellingsrud and Skjebred [ES]
(when G is a p-group) and by G. Kemper [Ke;].

The main problem addressed in this thesis, stated specifically, is as follows:

Suppose S = k[xlﬂ, ..., =1 is a Laurent polynomial algebra over

a field k of characteristic p and G is a finite group acting multi-
plicatively on S such that p divides the order |G|. When is the
invariant algebra S¢ Cohen-Macaulay?

The dissertation is divided into 4 chapters. In Chapter 2, we give a brief
survey of background material from commutative algebra and homological al-
gebra. In Chapter 3, we define trace modules and obtain a height formula. The
main result here are certain depth estimates; see in particular Lemma 3.4.2.
Using this result, we give an alternative proof of some of Kemper’s results
in Section 3.5. Chapter 4 is devoted specifically to multiplicative actions.
Lemma 4.1.3 reduces the Cohen-Macaulay problem for multiplicative invari-
ants to the special case of effective actions. This Lemma is as yet unpublished

and is due to Lorenz. The material in Chapters 3 and 4 is a simplified version



of [LP]. In Chapter 5 we have classified the multiplicative invariant rings of
dimension 3 in Cohen-Macaulay and non-Cohen-Macaulay classes. We use the
classification list from [T] and use the notation W;(n) for the group W; on the
page n in the following results:

If char k # 2 then all multiplicative invariants k[A]® in dimension
3 are Cohen-Macaulay. If char k£ = 2, then, with exception of the
groups conjugate to one of the following

o W;5(173) (order 2),
o W5(174) and W, (174) (both cyclic of order 4),
e W5(184) and W,(184) (both cyclic of order 6),

and the possible exception of the conjugates of
W14(174) (’Z 02 X 02) and W10(191) (2 A4)

all finite subgroups of GL3(Z) have Cohen-Macaulay multiplicative
invariant algebras.



CHAPTER 2

Basic Concepts

In this chapter, we will develop the basic concepts and set up notations.
Our main focus will be on the Cohen-Macaulay property of a module of in-
variant elements under the action of a finite group. Section 2.1 contains the
necessary background from commutative algebra. In Section 2.2, we recall the
definition of Cohen-Macaulay modules over a commutative Noetherian ring
using the notion of depth and height. In Section 2.3, we consider actions of a
finite group G on an arbitrary commutative Noetherian ring S and study the
height and depth of modules over the associated skew group ring S+*G. In Sec-
tion 2.4, we also recall the fundamentals of spectral sequences, an important

tool to be used in later chapters.



2.1 Background from commutative algebra

Throughout we assume that S is a commutative Noetherian ring with iden-
tity and M is a finitely generated unitary left S-module. Most of the material
of this section can be found in [Bou,| and in [E]. We also follow terminology
and notations used in these references, and make an explicit mention if any

change is made.

Definition 2.1.1. Let R be a subring of S. An element s € S is called
integral over R if s satisfies a monic polynomial with coefficients in R. The
set of all elements of S that are integral over R forms a subring R of S which
is called the integral closure of R in S. If S = R then we say that R < S
is an integral extension. On the other hand, if R = R then we say that R
is integrally closed in S. A normal domain is an integral domain which is

integrally closed in its own quotient field.

If S is finitely generated R-algebra which is integral over R, then it is easy
to show that S is a finitely generated module over R. The converse is also
true, i.e. if S'is a finite R-module then the extension is integral. The following

lemma is a collection of standard results on integral extensions.

Lemma 2.1.2. Suppose R — S is integral extension. Then the following

statements hold:

(a) (Lying over) Given a prime p C R, there ezist a prime ideal B C S such



that PN R = p. [Bouy, ch V.2.2, Th.1, p. 328].

(b) (Incomparability) If P C Q are two prime ideals of S lying over a prime

p of R, then P = Q [E, cor. 4.18 on p. 131].

(¢) (Going up) Suppose b is an ideal of S and a = b N R. Then for any
prime ideal p C R containing a, there exists a prime ideal P C S lying

over p which contains b. [Bouy, ch. V.2.1, cor. 2, p. 328].

(d) (Going down) If, in addition, S is an integral domain and R is normal,
then given prime ideals p C q in R and a prime Q in S lying over q,
there exists a prime P C Q such that PN R = p. [E, Theorem 13.9,

p. 204] .

The annihilator of M is an ideal in S which is denoted by anng(M). So
anng(M) = {a € S|aM = 0}. If R is a subring of S, then any S-module is
also an R-module. It is clear that anng(M) = anng(M) N R. The following
lemma is an easy consequence of the Cayley-Hamilton theorem [E, Theorem

4.3.7). We give a quick self-contained proof.
Lemma 2.1.3. For any ideal a of S, a+anng(M) =S iff aM = M.

Proof. If a + anng(M) = S, then M = SM = aM + anng(M)M = aM. To
prove the converse, suppose aM = M. Choose a set of generators my,..., m,

of M. Now for each j, we have m; = >  A\iyjm;, \ij € a. Therefore



(1= M)y, = Z;:ll Ainmi. Thus (1 — A\pn)M has less than n generators.
Inductively we can find a € a such that (1—a)M = 0. Hence 1 —a € anng(M).

Therefore a + anng(M) = S. O

Definition 2.1.4. The height of a prime ideal p of S is the maximal in-
teger r such that there exist a strictly ascending chain of prime ideals py C
p1 C ... C p, = p. For an arbitrary ideal a, height(a) = inf{height(p) |
p is a prime containing a}. ( If a = S then height(a) = 00.) The height of
an ideal a in a module M is denoted by height(a, M); it is defined to be the
height of the ideal (a + anng(M))/anng(M) in the ring S/ anng(M). Thus,

by Lemma 2.1.3, if aM = M then height(a, M) = co.

Definition 2.1.5. A prime ideal p of S is called an associated prime of the

module M if p = anng(m) for some nonzero element m € M.

The set of associated primes of M is denoted by Ass(M). When we are
dealing with more than one ring, we will employ Assg(M) instead. In the
following proposition we record two important properties of Ass(M); the proof
can be found in [E, Theorem 3.1]. We will denote the union of the associated

primes of M by U Ass(M).

Proposition 2.1.6. Let M be a finitely generated module over a Noethe-
rian ring, then Ass(M) is a finite set and UAss(M) = {z € S | am =

0 for some m € M, m # 0}.



The elements of UAss(M) are called the zero divisors on M. We end
this section with a lemma from [E, Lemma 3.3, p. 90] known as the “prime

avoidance lemma”.

Lemma 2.1.7. Suppose ai,ay,...,a,,b are ideals of a commutative ring S
and suppose that b C Uja;. If at most two of the a; are not prime, then b is

contained in one of the a;.

2.2 Cohen-Macaulay modules

The material in this section is partly from [BH]. We continue to assume
that S is a commutative Noetherian ring and M is a finitely generated left

S-module.

Definition 2.2.1. An element x € S is called M-regular if z is not a zero
divisor on M, that is, for any nonzero element m of M, xm # 0. A sequence

{z} ={x1,22,...,2,} is called M-regular sequence of length r, if

(i) Y zM # M.

(ii) z;is M/(Z;;ll x;M)-regular for 1 <4 < r, where the empty sum denotes

the 0-module.

A maximal M-regular sequence in an ideal a is an M-regular sequence {z} =

x1, %3, ..., T, } that is a subset of a and such that {z{,zs,...,2,, 2,41} is not
_|_



10

an M-regular sequence, for any z,,1 € a. For convenience, we will denote the

submodule Y  z;M by (z)M.

Remark 1. If {z} = {z1,...,2,} is M-regular, then so is {2"} = {=7,..., 2"

for any positive integer n; see [BH, Exercise 1.1.10(b)]. Many other interest-
ing properties of regular sequences can be found in [BH]. We make one more
useful remark about maximal M-regular sequences. Suppose {z} is a max-
imal M-regular sequence in an ideal a. Then for any element a of a, there
exists a nonzero element m € M/(x)M such that am = 0. In other words,
a consists of zero divisors of M/(z)M. Applying Proposition 2.1.6, we get

a C UAss(M/(z)M). Hence, by the Lemma 2.1.7, we conclude that a C p for

some p € Ass(M/(z)M).

Definition 2.2.2. Let a be any ideal of S. If aM # M, then we define the
depth of a on M to be sup{r | acontains an M-regular sequence of length r}.
If aM = M then we say that the depth of a on M is infinite. The depth of a

on M is denoted by depth(a, M).

In literature the depth is also called the grade of an ideal, e.g. see [BH].
Depth has a homological characterization in terms of “Ext”, which we state
in part (b) of the following theorem. For the proof of (b), see [BH, Theorem

1.2.5]; for (a) and (c), see [BH, Exercise 1.2.22(a)] and [BH, p. 10}, respectively.

Theorem 2.2.3. (a) For any finitely generated S-module M and an ideal a
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of S, depth(a, M) < height(a, M).

(b) Suppose that aM # M. Then the length of any mazimal M-regular
sequence in a depends on a and M only and is equal to the number n

such that Ext'y(S/a, M) =0 for i <n and Ext%(S/a, M) # 0.
(c) If aM = M then Ext’y(S/a, M) = 0 for all i.

The characterization in (b) shows that all maximal M-regular sequences

in a fixed ideal have same length. Parts (b) and (c) also give the formula
depth(a, M) = inf{i | Ext%(S/a, M) # 0} ,

where inf @ = oo. In view of the beginning of Remark 1, it is clear that

depth(a, M) = depth(y/a, M). Even more is true:

Lemma 2.2.4. For any ideal a of S, there exists a prime ideal p containing

a such that depth(a, M) = depth(p, M)

Proof. If aM = M, then any prime ideal containing a would serve. Assume
therefore that depth(a, M) is finite, say depth(a, M) = n. Let {z1,...,z,} be
a maximal M-regular sequence in a. By Remark 1, there exists a prime p €
Assg(M) such that a C p, where M = M/(z) M. By definition of associated
primes, p = anng(m) for some nonzero element m of M. But then zy,...,z,

is a maximum M-regular sequence in p. Thus depth(a, M) = depth(p, M). O
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Recall that always depth(a, M) < height(a, M). The following definition

stresses on the equality of these two constants.

Definition 2.2.5. The module M is called Cohen-Macaulay if depth(a, M) =
height(a, M) holds for all the ideals a of S. The ring S is Cohen-Macaulay if

S is Cohen-Macaulay as a module over itself.

The following lemma states that the Cohen-Macaulay is a local property

is local.
Lemma 2.2.6. The following are equivalent for the S-module M :
(i) M is Cohen-Macaulay;

(ii) depth(m, M) = height(m, M) holds for all mazimal ideals m of S con-

taining anng(M);

(iii) all localizations My, of M at the mazimal ideals m of S are Cohen-

Macaulay as Sy-modules.

Proof. The implication (i) = (iii) is contained in [BH, Theorem 2.1.3(b)], and
(iii) = (ii) follows from the equalities height(m, M) = height(mS,,, M,,) and
depth(m, M) = depth(mSy,, My,); see [BH, Proposition 1.2.10(a)]. Finally, for

(ii) = (i), see [E, Ex. 18.4]. O

We now turn to the important special case where S is an affine domain over

a field k. Then, by Noether normalization [E, Theorem A1l on p. 221], there
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exists a subset {x1,...x,} of S which is algebraically independent over k£ and
so that k[z1,...,x,] = S is a finite extension. The following proposition gives
what is probably the most accessible description of affine Cohen-Macaulay
domains. The freeness property described therein has many important appli-
cations of Cohen-Macaulay domains, e.g. to generating functions in combina-

torics.

Proposition 2.2.7. Let S be any affine domain over a field k. Then S is
Cohen-Macaulay if and only if S is a finite free module over some polynomial
subalgebra k(z]) = k[z1,...,2,] € S. In this case, S is free over any polynomial

subalgebra k[z] C S such that S is finite over k[z].

Proof. Suppose S is any affine domain over a field k. Let k[z] C S be any
polynomial subalgebra such that S is finite over k[z]. By [Los, Lemma in
Section 1.3], S is a projective module over k[z], and hence S is free over k[z], by
the Quillen-Suslin theorem. Conversely, suppose that S is finite and free over
some polynomial subalgebra k[z]. Then S is faithfully flat over k[z], and k[z]
is Cohen-Macaulay. Moreover, for all primes p of S, the fibre S,/(p N k[z])S,
has Krull dimension 0, by Lemma 2.1.2(b), and hence it is Cohen-Macaulay.

Therefore, [BH, Exercise 2.1.23] implies that S is Cohen-Macaulay as well. [
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2.3 Group actions

The main background references for this section are [Bou;| and [Be;]. Let
S be any commutative ring. The set Aut(S) of all the ring automorphisms of

S forms a group under composition.

Definition 2.3.1. We say that a finite group G acts on S if there is a group
homomorphism G — Aut(S). If this homomorphism is injective then the G-
action on S is called faithful. We will write g(s) for image of an element s € S

under the action of a group element g € G.

Classical invariant theory is primarily concerned with a specific form of
group action on polynomial algebras k[z] = k[z1,...,x,], called “linear ac-
tion”; see the Introduction. Reference [Sm;|, for example, gives a detailed
treatment of linear actions. There is another type of action which is our
prime interest, called “multiplicative action”. These actions have been briefly
described in the Introduction and will be formally introduced in Chapter 4.
Here is a simple example comparing a linear action and a multiplicative action

in rank 2.

Example 2.3.2. Consider the linear action of

G={Id=(}%), ~Id= (3 2)}

on the polynomial algebra k[z;, x5 over a field k of characteristic # 2 defined
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as follows: —Id(x;) = —x; and —Id(zy) = —xo. Thus —Id(f(z1,22)) =
f(—=m1, —x5). Note that the elements such x?,,z,7, and x3 are invariant (fixed)
under the action of G. In fact, it is easy to see that these elements generate the
algebra of invariants k[, 2o]¢. Observe that, under this action, the degree of
a polynomial is unchanged.

Now we consider a multiplicative action of the same group on the Laurent
polynomial algebra k[zE', 23']. This action is defined by —Id(z;) = 27" and
—Id(zy) = x,'. Note that this action does not preserve degree. It is not hard
1 EG

to show that the invariant algebra k[z] is generated by the elements

-1 -1 — — . o .
T+ 27", zo+ 25" and zy25 " + 27z, (in any characteristic).

Now assume that G is a finite group acting on the commutative ring S.
The skew group ring S * G that is associated with this action is defined as
follows: S * G is the free left S-module with basis G. Thus, every element of
S x G can be uniquely written in the form

iaigi with a; € S, ¢g; € G.

i=1
The product in S*G is defined by distributive extension of the rule (ag)(bh) =
ag(b)gh. The following computation shows that S x G is an associative ring:
((ag)(bh))ck = (ag(b)gh)(ck) = ag(b)gh(c)ghk) = ag(bh(c)hk) = ag((bh)(ck)),
where g,h,k € G and a,b,c € S. If G acts trivially on S, then S * G is the or-

dinary group ring and is denoted by S[G]. Now consider any left SxG-module
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M and define the module of invariant elements by
MC¢={meM |g(m)=m,VgeG}.

The ring of invariant elements S is defined likewise; indeed, S is a left S * G-
module via (ag)s = ag(s) for a,s € S, g € G. Elements of S can be viewed as
elements of S * G' by the identification s = s1, where 1 is the identity element
of G. With this in mind, let a € SY. Then for a generator sg € S x G,
(sg)(a) = sg(a)(gl) = sag = a(sg). This shows that S is in the center of
S* G, or S*G is an S%-algebra.

Clearly we have S¢ < S. In the following well-known lemma we show that
this extension is integral. Once we have established this, we can apply lemma
2.1.2 to obtain properties such as lying over, going up etc. In fact, more is

true in the present setting.
Lemma 2.3.3. Let G be a finite group acting on S.

(a) S¢ — S is an integral extension. Further, if S is normal domain, then

so is S¢.

(b) If p and q are two prime ideals of S such that p NS¢ = qN S, then
there exist g in G such that p = g(q). In other words, G acts transitively

on the set of prime ideals lying over a fized prime ideal of S€.

(c) (Going down) Suppose p C q are prime ideals of S¢ and suppose Q is
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a prime ideal in S lying over q. Then there exists a prime ideal P in S

lying over p such that P C Q.

Proof. (a) For any s € S, f(z) =[] ,cq(® — 9(s)) is a monic polynomial with
coefficients in SY that is satisfied by s, which shows that S¢ < S is integral.
For the second assertion, let o be an element of the quotient field of S¢ which
is integral over S¢. Then there exist a,b € S such that o = a/b. Since
S¢ C S, « is integral over S. But S is a normal domain, therefore, o € S.
Now a and b are invariant under G. Therefore « is invariant and hence belongs
to S¢.

(b) Let a € p. Then [] ., g(a) is invariant under G and also contained
in p. Therefore [ ., 9(a) € pN S¢ =qnNS% C q. Now q is a prime ideal,
and so there exists ¢ € G such that g(a) € q. Thus a € g~!(q). Therefore,
P C Ugegg(q). By Lemma 2.1.7, we conclude that p C g(q) for some g € G.
Since pN S =qnNSY = g(q) N SY, Lemma 2.1.2(b) yields p = g(q).

(c) To prove this part, let B’ be any lift of p in S. By going up part of
Lemma 2.1.2, there exists a prime ideal £’ in S containing P’ which lies over
g. Then 9Q and Q' are both lifts of q. Therefore, by part (b), there exists
g € G such that g(Q') = Q. Put g(P') = P. Then PN SE =g(P)NSE =p

and P = g(P') C 9(Q) = Q. 0

For the remaining part of this chapter we will assume that S is Noetherian

as S%module. This hypothesis is always satisfied when S is an affine commu-
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tative algebra over some commutative Noetherian ring £ and G acts on S by
k-algebra automorphisms; see [Bou;, Theorem 2 in Chap. 5 §1]. Moreover, M
will always denote a finitely generated left S *« G-module. Hence, M is also
finitely generated over S and over S¢. The following lemma relates the depth
and heights of an ideal on M and M. This result is presumably known, but
we could not find a proof in the literature. We present here an elegant proof

which the author learned from his advisor.
Lemma 2.3.4. With the above hypothesis we have the following:
(a) For any prime ideal B of S, anng(M) C P iff annge (M) C PN SC.

(b) For any ideal b of S, depth(b, M) = depth(bNS, M) and height(b, M) =

height(b NS¢, M).

Proof. (a) Set p = PNSY. If anng(M) C P, then clearly annge (M) C p. For
the converse, assume that annge (M) C p. Let ' be a lift of p in S containing
anng (M) (by Lemma 2.1.2(c), such a lift exists). Then there exists g € G such
that g(*B') = P. Since g(anng(M)) = anng(M), P contains anng(M).

(b) Set a = bN SY. If aM = M, then so is bM = M. Therefore we can
assume that depth(a, M) is finite. Clearly depth(a, M) < depth(b, M). To
prove the reverse inequality, suppose depth(a, M) = n. Let {z1,...,2,} be a
maximal M-regular sequence in a. Then a consists of zero divisors of M =

M/(xz)M. By Proposition 2.1.6, 6 C Ugeassg(in)2- Thus a C Ugeagsg(mryQ N
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S%. Now we apply Lemma 2.1.7 to find Q € Assg(M) such that a C QN SC.
By definition, = anng(m) for some nonzero element m € M. But then
T1,...,T, is a maximal M-regular sequence in £; so n = depth(Q, M), by
Theorem 2.2.3(b). By going up, there exist a prime  in S containing b such
that QNS¢ = PN SY As before, there exists g € G such that g() = Q.
Hence, depth(a, M) = depth(Q, M) = depth(, M) > depth(b, M).

Now for height. We first assume that a and b both are prime ideals in S¢
and S respectively and anng(M) C b (and hence, annge (M) C a). Our goal
is to show that height(a, M) = height(b, M), that is, height(a/ annge (M)) =
height(b/ anng(M)). But Lemma 2.1.2(b) (Incomparability), applied to the in-
tegral extension S¢/annge(M) — S/anng(M), gives height(b/ anng(M)) <
height(a/ annge (M)). The reverse inequality follows from Lemma 2.1.2(c)
(Going Up) together with part(b) of Lemma 2.3.3.

For the general case, let 8 be a prime ideal of S containing b + anng(M)
such that height(b, M) = height(*3, M). Putting p = PN S, we note that p

contains a + annge(M). Thus by above discussion,

height(a, M) < height(p, M) = height(3, M) = height(b, M) .

Hence height(a, M) < height(b, M). Conversely, let p be a prime ideal con-
taining a 4+ annge(M) such that height(a, M) = height(p, M). Then p D

(b + anng(M)) N S¢. Indeed, let a +b € S¢ with a € b and b € anng(M).
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Then

(a+0) =]Jgla+b) =]]gla) +c

geG geG

with ¢ € anng(M). Clearly, [[,c;9(a) € a and ¢ € annge(M). There-
fore, (a + b)/l € a + annge(M) C p, and so a + b € p, as desired. By
Lemma 2.1.2(c), we may choose a prime B of S with N S¢ = p and
B DO (b+ anng(M)). Since height(3, M) = height(p, M), we finally obtain

height(a, M) = height(p, M) = height(3, M) > height(b, M). O
As a consequence, we obtain the following result.

Theorem 2.3.5. Let M be a finitely generated left S * G-module. Then M
15 Cohen-Macaulay as S-module if and only if M is Cohen-Macaulay as an

SE_module.

Proof. We use the Cohen-Macaulay criterion in Lemma 2.2.6(ii). Note that,
by Lemmas 2.1.2 and 2.3.4(a), the maximal ideals of S containing annge (M)
are precisely the ideals of the form m NS¢, where m is a maximal ideal of S
containing anng(M). Moreover, by Lemma 2.3.4(b), neither depth nor height

on M changes when passing from m to m N S¢. O

Remark 2. Suppose M is a finitely generated S *G-module. Our main concern
is to determine when M¢ is Cohen-Macaulay as an S“-module, given that M
is a Cohen-Macaulay S-module. The above theorem enables us to replace S*G

by the group ring S¢[G] and rephrase the question as follows:
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Let M be an SY[G]-module which is Cohen-Macaulay as an S¢
module. When can we say that M is Cohen-Macaulay over S¢?

2.4 Background from homological algebra

In the Section 3.5, we make use of certain spectral sequences associated
with “derived functors”. We do not define categories and functors here; a
good background reference is [Rot]. Since we are interested in categories of
modules over a ring, all our categories are assumed to be abelian (in the sense
of [Bey, ch.2, sec. 1]). In the following examples, we introduce certain module
categories that are important for our purposes, along with some notation. In
this section, R denotes an arbitrary ring (associative with identity) and S will
denote a commutative ring. Moreover, G’ will be a finite group acting on S, as

in the previous sections.

Definition 2.4.1. For any ring R, R-mod is the category of all left R-modules.
For two left R-modules M and N, the group of morphisms Homg(M, N) in
R-mod is the group of all R-linear transformations M — N. Similarly one
defines category mod-R of right R-modules.

We are primarily interested in the categories S * G-mod and S¢[G]-mod.
Note that any S * G-module is also a SY[G]-module and any S * G-linear map
is also S¢[G]-linear. In this sense, S * G-mod is a subcategory of S¢[G]-mod.

Two more categories of which S * G-mod is a subcategory are S-mod and
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S%mod. This situation is summarized in the following diagram, where all

arrows are the so-called “restriction functors”:
S * G-mod —— S-mod

l l

S¢[G)-mod —— S%-mod

We give two further examples of functors which are very important for us.
Example 2.4.2. Our first example is the fixed-point functor (_)¢:
SY[G]-mod — S%mod. For any SY[G]-module M, one defines (M)% as the
collection of all G-invariant elements in M; this is easily seen to be an S%-
module. For simplicity, we will write M in place of (M)“. Now, for any
SC%[G]-linear homomorphism f : M — N, f(M%) C N. Therefore the re-
striction of f to MY gives a morphism f¢ € Homge (MY, N¢). By composing
()¢ with the restriction functor S * G-mod — S%[G]-mod, we also obtain a

fixed point functor (_)¢: S * G-mod — S%-mod.

Example 2.4.3. Our second example is the a-torsion functor I'y(_): S-mod —
S-mod that is associated an ideal a in a commutative ring S. Under this func-

tor, the image of an S-module M is
Lo(M)={me M |a"m =0, for somen € N}.

For any morphism f: M — N in S-mod, I',(f) is the restriction of f to I'y(M).
We will often consider the situation where a is an ideal of S and M is an
S%[G]-module (or an S * G-module). In this case, ['y(M) is defined by first

restricting M to S¢, as in the above diagram.



23
We recall the (standard) notion of an exact functor.

Definition 2.4.4. A functor § defined on R-mod is called left exact if, given
an exact sequence 0 — M ERS VEEN M, in R-mod (i.e., f is injective and

Ker(g) = Im(f)), the resulting sequence
0 — (M) 2 w(m) 39 3(an)

is also exact. Right exactness can be defined in the same manner. A functor

that is both right exact and left exact is called exact.
We will use o to denote the composite of functors.

Lemma 2.4.5. The fized-point functor (.)¢ and the a-torsion functors Iy
defined above are left exact. Moreover, for any ideal a of S¢, ()¢ oy =

[0 (.)Y as functors SY[G]-mod — S%-mod.
Proof. The commuting part can be verified directly from the expression
(M€ = {m € M | mis G-invariant and for somen, a"m = 0} = [',(M)®

for any SY[G]-module M.

To show left exactness, let 0 — L NN f—’> N be an exact sequence.
Being restrictions of f, both T'4(f) and f¢ are injective. Also since f'f = 0,
Im(Cy(f)) € Ker(To(f")) and Im(f¢) C Ker(f'“). To complete the proof,
let m € Ker(Ty(f")) and m’ € Ker((f")¥); so m € To(M) NKer f' and m' €

M% N Ker f'. Then there exists [, ' € L such that f(I) = m and f(I') = m'.
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Since f is injective and f(a™) = f(I" — g(I')) = 0 for some value of n and
for any g € G, we conclude that | € T'4(L) and I’ € LY. This completes the

proof. O

The above functors (.)¢ and T’y are however usually not exact. In general,
if a left exact functor § on some module category R-mod fails to be exact, the
“exactness defect” can be measured by the right derived functors R"(§) (n >
0). We briefly discuss the construction of these functors, referring to [Rot| for

complete details. For this, we will need the concept of injective modules.

Definition 2.4.6. A left R-module [ is called injective if given an injective
R-module map f: M — N and any R-module map g: M — I, there exists
an R-module map ¢: N — I such that ¢of = g. In other words, Homg( ., I)

is an exact functor on R-mod.

Let M be any left R-module. It is known that M can be embedded into
some injective module, say Iy. The cokernel of this embedding, Iy/M, can
be embedded in to another injective module, I;. Continuing in this way we

construct a long exact sequence ,
d° d' dn
L,:0—>1y—1L —---—> 1, = 1,41 — ..

I, is called an injective resolution of M. Note that Kerd® ~ M; so the above

sequence is exact everywhere except at 0** level. Now apply § to this sequence
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and put &' = F(d*) to get

0= F0) S5 S 550 D ) —

One defines
R"§(M) = Ker(6")/Im(5,-1) -
The following two properties will be important for us.
o RIF(M) =F(M).
e Any short exact sequence 0 — M; — M — My — 0 gives rise to the
a “natural” long exact sequence, 0 — F(M;) — F(M) — F(M,) LN
R'§(My) — -+ — R"F(My) 25 RMIF(M;) — - -

We will now turn specifically to the fixed-point and torsion functors for

(.)€ and T,.

Example 2.4.7. (a) Let M be a left module over SY[G]. The n'* right
derived functor of the G-fixed point functor (.)%, evaluated on M, is called

n'™ cohomology group of M. The usual notation is
R"(.)%(M) =H"(G,M) .

Note that for s € S¢ the map o: M — M, m +~ sm is a morphism in
SC%|GJ-mod, and hence it induces a map o”: H"(G, M) — H"(G, M) for each
n. Letting s act on H"(G, M) via o7, we make H"(G, M) into a left S¢-

module.
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(b) The n'* right derived functor of the a-torsion functor, R"I'y, is com-
monly denoted by H"(.); it is called the n™* local cohomology functor. If M
is a left module over SC[G] then, for any a € SYG], the left multiplication
map a: M — M, m +— am is an S%module morphism. Hence, as in (a)
above, we obtain maps of: H'(M) — H?(M) which make each H?(M) into
a left S¢[G]-module.

(c) In view of the above considerations, for any left S¢[G]-module M and

any ideal a of S¢, we may consider the groups

HP(HY(G,M)) and H?(G,HI(M))

for p,q > 0. These groups will be important later on.

For our next result we need some preparations. Let a: R — R’ be any
homomorphism of (not necessary commutative) rings. Then R’ can be viewed
as a (R, R')-bimodule and as a as a (R', R)-bimodule through a. Furthermore,
any left R'-module M’ can be viewed as left R-module via «; the resulting R-
module is often called the “restricted module”. Let M be any left R-module.
Then the tensor product R’ @z M is a left R'-module, sometimes called the
“induced module”, and Hompg(R', M) is another left R'-module, usually called
the “co-induced module”. For the detailed construction of these modules, see

[Rot] or [Br, Chap. II1.3]. These references also contain proofs for the following
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natural isomorphisms, the so-called “adjoint isomorphisms”:

Hompg(M', M) ~ Homp (M', Homg(R', M)) (2.4.1)

HOH]R(M, MI) >~ HomR/(R' Rr M, M’) . (242)
One consequence of these isomorphisms is the following proposition.

Proposition 2.4.8. Let I be an injective left S¢|G]-module and let a be an

ideal of S. Then:

(a) I and I¢ are injective S¢-modules;
(b) To(1) is injective S¢-module.

Proof. (a) Since SY[G] is a free right S¢ module, SY[G] ®gc (.): S¢-mod —
SYG]-mod is an exact functor. Also since [ is injective, Homge(g( ., I) is an
exact functor on SY[G]-mod. Thus, the composite Homge (g (S¢[G]®sec (. ), I)
is an exact functor on S%mod. Now we apply the isomorphism (2.4.2), with
a: R= 8% — R' = SYG] the inclusion map, to see that Homge (., I) is exact
on S%mod. Thus, I is an injective S¢-module.

For the second assertion of (a), consider the augmentation map w : S¢[G] —
Sé, WD geq 509) = Dgeq Sg- If M is any left S%[G)-module then the co-
induced S¢-module Homge(S¢, M) is naturally isomorphic with the module
of G-fixed points MY, via f — f(1). Applying the isomorphism (2.4.1) with

a=wand M = I, we get isomorphisms of functors on S%-mod,

Homgo(g( ., I) ~ Homge (., Homgeg) (S, I)) ~ Homge (., I€) .
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Since Homge(g( ., I) is exact, this shows that Homge( ., I¢) is an exact functor
on S%mod, I¢ is an injective S%-module.

(b) Let b be an ideal of S¢ and let f : b — [4(I) be an S%linear map.
By [Rot, Theorem 3.20], it is enough to show that there exists an element
m € T'q(I) such that f(s) = sm holds for all s € b. Since I is injective as
S% module, by part (a), there certainly exists an element m' € I with this
property. Now, since S¢ is Noetherian, f(b) is a finitely generated submodule
of T'y(I). Hence there exist a positive integer r such that a” f(b) = 0. Further,
f(b) is a submodule of the finitely generated S“-module S°m’. By the Artin-
Rees Lemma [Bouy, Cor. 1, Chap. III, §3.1], there exists a positive integer ¢

such that for all n > t,
a™(SEm’) N f(b) = a™ H(a'(S°m/) N f(b)) .

Therefore ™ (SCm/)N f(b) = a” (a’(S¥m/)N f(b)) C a" f(b) = 0. This implies

that we can extend f to h: a"t* + b — I'y(I) by defining
h(s+s') = s'm/

for all s € a"t and s’ € b. Indeed, if s + s’ = v+ v’ with s,u € ot and
s',u' € b then (v' — s")m' = (s —u)m' € a"H(Sm') N f(b) = 0. Once
again we use injectivity of I over S¢ to find m € I such that h(s) = sm
holds for all s € S¢. We claim that m € T'y(I). Indeed, if s € a"" then

sm = h(s) = h(s+ 0) = 0. This completes the proof. O
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4
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p

Figure 2.1: Es-page of a spectral sequence.

We conclude this section with a brief introduction to spectral sequences.
The spectral sequences considered here are sometimes called “third quadrant

Y

(homology)” or “first quadrant (cohomology)” spectral sequences. Again, we

refer to [Rot] for details and more general versions.

Definition 2.4.9. A spectral sequence is a sequence of bigraded S-modules
E, = {EP}, >0 (r > 2) equipped with an S-linear maps dP?¢ : EPY —
EPtratl=r guch that d?%od? ™4 " = 0 and EPYY, = ker d?4/ Im(d?~ ™97 117) =
H™(E,). We say that for a fixed pair p, g, { EP?} converges to E%? and write
EP% — EP:1 if there exists a positive integer r dependent on p and q such

that P4 = Bl = -- = E.

We are particularly interested in » = 2. In this case the differential dy has
bi-degree (2, —1). Figure 1.1 shows the Es-page of the spectral sequence.

We end this chapter with a remarkable theorem of Grothendieck which
gives a convenient way to construct certain spectral sequences. The categories

in the theorem can be any abelian categories with enough injective objects



30

(i.e., every object embeds into an injective object), but for our purposes, it
will be enough to think quite specifically of module categories. We refer to

[Rot, Theorem 11.38] for a complete proof.

Theorem 2.4.10. Let & : A — B and § : B — € be functors with § left
exact such that, for each injective object I in A, the image &(I) in B satisfies
RIF(&(I)) =0 for q > 0. Then, for each module A in A, there exists a spectral

sequence

E? = RPF(RIG(A)) = RPT(F o B)(A)
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CHAPTER 3

General Group Actions

In this chapter, we consider the following question: Suppose G is a finite
group acting on the commutative ring S and M is an S * G-module which
is Cohen-Macaulay as an S-module, when is M¢ Cohen-Macaulay as an S¢-
module? As we saw in Theorem 2.3.5, if M is a Cohen-Macaulay S-module
then M is also Cohen-Macaulay S“-module. Therefore, later in Section 3.4
of this chapter, we will replace S by S¢ and assume that S is pointwise fixed
under G. Most of the literature on invariant theory is concerned with the
special case of linear actions, as explained in the Introduction; see, e.g., [Hy,

Hj, Ny, No, ST, C]. In this chapter, we will consider an arbitrary group actions.
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We assume throughout this chapter that

is a commutative ring,

is a finite group acting on S,

S¢ is the subring of G-invariants in S,

S x G is the skew group ring that is associated with the
given G-action on S,

M is a left S * G-module, and

M€ denotes the submodule of G-invariant elements of M.

Q

Further hypotheses will be explicitly mentioned whenever they are needed.

3.1 Trace map

The relative trace map is defined for any subgroup H of G. Let 7 be a set

of representatives for the cosets gH of H in G.

Definition 3.1.1. The relative trace map trg;u: M¥ — M is defined by
trg m(m) = Y ,c, 9(m) (m € M7). The image of trg/y is denoted by M.
Thus,

Mg = {trg/u(m) | m € M"}.

It is easy to check that trg gz does not depend on the choice of 7. In the
following lemma we will explore the elementary properties of the trace map.
In particular, we will show that M§ is an S%-submodule of M. We use 9H

to denote the conjugate subgroup gHg ' for g € G.
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Lemma 3.1.2. Let M, S, G be as above. Then:

(a) trgu is a homomorphism of S¢-modules. Thus My is an S¢- submodule

of M€.

(b) If K is any subgroup of H, then trg/x = trg/mtru/x Consequently,

Mg c M§.
(¢) For any m € MY, trg/p(m) =[G : Hm
(d) For any g in G, M§ = M§,.

Proof. (a) Since the trace map is defined by summation, it is additive. To
show S¢- linearity, let 7 € S¢ and let m € M. Choose a set 7 of cosets
representatives of H in G Then,

trg g (rm) = Zg(?"m) = ng(m) = rtrg/g(m).

gET geT

Thus trg/g is SC¢-linear. Since an image of any module homomorphism is a
module, the second statement follows.

(b) Let 7 be a set of cosets representatives of H in G and p be a set
of cosets representatives of K in H. It is clear that we can choose v =
{ghlg € 7, h € u} as a set of cosets representatives of K in G. Therefore,

tro/ic(m) = Y gney 9h(M) = 3 ger (e, Mm)) = trgu(truyc(m)). The

second assertion follows from this identity.
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(c) If m € MY, then gm = m for all g € G. Therefore, trg/u(m) = [G :
H]m.

(d) Let m € M§;. Then there exists m' € M* such that trg,z(m') = m.
Now for any ghg=! € gHg™', ghg='(gm') = gm' shows that gm' € M°2.
Also, {gtg™' | t € 7} is a set of coset representatives for YH in G. Thus,
traom(gm') =Y ,c, gtg~ gm’ = gtrg u(m') = m, we get Mf; C Mg;. By the

symmetry of the situation, we get MG = MG;. O

Applying property (a) to the special case M = S, we deduce that S§ =

trg,u(S™) is an ideal of S€.

Definition 3.1.3. For any additive subgroup N of M, we define the inertia

group Ig(N) as follows,
Ig(N) ={geG|(g-1)(M)C N}

In the following lemma we justify the word subgroup in the definition. We

also list elementary properties.

Lemma 3.1.4. With the above notations we have the following:
(a) Ig(N) is a subgroup of G.
(b) If Ny C Ny then Ig(Ny) C Ig(Ns).

(C) For H C G, Ig(N) ﬂH:IH(N)
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Proof. (a) Since G is finite, it suffices to show that if g,h € Ig(N) then

gh € Ig(N). But this follows from the calculation

(gh =1)(m) = (g = D(h = 1)(m) + (¢ = 1)(m) + (h — 1)(m) ,

because all three terms on the right belong to N.

(b) and (c) are clear from the definition. O

In the following lemma we derive an identity which will be used later with
a special case M = S. We will use the notation K\G/H to denote a set of

double coset representatives { KgH} of (K, H) in G.

Lemma 3.1.5. For any m € M¥,

trep(m)= Y [Ia(N): Lg(N)]g(m) (mod N)

9€la(N)\G/H

Proof. Write G as a disjoint union G = |J, Ic(N)gH with g running over
I(N)\G/H, and for each g, let 7, be a set of the coset representatives of H
in the double coset I(N)gH. Then,

trg g (m) = Z Z J(

9€la(N)\G/H g'€Tq

Now each ¢' has the form ¢’ = agh with a € Ig(N) and h € H. Thus, we
have for any m € M¥, ¢'(m) = agh(m) = ag(m) = g(m) (mod N). Thus the

above formula yields,

trg g(m) = Z |7glg(m)  (mod N) .

9€la(N)\G/H
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We claim that |7,| = [Ig(N) : Isg(N)]. To show this, let g1, go € Ig(N)gH.
Then g; = a1ghy, go = asghs for some ay,as € Ig(N) and hy, hy € H. Then
g1H = goH < a1 %H = ay%H < a1 Ly (N) = ag Ly (N), where the last equiva-
lence uses Lemma 3.1.4(c). This proves the claimed formula for |7,|, and hence

the lemma. O

The proof of the following lemma is based on an earlier proof that was
communicated to M. Lorenz by Don Passman (e-mail of Oct. 18, 2000). The

special case where S is an affine algebra over a field is covered by [Ke,, Satz
4.7]. Let Io(Q) = {g € G | (¢ — 1)(S) C Q} be the inertia group of an ideal

N of S.
Lemma 3.1.6. For any prime ideal £ of S,
NDSh = [1s(Q): Ly(Q)]€Q foralged

Proof. By Lemma 3.1.5 the implication < is clear. For =, assume that Q D

SG. Since S§ =SS, by Lemma 3.1.2(d), Tt suffices to show that

[1c(Q) : In(Q)] € Q

To simplify notation, put I = I(Q) and let P denote a Sylow p-subgroup
of INH = Ix(RQ), where p > 0 is the characteristic of the commutative domain

S/Q. (Here P = {1} if p = 0.) Then our desired conclusion, [I : I N H| € 9,
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is equivalent with

[[:Pleq.

Furthermore, our assumption D S% entails that Q D S§, by Lemma 3.1.2(b).
Thus, leaving H for P, we may assume that H = P is a p-subgroup of I. Let
D = {g € G| g(Q) = Q} denote the decomposition group of 9Q; so I < D.
We claim that

0NDSP.

To see this, choose r € S. Then that r € ¢g(Q) for all g € G\ D but r ¢ Q.
Then s =[] ¢ g(r) also belongs to (,c\ p 9(Q) but not to Q and, in addi-
tion, s € SP. Now assume that, contrary to our claim, there exists an element
f € 57 so that trp,p(f) ¢ Q. Then trp/p(sf) = strp,p(f) € Ngec\p 9(Q) \
Q. Hence, trg/p(sf) = tre/p(trp/p(sf)) = tto/p(sf)+D 21 49cc/p 9 tro/p(sf) ¢
£, a contradiction.

By the claim, we may replace G by D, thereby reducing to the case where
is G-stable. (Note that I is unaffected by this replacement.) So G acts on S/Q
with kernel I, P is a p-subgroup of I, and S§ C 9. Thus, for all 7 € S¥, 0 =
trg/p(r) = [1: P]-3 e/ 9(r) (mod ). Our desired conclusion, [I: P] € Q,
will follow if we can show that }° ./ g(r) ¢ Q holds for some r € S”. But
> geG1Y induces a nonzero endomorphism on S/, by linear independence
of automorphisms of K = Fract(S/Q); so > .5/ 9(s) ¢ Q holds for some

s € S. Putting r = [],.p h(s), we have r € S¥ and r = s/F| (mod Q). Since
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O

|P]
(deg/l g(S)) =0 (mod £), as required.

3.2 Height formula

For any collection X of subgroups of G, we define the ideal S§ of S¢ by

SE=> 55

HeXx

By Lemma 3.1.2(b),(d), we can assume that X is closed under G-conjugation
and under taking subgroups without changing S$.

Moreover, for any subgroup H < (G, we define

Is(H) = Y (h = 1)(S)S .

heH
Thus, Is(H) is an ideal of S, and Q D Ig(H) is equivalent with H < I5(£Q).
Lemma 3.2.1. Assume that S has characteristic p, a positive prime, and let
X be a collection of subgroups of G that is closed under G-conjugation and

under taking subgroups. Then
height S$ = inf{height Is(P) | P is a p-subgroup of G, P ¢ X'}

Proof. One has height S§ = inf, height g = infq height  , where g runs over
the prime ideals of S containing S¢ and £ runs over the primes of S con-
taining S¢. Here, the first equality is just the definition of height, while the

second equality is a consequence of Lemma 2.3.3.
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By Lemma 3.1.6,
0D 8§ <= p|le(Q): Iy(Q)] for all H € X.

Since Iy(QQ) = Ig(Q) N H belongs to X for H € X, the latter condition just
says that the Sylow p-subgroups of I¢(£Q) do not belong to X’ or, equivalently,
some p-subgroup P < I;(9) does not belong to X'. Therefore,

QDS «=ND N Is(P) ,

P < G a p-subgroup, P ¢ X

which implies the asserted height formula. O

3.3 Annihilators of cohomology classes

Recall that M denotes a module over the skew group ring S * G. Re-
call further that the G-cohomology H*(G, M) is a left module over SY; see
Example 2.4.7(a).

The following lemma generalizes [Kes, Corollary 2.4].

Lemma 3.3.1. The ideal S§ of S¢ annihilates the kernel of the restriction

map tes$, : H*(G, M) — H*(H, M).

Proof. The action of S¢ = H°(G, S) on H*(G, M) described in Example 2.4.7(a)can

also be interpreted as coming from the cup product

H(G,S) x H*(G, M) — H*(G,S ®z M) — H*(G, M) ,
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where the map denoted by - comes from the G-equivariant map S®z; M — M,
r ® m — rm; see, e.g., [Br, Exerc. 1 on p. 114]. Furthermore, the relative

trace map trg/g : SH — SY is identical with the corestriction map cor$ :

H°(H,S) — H°(G,S); cf. [Br, p. 81]. Thus, the transfer formula for cup

products ([Br, (3.8) on p. 112]) gives, for s € S¥ and z € H*(G, M),
trg/u(s)z = -(trg/u(s) Uz) = -(corf (s Ures (z))) .
Therefore, if res%(z) = 0 then trg/u(s)z = 0. O

We summarize the material of this section in the following proposition. For

convenience, we write res@(.) = .|,.

Proposition 3.3.2. Assume that S has characteristic p, and let M be an

S x G-module. Then, for any x € H*(G, M),
height annge (z) > inf{height Is(P) | P a p-subgroup of G, :U|P #0} .

Proof. Let X denote the splitting data of z, that is, ¥ = {H < G | ac|H =0};
cf. [CoR]. By Lemma 3.3.1, annge(z) 2 S, and by Lemma 3.2.1, height S¢ =
inf{height Is(P) | P is a p-subgroup of G, z| p # 0}. The proposition follows.

O
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3.4 Depth estimates

In this section, we will assume that S is Noetherian and that G acts trivially
on S. Thus, S = SY and the skew group ring S * G is the ordinary group ring
S[G]. Throughout, a will denote an ideal of S. The S[G]-module M will be
assumed to be finitely generated. Hence, M is Noetherian as an S-module,
and likewise for the submodule M¢ of G-invariant elements of M.

Our goal is to find estimates on the depth(a, M“) in terms of depth(a, M).
We then apply this results to get a sufficient condition for M¢ to be Cohen-
Macaulay, in Corollary 3.4.4.

We recall from Theorem 2.2.3 that
depth(a, M) = inf{i | Exts(S/a, M) # 0} .
In the following lemma we replace ‘Ext’ by local cohomology.

Lemma 3.4.1. Let a be an ideal in the ring S and let H: denote the i-th

local cohomology functor with respect to a. Then, for any finitely generated
S-module M,

depth(a, M) = inf{i | H:(M) # 0} .
Proof. This is [BS, Theorem 6.2.7]. O

Since M is a Noetherian S-module, all HY(G, M) are Noetherian S-modules

as well. Indeed, HY(G, M) is the ¢"* cohomology group of the cochain complex
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Homgjg)(F., M) = Homg(F,, M)%, where F, is any free resolution of the trivial
S[G]-module S. Since S is Noetherian, all F;, may be chosen to be finitely
generated. Thus, each Homg(F,, M)€ is finitely generated over S, and hence
so is the subquotient HY(G, M). Therefore, the above lemma applies to the

S-module HY(G, M) and gives
depth(a, HY(G, M)) = inf{i | H:(HY(G, M)) # 0} .

These S-modules H?(H?(G, M)) feature as the E?-terms of a certain spec-
tral sequence due to Ellingsrud and Skjelbred [ES]. In fact, two related spectral
sequences are constructed in [ES] which we describe now. We take the func-
tors I'y and ()G from Examples 2.4.2 and 2.4.3 and apply Theorem 2.4.10, to

obtain two Grothendieck spectral sequences as follows.

e By restriction, we may view I'y as a functor T, : S[G]-mod — S[G]-mod.
By Lemma 2.4.5, this functor is left exact, and Proposition 2.4.8(b) says
that I';(I) is injective whenever I is an injective (left) S[G]-module.
Therefore, H1(G,T4(I)) = 0 holds for all ¢ > 0; see the remarks on the
construction of right derived functors by means of injective resolutions

in Chapter 1. Theorem 2.4.10 now yields a spectral sequence

EPI = HP(G,HI(M)) = RF((.)9 oT,)(M) .

e Similarly, by Lemma 2.4.5, the fixed point functor (.)¢ : S[G]-mod —

S-mod is left exact and from Proposition 2.4.8(a), we know that I¢ is
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injective over S for any injective S[G]-module I. Hence, HZ(I¢) for all
g > 0. Again, by Theorem 2.4.10, we obtain a third quadrant (cohomol-

ogy) spectral sequence

By = HL(H'(G, M)) = RF*(Ty0 (.)9) (M) .

e Finally, by Lemma 2.4.5, we have a canonical isomorphism I'q(M¢) ~
[o(M)%; so the right hand sides of both spectral sequences are isomor-

phic. For simplicity, we write
HYG,M) = R"(Tyo (.)) (M)~ R"((.)°oTy)(M) .

To summarize, we have the following spectral sequences:

EPY = HP(HY(G, M)) (3.4.1)
NH‘I;—H](G, M)
&1 = HP(G, H{(M))

We use this to obtain estimates for depth(a, M) in the following lemma.

Lemma 3.4.2. Let a be an ideal of S and let M be a finitely generated S|G]-
module. Put m = depth(a, M) and h, = inf,5o{q + depth(a, H4(G, M))}.

Then:
(a) lower bound: depth(a, M®) > min{m, hy + 1},

(b) upper bound: Assume that HP°(H®(G,M)) # 0 for some py > 0,

qo > 0 with s = po+qo < m. Assume further that H*1=¢(HY(G, M)) = 0
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holds for £ =1,...,q0 — 1 and H: 1 "¢(HY(G, M)) = 0 holds for £ > qo.

Then depth(a, M%) < s+ 1.

Proof. Since m = depth(a, M), HI(M) = 0 for ¢ < m, and so the £-sequence
in (3.4.1) implies that H?(G, M) = 0 for n < m. Therefore, the E-sequence

satisfies

EPi=0 ifp+qg<m. (3.4.2)

Furthermore, E2® = H?(M€); so
depth(a, M%) = inf{p | E5° # 0} .

Finally,

he =inf{p+q|q> 0, E»?# 0} .

To prove (a), assume that p < min{m, h, + 1}. Then E?’ = 0, by (3.4.2),
and E» = 0 for j > 0, i+ j < p, r > 2. Recall that the differential d,
of E, has bidegree (r,1 — r). Thus, EP? has no nontrivial boundaries and
consists entirely of cycles. This shows that E?° = FPO = ... = EPO and
hence E2° = 0. Thus, (a) is proved.

For (b), we check that E5T"° # 0. Our hypotheses imply that, at position
(po, @), all incoming differentials d, (r > 2) are 0 as well as all outgoing d,
(r > 2,7 # q+1). Therefore, B} = E3*% and B0 = E}% = Ker(dio).

The former implies that Efe)% # 0, by hypothesis on (po, ¢o), and the latter

shows that dj '} is injective, because F22% = 0 by (3.4.2). Thus, dio¥) embeds
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. . 1,0 -
w1 mto E, 7 forcing the latter to be nonzero. Hence, E5tHY is nonzero

as well, as desired. O
For future reference, we note the following simple lemma.

Lemma 3.4.3. Assume that sM is Cohen-Macaulay and that \/a O anng M.

Then depth(a, M) = height(a, M) > height(a, M).

Proof. Note that v/a D anng M® D anng M. This implies that height(a, M) >
height(a, M©). Indeed, for every prime p of S containing a, we clearly have

height(p/ anng M) > height(p/ anng M%), and hence

height(a, M) = inf{height(p/ anng M) | p D a}
> inf{height(p/ anng M) | p D a} = height(a, M) .

Further, height(a, M) = depth(a, M), because M is Cohen-Macaulay. The

lemma follows. 0

We now give a sufficient condition for M to be Cohen-Macaulay. Here

dimg M stands for dim(S/anng M).

Corollary 3.4.4. Assume that sM is Cohen-Macaulay. If HY(G,M) = 0
holds for 0 < ¢ < dimg M — 1 then MY is a Cohen-Macaulay S-module as

well. In particular, this holds whenever the group order is a unit in S.

Proof. Let a be an ideal of S with a D anng M%. Since HY(G,M) = 0

for 0 < ¢ < dimgM — 1, the value of h, in Lemma 3.4.2 satisfies h, >
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dimg M — 1. Also, dim M > height(a, M) > height(a, M%), by Lemma 3.4.3.
Thus, Lemma 3.4.2(a) gives depth(a, M) > height(a, M%), which proves that
M€ is Cohen-Macaulay.

For the last assertion, just note that the group order |G| annihilates H4(G, M)
for all ¢ > 0. Thus if the group order is invertible in S then H¢(G, M) = 0

holds for all ¢ > 0. O

Note that the condition H9(G, M) =0 for 0 < ¢ < dimg M — 1 is vacuous
if dimg M < 2. For dimg M = 3, the condition becomes H!(G, M) = 0. The
latter holds, for example, whenever M is a G-permutation module without
|G|-torsion; explicitly, as G-module, M = @ (Z[G] ®zm) M(H)), where H
runs over certain subgroups of G and each M(H) is an H-submodule of M*#

such that [H|m = 0, m € M(H) implies m = 0.

3.5 Depth formula

We continue to work under the hypotheses of Section 3.4 and use the same
notation.

In view of Corollary 3.4.4, we may concentrate on the case where M has
non-vanishing positive G-cohomology. The following proposition is a version

of results of Kemper, see [Ke;, Corollary 1.6] and [Key, Kor. 1.18].

Proposition 3.5.1. Assume that sM is Cohen-Macaulay and that \/a D
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anng MS. Furthermore, assume that, for some r > 0, H1(G, M) = 0 holds
for 0 < g <r and ax =0 for some 0 # x € H' (G, M). Then depth(a, M%) =

min{r + 1,depth(a, M)} .

Remark 3. By Lemma 3.4.3, height(a, M) = depth(a, M) holds in the above

formula.

Proof of Proposition 8.5.1. Our hypothesis ax = 0 for some 0 # = € H" (G, M)
is equivalent with HY(H"(G, M)) # 0; so depth(a, H" (G, M)) = 0. The as-
serted equality is trivial for r = 0, since depth(a, M%) = depth(a, M) = 0
holds in this case. Thus we assume that » > 0. Then, in the notation of

Lemma 3.4.2, we have r = h,. Therefore, by part (a) of the lemma, we have
depth(a, M®) > min{r + 1,depth(a, M)} .

To prove the reverse inequality, note that Lemma 3.4.3 and Theorem 2.2.3(a)
give depth(a, M) > depth(a, M%). Thus, it suffices to show that depth(a, M¢) <
r 4+ 1 if depth(a, M) > r + 1. For this, we quote Lemma 3.4.2(b) with py = 0

and g =1 (so s =r). O

3.6 The Sylow subgroup of ¢

In this section, we focus on rings of invariants S¢ rather than modules.

Throughout, S is assumed to be Noetherian as an S“-module. As we remarked
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earlier, this hypothesis is satisfied whenever S is an affine k-algebra for some
commutative Noetherian ring £ and G acts on S by k-algebra automorphisms.
Furthermore, we assume that S has characteristic p, a positive prime; that is,
pS = {0}. We let P denote a fixed Sylow p-subgroup of G.

Put

p=pu(G,S)=inf{r >0| H'(G,S) # 0} .

Proposition 3.6.1. Put P = {P' < P | height Is(P') < u+1}. If S and S¢
are both Cohen-Macaulay and p < oo then the restriction map
res: H(G,R) — [[ H*(P',S)
PeP
18 tnjective.
Proof. Let 0 # =z € H*(G,S) be given and put a = annge(z). Then, by

Proposition 3.3.2,
height a > inf{height Is(P") | P’ a p-subgroup of G, z|,, # 0} .

Since S¢ is Cohen-Macaulay, height a = depth a. Finally, Proposition 3.5.1
with M =g S (note that M is Cohen-Macaulay, by Theorem 2.3.5) gives
deptha < p+ 1. Thus, there exists a p-subgroup P’ of G with a:| » 7 0 and
height Is(P') < 1+ 1. Note that both the condition x|P, # 0 and the value of
height Is(P') are preserved upon replacing P' by a conjugate P’ with g € G.

Therefore, we may assume that P’ € P, which proves the proposition. O
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3.7 Bireflections

We continue to use the notations and hypotheses of Section 3.6.
Following [Key|, we will call an element ¢ € G a bireflection on S if

height Is((g)) < 2.

Corollary 3.7.1. Assume that S and S¢ are both Cohen-Macaulay. Let H
denote the subgroup of G that is generated by all elements of G whose order is

coprime with p and all bireflections in P. Then S¢ = S&.

Proof. First note that H is a normal subgroup of G and G/H is a p-group.
Thus, if S¢ # S% or, equivalently, H*(G/H, S¥) # 0 then also H'(G/H, S*) #
0; see [Br, Theorem VI.8.5]. In view of the exact sequence

I‘GSG

0— HY(G/H,S") — HY(G,S) —=2 H'(H,S)

(see [Ba, 35.3]) we further obtain H'(G,S) # 0. Thus, x = 1 holds in Propo-
sition 3.6.1 and every P’ € P consists of bireflections. Therefore, P’ C H and
Proposition 3.6.1 implies that res$: HY(G,S) — H'(H,S) is injective, con-

tradicting the above exact sequence. Therefore, we must have S¢ = S¢. O

Corollary 3.7.2. Assume that S and S¢ are both Cohen-Macaulay. If F, =
Z - 15 1s a G-module direct summand of S then G = H. In particular, if G is
a p-group then G is generated by bireflections.

Proof. If trg i : S — S% is onto then we can write 1 = tr(a) = > G/Hg(a).

Since F, is a direct summand of S, a = u+r with u € F, and r € M. Applying
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trg iy on both sides, we get 1 = [G : H|u+trg/u(r). Since I, is a G-summand,
1 =[G : H]u. Now by definition of H, [G : H] is a power of p. This shows that

[G: H| =1 and G = H. The second assertion is immediate from this. O
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CHAPTER 4

Multiplicative Actions

Let G be a finite group acting by automorphisms on a Z-lattice (free abelian
group) A of rank n. In this case, A is often called a G-lattice. We extend the G-
action on A action linearly to the group algebra S = k[A] over a commutative
ring k; so G acts on S = k[A] by k-algebra automorphisms. Actions of this
type are called multiplicative; the terms exponential or purely monomial are
also found in the literature. The term “purely monomial” refers to the fact
that, by choosing a Z-basis for A, one can identify k[A] with the Laurent
L +1

z'] and the elements of A correspond to the

polynomial algebra k[zi', ...,z

monomials in the variables x; and their inverses. Traditionally, the group
operation in A is written as addition, +. On the other hand, when viewing
A C k[A], the lattice A becomes a multiplicative group.

The algebra S¢ of G-invariant elements in S is called the algebra of mul-
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tiplicative invariants. It is a standard fact that the group algebra S = k[A]
is Cohen-Macaulay precisely if the base ring & is Cohen-Macaulay; see [BH,
Theorems 2.1.3 and 2.1.9]. In this chapter, we assume throughout that £ is a
field, although much of the material generalizes directly to the case where k
is a Cohen-Macaulay ring. The above notations remain valid throughout the

chapter. We will investigate the following question :

When is S¢ Cohen-Macaulay ?

4.1 Passage to an effective lattice

Let

A%={aecA|g(a) =aVgeGqG}

denote the sublattice of G-invariants in A and let : A — A/A% denote the

canonical map. Extend this map to a map
S =k[A] = S = k[A/A°] .
Definition 4.1.1. We say that A is an effective G-lattice if A% = 0.

Lemma 4.1.2. A= A/A% is an effective G-lattice.

Proof. Let a € ZG, with a € A. Fix g € G and set b = g(a) —a € A®. Then
|G|b = trb = tr(a) — tr(a) = 0. Since A“ is torsion free, b = 0. Therefore

g(a) = afor all g € G or a € A®. This shows that A% =o. O
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Let G(a) denote the G-orbit {g(a) | g € G} of a € A. The orbit sum of a

is the element of S = k[A] that is defined by

o(a) = Z b.
)

beG(a

Note that o(a) belong to S¢ = k[A]°.
The following lemma reduces the general case of the Cohen-Macaulay prob-
lem for SY to the case of the effective G-lattice A = A/A“. The lemma and

its proof have been given to me by my advisor Martin Lorenz.

Lemma 4.1.3. With the above notations, S¢ is Cohen-Macaulay if and only

if 5% = k[A]¢ is Cohen-Macaulay.

Proof. We begin by constructing an auxiliary G-lattice A as follows. View G

as acting on the Q-vector space
Ag=A4QzQ

and let p: Ag — Ag® denote the Reynolds operator, p(v) = |G|} > geq 9(V).
Define

A=A+ p(A) C Ag.
We make the following claims:
(i) A~ A% @ A as G-lattices;

(i) A C Aand A = UtET(t + A) (disjoint union) for some finite subset

T C AC.
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To prove this, note that p and m = 1 — p are orthogonal idempotents in
Endgg)(Ag). Therefore, Ag = p(Ag) ® m(Ag) = Ag® @ m(Ag) and A C

p(A) & 7(A) C |G|7tA C Ag. Consequently,

A=A+ p(A) = p(A) @ 7(A)

and p(A) = A% Moreover, 7(A) = A/ Ker,(r) = A/AC. This proves Claim
(i). Since A/A C (|G|71A)/A, the index of A in A is finite, and since A =
A+ AC a transversal, T, for A in A can be chosen from A®. Claim (ii) follows.

Now, turning to group rings, Claims (i) and (ii) above immediately imply
that

k[A] = @D th[A] ~ k[A] & k[A°]
teT

and t can chosen to be in p(A) C A®. By taking G-invariants, we obtain

KA = @D th[A]C ~ K[A]° @ k[AC] ;
teT

so k[A]C is finite and free over k[A]® and a Laurent polynomial algebra over
k[A]¢. In view of [BH, Theorems 2.1.3 and 2.1.9 and Exercise 2.1.23], we

conclude that

k[A]¢ is Cohen-Macaulay < k[A]¢ is Cohen-Macaulay

& k[A]¢ is Cohen-Macaulay .

This completes the proof of the lemma. O
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4.2 Cohomology H*(G,S)

Definition 4.2.1. Let H be a subgroup of G. A left £[G]-module M is called
induced from H to G if there exist a k[H]-module N such that M ~ k[G]Qun

N. In this case, we will write M = N1%.

Since G is assumed finite, there is a natural isomorphism Homyz(k[G], N) ~
N1%: see [Br, Proposition I11(5.9)].

Fix a set of representatives 7 for the G-orbits in A; so

A=|] G,

acT

where the union is a disjoint union. For each a € A, let G, = {g € G | g(a) =
a} denote the stabilizer of @ in G. Then

S = klA] = P K,

acT

as k|G]-modules, where k is the “trivial” k[G,]-module, that is, every element
of G, acts as the identity on k. The Eckman-Shapiro Lemma [Br, Proposition
I11(6.2)] gives

H*(G, k[A]) = @H*(Ga,k) .

acT

Here, we use finiteness of G for the fact that H*(G, .) commutes with direct
sums; see [Br, Proposition VIII(4.6)].

Now assume that G acts fixed-point freely on A, that is, G, = {1} holds
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for all 0 # a € A. Then the above equation reduces to

H*(G,K[A]) = H*(G,k)  (+>0)

Therefore, if G acts fixed-point freely on A then the constant p = u(G, k[A])

introduced in Section 3.6 is given by

re(G) =1inf{r > 0| H"(G, k) # 0} .

It is known that 74(G) < oo if and only if char k divides the order |G|; see
[Beg, Theorem 4.1.3].

Before stating and proving the main result of this section, we record the fol-
lowing simple lemma determining the height of the ideals I5(H) for subgroups

H < G in the present setting of multiplicative actions.
Lemma 4.2.2. For any subgroup H < G, height Is(H) = rank A — rank A".

Proof. By definition, the ideal I5(H) of S = k[A] is generated by the elements
h(a)—a, or else by the elements h(a)a™'—1forh € H,a € A. Thus, S/Is(H) =
k[A/[H, A]], where we have put [H,A] = (h(a)a ! | h € H,a € A) < A.
Consequently, height Is(H) = dim S —dim S/Is(H) = rank A —rank A/[H, A].
Finally, since the group algebra Q[H] is semisimple, A ® Q = (A @ Q) &

([H, A] ® Q); so rank A/[H, A] = rank A¥. O

The following proposition is the main result of this section.
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Proposition 4.2.3. Assume that the action of G on A is fized-point free and
that p = chark divides |G|. If rank(A) > r4(G) + 2 then S¢ is not Cohen-

Macaulay.

Proof. By Lemma 4.1.3, we can assume without loss of generality that A = A;
so G acts fixed-point freely on A. In particular, by Lemma 4.2.2 above, we
have height Is(H) = rank A for every subgroup 1 # H < G. Now assume
that rank A > 74(G) + 2 but S = k[4] is Cohen-Macaulay. To derive a
contradiction, we will apply Proposition 3.6.1. As we pointed out above, u =
rk(G) < oo. Let P be a fixed Sylow p-subgroup of G and define the set P
as in Proposition 3.6.1. By the foregoing, P consists of the identity subgroup
alone. Therefore, the product []p.p H*(P',S) in Proposition 3.6.1 is the
trivial group, and hence H*(G,S) must be trivial as well, contradicting the

definition of u. d
The following corollary settles the case of groups of order p = char k.

Corollary 4.2.4. Suppose |G| = p = chark. Then S is Cohen-Macaulay if
and only if rank(A) < 2. In particular, if p > 3 and G acts non-trivially on A

then S¢ is never Cohen-Macaulay.

Proof. Since |G| = p, the G-action on A is actually fixed-point free. Also,
r+(G) = 1. Thus, by Proposition 4.2.3, if rank(A4) > 3 then S¢ is not Cohen-

Macaulay. On the other hand, if rank(A4) < 2, then k[A]“ is certainly Cohen-
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Macaulay; see [BH, Exercise 2.2.30(a)]. Thus, in view of Lemma 4.1.3, we
obtain that S¢ is Cohen-Macaulay iff rank(A4) < 2, proving the first assertion
of the corollary.

Since GL,(Z) for n < 2 does not contain a subgroup of order p > 3, the

second assertion also follows. O
Here is a simple explicit example.

Example 4.2.5. Suppose that chark = 2 and |G| = {+Id,x,} acts canon-
ically on the lattice A = Z™. Then k[A]® is Cohen-Macaulay if and only if

n < 2. Since A = A for the given action, this is immediate from Corollary 4.2.4.

4.3 Cyclic Sylow subgroups

The notation employed in the previous section remains in effect. In par-
ticular, we assume that p = char k divides the order |G| of G, and we let P
denote a fixed Sylow p-subgroup of G. Our main interest in this section is on
the case where P is cyclic. The following lemma, however, is valid generally,

even for arbitrary G-actions on a commutative ring S.

Lemma 4.3.1. Suppose that G has a subgroup H such that SG = S¢ and S¥

is Cohen-Macaulay. Then S¢ is Cohen-Macaulay as well.

Proof. By virtue of our hypothesis S§ = S, the relative trace map trg,g: S¥ —

S¢ is surjective; so we may fix an element ¢ € S¥ with trg u(c) = 1. Define
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the map p: S¥ — S by p(s) = trg/u(sc). Then p is a “Reynolds opera-
tor”, that is, p is S%-linear and the restriction of p to S¢ is the identity map
on S Since S¥ is integral over the subring S¥, we may apply a result of
Hochster and Eagon [HE] (see also [BH, Theorem 6.4.5]) to conclude that the

Cohen-Macaulay property descends from S to S¢, as we have claimed. [

Note that the hypothesis S§ = S in the lemma is certainly satisfied
whenever the index [G : H] is invertible in S. For, in this case, the element
¢ =[G : H™' € S¥ satisfies trg/u(c¢) = 1. Our main application of these

observations in Chapter 4 will via the following
Corollary 4.3.2. If ST is Cohen-Macaulay then so is SC.
The converse of this corollary is false in general:

Example 4.3.3. Let G = S, denote the symmetric group on p symbols and let
A =7". Then G acts on A by permuting the canonical basis {1, ..., z,} of A.
By the classical theorem on elementary symmetric functions, the corresponding

multiplicative invariant algebra is given by

k[A]G = k[aciﬂ, ceay .’L'I:)tl]sp = k[Sl, ceay Spfl, 8;:1] s

where the s; denote the elementary symmetric functions. Thus, k[A]% is cer-
tainly Cohen-Macaulay. On the other hand, the Sylow p-subgroup P is cyclic

of order p, generated by the p-cycle (1,2,...,p). If p > 3 then P is not gen-
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erated by a bireflection on A. Therefore, Corollary 3.7.2 shows that k[A]” is

not Cohen-Macaulay.

For any finite group G, O?(G) denotes the intersection of all normal sub-
groups N of G so that G/N is a p-group. In other words, OP(Q) is the subgroup

of G that is generated by all p’-elements.

Theorem 4.3.4. Assume that OP(G) # G and that P is cyclic. Then S¢ is

Cohen-Macaulay if and only if P is generated by a bireflection on A.

Proof. First assume that S¢ is Cohen-Macaulay. Let H denote the subgroup
of G that is generated by OP(G) and all bireflections in P. Then Corollary 3.7.2
implies that G = H. It follows that G/OP(G) = P/P N O?(QG) is generated
by the images of the bireflections in P. Since P is cyclic, it follows that P is
generated by a bireflection.

Conversely, if P is generated by a bireflection on A then A/A” has rank
at most 2. Therefore, the invariant algebra k[A/AF]” is Cohen-Macaulay; see
[BH, Exercise 2.2.30(a)]. Lemma 4.1.3 gives that k[A]” is Cohen-Macaulay,

and Corollary 4.3.2 further implies that k[A]“ is Cohen-Macaulay. O
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CHAPTER 5

Multiplicative Invariants of

Rank 3 Groups

If A is any G-lattice of rank at most 2 then the multiplicative invariant
algebra k[A]¢ is a normal domain of dimension at most 2, and hence k[A]¢ is
Cohen-Macaulay; see [BH, Exercise 2.2.30(a)]. As we have seen in Example
4.2.5, this does not hold in rank 3. Our aim in this chapter is to classify
all multiplicative invariant algebras k[A]¢ with rank A = 3 into two classes,
Cohen-Macaulay and non-Cohen-Macaulay. In view of Lemma 4.1.3, this will
entail an answer to the Cohen-Macaulay problem for all G-lattices A so that
A = A/AY has rank at most 3.

Thus, for the rest of this chapter, we assume that

A=73
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and
G is a finite subgroup of GL3(Z)
acting canonically on A. As is customary in group theory, we shall use the
exponential notation a? (a € A,g € G) for the G-action on A, and likewise
for the extended action on the group algebra S = k[A]. In other words, we
think of the elements of A as integer row vectors on which the matrices in G
act by right multiplication. Writing ¢ = (1,0,0),b = (0,1,0),¢ = (0,0, 1) for
the canonical basis of A, the group algebra S = k[A] can be thought of as the
Laurent polynomial algebra
S = k[a*!, bt H1] |

0 .
—01) € GL3(Z) acts on these generators via

OO
[ =l="]

For example, the matrix g = (
a?=a,b =c*!and ¢ =b.

Throughout, k£ will denote a field of characteristic p; it will turn out that
only the case p = 2 needs to be considered in detail.

Our approach to the classification is to proceed case-by-case, using the
machinery explained in the previous chapters along with explicit computations.
To this end, we use the list of all finite subgroups of GL3(Z), up to conjugation,
that is given in reference [T]. There are 73 such groups; one group listed in
[T] is superfluous, as has been pointed out in [AGr|. Borrowing a convention

from [HK], we will denote the group W; on the page j in [T] by

Wi(5) -
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(Occasionally, if there is no ambiguity, we will drop the page number j from
the notation.) For example, W5(198) is the group listed as W5 on the page 198
in [T]. It is claimed there that 1W5(198) has order 24, while the actual order is
12, as was pointed out in [AGr]; so the group W5(198) should be disregarded.

With this notation, our findings can be summarized in the following

Theorem 5.0.1. (a) If chark # 2 then all multiplicative invariants k[A]¢

in dimension 3 are Cohen-Macaulay.

(b) Assume that chark = 2. Then, with exception of the groups conjugate

to one of the following

o W;5(173) (order 2),
o W5(174) and W4(174) (both cyclic of order 4),

e W5(184) and W4(184) (both cyclic of order 6),

and the possible exception of the conjugates of

W14(174) (2 02 X 02) and W10(191) (2 A4)

all finite subgroups of GL3(Z) have Cohen-Macaulay multiplicative in-

variant algebras.

Thus far, we have not been able to settle the cases W14(174) and Wy, (191).

Here, W14(174) is (up to conjugation) the Sylow 2-subgroup of W14(191). Thus,
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once Wi4(174) will be shown to be Cohen-Macaulay, which we expect, then it

will follow that Wiy(191) is Cohen-Macaulay as well.

5.1 Some reductions

We first show that the five exceptions listed part (b) of Theorem 5.0.1 do
indeed have non-Cohen-Macaulay multiplicative invariant algebras in charac-

teristic 2.

Proposition 5.1.1. Assume that p = 2. If G is conjugate to one of the

following

o W5(173) (order 2),

o W5(174) and W4(174) (both cyclic of order 4),

o W3(184) and Wy4(184) (both cyclic of order 6),
then the invariant algebra k[A]¢ is not Cohen-Macaulay.

Proof. Let P denote a Sylow 2-subgroup of G. By Theorem 4.3.4, it suffices
to show that P is not generated by bireflection. Recall that bireflections are
matrices g € GL3(Z) so that rank(g — Id) < 2. (It follows from Lemma 4.2.2
that this condition is equivalent with the earlier definition of bireflections given

in Section 3.7.) Since powers and conjugates of bireflections are again bire-
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flections, it suffices to exhibit, for each of the groups Wi(173),..., W4(184), a
generator of P that is not a bireflection.
In each of the cases W5(173), W5(184), W,(184), the Sylow 2-subgroup P
is generated by —Idsxs, clearly not a bireflection. For W5(174) and W,(174),
) —100 —10 -1 i
[T] gives the generators ( 00 (1)) and ( 001 ), respectively. Both are not

bireflections. O

We remark that the groups in the above proposition are indeed the only
finite subgroups of GL3(Z) that cannot be generated by bireflections.

Our next proposition gives a number of sufficient conditions for Cohen-
Macaulayness of the invariant algebra. In particular, part (a) of Theorem 5.0.1

is covered by part (a) below.

Proposition 5.1.2. Fach of the following conditions entails that the invariant

algebra k[A]% is Cohen-Macaulay:
(a) p=chark # 2;
(b) the order |G| is odd;
(c) G has non-trivial fived points in A, that is, AS #0;

(d) G can be generated by reflections, that is, by matrices g € GL3(Z) so

that rank(g — Id) = 1.

Proof. (a) The order of |G| is a divisor of 48; see [T]. Thus, if p # 2,3 then

k[A]¢ is Cohen-Macaulay by Corollary 3.4.4. Assume now that p = 3. Then
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P has order 3. Hence, by [T, Proposition 3|, P is conjugate to one of the

following two groups:

mom=((1)) o wom= ()

Both these matrices are bireflections; so k[A]” is Cohen-Macaulay by Corol-
lary 4.2.4, and Corollary 4.3.2 further implies that k[A]¢ is Cohen-Macaulay.
This proves (a).

(b) Assume that |G| is odd. If p # 2 then k[A]® is Cohen-Macaulay by
part (a), and if p = 2 then the same conclusion follows from Corollary 3.4.4 or
Corollary 4.3.2.

(c) If A9 # 0 then A = A/A® has rank at most 2. Therefore, k[A]“ is
Cohen-Macaulay, by [BH, Exercise 2.2.30(a)]. Lemma 4.1.3 now gives that
k[A]¢ is Cohen-Macaulay.

(d) This is a consequence of the main result of [Lo;] which asserts that
multiplicative invariants k[A] of reflection groups G (in any rank) are affine
normal semigroup algebras. Cohen-Macaulayness of k[A]% now follows from a

result of Hochster; see [BH, Theorem 6.3.5(a)]. O
In view of part (a) above, we will henceforth assume that
p=chark =2.

The remaining sections each are devoted to finite subgroups G C GL3(Z) of a

given even order.
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We conclude this section with a simple lemma that will be useful in our
explicit computations. The lemma is independent of the particular setting of

multiplicative actions and holds more generally.

Lemma 5.1.3. Let G be a finite group acting faithfully on a commutative

integral domain S.

(a) Let Sy C S be a Noetherian subring such that S is free of rank r as So-
module. Then |G| divides r and S is finitely generated as Sy-module,
with minimal number of generators > r/|G|. Moreover, S¢ is free as

So-module if and only if it can be generated by /|G| elements.

(b) Let H C G be a subgroup of G and suppose that S* =" 1,5 where
m = [G : H| is the index of H in G. Then {n;}T is a free S®-module

basis of SH.

Proof. Denote by K the quotient field of S. The action of G’ can be extended
to K by putting (a/b)9 = a?/b9.

(a) The fact that S¢ is finitely generated as Sy-module follows from Noethe-
rianness of Sy. Let m denote the minimal number of module generators and
write S¢ = "7 %;5,. Let F denote the quotient field of Sp; so F C K.
The subring S°F = Y"" 2;F C K has dimension at most m over F and is
contained in the fixed field K¢. Therefore, K¢ = SF and [K® : F] < m.

Similarly, K = SF and our freeness hypothesis on S over S; entails that
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[K : F] = r. Since [K : K¢ = |G|, by Galois theory, we conclude that
r = |G|[K® : F] < |G|m. This proves the estimate m > r/|G|. Moreover,
equality holds here if and only if [K : F] = m, which in turn is equivalent to
{z;}T" being F-independent or, equivalently, Sp-independent. This proves (a).

(b) The fixed field K# contains the subring S#K¢ and [K# : K¢] =[G :
H], by Galois theory. This entails that K# = S#KY Now assume that
SH = 35" mSY with m = [G : H]. Then K¥ = SHK% = """ nKC;

so {m;}™ is a K%basis of K. Therefore, {n;}™ is surely S®-independent,

proving the lemma. ]

5.2 Groups of order 2

There are 5 conjugacy classes of subgroups G C GL3(Z) of order 2.

Proposition 5.2.1. If G C GL3(Z) is a group of order 2, then S¢ is Cohen-

Macaulay if and only if G # (—Idsxs) = W5(173).

Proof. We already know that the multiplicative invariants of W5(173) are not
Cohen-Macaulay; see Proposition 5.1.1. The remaining 4 conjugacy classes
of subgroups G C GL3(Z) of order 2 are represented by the groups with the

following generators:

=

[=Nlig

0 0 1
—10) or :l:(o
0 —1 0

OO

)

OO
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These matrices all have fixed points. Thus for those four groups, S¢ is Cohen-

Macaulay by Proposition 5.1.2(c). O

5.3 Order 4

There are 14 conjugacy classes of subgroups G C GL3(Z) of order 4; these

are represented by the groups W;(174) for i =1,...,14.

Proposition 5.3.1. If G = W;(174) (i # 14), then S¢ is Cohen-Macaulay if

and only if i # 2 or 4.

Proof. By Proposition 5.1.1, we know that the multiplicative invariants of
W5(174) and of Wy(174) are not Cohen-Macaulay. We consider the cases
G =W;(174) (i # 2,4,14) in turn.

e The following 7 groups have fixed points; so the ring of invariants of these

groups are Cohen-Macaulay by Proposition 5.1.2(c):
(i) W1(174) has fixed points (1,0, 0)Z.
(ii) W3(174) has fixed points (2,1, 1)Z.
(iii) W7(174) has fixed points (1,0, 0)Z.
(iv) Wy(174) has fixed points (1,0,0)Z.

(v) Wie(174) has fixed points (0,1, 1)Z.
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(vi) Wi3(174) has fixed points (0,1, 1)Z.

It remains to show that if G = W;(174) where i = 5, 6, 8, 11, 12 then S¢ is
Cohen-Macaulay. We will do this case by case.

o Let G = Wi(174) = <g: (é—zl ﬁl) b= (’81 %1 §1)> Clearly,

Observe that

SH =8y = k[u,v,w] ,
where we have put u =a+a ', v=b+b"! and w = c+ ¢ '. Thus,
Sy C 8% C k[a®!, b*!, ¢*'] = (So @ aSy) ® (So @ bSp) ® (S ® ¢Sp)
= So S aSo &) bSo &D CS() &) CLbS() &) CLCSQ S bCSo D acho . (531)

Let f € S Then there exists f; € Sy (0 < i < 7), such that f = fo +af +
bfs + cfs + abfy + acfs + befs + abef;. Comparing f9 = f and substituting

W=bl=v+b c!=c!=w+c, we get the following equation:
vio+wfs+a(vfs+wfs+vwfr) +bwfe) + c(vfe) + ab(wfr) + ac(vfr) =0 .

This implies that fo = f; = 0 and vfy = wf; = vwf], vfi = wfs = vwf) for

suitable f{, f5 € Sy. Thus,
f=fotafi +(bw+cv)f] + (abw + acv) fy (5.3.2)

Applying h and using f* = f, we get f; = f5 = 0 This shows that Sy C S¢ C

So+ (bw+cv)Sy C S Thus S¢ = Sp+(bw+cv)S,. Since the index of G in H is
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2, Lemma 5.1.3(b) implies that this sum is direct. Thus S¢ is Cohen-Macaulay.
Alternatively, this follows from the observation that G = G; x G5, where G
acts by inversion on « and trivially on (b, ¢), while G5 acts by inversion on
(b,c) and is trivial on a. Therefore, S¢ = k[a*|% ®; k[b*!, cF1]%2. Since
both factors are Cohen-Macaulay, being normal domains of rank 1 and 2, S¢

is Cohen-Macaulay as well.

e When i = 6, Wg(174) = <g: (é—zl 81> , h= (7)1 —018)>. Note that ¢

0 01

is identical with the matrix denoted by g in the case of W5(174). Let f € S"s.
Since g € Wg C H, we can still deduce equation (5.3.2) from the condition
f9 = f. Applying f* = f, we further derive f = fy + (avw + buw + cuv) f;.
Thus S"¢ = Sy @ (avw + buw + cuv)Sy. Thus, as above, Lemma 5.1.3 implies

that S"s is Cohen-Macaulay.

e Suppose G = Wy:

marn = (o= (45 8) 0= (3 4 3)) -

Take G' = <(ﬂ§1 ﬂgl i81> , (é (?) §)>. Then G’ is a group of order 16 containing
Ws and S¢ = S; = k[u,s,t], where s = v + w and t = vw with u, v, w
as above. As Sp € S™® c S and S is a free module over S, with basis
1,a,av,b,bv, c, cv, ab, abv, be, bev, ac, acv, abe, abev, any f € SW8 is an Sy-linear

combination of this basis. Using f9 = f, f* = f we get

f = fo+ (uwv+as)fi + (bs + bv + cv) fo + (btu + cvs + abs® + abvs + acvs) f3
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Thus " = Sy+ (uv+as)So+ (bs+bv+cv)Sy+ (btu-+cvs+abs®+abvs+acvs)Sy.
Since the index of Wy in G is 4, Lemma 5.1.3(b) shows that this is a direct

sum, and so $"® is Cohen-Macaulay.

e Suppose G = Wiy:

it = (o= (§31). 2= (4 1))

0 0 —1
W1, is also a subgroup of G’ defined for the case i = 8 above; so we can use
the methods and notations developed there. If f € SW1it then 9= f, ff = f
implies that f = f, + (u + as + bu + cu) fi + (bs + bv + cv) fo + (cvs + abs +
abv + acv + beu) f3.  Thus SV = Sy @ (u + as + bu + cu)Sy & (bs + bv +
cv)Sy @ (cvu + abs + abv + acv + beu)Sy. As above, this shows that S is

Cohen-Macaulay.

e Now we consider the case G = Wis:
Wi(174) = (g=(1 8 1), n=(701)) .
- 010
Denote by H the subgroup of Wiy generated by h. It is easy to see that
SH = kla, B,v*L, 6], where, a =a+a ', B=b'+c !, y=bc,d =ab+a lc
One can easily check that « satisfies the monic quadratic polynomial
£ = (86 + )t + 7

over A = k[B3,~v*!,6]. Therefore, S¥ = A @ aA. Since H C Wi,, SW12 C SH.

Now ¢ acts on SH as follows: B9 = 6,89 = 3,49 = v~ ! and o9 = . Put
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B=k[B+6,v+~ 1, 36). Then BC S"2 Cc S# and A= B&SB®yB®§yB.

Thus,

SH = B®JB®YB®aB®iyB® saB®yaB @ adyB.

Now let f € S"12 C SH#. Then there exist fo,..., f; € B such that

f=Jo+ofi +vfo+ afs+0vfi+ dafs + yafs + adyfr.

Now using f9 = f, we obtain relations among f;. Solving these relation gives,

F=Fo+ 160+ +9(6+ B)fi + afs + [bala+a™') + ya(B +6)] f3,

for some f], f3 € B. Thus S = B+ [6(y+77') +v(6 + 8)]B+aB + [da(a+
a ') +ya(B + §)]B. Since the index of H in Wi, is 2, this is a direct sum
decomposition, by a Galois theoretic argument analogous to the one used in
the proof of Lemma 5.1.3. Thus, S"2 is a free module over a Cohen-Macaulay

algebra, and hence it is Cohen-Macaulay. 0

5.4 Order 6

There are 10 conjugacy classes of subgroups G C GL3(Z) of order 6, with

representative groups W;(184) for i = 1,...,10.

Proposition 5.4.1. If G = W;(184), then S¢ is Cohen-Macaulay if and only

if1#3 ord
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Proof. As we have pointed out in Proposition 5.1.1, the invariant algebras of
G = W;(184) for i = 3 or 4 are not Cohen-Macaulay.

For the remaining groups G = W;(184), i # 3,4, let P denote the Sylow
2-subgroup of G as usual. In each case, one easily checks that P # (—Idsx3).
Thus, Proposition 5.2.1 implies that k[A]" is Cohen-Macaulay. Hence, by

Corollary 4.3.2, k[A]¢ is Cohen-Macaulay for these groups. O

5.5 Groups of order 12

Proposition 5.5.1. If the order of G is 12, then S¢ is Cohen-Macaulay, with

the possible exception of groups conjugate to Wip(191) ~ Ay.

Proof. Representative groups for the 11 conjugacy classes of subgroups of order
12 in GL3(Z) are the groups W;(193) with ¢ = 1,...,11. These groups are
isomorphic to Cg x Cy (i = 1), the dihedral group Dj5 (2 < ¢ < 8) and the
alternating group A; (9 <4 < 11). In each case, the Sylow 2-subgroup P of G
is isomorphic to the Klein four-group Cy x C5. Therefore, P is not conjugate
to the two non-Cohen-Macaulay cases of order 4, W5(174) and W5(174), both
of which are cyclic; see Proposition 5.3.1. To conclude that S is Cohen-
Macaulay (and hence S¢ as well), it suffices to rule out the possibility that
P is conjugate to the as yet unsettled potential non-Cohen-Macaulay case

Wia(174).
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Note that W14(174) C SL3(Z). Therefore, if W;(193) contains an element of
determinant —1 then the 2-part of this element will then also have determinant
—1, and hence P cannot be conjugate to W;4(174). This observation takes care
of the groups W;(193) with ¢ # 2,9, 10, 11; see [T, Corollary on p. 191].

For the remaining groups W;(193) with i = 2,9, 10, 11, we note that, up to

conjugation, the Sylow 2-subgroups are given by:
o Wi(174) € Syly(Wa(191));
o W5(174) € Syly(Wy(191));
o Wiy(174) € Syla(W71(191));
o Wy, (174) € Syla(Wi(191));

Thus, except for the case of Wiy(191), the Sylow 2-subgroup has a Cohen-

Macaulay invariant algebra, as desired. O

5.6 Orders 8 and 24

Proposition 5.6.1. The invariants S¢ for subgroups G C GL3(Z) of order
8 are all Cohen-Macaulay. Consequently, the same conclusion holds for all

subgroups G C GL3(Z) of order 24.

Proof. By Corollary 4.3.2, we may concentrate on groups of order 8, since

groups of order 24 have a Sylow 2-subgroup of order 8. There are 14 conjugacy
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classes of subgroups of order 8 in GL3(Z), represented by the groups W;(187)

(1=1,...,14). We will consider these groups in turn.

e The groups W5(187) = <(§ (.i) %1) , (é _81 —21)> and
Wio(187) = <(é § —(1)1> , (é § g>> have non-trivial fixed points; so Proposi-

tion 5.1.2(c) applies.

e It turns out that all subgroups G C GL3(Z) isomorphic to Cy x Co X Cy
are generated by reflections, and hence their rings of invariants S¢ are Cohen-
Macaulay, by Proposition 5.1.2(d). These are the groups W5(187), W,4(187),

e Next, we treat the groups Wy = W, (187), Wy = W, (187), Wy = Wy (187)

and Wiy = Wi (187). To this end, let

g:(_olg(l)) and h,:((l)g
01

0
-1 .
010 0

Then W1 = <—Id3><3,h>, W7 = <g, h), Wg = (g, —h), and W10 = (—g, —h)

Note that all these groups are contained in the group

c={(F43))

This is the group W;(194) of order 16. The invariants of G are easy to calculate
directly. Alternatively, since G is a reflection group, we may use the methods

of [Lo;]. The result is that S¢ is a polynomial algebra:

S¢ =8, = kl[u, s,1]
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where u =a+a ', s=b+c+bl+cltandt=0b+b"')(c+c?!). In
addition, we put v = b+ b~!. Then one has the following decomposition of S

as Sp-module:

S = S() D US() D G,S() D CI,US() D bS() D bUS() D CSO D C’USO D abS()

@ abv Sy ® acSy B acvSy @ beSy B bevSy B abeSy @ abevSy . (5.6.1)

Thus, when considering an invariant f € S? with H € {W, Wy, Wy, Wi}, we

will assume that f is written in the form

f = fo+vfi+afs+avfs+bfs+bvfs+ cfs+ cvfr + abfs + abvfo + acfio

+ acv fi1 + befia + bev f13 4+ abefi14 + abev fi5. (5.6.2)

with f; € Sy € S”. Our goal will be to show that S, as module over Sy, can
be generated by 2 elements. Lemma 5.1.3(b) then implies that S is indeed

free over Sy, and hence Cohen-Macaulay. We now consider the four groups

H e {W, W, Wy, Wiy} separately.

W, = (—Idsys, h): Let f € S"*, written in the form (5.6.2). Then f* = f

gives the following relations:

(1) fs8* + fas + fis + fst = 0, fot + fas + f3s + fos> =0,

(i) fias+ frs+ fo + f138> + fist + f2=0, fo+ fss+ f1 =0,

(iii) fiss +fs+ fro+ fr =0, fu+ fss =0, fs + fr =0,
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(iv) fs+ fist + fio + fiss® + fus + fus =0,
(v) fio+ fos+ fe =0, fiu+ fo+ fuii + fiss =0, fo+ fi1 =0,
(vi) fos+ fs =0, fiss =0, fiss =0.
Similarly, f~1¢ = f gives the following relations:
(1) fout + fraut + friut + fit + fos + frous + fiot + fou + f5t =0,
(ii) fot + fuat + fuut + fios = 0, fsu + fisut + fist + fios + fraus =0,

(iii) fist+ frou+ fisut =0, fou+ fuuu+ fio =0, 6. fiou + f55 + fist + fo +

fsu+ fsu+ fa+ fisut + fous =0,
(iv) fuau+ fuu+ fio + fisus + fizs =0, fist + fuas =0,
(v) fist =0, fia =0, fia + f15s =0, fs + fio + fos + fist =0,

Solving these equations yields f; =0 (: = 3,6,8,9,10,11,12,13,14,15), fis =
fst = stf’ for some f' € Sy = klu,s,t] and f; = fss = frs = 0. Therefore,

SWi(8T) = Sy + (vt + bs? + bus + cvs)S;, whence SY1 is Cohen-Macaulay.

Wy, ={g,h): For f € SW7 the condition f9 = f is equivalent to the

following relations: f3 = fi5 =0, fo = fi1, fs+ fos = fro, fat fo+ 15+ fsu =

0, fis = fou. These relations and the relations derived above (case W) from
fl=fgiveus fi =0 (i =6,8,9,10,11,12,13,14,15), f5 = f7, f1 = sf7, and

fis = fit = fou = stuf’ for some f' € Sy. Therefore, f = fy + (vut + ast +
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bs*u + busu + cvsu) f', and so SV7 = Sy + (vut + ast + bs?u + bvsu + cvsu) Sy,

as desired.

Wy = (g, —h): Let f € S, As in the case of Wy, the condition f9 = f
amounts to following relations: fs = fis = 0, fo = fi1, fs + fos = fio,
fi+ fo + fr5s + fau = 0, fis = fou. Similar relations result from f=* = f.
When combined with the above relations, they give f; =0 (i = 4,...,15) and
fau = fos = usf for some f € Sy. Thus f = fo+ (uv+ as)f' for some f' € S;.

Thus, as before, we conclude that S"* is Cohen-Macaulay.

Wi = (—g,—h): For an invariant f € S  the condition f79 = f

amounts to the following relations: fi3 = fis = 0, fo + fi1 + fia = 0,

fe+ fiotrs=0, fo+fi+fs =0, fos+ fs+ f3=0, fa+ fo+ fs5 =0,

fe = fi. These relations and similar relations derived from f=" = f give:
fi=0fori=1,3,6,810,11,12,13,14,15, fr = fs, fo = fs5, fst = fou.
Therefore f = fy + (at + bsu + bvu + cvu) f'. Since the index of Wiy in G

is 2, S0 is Cohen-Macaulay.

e It remains to consider the groups Wy, Wy, Wis and Wiy, where W; =

W;(187). For this, we put

—
N———
I
=
o
>
I
/N
[=lelog
OO

1
0

The groups W,, Wiy, Wiz and Wy, are generated by {g, —Id}, {g, —h},
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{—g, —h} and {—g, h} respectively. All of them are subgroups of the re-
flection group W5(195) of order 16, whose ring of invariants (strictly) contains

the polynomial subalgebra

SO = k[T’,S,t] )
where r = a?bc + (a®be)™!, s =b+b ' +c+ctand t = (b+b7)(c+ct). Put
u=a?bc,v=b+b"! and w = ¢+ ¢1. Then the ring S = k[a*!, b*!, '] is a

free Sp-module:

S = Sy+vSy+ aSy+ avSy + bSy + buSy + ¢Sy + cvSy + abSy
+ abvSy + acSy + acvSy + beSy + bevSy + abeSy + abevSy + a®beSy
+ a®bevSy + abeSy + adbev Sy + a®b?eSy + a*b*cvSy + a’bct S,
+ a?bc?vSy + a®bebSy + aPbebvSy + a*bc® Sy + a*bctv S,

+ a?b** Sy + a*b FvSy + a*b*c? Sy + aPb? v S,

Thus any invariant f € S, where G is one of the 4 subgroups W, Wii, Wis

or Wiy, can be written as follows:

f = fo+rvfi+tafo+avfs+bfs+bvfs +cfe + cvfr + abfs + abv fy
+ acfio + acv fi1 + befig + bev fi3 + abe fi4 + abev fis
+ ufig + uv fir + ua fis + uav fig + ubfao
+ ubv for + ucfoa + ucv fog + uab fos + uabv fo5

4+ uacfos + uacv for + ubcfog + ubcv fog + uabce fzg + uabcv f3;
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with f; € Sp. Our goal will be to show, for each of the groups G € {W,, Wiy,
W3, Wi} that the invariant algebra S¢ can be generated as Sy-module by 4
elements. Then, applying Lemma 5.1.3(a) with » = 32 and |G| = 8, we deduce

that S¢ is free over Sy, and hence S¢ is Cohen-Macaulay.

G = Wy = (g, —Idsy3): Suppose f € S¢. Using f9 = f~1¢ = f gives us

the following relations:

(i) fas+ fs8>+ fis+ fst =0, fos+ fo+ fs =0,

fist + fa+ frs+ fi38* + fi2s + fo = 0,

(i) fss+ fa+ f6 =0, fizs + fart + fa18* + f208 =0,

(iii) fags + fos + fos + for = 0, fos + for = 0, f5 + fio + fiss + fr = 0,

fis8 + fa+ fia =0, fso + fas + fors = 0,

(iv) fos+ fs =0, fiu+ fo+ fss =0, fs + fr =0, fus+ fio + fuis = 0,

foa + foss + fis =0, fizs =0,

(v) faz + foss + fogt + fazs + fao + f2082 =0, foo + f215 =0, fa1 + for = 0,

(vi) fars+foo+fo2 =0, fai+fas =0, for+fi9 =0, fii+fi5s =0, fos+ f19 = 0,

f318+ fao + faa =0, fios + fos + fis =0, fis + fo =0,

(vil) fs+ fi1 =0, fs+ fo =0, fiat + fst + fosrt + foors+ fes+ fosrt + fre7 +

Jrt+ fart =0, fo+ faor? + fso + fuar =0,
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(Vill) fosTs+ fias+ faor + fist + fogrt = 0, fist + foor + fogrt = 0, fogt + fort +

fast + foas =0, fog = 0, fog + fo9s =0, fi2 + fas7 + forr =0,

(ix) fior + faer% + fas + fs =0, fo+ fa0 + f1s7 = 0, fist + fier + foor + fo +

fo+ [58+ foor + foort + forrs =0, fos + fi0 + faar® + fosr =0,

(X) fosr + fosT + fi38 + fi2 + foors = 0, for + fisr® + fia + fis = 0, fia +

fis + faor =0, fogr =0, fogt + fo15 + fao + fo2 =0,

(xi) f3+4 fior + fa1 =0, fos + fi1 + forr =0, fo+ for + fos7 =0, fi15+ far +

fi9+ fror2 =0, fa1r + fi5 + f19 = 0, foa + fro + fas7 =0,

(xii) foar+ fas+ fs = 0, forr® + fo+ fuir + for = 0, fi1+ for + fos7? + fos = 0,

fisr 4+ f31r?2 + fa1 4+ f3 =0,

These equations imply that f; = 0 for 1 = 6,12,13,16, 17,20, 21, 22, 23, 28,
29

fo=fss = frs, fis = fst, fs = fo = fui1 = fis = fio(r + 1), fi9 = fos =
for = far, fo= fid = fao(r +1), fis = fao, foa = fas, foa(r +1) = fs, fs = fro,
fas+ fo+ fs, faa + foss + fis,

Solving this gives us,

I = fo+ (tv+ $*b + svb + sve)z + (sac + srab + uva + sab + uvac + va +
rva+ uvab + baus + srac+ uvabc + caus)y + (rac+rab+ a+ ac+ rvabc+ ab+
uabc + ua + vab + rvab + vac + rvac + vabe + uab + ra + abe + rabe + uac)z.

Therefore,
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SW2 = Sy + (tv + s+ svb+ svc) Sy + (sac + srab+ uva + sab+ uvac + va+
rva+ uvab+ baus + srac+ uvabe + caus) Sy + (rac+rab+ a+ ac+ rvabc+ ab+
uabc + ua + vab + rvab + vac + rvac + vabe + uab + ra + abe + rabe + uac)Sp.

Hence S"? is Cohen-Macaulay.

G = Wi, = (g, —h): Again, let f € S¢. From f9 = f~" = f we get the

following relations:

() fas+fis+[fst+f58% =0, fotfot+fos = 0, fras+ f13s>+ fist+fe+ frs+fa =

0,

(i) fo+ fss+ fa =0, foos + fizs + for8* + faat =0, fro + f3s+ fo =0,

(iii) fao+ foo5+ foo+ faot+ foss+ fo3s = 0, fors+ fao = 0, fao+ f215+ fae = 0,

fig + foss + faa = 0,

(iv) fuu+fs+ fiss=0, fu+ fs5s=0, fs+ fiss+ fr + fia =0, fr + f5 =0,

(v) fo+fs=0, fao+ fos+ fors =0, fra+ fuis+ fio =0, fag+ fi9s+ f1s =0,

fis+ fo=0,

(Vi) fs+ fi1 =0, fig+ fos = 0, for + foos + fos + fos =0, fos + for =0,

(vil) foa+ fao+ f315 =0, fir + fi5 =0, fos + f31 =0,

(viii) for + fio =0, fa1 + for =0, fags =0, fi35 =0,
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(iX) f17’f'8+f12t+f7t+f237't+f5t+f138'[5+f217‘t+f18+f207‘8+f48+f217‘82+
J167+ f55°+ fagrst+ fogrt = 0, f30r°+ fo+ f315+ fao+ frar+ fair?s+ fisrs =

0,

(x) fo+ fat fosrs+ frs+ foor + fras+ fosrs+ f135° + fi3t + fagrs® + fagrt = 0,
faars+ fa+ faor + fo + fist + foort + f55 = 0, firs+ fagst + fart + fost +

fost + f218> + foos = 0,

(xi) forr?s+ fior + fio + fae7? + f11758 + fos + fors = 0, fogs® + fao + fool +

foo + fogs + fazs = 0, fagt + foo + fars+ for =0,

(xii) fagt + foo + forS+ foo = 0, fis + fia + f155 + faor + fairs = 0, faar® +

Joss + for + fs + fors + foa + fosr?s =0,

(xiil) forrs+ foor + foor + fist + foort + fier + fo + fa+ fss =0, fosr + f5 +

fr+ fasr + fi2 + fi3s + faors =0,

(xiv) fos7 + f5 + forr + fio + fr =0, far + fis7 + f3 + fslr? = 0,

(xv) fso+fot+ f3s+ frors+fisr = 0, fios+ fra+ fars+ fior?s+ fig+ fisr?+ for =

0, fi1s + foer + forrs + fas + f1o =0,

(xvi) for+ fo+ fos+ fost? = 0, for+ forr® + fi1 + fuur = 0, fio+ fis+ fair =0,

(xvii) for + fos + foz + foos =0, fo1 + fos + fos =0,

(xviil) foar + fos + fosts + fos + fs =0, fis + fror? + far + fi9 =0,
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(xix) fos + fosr + fo =0, forr + fi1 + for =0, fa1 + fior + f3 =0, fagr =0,
(xx) foors+ fizs + fosT =0

Solving these equations we get, f; = 0 for + = 6,12,13,17, 20, 21, 22, 23,
28,29, fr = [f5,fa = [f58, 15 = [st, fis = fier, fi9 = for = fas = fa,
fio(L+7) = fs = fo = fu = fis, fio = fs, fos = faa, fao = fis, fia = fo,
fotfs = fio(1+7)s, fis+foa = fr98, fot fis(1+7) = figs, fs+faa(1+7) = figs.

This shows that

[ = fo+ (vrt+cvrs+brs®+ust+bvrs)z+ (va+uab+uac+ar + abc+ abr +
acr + ay + ab+ uabc + ac+ aber )y + (uav + vabs + uacv + uabcv + uabv + avr +
as + abes + abvr 4+ uacs + abrs + abv + abevr + acv + acvr + abev + av + acrs)z,

where rstr = f1s = fst = fig7, y = fig and z = fig are in Sy.

In other words

SV = Sy + (vrt+ cvrs+brs? +ust +bvrs) Sy + (ua+uab+uac+ ar + abe+
abr+acr+ay+ab+uabc+ac+aber) Sy +(vav+uabs+uacv+uabev+uabv+avr+
as + abcs + abvr +uacs + abrs + abv + abevr 4+ acv + acvr + abev + av + acrs) Sp.

Hence S"11 Cohen-Macaulay.

G = Wy3 = (—g,—h): The conditions f~9 = f=" = f lead to the following

relations:

(1) frt+ frer + fosrt + fis+ firrs = 0, fuirs+ forr®s+ forst+ fior + foer? +

fost + fo =0,
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(i) fa+ fo+ frs+ fosrs—+ foor =0, foort+ fss+ fist+ foor+ fo+ forrs+fo =0,

(iii) fizs + fost =0, fo + fizr + foor =0, fos + for = 0, faz + for + fos =0,

foo + faa + fozs = 0.

(iv) fos7 + fi3s + faors =0, fogr =0, fos7 + f5 + fr + farr + fi2 =0,

(v) fis + fio + forrs + foer + f118 = 0, fort + forr® + fz3+ fur =0, forr +

fi1 + fi9 =0,

(vi) faot + fiar + fio+ farst + fisrs + faor? + fa1r?s =0, fo+ fost + f31 =0,

f30 + foar + fos + fosrs + fs =0,

(vii) fasr?+ for+ fost+ fis = 0, fra+ fosT2s+ fors+ fosst+ foat+ faar?+ fsr = 0,

(viii) fior+fstfos = 0, fas+ fiors+ foat+ frsT+f2 = 0, frot+ fror?+ far—+fo = 0,

(ix) figst + fis7? + fars + for + fior?s + fs + fist = 0,

(x) fis + for + fair =0,

fia + faor + fairs + fog + f155 =0,

(xi) fist+ fi1 + 3172+ f31 = 0, fao+ fogt+ fors+ foo = 0, fosm+ fz+ f5 = 0,

(xii) frt + fier + fosrt + fis+ fizrs =0,

(xiii) fiirs+ farr®s+ forst+ fror + fas7? + fast + fo = 0, fa+ fo + frs+ faars+

f227’ =0,
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(XiV) fgg’r‘t —+ f58 + f13t + f207‘ + f6 + f21’r‘8 + f4 = 0, f178 + f23t = 0,

(xv) fo+ firr + faor =0, foz + for =0,

(xvi) faz+ for + fos = 0, foo+ foo + fo3s =0, fags = 0, fosT+ fizs+ fogrs =0,

(XVii) fgg’f’ = 0, f287' -+ f5 + f7 —+ f217' + f12 = 0,

(xviii) fis + fio + forrs + fae7 + f118 = 0, fort + forr? + fs+ fur =0,

(xix) forr + fi1 + fio = 0, faot + frar + fro + fa1st + fisrs + faor® + fa1ir?s = 0,

(xx) fo+ fosr + fs1 =0, fao + foar + fos + fasrs+ fs =0,

(xxi) fos7?+ for+ fost+ f15 = 0, fra+ fosT?s+ fors+ fosst+ faat+ foar?+ fsr = 0,

(xxii) fior + f3+ fos =0, fzs + fiors + fos + frs7 + fo =0,

(xxiii) fiot+ fror?+ far+fo = 0, frost+ fis7?+ fars+ for+ fior?s+ fs+ f1st = 0,

(xxiv) fis + for + fair = 0, fia + faor + fa17s + fos + fiss = 0, fisr + fi1 +

[air? + fait =0,

(XXV) foo + foot + fors+ foo =0, fosr + fr+ f5 =0, foo =0,

Which shows that,
fi=0fori=238,910,11,12,13,14, 15,18, 19, 22, 24, 25 26, 27
,28,29,30,31. and frt+ fier+ fi5s =0, for+faz = 0, foo = fa18, firs+fut =0,

f6+f177':O, f5+f7+f217'=0.
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Thus S™12 is generated by four generators, and so it is Cohen-Macaulay.

G = Wiy = (=g, h): Comparing f 9= f* = f for any f € S, we find the

following relations:

(i) frt + fosrt + fier + frs + firrs = 0.

(i) fos7? + forst + forr®s+ fior + fast + f1irs — fo =0, 3. frs+ fo + foor —

fo+ fosrs =0

(iii) fo + foor + farrs + faort + fa+ fss + fist = 0.

(iv) firs+ fost =0, foor + fo + fizr =0, foa = 0.

(v) fs+ fr+ faar =0, fao + foot + for5 = 0.

(Vi) fozs — foo =0, fsr + fo + fiot + f1or® = 0.

(vii) Ia1r?+ fisr+ fart— fi1 = 0, for+ fis+ fair = 0, fr+ fs+ forr+ fro+ fosT =

0.

(viil) for+ figt— fe+fars—+ fisr?+ figst+ figr?s = 0, 8. fsor?+ fiar— fio+ faol+

Jisrs+ fa1r?is+ faist = 0, foat— fra+ foar?+ far+ fors+ fosr?s+ fasst = 0,

(ix) fiss + fairs + faor — fos + fra =0, fio + fi1 + forr = 0.

(x) fosr — fis + forrs + fio + fu1s =0, fuur + fort — f3 + farr? =0, fag = 0.

(xi) fo+ fosm— f31 =0, fso + fa+ foa + fosrs+ fos = 0, foz + for + fos = 0.
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(xii) fis + for + fosr? + fost = 0, fi3s + fos7 + fogrs = 0.

(xiii) fo5 + fior + f3 =0, fisr + fas + fo — foa + fiors = 0. for + fa3 =0,

These combined with f* = f gives,

fi=0fori=1,3,6,9,11,12,13,15,17,19, 20, 21, 22, 23, 25, 27, 28, 29, 31.

Jo=[fss =sfr =0, fit = fier, fs = fa0 + foar =0, fo = fisr + faa = 0,
J1st = [0, f26 = faal,

J26T = f10 + faol, fsor = fas + f1a =0, fos7 = f1s + f10 =10

which shows that

[ = fo+ (cor +ut + brs + bvr)x + (uab + a + uact)y + (uabct + ar)z

Thus S = S+ (cvr+ut+brs+bvr)Sy+ (uab+a-+uact) So~+ (uabct+ar)Sy

has 4 generators as Sy-module, and hence S7; is Cohen-Macaulay.

5.7 Groups of order 16 and 48

There are 2 non-conjugate subgroups of order 16 and 3 non-conjugate sub-

groups of order 48.

Proposition 5.7.1. If G C GL3(Z) is a group of order 16 or 48, then S is

Cohen-Macaulay.

Proof. All groups of order 16, the conjugates of the groups W;(194) and
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W5(195), are reflection groups. Hence their invariant algebras are Cohen-
Macaulay by Proposition 5.1.2.
If GG is of order 48, then it has a 2-Sylow subgroup of order 16. In view of

Corollary 4.3.2, this implies that S is Cohen-Macaulay. O
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