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ABSTRACT

LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR

MATRIX EQUATIONS

Stephen D. Shank

DOCTOR OF PHILOSOPHY

Temple University, May, 2014

Professor Daniel B. Szyld, Chair

We consider low-rank solution methods for certain classes of large-scale lin-

ear matrix equations. Our aim is to adapt existing low-rank solution methods

based on standard, extended and rational Krylov subspaces to solve equa-

tions which may viewed as extensions of the classical Lyapunov and Sylvester

equations. The first class of matrix equations that we consider are constrained

Sylvester equations, which essentially consist of Sylvester’s equation along with

a constraint on the solution matrix. These therefore constitute a system of

matrix equations. The second are generalized Lyapunov equations, which are

Lyapunov equations with additional terms. Such equations arise as computa-

tional bottlenecks in model order reduction.
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CHAPTER 1

INTRODUCTION

1.1 Linear matrix equations

This thesis is concerned with matrix equations and low-rank solution meth-

ods. A survey of techniques for linear matrix equations can be found in [69].

Another survey that gives an overview of low-rank solution methods and their

applications may be found in [28]. Two standard references for required top-

ics on numerical linear algebra are [26, 75], from which much notation and

terminology are borrowed. A good general reference for linear algebra that is

slightly more on the theoretical side is [23].

1.1.1 Existing results

We will primarily focus on the numerical solution of large-scale linear ma-

trix equations. Many of these equations may be viewed as generalizations of

Sylvester’s equation

AX +XB + EF
T = 0, (1.1)

where A ∈ Rn×n, B ∈ R�×�, E ∈ Rn×r, and F ∈ R�×r for the unknown

X ∈ Rn×�. By linear, it is meant that the operator S(X) = AX + XB is a

linear function of the unknown X. By large-scale, it is meant that n, � � 1000.

We also assume A and B are sparse. We give a slightly imprecise definition of
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X = ≈ = Y Z
T

Figure 1.1: Depiction of a dense matrixX and a low-rank approximation Y Z
T .

sparsity, saying that an n× n matrix is sparse if it has O (n) nonzero entries.

In the next section we will see that the coefficient matrices are associated

with some dynamical system, which may often be a two- or three-dimensional

partial differential equation that has been semi-discretized in time.

A fundamental challenge when solving (1.1) in this large-scale setting is

storing the solution matrix X, which is typically dense even when A and

B are sparse. Practical applications arise where r � n, �. In fact, often

r ≤ 10 and one may even have r = 1, in which case E = e and F = f

are column vectors. We will refer to this as having a low-rank right-hand

side. In this case, the resulting storage requirements for the data A,B,E and

F of (1.1) are O (n+ �), which is comparable with what one expects when

numerically solving a PDE. However, the solution matrix X, being dense, has

O (n�) storage requirements. Thus we see that, in the large-scale case, even

storing a solution to (1.1) is computationally challenging!

We shall soon see that in the large-scale, low-rank right-hand side scenario

it is often the case that a solution may approximated as X ≈ Y Z
T with Y and

Z both having p columns, where p � n, �, and this is what is meant by a low-

rank approximation. If one attempts to solve for the low-rank factors Y and Z

instead of X, the cost for storing both the data and an approximate solution

for (1.1) are both O (n+ �). The problem therefore becomes computationally

tractable, at least in theory. A depiction of a low-rank approximation to a

dense matrix when n = � is given in Figure 1.1.
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1.1.2 Contributions of the thesis

The main contributions of this thesis are the development and discussion

of numerical solvers for classes of large-scale linear matrix equations that may

be viewed as a generalization of (1.1). We concentrate on numerical methods

which maintain the optimal computational complexity ofO (n+ �). Our meth-

ods are based on extensions of existing low-rank solution techniques, typically

based on Galerkin projection onto properly chosen subspaces and low-rank

versions of popular linear solvers. Details of existing methods of this sort are

given in Chapter 2. We provide what we believe to be either new or competi-

tive solvers for such problems.

The first problem we consider is the so-called constrained Sylvester equation

A1X +XA2 − Y C = 0 (1.2)

XB = 0 (1.3)

for the unknowns X and Y . This may be viewed as a Sylvester equation (1.2)

with a constraint (1.3) on the solution matrix X. In [4], a numerical method is

presented for solving (1.2)–(1.3) in the small-scale case, i.e., n, � � 100001. We

propose a modification of this approach that is suitable for the large-scale case

and provide experimental evidence of its effectiveness on benchmark problems.

We also consider generalized Lyapunov equations

AX +XA
T +

k�

j=1

NjXN
T
j +BB

T = 0 (1.4)

for the unknown X. Numerical solution methods based on extending existing

ADI-based methods for the standard Lyapunov equation and low-rank pre-

conditioned Krylov subspace methods were already considered in [7]. In this

thesis we propose solution methods for (1.4) which utilize a variety of tech-

niques found in the literature on Krylov subspace methods. We believe that

what results is competitive with respect to the state-of-the-art in terms of

1The name “constrained Sylvester equation” is borrowed from that article.
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computational and memory demands, as well number of subroutine calls such

as solving a linear system with coefficient matrix A.

1.2 Applications

Though this thesis focuses primarily on numerical methods, we survey

a short list of applications here to provide some motivation for developing

numerical methods in the first place. For a survey of applications related

to solving (1.1), see [12]. A reason to numerically solve the small-scale case

of (1.2)–(1.3) was motivated by the design of reduced-order observers which

achieve precise loop transfer recovery [46]. The large-scale case may be viewed

as a generalization of the recovery design idea for a significantly larger number

of degrees of freedom.

Consider a linear, time-invariant (henceforth LTI) dynamical system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (1.5)

y(t) = Cx(t), (1.6)

which may arise, for instance, from a semi-discretization in time of the heat

equation

xt −∆x = 0 in Ω

x = u on ∂Ω,

as described in, e.g., [42]. The variables x, u, and y are referred to as the state,

input, and output, respectively. Here the output may be the temperature at

a single point in the room, in which case C = e
T
k , where ek is a standard

basis vector. A special case of the Sylvester equation (1.1) is the Lyapunov

equation, where B = A
T and E = F. One may wish to choose the input u

to produce some desired behavior in the output, and formalizing this math-

ematically gives rise to what are known as linear-quadratic optimal control

problems. For a discussion of such problems and the relevance of solving the

Lyapunov equation, see [9].
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We summarize some results on LTI systems; specifically, the notions of

reachability, observability, and model order reduction by balanced truncation.

A standard reference on these topics is [1]. Solving the Lyapunov equations

AP + PA
T +BB

T = 0

A
T
Q+QA+ C

T
C = 0

for P and Q (known as the reachability and observability Gramians) yield

information about energies associated with inputs and outputs of the system

(1.5)–(1.6). For instance, given some desired state xd, one may seek an input

function u and time td such that x(td) = xd. If this is possible, the state xd is

called reachable. One can show that the set of all reachable states is given by

range (P ). Often one is concerned with the least amount of energy2 required

to drive the system to such a desired state. This is given by x
T
dP

−1
xd, which

addresses the issues of numerical reachability and describes which states may

be reached in practice.

Another relevant notion is that of observability; a state xo will be called

unobservable if the initial condition x(0) = xo and zero input function u(t) ≡ 0

yield y(t) ≡ 0. Therefore, an unobservable state xo is indistinguishable from

the zero state, at least as far as the output of the system is concerned. The set

of all unobservable states can be shown to be null(Q). The maximum energy

observed in the output from an arbitrary state xo can be shown to be xT
o Qxo.

A state whose energy is small in this sense is regarded as numerically unob-

servable; it is virtually indistinguishable from the zero state and any influence

on the output may be regarded as negligible.

Intuitively, states that are hard to reach or difficult to observe should not

be expected to influence the map of inputs to outputs, often referred to as the

system transfer. Therefore, one might desire the ability to construct a smaller

2Energy is defined in the L2 sense, i.e., as �u�L2([0,t]) =
� t
0 uT (τ)u(τ)dτ .
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dynamical system

˙̂x = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t),

where Â ∈ Rn̂×n̂ with n̂ � n, without any states that are negligible with re-

spect to this transfer behavior. Ideally, such a system will capture the behavior

of inputs with respect to outputs; formally, one would require �y− ŷ� < τ�u�
for some threshold τ and an appropriate norm. Constructing such a smaller

system while preserving properties of the original system is known as model

order reduction. Cholesky factors (or more generally, square roots) of P and

Q can be used to compute a transformation T so that the system

ẋT =
�
TAT

−1
�
xT (t) + TBu(t)

y(t) = CT
−1
xT (t)

has reachability and controllability Gramians PT = QT = diag(σ1, . . . σn),

which is known as a balanced system. Note that the above system produces

the same output y from a given input u as the original system. The scalars σi

are called the Hankel singular values, and one can show that a rapid decay is

expected [2].

Once transformed, states in the new system that are difficult to reach

are now also equally difficult to observe. Such states are discarded from the

system, producing a smaller system. This procedure is known as balanced

truncation, and a rich theory is available. For a given input, the resulting

system (being much smaller) is now much less expensive to step in time. For

large-scale systems, only approximate low-rank factors of P and Q are needed,

and an approximate balanced truncation can be computed. For details, see

[1, 30, 53].

There are analogues of reachability, observability, and balanced truncation
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for bilinear dynamical systems

ẋ(t) = Ax(t) +
k�

j=1

Njx(t)uj(t) + Bu(t), x(0) = x0 (1.7)

y(t) = Cx(t), (1.8)

as well as stochastic systems

dx = Axdt+
k�

j=1

Njx(t)dwj +Budt (1.9)

y = Cx, (1.10)

with each wj denoting an independent zero mean Wiener process on a proba-

bility space (Ω,F , µ). Analogues of controllability and observability Gramians

for (1.7)–(1.8) have been formulated and are shown to satisfy the generalized

Lyapunov equation (1.4); see for instance [54]. As such, a notion of balanced

truncation for bilinear systems can be formulated which requires solving two

generalized Lyapunov equations, and the numerical solution of these equations

are the computational bottleneck. Balanced truncation for bilinear systems is

described in [8], where analogous results for stochastic systems (1.9)–(1.10)

are also discussed. Moreover, these same equations play a role in stochastic

control [15].

A survey on theory and applications of bilinear systems (1.7)–(1.8) may be

found in [13]. One such bilinear system arises as a model in the steel indus-

try. When trying to optimize the cooling of steel, one seeks to cool a recently

processed beam as quickly as possible while preventing large temperature gra-

dients that may lead to a degradation in the quality of the material. Modeling

this physical process leads to a boundary control problem of the heat equation;

see [64]. The stochastic system arises when trying to control the motion of a

particle undergoing dragged Brownian motion; see [33].
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1.3 Notation and preliminary definitions

In this section we gather some notation and preliminary definitions. The

n × n identity matrix is denoted by In, the n ×m zero matrix is denoted by

0n×m, and 0n×n = 0n denotes the square n×n zero matrix. The mth standard

unit basis vector will be denoted em, and its size should be clear from the

surrounding context. A block of columns from the identity matrix will be

denoted by Em, and the size of the identity matrix along with which columns

are taken should again be clear from context. The transpose of a matrix X

is denoted by X
T . By range (X) we denote the column space of X, i.e., the

linear span of the columns of X.

The Frobenius inner product of two matrices X and Y is denoted by

�X, Y �F = trace
�
X

T
Y
�
. The set of polynomials of degree m will be denoted

by Pm. The spectrum of a matrix will be denoted by Λ(A), and the field of

values of a matrix will be denoted by W (A) = { z∗Az
z∗z : z ∈ Cn}. The complex

plane is denoted by C. The extended complex plane is given by C = C∪{∞},
and the left half of the complex plane shall be denoted C−. A matrix A is

called stable if W (A) ⊂ C−.

Definition 1.1. The vectorization operator vec : Rn×� → Rn� stacks the

columns of a matrixX into a long column vector x; i.e., writingX = [x1, . . . , x�]

in terms of columns, where xj ∈ Rn for j = 1, . . . , �, one has

vec(X) =





x1

...

x�



 .

Cleary the vectorization operator is linear, and in fact it is a vector space

isomorphism. It is also an isometry in the sense that �vec(A), vec(B)�2 =

�A,B�F .

Definition 1.2. Given matrices S = (sij) ∈ Rm×n and T ∈ R�×p, the Kro-
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necker product S ⊗ T ∈ Rm�×np is defined as

S ⊗ T =





s11T . . . s1nT

...
. . .

...

sm1T . . . smnT



 .
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CHAPTER 2

PRELIMINARIES

We review material that is relevant for solving large-scale linear matrix

equations that will be useful for subsequent purposes. We emphasize that all

material found in this chapter corresponds to existing results, and are not an

original contribution of the author.

2.1 Krylov subspace methods for linear sys-

tems

Among the most popular methods for solving large, sparse linear systems

are what have collectively come to be known as Krylov subspace methods.

Many ideas underlying these methods transfer naturally to several low-rank

solution methods for linear matrix equations that are the subject of this thesis.

We therefore review certain aspects of the theory as a means of developing

subsequent material and fixing notation. Readers interested in further details

can refer to the comprehensive books [29, 44, 63, 79] and the survey [72].

2.1.1 Standard Krylov subspaces

Consider the solution of the linear system

Ax = b (2.1)
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Algorithm 2.1 Arnoldi
Input: A, b, m

Output: Orthonormal basis {v1, . . . , vm} of Km (A, b)

1: β = �b�2, v1 = b/β

2: for j = 1, . . . ,m do

3: w = Avj

4: for i = 1, . . . , j do

5: hij = v
T
i w

6: w = w − hijvi

7: end for

8: hj+1,j = �w�2
9: vj+1 = w/hj+1,j

10: end for

where A ∈ Rn×n is a nonsingular, sparse matrix, x, b ∈ Rn, and n is large.

As a first step towards solving (2.1), we proceed with a few definitions and

algorithms that pertain to Krylov subspaces.

Definition 2.1. The m
th Krylov subspace is defined as

Km (A, b) : = span{b, Ab, . . . , Am−1
b}

= {p(A)b : p ∈ Pm−1}.

We will often write Km when there is no ambiguity regarding A and b. An

algorithm for building this space is the Arnoldi algorithm, which is described

in Algorithm 2.1. Krylov subspaces can be shown to satisfy the “nested”

properties

Km ⊆ Km+1 and AKm ⊆ Km+1. (2.2)

The scalars hij are gathered in the upper-Hessenberg matrix Hm = (hij) ∈
Rm×m, and the vectors v1, . . . , vm are placed as columns in the “tall and skinny”
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matrix Vm. One can show that the following Arnoldi relation holds:

AVm = Vm+1Hm+1 (2.3)

= VmHm + hm+1,mvm+1e
T
m, (2.4)

where

Hm+1 :=

�
Hm

hm+1,me
T
m

�
.

We remark that relation (2.3) may be viewed as an expression of the nested

property (2.2), since every column of AVm is in Km+1, and the coefficients

required to express them in this basis are gathered in the matrix Hm+1. We

shall see that having these coefficients available as a byproduct of the Arnoldi

process is indeed desirable and will aid us when using Krylov subspaces to

solve (2.1).

We note that the orthogonalization is done according to the modified Gram-

Schmidt method [26, 75], which is known to be more stable than the standard

Gram-Schmidt orthogonalization. Often one observes a loss of orthogonality

which may negatively impact quantities of interest, such as approximations

to (2.1). One can partially restore this loss of orthogonalization by reorthogo-

nalizing. It is worth noting that one and only one extra orthogonalization is

done in accordance with the “twice is enough” rule [24]. In the remainder of

this thesis, all algorithms for building orthogonal bases are implemented with

reorthogonalization. Algorithms with attention to such details are given in

Appendix A, and are equivalent in exact arithmetic to those presented in the

main body of this thesis.

An ubiquitous method in scientific computing for computing an approxi-

mate solution to a problem is known as Galerkin projection. Loosely speaking,

it consists of three parts. First, a subspace where a decent approximate so-

lution is expected to be found is defined, which we call the search space.

Second, a residual1 for any given approximate solution is formulated. Finally,

1A defining characteristic of a residual is that if a given residual is zero, the corresponding
approximate solution is actually the true solution to the problem.
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the approximate solution from the search space is selected by enforcing that

its corresponding residual is orthogonal to the search space.

The full orthogonalization method, or FOM, is a method for approximating

the solution to (2.1) by performing a Galerkin projection with search space

Km. We consider this in some detail, as it contains seminal ideas for later

developments. Given an approximate solution xm ∈ Km, the corresponding

residual is defined as

rm = b− Axm,

and xm is selected by enforcing

rm ⊥ v for all v ∈ Km.

Using Algorithm 2.1 to build Km, one can write xm = Vmym. It is straightfor-

ward to show that (2.4) implies that

V
T
mAVm = Hm

where V T
mAVm is called a Rayleigh Quotient matrix. This may be exploited to

derive a smaller linear system for ym, as

rm ⊥ Km ⇐⇒ V
T
m rm = 0 ⇐⇒ Hmym = βe1,

which is a small linear system for ym, since we typically expect m � n.

The coefficient matrix for this small system is precisely the Rayleigh quotient

matrix and is explicitly available from the Arnoldi algorithm. It is often the

case that one is justified in regarding the extra computation incurred when

solving this small system as negligible. Moreover, the nested properties (2.2)

imply that rm ∈ Km+1. Since one possesses an orthonormal basis of this space

at the m
th stage of the Arnoldi algorithm, it can be shown that �rm�2 is also

available at negligible cost.

In the case of symmetric positive definite A, FOM (with a fancier imple-

mentation) reduces to the popular conjugate gradients method. Other pop-

ular methods may be described mathematically as Petrov-Galerkin methods.



14

In these methods two spaces are chosen: one to search for approximate so-

lutions, and another to enforce orthogonality for the corresponding residual.

They provide a high-level mathematical description of many popular methods

for solving (2.1) such as the GMRES, MINRES, and BiCG methods2. With

appropriate implementation details, these methods comprise a powerful class

of methods for solving linear systems and are widely used in academia, gov-

ernment, and industry. Since the simpler notion of Galerkin projection will

be more prominent in this thesis, we omit such details and refer the interested

reader to the references at the beginning of the chapter.

2.1.2 Block Krylov subspaces

It is often the case that one needs to solve several, say k, linear systems

Axj = bj for j = 1, . . . , k (2.5)

for a fixed coefficient matrix A. We gather all right-hand sides bj in the “tall

and skinny” matrix B = [b1, . . . , bk].

Definition 2.2. The m
th block Krylov subspace is defined as

Km (A,B) = Km (A, b1) + · · ·+Km (A, bk) (2.6)

where the sum denotes the sum vector spaces. An equivalent definition is

Km (A,B) = range
�
[B,AB, . . . , A

m−1
B]

�
.

We again write Km when there is no ambiguity regarding b, bj, or B, and let

Vm denote a matrix whose columns form an orthonormal basis of (2.6). An al-

gorithm analogous to Algorithm 2.1 for building an orthonormal basis of (2.6)

is the block Arnoldi algorithm, described below. We note that the sum in (2.6)

may not always be a direct one; i.e., there may be a loss of linear independence

amongst the columns of Vm. The difficulty is compounded in finite-precision

2Even BiCGStab may be viewed as a Petrov-Galerkin method, but with rational Krylov
subspaces that shall be introduced in the next chapter; see [73].
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Algorithm 2.2 Block Arnoldi
Input: A, B, m

Output: Matrix Vm = [V(1), . . . ,V(m)] whose columns form an orthonormal

basis of Km (A,B)

1: Compute the reduced QR decomposition V(1)RB = B

2: for j = 1, . . . ,m do

3: W = AV(j)

4: for i = 1, . . . , j do

5: H(ij) = VT
(i)W

6: W = W −V(i)H(ij)

7: end for

8: Compute the reduced QR decomposition V(j+1)H(j+1,j) = W

9: end for

arithmetic, where there may be a numerical loss of linear independence. As

such, the above algorithm must be modified. Deflation strategies have been

explored and may be required in these special circumstances. While it is good

to be aware of such potential issues, in our numerical examples this did not

pose a problem, and so we proceed under the assumption of no numerical loss

of linear independence for ease of exposition and refer the reader to [31] for

details on how to proceed when such issues arise.

The matrices H(ij) are gathered in the block matrix Hm, i.e.,

Hm =





H(11) . . . H(1m)

...
. . .

...

H(m1) . . . H(mm)



 .

The block Krylov subspaces clearly also satisfy the nested properties

Km ⊆ Km+1 and AKm ⊆ Km+1, (2.7)
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and one has the block Arnoldi relation

AVm = Vm+1Hm (2.8)

= VmHm +V(m+1)H(m+1,m)E
T
m, (2.9)

where Em denotes the last k columns of themk×mk identity matrix. We again

emphasize that the relation (2.8) follows in theory from the nested properties

(2.7). We define the Rayleigh quotient matrix in an analogous fashion and see

that it is again available as a byproduct of the block Arnoldi algorithm, i.e.,

VT
mAVm = Hm.

It is worth noting that we can also gather all solutions into a matrix X =

[x1, . . . , xk] which gives us our first example of a linear matrix equation

AX = B,

and a Galerkin projection strategy analogous to FOM could be pursued, as

well as more sophisticated methods such as block variants of GMRES. As our

primary interest is in different kinds of matrix equations, we do not pursue

this further, and instead refer the interested reader to [31, 63] for more details

on block methods and how they are used to treat (2.5).

2.2 Numerical solution of Sylvester equations

A canonical example of the type of matrix equation to be solved in this

thesis is Sylvester’s equation

AX +XB + EF
T = 0 (2.10)

where A ∈ Rn×n and B ∈ R�×� are nonsingular, sparse matrices, E ∈ Rn×k,

F ∈ R�×k for the unknown X ∈ Rn×�. A classical sufficient condition for

existence of a solution is Λ(A)∩Λ(−B) = ∅ [23]. We postpone a discussion of

the sizes of n, � and k and instead focus on a plausible first attempt for solving
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(2.10). We note that the operator A(X) = AX+XB is linear in the argument

X, so that in theory one could convert (2.10) into a linear system. This can be

made explicit by noting that the vectorization operator and Kronecker product

(given by Definitions 1.1 and 1.2, respectively) satisfy the relation [35]

vec(AXB) = (BT ⊗ A)vec(X) (2.11)

so that (2.10) is equivalent to

(I ⊗ A+B
T ⊗ I)vec(X) = −vec(EF

T ). (2.12)

which is a linear system with unknown vec(X). The size of the coefficient

matrix in (2.12) is n�× n�.

First, assume that this is a small-scale problem. Solving (2.12) via a direct

method such a Gaussian elimination would entail O ((n�)3) work. An obvious

idea is to try take advantage of matrix decompositions of A and B, such as

reduction to Schur or Hessenberg-Schur form. Computing any pair of these

decompositions for both A and B would entail O (n3 + �
3) work. As such,

solvers were developed that maintain this complexity and are described in

[5, 25]. We therefore see in the small-scale case that considering the matrix

structure that is present in the problem is worthwhile.

For the large-scale problem, the seminal idea for a low-rank approximation

may be found in [61] and was further studied and developed in [36, 37, 67].

They are based on truncating an analytic solution and using what results to

motivate the definition of a subspace which is then used to perform a Galerkin

projection. Specifically, under the assumption that A and B are both stable,

the solution of (2.10) can be given by

X =

�
∞

0

e
At
EF

T
e
Bt
dt. (2.13)

Writing e
z ≈ p(z) for some p ∈ Pm−1, replacing e

At ≈ p(At) in (2.13), and
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Xm = Vm

Ym WT
m

Figure 2.1: Depiction of an element of the space Sm.

truncating the integral at some finite upper bound s yields

X =

�
∞

0

e
At
EF

T
e
Bt
dt (2.14)

≈
� s

0

p(At)EF
T
p(Bt)dt (2.15)

= VmX̃WT
m (2.16)

for an appropriate X̃, where

range (Vm) = Km (A,E) and range (Wm) = Km

�
B

T
, F

�
. (2.17)

The above calculation motivates a space to use for Galerkin projection.

Given any two subspaces V and W with dim(V) = rV and dim(W) = rW ,

we choose two matrices V and W whose columns satisfy range (V) = V and

range (W) = W. One then defines

S (V,W) =
�
VYWT : Y ∈ RrV ×rW

�
.

Our previous calculations motivate us to consider

Sm = S
�
Km (A,E) ,Km

�
B

T
, F

��
. (2.18)

We emphasize that for m � n, an element of Sm entails O (n) storage. A

depiction of a typical element is given in Figure 2.1. We use Sm as a space to

perform a Galerkin projection, i.e., we consider the set of all matrices of the

form (2.16). For Xm ∈ Sm the associated residual is defined as

Rm = AXm +XmB + EF
T
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and Xm = VmYmWT
m is chosen so that

Rm ⊥F S for all S ∈ Sm, (2.19)

where we emphasize that the orthogonality is with respect to the Frobenius

inner product. In full analogy with the FOM method for linear systems, this

results in a smaller Sylvester equation for the matrix Ym, since (2.19) can be

shown to be equivalent to

�
VT

mAVm

�
Ym + Ym

�
WT

mBWm

�
+
�
VT

mE
� �

WT
mF

�T
= 0. (2.20)

Note that A is stable and recall that for any orthonormal matrix V one has

Λ(VT
AV) ⊆ W (A) ⊂ C−. This can be used to furnish a proof that stability

of the coefficient matrices is a sufficient condition for existence and uniqueness

of the solution to the projected equation (2.20).

As far as stopping criteria are concerned, a tolerance τ is chosen and the

algorithm is stopped when the backward error falls below this tolerance, i.e.,

when

ρm :=
�Rm�F

(�A�F + �B�F ) �Xm�F + �E�F �F�F
≤ τ. (2.21)

We would like an inexpensive way to calculate the quantity on the left-hand

side of the above inequality. Norms involving data are precomputed and cheap

since A and B are sparse and E and F have few columns. Since the Frobenius

norm is invariant with respect to multiplication by orthogonal matrices, one

has �Xm�F = �Ym�F . The nested properties of the block Krylov subspaces

(2.7) extend naturally, as

Sm ⊆ Sm+1 and A(Sm) ⊆ Sm+1

so thatRm ∈ Sm+1, and thus calculating this quantity should again be available

as a byproduct of building the spaces.

A quick calculation shows that

Rm = [Vm, AVm]

�
VT

mE(WT
mF )T Ym

Ym 0

��
WT

m

WT
mB

�
, (2.22)
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and it is worthwhile to remark that this calculation holds true for any V and

W. Defining the Rayleigh quotient matrices for each space as HA
m = VT

mAVm

and HB
m = WT

mB
TWm, the block Arnoldi relation (2.9) implies that

[Vm, AVm] = [Vm,V(m+1)]

�
I HA

m

0 HA
(m+1,m)

�

[Wm, B
TWm] = [Wm,W(m+1)]

�
I HB

m

0 HB
(m+1m)

�
.

Upon plugging these relations into (2.22) and taking Frobenius norms, a short

calculation shows that

�Rm�F =

����HA
(m+1,m)E

T
mYm

���
2

F
+
���HB

(m+1,m)E
T
mYm

���
2

F
. (2.23)

where the matrices under the square root are of small sizes. One can proceed

by building the block Krylov spaces in (2.17) and solving (2.20) at every iterate

in order to monitor the backward error (2.21). The required quantities to solve

the projected equation are all available as a byproduct of building the block

Krylov spaces.

A crucial component of what makes this method successful is the exis-

tence of low-rank solutions to (2.10) for k � n, �. We note that for a given

Xm ∈ Sm ⊆ Rn×�, the associated “core matrix” Ym ∈ Rmk×mk. If we assume

that this method converges in m � n, � iterations, then the data required to

build and store Xm will come from building Vm and Wm, and solving and

storing Ym. Since we assume m, k � n, �, the main computational and storage

expense will be in building the block spaces in (2.17), which entail O (n+ �)

work, thus achieving the optimal complexity described in Chapter 1.

Several papers provide theoretical evidence for the existence of low-rank ap-

proximations to X, the solution to (2.10) [2, 27, 52]. They proceed by proving

bounds on the singular values of X. Without singular value decay, any hope

for an accurate low-rank approximation is lost, since if X =
�min(n,�)

i=1 σiuiv
T
i

is a singular value decomposition, a celebrated result (sometimes referred to

as the Schmidt-Mirsky theorem) says that a best rank p approximate for X
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Figure 2.2: Singular value decay of the solution of a Lyapunov equation, with
A a 2D discrete Laplacian on a 30× 30 grid, and B the first r columns of the
identity matrix for varying values of r.

is given by the truncation X(p) =
�p

i=1 σiuiv
T
i and �X − X(p)�2 = σp+1; see,

e.g., [26]. We provide numerical evidence of the singular value decay of a small

Lyapunov equation and the effect that the rank of the right-hand side plays

on this decay in Figure 2.2.

Even with theoretical evidence for the existence of decent low-rank approx-

imations due to singular value decay, a proper method is required to exploit it.

The method described in the previous section, while circumventing the “curse

of dimensionality”3, suffers from a lack of robustness with respect to mesh

width. That is to say, if A comes from the discretization of partial differential

operator, the number of iterations required to achieve a given backward error

increases as the mesh width h tends to 0. A convergence analysis for Lya-

punov equations was done in [70]. Loosely speaking, it is based on polynomial

3We mean this very loosely, in the sense that an optimal linear solver for (2.12) would
require O (n�) work, and under the assumptions presented the method requires O (n+ �).
However, there is a sense in which this approach avoids what is truly meant by the curse of
dimensionality, as the same technique can extended naturally to solve linear systems of the
form I ⊗ I ⊗A+ I ⊗A⊗ I +A⊗ I ⊗ I and their higher order analogues, as shown in [40].
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approximation to the exponential occurring in (2.13) over the domain of inte-

gration. This sheds light on a shortcoming of the method, as polynomials are

incapable of uniformly approximating the exponential function on the entire

positive real axis.

Along with the lack of robustness with respect to conditioning of A, the

Galerkin projection method described above suffers from growing memory de-

mands at each iterate (even for symmetric A). Such phenomena have been

observed when using Krylov subspace methods to solve linear systems of the

form (2.1). For the linear system case, techniques that can be used to alleviate

these negative effects are still an active area of research. Preconditioning is

a crucial component of solving many challenging linear systems [10], and for

certain problems preconditioners can be designed that deliver convergence in

a number of iterations that is independent of the mesh width of the underlying

discrete operator. To alleviate growing memory demands, a trivial method is

to simply restart the iteration, and a more sophisticated version of this reuses

information from the space built before restarting [50].

We assume that the reader is relatively familiar with these notions and

provide short, heuristic arguments to show that neither extends trivially to

the Galerkin projection procedure described above. If one can approximately

invert A by performing a linear solve with a matrix M , it may seem natural

to multiply (2.10) on the left by M
−1, since this is what is done for linear

systems. This results in

M
−1
AX +M

−1
XB +M

−1
EF

T = 0

which is no longer a Sylvester equation. We thus either require new algorithms

for a new matrix equation or a restoration of the Sylvester structure. If we

attempt the latter by changing to the new variable X̃ = M
−1
X, this results

in

M
−1
AMX̃ + X̃B +M

−1
EF

T = 0.

While this restores the Sylvester equation structure, unfortunately, this does

not change the spectrum of the first coefficient matrix, as M
−1
AM and A
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are similar! A standard goal in preconditioning a linear system is to have

the spectrum of the preconditioned system cluster around a point, and the

proposed approach does not change the spectrum of the first coefficient matrix.

In fact, one can show that Λ(I ⊗ A + B
T ⊗ I) = Λ(I ⊗M

−1
AM + B

T ⊗ I),

so that upon viewing this equation at the linear system level, the spectrum is

unchanged. Hence the system is not really preconditioned at all.

If one seeks to restart, suppose that there is some initial approximation

X0 = U0Y
T
0 for which one seeks a correction X̃ such that X0 + X̃ is the true

solution. Then X̃ solves the Sylvester equation

0 = A(X0 + X̃) + (X0 + X̃)B + EF
T

= AX̃ + X̃B + [E,U0, AU0]





F
T

Y0B

Y0





which shows that one would need to build (among other things) a block Krylov

subspace of the form Km (A, [E,U0, AU0]). This is not feasible since U0 poten-

tially has many columns.

Though intriguing, this approach would not prove competitive with low-

rank ADI based methods such as those described in [43] for large, ill-conditioned

problems. Over fifteen years would pass until it was realized that methods

based on Galerkin projection could be competitive, or even make the claim

to be the state-of-the-art, if the spaces to project into were rich enough to

produce a quality approximation.

2.3 Extended and rational Krylov subspace meth-

ods

We begin with a definition of the extended Krylov subspace, which shall

play a large role in the results of this thesis.
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Definition 2.3. The m
th extended Krylov subspace is defined as

EKm(A,E) = Km (A,E) +Km

�
A

−1
, A

−1
E
�
. (2.24)

An equivalent definition is

EKm(A,E) = K2m

�
A,A

−m
E
�
.

We denote an extended space by EKm when A and E are clear from the

context. The extended Krylov subspace (2.24) was originally introduced in

[19] and was used to approximate functions of matrix applied to a vector, i.e.,

f(A)b. The equivalent definition shows that these are indeed Krylov subspaces,

albeit with a modified right-hand side. The extended spaces also satisfy the

nested properties

EKm ⊆ EKm+1 and AEKm ⊆ EKm+1. (2.25)

As such, the approach described in the previous section is applicable and many

desirable properties transfer over. One nontrivial detail that requires resolution

is obtaining the Rayleigh quotient matrix. We briefly describe an approach for

solving (2.10) with extended Krylov subspaces. This was originally done for

the Lyapunov equation in [68], and details for applying this to the Sylvester

equation can be found in [34]. We begin by presenting an algorithm that builds

an orthonormal basis of (2.24), taken from [68].

We highlight a few differences between the standard block algorithm (Algo-

rithm 2.2) and extended block Arnoldi algorithm (Algorithm 2.3). The initial

reduced QR decomposition computes an orthonormal basis for EK1, and all

blocks V(i) now have 2k columns instead of k. To build the space in both di-

rections, each block is split in two pieces with k columns as V(j) = [V[1]
(j),V

[2]
(j)],

and the space is grown by applying A and A
−1 to the left and right pieces,

respectively. We emphasize that the reader should not be troubled by the

presence of A−1, since it is not this (typically dense) matrix that is required,

nor a factorization, but rather its action on tall matrices. Specifically, one only

needs to compute quantities such as A−1
E and A

−1V[2]
(j), each of which has k
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Algorithm 2.3 Extended Arnoldi
Input: A, E, m

Output: Matrix Vm = [V(1), . . . ,V(m)] whose columns form an orthonormal

basis of EKm(A,E)

1: Compute the reduced QR decomposition V(1)R = [E,A
−1
E]

2: for j = 1, . . . ,m do

3: W = [AV[1]
(j), A

−1V[2]
(j)], where V(j) = [V[1]

(j),V
[2]
(j)]

4: for i = 1, . . . , j do

5: H(ij) = VT
(i)W

6: W = W −V(i)H(ij)

7: end for

8: Compute the reduced QR decomposition V(j+1)H(j+1,j) = W

9: end for

columns, and the computation may be done column by column. Hence all

that is required is an efficient means of solving Ax = b, which would depend

strongly on A. If an optimal solver such as multigrid is available [77], the

stated algorithm maintains the desired optimal complexity. Our experiments

consisted primarily of two-dimensional problems, so that sophisticated direct

solvers such as those found in [17] were applicable, but in practice an optimal

solver is enough to guarantee that (2.24) can be built efficiently.

For extended Krylov subspaces, the nested properties (2.25) guarantee an

Arnoldi-type relation, which can be written explicitly as

AVm = VmTm +V(m+1)T(m+1,m)E
T
m. (2.26)

Here Em denotes the last 2k columns of the 2mk × 2mk identity matrix and

Tm = VT
mAVm is again a Rayleigh quotient matrix. We emphasize that

Tm �= Hm, i.e., the Rayleigh quotient matrix is not immediately obtained

from the orthogonalization coefficients. A derivation of how to derive the

Rayleigh quotient matrix without any O (n) or O (�) computations is given in

Appendix B, which in theory is possible due to (2.25).
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We follow [34, 68] and perform Galerkin projection with the space

Sm = S
�
EKm(A,E),EKm(B

T
, F )

�
, (2.27)

so that one needs to build both extended Krylov subspaces appearing in (2.27).

If we denote the (1, 1) block of R appearing in Algorithm 2.3 as R(11), one can

show that the equation that results from Galerkin projection of (2.10) onto

the space defined (2.27) results in

TA
mYm + Ym(T

B
m)

T +
�
R

A
(11)(R

B
(11))

T
�
⊗ (e2me

T
2m) = 0. (2.28)

The space again satisfies A(Sm) ⊆ Sm+1 due to (2.25), so we expect a repre-

sentation for the residual in the bases that we have constructed. In fact, (2.22)

follows for any bases V and W, and the cheap calculation (2.23) follows from

this expression and an Arnoldi relation (2.26), so that an analogous expres-

sion results and the residual may be cheaply calculated after solving the small

equation (2.28).

This method has emerged as a competitor for the state-of-the-art for solving

(2.10) in the large-scale case. Given the success of the Galerkin projection

approach, a minimum residual method for Lyapunov equations is described in

[45]. A convergence analysis was done in [38], which sheds light on how using

powers of A−1 alleviate some of the difficulties with polynomial approximation,

and this is due to superior properties of rational approximation. In fact, a

similar derivation as was done in (2.14)–(2.16) can be used to motivate this

approach and provides a first step towards a convergence analysis. Instead

of using a polynomial of degree m, one uses a Laurent polynomial q(z) =
�m−1

k=−m αkz
k, and this provides a derivation of the method described.

As a viable alternative, rational Krylov subspaces also play a role in this

thesis. They were originally introduced in [55] and further developed in [56,

57, 58, 59] for eigenvalue computations.

Definition 2.4. Given a vector of shifts s = [s1, . . . , sm−1] ∈ Cm−1
, the m

th

rational Krylov subspace is defined as

RKm(A,E, s) = range
�
[E, (A− s1I)

−1
E, . . . , (A− sm−1I)

−1
E]

�
. (2.29)
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Algorithm 2.4 Rational Arnoldi
Input: A, b, m, vector of shifts s

Output: Matrix Vm = [v1, . . . , vm] whose columns form an orthonormal basis

of RKm(A, b, s)

1: β = �b�2, v1 = b/β

2: for j = 1, . . . ,m do

3: w = (I − A/sj)−1
Avj

4: for i = 1, . . . , j do

5: hij = v
T
i w

6: w = w − hijvi

7: end for

8: hj+1,j = �w�2
9: vj+1 = w/hj+1,j

10: end for

Defining qm−1(z) =
�m−1

j=1 (1− z/sj), one can show that

RKm(A,E, s) = qm−1(A)
−1Km (A,E)

so we adopt the convention that an infinite shift sm = ∞ increments the

polynomial degree of the space but does not introduce any extra poles. In this

case qm−1(z) = qm(z) so that by the above

ARKm(A,E, s) ⊆ RKm+1(A,E, s),

i.e., by choosing an infinite pole we can recover the nested property and several

of its desirable consequences.

For simplicity of exposition we present Algorithm 2.4 for building an or-

thonormal basis of (2.29) when E = b is a column vector. An implementation

for block spaces with reorthogonalization is described in Appendix A. It is

again worth emphasizing that one only requires an efficient method of solv-

ing (A − sjI)x = v, which may also be done by some sophisticated iterative

method for the coefficient matrix A. Defining Dm = diag
�
1, s−1

1 , . . . , s
−1
m−1

�
,
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as well as

Hm =

�
Hm

hm+1,me
∗

m

�
and Km =

�
Im +HmDm

hm+1,mξ
−1
m e

T
m

�

one can prove that the following rational Arnoldi decomposition holds

AVm+1Km = Vm+1Hm

and when sm = ∞ it holds that

AVmKm = Vm+1Hm. (2.30)

Assuming that Km is invertible, upon left multiplication of (2.30) by V
T
m one

can recover the Rayleigh quotient matrix V
T
mAVm = HmK

−1
m as a byproduct

of the algorithm at negligible cost.

It was noticed that rational Krylov subspaces were powerful tools for ap-

proximating functions of a matrix applied to a vector, and a good historical

account of the development of this theory along with relevant theoretical and

algorithmic topics can be found in [32]. An adaptive shift selection strategy

was proposed in [21] to approximate the matrix exponential of a symmetric ma-

trix applied to a vector. This strategy was modified in [22] for non-symmetric

matrices and shown to be effective for the Lyapunov equation. An analysis of

this approach and comparison with ADI-based methods for Lyapunov equa-

tions was done in [20]. Convergence analysis for the Sylvester equation may

be found in [6]. Rational Krylov subspaces constitute a fascinating topic that

is very active at the moment of writing, and are good to be aware of when

considering an alternative approach to extended Krylov spaces.

2.4 Low-rank classical and Krylov subspace

methods

We next describe a method which pairs nicely with the methods described

in the previous section. They are known as low-rank Krylov subspace methods
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Algorithm 2.5 Preconditioned conjugate gradients
Input: S.p.d. matrix A, right-hand side b, preconditioner M

Otuput: Approximation solution um of Ax = b

1: Set r0 = b, solve Mz0 = r0, set p0 = z0, q0 = Ap0

2: for j = 0, 1, 2, . . . do

3: αj = �rj, zj�/�qj, pj�
4: uj+1 = uj + αjpj

5: rj+1 = rj − αjqj

6: Solve Mzj+1 = rj+1

7: βj = �rj+1, zj+1�/�rj, zj�
8: pj+1 = zj+1 + βjpj

9: qj+1 = Apj+1

10: end for

and were originally described in [41] to treat parametrized linear systems.

We give a description in the context of linear matrix equations, describing

first the preconditioned conjugate gradients methods and then its low-rank

modification. As a simple motivating example, we consider the numerical

solution of the Poisson equation on the unit square with a separable source4

that is symmetric in the x and y variables and homogeneous Dirichlet boundary

conditions, i.e.,

−∆u = f(x)f(y) in [0, 1]× [0, 1]

u = 0 on {0, 1} × [0, 1] ∪ [0, 1]× {0, 1}.

We discretize using finite differences (see, e.g., [42]) and chose a uniform

grid with n points in each direction, i.e., set h = 1
n+1 and xj = yj = jh

for j = 1, . . . , n. We seek to approximate u(xi, yj) for each i, j = 1, . . . , n and

gather these approximation in a matrix U such that Uij ≈ u(xi, yj). The values

of the source term at the grid points are gathered in the matrix F whose (i, j)

4The technique to be described can be modified to work for smooth sources that can be
separably expanded as f(x, y) =

�∞
i=0 fi(x)gi(y), perhaps by the svd function of Chebfun

[76], and then truncated to desirable accuracy.
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entry is Fij = f(xi)f(yj). We build the two-dimensional discrete Laplacian

from its one-dimensional counterpart. The standard one-dimensional 3-point

stencil results in the classic tridiagonal matrix

A1 =
1

h2





2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1 2





.

and the discrete system associated with the standard two-dimensional 5-point

stencil has the Kronecker product structure

A = In ⊗ A1 + A1 ⊗ In. (2.31)

The typical approach is to vectorize (or reshape5) U and F obtain a linear

system

Au = b (2.32)

where u = vec(U) and b = vec(F ). This system is symmetric positive definite,

so a basic iterative solver for (2.32) might consist of conjugate gradients pre-

conditioned by Jacobi, i.e., using the preconditioner M = diag (A) = 4
h2 I. We

state the preconditioned conjugate gradients as Algorithm 2.5 for convenience.

We shall see that the entire algorithm can be described at the matrix

equation level, and with some slight modifications this perspective enables

significant computational gains. Our point of departure from the classical

method is an observation on the structure of F . Note that the separability of f

implies that the matrix F is of rank one, since defining �f = [f(x1), . . . , f(xn)]T

yields F = �f �f
T . Hence the dense matrix F , having n2 entries, can be implicitly

represented with O (n) storage. The preconditioner may also be described at

the matrix level, since for any X ∈ Rn×n one has M−1(X) = h2

4 X. Following

the first line of the algorithm, if we define R0 = F and solve M (Z0) = R0,

5We borrow this terminology from MATLAB; note vec(X) = reshape(X,[],1).
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X = GX

DX G
T
X

, Y = GY

DY G
T
Y

Figure 2.3: Depiction of two low-rank, symmetric matrices.

we see that the low-rank structure may be preserved, along with symmetry

and positive semi-definiteness, since setting Z0 = (h2
�f)(h2

�f)T . We continue

by setting P0 = Z0, though this is done implicitly, as we only store a low-

rank factor of P0 = p0p
T
0 . Our experience with the Kronecker product and

vectorization operator suggest to us that we use (2.11) to view (2.31) as a

matrix equation

A (U) = F,

where A (U) = A1U +UA1. The operator A also preserves low-rank structure

and symmetry, though the rank now increases and definiteness is lost, since a

quick calculation shows

Q0 := A (P0) = [p0, A1p0]

�
0 1

1 0

��
p
T
0

p
T
0A

T
1

�
.

This motivates representing an arbitrary low-rank symmetric matrix X as

X = GXDXG
T
X for GX ∈ Rn×k and DX = D

T
X ∈ Rk×k with k � n. A

graphical depiction is given in Figure 2.3. The operator A preserves such a

structure, and the remainder of the algorithm consists of linear combinations

of vectors and inner products. Linear combinations preserve this structure

as well, since for scalars α, β and another low-rank symmetric matrix Y =

GYDYG
T
Y , a quick calculation reveals

αX + βY = [GX , GY ]

�
αDX 0

0 βDY

��
G

T
X

G
T
Y

�
,

with a visualization of this operator given in Figure 2.4. Performing the stan-
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αX + βY = [GX , GY ]

�
αDX 0

0 βDY

��
G

T
X

G
T
Y

�
=

Figure 2.4: Depiction of taking a linear combination of two low-rank matrices
while preserving low-rank structure.

�X, Y �F = trace
�
DX(GT

XGY )DY (GT
YGX)

�

= trace

� �

Figure 2.5: Depiction of computing the Frobenius inner product of two low-
rank matrices with O (n) computational complexity.

dard inner product on long vectors corresponds to performing the Frobenius

inner product on low-rank representations, since �vec(S), vec(T )�2 = �S, T �F ,
and the relation trace (ST ) = trace (TS) can be used to exploit the low-rank

structure and reduce the complexity of this operation. Specifically, note that

�X, Y �F = trace(XT
Y )

= trace
�
(GXDXG

T
X)(GYDYG

T
Y )
�

= trace(DX (GT
XGY )� �� �
O(n)

DY (GT
YGX)� �� �
O(n)

)

with a visual depiction in Figure 2.5. Since the vectorization operator is a

linear isometry, if one uses the Frobenius inner product on the low-rank rep-

resentations and performs all calculations at the matrix level with care to

preserve low-rank formats as described, it follows that one will be implement-

ing the first few steps of PCG on (2.32) with O (n) computational and memory

requirements.

An issue that arises is that all quantities incur a growth in rank as the

iteration proceeds. This occurs whenever we apply the operator or take a linear
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X = G

D G
T

T (X) = G̃

D̃ G̃
T

Figure 2.6: Depiction of the truncation operator, compressing the columns of
a matrix X.

combination, and the rank of the output quantity will always be larger than

the rank of the input quantity. After enough operations one will be storing

large, dense matrices. This is resolved by the introduction of a truncation

operator, denoted by T . The truncation operator accepts the low-rank factors

G ∈ Rn×k and D ∈ Rk×k of a matrix X = GDG
T and returns low-rank factors

G̃ ∈ Rn×p and D̃ ∈ Rp×p of a matrix T (X) = G̃D̃G̃
T . The matrix T (X) is

such that

�X − T (X)�F ≤ τ �X�F (2.33)

for some prescribed truncation tolerance τ , and the integer p ≤ k is as small as

possible while still achieving this desired tolerance. The truncation operator

is implemented by computing a reduced QR decomposition of G = QGRG and

an eigenvalue decomposition of the small symmetric matrix RGDR
T
G = USU

T .

This can be converted to a singular value decomposition UΣV T according to

Σ = Ssign(S) and V = Usign(S). This singular value decomposition is then

truncated to ŨΣ̃Ṽ T so that
√
σp+1 + · · ·+ σk ≤ τ

√
σ1 + · · ·+ σk, where Σ =

diag (σ1, . . . , σk) and p is the smallest integer that makes this inequality hold.

One returns G̃ = GŨ and D̃ = Σ̃, and by the invariance of the Frobenius norm

under multiplication by unitary matrices, a quick calculation shows that (2.33)

indeed holds. The columns of the matrix T (X) have been “compressed,” and

for this reason this operation is sometimes referred to as a column compression.

The results of this procedure is depicted in Figure 2.6.

Algorithm 2.5 can now be performed at the matrix level, with truncations

introduced to manage growth in ranks. The main expense in the truncation is

the reduced QR decomposition, which is O (n), so provided there is no inordi-
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Algorithm 2.6 Low-rank preconditioned conjugate gradients
Input: Operator A, preconditioner M, truncation operator T , right-hand

side B

Output: Low-rank factor Zm of approximate solution Xm = ZmZ
T
m to

B −A(X)

1: Set R0 = B, solve M(Z0) = R0, set P0 = Z0, Q0 = A(P0), ξ0 = �P0, Q0�F
2: for j = 0, 1, 2, . . . do

3: ωj = �Rj, Pj�F/ξj
4: Xj+1 = Xj + ωjPj Xj+1 = T (Xj+1)

5: Rj+1 = B −A(Xj+1)

6: Zj+1 = M−1(Rj+1)

7: βj = −�Zj+1, Qj�F/ξj
8: Pj+1 = Zj+1 + βjPj Pj+1 = T (Pj+1)

9: Qj+1 = A(Pj+1)

10: ξj+1 = �Pj+1, Qj+1�F
11: end for

nate growth in the ranks, the entire procedure entails O (n) work per iterate.

The low-rank CG algorithm is described in Algorithm 2.6, where we empha-

size that all applications of the operator, solves with the preconditioner, linear

combinations, and inner products are done in low-rank format as previously

described.

The astute numerical analyst may object that the truncation introduces

an error, so that any orthogonality or optimality properties of the conjugate

gradient method that are due to recursions would be lost, and this is certainly a

valid point. In fact, in the seminal paper describing these methods, the authors

note that that residual must be explicitly calculated as Rj = B − A(Xj)

for purposes of numerical stability, and this requires a modification of the

derivation so that coefficients do not depend on any recursions for the residual.

Despite such an objection, the method appears capable of delivering quality

approximations while dramatically reducing memory requirements.
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The main ingredients for low-rank PCG are a low-rank right-hand side, an

operator and preconditioner that accept and output low-rank factors, a careful

implementation that performs the required inner products and linear combi-

nations while preserving low-rank structure, and a truncation operator. As

such, low-rank versions of many classical and modern methods exist, includ-

ing stationary iterations, steepest descent, MINRES, BiCGStab, and more.

Any short-term recurrence method is a candidate for a low-rank alternative.
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CHAPTER 3

CONSTRAINED SYLVESTER

EQUATIONS

In this chapter, we present a low-rank solution method for large-scale con-

strained Sylvester equations. To our knowledge, this is the first use of such

techniques on a system of matrix equations. We describe constrained Sylvester

equations, review existing approaches for small problems and comment on their

difficulties for large problems, present our proposed modification for large-scale

problems, and survey some numerical results; see also [66].

3.1 Overview

We consider the following system of matrix equations,

A1X +XA2 − Y C = 0 (3.1)

XB = 0 (3.2)

for given A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , B ∈ Rn2×p and C ∈ Rm×n2 , with un-

knowns X ∈ Rn1×n2 and Y ∈ Rn1×m, where p < m � min{n1, n2}. We assume

that A1 and A2 are large, sparse, and nonsingular, and that B,C and CB have

full rank. In the following, we refer to this system as a constrained Sylvester

equation, with the second equation XB = 0 acting as a constraint.
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A constrained Sylvester equation may also be viewed as a homogeneous

system in the two unknown matrices X and Y , from which it readily follows

that the matrix problem has a whole family of solutions. Indeed, by means

of the relation between the Kronecker product and the vectorization operator

(2.11), the system (3.1)–(3.2) can be rewritten as a very large homogeneous

linear system, whose unknown vector contains the columns ofX and Y , stacked

one below the other. The resulting coefficient matrix for this linear system is

of size n1(p+ n2)× n1(m+ n2), and therefore underdetermined; thus when a

nontrivial solution exists, this is not unique.

In [4], the authors describe a direct method for solving (3.1)–(3.2) when

n1 and n2 are small. The method essentially amounts to a change of variables

and the formulation of an unconstrained equation of the form (2.10) for the

new variable. However, the method requires a full QR factorization of the

matrix B, which is computationally expensive for large n2. To the best of

our knowledge, we are unaware of any method in the literature for solving

(3.1)–(3.2) in the large-scale setting, at a computational cost and memory

requirements that grow only linearly with the problem dimensions n1 and n2.

Our approach is a modification of the existing small-scale method. We

show that an unconstrained Sylvester equation can be formulated for the orig-

inal unknown X whose solution automatically satisfies the constraint. The

new formulation can be stated as a familiar unconstrained Sylvester equation.

We describe how projection-type approaches based on Krylov subspaces can

be adapted to effectively handle this new formulation when n1 and n2 are large.

In particular, since one of the coefficient matrices of the transformed problem

is singular and dense, a new strategy for using enriched subspaces (analogous

to extended and rational Krylov subspaces) is devised. Our numerical experi-

ments on benchmark problems seem to show that the new formulation can be

effectively treated with powerful projection spaces, so that small approxima-

tion spaces are required to obtain a rather accurate solution.
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3.2 Modification of existing results

In [4], the authors describe a direct method for solving (3.1)–(3.2) when the

involved matrices have small dimensions. The proposed procedure transforms

the original coupled equations into a single unconstrained Sylvester equation

in one variable, which can be solved with available methods. We summarize

their formulation in the following result. We include the proof because it is

insightful for later developments.

Theorem 3.1. [4] Let

B = [U1, U2]

�
RB

0

�

denote the full QR factorization of B, where U1 ∈ Rn2×p, U2 ∈ Rn2×(n2−p), and

RB ∈ Rp×p, with p < m. Let also

CU1 = [Q1, Q2]

�
R

0

�
= Q

�
R

0

�

denote the QR factorization of CU1, with R having full rank p. Then, a so-

lution pair (X, Y ) to (3.1)–(3.2) can be written as Y = [Ŷ1, Ŷ2]QT with Ŷ2

arbitrary, X = ZU
T
2 , where Z ∈ Rn1×(n2−p) solves the equation

A1Z + Z
�
(UT

2 A2U2)− (UT
2 A2U1)R

−1
Q

T
1CU2

�
= Ŷ2Q

T
2CU2, (3.3)

and Ŷ1 = Z(UT
2 A2U1)R−1.

Proof. The constraint (3.2) implies that any solution X can be written as

X = ZU
T
2 for some matrix Z ∈ Rn1×(n2−p). The equation (3.1) is then post-

multiplied by U1 and U2, yielding

Z(UT
2 A2U1) = Y CU1, A1Z + Z(UT

2 A2U2) = Y CU2. (3.4)

Define [Ŷ1, Ŷ2] = Y Q for Ŷ1 ∈ Rn1×p and Ŷ2 ∈ Rn1×(m−p). We can use the first

equation in (3.4) to express part of Y in terms of Z; namely, since

Z(UT
2 A2U1) = Y CU1 = Y QQ

T
CU1 = [Ŷ1, Ŷ2]

�
R

0

�
= Ŷ1R,
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it follows that Ŷ1 = Z(UT
2 A2U1)R−1. With this expression, the second equation

in (3.4) is used to formulate an unconstrained equation for Z. Since

Y CU2 = Y QQ
T
CU2 = [Ŷ1, Ŷ2]

�
Q

T
1

Q
T
2

�
CU2

=
�
Z(UT

2 A2U1)R
−1
Q

T
1 + Ŷ2Q

T
2

�
CU2,

it follows that Z must satisfy

A1Z + Z
�
(UT

2 A2U2)− (UT
2 A2U1)R

−1
Q

T
1CU2

�
= Ŷ2Q

T
2CU2. (3.5)

The entries of Ŷ2 are not forced by the procedure, and can be chosen arbitrarily.

We remark that it can be readily shown that the result in Theorem 3.1

is in fact an equivalence; specifically, if Ŷ2 ∈ Rn1×(m−p) is arbitrary, Z solves

(3.5), and Ŷ1, X and Y are defined as stated, then (X, Y ) satisfies the system

(3.1)–(3.2). We also remark that the arbitrariness of Ŷ2 reflects the number of

degrees of freedom of the system that are a result of underdeterminedness.

A disadvantage of the approach described above is that the use of a full QR

factorization of the matrix B is too costly for large n2, thus making the whole

procedure infeasible for large problems. However, in our setting m, p � n2

with, in fact, often m, p ≤ 10. Assuming such conditions on m, p, and n2,

we propose a modification of the above method, showing that the unknown

X satisfies a different unconstrained equation, that can be solved numerically

without relying on computing the expensive U2 term. All that is required is

a reduced QR decomposition of B, which is computationally feasible under

our assumptions. It is worth mentioning that in our treatment a full QR

factorization of the matrix CU1 ∈ Rm×p is still computed, but due to the

extremely limited size of m and p, its cost remains very low.

Factoring out some terms in (3.3) enables one to rewrite this as

A1Z + ZU
T
2 A2

�
I − U1R

−1
Q

T
1C

�
U2 = Ŷ2Q

T
2CU2. (3.6)
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Right-multiplying by the full row rank matrix U
T
2 and recalling thatX = ZU

T
2 ,

we obtain the equivalent equation

A1X +XA2

�
I − U1R

−1
Q

T
1C

�
Π = Ŷ2Q

T
2CΠ, (3.7)

where Π = U2U
T
2 , which is well known to be an orthogonal projector onto

null(BT ). Moreover, another right multiplication by U2 converts (3.7) back to

(3.6), so the two are indeed equivalent. This simple transformation enables one

to rewrite the new equation in terms of the coefficient matrices of the original

equation and projectors based on the problem data, and is summarized in the

following theorem.

Theorem 3.2. With the notation above, suppose (Z, Y ) are as in Theorem 3.1.

Then the matrix P = U1R
−1
Q

T
1C is a projector onto range(B) and orthogonal

to range(CT
CB). Moreover, the matrix X = ZU

T
2 solves the unconstrained

Sylvester equation

A1X +XA2(I − P )Π = Ŷ2Q
T
2CΠ, (3.8)

and �Y1 = XA2U1R
−1.

Proof. LetM = U1R
−1 andN = C

T
Q1, so that P = MN

T . Then range (M) =

range (U1) = range (B). Moreover, from N = C
T
CB(RRB)−1 it also follows

that range (N) = range
�
C

T
CB

�
. Since NT

M = Q
T
1CU1R

−1 = Q
T
1Q1RR

−1 =

I, it follows that P = M(NT
M)−1

N
T , i.e., P is a projector. Equation (3.8)

coincides with (3.7) with P as defined. Finally, Ŷ1 = Z(UT
2 A2U1)R−1 =

XA2U1R
−1.

A solution of the new unconstrained equation enjoys the property of au-

tomatically satisfying the constraint condition, as described in the following

corollary.

Corollary 3.1. Suppose that X solves (3.8). Then XB = 0.

Proof. Since ΠB = 0, right-multiplication of (3.8) by B yields A1XB = 0, so

the result follows immediately from the nonsingularity of A1.
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Moreover, notice that the resulting equation (3.8) can now be written as a

familiar Sylvester equation

AX +XB+ EFT = 0

where we now use bold letters to distinguish constrained and unconstrained

Sylvester equations. This is done by writing �Y2 = �Y2,1
�Y T
2,2 and

A = A1, B = A2(I − P )Π, E = −Ŷ2,1, F = ΠCT
Q2

�Y2,2. (3.9)

Other factorizations of Ŷ2Q
T
2CΠ = EFT could be considered. We found that

since �Y2 can be chosen arbitrarily, it may be computationally advantageous to

choose a rank-one matrix. Indeed, with these choices both E and F will be

vectors, with potential significant computational and memory savings in the

solution of the Sylvester equation in the large-scale case.

We note that the method based on Galerkin projection and standard block

Krylov subspaces described in Section 2.2 is immediately applicable to the

newly formulated unconstrained Sylvester equation (3.8) for large-scale prob-

lems. From a computational standpoint, we note that in solving (3.8), the

action of Π on a vector may be computed cheaply, as U1 can be obtained

with O(n2) complexity; moreover, Π may be replaced by the complementary

projector I − U1U
T
1 , whose action only involves O (n2) computations. Sim-

ilarly, the action of I − P to a vector can exploit the low rank of P . The

expensive full QR decomposition of B has been replaced with an affordable

reduced QR decomposition, and the action of BT on a vector can be applied

with O (n2) complexity since A2 is sparse and the projectors P and Π are fac-

tored as low-rank matrices. Thus, the space Km

�
BT

,E
�
can be built with a

reasonable computational complexity. A nice consequence is that approximate

solutions from such a space also enjoy the property of automatically satisfying

the constraint.

Theorem 3.3. Suppose that Xm ∈ S
�
V,Km

�
BT

,F
��

for some m and some

subspace V. Then XmB = 0.
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Proof. Let Wm denote a matrix whose columns form a basis for Km

�
BT

,F
�
.

We have that range (Wm) = range
�
[F,BTF, . . . , (BT )m−1F]

�
, so

Wm = [F,BTF, . . . , (BT )m−1F]W

for an appropriate W . One quickly checks that FT
B = 0 and BB = 0, so that

we obtain

WT
mB = W

T





FT

FTB
...

FTBm−1




B = W

T





FT
B

FTBB

...

FTBm−1
B




= 0

so that XmB = V �XWT
mB = 0.

3.3 Construction of enriched spaces

Though the projection method based on standard block Krylov spaces is

immediately applicable, building EKm(BT
,E) or RKm(BT

,E, s) to construct

an enriched space for Galerkin projection poses some issues. It is not possible

to build the former space due the the presence of the projectors, which makes

the B term singular and hence not invertible. The latter space involves shifted

solves which can be chosen to make the shifted matrix nonsingular, but diffi-

culties arise as B is dense due to the presence of the projectors. It would be

infeasible to form this dense matrix and invert it; and so we regard the matrix

B as inaccessible. All that is accessible is the action of this matrix on a vector.

Nevertheless, we shall see that approximating a shifted solve with BT is

possible by use of the Sherman-Morrison-Woodbury formula, which we state

for convenience [26]

(A+ UV
T )−1 = A

−1 − A
−1
U(I + V

T
A

−1
U)−1

V
T
A

−1
.

We would like to compute the the shifted inverse

Bσ := (BT + σI)−1 = (Π(I − P
T )AT

2 + σI)−1
.
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The inverse can be explicitly computed by means of the Sherman-Morrison-

Woodbury formula. Unfortunately, this procedure still involves computations

with large and dense matrices, therefore it requires one further approximation

step. We describe a plausible approximation �Bσ ≈ Bσ as follows, recalling

that Π = U2U
T
2 . Using the Sherman-Morrison-Woodbury formula, one can

write

(BT + σI)−1 =
1

σ
I − 1

σ2
U2

�
I +

1

σ
U

T
2 (I − P

T )AT
2U2

�−1

U
T
2 (I − P

T )AT
2 .

Let us set P
T = P1P

T
2 with P1 = C

T
Q1R

−T , P T
2 = U

T
1 , and let �P1 = (σI +

A
T
2 )

−1
P1. One more application of the Sherman-Morrison-Woodbury formula

gives

�
I +

1

σ
U

T
2 (I − P

T )AT
2U2

�−1

=

= σ
�
σU

T
2 U2 + U

T
2 (I − P

T )AT
2U2

�−1
= σ

�
U

T
2 (σI + (I − P

T )AT
2 )U2

�−1

≈ σU
T
2

�
σI + (I − P

T )AT
2

�−1
U2 = σU

T
2

�
σI + A

T
2 − P

T
A

T
2

�−1
U2

= σU
T
2 [(σI + A

T
2 )

−1 + (σI + A
T
2 )

−1
P1

·(I − P
T
2 A

T
2 (σI + A

T
2 )

−1
P1)

−1
P

T
2 A

T
2 (σI + A

T
2 )

−1]U2

= σU
T
2

�
I + �P1(I − P

T
2 A

T
2
�P1)

−1
P

T
2 A

T
2

�
(σI + A

T
2 )

−1
U2.

In general, the approximation in the third line of the above calculation could

be very rough. However, since U2 usually spans almost the whole space, we

expect the approximation to be of good quality. Our numerical results seem

to confirm this expectation. We therefore obtain

(BT + σI)−1 ≈ 1
σI −

1
σU2U

T
2 [I + �P1(I − P

T
2 A

T
2
�P1)−1

P
T
2 A

T
2 ]

·(σI + A
T
2 )

−1
U2U

T
2 (I − P

T )AT
2

= 1
σI −

1
σΠ

�
I + �P1(I − P

T
2 A

T
2
�P1)−1

P
T
2 A

T
2

�

·(σI + A
T
2 )

−1BT =: �Bσ.

We note that the inner matrix (I −P
T
2 A

T
2
�P1) is in general very small (namely

of order O (1)), so that its inversion is cheap, and could be explicitly formed
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once and for all at the beginning of the procedure. Moreover, the application

of �Bσ requires solving a system with the large and sparse matrix A2 + σI

at each iteration, whose computational cost depends on the sparsity pattern

of A2. Such cost is comparable with what one would be willing to accept when

dealing with a regular extended Krylov subspace built using A2.

Given such a �Bσ, we then propose to build an approximation of a shifted

extended Krylov subspace

�EK
σ

m := Km

�
BT

,F
�
+Km

�
�Bσ,

�BσF
�
. (3.10)

This space is formally not an extended Krylov subspace, as �Bσ is not the

inverse of BT +σI; however, by our previous remarks we expect that it should

approximate EKm(BT + σI,F) well. Our numerical experiments appear to

confirm that it is sufficiently rich to produce quality approximations with low

space dimensions. We shall refer to it as an augmented Krylov subspace.

We explicitly observe that if x = Πx, then �Bσx = Π�Bσx, that is, the appli-

cation of �Bσ preserves the space constraint. Therefore, by imposing the right

basis Wm to be such that range (Wm) = �EK
σ

m, we readily obtain WT
mB = 0,

so that the approximate solution Xm naturally satisfies the constraint also

when using the enriched space.

We are left with the selection of the shift σ. A large body of literature

is available on the computation of appropriate shifts for rational Krylov sub-

spaces; see, e.g., the references in [22]. Here the situation is somewhat simpli-

fied, since a single shift is used. Our numerical experiments have shown that

the geometric mean of the real “spectral interval” is particularly well suited

for intervals spanning several orders of magnitude, namely

σ := −(α1αn)
1
2 ,

where |λ1| ≥ · · · ≥ |λn| are the eigenvalues of A2, arranged in decreasing order,

and αj = Re(λj), j = 1, . . . , n. An estimate of these quantities usually suffices.

Remark 3.1. An obvious generalization of our approach is to consider ap-

proximating a rational Krylov subspace. For instance, the space �EK
σ

m with
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our choice of �Bσ can be generalized to an approximation of a regular rational

Krylov subspace

RKm(B
T
,F, s),

where the shift σi, i = 1, . . . , k varies at each iteration, and can be either chosen

a-priori, or selected adaptively by means of a greedy algorithm. We refer to

[22] and references therein for a more detailed discussion. The associated

computational cost may increase significantly, as a different shifted system

needs to be solved at each iteration. On the other hand, convergence speed, in

terms of number of iterations, may be significantly improved [6], making the

trade-off problem dependent. To keep the treatment concise, and because of

our satisfactory numerical experiments with �EK
σ

m, we decided not to pursue

this generalization further.

An issue arises when trying to compute the norm of the residual for stop-

ping criteria, since the space (3.10) does not possess an Arnoldi relation. We

describe a procedure that incurs some additional overhead per iterate but pro-

vides a means of computing �Rm�F without forming this dense matrix. The

relation for the residual (2.22) holds for arbitrary basis V and W, and can

be exploited by progressively computing QR decompositions of the outer ma-

trices at each iterate. Specifically, if one computes [Vm,AVm] = Q
A
mR

A
m and

[Wm,BWm] = Q
B
mR

B
m, it readily follows that

�Rm�F =

�����R
A
m

�
VT

mE(WT
mF )T Ym

Ym 0

�
(RB

m)
T

�����
F

.

In practice, there is a slight twist; since one wants to compute these decom-

positions as the iterations proceed, typically one computes the following QR

decompositions:

[V(1),AV(1),V(2),AV(2), · · · ,V(m),AV(m)] = Q
A
mR

A
m

[W(1),B
TW(1),W(2),B

TW(2), · · · ,W(m),B
TW(m)] = Q

B
mR

B
m,

so that [Vm,AVm] = Q
A
k R

A
k Ω

(A)
m and [Wm,BWm] = Q

B
mR

B
mΩ

(B)
m for appro-

priate permutation matrices Ω(A)
m and Ω(B)

m . This can be done progressively as
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columns are added, so that the entire QR need not be computed at every step.

Note that when only one space (in our case, Vm) has an Arnoldi relation, a

hybrid approach is possible; so that the progressive QR calculation need only

be done for the space that does not possess an Arnoldi relation; this is in fact

what was implemented.

Concerning stopping criteria, we observe that the term �B�F used in (2.21)

is not readily available. Therefore, we propose stopping when

�ρm < τ with �ρm :=
�Rm�F

�Xm�F�A�F + �XmB�F + �E�F�F�F
(3.11)

for a prescribed tolerance τ ; in our experiments we used τ = 10−12. Note

that the term �XmB�F = � �XmWmBT�F can be computed at a reasonable

cost and that ρk ≤ �ρk, so that using this criteria guarantees that the true

backward error also falls below this threshold.

An important computational aspect concerns the choice of the matrix �Y2.

Theorem 3.2 shows that �Y2 = �Y2,1
�Y T
2,2 can be chosen freely. Moreover, from

(3.9) we deduce that the number of columns of �Y2,1 and �Y2,2 determines the

block size of the Krylov subspaces generated during the process. Therefore, as

already mentioned, a computationally advantageous choice consists in selecting

�Y2 to be of rank one, so that E = �Y2,1 and F = ΠCT
Q2

�Y2,2 both have a single

column. We originally experimented with a larger number of columns for

�Y2,1 and �Y2,2, however the computational cost of dealing with block methods

was higher than the increase in convergence rate. Therefore, unless explicitly

stated, in all of our experiments we defined �Y2,1 and �Y2,2 to be column vectors,

and we chose them to have all components equal to one.

It is also worth mentioning once again that different space dimensions

could be used for the right and left spaces. Without extra information on

the spectral properties of the matrices, we did not find any special reason to

exploit this extra feature, although the code could be easily adapted to handle

this case as well. We also emphasize that in the generic case, the standard

Krylov subspace after k iterations has dimension rk, whereas an extended or

augmented Krylov subspace has dimension 2rk, if started with a matrix with
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r columns.

3.4 Numerical experiments

In this section we report on our numerical experience with the proposed

formulation and methods. We experimented with the use of standard and

augmented Krylov subspaces. For the sake of clarity we mainly only report

the use of the same type of space as left and right spaces (either standard for

both A and BT or extended for A and augmented for BT ). Nonetheless, a

number of experiments were also performed with mixed choices, as the code

implements all possibilities.

In all examples we defined the matrices A1 and A2 so as to have similar

large size; unless stated otherwise, the matrices B and C were taken from

the dataset associated with A1 when available. In all plots the approximate

backward error in (3.11) is displayed, versus the space dimension as iterations

proceed.

Example 3.1. We consider a discretization of the Laplace operator for a

variety of dimensions and signs. In all cases, B is the first column of the

identity matrix, and C is given by the first five rows of the identity matrix.

Let ∆n be the n×n matrix stemming from the 5-point stencil finite difference

discretization of the Laplace operator on the unit square. The first example

(leftmost plot of Figure 3.1) considers A1 = n1∆n1 and A2 = −∆n2 , with

n1 = 324 and n2 = 400. Note that the two matrices have eigenvalues on

different sides of the complex plane, however the scaling of A1 avoids any

instability problems in the computation. Differences in the two approaches

are much more pronounced for n1 = 2304 and n2 = 2500 (middle plot of

Figure 3.1), for which the use of the enriched spaces significantly improves

convergence, in terms of memory used. The computational cost of solving

with a shifted version of A2 is negligible. For larger matrix dimensions, the

gap between the two curves substantially increases. Finally, the rightmost
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plot of Figure 3.1 shows the performance for the larger case, where however

now A1 = −n1∆n1 , so that both A1 and A2 have the same sign. Once again,

the augmented space is able to capture good spectral information soon during

the iterations, leading to fast convergence. Although we shall not pursue this

issue further, we observe that the final subspace dimension of the enriched

space method seems to be rather insensitive to the problem dimension, and

this is typical of shift-and-invert Krylov subspaces when applied to functionals

such as the Laplace operator [78].
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Figure 3.1: Example 3.1. Convergence history of standard and augmented
Krylov subspace solvers using 2D discrete Laplacians of varying signs and
mesh widths as problem data. In the left plot, n1 = 324 and n2 = 400, while
in the middle and right plots, n1 = 2304 and n2 = 2500.

Example 3.2. We consider the solution of (3.8), where A2, B and C stem

from the non-symmetric CHIP dataset of the Oberwolfach collection [39]. The

matrix A1 was obtained as a finite difference discretization of the 2D Laplace

operator, scaled so as to have the same Frobenius norm as A2. The two matri-

ces A1 and A2 have size n1 = 19881 and n2 = 20082, respectively. The input

matrix B has a single column, whereas C has five rows. Figure 3.2 reports on

our experiments comparing two choices of projection spaces: standard Krylov

subspace for both A,BT , and extended (augmented) Krylov subspaces for A

(BT ). This experiment fully confirms our findings on a more realistic problem

than the one of the previous example.
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Figure 3.2: Example 3.2. Convergence history of standard/standard and ex-
tended/augmented Krylov subspace solvers on the CHIP problem from the
Oberwolfach benchmark collection.

Example 3.3. We consider for A2 the 9669×9669 non-symmetric and stable

matrix FLOW from the Oberwolfach benchmark collection [39], with B hav-

ing a single column, and C having five rows. A discretization of the Laplace

operator ∆u was used for A1, giving rise to a 9604× 9604 stable matrix. The

performance of standard and enriched space methods in terms of space dimen-

sion is reported in the left plot of Figure 3.3. For this problem we further an-

alyze the importance of selecting enriched spaces for both matrices A and BT .

In the right plot of Figure 3.3 we report the convergence history for several

different pairs of choices for the two spaces Vm and Wm. Specifically, we ex-

periment with extended/augmented (as before), as well as extended/standard

and standard/augmented spaces. The combination of the two richer spaces

provides the most effective approach. We also observe that although the use

of the extended Krylov subspace for A seems to be very crucial to speed up

convergence, the projection process becomes definitely competitive only when

using the enriched (augmented) strategy also on BT .

Example 3.4. Here A2 is the finite difference discretization of the operator

L(u) = (e−4xy
ux)x + (e4xyuy)y, (x, y) ∈ (0, 1)2. The (scaled) symmetric matrix



50

0 20 40 60 80 100 120 140 160 180

10
−12

10
−10

10
−8

10
−6

10
−4

Dimension of spaces V and W

B
a
c
k
w

a
rd

 e
rr

o
r

 

 

Standard
Augmented

0 20 40 60 80 100 120 140 160

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Dimension of (largest) space V and W

R
e
la

ti
v
e
 n

o
rm

 o
f 
re

s
id

u
a
l

 

 

 A: Extended,  BT: Augmented

 A: Extended,  BT: Standard

 A: Standard,  BT: Augmented

Figure 3.3: Example 3.3. Convergence history of various pairs of standard and
augmented Krylov subspace solvers on the FLOW problem from the Oberwol-
fach benchmark collection.

A2 of size n2 = 6400 has eigenvalues in [−1.7061 · 102,−4.7543 · 10−3]. We

considered C with m = 10 rows and B with p = 5 columns, corresponding to

the first m and p columns of the identity matrix, respectively. The matrix A1

is the finite difference discretization of the negative Laplace operator in (0, 1)2,

with eigenvalues1 in [1.9779·101, 5.1100·104]; here we used n1 = n2−m = 6390,

and the matrix was obtained by using 90 and 71 interior nodes in the two

directions, respectively. The performance of the methods with the use of

standard and augmented spaces is reported in Figure 3.4. For the left plot

an a-priori computed rank-one matrix �Y2 = �Y2,1
�Y T
2,2 with �Y2,1,

�Y2,2 of all ones

was used, whereas in the right plot a rank-p matrix with random entries for

�Y2,1,
�Y2,2 was employed. Defining the relative rank of a matrixX as the number

of singular values greater than 10−12 times the largest singular value, we notice

that the augmented method delivered an approximate solution matrix �Xk with

relative rank 6 and 22, respectively, for the two choices of �Y2. Therefore, the

rank-one choice should be preferred, at least in terms of memory requirements

for the approximation space (cf. Figure 3.4) as well as for the factors of the

1Only the 10 smallest in magnitude eigenvalues of −A1 interlace those of A2, with no
apparent degradation in convergence.
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solution matrix.
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Figure 3.4: Example 3.4. Convergence history of standard and augmented
Krylov subspace solvers for different ranks of �Y2 . Left: rank-one �Y2. Right:
rank-p �Y2 = �Y2,1

�Y T
2,2 (random entries in �Y2,1, �Y2,2).

3.5 Chapter summary

We have devised a new formulation of a constrained Sylvester matrix equa-

tion, which allows one to solve large-scale problems by means of advanced

Galerkin projection methods. To be able to efficiently solve the resulting

Sylvester equation, we have introduced a new augmented space, which over-

comes the singularity of the coefficient matrix B. Though the implementation

is completely analogous to that of more familiar extended Krylov subspaces,

the use of such an approximation to an extended Krylov subspace as a means

of enriching the standard space appears to be new. From a theoretical point

of view, known results for rational Krylov subspace methods on the Sylvester

equation can be applied to the “exact” augmented space EKm(BT + σI,F);

see [6]. The space we actually adopt, �EK
σ

m, may somewhat differ from the

exact case, depending on the properties of the matrix of inputs B.

Nonetheless, our promising numerical experiments seem to reinforce the in-

tuition that the space generated with �Bσ appropriately captures spectral infor-
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mation that is otherwise missed in the standard Krylov subspace Km

�
BT

,F
�

at an early stage. Finally, we expect that our approach may be of value also

when attacking the non-homogeneous form of the equation (3.1)–(3.2), which

is currently an open problem in the large-scale case.
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CHAPTER 4

GENERALIZED LYAPUNOV

EQUATIONS

In this chapter we present a numerical technique for solving generalized

Lyapunov equations. We first state some known facts about using the extended

Krylov subspace method for standard Lyapunov equations. We then survey

some existing theory for generalized Lyapunov equations and comment on

how this can be used to devise solution methods for the large-scale case. Our

approach can be described as an inner-outer scheme where inner solves are

Lyapunov solves with the extended Krylov subspace method performed in an

inexact manner. We briefly describe some current problems in the literature

and existing approaches to solve them, and compare CPU and memory costs

with our proposed method. It can be appreciated that the proposed method

is competitive with the current state-of-the-art.
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4.1 Extended Krylov subspace methods for Lya-

punov equations

We briefly comment on how the extended Krylov subspace method can be

used to solve large-scale Lyapunov equations

AX +XA
T +BB

T = 0 (4.1)

for large, sparse A ∈ Rn×n and B ∈ Rn×r with r � n. The method described

in Section 2.3 extends naturally; in fact, historically, extended Krylov sub-

spaces were used for Lyapunov equations before they were used for Sylvester

equations. We essentially summarize the technique described in [68]. Building

a basis of the space (2.18) as described in Section 2.3 now entails only building

EKm(A,B). Since transposing (4.1) yields

AX
T +X

T
A

T +BB
T = 0

it follows that X
T solves the same Lyapunov equation. If this solution is

unique we must have X = X
T , that is, X must be symmetric. This is also

seen by examining the analytic solution (assuming A is stable)

X =

�
∞

0

e
At
BB

T
e
AT t

dt (4.2)

and in fact from this we may infer that v
T
Xv ≥ 0 for all v ∈ Rn, i.e., the

solution to (4.1) is positive semi-definite.

A desirable property of the extended Krylov subspace method is that ap-

proximate solutions are also both symmetric and positive semi-definite. To

demonstrate that this is indeed the case, note that an element Xm of the

space

Sm = S (EKm(A,B),EKm(A,B))

is of the form Xm = VmYmVT
m. The Rayleigh quotient matrices Tm =

VT
mAVm inherit stability from A, since for any orthogonal matrix V one has

W (VT
AV) ⊆ W (A),
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so that solution of the projected problem is given by

Ym =

�
∞

0

e
Tmt(VT

mB)(VT
mB)T eT

T
mt
dt

which is also symmetric and positive semi-definite for the same reasons as

before. Thus Xm is clearly symmetric, and if one factors Ym = UmU
T
m, it

follows that Xm = ZmZ
T
m where Zm = VmUm, so that Xm is also positive

semi-definite. Conceptually, we think of the extended Krylov subspace method

for Lyapunov equations as a way to efficiently solve for this single low-rank

factor Zm.

For positive semi-definite matrices we slightly abuse notation and write the

truncation operator in terms of low-rank factors, i.e., writing Z̃ = T (Z) means

that ���ZZT − Z̃Z̃
T
���
F
≤ τ

��ZZT
��
F

for some prescribed truncation tolerance τ , where the truncation is performed

as described in Section 2.4. We note that this truncation can be performed at

negligible cost for an approximate solution delivered by the extended Krylov

subspace method. Since it is necessarily of the form Xm = VmYmVT
m with Vm

having orthonormal columns, the QR decomposition of the outer matrix can be

skipped. In order to truncate, one needs to compute an eigenvalue decomposi-

tion of the small symmetric positive definite matrix Ym, which is technically a

singular value decomposition. This can be truncated as previously described.

4.2 Background on generalized Lyapunov equa-

tions

A generalized Lyapunov equation1 is a linear matrix equation of the form

AX +XA
T +NXN

T +BB
T = 0 (4.3)

1We note the name generalized Lyapunov equation often refers to an equation of the
form AX +XAT +

��
j=1 NjXNT

j + BBT = 0 and that what we write is a special case of

this.
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for sparse A,N ∈ Rn×n and B ∈ Rn×r for the unknown X ∈ Rn×n. Again it is

assumed that r � n. The matrix N may often be of low-rank and/or satisfy

the property �N�F � �A�F . We write A(X) = AX + XA
T + NXN

T and

B = −BB
T , so that (4.3) can be written as

A(X) = B.

Our approach to solve (4.3) is inspired by Damm [16], where it is suggested

that one use the splitting

A = M−N with M(X) = AX +XA
T and N (X) = −NXN

T

and the associated classical iteration

M(Xk+1) = N (Xk) + B. (4.4)

It is well known that this iteration converges provided ρ(M−1N ) < 1; for

general references on classical iterations and splittings we refer to [11, 80].

Damm then recalls an equivalence between positive semi-definiteness of the

solution matrix X and convergence of the classical iteration (4.4), where the

method of proof essentially follows from results in [65]. We remark that a

positive semi-definite solution may often be expected as a result of interpreting

X as a controllability or observability Gramian of some associated bilinear

dynamical system. Based on this result, the above classical iteration and

existing smale-scale Lyapunov solvers provide a viable numerical method in

the small-scale case.

In [7], Benner and Breiten consider the large-scale, low-rank right-hand side

case. They provide a theory for singular value decay in analogy to the stan-

dard Lyapunov equation. A well-known solver for standard Lyapunov equa-

tions is the low-rank alternating directions implicit (henceforth ADI) method,

described in [43]. Benner and Breiten propose a modification of ADI that is

suitable for the generalized Lyapunov equation, called Bilinear ADI, and use

this as a stand-alone solver as well as a preconditioner for the low-rank Krylov

subspace methods described in Section 2.4.



57

We shall propose a return to the method based on classical iterations of

the form (4.4) and low-rank solvers for Lyapunov equations. Specifically, we

use the classical iteration (4.4) and the fact that the extended Krylov subspace

method returns a low-rank factor Zk of the solution to reduce (4.3) to solving

a sequence of equations of the form

AXk+1 +Xk+1A
T + [NZk, B]

�
Z

T
k N

T

B
T

�
= 0, (4.5)

that is, a sequence of large-scale Lyapunov equations with low-rank right-

hand sides. Our perspective is essentially that the extended Krylov subspace

method is such a powerful solver for large-scale Lyapunov equations such as

those in (4.5) that a low-rank version of the classical iteration (4.4) can be a

competitive modern solver for large-scale generalized Lyapunov equations.

We shall provide some theory for performing the required inner solves in

an inexact manner. Moreover, given a splitting we shall propose a method

for monitoring the norm of the residual associated with this method. What

we present is especially beneficial in the low-rank case. We shall also describe

a simple but advantageous perspective on using extended Krylov subspace

methods to solve Lyapunov equations with a right-hand side that has a mod-

est rank. With all of these ingredients, we shall provide numerical evidence

that the proposed approach is competitive with respect to CPU time, storage

requirements, and subroutine calls such as linear system solves with coefficient

matrix A.

4.3 Inexact stationary iterations

4.3.1 Decreasing tolerances

We now provide some theory for performing an inexact version of the clas-

sical iteration (4.4) in such a manner that the outer iteration still converges.

Namely, we consider non-stationary iterative methods that are of the form

Mxk+1 = Nxk + b+ ek+1. (4.6)
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While the bounds we provide may be difficult to directly apply in certain

settings, they provide theoretical evidence for several phenomena that were

observed in our numerical experiments. One such phenomena was the use of

decreasing inner tolerances while maintaing convergence of the outer iteration.

A theoretical result aids understanding, since it is not clear a priori whether

decreasing or increasing tolerances should be used. For instance, it is well

known that for inexact Newton sequences the necessary Jacobian solves can

initially be performed to a loose tolerance that is tightened as the iteration

converges [18]. The case is exactly reversed in the case of Krylov subspace

methods, where the accuracy of the matrix-vector product used to build a

Krylov subspace must initially be very tight, and can eventually be relaxed as

the iteration proceeds [71].

The following theorem motivates choosing a sequence of inner tolerances

that is proportional to the relative residual while maintaining convergence of

the iteration. It requires a slightly stronger condition for convergence of the

exact stationary iteration, namely, that �M−1
N� < 1 in some computable

norm.

Theorem 4.1. Let A = M −N with M nonsingular such that �M−1
N� < 1.

Let x� be the solution of Ax = b, and consider a nonstationary iteration of the

form (4.6), where we impose

�ek+1� ≤ τ�rk� (4.7)

for some positive real number τ . Then iteration (4.6) converges linearly to

the solution x� with convergence factor no greater than γ = �M−1
N� +

τ�M−1��A�.

Proof. Since Mx� = Nx� + b, we first write xk+1 − x� = M
−1
N(xk − x�) +
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M
−1
ek+1. Taking norms yields

�xk+1 − x�� ≤ �M−1
N� · �xk − x��+ �M−1� · �ek+1�

≤ �M−1
N� · �xk − x��+ τ�M−1� · �rk�

= �M−1
N� · �xk − x��+ τ�M−1� · �A(x� − xk)�

≤
�
�M−1

N�+ τ�M−1� · �A�
�
�xk − x��

and the theorem follows.

This theorem provides theoretical justification for another modification

that proved to be beneficial, namely, the use of inexact right-hand sides.

Solving (4.5) via the extended Krylov subspace method requires building

EKm(A, [NZk, B]). In our experience, the matrix [NZk, B] has too many

columns to make this procedure computationally tractable. We therefore in-

stead propose to compute Bk = T ([NZk, B]) for the same set of decreasing

tolerances and instead solve

AXk+1 +Xk+1A
T +BkB

T
k = 0. (4.8)

This error can also be “hidden” in the inexactness term ek+1, and building

EKm(A,Bk) is much more appealing since Bk now has far fewer columns as a

result of column compression. We note that for the problems we considered, N

was of low-rank, and this seemed to assist in reducing the number of columns

of Bk.

4.3.2 Residual monitoring

As noted, solves with M will often be done according to some iterative

procedure as well and thus performed to some tolerance µ, resulting in an

iteration of the form (4.6) for some ek+1 that satisfies �ek+1� ≤ µ. It would

then be of interest to monitor �rk+1�, where rk+1 = b− Axk+1 is the residual

of the original system.
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Theorem 4.2. Let A = M −N and consider an inexact stationary iteration

of the form (4.6) where �ek+1� ≤ µ for some tolerance µ. Then

�rk+1� ≤ µ+ �N(xk+1 − xk)�. (4.9)

Proof. We calculate

rk+1 = b− Axk+1

= b−Mxk+1 +Nxk+1

= b−Mxk+1 +Nxk −Nxk +Nxk+1

= −ek+1 +N(xk+1 − xk)

so that the desired inequality immediately follows from the triangle inequality.

We propose the right-hand side of the inequality in (4.9) as a practical

means for monitoring the norm of the residual and enforcing stopping criteria.

At first it appears to be useless, since in the context of solving a linear system

Ax = b it provides an estimate for the residual norm at approximately the

same cost of calculating the residual norm itself (one matrix vector product,

one vector addition, and one vector norm). However, it does find utility in the

context of low-rank solvers for linear matrix equations. This is because there

are some subtleties associated with the ranks of the “vectors” involved, which

are implicitly represented in some low-rank storage format.

Suppose we have just solved (4.8) to a tolerance µ for a low-rank factor

Z that has p columns and we seek to estimate the norm of the residual when

plugged into equation (4.3). Then the full residual is of the form

B −A(ZZT ) = −[Z,AZ,NZ,B]





0p Ip 0p 0p×r

Ip 0p 0p 0p×r

0p 0p Ip 0p×r

0r×p 0r×p 0r×p Ir









Z
T

Z
T
A

T

Z
T
N

T

B
T




(4.10)

where the low-rank factor of this residual has 3p+r columns. Note we typically

expect r � p. If we examine the upper bound described in (4.9), where we
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now use subscripts k and k+1 to differentiate low-rank factors and their ranks

from successive iterates, we find that

N (Xk+1 −Xk) = [NZk+1, NZk]

�
Ipk+1

0

0 −Ipk

��
Z

T
k+1N

T

Z
T
k N

T

�
(4.11)

where the low-rank factor has only pk+1 + pk columns.

If we assume (for simplicity and argumentation) that p = pk = pk+1, then

additional storage drops from 3p+r to 2p. We then compute the residual norm

�Rk+1�F as �Rk+1�F = �Rk+1, Rk+1�1/2F according to the low-rank Frobenius

inner product described in Section 2.4. Either method incurs some additional

O(n) computation to compute or estimate the residual norm. But if storage is

an issue, it can pay to bound the residual norm as described. At first glance it

may seem puzzling; the estimate in the theorem may originally be discarded

as not useful. But with low-rank methods, such subtle issues are common.

Typically µ (the inner tolerance) is smaller than our outer tolerance, so that

not much is lost in using the triangle inequality. In our experiments we found

the approximation to be of very good quality.

4.4 Separate right-hand sides for Lyapunov equa-

tions

Even after truncating Bk = T ([NZk, B]), the cost of building EKm(A,Bk)

could still be dominated by orthogonalizations. We therefore consider solv-

ing Lyapunov equations with thick right-hand sides2. When solving a linear

system

Ax = b

it may seem strange to write b = b1+· · ·+br, solve xi = A−1bi for i = 1, . . . r,

and return x = x1 + · · · + xr as the solution. Nevertheless, this is what we

2Here thick means many columns, that is, r > 10.
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shall consider for

A = I ⊗ A+ A⊗ I and b = vec(−BB
T )

i.e., for the Lyapunov equation (4.1) where vec(X) = x. We shall consider the

case r > 10, which has shown up in several application areas outside of control

theory. For instance, in control theory a SISO system guarantees that r = 1

so that the associated Lyapunov equation can be feasibly solved. However, a

Lyapunov equation may arise as a subproblem of solving another problem, as

in (4.4). In this case it can often have a thick right-hand side that is out of

the user’s control. The cost of building a block space may become infeasible.

As a possible way around this, write B = [b1, . . . , br] and note that the

interpretation of matrix-matrix products as a sum of outer products [26] yields

BB
T = b1b

T
1 + · · ·+ brb

T
r .

Since M is linear, so is M−1, thus

X = M−1(−b1b
T
1 ) + · · ·+M−1(−brb

T
r ),

that is, we are in the above scenario with bi = −bi ⊗ bi for i = 1, . . . , r.

Individual solves A−1bi correspond to rank-one Lyapunov equations

AXi +XiA
T + bib

T
i = 0

where vec(Xi) = xi. Noting that

EKm(A, bi) ⊆ EKm(A,B) for all i = 1, . . . , r,

one should ask what is gained by building EKm(A,B) versus EKm(A, bi) for

all i, since the latter requires a lot less orthogonalization. Such issues have

already been known to arise in standard block Krylov subspace methods [31].

However, a subtle issue with rank arises that can further justify the above

approach. Upper bounds for the singular values of the solution X in the

symmetric case are given in [52]. Let λi(X) denoted the ith eigenvalue of
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X non-increasingly ordered (so that these are the singular values since X is

symmetric positive semi-definite). One can then show that the following upper

bound holds

λrk+1(X)

λ1(X)
≤

�
k−1�

j=0

κ
(2j+1)/(2k) − 1

κ(2j+1)/(2k) + 1

�2

,

where κ = κ2(A) is the 2-norm condition number of A. The main point

in bringing up this bound is that the right-hand side of this inequality is

independent of the rank r of problem data B. Hence the decay appears to

scale with the rank r, and for higher r the above bound permits room for

slower decay. This is reflected in Figure 2.2.

This is also reflected in other methods of proof for the existence of low-

rank approximations. Specifically, in [27] an analytic solution based on a

contour integral representation is approximated by chopping the contour into

several pieces. On each piece, the integrand is expanded as a sum of separable

functions, and the resulting integrals are then approximated by quadrature.

Ultimately, this procedure results in a sum of a low-rank terms. At no point

is the rank of the right-hand used to influence the procedure, and any bounds

obtained on the quality of the separable approximations or quadrature method

are independent of this rank. Yet the rank of the approximate solution scales

exactly with the rank of the right-hand side. A simple way to see the rank of

an approximate solution scaling with the number of columns of B is by using

some quadrature rule on (4.2). Given quadrature nodes ti and weights wi for

i = 1, . . . , k, one has

X =

�
∞

0

e
At
BB

T
e
AT t

dt

≈
k�

i=1

wie
AtiBB

T
e
AT ti

whose rank is rk.

Taking these observations into account, a loose heuristic argument as to

why one would build the individual spaces instead of the full block space goes

as follows. Building EKm(A,B) to solve (4.1) results in a basis that is “r
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times as rich.” However, when the problem is split in the proposed manner,

individual problems become “r times easier” to solve since one expects more

singular value decay from solutions with single column right-hand sides. If we

make the simple but dubious assumption that these effects cancel one another

out, there is a net gain in the new approach since the basis of the block space

does not need to be fully orthogonalized nor fully stored.

If we denote Xi as the solution corresponding to right-hand side bib
T
i , we

can guarantee that the approximate solution X = X1+ . . . Xr satisfies a given

relative residual tolerance
��AX +XA

T +BB
T
��
F

�BBT�F
≤ τ

by solving each individual equation to tolerance τ/r

��AXi +XiA
T + bib

T
i

��
F

�BBT�F
≤ τ

r
,

so that one must solve to a higher tolerance and thus incurs some additional

computational overhead. We found it was well worth it to incur this cost as a

tradeoff for not having to perform an inordinate amount of orthogonalization.

In our experiments we found truncating the low-rank factor Z = [Z1, . . . , Zr]

as it is being built to be beneficial, where Zi denotes the low-rank factor as-

sociated with the column vector bi. Specifically, one first solves for Z1 and

sets the current approximation to the low-rank factor for Z as Z
(1) = Z1.

Then, since addition corresponds to concatenation of low-rank factors, one

solves for Zi and updates Z
(i) = T ([Z(i−1)

, Zi]) for i = 2, . . . , r and sets the

final low-rank factor of the approximate solution Z = Z
(r). We shall refer to

this procedure as progressive truncation. While initially introducing a minimal

overhead in terms of CPU, this is eventually compensated by not having to

perform a very thick truncation of a low-rank factor [Z1, . . . , Zr] that has not

been progressively truncated. It also assisted with memory needs, in that stor-

ing Z
(r−1) and a final basis EKm(A, br) resulted in lower memory requirements

when progressive truncation was implemented.
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4.5 Storing the initial approximation

Note that with an iteration of the form

xk+1 = M
−1(Nxk + b) (4.12)

= M
−1
Nxk +M

−1
b (4.13)

a quick analysis shows that the costs of (4.12) and of the equivalent iteration

(4.13) are about the same. Both entail one vector addition, one matrix vector

product with N , and one linear solve with M per iterate. However, (4.13)

requires storing the extra vectorM−1
b in order to compute the required update

without recomputing this quantity at every iterate. If this additional vector

can be stored (which is typically the case), one might expect the performance

of either approach to be comparable. Nevertheless, for our purposes it was

worthwhile to analyze the corresponding iterations at the matrix level

Xk+1 = M−1
�
N (Xk) + B

�
(4.14)

= M−1
�
N (Xk)

�
+M−1 (B) (4.15)

and consider the effect of all computations being performed implicitly on low-

rank factors. In this context, applying M−1 entails performing a Lyapunov

solve with the extended Krylov subspace method, and different right-hand

sides entail different spaces being built. For instance, (4.14) requires building

EKm(A, [NZk, B]), while (4.15) requires building EKm(A,NZk). The initial

block of the latter space has fewer columns and is therefore less expensive to

build.

This observation prompted experimentation with both approaches. In or-

der to implement (4.15), we store the initial low-rank factor Z1 = M−1(B).
At each iterate, we then compute the intermediate low-rank factor

Zk+1/2 = M−1
�
N (Xk)

�
.

The two are then added to obtain the low-rank factor Zk+1 = [Z1, Zk+1/2] of

Xk+1. In both cases, the right-hand sides are truncated before building the
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extended Krylov subspace, and we truncate to the same absolute tolerance in

order to make a fair comparison.

4.6 Low-rank classical methods for generalized

Lyapunov equations

We tie results from the previous sections together to describe our approach

for solving generalized Lyapunov equations with extended Krylov subspaces.

All truncation and inner tolerances will be some multiple of our current residual

estimate as described in (4.7); this multiple shall be denoted τ
inexact. The quan-

tity used to monitor the relative residual at the kth outer iterate, based on (4.9),

shall be denoted by τ
bound
k . All Lyapunov solves are done with the extended

Krylov subspace method until the relative residual falls below a prescribed in-

ner tolerance that is proportional to the accuracy of the outer iterate. Namely,

at the kth outer iterate we set our inner tolerance τ innerk = τ
inexact

τ
bound
k−1 . These

Lyapunov solves are done by separating the right-hand sides as described in

Section 4.4. All truncations are performed to some specified truncation toler-

ance τ trunck , which we take equal to the inner tolerance. The method terminates

when the upper bound on the relative residual norm τ
bound
k falls below τ

outer,

so that a relative tolerance τ
outer is guaranteed to have been achieved. The

full method is described in Algorithm 4.1. We note that while we used the ex-

tended Krylov subspace method for Lyapunov equations described in Section

2.3, in theory any Lyapunov solver could be used. We chose EKSM because it

is a strong contender for the state-of-the-art, especially for rank-one right-hand

sides.

We perform a careful analysis of the storage demands that Algorithm 4.1

requires. There are two considerations that should be made. The first occurs

when solving the sequence of rank-one Lyapunov equations. For a given outer

iterate, we require the low-rank factor at the previous iterate in order to com-

pute (4.11), whose norm will provide an upper bound for the residual norm
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Algorithm 4.1 Low-rank classical iterations

Input: Problem data A, N and B, tolerances τ inexact, τ outer.

1: Set β =
��BB

T
��
F
.

2: Solve AX +XA
T +BB

T = 0 to tolerance τ
inexact for Z1.

3: Calculate τ
bound
1 = τ

inexact + �N (X1)�F /β

4: for k = 2, 3, . . . do

5: Set tolerances τ innerk = τ
trunc
k = τ

inexact
τ
bound
k−1

6: Calculate the low-rank factor Bk = T ([NZk−1, B])

7: Write Bk = [b(k)1 , . . . , b
(k)
νk ]

8: for i = 1, . . . , νk do

9: Solve AX +XA
T + b

(k)
i (b(k)i )T = 0 to tolerance τ

inner
k /νk for Z̃i

10: if i = 1 then

11: Z
(1) = T (Z̃1)

12: else

13: Z
(i) = T ([Z(i−1)

, Z̃i])

14: end if

15: end for

16: Set Zk = Z
(νk), calculate βk = �BkB

T
k �F and β̃k = �B̃kB̃

T
k �F

17: Set τboundk =
�
β̃kτ

inner
k + βkτ

trunc
k + �N (Xk −Xk−1)�F

�
/β

18: Stop if τboundk ≤ τ
outer

19: end for

at the current iterate. We are also progressively building a low-rank factor for

the approximate solution that is being truncated at every step of the i loop.

Finally, we shall also have a basis for the extended Krylov subspace associated

with the next column vector b(k)i that is used to continue assembling the low-

rank factor. Thus, at this stage of a given outer iterate, our memory demands

consist of vectors from

• the columns of the previous iterate Zk−1

• the columns of the partially assembled Zk
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• the columns of an orthonormal basis for EK�(A, b
(k)
i )

which counts all stored vectors that have length n. Therefore, our first con-

sideration regarding memory is to record how many of the above vectors are

stored at every outer iterate, with the maximum typically occurring at the last

iterate.

At the next stage of an outer iteration, we store the fully truncated Zk but

discard the basis of the last extended space which is no longer needed. Com-

puting �N (Xk −Xk−1)�F consists of computing of NZk and NZk−1, where the

latter computation may be performed by applying N to each column of Zk−1

and overwriting them one column at a time since Zk−1 is no longer needed

after this operation is performed. Hence at this stage our memory demands

are

• the columns of the current iterate Zk

• the columns of [NZk,−NZk−1] used for estimating the residual norm

which again counts all vectors of length n that need to be stored. Therefore,

for the memory demands of our proposed method, the number of vectors stored

at both stages of each outer iterate are recorded, and we report the largest

recorded number as the memory demands for the proposed method. We note

that there was some competition between the two stages; at any given outer

iterate one could be larger than the other.

4.7 Numerical experiments

We consider a symmetric problem arising in boundary control of the heat

equation, described in [16, 64]. We also consider a non-symmetric problem

which comes from the bilinearization of a nonlinear circuit model, described in

[3]. First, we discuss the relative merits of different elements of our approach.

Table 4.1 compares all possible combinations of four of our proposed features
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Inexact
solves

Inexact
r.h.s.

Separate
r.h.s.

Residual
monitor

CPU Memory Solves Rank

66.56 405 1702 101
� 61.80 427 1702 101

� 39.72 421 1438 105
� � 35.79 225 1438 105

� 34.24 405 1077 101
� � 31.11 427 1077 101
� � 25.50 421 1020 105
� � � 22.22 225 1020 105

� 41.81 405 1230 101
� � 37.59 398 1230 101
� � 24.82 421 722 105
� � � 21.38 225 722 105
� � 25.78 405 818 101
� � � 22.61 398 818 101
� � � 18.69 421 631 105
� � � � 16.13 225 631 105

Table 4.1: Comparing various enhancements to overall performance of the
method (symmetric problem, size n = 10000).

for the symmetric problem. A similar table is given for the non-symmetric

problem in Table 4.2.

A checkmark in the column marked “Inexact solves” means that a de-

creasing sequence of inner tolerances was used; if empty, an inner tolerance

of 10−11 was used. By “Inexact r.h.s.” we mean that a decreasing sequence

of truncation tolerances was used; otherwise, a truncation tolerance of 10−10

was used. The column entitled “Separate r.h.s.” is used to denote that only

Lyapunov equations with rank-one right-hand sides were solved, as described

in Section 4.4. Finally, “Residual monitor” denotes whether the full residual

(4.10) was formed, or the cheaper bound for the residual (4.11) was used.

Where applicable, the quantity τinexact of Algorithm 4.1 was taken to be 10−3.

We now analyze the effect of each feature. Decreasing inner and truncation

tolerances both have the effect of savings in CPU time and number of linear

solves performed, which is to be expected due to smaller spaces being built.
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Inexact
solves

Inexact
r.h.s.

Separate
r.h.s.

Residual
monitor

CPU Memory Solves Rank

701.64 677 3692 169
� 690.60 603 3692 169

� 222.45 701 4690 175
� � 203.21 375 4690 175

� 616.84 697 3458 174
� � 541.97 671 3135 174
� � 193.23 721 4130 180
� � � 182.49 385 4130 180

� 450.38 677 2934 169
� � 447.87 592 2934 169
� � 144.15 705 3024 176
� � � 127.26 377 3019 176
� � 505.74 697 3203 174
� � � 353.05 622 2557 174
� � � 97.79 709 2342 177
� � � � 85.94 381 2342 177

Table 4.2: Comparing various enhancements to overall performance of the
method (non-symmetric problem, size n = 10100).

However, neither assists in reducing memory demands, since by the final outer

iterate the decreasing inner tolerances became approximately equal to the fixed

inner tolerance, and performing an inner solve to this tolerance resulted in the

equal storage demands. A similar phenomena occurred for truncation toler-

ances. Solving separate right-hand sides led to a large reduction in CPU time,

but also a small reduction in memory demands, since the full block extended

Krylov subspace is never formed. Residual monitoring, on the other hand,

often led to a large reduction in memory demands, but also a small reduc-

tion in CPU time, since a full residual norm was more expensive to calculate.

It is also worth remarking that residual monitoring was most effective when

paired with separate right-hand sides, since building the full extended Krylov

subspace could often be the dominating memory cost. The combination of all

four proposed modifications provides the most effective approach; implement-

ing one feature does not appear to negatively impact any other. Finally, we
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observed the rank of approximate low-rank factors to be about the same with

each method.

Next, we comment on the approach of storing the initial low-rank factor,

described in Section 4.5. We compare the classical iterations (4.14) and (4.15)

for the non-symmetric problem of size n = 10100. Applications of M−1 again

entail Lyapunov solves with the extended Krylov subspace method. In both

cases right-hand sides are truncated, so that the resulting extended Krylov

subspace is feasible to build. The same absolute truncation tolerance was

used, meaning that if T ([NZk, B]) is computed with truncation tolerance τ1,

to obtain the same absolute tolerance T (NZk) is computed with truncation

tolerance

τ2 = τ1�N (Xk) + B�F/�N (Xk)�F .

No other modifications to the extended Krylov subspace method are consid-

ered. In this case, the unmodified method takes 703.8 seconds and requires

storing 677 vectors. On the other hand, storing the initial low-rank factor

entails building a smaller extended Krylov subspace. In terms of the num-

ber of columns of the initial block, we typically saw a reduction equal to the

number of columns of B. This approach took 646 seconds and required 713

vectors, which resulted in an 9 % speedup with 5 % additional storage. This

is reasonable, since each inner solve is cheaper to perform, while an additional

low-rank factor needs to be stored.

Combining this feature with the others posed some difficulties. For in-

stance, the quality of the approximate low-rank factor Z1 affects the quality

of all subsequent low-rank factors Zk. Specifically, in order to satisfy a de-

creasing sequence of tolerances, the initial iterate Z1 needed to be solved to a

tolerance that was small enough to ensure that the final inner tolerance would

be satisfied. Thus, additional columns of Z1 needed to be stored, which made

subsequent truncations more expensive. Overall, when combined with the

other features we did not observe a speedup in our experiments and therefore

decided to not pursue the issue further here. However, in our experiments B
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also had only a single a column, and we believe the result could be of interest

for B with several columns.

Finally, we compare our method with those proposed in [7], with special

attention given to memory demands. In our experiments we found τinexact =

10−3 to be acceptable. All methods are stopped when the residual falls below

τouter = 10−8. The truncation tolerance for the methods in [7] was τtrunc =

10−10, and we adopt the same value here. For the low-rank Krylov subspace

methods described in Section 2.4, we count the number of vectors of size n

used to store of the low-rank matrices that implicitly represent a vector used

in the Krylov subspace method after they have been truncated. For example,

in assessing the memory demands of Algorithm 2.6 we count the number of

vectors used to store X,R,Z, P and Q after they have been truncated, with

an analogous counting scheme for low-rank BiCGStab.

The Bilinear ADI method updates a low-rank factor to an approximate

solution according to

Zk+1 = [(A− σkI)
−1(A+ σkI)Zk,

√
2σk(A− σkI)

−1
NZk,

√
2σk(A− σkI)

−1
B]

for a series of shifts σk. This operation is done one shift at a time, and these

shifts must be precomputed. The resulting low-rank factor is then truncated

and the corresponding full residual (4.10) is formed. Thus, for the Bilinear

ADI method as a stand-alone solver, we count memory costs as the number of

vectors required to store this truncated approximate solution along with the

number of columns of the associated full residual.

We present a summary of computational resources required for the different

methods and problems. The abbreviation EKSM-GenLyap, which was described

in Algorithm 4.1, consists of all of our proposed modifications in Tables 4.1

and 4.2. The abbreviations ADI and BiADI represent the alternating directions

implicit method and its bilinear analogue. A prefix of CG or BiCGStab denotes

a low-rank Krylov subspace method being used as an outer solver, with the

following term denoting what was used as a preconditioner. For instance,

BiCGStab-BiADI denotes that the low-rank BiCGStab method was used with
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one step of the Bilinear ADI method as a preconditioner. For each problem,

a bold number denotes superior performance in its respective category when

compared against every other method.

Method CPU (s) Memory Solves Solution rank

EKSM-GenLyap 16.1 225 631 105
BiADI 100.0 213 3011 53
CG-BiADI 178.9 589 3934 54
CG-ADI 97.4 596 1545 54

EKSM-GenLyap 35.7 241 581 112
BiADI 224.6 225 3345 56
CG-BiADI 363.7 650 4868 57
CG-ADI 164.0 599 1557 56

Table 4.3: Comparison of performance of various methods for a symmetric
generalized Lyapunov equation. Top half of the table is for a problem of size
n = 10000, while the bottom half is for size n = 22500.

For the symmetric heat conduction problem, we consider problems of size

n = 10000 and n = 22500, and in both cases r = 1. The coefficient matrices A

and N are symmetric negative definite and symmetric negative semi-definite,

respectively, so that the overall system is symmetric negative definite. A

comparison of the performance of each method is given in Table 4.3. We

note that the proposed method appears competitive with respect to memory

demands, requiring only a few more vectors than then method with smallest

storage requirements. As far as CPU timings and number of linear solves, the

proposed method delivers the most competitive result, with a dramatically

decreased CPU time. All elements of Algorithm 4.1 appear to pay off.

For the non-symmetric circuit problem, we consider two sizes n = 10100

and n = 22650, and in both cases r = 1. The coefficient matrix is non-

symmetric and negative definite. A comparison of the performance of each

method is given in Table 4.4. Here the proposed method gives the best per-

formance with respect to CPU timings and memory, finishing in about a third

of the time of the next closest method. The number of solves is also the best
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Method CPU (s) Memory Solves Solution rank

EKSM-GenLyap 85.9 381 2342 177
BiADI 245.3 401 11654 100
BiCGStab-BiADI 818.2 3159 34300 94
BiCGStab-ADI 390.1 2848 13575 95

EKSM-GenLyap 262.1 441 2729 205
BiADI 743.9 445 14150 111
BiCGStab-BiADI 3195.8 3558 44048 108
BiCGStab-ADI 1413.7 3407 21702 107

Table 4.4: Comparison of performance of various methods for a non-symmetric
generalized Lyapunov equation. Top half of the table is for a problem of size
n = 10100, while the bottom half is for size n = 22650.

amongst methods tried, and is substantially less than the number of solves

required by any of the low-rank Krylov or Bilinear ADI methods. While the

rank of the approximate solution delivered by the proposed approach is larger

than that of existing methods for both problems, we observed a favorable

performance with respect to all other metrics.
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CHAPTER 5

RITZ AUGMENTATION

STRATEGIES

This chapter contains an alternative strategy for solving generalized Lya-

punov equations that is based on Ritz augmentation methods. We draw heav-

ily on the results of the preceding chapter; namely, that low-rank Lyapunov

solvers may be used with stationary iterative methods to devise a solution

method for large-scale generalized Lyapunov equations. Our method essen-

tially hinges on the observation that for a convergent classical iteration

Mxk+1 = Nxk + b

the right-hand sides bk := Nxk + b must be converging as well. If solves

with M are done according to some iterative method (again resulting in an

inner-outer method) and this iterative method builds some basis (such as an

extended Krylov subspace), the fact that bk+1 ≈ bk can be exploited to reuse

information from previous iterates.

The idea of reusing information is well known for standard linear systems

and eigenvalue problems, and we shall see that the idea extends naturally to

linear matrix equations. In fact, similar ideas had already been considered in

[47]. Though we have assumed up until this point that we are in possession

of optimal solvers for linear systems with coefficient matrix A, if no such



76

solver is available the construction of an extended Krylov subspace could be

quite costly. We shall see that by using the method proposed in this chapter,

performing linear solves with the matrix A can be stopped early in the outer

iteration once enough information corresponding to these linear solves has been

generated. In other words, the methods proposed in this chapter are designed

to reduce the total number of linear solves with coefficient matrix A.

5.1 Background material and preliminaries

5.1.1 Augmented Krylov subspaces

Given a matrix A ∈ Rn×n, augmented Krylov subspaces are subspaces of

the form

Um = W+Km (A, b) (5.1)

for some subspace W ⊆ Rn. They are described and analyzed in [14, 62]. For

the solution of sequences of linear systems with the same coefficient matrix

A, it may be possible to reuse information generated in the process of per-

forming one linear solve to assist with the next. A simple example of this is

the restarted GMRES method; at each inner iteration of this method, a basis

for a Krylov subspace is built that is discarded upon the restart. It was real-

ized that such discarded information could be reused to help aid convergence;

see for instance [48], as well as [49] for an example pertaining to eigenvalue

computations.

Perhaps the most straightforward method for building (5.1) is the one de-

scribed in [62], where the augmented vectors are introduced at the end of the

procedure after a Krylov subspace has been built. While this has the advan-

tage of ease of implementation, it is not clear how to continue building the

space if more vectors from the Krylov subspace are desired. Another possible

approach consists of storing two sets of orthonormal bases; one for Um, and one

for Km (A, b). In this approach, one also builds the Krylov subspace Km simul-

taneously while building Um. Every time a new Arnoldi vector of Km is stored,
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it is orthogonalized against the existing basis for Um and then normalized to

update the basis for the augmented space. While also easy to implement, this

approach requires a doubling of storage and orthogonalizations, and it is not

immediately clear how to obtain the Rayleigh quotient matrix required for a

Galerkin projection at a negligible cost.

Finally, a method known as implicit restarting, originally described in [74],

is applicable when the augmentation vectors are of a special form. In this case

the starting vector used to build the next Krylov subspace can be modified

in such a way that building a standard Krylov subspace with a new modified

starting vector results in building the desired augmented space. This was used

in [50] for solving linear systems. While elegant, the method is not trivial to

implement. The method we shall propose is essentially based on a remarkable

property of vectors known as Ritz vectors, which are described in the next

section.

5.1.2 Ritz vectors

Ritz vectors and Ritz values are approximations to the eigenvalue problem

Aw̃ = λw̃

from a Krylov subspace Km (A, b). Such approximations can be extracted from

Km via Galerkin projection, and is sometimes referred to as the Rayleigh-Ritz

procedure; details can be found in, e.g., [60]. We call an element w ∈ Km a

Ritz vector with corresponding Ritz value θ if

Aw − θw ⊥ v for all v ∈ Km. (5.2)

Given a Ritz vector w, the corresponding Ritz residual is r = Aw−θw. Letting

the columns of Vm denote a basis for Km, we write w = Vmg and enforce the

Galerkin condition by writing V
T
m r = 0. In this manner, one can show that

(5.2) is equivalent to

Hmg = θg,
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that is, g is an eigenvalue of the Rayleigh quotient matrix Hm = V
T
mAVm with

corresponding eigenvalue θ. From the nested properties (2.2) one can show

that the Ritz residual r ∈ Km+1. Since r is in Km+1 but orthogonal to Km, the

only direction in which it may have a nonzero component is vm+1. This can

be made explicit using the Arnoldi relation (2.4); specifically, it can be shown

that

Aw − θw = fvm+1 for the scalar f = hm+1,me
T
mg. (5.3)

For large enough m, we expect the Ritz values that are largest in magnitude

to produce good approximations to the eigenvalues of A that are of largest

magnitude. Similarly, we expect the Ritz vectors in Km corresponding to

these Ritz values to approximate the corresponding eigenvectors.

If one possesses several, say q, Ritz vectors w1, . . . , wq, these can be gath-

ered as the columns of the matrix W = [w1, . . . , wq]. The corresponding Ritz

values θ1, . . . , θq can be put in the diagonal matrix Θ = diag(θ1, . . . , θq) and

the scalars f1, . . . , fq can be gathered in the column vector �f = [f1, . . . , fq]T .

The relation (5.3) for each i = 1, . . . , q can then be succinctly summarized in

the matrix equation

AW = WΘ+ vm+1
�f
T
. (5.4)

We remark that (5.4) expresses the fact that all eigenresiduals point in the

same direction.

For our subsequent purposes, the relation (5.4) will be very useful. We seek

an analogous structure for extended Krylov subspaces. Note that the nested

properties are what guaranteed that the Ritz residual points in the direction

of the last Arnoldi vector. The extended Krylov subspaces also possess an

analogue of these properties; recall (2.25). We define a Ritz vector w from an

extended Krylov subspace EKm = EKm(A,B) in the same manner. Specif-

ically, w is called a Ritz vector of EKm with corresponding Ritz value θ if

Aw − θw ⊥ v for all v ∈ EKm. In exactly same manner, one can show that

such Ritz values are eigenvalues of the Rayleigh quotient matrix Tm and that
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the corresponding Ritz vector w satisfies

Aw = θw +V(m+1)f for the column vector f := T(m+1,m)E
T
mg,

where V(m+1) denotes the last block of basis vectors generated by the extended

Arnoldi algorithm and T(m+1,m) denotes (m+1×m) block of the block upper

Hessenberg matrix Tm.

Assuming once again that we are in possession of q of these quantities that

are gathered in W , Θ, and the matrix F = [f1, . . . , fq], it follows that

AW = WΘ+V(m+1)F. (5.5)

However, note that a Ritz value, being an eigenvalue of Tm, may be complex

if A is non-symmetric. For subsequent purposes, we would like to avoid us-

ing complex arithmetic while maintaining a structure resembling (5.5) with

quantities that are all purely real. It will also be desirable for W to have

orthonormal columns.

To accomplish this task, given some Ritz vector w that we would like in

W, we first write the following quantities in terms of their real and imaginary

parts

w = x+ iy, g = s+ it, and θ = α + iβ, (5.6)

so that (5.3) is equivalent to

A[x, y] = [x, y]

�
α β

−β α

�
+V(m+1)[fα, fβ], (5.7)

where fα = T(m+1,m)ET
ms and fβ = T(m+1,m)ET

mt. One can now construct real

W̃ , Θ̃ and F̃ satisfying (5.5). We first initialize these three matrices to have

no columns. If we seek to augment with a real Ritz vector, we append this as

the last column of W̃ . We then place the corresponding Ritz value θ as the

next diagonal entry of Θ̃ and append f to the end of F̃. If we instead want to

augment with a complex Ritz vector, we split it into real and imaginary parts

as in (5.6) and append these as two columns to W̃ . We then place the real and
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imaginary parts of the associated Ritz value as a 2× 2 block on the diagonal

of Θ̃ resembling the 2× 2 matrix in (5.7), and append the two column vectors

fα and fβ as defined above to the end of F̃. Doing this one Ritz vector at a

time for every Ritz vector that we seek to put into W results in a relation of

the form (5.5).

While this may suffice for some purposes, the columns of W̃ are not neces-

sarily orthonormal. However, this can be obtained while preserving the desired

structure at negligible cost in the following manner. Note that W̃ = VmG̃

where the columns of G̃ consist of real and imaginary parts of each g. We

compute the small QR decomposition G̃ = GR. Upon defining W = VmG,

Θ = RΘ̃R
−1, and F = R

−T F̃, one may show that W has orthonormal columns

and (5.5) holds. Since W would automatically have orthonormal columns for

a symmetric problem, we henceforth assume without lack of generality that

W has orthonormal columns.

5.2 Ritz-augmented Arnoldi for Ax = b

We now describe a method for building an augmented Krylov subspace

of the form (5.1) where the augmented subspace W consists of Ritz vectors.

Though our eventual goal is to use this to solve matrix equations, we first

treat the linear system case with single column right-hand sides for simplicity

of exposition. The amount of computational work and storage is about the

same as established Krylov subspace methods; for instance, using the basis to

perform a Galerkin projection to solve a linear system entails about as much

work and storage as FOM. To the best of our knowledge, the proposed method

for building an augmented space is novel. Using Ritz vectors for W is not new;

what is new is how to build the space and use it in an efficient manner.

We first assume that we have built some Krylov subspace K� (A, b0) for

some column vector b0 and have extracted q Ritz vectors w1, . . . , wq. The

subspace spanned by these Ritz vectors shall be denoted W. We describe a
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way to build an orthonormal basis of

Um = W+Km (A, b) ,

and use information generated in the process to produce an approximation to

the solution of a linear system Ax = b efficiently via Galerkin projection with

criteria for stopping the iteration at a small additional cost.

5.2.1 Building the augmented space

Let W be such that W T
W = I and range (W ) = W. We seek an algorithm

which will deliver vectors u1, . . . , um such that

Um = [W,u1, . . . , um] is orthonormal and range (Um) = Um.

We begin by orthogonalizing b with respect to W and setting u1 to be the

resulting vector after normalizing. This is accomplished by calculating β =

W
T
b, orthogonalizing ũ = b−Wβ, calculating ζ = �ũ�2 and defining u1 = ũ/ζ.

Mathematically speaking, since each uj is a member of Um, it must necessarily

be of the form

uj = Wdj + pj(A)b for some pj ∈ Pj−1, (5.8)

where pj is a (j − 1)th degree polynomial and dj ∈ Rq. This is clearly true

for j = 1. We seek a rule for obtaining an auxiliary vector ũ such that upon

orthogonalization with the columns of W and u1, . . . , uj, the new uj+1 will be

of the form required form (5.8).

To clarify what is meant by auxiliary vector, observe line 3 of Algorithm 2.1

to see this vector for the standard Arnoldi algorithm. When proving that the

Arnoldi algorithm actually builds the desired Krylov subspaceKj, one observes

that a given basis vector is implicitly of the form pj(A)b for some polynomial

pj ∈ Pj−1. Multiplication by A will result in the auxiliary vector implicitly

being of the form Apj(A)b =: qj(A)b with deg(qj) = j, i.e., of one degree

higher. This shows that the next Krylov subspace Kj+1 is spanned by the

resulting set of vectors. This auxiliary vector is then orthogonalized against
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existing basis vectors and normalized to obtain the next basis vector, and the

process is repeated.

Notice that if we attempt this same approach by proposing ũ = Auj, then

(5.4) and (5.8) show that

ũ = WΘdj +
�
�f
T
dj

�
v�+1 + Apj(A)b. (5.9)

where v�+1 is the last Arnoldi vector of K� (A, b0). While the degree of the

associated polynomial has been incremented, the presence of the v�+1 shows

that the resulting auxiliary vector has components in the direction of v�+1, a

vector that is not necessarily in Uj+1. The property that the all eigenresiduals

point in a known direction allows us to correct for components in this unwanted

direction at a small cost. A slight modification of our auxiliary vector will

ensure that that resulting algorithm builds the intended space.

Keeping (5.3) in mind, when building our augmented space we propose the

following auxiliary vector

ũ = Auj −
�
�f
T
dj

�
v�+1. (5.10)

Our reasoning is as follows. If one assumes that uj is implicitly of the form

(5.8), then by virtually the same calculation used to show (5.9), it follows that

Auj −
�
�f
T
dj

�
v�+1 = WΘdj + Apj(A)b.

The left-hand side of this equality is what we have proposed for ũ and what may

be calculated in practice, while the right hand side is an implicit representation

of this same vector. This representation shows that the degree of the associated

polynomial is incremented by one in full analogy with the Arnoldi method

while remaining in the space Uj+1.

For a fully working method, we note that computing (5.10) requires know-

ing dj. Note that the construction of u1 explicitly yields d1 = −β/ζ as a

byproduct of the operations performed. If uj and ũ are given as stated, we

first orthogonalize ũ with respect to W and denote the orthogonalization coef-

ficients by h
W
ij . We next orthogonalize with respect to u1, . . . , uj and normalize
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the resulting vector, and denote these coefficients coefficients by h
U
ij. The next

basis vector will then be of the form

uj+1 =
1

h
U
j+1,j

�
ũ−

q�

i=1

h
W
ij wi −

j�

i=1

h
U
ijui

�
. (5.11)

We plug the implicit representations ui = Wdi + pi(A)b into (5.11) and note

that wi = Wei to obtain

uj+1 =
1

h
U
j+1,j

�
W

�
Θdj − [hW

1j , . . . , h
W
qj ]

T −
j�

i=1

h
U
ijdi

�

+ Apj(A)b−
j�

i=1

h
U
ijpi(A)b

�

= Wdj+1 + pj+1(A)b.

This shows that the next basis vector is of the desired form and gives a re-

currence relation for the next dj+1 in terms of the previous di, i = 1, . . . , j.

It is worth remarking that the only additional computation of O (n) is the

vector update with v�+1 to correct ũ, as the dj are all vectors of size q, and in

our applications q � n. We summarize all details as Algorithm 5.1, and the

previous discussion is essentially an inductive proof that this algorithm builds

an orthonormal basis of Um.

It is also worth remarking that a partial analogue of the Lanczos algorithm

is possible. By this it is meant that for symmetric matrices, the coefficients

required for orthogonalization are available for free. Unfortunately, they are

nonzero, so that the vector updates to remove components still need to be

performed, and method does not become a short-term recurrence method, but

it still is very beneficial with regard to the amount of computation performed.

5.2.2 Performing Galerkin projection

We now describe how, given an orthonormal basis Uj of Uj built by Al-

gorithm 5.1 and its byproducts, one may use these quantities to perform a
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Algorithm 5.1 Ritz-augmented Arnoldi for standard Krylov subspaces

Input: Ritz vectors W , Ritz values Θ, �f, v�+1, A, b.

Output: Vectors u1, . . . , uj such that [W,u1, . . . , uj] has orthonormal columns

that span Um.

1: Set d1 = W
T
b, ũ = b−Wd1, ζ = �ũ�2, u1 = ũ/ζ, d1 = −d1/ζ.

2: for j = 1, ...,m do

3: ũ = Auj − (�fT
dj)v�+1

4: Orthogonalize ũ with respect to w1, . . . , wq, overwriting ũ and storing

coefficients as hW
ij

5: Orthogonalize ũ with respect to u1, . . . , uj, overwriting ũ and storing

coefficients as hU
ij

6: h
U
j+1,j = �ũ�2

7: uj+1 = ũ/h
U
j+1,j

8: dj+1 =
1

hU
j+1,j

�
Θdj − [hW

1j , . . . , h
W
qj ]

T −
�j

i=1 h
U
ijdi

�

9: end for

Galerkin projection approximation to

Ax = b.

We proceed in a manner that is surely familiar by now; namely, writing our

approximate solution xj = Ujyj where yj is chosen according to U
T
j (b−Axj) =

0, or

(UT
j AUj)yj = U

T
j b.

A quick calculation shows that U
T
j b = [βT

, ζe
T
j ]. For the remaining, the

Rayleigh quotient matrix Tj = U
T
j AUj and the residual rj, both entail an

application of A to elements of the space Uj. The calculation (5.9) shows that

applying A to an element of this space results in a vector that is in

Uj+1 + span{v�+1}.

We therefore expect to have to account for components of these quantities in

the direction of v�+1.
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The following calculations make the remarks of the preceding paragraph

explicit. We write �Uj = [u1, . . . , uj] so that Uj = [W, �Uj]. Furthermore, define

H
W
j ∈ Rq×j andH

U
j ∈ Rj+1×j as matrices with entires hW

ij and h
U
ij, respectively.

After each step of the j loop of Algorithm 5.1, it follows that

h
U
j+1,juj+1 = Auj − (�fT

dj)v�+1 −
k�

i=1

h
W
ij wi −

j�

i=1

h
U
ijui,

which is equivalent to

Auj = v�+1
�f
T
dj +

k�

i=1

h
W
ij wi +

j+1�

i=1

h
U
ijui.

Written in matrix form, this yields

A�Uj = WH
W
j + �Uj+1H

U
j + v�+1

�f
T
Dj,

where Dj = [d1, . . . , dj]. This allows us to write

A[W, �Uj] = [W, �Uj+1, v�+1]





Θ H
W
j

0 H
U
j

�f
T �f

T
Dj



 .

The Rayleigh quotient matrix can be calculated by observing that
�
W

T

�UT
j

� �
W �Uj+1 v�+1

�
=

�
Iq 0q×j+1 0q×1

0j×q [Ij|0j×1] �UT
j v�+1

�

and therefore

Tj =

�
Iq 0q×j+1 0q×1

0j×q [Ij|0j×1] �UT
j v�+1

�




Θ H
W
j

0 H
K
j

�f
T �f

T
Dj





=

�
Θ H

W
j

�UT
j v�+1

�f
T

H
K
j + �UT

j v�+1
�f
T
Dj

�
(5.12)

is the desired Rayleigh quotient matrix. The residual of this system satisfies

rj := b− AUjyj = [W, �Uj+1, v�+1]





�
β

ζej

�
−





Θ H
W
j

0 H
K
j

�f
T �f

T
Dj



 yj





� �� �
=:sj
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so that

�rj�2 = s
T
j





W
T

�UT
j+1

v�+1



 [W, �Uj+1, v�+1]sj.

Seeing some light at the end of the tunnel, we compute




W
T

�UT
j+1

v
T
�+1



 [W, �Uj+1, v�+1] =





Iq 0 0

0 Ij+1
�UT
j+1v�+1

0 v
T
�+1

�Uj+1 1



 (5.13)

where W
T
v�+1 = 0 since the columns of W are in K� (A, b0). The matrix on

the right-hand of the above equality is small, as is sj, so this provides a means

of computing �xj�2 at a cost that we consider negligible, with one caveat.

Upon further inspection, we notice that some additional O (n) computation is

required; namely, the presence of the �UT
j+1v�+1 that appear in the expression

for the Rayleigh quotient (5.12) and the matrix needed for calculating the

residual (5.13). Our intuition about the need to account for components in this

additional direction v�+1 has been confirmed. We thus propose to compute and

store these at each iterate as φj = u
T
j v�+1 and Φj = �UT

j+1v�+1 = [φ1, . . . , φj]T .

With this final ingredient, we are provided with a complete description of a

method that solves Ax = b. A full pseudo-code implementation is given in

Algorithm 5.2, where the updates for dj+1 have been incorporated into inner

loops which perform the orthogonalization.

Our remark at the beginning of the chapter regarding comparable com-

putational and storage requirements to FOM may be justified as follows. If

FOM were to build a basis of the same dimension, the only additional O (n)

computation incurred by Algorithm 5.2 are a dot product and vector update

with v�+1 at each iterate. Similarly, the only additional O (n) storage con-

sists of the vector v�+1. This is advantageous when compared to doubling

storage and orthogonalization requirements of other approaches, as well as in-

formation required to perform Galerkin projection available at a small cost.

Another benefit is that the vectors W that are being reused have already been

orthogonalized and need not be orthogonalized again.
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Algorithm 5.2 Ritz-augmented Arnoldi for Ax = b

Input: Ritz vectors W , Ritz values Θ, tolerance τ , �f, v�+1, A, b.

Output: Approximate solution xm to Ax = b with �rm�2/�b�2 ≤ τ

Set d1 = W
T
b, ũ = b−Wd1, ζ = �ũ�2, u1 = ũ/ζ, d1 = −d1/ζ.

φ1 = u
T
1 v�+1

for j = 1, . . . ,m do

ũ = Auj − (�fT
dj)v�+1

for i = 1, . . . , q do

h
W
ij = w

T
i ũ

ũ = ũ− h
W
ij wi

end for

dj+1 = Θdj − [hW
1j , . . . , h

W
qj ]

T

for i = 1, . . . , j do

h
K
ij = u

T
i ũ

ũ = ũ− h
K
ijui

dj+1 = dj+1 − h
K
ij di

end for

h
K
j+1,j = �ũ�2

uj+1 = ũ/h
K
j+1,j

dj+1 = dj+1/h
K
j+1,j

φj+1 = u
T
j+1v�+1

Solve

�
W H

W
j

Φj
�f
T

H
K
j + Φj

�f
T
Dj

�
yj =

�
β

ζej

�

Set s =

�
β

ζej

�
−





Θ H
W
j

0 H
K
j

�f
T �f

T
Dj



 yj

If



s
T





Iq 0 0

0 Ij+1 Φj+1

0 ΦT
j+1 1



 s





1
2

≤ τ�b�2 then stop.

end for
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5.3 Modifications for solving generalized Lya-

punov equations

With some minor modifications, the proposed augmentation scheme can

be paired with the classical iterations described in Chapter 4 to dramatically

reduce the number of linear solves with coefficient matrix A required for con-

vergence to an approximate solution of the generalized Lyapunov equation

(4.3). We again assume that we are solving

AXk+1 +Xk+1A
T +BkB

T
k = 0, (5.14)

for low-rank factors Zk of Xk, where Bk = T ([NZk, B]); see equation (4.8)

and the discussion contained around it.

We give a high level description here, and reserve technical details to Ap-

pendix C. Supposing that at outer iterate k − 1 we have solved (5.14) by

the extended Krylov subspace method, and the right-hand side Bk−1 has con-

verged enough so that reuse of information may be beneficial. Our approach to

solve the Lyapunov equation that arises at the next outer iterate is to use the

Galerkin projection strategy described in Section 2.2 with Sm = S (Um,Um),

where Um is the augmented block Krylov subspace

Um = W+Km (A,Bk) . (5.15)

Here the subspace W now consists of Ritz vectors from the extended Krylov

subspace built at the previous iterate, and we emphasize that the Krylov

subspace appearing in (5.15) is now a block Krylov subspace.

We note that the method in Section 5.2.2 used Ritz vectors from a stan-

dard Krylov subspace to augment a standard Krylov subspace and solve a

linear system. Fortuantely, every step of this procedure extends in a natural

way to take Ritz vectors from extended Krylov subspaces, build augmented

block Krylov subspaces, and solve standard Lyapunov equations. Since ex-

tended Krylov subspaces possess the property (5.5), the auxiliary block in

standard block Arnoldi (see line 3 of Algorithm 2.2) can be corrected in a
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manner analogous to (5.10) to ensure that one builds the intended space. In

order to calculate the Rayleigh quotient and residual norm efficiently, there

are only a extra few directions for which one must account. These occur in

the directions of the columns of V(�+1), the matrix whose columns constitute

the last extended Arnoldi vectors. The Rayleigh quotient matrix and residual

norm may be computed at what is once again a small additional cost at each

iterate. For details, see Appendix C.

One difficulty that arose was an instability in the calculation of the Rayleigh

quotient matrix as described in Appendix B, since the Ritz vectors and values

that we use for augmentation depend on this quantity. While this does not

appear to affect the quality of Lyapunov solvers, we observed that for large

block sizes the Ritz values that were delivered were of poor quality and not

suitable for our purposes. Since rational Krylov subspaces were originally used

for eigenvalue computations, we opted to use a block version of Ruhe’s rational

Arnoldi algorithm, given as Algorithm A.3. The Ritz vectors were of much

better quality. To build an extended Krylov subspace we used poles which

alternated between some shift σ and ∞ with σ �= 0, so that the space built

was technically

EKσ
m (A,B) = Km (A,B) +Km−1

�
(A− σI)−1

, (A− σI)−1
B
�
, (5.16)

where we used the shift σ = 1.

We now comment on the selection of which Ritz vectors to use, and how

many. We expect the Ritz values from the space (5.16) to give decent approx-

imation to eigenvalues of A that are closest to 1 and largest in magnitude.

When we build (5.15), no more information corresponding to (A − σI)−1

shall be generated. For this reason, we chose to keep a certain fixed per-

centage of Ritz vectors that were closest to 1. Our intuition is that since

Bk+1 ≈ Bk, keeping the part of EKσ
m (A,Bk) that is (loosely) associated with

Km−1 ((A− σI)−1
, (A− σI)−1

Bk) and using this to augmentKm (A,Bk+1) will

(hopefully) build a space that is close to EKσ
m (A,Bk+1), so we typically kept

more than half of the basis.
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The benefit is that half the basis will already be built, and shifted linear

solves with A will no longer need to be performed. It is worth noting that this

approach is not really based upon approximating any spectral information to

enhance convergence, as in [48]. Instead, it is about the possibility of reusing

an old basis to build a new basis and performing Galerkin projection in an

efficient manner. In this sense, our approach is more like Krylov subspace

recycling [51].

5.4 Numerical experiments

We again present a comparison with the methods described in [7] and the

extended Krylov subspace method with no modifications other than truncated

right-hand sides. For both tables in this section, RA-KSM denotes the Ritz-

augmented Krylov subspace approach. Specifically, this denotes a classical

iteration of the form (5.14), such that the first two outer iterates are performed

by the usual extended Krylov subspace method (also with truncated right-

hand sides). Our experience was that one needed a thick right-hand side B2 =

T ([NZ1, B]) in order to build an extended Krylov subspace that had enough

Ritz vectors to make the augmentation strategy successful. One this space has

been built, we keep 75% of the Ritz vectors whose Ritz values were closest to

1 and use the augmentation strategy described in the previous section.

The memory for RA-KSM was comparable with EKSM (in fact, it often used

slightly more) so we do not enter a detailed discussion of this. However, CPU

times were competitive with the methods in [7], and since linear solves are

stopped after the second outer iterate, the number of linear solves required to

complete the outer iteration was dramatically lower for RA-KSM.

We first consider the same symmetric problem involving boundary control

of the heat equation of size n = 22500. A comparison of CPU times and

number of linear solves is given in Table 5.1. We note that EKSM was the

second best solver for this problem, and the Lanczos analogue was required

in order to make the RA-KSM method the most competitive. In Figure 5.1, we
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Figure 5.1: Number of linear solves required by different methods to solve
a generalized Lyapunov equation with a symmetric coefficient matrix of size
n = 22500. Norm of the relative residual plotted against the number of linear
solves.

Method CPU (s) Solves

EKSM 139.2 1978
RA-KSM 105.2 206
BiADI 224.6 3345
PCG-BADI 363.7 4868
PCG-ADI 164.0 1557

Table 5.1: Performance comparison between several generalized Lyapunov
solvers for a symmetric heat problem of size n = 22500.
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Figure 5.2: Number of linear solves required by different methods to solve a
generalized Lyapunov equation with a non-symmetric coefficient matrix of size
n = 10100. The norm of the relative residual is plotted against the number of
linear solves.

plot the relative residual norm at a given outer iterate against the number of

linear solves with coefficient matrix A that the method required up until that

point.

It is pleasing to notice that after the second outer iterate, the plot for

RA-KSM drops straight down. The Ritz vectors generated at outer iterate two

produce augmented subspaces at successive outer iterates that are rich enough

to obtain convergence. At later outer iterates, the only new information gener-

ated comes from matrix vector products with A, but the individual Lyapunov

solvers do not suffer from any of the negative aspects of using a purely poly-

nomial approximation. In other words, the Ritz vectors provide the necessary

enrichment to alleviate such difficulties.

We next consider the non-symmetric circuit problem, again with n =

10100, with performance metrics presented in Table 5.2. Here RA-KSM ob-

tains the best CPU time by a larger margin than in the symmetric case, and

the number of required linear solves is again reduced dramatically when com-
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Method CPU time # of solves

EKSM 701.6 3692
RA-KSM 196.3 253
BADI 245.3 11654
BiCGstab-BADI 818.2 34300
BiCGstab-ADI 390.1 13575

Table 5.2: Performance comparison between several generalized Lyapunov
solvers for the non-symmetric circuit problem of size
n = 10100.

pared with other existing methods. Figure 5.2 contains another plot of relative

residual norms against total number of linear solves, where we see a similar

effect as in the symmetric example.
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CHAPTER 6

CONCLUSIONS AND

FUTURE WORK

6.1 Summary and conclusions

We have considered low-rank solution techniques for large-scale matrix

equations, typically based around Galerkin projection onto enriched subspaces

and low-rank analogues of classical iterative methods. We have extended these

techniques to a certain class of systems of matrix equations, called a con-

strained Sylvester equation. This was done by reformulating existing methods

for the small-scale case to be suitable for large-scale problems. A new sub-

space that approximates the well-known enriched spaces are a necessary part

of the procedure, and numerical evidence for the effectiveness of our approach

is provided for a variety of problems.

We have also proposed solvers for large-scale generalized Lyapunov equa-

tions, and compare them to existing approaches. We believe that what results

is competitive with respect to several metrics, such as CPU usage, memory

usage, and linear system solves. Our approach is essentially to convert the

problem to a sequence of Lyapunov equations and leverage powerful existing

Lyapunov solvers. In doing so, we provide theory for several kinds of inex-

actness that arise. We also propose some modifications to the well-known
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extended Krylov subspace method that make it suitable for newer problems

and utilize existing theory to justify our approach. In addition, we have de-

signed what appears to be a novel algorithm for an alternative approach that

can drastically reduce the required number of linear solves.

6.2 Future work

There are several interesting avenues for future research. Low-rank Krylov

subspace solvers have recently been shown to be applicable to time-dependent

PDE-constrained optimization, and forward problem solves consist of solving

a Sylvester equation. The rank of the right-hand sides in these equations are

almost certainly larger than what is typical in control theory, and it would

be interesting to attempt separating the right-hand sides as was done for gen-

eralized Lyapunov equations. It would also be of interest to see how the

Ritz-augmented Arnoldi algorithm fits into the literature on augmented and

Krylov subspace recycling techniques, since it is applicable to linear systems.
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APPENDIX A

Algorithms

In this appendix we collect several algorithms used to build various spaces

described throughout the thesis. We emphasize that we focus on lower-level

details that can have impacts on numerical stability. All algorithms are im-

plemented with reorthogonalization to further ensure as much orthogonality

as possible. We adopt the += notation which is more common in texts on

computer science, i.e., by a += b we mean a = a + b. Any value appearing

in an assignment that has not been previously been assigned will be assumed

to be zero.
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Algorithm A.1 Block Arnoldi with reorthogonalization
Input: A ∈ Rn×n, B ∈ Rn×r, integer m

Output: Matrix Vm = [V(1), . . . ,V(m)], with V(j) = [vr(j−1)+1, . . . , vrj] whose

columns form an orthonormal basis of Km (A,B). Block upper Hessenberg

matrix Hm such that AVm = Vm+1Hm.

1: Compute the reduced QR decomposition V(1)R = B

2: for j = 1, . . . ,m do

3: W = AV(j), write W = [w1, . . . , wr]

4: for k = 1, . . . , r do

5: for reorth = 1, 2 do

6: for i = 1, . . . , rj + k − 1 do

7: h = w
T
k vi

8: Hi,r(j−1)+k+ = h

9: wk = wk − hvi

10: end for

11: end for

12: Hrj+k,r(j−1)+k = �wk�2
13: vrj+k = w/Hrj+k,r(j−1)+k

14: end for

15: end for
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Algorithm A.2 Block extended Arnoldi with reorthogonalization
Input: A ∈ Rn×n, B ∈ Rn×r, integer m

Output: Matrix Vm = [V(1), . . . ,V(m)], with V(j) = [v2r(j−1)+1, . . . , v2rj]

whose columns form an orthonormal basis of EKm(A,B).

1: Compute the reduced QR decomposition V(1)R = [B,A
−1
B]

2: for j = 1, . . . ,m do

3: Partition V(j) =
�
V[1]

(j),V
[2]
(j)

�
into two n× r blocks

4: W =
�
AV[1]

(j), A
−1V[2]

(j)

�
, write W = [w1, . . . , w2r]

5: for k = 1, . . . , 2r do

6: for reorth = 1, 2 do

7: for i = 1, . . . , 2rj + k − 1 do

8: h = w
T
k vi

9: Hi,2r(j−1)+k+ = h

10: wk = wk − hvi

11: end for

12: end for

13: H2rj+k,r(j−1)+k = �wk�2
14: v2rj+k = w/H2rj+k,r(j−1)+k

15: end for

16: end for
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Algorithm A.3 Block rational Arnoldi with reorthogonalization
Input: A ∈ Rn×n, B ∈ Rn×r, integer m, shifts s = (s1, . . . sm)

Output: Matrix Vm = [V(1), . . . ,V(m)], with V(j) = [vr(j−1)+1, . . . , vrj] whose

columns form an orthonormal basis of RKm(A,B, s).

1: Compute the reduced QR decomposition V(1)R = B

2: for j = 1, . . . ,m do

3: W = (I − A/sj)−1
AV(j), write W = [w1, . . . , wr]

4: for k = 1, . . . , r do

5: for reorth = 1, 2 do

6: for i = 1, . . . , rj + k − 1 do

7: h = w
T
k vi

8: Hi,r(j−1)+k+ = h

9: wk = wk − hvi

10: end for

11: end for

12: Hrj+k,r(j−1)+k = �wk�2
13: vrj+k = w/Hrj+k,r(j−1)+k

14: end for

15: end for
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APPENDIX B

Obtaining the Rayleigh quotient

matrix for extended Krylov

subspaces

In this appendix we describe an efficient numerical procedure for obtaining

the Rayleigh quotient matrix as a byproduct of building an extended Krylov

subspace. Our approach follows [68]; we provide the details for completeness,

and also include details for block spaces.

After performing the orthogonalization, what results from performing the

inner j loop is

V(j+1)H(j+1,j) =
�
AV[1]

(j), A
−1V[2]

(j)

�
−

j�

i=1

V(i)H(ij). (B.1)

We partition each H(ij) as

Hij =
�
H(:,1)

(ij) H(:,2)
(ij)

�
=

�
H(11)

(ij) H(12)
(ij)

H(21)
(ij) H(22)

(ij)

�

and we denote subblocks of the block matrix

Hm =





H(11) . . . H(1m)

...
. . .

...

H(m1) . . . H(mm)




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with a similar partitioning and notation for the Rayleigh quotient matrixTm =

VT
mAVm. Looking at the first r columns of (B.1) implies that for j = 1, . . . ,m

we have

V(j+1)H
(:,1)
(j+1,j) = AV[1]

(j) −
j�

i=1

ViH
(:,1)
(ij)

⇒ AV[1]
(j) =

j+1�

i=1

V(i)H
(:,1)
(ij)

⇒ VT
(i)AV

[1]
(j) = H

(:,1)
(ij)

which yield the odd columns of Tm. For the even columns, upon writing

R =

�
R11 R12

0 R22

�

note that inspecting the second r columns of the first QR decomposition im-

plies

A
−1
B = V[1]

(1)R12 +V[2]
(1)R22

⇒ B = AV[1]
(1)R12 + AV[2]

(1)R22

⇒ VT
2 B = VT

2 AV
[1]
(1)R12 +VT

2 AV
[2]
(1)R22

⇒





R11

0

0

0




=

�
T(:,1)

(11)

T(:,1)
(21)

�
R12 +

�
T(:,2)

(11)

T(:,2)
(21)

�
R22

which yields the first even column of Tm. For the remaining even columns,

looking at the second r columns of (B.1) implies that for j = 1, . . . ,m

V[1]
(j+1)H

(12)
(j+1,j) +V[2]

(j+1)H
(22)
(j+1,j) = A

−1V[2]
(j) −

j�

i=1

ViH
(:,2)
(ij)

⇒ AV[2]
(j+1) =

�
V[2]

(j) −
j�

i=1

AViH
(:,2)
(ij) − AV[1]

(j+1)H
(12)
(j+1,j)

��
H(22)

(j+1,j)

�−1
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so that upon reindexing j and left multiplication by VT
j+1 it follows that for

j = 2, . . . ,m+ 1, one has that VT
j+1AV

[2]
(j) is equal to

�
VT

j+1V
[2]
(j−1) −

j−1�

i=1

VT
j+1AV(i)H

(:,2)
(i,j−1) −VT

j+1AV
[1]
(j)H

(12)
(j,j−1)

��
H(22)

(j,j−1)

�−1
.

Above is the block of columns that we desire; note that VT
j+1V

[2]
(j) =

e
[2(j+1)]
2(j−1) ⊗ Ir and

Cj :=
j−1�

i=1

V∗

j+1AV(i)H
(:,2)
(i,j−1) +VT

j+1AV
[1]
(j)H

(12)
(j,j−1)

=





T(11) . . . T(1,j−1) T(:,1)
(1,j)

...
. . .

...
...

T(j+1,1) . . . T(j+1,j−1) T(:,1)
(j+1,j)









H(:,2)
(1,j−1)
...

H(:,2)
(j−1,j−1)

H(12)
(j,j−1)





so that the desired update rule for the even columns (excluding the first) is

VT
j+1AV

[2]
(j) =

�
e
[2(j+1)]
2(j−1) ⊗ Ir −Cj

��
H(22)

(j,j−1)

�−1
.
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APPENDIX C

Details for Ritz-augmented

Lyapunov solvers

Let A ∈ Rn×n and B0 ∈ Rn×r0 . First, note that the extended Arnoldi

relation (2.26) implies that a Ritz vector w of EK�(A,B0) with Ritz value θ

satisfies

Aw = θw +V(�+1)f (C.1)

where f is the column vector f = T(�+1,�)ET
� g and g is the eigenvector of

the Rayleigh quotient matrix corresponding to θ. Suppose we are given q such

Ritz vectors, denoted w1, . . . , wq. We assemble matrices W , Θ, and F ∈ R2r0×q

such that range (W ) = span{w1, . . . , wq}, W has orthonormal columns, and

AW = WΘ+V(�+1)F

by using the relation (C.1) and the procedure described in Section 5.1.2.

We now describe an algorithm for building

Um = W+Km (A,B) . (C.2)

which is given in Algorithm C.1. Here W consists of Ritz vectors w1, . . . , wq

that come from the extended Krylov subspace EK�(A,B0), and we write the

matrix B = [b1, . . . , br] ∈ Rn×r in terms of columns. Compute BW = W
T
B

and a reduced QR decomposition U(1)R = B−WBW , and set D1 = −BWR
−1.
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Algorithm C.1 Ritz-augmented Arnoldi for block spaces
Input: A,B, Ritz vectors W and Ritz values Θ from EK�(A,B0), V(�+1), F .

Output: Matrix �Um = [U(1), . . . ,U(m)] such that the columns of Um =

[W, �Um] form an orthonormal basis of W+Km (A,B).

1: Set BW = W
T
B

2: Compute a reduced QR decomposition U(1)RB = B −WBW

3: Set D1 = −BWR
−1
B

4: for j = 1, . . . ,m do

5: Ũ = AU(j) −V(�+1)FDj

6: HW
(1j) = W

T
Ũ

7: Ũ = Ũ −WHW
(1j)

8: for i = 1, . . . , j do

9: HU
(ij) = UT

(i)Ũ

10: Ũ = Ũ −U(i)HU
(ij)

11: end for

12: U(j+1)HU
(j+1,j) = Ũ (reduced QR decompositon)

13: Dj+1 =
�
Dj −HW

(j) −
�j

i=1 DiHU
(ij)

�
(HU

(j+1,j))
−1

14: end for

A block of vectors U(j) such that Uj−1 + range
�
U(j)

�
= Uj will necessarily

be of the form U(j) = WDj + Pj, where the i
th column of Pj is of the form

�r
k=1 p

(j)
k (A)bi. A rule for producing an auxiliary block that increments the

degree of all such polynomials by one and keeps each column in the next space

Uj+1 is given by

Ũ = AU(j) −V(�+1)FDj.

If we orthogonalize each column first with respect to the columns of W and

then with respect to all previous blocks of vectors U(i) for i = 1, . . . , j in a

manner similar to block Arnoldi (see the inner loop of Algorithm 2.2) then

what results is a relation of the form

U(j+1)H
U
(j+1,j) = WDj + Pj −WHW

(j) −
j�

i=1

U(i)H
U
(ij) (C.3)



114

so that upon ignoring polynomial terms and gathering terms with W one

obtains

Dj+1 =

�
Dj −HW

(j) −
j�

i=1

DiH
U
(ij)

�
(HU

(j+1,j))
−1
.

We now sketch using Um to approximate the solution to a Lyapunov equation

via Galerkin projection using the appropriate additions to Algorithm C.1.

Once in posession of an orthonormal basis for Uj, this entails solving

�
UT

j AUj

�
Ym + Ym

�
UT

j A
TUj

�
+UT

j B (UjB)T = 0,

for which we require the Rayleigh quotient matrix Tj = UT
j AUj, and com-

puting the corresponding residual norm

�Rj�F =

�����[Uj, AUj]

�
UT

j B(UT
j B)T Ym

Ym 0

��
UT

j

UT
j A

������
F

.

One computes

UT
j B =

�
BW

ej ⊗RB

�
.

Noting that (C.3) is equivalent to

AU(j) =
j�

i=1

U(i)H
U
(ij) +WHW

(j) +V(�+1)FD(j) (C.4)

which can be expressed in the matrix form

A�Uj = �Uj+1H
U
j +WHW

j +V(�+1)FDj (C.5)

so that following the derivations in Chapter 5 (and remarking that what must

now be computed and stored is �UT
j V(�+1)) gives the desired quantities of in-

terest.


