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Abstract

LINE BUNDLES OVER b-HOLOMORPHIC COMPLEX CURVES

Paul Nekoranik

DOCTOR OF PHILOSOPHY

Temple University, May 2001

Professor Gerardo Mendoza, Chair

A compact orientable surface M with boundary admits almost-complex structures J on

its compressed tangent bundle bTM . We call a surface equipped with such a structure a

b-holomorphic complex curve. The interior of a b-holomorphic curve is an ordinary non-

compact Riemann surface. But the holomorphic structure at the boundary is singular, in

the sense that the curve cannot be realized as an embedded submanifold (with boundary)

of a larger Riemann surface.

In this dissertation, we study b-holomorphic structures. We discover invariant or char-

acteristic objects associated to b-holomorphic curves, and others associated to holomorphic

line bundles over such curves, including a generalized degree. We then use these invariants

to prove classification theorems.

We also investigate the existence of constant-curvature connections on these line bun-

dles. In particular, we provide a necessary and sufficient condition for the existence of a

hermitian holomorphic b-connection whose curvature is a constant times the volume form

(that is, the volume form induced by a given hermitian metric on the base manifold). Such

a connection is an absolute minimum for the Yang–Mills functional on the bundle.
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1

Introduction

1.1 Totally characteristic operators

1.1.1 Background and definitions

When we think of a differential operator on a manifold M , we usually imagine a lin-

ear combination over smooth functions of products of the basic vector fields ∂x1 , . . . , ∂xn ,

where x1, . . . , xn form a local chart. When the coefficients of the highest-order products

∂m1
x1
· · · ∂mn

xn
(m1 + · · · + mn maximal) form a matrix of functions (the principal symbol)

which is pointwise non-degenerate, we call the operator elliptic. An elliptic operator is very

nice, in the sense that it has the Fredholm property when thought of as acting between

suitable Sobolev spaces, and it has a good pseudodifferential parametrix. See [34]. (Here

we are imagining that M is compact and boundaryless.) This is in sharp contrast to the

case of the generic differential operator, about which very few general results are known.

When M is a manifold with boundary, it has been possible to ascertain an analogous

notion of ellipticity for some classes of operators which are degenerate on the boundary.

One such class of operators is that of the totally characteristic operators, which are those

that can be written near the boundary in the form∑
pm1...mn∂

m1
x1
· · · ∂mn−1

xn−1
(xn∂xn)mn

where x1, . . . , xn form a local chart (xn defining the boundary) and the pmn are smooth.

Here, the criterion for ellipticity has two parts. One is the usual ellipticity criterion on the

interior, which is invertibility of the principal symbol; and the other involves the invertibility

of a new “boundary” symbol, called the conormal symbol. The elliptic totally characteristic

operators have a Fredholm property when thought of as acting between certain weighted

Sobolev spaces, and they have good pseudodifferential parametrices. See [12], [14], [21],

[24], [25], [26], and [31]; there are many other treatments of this subject as well.
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1.1.2 The b category

Let M be a compact Riemannian manifold with boundary for which the geometric

operator ∆ is totally characteristic. Many authors have focused their attention on such

manifolds, operating by way of analogy to compact Riemannian manifolds without bound-

ary. In his book “The Atiyah–Patodi–Singer Index Theorem” [24], Melrose takes the point

of view that surfaces with boundary for which ∆ is totally characteristic constitute a reason-

able category, which he calls (and we will call) the b category. (The b is for “boundary.”) In

support of this viewpoint, he shows how to prove the APS index theorem by regarding it as

the generalization, from the category of compact Riemannian manifolds without boundary

to the b category, of the Atiyah–Singer index theorem.

What makes a compact manifold with non-empty boundary a b-manifold is that its

metric exhibits a certain behavior near the boundary. Or, we could say that what makes a

compact manifold without boundary a b-manifold is that the metric has singularities of a

certain sort on a discrete set of points; this is the picture of the blow-down. In this situation,

the compact manifold is said to have conical singularities.

1.1.3 The b-holomorphic category

As was stated in Section 1.1.2, a b-manifold is a Riemannian manifold for which the

geometric operator ∆ is totally characteristic. But a geometric structure (a metric) is not

the only kind of structure on a manifold that gives rise to a natural elliptic operator. On a

complex-analytic manifold, we have the first-order conformal elliptic operator ∂̄ in addition

to the second-order geometric elliptic operator ∆ (which is equal, up to a constant multiple,

to ? ∂̄∂).

So our point of view in this dissertation will be that there’s a category, called the b-

holomorphic category, which consists of compact complex-analytic manifolds with boundary

for which ∂̄ is totally characteristic.

1.2 The b-holomorphic category

1.2.1 b-holomorphic complex curves

LetM be a compact manifold with boundary. Then the first-order differential operators

that can be written locally as a linear combination over smooth functions of ∂x1 , . . . , ∂xn
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are precisely the smooth sections of TM . We may say that the tangent bundle TM is

custom-made so that the smooth sections are of this sort.

It should be possible to construct another bundle bTM whose smooth sections are

precisely the first-order totally characteristic operators. And this is possible. The construc-

tion we give may be found in [25] or [26], and is a special case of a general method for

constructing new bundles from old which can be found in [24].

We define V to be the vector space of all smooth vector fields on M which are tangent

to the boundary over points of the boundary. For each p ∈M , we define ∼p on V by

X ∼p Y if

Xp = Yp p ∈M◦

Xp = Yp and dpX(r) = dpY (r) p ∈ ∂M,

where r is any local defining function for the boundary component of M that contains p.

Finally, we take bTpM to be V/∼p. Each fiber bTpM is a vector space, and the union
bTM of all the fibers inherits from TM (in a natural way) the structure of a smooth vector

bundle over M . bTM is called the compressed tangent bundle of M . Its sections are called

compressed vector fields. There is a natural map π : bTM−→TM , which is a fiberwise

isomorphism over the interior. The kernel of π over a boundary point is one-dimensional

(it is spanned by r∂r where r is a defining function for the boundary); and the range of π

over a boundary point p is Tp∂M . It is important to note that r∂r is a nonzero element of
bTpM , even if p ∈ ∂M .

We proceed now to define the compressed cotangent bundle bT ∗M = bΛ1M and the

compressed exterior algebra bΛnM in the usual way. These smooth vector bundles over M

are associated to analysis involving totally characteristic operators.

From now on, we take the real dimension of M to be 2.

Definition 1.1. A compact smooth surface with nonempty boundary, equipped with a

smooth anti-involution J on bTM (or on bT ∗M), is called a b-holomorphic complex curve.

Note that J extends to C bTM (or to C bT ∗M) and induces splittings

C bTM = bT 1,0M ⊕ bT 0,1M

C bT ∗M = bΛ1,0M ⊕ bΛ0,1M,

just as in the ordinary (non-b) situation. The factors are smooth complex vector bundles

over M . The second splitting is produced as follows. Since J2 = −1, the eigenvalues
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of J are ±i. Each eigenspace has complex dimension 1. We define bΛ1,0M to be the

smooth subbundle of C bT ∗M whose fibers are the i eigenspaces of J , and bΛ0,1M to be the

smooth subbundle of C bT ∗M whose fibers are the −i eigenspaces of J . The first splitting

is produced by dualization.

When we need to write projection maps associated to these splittings, we will call them

π1,0 and π0,1. And, for ν ∈ C bT ∗M , we will write π1,0ν = ν1,0, etc.

Over the interior of M , J is an ordinary almost-complex structure. And since we are

in real dimension 2, the almost-complex structure is automatically integrable. That is, M◦

has a complex structure. So M◦ is a noncompact Riemann surface. Define ∂̄ = π0,1 ◦ d.
Over M◦, this is the usual ∂̄ operator associated to the Riemann surface M◦. The b-symbol

of ∂̄,
bσ(∂̄) : bT ∗pM−→HomC(C, bΛ0,1

p M),

is given by bσ(∂̄)(ν) = (1 7→ iν0,1). This is clearly an isomorphism of real vector spaces.

Since the b-symbol is an isomorphism, we may say that ∂̄ is b-elliptic. In other words, ∂̄ is

an elliptic operator of totally characteristic type.

Definition 1.2. Two b-holomorphic complex curves M,N are called equivalent if there

exists a C∞ diffeomorphism M−→N which respects J (carries JM to JN ).

This is the same as saying that M ' N if there exists a C∞ diffeomorphism M−→N

which is holomorphic on M◦.

Note 1.3. One usually defines a b-manifold to be a manifold with a smoothly varying

positive-definite quadratic form on the fibers of bTM . This is equivalent to saying that

the Laplace operator is totally characteristic. But in practice, some sort of extra condition

is always imposed. For example, in Melrose’s book [24], an exact b-metric is taken to be

one for which there exist special coordinates at the boundary in which the Laplacian has a

particularly nice form.

Here, we have defined a b-holomorphic complex curve to be a manifold with a smoothly

varying almost-complex structure J on the fibers of bTM . This is equivalent to saying

that the ∂̄ operator is totally characteristic. But in practice, we too will impose an extra

condition. Just as in the definition of an exact b-metric, we will assume the existence of

special coordinates at the boundary in which the ∂̄ operator has a particularly nice form.

This existence of these special coordinates is crucial to the type of analysis that will be used
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throughout this paper. This extra condition will be formulated precisely in Section 2.4; and

we will show that there is a large supply of b-holomorphic curves that satisfy the condition.

Whether there are others that do not satisfy the condition, I do not know.

1.2.2 Line bundles and connections

For basic definitions and theory regarding complex differential geometry, see [15], [19],

and [20].

Definition 1.4. A holomorphic line bundle over a b-holomorphic complex curve M is a

C∞ complex line bundle E over M equipped with a first-order linear differential operator

∂̄E : C∞(M ;E)−→C∞(M ;E ⊗ bΛ0,1M)

whose principal b-symbol

bσ(∂̄E) : bT ∗pM−→HomC(Ep;Ep ⊗ bΛ0,1
p M)

is given by
bσ(∂̄E)(ν) = (e 7→ ie⊗ ν0,1).

Note that this definition is equivalent to the usual formula ∂̄E(fe) = e⊗ ∂̄f + f∂̄Ee for

functions f on M and sections e of E.

When we speak of line bundles over a b-holomorphic complex curve, we will always

assume them to be holomorphic line bundles in the sense of the above definition.

Definition 1.5. A b-connection on a line bundle E over a b-holomorphic complex curve M

is a first-order linear differential operator

∇E : C∞(M ;E)−→C∞(M ;E ⊗ C bT ∗M)

whose principal b-symbol

bσ(∇E) : bT ∗pM−→HomC(Ep;Ep ⊗ C bT ∗pM)

is given by
bσ(∇E)(ν) = (e 7→ ie⊗ ν).

Note that this definition is equivalent to the usual formula ∇E(fe) = e ⊗ df + f∇Ee

for functions f on M and sections e of E.
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Definition 1.6. A b-connection ∇E on a line bundle E over a b-holomorphic complex curve

M is called holomorphic if π0,1 ◦ ∇E = ∂̄E .

Note 1.7. In the future, we will write ∂̄ and ∇ instead of ∂̄E and ∇E .

1.2.3 Metrics

Let M be a b-holomorphic complex curve and E be a line bundle over M . We will be

concerned with hermitian metrics on M and on E, as will be explained in Section 1.3.3; but

we include the relevant definitions here so they will be easier to find.

Definition 1.8. A hermitian metric on M is a hermitian metric on T 1,0M◦ = ( bT 1,0M)�M◦

such that the norm of any local smooth frame for bT 1,0M defined up to the boundary

extends to a local defining function for the boundary.

Note 1.9. A hermitian metric on M induces a Riemannian metric on M◦ in the usual way.

Definition 1.10. A geometric b-holomorphic complex curve is a b-holomorphic complex

curve M equipped with a hermitian metric such that, with respect to the induced Rieman-

nian metric, vol(M) = 1.

Definition 1.11. Let E be a line bundle over the b-holomorphic complex curve M . A

hermitian metric on E is just a smooth hermitian metric on the C∞ line bundle E�M , in

the usual sense.

Definition 1.12. Let M be a b-holomorphic complex curve and E be a line bundle over

M equipped with a hermitian metric. A b-connection ∇ on E�M is called compatible with

the metric of E if the Leibnitz-type formula

d〈e1, e2〉 = 〈∇e1, e2〉+ 〈e1,∇e2〉

holds for all smooth sections e1, e2 of E.

A b-connection that is compatible with some hermitian metric on E will be called

hermitian.
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1.3 Objectives, by analogy to compact Riemann surfaces

1.3.1 Classification of surfaces

There is, to my knowledge, no easily stated full classification of compact Riemann

surfaces. But the desire for such a classification (up to biholomorphic equivalence) is quite

natural and motivates many results in the general theory; for example, the uniformization

theorem, the Weierstrass gap theorem, the Noether gap theorem, and various results on

Weierstrass points and automorphism groups. See [5], [10], and [32].

For each type of b-holomorphic complex curve we examine, the first goal will be to find

a classification and to compute (if possible) the automorphism groups.

1.3.2 Classification of holomorphic line bundles

The set of holomorphic line bundles over a given compact Riemann surface or b-

holomorphic complex curve forms a group. The operation is tensor product, and inversion

is dualization. The strongest possible type of classification of holomorphic line bundles over

the surface (up to holomorphic isomorphism) is therefore a homomorphism of this group

onto a prima facie simpler group, such that the kernel is the subgroup of all bundles equiv-

alent to the trivial bundle. For this would furnish a isomorphism from the group of all

equivalence classes of holomorphic line bundles to the simpler group. This is what we will

call a classification of holomorphic line bundles. (For some ideas on holomorphic vector

bundles over a compact Riemann surface, see [11].)

For each type of b-holomorphic complex curve we examine, the second goal will be to

find a classification of holomorphic line bundles in this sense.

1.3.3 Connections of constant curvature

In 1965, Narasimhan and Seshadri [27] proved a theorem on the existence of special

connections on a given holomorphic vector bundle over a compact Riemann surface. See

also Donaldson’s proof in [9]. In the simplest case of a line bundle (for which the result was

known earlier), the theorem may be phrased as follows:

Theorem 1.13 (Narasimhan and Seshadri). Let M be a compact Riemann surface

with hermitian metric normalized to unit volume. Let E be a holomorphic line bundle over
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M . Then there exists a unique hermitian holomorphic connection on E whose curvature is

a constant times the volume form. The constant is necessarily −2πi · degree(E).

Here, degree(E) is a C∞ bundle invariant, defined as the integral over M of the first

Chern class of E.

For each type of b-holomorphic complex curve we examine, the third and final goal

will be to identify a bundle invariant analogous to the degree and then to prove a result

analogous to the theorem of Narasimhan and Seshadri.

Note 1.14. There is a bit of a puzzle regarding what kind of metrics on M to treat as the

“natural” ones in the case of a b-holomorphic complex curve. One obvious choice would be

to assume that the metric is a non-degenerate inner product on the fibers of bT 1,0M . In

this case, the induced Riemannian metric would be a b-metric, and the Laplacian would

be totally characteristic. But with a Riemannian b-metric, the volume of M is infinite. So

with this kind of hermitian metric for M , it is not clear how to make sense of an analog to

the theorem of Narasimhan and Seshadri, which assumes M to have unit volume.

The definition we gave in Section 1.2.3 assumes that the norm of a smooth frame for
bT 1,0M vanishes to first order at ∂M (instead of being nonvanishing). This forces the

volume of M to be finite, so that an analog for the theorem of Narasimhan and Seshadri

becomes sensible.

1.4 Techniques

By restricting attention to manifolds of one complex dimension and to vector bundles

of complex rank 1, we place ourselves in the simplest possible situation. And we make an

important gain in doing so, because locally M will look like a patch in C, and a section of

our complex line bundle will look like a function of one complex variable. We therefore avoid

the considerable complications associated to several complex variables and to higher-rank

holomorphic vector bundles. This allows us to focus on the global geometric properties of

the b-holomorphic curves and bundles without too many technical distractions. The main

techniques come from the theory of functions of one complex variable, along with some

results on Riemann surfaces thrown in.

In this simplified setting, it is not necessary to make explicit use of the general tech-

niques for analysis of totally characteristic operators, although many features of the general
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theory can be recognized in our results. But it may be expected that generalizations along

various different lines might be achieved by making use of the general techniques. For

example, one could study higher-dimensional manifolds, higher-rank bundles, and even sin-

gularities of different types at the boundary.
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2

The Collar

Before proceeding toward the three objectives mentioned in Section 1.3, we need to

gain some general understanding of the semi-global situation (near a boundary circle) and

the pseudo-global situation (on the blow-down). In this chapter, we examine the semi-global

picture; and in the next, we examine the pseudo-global picture. Then we will be ready to

engage in the main line of inquiry, starting in Chapter 4.

Definition 2.1. A collar is a C∞ surface with boundary, diffeomorphic to [0, 1) × S1,

equipped with a smooth anti-involution J on bTM .

Clearly, a neighborhood of a boundary circle of any b-holomorphic complex curve is a

collar.

2.1 The C∞ structure

Here I summarize some useful facts about the compressed tangent and cotangent bun-

dles of a collar. (Our references are [24], [25], and [26].) X ≡ x∂x is a well-defined global

section of bTM
∣∣
∂M

. Here x is any global defining function for the boundary.

We have the natural map π from bTM to TM . Over the boundary, it degenerates by

one dimension, taking bTM
∣∣
∂M

to T∂M . The kernel is N = the span of X. So we have

the natural exact sequence

0−→N−→ bTM
∣∣
∂M
−→T∂M−→0.

Dualizing, we find the natural exact sequence

0−→T ∗∂M−→ bT ∗M
∣∣
∂M
−→N∗−→0.

Here N∗ is the (abstract) dual to N . N∗ has a natural global frame: X∗ = the dual section

to X. Among those sections of bT ∗M
∣∣
∂M

which are mapped to X∗, there is a distinguished

set: those of the form dx
x where x is again a global defining function for the boundary.
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(Every dx
x is mapped to X∗, clearly.) Any two of these special pre-images of X∗ differ by

an element of T ∗∂M which is exact.

From the sequence, we see that there’s a natural isomorphism

bT ∗M
∣∣
∂M

modulo T ∗∂M−→N∗.

If we choose an element ξ of the pre-image of X∗, this choice determines an isomorphism

N∗ ⊕ T ∗∂M−→ bT ∗M
∣∣
∂M

by (n, η) 7→ 〈n,X〉ξ+ η. This yields up a way of projecting a compressed 1-form lying over

the boundary to 1-form on the boundary, depending on the choice of ξ.

Everything extends nicely to complexifications.

2.2 Orientation

At this point, we must pause to establish a convention regarding the orientation of

b-holomorphic complex curves as it relates to integration. Let M be a collar. Then M◦ is

an ordinary Riemann surface. As such, it has a natural orientation induced by the complex

structure: namely, dξ ∧ dη is a local oriented 2-form if ξ + iη is a local holomorphic chart.

This stipulation is coherent. That is, it distinguishes a ray in each fiber of Λ2M in a

continuous way.

The orientation extends to the boundary. That is, M is oriented as a C∞ surface with

boundary. Therefore ∂M (a circle) inherits an orientation from M . But from now on,

whenever we speak of ∂M as an oriented manifold, and in particular when we integrate a

1-form over ∂M , we will take ∂M to have the orientation opposite to the one it inherits

from M . Furthermore, whenever we speak of an angular coordinate y on (or near) ∂M ,

we will assume that dy is oriented (with this “opposite” orientation for ∂M); that is, that∫
∂M dy = +2π.

We will point out the reason for this choice at the appropriate time. But it will be

important to keep in mind that, with this orientation convention, Stokes’s theorem must

read ∫
M
dη = −

∫
∂M

η.
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2.3 The holomorphic structure

Theorem 2.2. There’s a (complex) de Rham cohomology class η of ∂M which is defined by

the holomorphic structure of the collar. We can therefore define the complex collar invariant

c by

1/c =
∫

∂M
η.

Construction. Let x be a global defining function for the boundary. Let ξ = dx
x so that ξ

maps to X∗. As just noted, this defines projections

πT ∗∂M and πN∗ .

bΛ1,0M
∣∣
∂M

is a complex line bundle over a circle. So it has a global frame. Choose a global

frame κ. Define

η =
1

2πi

[
πT ∗∂M (κ)
〈πN∗(κ), X〉

]
.

Or, we can do it in coordinates. Let x be a global defining function for the boundary, and

y a local angular coordinate. If κ = αdx
x + iβ dy is a compressed 1,0-form lying over the

boundary, then η = 1
2π

[
β
αdy

]
.

Proof of invariance under a change of x. Let x, x̃ be two defining functions for the bound-

ary. Then x̃/x is a positive smooth function. Define f by the relation x̃/x = ef . So

dx̃

x̃
− dx

x
= d log x̃− d log x = d(log x̃− log x) = d log(x̃/x) = df.

Now choose κ = αdx
x + iβ dy. Then

κ = α

(
dx̃

x̃
− df

)
+ iβ dy

= α

(
dx̃

x̃
− x̃fx̃

dx̃

x̃
− fy dy

)
+ iβ dy

= α(1− x̃fx̃)
dx̃

x̃
+ i(β + iαfy) dy.

So over ∂M ,

κ = α
dx̃

x̃
+ i(β + iαfy) dy.
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So

η̃ =
1
2π

[
β + iαfy

α
dy

]
=

1
2π

[
β

α
dy + ify dy

]
=

1
2π

[
β

α
dy + d∂M (if)

]
=

1
2π

[
β

α
dy

]
= η.

Proof of invariance under a change of frame. Let κ̃ be a different C∞ frame for bΛ1,0M

over ∂M . Then κ̃ = gκ for some nonvanishing function g. If we write κ = αdx
x + iβ dy, then

κ̃ = gαdx
x + igβ dy. So

η̃ =
1
2π

[
gβ

gα
dy

]
=

1
2π

[
β

α
dy

]
= η.

Note that c may also be defined by

c =
1

1
2π

∫
∂M

1
q dy

where x∂x + iq∂y is a semi-global frame for bT 0,1M .

Theorem 2.3. The real part of c is positive.

Proof. Choose a smooth defining function x for the boundary and an angular coordinate y.

Then dx points inward, and dy (regarded as a form on the boundary) is oriented opposite

to the orientation of ∂M induced by the orientation of M . So dx∧ dy is an oriented 2-form

on M near the boundary. So dx
x ∧ dy is oriented on M .

Now, let dx
x + iβ dy be a non-vanishing (1, 0)-form over ∂M . Write β = A+ iB. Then

our (1, 0)-form may be written as(
dx

x
−B dy

)
+ i(Ady).
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Therefore (
dx

x
−B dy

)
∧ (Ady) = A

dx

x
∧ dy

is oriented. Thus A, being the quotient of two oriented 2-forms, is a positive function. So

<(1/c) = < 1
2π

∫
∂M

β dy =
1
2π

∫
∂M

Ady > 0.

Therefore <c > 0.

Definition 2.4. A collar isomorphism is a diffeomorphism which respects the holomorphic

structure of the compressed (co)tangent bundle. We will call two collars equivalent if there’s

a collar isomorphism from a neighborhood of the boundary of one to a neighborhood of the

boundary of the other.

It’s clear from the construction that c will be the same for two collars that are equiva-

lent. But we should seek a converse. This is the problem we address in the next section.

2.4 First integrals

M denotes a collar from now on in this chapter.

2.4.1 Existence of first integrals, and classification of collars

In the following two definitions, c = a+ ib is a complex constant with a > 0.

Definition 2.5. We define the standard c-collar Mc as follows. As a set, Mc = [0, 1)×S1,

with radial coordinate x and angular coordinate y. The b-holomorphic structure is defined

by stipulating that the compressed cotangent bundle of type (1, 0) be spanned by c dx/x+

i dy. This means that the compressed tangent bundle of type (0, 1) is spanned by x∂x+ic∂y.

Definition 2.6. We define χc : D\0−→(0, 1)× S1 by

χc(reiθ) =
(
r1/a, θ − (b/a) log r

)
. (2.1)

Lemma 2.7. As a map from D\0 to M◦
c , χc is a biholomorphism.

Proof. χc is a bijection. The inverse is given by χ−1
c (x, y) = xceiy. So

d(χ−1
c )

χ−1
c

= c
dx

x
+ i dy,

which is a (1, 0)-form. So d(χ−1
c ) itself is of type (1, 0). That is, χ−1

c is holomorphic.
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Figure 1: The Collar

We now offer four propositions. We prove their equivalence, but not their truth. It

is not clear whether they are true for all collars, or if they are not, in which cases they

fail. From now on, we restrict ourselves to the (nontrivial) class of collars for which these

propositions are valid. The truth of these propositions is the “extra condition” we spoke of

in Section 1.2.1.

Proposition 2.8. There’s a collar isomorphism ϕ from M to Mconst.

Proposition 2.9. There exists a global C∞ (real) defining function x for the boundary of

M and a real C∞ function y on M minus a cut transversal to ∂M such that:

(a) y has a jump discontinuity of 2π across the cut;

(b) dy extends as a C∞ form to all of M and is independent of dx; and

(c) (const)dx
x + i dy is type (1, 0) for some complex constant.

Proposition 2.10. There exists a smooth function φ on the interior of M minus a cut

transversal to ∂M such that:
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(a) =φ− (const1)<φ is a C∞ angular coordinate for M for some real constant;

(b) e(const2)<φ is a global C∞ defining function for the boundary of M for some real con-

stant; and

(c) the differential dφ is type (1, 0).

Proposition 2.11. There exists a smooth nonvanishing function z on the interior of M

such that:

(a) = log z − (const1)< log z is a C∞ angular coordinate for M for some real constant;

(b) e(const2)< log z is a global C∞ defining function for the boundary of M for some real

constant; and

(c) the logarithmic differential dz/z is type (1, 0).

Note 2.12. In Propositions 2.8 and 2.9, the constant is necessarily equal to c. In Proposi-

tions 2.10 and 2.11, the constants are necessarily b
a and 1

a if we write c(M) = a+ ib.

Proof of equivalence. Refer to Figure 1.

(1) =⇒ (2): x is projection of ϕ on the first factor; y is projection of ϕ on the second

factor.

(2) =⇒ (3): φ = c log x+ iy.

(3) =⇒ (4): z = eφ.

(4) =⇒ (1): ϕ = χc ◦ z.

A classification of collars now follows trivially from Proposition 2.8. In other words,

by assuming the truth of these propositions, we are assuming that the collars that appear

as collars of b-holomorphic curves are classified by the collar invariant c.

Theorem 2.13. Let M1 and M2 be two collars. Then M1 is equivalent to M2 if and only

if c(M1) = c(M2). The reason: for any collar M , M 'Mc(M).

Example 2.14. Let M1 = M1/n, with n some positive whole number. Let M2 be the

n-sheeted branched cover of the unit disk associated to z1/n. Then (x, y) 7→ z = xeiny is a

biholomorphic blow-down of M1 to M2, because

dz

z
=
dx

x
+ in dy.
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It will be useful to keep in mind the special cases n = 1 and n = 2 (which means c = 1

or c = 1/2). They correspond to the blow-up (at zero) of the disk in C and the blow-up (at

the branch point) of the two-sheeted cover of the disk corresponding to the function
√
z.

Remark 2.15. Every complex number with positive real part is realized as c for some

collar.

Definition 2.16. A function z of the sort whose existence is asserted in Proposition 2.11

will be called a first integral for (the holomorphic structure of) M .

It should be recorded here that many attempts were made to either prove the exis-

tence of first integrals, or find a counterexample. All attempts have been unsuccessful.

And although some positive information was gained about the coordinate changes that are

possible in general, the results are somewhat weak, and in the present discussion, they are

inconsequential. We therefore omit the details.

Remark 2.17. If z is a first integral for M , then dz/z is a smooth frame for bΛ1,0M . This

is because with x and y defined as in the proof of equivalence of the four propositions,

dz

z
= c

dx

x
+ i dy,

and x, y are C∞ boundary coordinates for M .

By definition, z is a first integral if and only if z is holomorphic and z = xceiy for some

C∞ boundary coordinates x, y. We have also seen that z is a first integral if and only if

χc ◦ z : M◦−→M◦
c extends to M as a collar isomorphism.

2.4.2 Uniqueness of first integrals

Lemma 2.18. A first integral is a biholomorphism from the collar’s interior to a punctured

neighborhood of zero in C.

Proof. Write z = xceiy where x is a defining function for the boundary and y is an angular

coordinate. z is clearly a bijection from the collar’s interior to a punctured neighborhood of

zero in the complex plane. Since dz/z is type (1, 0), so dz is also type (1, 0). Therefore z is

holomorphic. Since dz/z is a frame, and z is nonvanishing, so dz is also a frame. Therefore

z is a local biholomorphism. Thus z is a bijective local biholomorphism; that is, a global

biholomorphism.
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Technical Lemma 2.19. Let ζ be a biholomorphism from a neighborhood of zero to a

neighborhood of zero which takes zero to zero.

(a) If zζ ′/ζ is constant, then so is ζ/z.

(b) If zζ ′/ζ is an analytic function of zq for some q ∈ Z>0, then so is ζ/z.

(From now on, ζ ′ is written when we mean ∂ζ/∂z.)

Proof of (a). Write ζ = c1z + c2z
2 + · · · . Then for some constant a we have zζ ′ = aζ, or

c1z + 2c2z2 + 3c3z3 + · · · = ac1z + ac2z
2 + ac3z

3 + · · · .

Since ζ is injective, c1 6= 0; so we must have a = 1. So the equation becomes

c1z + 2c2z2 + 3c3z3 + · · · = c1z + c2z
2 + c3z

3 + · · · .

Identifying power series coefficients yields ncn = cn for all n ≥ 1. So cn = 0 for all n ≥ 2,

and we are left with ζ = c1z.

Proof of (b). We could use the same method as in the proof of (a), but we’d have to multipy

power series and keep track of the coefficients of the product. So we’ll use a different method

instead. Write
zζ ′

ζ
= a0 + aqz

q + a2qz
2q + · · · .

Then
ζ ′

ζ
= a0z

−1 + aqz
q−1 + a2qz

2q−1 + · · · .

But note that
1 = index of ζ on a small loop around zero

=
1

2πi

∫
ζ ′

ζ
dz

= residue of ζ ′/ζ at zero

= a0.

So actually we have
ζ ′

ζ
= z−1 + aqz

q−1 + a2qz
2q−1 + · · · .

Let g = ζ/z. Then

g′/g = ζ ′/ζ − z−1 = aqz
q−1 + a2qz

2q−1 + · · · .



19

Now since ζ is injective, g is nonvanishing near zero. So we may choose a logarithm of g

there and call it log g. So we have

(log g)′ = aqz
q−1 + a2qz

2q−1 + · · · ,

so that

log g = b0 + bqz
q + b2qz

2q + · · · ,

where bnq = anq/nq for n ≥ 1. So log g is an analytic function composed with the qth power

function. So

g = exp ◦ log g = exp ◦(analytic)◦(qth power) = (analytic)◦(qth power).

Theorem 2.20. Let z and ζ be first integrals for a collar. If c ∈ Q, with c = p/q in reduced

form, then ζ/z is an analytic function of zq. If c /∈ Q, then ζ/z is constant.

Proof. Suppose z and ζ are first integrals. Let x and y be the C∞ radial and angular

coordinates associated to z, and define x̃ and ỹ similarly for ζ. Then z = xceiy and

ζ = x̃ceiỹ. So we have two compressed cotangent sections of type (1, 0), namely

dz

z
= c

dx

x
+ i dy

dζ

ζ
= c

dx̃

x̃
+ i dỹ.

Each is a smooth frame for bΛ1,0M . They are related by

dζ

ζ
=
ζ ′dz

ζ
=
zζ ′

ζ

dz

z
.

So the transition function zζ ′/ζ must be C∞ up to x = 0.

Also, each of z and ζ is a biholomorphism from the collar’s interior to a punctured

neighborhood of zero in the complex plane (by a lemma above). So, thought of as a

function of z, ζ is a biholomorphism from a punctured neighborhood of zero to a punctured

neighborhood of zero. But such a function is automatically regular at zero with value 0

there. So, ζ(z) is actually a biholomorphism from a neighborhood of zero to a neighborhood

of zero, taking zero to zero. So ζ is a series in positive powers of z. So the transition function

g(z) = zζ′

ζ is a series in non-negative powers of z since ζ was.
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We have found that

g(x, y) = c0 + c1x
ceiy + c2x

2cei2y + · · · .

This is a Fourier series in y each of whose coefficients is a function of x. Since g is C∞ down

to x = 0 and x is a defining function for the boundary, each of these coefficients must be

C∞ down to x = 0 as a function of x.

Let n ≥ 1. Then the nth coefficient of g is cnxnc. Now xnc is C∞ down to x = 0 only

if nc ∈ Z. This can only happen if c is rational (write it in reduced form as p/q) and n is a

multiple of q. We just have to summarize:

If c = p/q is a rational in reduced form, then cn = 0 unless n is a multiple of q. And

if c is not rational, then cn = 0 for all n ≥ 1. This means that if c = p/q is a rational in

reduced form, then zζ ′/ζ is an analytic function of q; and if c is not rational, then zζ ′/ζ is

constant. These properties of zζ ′/ζ are carried over to ζ/z by the technical lemma.

Converse 2.21. Let z be a first integral. Then any nonzero complex-constant multiple of

z is also a first integral. If c = p/q is a rational in reduced form, then z times any analytic

function of zq with nonzero constant term is also a first integral.

Proof. The first assertion is obvious. So we focus on the second. Let ζ = zg(z), with g

being some analytic function of zq with nonzero constant term. Clearly ζ is holomorphic

since z was. By the first assertion we can assume WLOG that the constant term of g is 1.

Now define
x = e

q
p
< log z = |z|q/p

y = = log z,

then define x̃ and ỹ similarly using ζ. Then x and y form C∞ coordinates for the collar,

with x = 0 defining the boundary. We have to check that this is also true of x̃ and ỹ.

Compute
x̃

x
=
|ζ|q/p

|z|q/p
=

∣∣∣∣ζz
∣∣∣∣q/p

= |g|q/p = (|g|2)q/2p.

We’ll work from the inside out to show this is C∞ at x = 0. zq = xpeiqy is C∞. So g, which

is an analytic function of zq, is also C∞. So <g and =g are C∞. So |g|2 = (<g)2 + (=g)2

is C∞. |g|2 is bounded away from zero at the boundary; and away from zero, the function

( · )q/2p is C∞. So the compostition (|g|2)q/2p is C∞. Also, g is a nonzero constant on the

boundary by hypothesis. So (|g|2)q/2p is a strictly positive constant on the boundary. Thus

x̃/x is C∞ and nonvanishing at the boundary. So x̃ is a defining function for the boundary.
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Now compute

ỹ − y = = log ζ −= log z = = log(ζ/z) = = log g.

Now, g is bounded away from zero near the boundary. So we can regard this log g in a full

neighborhood of the boundary, without a cut. Namely,

log g(z) =
∫ z

p

g′(ξ)
g(ξ)

dξ.

Suppose q = 1. Then g is analytic in ξ, so log g is also analytic in ξ. But suppose q > 1.

Then g is analytic in ξq with nonzero constant term. So it must be true that g′/g is analytic

in ξq−1 with no constant term. This is a combinatorial fact which can be verified directly.

So by the integral representation above, log g is analytic in zq, no matter what q is. So it is

C∞ at x = 0 and globally defined. It is clearly constant at the boundary. So ỹ−y = = log g

is C∞ at x = 0 and constant there. Thus, since y is a “global” angular coordinate, ỹ is as

well.

Corollary 2.22 (uniqueness of first integrals). Let z be a first integral, and ζ be some

other function. If c is not rational, then ζ is a first integral if and only if ζ/z is a nonzero

constant. If c = p/q is a rational in reduced form, then ζ is a first integral if and only if

ζ/z is an analytic function of zq with nonzero constant term.

Remark 2.23. A first integral is, essentially, a pair of C∞ coordinates for the collar, all

packaged together. We require that xceiy be holomorphic; this gives us a set of “distin-

guished” pairs of real coordinates. The situation is analogous to the ordinary punctured

disk in C; here, we have a family of special (conformal) coordinate pairs x, y which are

distinguished by the fact that x+ iy is holomorphic and maps to another punctured neigh-

borhood of zero. Here, multiplication by any analytic function of x + iy with nonzero

constant term will define a new conformal pair. But in the situation of the collar, the class

of special coordinate pairs is further restricted, because we impose an additional condition

beyond conformality: namely, that x be a defining function for the boundary. This can be

rephrased by saying that the conformal pair x, y is compatible with the C∞ structure at the

boundary. Thus, the class of allowable change-of-coordinate functions is reduced. Instead

of being able to multiply by any analytic function of xceiy with nonzero constant term, we

are only allowed to multiply by a constant (if c is not rational) or by an analytic function of

xpeiqy with nonzero constant term (if c = p/q is a rational in reduced form). Exactly why
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we have considerably more freedom in the choice of a first integral when c is rational than

when it is not (though we still have less freedom than in the analogous case of the marked

or punctured disk) is not clear.

2.5 Collar automorphisms

Since a first integral is essentially a C∞ biholomorphism from a collar to the stan-

dard c-collar, our knowledge of first integrals can be rephrased as information about collar

automorphisms. (Actually, we could have started from an analysis of automorphisms of

the standard c-collar and used this to understand the first integrals of an arbitrary collar.)

Throughout this section, c is the collar invariant of M .

Lemma 2.24. Let z be a first integral. Then ϕ : M →M is a collar automorphism if and

only if z ◦ ϕ is a first integral.

Proof of =⇒ . Since z is a first integral, we have the diagram

M
χc◦z−−−−→ Mc,

with the arrow representing a collar isomorphism by Remark 2.17. Now since ϕ is a collar

automorphism, we can extend the diagram by

M
ϕ−−−−→ M

χc◦z−−−−→ Mc,

which can be redrawn as

M
χc◦(z◦ϕ)−−−−−→ Mc,

and the long path is still a collar isomorphism. So by Remark 2.17, z◦ϕ is a first integral.

Proof of ⇐= . This is the same argument, only played in reverse. If z ◦ϕ is a first integral,

then we have the diagram

M
χc◦(z◦ϕ)−−−−−→ Mc

with the long path being a collar isomorphism. Since z is a first integral, we also have the

diagram

M
χc◦z−−−−→ Mc

with the long path being a collar isomorphism. Thus the “difference” ϕ is a collar auto-

morphism M−→M .
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Theorem 2.25 (collar automorphisms). Let M be a collar with first integral z. Let

ϕ be a function from M to itself. If c is not rational, then ϕ is a collar automorphism

if and only if it is conjugate via z to multiplication by a nonzero constant: z ◦ ϕ ◦ z−1 =

multiplication by A, A 6= 0. If c = p/q is a rational in reduced form, then ϕ is a collar

automorphism if and only if it is conjugate via z to multiplication by an analytic function

of the qth power with nonzero constant term: z ◦ϕ ◦ z−1 = multiplication by (analytic)◦(qth
power), (analytic)0 6= 0.

Proof. By Lemma 2.24, ϕ is a collar automorphism if and only if z ◦ ϕ is a first integral.

Suppose c is not rational. By Corollary 2.22, z ◦ϕ is a first integral if and only if z ◦ϕ ◦ z−1

is multiplication by a nonzero constant. Suppose c = p/q is a rational in reduced form.

By Corollary 2.22, z ◦ ϕ is a first integral if and only if z ◦ ϕ ◦ z−1 is multiplication by an

analytic function of the qth power with nonzero constant term.

2.6 Independence of collar invariants

The following theorem shows that any combination of appropriate constants ci can

appear as the collar invariants for the collars of a b-holomorphic complex curve.

Theorem 2.26. Let M be a C∞ surface with boundary. Label the boundary circles C1, . . . , Cn.

Let Mi denote a neighborhood of Ci. Then for any n complex numbers c1, . . . , cn with posi-

tive real part, there exists a b-holomorphic structure for M such that c(Mi) = ci.

Proof. M may be realized as a genus g compact (C∞) surface with n open disks cut out

of it. So we begin with the compact surface of genus g, equipped with a (non-singular)

holomorphic structure. Choose n disjoint unit disks Di on this surface, each with local

complex coordinate zi = xeiy (x and y are ordinary radial coordinates). Excise the closed

disk of radius 1/2 from each of the Di and throw it away. Call the resulting surface M̃ . For

each i we will prepare a collar Mi to graft onto Di, with c(Mi) = ci, in such a way that the

coordinate change function from Di to Mi is holomorphic.

As a C∞ manifold, Mi = [0, 1) × S1. It now suffices to define a C∞ function ζi there

with the following properties:

1. The Jacobian of ζi (as a map into R2) is everywhere non-singular.

2. Near x = 0, ζi = xcieiy.
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3. For 1
2 < x < 1, ζi = xeiy.

Condition 1 says that M◦
i is a holomorphic manifold. Condition 2 says that Mi is a collar

and that c(Mi) = ci. And Condition 3 says that if we graft Mi onto M̃ by identifying the

point x, y of Mi with the point xeiy of Di for each x between 1
2 and 1 and every y, then the

change of coordinates from z to ζ is z 7→ z (which is holomorphic). We proceed with the

construction. Fix i. Write ci = a + ib. For brevity we will assume that a > 1, the other

cases being very similar. From now on, we drop the subscript i.

The strategy is simple. We will pick some function φ of x only which is 0 near x = 0

and 1 for x ≥ 1/2, and define g = (1 − φ)u + φv, where u(x) = xc and v(x) = x. Then

we define ζ = geiy. Conditions 2 and 3 are satisfied automatically by this construction. So

all we have to do is choose φ wisely so that the Jacobian of ζ is non-singular. It is easy to

compute that this Jacobian is 1
2(|g|2)′. So it suffices to show that (for some good choice of

φ) |g|2 has nonzero derivative.

We define A = (1− φ)xa, B = φx, and θ = b log x. Then we write g = Aeiθ +B.

Near 0, x > xa. Pick a point x0 in this region so that b log x0 is a multiple of 2π:

x0 = e2π`/b for some `. We’re going to make φ go from 0 to 1 in a small neighborhood of

x0, so that θ remains close to 2π` = θ(x0) there. So for some ∆θ (to be determined later)

we let xL = e(2π`−∆θ)/b, xR = e(2π`+∆θ)/b; then let φ be smooth and monotone, 0 to the left

of xL, and 1 to the right of xR. I claim that if we choose ∆θ small enough, and φ nice, then

|g|2 will be strictly increasing in (xL, xR). (It obviously is elsewhere.)

Compute that |g|2 = A2 + B2 + 2AB cos θ. Making second order approximations for

small θ, we find that

(|g|2)′ = 2(A+B)(A+B)′ − [A′Bθ2 +AB′θ2 − 2ABθθ′].

First we look at term I. (A+B) is bounded away from 0 in the interval (xL, xR). Also,

(A+B)′ = axa−1 + φ+ φ′(x− xa).

The first term of this is bounded away from 0, and the other two are nonnegative (in the

interval). So term I is bounded away from 0, independent of φ.

Next, we have to see that term II is uniformly small in absolute value there, with a

small choice of ∆θ (good choice of φ). First of all, we have to see how φ′ is related to ∆θ.

Compute that

xR − xL = 2e2π`/b sinh
∆θ
b
∼

(
2
b
e2π`/b

)
∆θ
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(again approximating for ∆θ small). So there’s a constant d such that for any small ∆θ,

we can choose the φ so that φ′ ≤ d 1
∆θ . Now you compute the three terms in term II, make

use of this estimate for φ′, and see that in each one, we have something which is bounded

(in the interval (xL, xR)) times either one or two powers of ∆θ.

2.7 Bundles over a collar: c non-rational

When we examine line bundles over a generic b-holomorphic complex curve, we will

assume that all the collar invariants are in (C\Q)∪ 1. This is only a matter of convenience.

The reason is that c = 1 and c /∈ Q represent the limiting cases q = 1 and q = ∞ of

c = p/q. This is meant in more than just a formal sense; that is, the analysis required for

collar invariants in Q\1 is essentially a mixture of what happens for c = 1 and for c /∈ Q.

Time and space restrictions suggest that it would be superfluous to write out the explicit

calculations for c ∈ Q\1.

In this section, M is a collar with c /∈ Q.

We wish to classify the holomorphic line bundles over M , the purpose being to establish

some basic results and pave the way for our global analysis of bundles over a b-holomorphic

complex curve. Now, every C∞ complex line bundle E over a collar (or over any surface

with non-empty boundary) has a global frame. So we may (whenever we wish) regard E as

M ×C equipped with a smooth section α of bΛ0,1M , whereby ∂̄1 = 1⊗α. But it has to be

remembered that this 1 is not canonical.

One of our most basic tools for dealing with line bundles will be the Cauchy integral

formula, which we formulate as follows.

Lemma 2.27 (Cauchy integral formula). Let α be a compactly supported (0, 1)-form

over C. Define

f(z) =
1

2πi

∫
C

α(ξ) ∧ dξ
z − ξ

.

Then

(a) ∂̄f = α.

(b) In a neighborhood of ∞, f can be written as the convergent power series

f(z) =
∑
n≥1

[
1

2πi

∫
C
ξnα(ξ) ∧ dξ

ξ

]
z−n.
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(c) If α = 0 in a neighborhood of zero, then in such a neighborhood f can be written as

the convergent power series

f(z) =
∑
n≥0

[
(−1)n

2πi

∫
C
ξ−nα(ξ) ∧ dξ

ξ

]
zn.

Proof of (a). Standard.

Proof of (b). Define ϕ(z) = f(1/z). Since α is compactly supported, f must be analytic in a

(punctured) neighborhood of infinity. This says precisely that ϕ is analytic in a punctured

neighborhood of zero; that is, it has a Laurent series. But we can see directly from the

formula for f that f approaches 0 at infinity. So ϕ approaches 0 at 0. So ϕ is a series in

positive powers of z only.

We compute directly that for any n ≥ 1,

ϕ(n)(z) =
n!
2πi

∫
ξn−1α(ξ) ∧ dξ

(1− zξ)n
.

So

ϕ(n)(0) =
n!
2πi

∫
ξnα ∧ dξ

ξ
.

Thus we have the power series representation (near 0)

ϕ(z) =
∑
n≥1

[
1

2πi

∫
ξnα ∧ dξ

ξ

]
zn.

Therefore

f(z) = ϕ(1/z) =
∑
n≥1

[
1

2πi

∫
ξnα ∧ dξ

ξ

]
z−n,

which was to be proven.

Proof of (c). Similar to the proof of (b).

Remark 2.28 (Taylor’s theorem). Let u be a complex-valued C∞ function in a neigh-

borhood of zero in the complex plane. Then by a combinatorial re-shuffling of Taylor’s

theorem, we may say that

u ∼
∑
m≥0
n≥0

umnz
mz̄n

with umn = m!n!∂m
z ∂

n
z̄ u(0). This only needs a bit of interpreting. First, the derivatives in z

and z̄ are not meant in the sense of limits of difference quotients in the complex variables;
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such limits do not exist unless u happens to be holomorphic or anti-holomorphic. They are

meant in the other sense, as linear combinations of ordinary partial derivatives in x and y.

That is,

∂z =
1
2
(∂x − i∂y)

∂z̄ =
1
2
(∂x + i∂y).

Second, the asymptotic formula is to be interpreted as meaning: for any N ≥ 0,u− ∑
m+n≤N

umnz
mz̄n

÷ |z|N+1

is bounded in a (punctured) neighborhood of zero.

In general, a holomorphic line bundle over a collar does not posess a holomorphic

C∞ global frame. Yet we know that the pull-back of the bundle to the collar’s interior

does posess a holomorphic C∞ global frame [11]. So our strategy for understanding these

bundles will be to seek a special global holomorphic frame over the interior of the collar,

whose behavior at the boundary (with respect to a global C∞ frame) is known.

Definition 2.29. An nth power of a first integral (n ≥ 1) is called an nth integral. (A

zeroth integral is a nonzero complex constant.)

Lemma 2.30. Any non-zero constant multiple of an nth integral is another nth integral.

Definition 2.31. An infinite formal series, whose nth entry (n ≥ 0) is an nth integral (or

zero), will be called an integral sequence.

Definition 2.32. Two integral sequences shall be called equivalent if their difference, which

is a formal power series in any chosen first integral z, has a positive radius of convergence

and has its constant term equal to an integral multiple of c. This condition is independent

of the first integral (and is, in fact, a relation of equivalence).

Lemma 2.33. Let M = [0,∞)x × S1
y . Let c = a + ib (with a > 0) be a non-rational

constant. Let z = xceiy. Let L̄ = 2az̄∂z̄ = x∂x + ic∂y. If f is a compactly supported C∞

function on M , and the average value of f on the boundary of M is f00, then there exists

a C∞ solution u to L̄u = f on M◦ such that u tends to zero at x = ∞ and u− f00 log x is

bounded at x = 0. Such a solution is unique, and will be called the unique good solution to

L̄u = f on M . Moreover, u can be written in the form

u = h1 + φf00 log x+ h2
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where h1 is C∞ on M , φ is a C∞ cut-off function supported in a neighborhood of ∂M , and

h2 is a C∞ function on M◦ which has an asymptotic expansion at the boundary in positive

powers of z.

Note 2.34. z is a biholomorphism from M◦ to the punctured complex plane. So we will

shift between these two points of view freely.

Proof of uniqueness. Suppose u and ũ are solutions with the required decay properties, and

let v = ũ−u. Then L̄v = 0 in M◦. So 2az̄∂z̄v = 0 in the punctured z-plane. Because of the

decay properties of u and ũ, we know that v tends to zero at z = ∞. Also, v is bounded at

z = 0, because v = (ũ− f00 log x)− (u− f00 log x). So we have a holomorphic function on

the punctured z-plane which is bounded at z = 0 and which tends to zero at z = ∞. The

only such function is the zero function.

Proof of existence. Choose a cut-off function φ which is supported near ∂M , whose variation

takes place outside the support of f , and which is a function of x only. Write

f ∼
∑
m≥0
n∈Z

fmnx
meiny.

Define u1
mn = fmn/(m − nc) for m ≥ 0, n ∈ Z, (m,n) 6= (0, 0) and choose a compactly

supported C∞ function u1 on M such that

u1 ∼
∑
m≥0
n∈Z

(m,n) 6=(0,0)

u1
mnx

meiny.

Let u2 be the Cauchy solution (Lemma 2.27) in the z-plane to ∂z̄u
2 = −f00(∂z̄φ) log x.

(The datum is compactly supported away from the boundary of M , so we can regard it as

a compactly supported C∞ function in the z-plane.) Let u3 be the Cauchy solution in the

z-plane to

∂z̄u
3 =

1
2az̄

(f − f00)φ− ∂z̄u
1.

(We must explain why the datum is a C∞ function of compact support in the z-plane.

(f − f00)φ− L̄u1 vanishes to infinite order at the boundary, by construction. So if we push

down to the z-plane, this function vanishes to infinite order at z = 0. Thus we can divide

by 2az̄ to get a (compactly supported) C∞ function in the z-plane. This is our datum.)
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Now let u = f00φ log x + u1 + u2 + u3. u1 is compactly supported and C∞ on M . u2

and u3, being Cauchy solutions in the z-plane, tend to zero at z = ∞ and are C∞ at z = 0

(which means they are bounded at ∂M). Therefore u has the correct decay properties. A

direct (trivial) calculation from the construction shows that L̄u = f .

Proof of “moreover”. Since u3 is C∞ at z = 0 in the z-plane, we may write

u3 ∼
∑
m≥0
n≥0

umnz
mz̄n.

But we know that ∂z̄u
3 vanishes to infinite order at z = 0, by its construction. So we find

(see Remark 2.28) that, for n ≥ 1,

u3
mn = m!n! ∂m

z ∂
n−1
z̄ (∂z̄u

3)(0) = 0.

So the only terms that survive are those with n = 0. So

u3 ∼
∑
m≥0

u3
m0z

mz̄0 =
∑
m≥0

u3
m0z

m.

Now define h2 = u3 − u3
00. Then h2 is a C∞ function on M◦ which has an asymptotic

expansion at the boundary in positive powers of z.

Next define h1 = u1 + u2 + u3
00. Then we have

u = f00φ log x+ u1 + u2 + u3

= h1 + f00φ log x+ h2.

h2 has the correct properties. Now we only need to look at h1, and show that it is C∞

on M . u1 and u3
00 are C∞ on M . So we only need to show that u2 is C∞ on M . u2 is a

Cauchy solution in the z-plane, and the datum is zero in a neighborhood of z = 0. Thus u2

may be represented as a convergent power series in non-negative powers of z near z = 0. I

claim that all the power series coefficients are zero except the zeroth, so that u2 is constant

in a neighborhood of z = 0 and therefore C∞ on M . Proof of this claim:

Let n ≥ 1, and compute (ignoring multiplicative constants) that, by Lemma 2.27, the

nth coefficient is ∫
C
ξ−n(−f00 log x(ξ) ∂ξ̄φdξ̄) ∧

dξ

ξ
=

∫
C

log x(ξ)
ξn+1

∂̄φ ∧ dξ

=
∫

G

log x(ξ)
ξn+1

∂̄φ ∧ dξ
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where G is an annular region containing the variation of φ whose bounding circles are level

curves for x. Integrate by parts to get

−
∫

G

∂̄ log x(ξ)
ξn+1

φ ∧ dξ +
∫

C

log x(ξ)
ξn+1

dξ

where C is the inner bounding circle of G. We will show that both terms I and II are zero.

First, II is an integral of the exact form d(ξ−n), since log x is a constant on C. Next

we have to simplify and evaluate I. Note that

∂̄ log x = ∂ξ̄ log x dξ̄ =
1

2aξ̄
L̄ log x dξ̄ = dξ̄/ξ̄.

So I is ∫
G

φ

ξn

dξ̄

ξ̄
∧ dξ

ξ
.

This can be rewritten as
∫
G φx

−nce−iny dx
x dy. If we perform the integration in y first, we

clearly get zero, because φ is a function of x only. The claim is proven.

Sub-lemma 2.35. Let all be as it was in the previous lemma, and suppose we have two

functions of the sort that f was, called f and f̃ . Suppose f̃ − f = L̄g where g is a C∞

function defined on a neighborhood of the region where f and f̃ have their support. Then g

is holomorphic in an annular region. Let γ be the restriction of g to that annular region, and

write γ as the sum of its holomorphic and singular parts in the z-plane, γ = HP(γ)+SP(γ).

Then g − HP(γ), defined in a neighborhood of z = 0 and holomorphic away from z = 0,

extends holomorphically out to z = ∞. Call this extension g′.

If u and ũ are the good solutions to L̄u = f and L̄ũ = f̃ , then

ũ− u = g′.

Proof. First, note that (L̄g)00 = 0, because∫
∂M

L̄g dy =
∫

∂M
(x∂xg + ic∂yg) dy =

∫
∂M

d(icg) = 0

and icg is a C∞ function on M . Therefore f̃00 = f00.

Now suppose u is the good solution to L̄u = f . Then

L̄(u+ g′) = f + L̄g′.
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Outside the domain of g, g′ is holomorphic, and f̃ = 0 = f . Thus L̄(u+ g′) = f̃ . Inside the

domain of g, g′ = g −HP(γ). So

L̄(u+ g′) = f + L̄g − L̄HP(γ).

But the holomorphic part of γ is certainly holomorphic. So

L̄(u+ g′) = f + L̄g = f̃ .

So u+ g′ is a solution for f̃ .

It remains to see whether this is the good solution. At z = 0, u− f00 log x is bounded,

and g is bounded. Also, HP(γ) is bounded. So

u+ g′ − f̃00 log x = u− f00 log x+ g −HP(γ)

is bounded. Now we go to z = ∞. u tends to zero. Near z = ∞, g′ = SP(γ) and therefore

g′ tends to zero at z = ∞. So u+ g′ tends to zero. Therefore, ũ = u+ g′ is in fact the good

solution to L̄ũ = f̃ .

Lemma 2.36. Let M be a collar and E be a holomorphic line bundle over M . Then there

exists a frame for E which is C∞ up to the boundary and is holomorphic everywhere except

in a neighborhood of the boundary. Such a frame will be called holomorphic away from the

boundary.

Some notation which will remain fixed in the rest of this section: M is a collar. x, y

are the C∞ coordinates related to some first integral z = xceiy. c = a + ib is the collar

invariant defined earlier. We have the basis

L = x∂x − ic̄ ∂y = 2az∂z (1, 0)

L̄ = x∂x + ic ∂y = 2az̄∂z̄ (0, 1)
(2.2)

for C bTM . The dual basis is

λ =
1
2a

[
c
dx

x
+ i dy

]
=

1
2a
dz

z
(1, 0)

λ̄ =
1
2a

[
c̄
dx

x
− i dy

]
=

1
2a
dz̄

z̄
(0, 1).

(2.3)

Theorem 2.37. Let M be a collar and E be a holomorphic line bundle over M . Then to

E there corresponds an integral sequence class. It is a bundle invariant.
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Construction. Choose a first integral z for M . Let s be a global C∞ frame for E which is

holomorphic away from the boundary. Let α be the ∂̄ form of E with respect to s. Then α is

compactly supported, so we may regard it as a compactly supported compressed (0, 1)-form

on Mc(z).

Let f = 〈α, L̄〉. Then f is a smooth compactly supported function of Mc(z). So by

Lemma 2.33 there is a unique good solution to L̄r = −f . (This is the same as saying that

r is the unique good solution to ∂̄r = −α on Mc(z).) At the boundary this solution has

the form

h1 − f00φ log x+ h2

where h1 is C∞, φ is a cut-off function, and h2 has an asymptotic expansion in positive

powers of z. The asymptotic expansion for h2, plus the constant term −f00, is taken to

represent the bundle invariant.

Proof of invariance under a change of first integral. This proof uses the micro-lemma which

says that if ∂ξ̄p = q (we are running out of letters!), then ∂ξ̄(p ◦ (D)) = (D) ◦ q ◦ (D), where

(D) represents “multiplication by the non-zero constant D.” The proof of this micro-lemma

is just an exercise in applying the chain rule, so we omit the proof.

Now to the proof of invariance. Let z and z̃ be first integrals. Then z̃ = Dz. We

start the construction: s is the frame, α its form. Now, whether computed via z or z̃, the

L̄ operator (on M◦) is the same. So we get the same function f = 〈α, L̄〉 on the manifold

in either case. The two angular coordinates y and ỹ differ by a constant, so averaging f

against dy gives the result as averaging f against dỹ. Thus z0 is independent of the first

integral.

We proceed to n ≥ 1. We have to be careful about composing with coordinate functions,

though this is blurred in the construction. In the non-tilde case, we are to take g = f ◦ z−1,

find the good solution ρ in the punctured complex plane to 2aξ̄∂ξ̄ρ = g, and then let

r = ρ ◦ z.
Let E = 1/D. In the tilde case, we are to take g̃ = f ◦ z̃−1 = f ◦ z−1 ◦ (E) = g ◦ (E).

Now we seek the good solution ρ̃ in the punctured complex plane to 2aξ̄∂ξ̄ρ̃ = g̃; we can
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compute by means of the micro-lemma that it must be ρ̃ = ρ ◦ (E). Finally, we take

r̃ = ρ̃ ◦ z̃

= ρ ◦ (E) ◦ z̃

= ρ ◦ (E) ◦ (D) ◦ z

= ρ ◦ z

= r.

So all the zn are independent of the first integral.

Proof of invariance under change of frame. Let s and s̃ be two global C∞ frames which are

holomorphic away from the boundary. Let n be the winding number of s̃/s around zero on

any small deformation of ∂M . Then I claim that s̃/s may be written in the form

s̃/s = zneg−ncφ log x

where g is a C∞ function on M which is holomorphic away from the boundary and φ is a

cut-off function which is supported near the boundary.

Proof of this claim: zn winds n times, and e−nc log x does not wind. Therefore zne−ncφ log x

winds n times. Furthermore,

zne−ncφ log x = en(c log x+iy)−ncφ log x

= e(1−φ)nc log x+iny

is C∞ up to the boundary. Finally, this function is holomorphic away from the boundary

since it agrees with zn there.

So what do we have? We have s̃/s being a C∞ function, holomorphic away from the

boundary, and winding n times; and we have zne−ncφ log x being a C∞ function, holomorphic

away from the boundary, and winding n times. So the quotient is C∞ up to the boundary

and winds not at all. So this quotient is eg for some g which is C∞ up to the boundary and

holomorphic away from the boundary. We are done proving the claim.

So assume s̃ = szneg−ncφ log x, as claimed. Then α̃ = α+ ∂̄(g − ncφ log x). So

f̃ = f + L̄g − L̄(ncφ log x)

= f + L̄g − nc(L̄φ) log x− ncφ,

so that

−f̃ = −f − L̄g + nc(L̄φ) log x+ ncφ.
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First we show invariance of the zeroth integral. z̃0 = −f00 = −f00 − (L̄g)00 + nc =

−f00 +nc, so that z̃0 = z0 +nc. That is, z̃0 and z0 are equivalent. This depends on the fact

that (L̄g)00 = 0 as proved in Sub-lemma 2.35.

Now we show invariance of the other integrals. So let r be the good z-plane solution to

L̄r = −f . We seek the good z-plane solution r̃ to L̄r̃ = −f̃ = −f − L̄g+ L̄(ncφ log x). This

can be found by seeking the good solutions to the two L̄ problems with data −f − L̄g and

L̄(ncφ log x) = nc(L̄φ) log x+ ncφ and adding, since these two data are C∞ and compactly

supported (so that Lemma 2.33 applies).

The good solution to the first problem is r−g+HP(γ), by Sub-lemma 2.35. I claim that

the good solution to the second problem is ncφ log x itself. Why? Simply by the definition

of a good solution!

Thus r̃ = r− g + HP(γ) + ncφ log x. So h̃1 = h1 − g + HP(γ)0 and h̃2 = h2 + HP(γ)−
HP(γ)0. Thus the expansions in positive powers of z for h2 and for h̃2 differ by an absolutely

convergent series (the holomorphic function HP(γ)−HP(γ)0). That is, they define the same

class (Definition 2.32).

Theorem 2.38. Let E be a bundle over the collar M . Let z0, z1, . . . be an integral sequence

which represents the bundle invariant of E. Then there exists a C∞ frame s and a function

v ∼
∑

n≥1 zn such that

sez0 log x+v

is a global holomorphic frame for the pull-back of E to the interior of M . (Here x is the

defining function for ∂M associated to any first integral.) This frame is unique up to a

constant multiple.

Proof of uniqueness. Suppose there were two such. Then their quotient would be C∞ and

holomorphic on the collar. The only such function is a constant.

Proof of existence. Choose a first integral z. Choose a C∞ frame 1 for E. Let α be the

associated ∂̄ form. Let f = 〈α, L̄〉. Let r be the unique good solution to the equation

L̄r = −f . Then by Lemma 2.33, r = h1 − f00 log x+ h2, with h1 being C∞ and h2 having

an asymptotic expansion in positive powers of z. By definition, we know that z0 + f00 = nc

for some integer n, and
∑

n≥1 zn minus the asymptotic series in positive powers of z for h2

is absolutely convergent near z = 0. Call this analytic function F . Now define a new C∞
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frame s by

s = 1eh1+iny.

I claim that sez0 log x+v is a global holomorphic frame over the interior. Why so? We only

have to compute that

sez0 log x+v = 1eh1+iny+z0 log x+v

= 1eh1−f00 log x+h2+(z0+f00) log x+iny+(v−h2)

= 1eh1−f00 log x+h2+nc log x+iny+F

= 1eh1−f00 log x+h2zneF .

The first piece is the global holomorphic frame we started with. The other two pieces

are nonvanishing holomorphic functions. So the whole thing is a global holomoporphic

frame.

Theorem 2.39. E posesses a global holomorphic frame which is C∞ up to the boundary if

and only if the integral sequence class of E is the zero class.

Proof. If the integral sequence class is represented by the zero sequence, then Theorem 2.38

guarantees the existence of a global holomorphic frame which is C∞ up to the boundary.

Conversely, if there is a global holomorphic frame which is C∞ up to the boundary, then

the integral sequence computed with respect to this frame is the zero sequence.

Definition 2.40. Two holomorphic line bundles over a collar are called equivalent if there

exists a C∞ isomorphism between them which preserves the holomorphic structures.

Corollary 2.41. Two holomorphic line bundles over a collar are equivalent if and only if

their integral sequence classes are the same.

Proof. It suffices to observe that the map which takes a bundle to its integral sequence class

is a homomorphism from the group of bundles to the additive group of integral sequence

classes. This is a triviality.

Theorem 2.42. Let M be a collar. Then for every integral sequence z0, z1, . . . , there is a

bundle E over M whose class this sequence represents.
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Construction. WLOG take M to be Mc where c is an arbitrary complex constant with

strictly postive real part. Choose an integral sequence. As a set we take E to be M × C.

Choose a function v of compact support on M which has the asymptotic development

v ∼
∑
n≥1

zn.

The existence of such a function is guaranteed by a variant of Borel’s theorem. Then define

the holomorphic structure of E by stipulating that

1ez0 log x+v

be holomorphic. This defines the correct sort of holomorphic structure, because the ∂̄ form

with respect to 1 is −L̄(z0 log x+ v)λ̄ = −(z0 +C∞)λ̄. (L̄v is C∞ because it is asymptotic

to the zero sequence in powers of z at the boundary.) Thus the ∂̄ form with respect to a

C∞ frame is a compressed form.

Computation of invariant sequence. Since v is compactly supported, we may take 1 as our

C∞ frame which is holomorphic away from the boundary. The ∂̄ form with respect to this

frame is α = −∂̄z0 log x+ v. So f = 〈α, L̄〉 = −(z0 + L̄v). So −f00 = z0 is the zeroth

invariant. Also, one solution to L̄r = −f is z0 log x+ v. But a moment’s inspection of the

definitions shows that this is, in fact, the good solution. So the asymptotic series in positive

powers of z for v represents the invariant integral sequence class for E.

We have fully classified the holomorphic line bundles over a collar. That is, we have

an isomorphism from equivalence classes of such bundles to a simpler group (namely, the

additive group of integral sequence classes). We have proven the well-definedness, the

preservation of group structure, the injectivity, and the surjectivity. So we may now move

on.
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3

The Blow-down

As a C∞ surface, a b-holomorphic complex curve M looks like the blow-up of a compact

surface without boundary. We would like to see whether M , regarded together with its

holomorphic structure, looks like some sort of a blow-up of a compact Riemann surface. In

this chapter, we construct that compact Riemann surface, the blow-down M̌ of M .

Lemma 3.1. Let D be the open unit disk, and K = [0, 1)× S1. Define the projection map

π0 : K−→D by π0(r, θ) = reiθ.

1. The topology of D is the topology induced from K via the map π0. That is, a set in

D is open if and only if its pre-image under π0 is open in K.

2. For any a > 0 and b ∈ R, the map reiθ 7→ raei(θ+b log r) is a homeomorphism from D

to D.

Proof of the first assertion. First note that π0

∣∣
K◦ is a homeomorphism onto D \ 0. So if B

is a subset of D \ 0, then B is open if and only if π−1
0 (B) is open. So let B be a subset of D

containing 0. If B is open, then π−1
0 (B) is open by the continuity of π0 (which is obvious,

if you consider sequences). So assume instead that π−1
0 (B) is open in K. Then π−1

0 (B) is

an open neighborhood of ∂K in K.

For each p ∈ B, we need to produce an open neighborhood of p contained in B. First,

suppose p 6= 0. Then let H be an open neighborhood of π−1
0 (p) contained in K◦. Then

π0(H) is an open set contained in B, and which contains p.

So all we need to do is produce an open neighborhood of 0 contained in B. π−1
0 (B) is

a an open set in K (by hypothesis) which contains ∂K. So by compactness of S1, we can

choose an ε > 0 such that

{(r, θ) ∈ K : r < ε}

is contained in π−1
0 (B). Therefore

{ξ ∈ D : |ξ| < ε}
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is in B. So there’s an open neighborhood of 0 contained in B. This completes the verification

that B is open, based on the assumption that π−1
0 (B) is open.

Proof of the second assertion. The map is a bijection, and its restriction to the punctured

disk is a homeomorphism D \ 0 to D \ 0. So all that remains is to check continuity at 0 of

the map and its inverse. This is obvious by sequences.

Theorem 3.2. Let M be a b-holomorphic complex curve. Define g and k by stipulating

that M be diffeomorphic to a genus g compact surface with k open disks removed. Then

there exists a natural compact Riemann surface M̌ of genus g, with k distinguished points

p1, . . . , pk, and a natural surjection π : M−→M̌ , such that

1. π(∂M) = {p1, . . . , pk} and

2. π
∣∣
M◦ : M◦−→M̌\{p1, . . . , pk} is a biholomorphism.

Construction. As a set,

M̌ = M◦ ∪ {p1, . . . , pk}
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where the pi are formal adjuncts.

Next we construct π. Label the boundary circles of M C1, . . . , Ck. Then define the

surjective map π : M−→M̌ by

π(p) =

p p ∈M◦

pi p ∈ Ci.

Now we can stipulate that a set in M̌ is open if and only if its pre-image under π is open.

This is a topology. Since π
∣∣
M◦ : M◦−→M̌\{p1, . . . , pk} is bijective, it is a homeomorphism.

We claim that with this topology, M̌ is more than a topological space; it is a topological

manifold. Since M̌\{p1, . . . , pk} ≡M◦ is a (boundaryless) topological manifold of dimension

2, every point of M̌\{p1, . . . , pk} has a neighborhood which is homeomorphic to the unit disk

D. So we only need to show that pi has a neighborhood which is homeomorphic to D. To

do this, choose a neighborhood of Ci in M which has a homeomorphism ϕ to K = [0, 1)×S1.

Then define ϕ̌ = π0 ◦ ϕ ◦ π−1 as in the diagram.

neigh(Ci)
π−−−−→ neigh(pi)

ϕ

y yϕ̌

K −−−−→
π0

D

ϕ is clearly a bijection. By part 1 of Lemma 3.1, the diagram’s top and bottom rows are

perfectly analogous, in that the maps π and π0 induce topologies in the direction of their

arrows; and the left-hand vertical link between them (ϕ) is a homeomorphism. Therefore

the induced right-hand vertical link between the rows (ϕ̌) must also be a homeomorphism.

(This argument can be made more explicit, but it is perhaps more clear how part 1 of the

lemma enters into the picture if we think in these less technical terms.)

Now we have a topological manifold M̌ and a homeomorphism

π : M◦−→M̌ \ {p1, . . . , pk}.

We may therefore push the holomorphic structure of M◦ forward to M̌ \ {p1, . . . , pk}. All

that remains is to extend this holomorphic structure to all of M̌ . To extend the structure,

we only need to produce a homeomorphism from a neighborhood of pi to the unit disk D,

in such a way that the restriction to the punctured neighborhood of pi is a biholomorphism

to D \ 0.
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To do this, choose a first integral zi for the ith collar of M , and define ži = zi ◦ π−1.

To see whether ži is a homeomorphism, we need to examine this function in (topological)

coordinates. So let ϕi = (x, y) be the homeomorphism from neigh(Ci) to K defined by zi;

then by our construction,

ϕ̌i = π0 ◦ ϕ ◦ π−1

is a topological chart near pi. So we are examining

ži ◦ ϕ̌−1
i = zi ◦ π−1 ◦ π ◦ ϕ−1 ◦ π−1

0

= zi ◦ ϕ−1 ◦ π−1
0 ,

which is clearly the map

reiθ 7→ rceiθ = raei(θ+b log r).

By part 2 of Lemma 3.1, this is a homeomorphism from D to D. So zi is a homeomorphism

from neigh(pi) to D. And finally, zi is a biholomorphism from the interior of a neighborhood

of Ci to a punctured neighborhood of 0; so ži = zi ◦ π−1 is a biholomorphism from a

punctured neighborhood of pi to a punctured neighborhood of 0. So stipulating that ži be

a holomorphic chart near pi, we have extended the holomorphic atlas of M̌ \ {p1, . . . , pk}
to an atlas for M̌ .

It only remains to note that M̌ is a compact surface of genus g. This is a consequence

of the way our projection map π and topological charts near pi were defined.

Proof of naturality. The only choice we made was in the specification of the holomorphic

structure of M̌ : a choice of first integral zi for the ith collar of M . So we need to show that

a different choice z̃i results in the same holomorphic structure. This is immediate, because

ˇ̃zi ◦ ž−1
i = z̃i ◦ π−1 ◦ (zi ◦ π−1)−1

= z̃i ◦ z−1
i .

By Lemma 2.18, this is a biholomorphism from a disk to a disk.

Definition 3.3. Let M be a b-holomorphic complex curve. Let g be the genus of M̌ and k

be the number of boundary circles of M . When g = 0 and k = 1, M is called a cup. When

g = 0 and k = 2, M is called a pipe.
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4

The Cup: c = 1

Definition 4.1. A biholomorphism from a cup’s interior to the complex plane is called an

interior coordinate for the cup. Interior coordinates always exist by Theorem 3.2.

As a C∞ surface, a cup is equivalent to the closed unit disk. So a cup is equivalent

(as a cup) to the closed unit disk, equipped with a certain kind of holomorphic structure

which is singular at the boundary. Exactly what kind of structure would this be? The

following theorem, valid for arbitrary c, answers this question. We will not use this theorem

in anything that follows; it is intended only to give a concrete picture of the b-holomorphic

structure of a cup.

Theorem 4.2. Let c be a complex number with strictly positive real part. Let ϕ be a C∞

diffeomorphism from D to C, such that in a neighborhood of ∂D, ϕ has the form

reiθ 7→ ψ
(
[1− r]ce−iθ

)
,

where ψ is a biholomorphism from a punctured disk of small radius to a punctured nei-

hborhood of ∞. Then the pullback to D via ϕ of the holomorphic structure of C defines

a holomorphic structure for D with respect to which the boundary is a collar invariant c.

Moreover, any cup with collar invariant c can be represented in this way.

Proof that such a structure is of type b. We have a holomorphic structure for D. So the

question is, does it extend to a b-holomorphic structure on D̄? Please refer to Figure 3.

Define x = 1 − r near the boundary of D. This is a defining function for the bound-

ary. Next define y = −θ. This is an angular coordinate near the boundary. Then define

z = xceiy. I claim that z is holomorphic in a neighborhood of the boundary. How do we

check this? Because the holomorphic structure on the disk was pulled back via ϕ from the

structure of C, and the boundary of the disk maps to ∞ under ϕ, we have take the composi-

tion z ◦ϕ−1 and see whether this is holomorphic near ∞. To see that it is holomorphic, first

note that ϕ−1 takes ψ([1− r]ce−iθ) to reiθ. So z ◦ ϕ−1 takes ψ([1− r]ce−iθ) to [1− r]ce−iθ.
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That is, z ◦ ϕ−1 = ψ−1, which is holomorphic near ∞. Now that we have z holomorphic,

we can compute the (1, 0)-form
dz

z
= c

dx

x
+ i dy

over the interior. This is a compressed form. So the holomorphic structure of the interior

induces a b-holomorphic structure at the boundary. We also see that η = (1/2πc) dy, so∫
∂M

η = 1/c.

That is, the collar invariant is c.

Proof that every cup can be represented this way. Let M be a cup with collar invariant c.

Choose a first integral z and let x, y be the corresponding C∞ coordinates near the boundary.

Let u be a C∞ diffeomorphism from M to D̄ (with polar components called r, θ) such that

near the boundary of the cup, x = 1− r and y = −θ. Then let z be an interior coordinate.

Under u, D̄ becomes a diffeomorphic copy of the cup. So we can pull back the holo-

morphic structure of the cup to D̄ via u−1. Then we have D̄ as a biholomorphic copy of

M . But since z is a biholomorphism over the interior of the cup, this is the same as pulling

back the structure of C to D via z ◦ u−1. We call this function ϕ.
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It only remains to check that ϕ has the form claimed. If we take a point reiθ near the

boundary of D, and write [1− r]ce−iθ, this corresponds to going up to the cup via u−1 and

then down to the small disk via z. So if we take this point in the small disk and apply

ψ = z ◦ z−1, it amounts to starting in D and applying

z ◦ z−1 ◦ z ◦ u−1 = z ◦ u−1 = ϕ.

We have shown that ϕ has the form

reiθ 7→ ψ
(
[1− r]ce−iθ

)
near the boundary of D. Since z and z are biholomorphisms where they are defined, ψ is a

biholomorphism from the punctured small disk to a punctured neighborhood of infinity.

4.1 Classification of cups

Theorem 4.3. Let M be a cup with c = 1. Then for any interior coordinate z, 1/z is a

first integral.

Proof. Choose a first integral z. Then z ◦ z−1 is a biholomorphism from a punctured neigh-

borhood of 0 to a punctured neighborhood of ∞. So (1/z) ◦ z−1 is a biholomorphism from

a neighborhood of 0 to a neighborhood of 0, and takes 0 to 0. So we may write

(1/z) ◦ z−1(ξ) = 0 + c1ξ + c2ξ
2 + · · ·

(with c1 nonzero), or

1/z = c1z + c2z
2 + · · · .

So

(1/z)÷ z = c1 + c2z + · · · .

That is, (1/z) ÷ z is an analytic function of z1 with nonzero constant term; and we have

c = 1/1. So 1/z is a first integral, by Corollary 2.22.

Theorem 4.4. Any two cups having c = 1 are isomorphic.

Proof. Let M1 and M2 be two such cups. Choose interior coordinates z1 and z2, and let

z1 = 1/z1 and z2 = 1/z2 be the corresponding first integrals. Define ϕ = z−1
2 ◦ z1. This is a
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biholomorphism from M◦
1 to M◦

2 . We only need to show that it extends to a diffeomorphism

from M1 to M2. To see this, just write ϕ near the boundary as

ϕ = (1/z2)−1 ◦ (1/z1)

= (inversion ◦z2)−1 ◦ inversion ◦z1

= z−1
2 ◦ z1

= (χ1 ◦ z2)−1 ◦ (χ1 ◦ z1).

But by Remark 2.17, χ1 ◦ z1 is an isomorphism from the collar of M1 to the standard 1-

collar, and likewise χ1 ◦z2 is an isomorphism from the collar of M2 to the standard 1-collar.

Thus the composition, which is ϕ, is an isomorphism from the collar of M1 to the collar of

M2.

Since a cup with c = 1 is essentially the Riemann sphere with the point at ∞ distin-

guished (and blown up), it stands to reason that the automorphism group of such a cup

should be essentially the automorphism group of the sphere minus the point at infinity;

that is, of C. This is the content of the next theorem.

Theorem 4.5. Let M be a cup with c = 1. Then Aut(M) ' Aut(C), via the map

ϕ 7→ z ◦ ϕ ◦ z−1,

where z is any fixed interior coordinate for M .

Proof. It is obvious that this map is a well-defined injective homomorphism. So we only

need to check that it is surjective. So let ϕ be an automorpism of C. We need to show that

z−1 ◦ϕ ◦ z is an automorphism of M . It’s certainly an automorphism of M◦. So we have to

check that it’s also a collar automorphism. To do this, we use Theorem 2.25.

So let z = 1/z be the first integral associated to the interior coordinate z. And compute

z ◦ (z−1 ◦ ϕ ◦ z) ◦ z−1 = inversion ◦ϕ ◦ inversion .

But since ϕ is an automorphism of the plane, it has the form ϕ(ξ) = aξ + b with a 6= 0.

So inversion ◦ϕ ◦ inversion(ξ) = ξ/(a + bξ). It only remains to note that 1/(a + bξ) is an

analytic function with nonzero constant term; for then Theorem 2.25 tells us that z−1 ◦ϕ◦ z

is a collar automorphism.
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4.2 Bundles over a cup

Definition 4.6. A marked cup is a cup M with a point p0 ∈M◦ distinguished.

Theorem 4.7. To each holomorphic line bundle E over a marked cup (M,p0) there corre-

sponds an integral sequence on M . (See Definitions 2.29 and 2.31 and Lemma 2.30.)

Construction. Choose an interior coordinate z for M which takes p0 to 0 and let z = 1/z

be the corresponding first integral. (As usual, we will write z = xeiy.) Choose a global C∞

frame s for E which is holomorphic away from the boundary. Let α be the corresponding

∂̄ form. Define f = 〈α, L̄〉. Then define

fmm =
1
2π

1
m!

∫
∂M

∂m
x fe

−imy dy.

Then the mth entry in the integral sequence is defined to be

zm = −fmmz
m.

Proof of invariance under change of frame. Let s̃/s = eu. Then α̃−α = ∂̄u. So f̃−f = L̄u.

So f̃mm−fmm = (L̄u)mm. To prove that (L̄u)mm = 0, we will need to use the commutation

relation

∂m
x L̄− L̄∂m

x = m∂m
x .

Now we can compute that (L̄u)mm is equal to a constant times∫
∂M

(∂m
x L̄u)e

−imy dy =
∫

∂M
(L̄∂m

x u+m∂m
x u)e

−imy dy

= i

∫
∂M

∂y∂
m
x u · e−imy dy +m

∫
∂M

∂m
x u · e−imy dy

= 0

by integration by parts.

Proof of invariance under change of interior coordinate. Let z̃ be another interior coordi-

nate which takes p0 to 0. Then z̃ = (1/a)z for some nonzero constant a, which we will write
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as a = reiθ. So z̃ = reiθz. This tells us that

x̃ = rx

ỹ = y + θ

∂x̃ =
1
r
∂x

dỹ = dy

f̃ = f.

The reason for f̃ = f is that L̄ = z̄∂z̄ doesn’t change when z is multiplied by a constant.

Now compute

f̃mm =
1
2π

1
m!

∫
∂M

∂m
x̃ fe

−imỹ dỹ =
1
2π

1
m!

∫
∂M

r−m∂m
x fe

−imye−imθ dy = a−mfmm.

So f̃mmz̃
m = a−mfmma

mzm = fmmz
m.

Theorem 4.8. Let E be a holomorphic line bundle over the marked cup (M,p0). Let

z0, z1, . . . be its invariant integral sequence. Then there exists a holomorphic global frame

for the pull-back of E to M◦ of the form

seu log x

where s is a global C∞ frame for E and u ∼
∑

n≥0 zn at the boundary of M . Here, x is

a defining function for ∂M associated to a first integral z which is 1/z for some interior

coordinate z which respects the marking (z(p0) = 0).

Proof. Let z be an interior coordinate that respects the marking, and let z = 1/z be the

associated first integral. Write z = xeiy. Choose a global C∞ frame s of E which is

holomorphic away from the boundary. let α be the corresponding ∂̄ form. Let f = 〈α, L̄〉.
Write

f ∼
∑
m≥0
n∈Z

fmnx
meiny.

Then define

u1
mn =

−
fmn

m−n n 6= m

0 n = m
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and

u2
mn =

0 n 6= m

−fmn n = m.

Let u1 and u2 be C∞ functions on M which are supported near ∂M and which have

asymptotic expansions at the boundary

u1 ∼
∑
m≥0
n∈Z

u1
mnx

meiny

u2 ∼
∑
m≥0
n∈Z

u2
mnx

meiny.

Then −f − L̄(u1 +u2 log x) vanishes to infinite order at ∂M , and is supported near ∂M . So

we may push it down (via z) to a function on the z-sphere which vanishes to infinite order

at z = 0. There, we can solve

L̄u3 = −f − L̄(u1 + u2 log x)

by means of the Cauchy integral formula, as we have done before. (See Lemma 2.27.) The

solution is smooth on the z-sphere; therefore it may be lifted to M as a globally defined

smooth function. Now define

u = u1 + u2 log x+ u3.

Then by our construction, L̄u = −f . And because of this fact, the frame

seu

is holomorphic in the interior. This is seen by computing

∂̄(seu) = seu ⊗ (α+ ∂̄u) = seu ⊗ (f + L̄u)λ̄ = 0.

All that remains is some re-labeling. The new s will be the old s times eu
1+u3

, and the

new u is u2.

Theorem 4.9. Let E be a holomorphic line bundle over a cup M . Let p0, p̃0 be points

of M◦. Let zn be the integral sequence associated to E over (M,p0) and z̃n the integral

sequence associated to E over (M, p̃0).

If zn = 0 for all n, then z̃n = 0 for all n.
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Proof. Choose first integrals associated to the two markings, z and z̃. Using Theorem 4.8,

with z, construct the global holomorphic frame seu log x over M◦. Since all the zn are zero, u

vanishes to infinite order at x = 0. Therefore this frame is actually C∞ up to the boundary.

Now, switch to z̃, but use the above-mentioned C∞ frame to construct the f̃mm. Since

that frame is holomorphic, α̃ = 0, so that f̃ = 0. So all the f̃mm are zero. So the z̃m are

zero.

Corollary 4.10. Let E be a holomorphic line bundle over a cup M . Then there exists a

global holomorphic C∞ frame for E if and only if the each invariant integral sequence for

E (corresponding to each interior point p0) is zero.

Theorem 4.11. Choose an interior point p0 for the cup M . Then the map

E 7→ the integral sequence for E with respect to p0

is an isomorphism from the group of equivalence classes of holomorphic line bundles over

M to the additive group of integral sequences on M .

Proof. Regarded as a map defined on the group of holomorphic line bundles over M , this is

clearly a homomorphism. Now suppose E and F are equivalent. Then E∗⊗F has a global

holomorphic C∞ frame. So

zn(F )− zn(E) = zn(E∗ ⊗ F ) = 0

by Corollary 4.10. So zn(E) = zn(F ) for all n. Thus, the map is well defined on equivalence

classes of bundles. Again by the corollary, if zn(E) = 0 for all n, then E belongs to the

trivial class. Thus the map is injective.

Finally, we must prove surjectivity. So choose an integral sequence fmmz
m. Then

there’s a C∞ function f on M , supported near ∂M , such that

f ∼
∑
m≥0

fmmz
m

at the boundary. Let 1 be the standard frame for the trivial C∞ line bundle over M , and

define a complex structure for this bundle by stipulating that 1ef log x is holomorphic in

the interior. This being the case, we can compute that the ∂̄ form with respect to the

C∞ frame 1 (which is holomorphic away from the boundary, because it agrees with the

stipulated holomorphic frame where f is zero) is

−∂̄(f log x) ∼ −L̄
(∑

fmmz
m log x

)
λ̄ ∼ −

(∑
fmmz

m
)
λ̄.
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Since this is a smooth compressed 1-form, we have the correct sort of holomorphic structure

for the bundle. And by the construction, the invariant mth integral is fmmz
m, which was

chosen arbitrarily.

So we have classified the bundles in the case of the cup with c = 1. That is, we have

found an isomorphism from the group of equivalence classes of holomorphic line bundles

over such a cup to the prima facie simpler group of integral sequences. However, this

treatment is less satisfactory than we would like, because the isomorphism appears not to

be natural; it depends on the choice of a distinguished point p0 in the cup’s interior. In

fact, the different zn are not “uncoupled”: if you change the marking point from p0 to p̃0,

then z̃n will depend not just on zn, but perhaps on several of the zk. In order to identify

the correct invariant object in the present case, it would be necessary to understand exactly

how the zn vary with a change of the marking point (or how the “asymptotic function”∑
fmmz

m log x is independent of the marking point). But this seems difficult to do in the

case c = 1. (We will see later that we do have a natural classification of bundles over a cup

with c /∈ Q.)

However, in the treatment of connections which follows (in Section 4.4), it will be

convenient to know, at least, that not every z̃n depends on every zk. Specifically, we have

the

Theorem 4.12. Let zn and z̃n be the integral sequences corresponding to two different

markings for M , and let E denote an arbitrary holomorphic line bundle over M . Then

z0(E) = z̃0(E). Furthermore, if zn(E) = 0 for all n ≥ 1, then z̃n(E) = 0 for all n ≥ 1.

Proof of the first assertion. Let p0 and p̃0 be the two marking points. Let z be an interior

coordinate which respects the first marking. Define b = −z(p̃0). Then z̃ = z + b is an

interior coordinate which respects the second marking. Let z and z̃ be the corresponding

first integrals. Then z̃ = z/(1 + bz). Using this relation, we may compute that

λ̃ =
dz̃

z̃
=

(
1

1 + bz

)
dz

z
=

(
1

1 + bz

)
λ.

This allows us to say that ˜̄λ =
(

1
1 + b̄z̄

)
λ̄.

We will also need to note that

ỹ = y − arg(1 + bz).
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Choose a global C∞ frame s for E which is holomorphic away from the boundary. Let

α be the ∂̄ form and write α = fλ̄, as usual. We also write α = f̃ ˜̄λ. Then, using the relation

between λ̄ and ˜̄λ mentioned above, it is easy to see that

f̃ = (1 + b̄z̄)f.

So when we restrict to the boundary, f̃ and f agree. Also, ỹ agrees with y on the boundary,

by the formula above. Therefore, the formula

z0 =
−1
2π

∫
∂M

f dy

is independent of the choice of the marking point. That is, z̃0 = z0.

Proof of the second assertion. Let z, z̃, z, z̃ be as above. Calculating in a similar fashion as

above, we can compute that

λ̄ =
(

1
1− b̄˜̄z

) ˜̄λ.
Now suppose zn = 0 for all n ≥ 1. Then Theorem 4.8 guarantees the existence of a

holomorphic frame over the interior of the form

seφz0 log x

where s is a global C∞ frame and φ is a cut-off function supported near ∂M . We will use

the frame s to compute the z̃n. Since we will be working near the boundary, we will ignore

the φ. Using the fact that ∂̄(sez0 log x) = 0, we compute that the ∂̄ form is

α = −∂̄(z0 log x) = −L̄(z0 log x)λ̄ = −z0λ̄.

We re-express this as

α = −z0/(1− b̄˜̄z)˜̄λ,
so that we immediately see that

f̃ = −z0/(1− b̄˜̄z).
This is clearly an analytic function of ˜̄z near ˜̄z = 0, so its asymptotic expansion in terms of

powers of x̃ and powers of eiỹ contains only terms of the form

x̃me−imỹ.

There are no terms of the form x̃meimỹ for m > 0. That is, all the f̃mm, for m ≥ 1, are

zero. This says that z̃m = 0 for all m ≥ 1.
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4.3 Examples of bundles

The prototypical example of a holomorphic line bundle over a compact Riemann surface

is the holomorphic tangent bundle T 1,0M . So we should expect that the b-holomorphic

tangent bundle bT 1,0M is a basic example of a holomorphic line bundle over a cup. This is

so; and moreover, we can compute the bundle invariants explicitly for this bundle.

Theorem 4.13. Let M be a cup with c = 1. Then bT 1,0M is a holomorphic line bundle

over M . Furthermore, z0 = 1, and zn = 0 for all n ≥ 1, when computed with respect to any

marking.

Proof. Choose a marking. Choose an interior coordinate z that respects that marking, and

let z = 1/z be the associated first integral. Then

∂z/∂z = ∂z/∂z

= ∂/∂z(z−1)

= −z−2

= −z2,

or

∂z = z(−z∂z).

The point of this calculation is that we would like to glue the holomorphic interior

frame ∂z together with the C∞ boundary frame −z∂z to produce a global C∞ frame. But

the winding number of the quotient −z∂z/∂z = z−1 around z = 0 on a small deformation

of ∂M is clearly −1, so the glueing is not possible. But if we take the C∞ boundary frame

−eiyz∂z instead, the winding number of the quotient becomes zero, so the glueing becomes

possible. Therefore there is a global C∞ frame which equals ∂z in the interior and equals

−eiyz∂z near the boundary. Call it s.

Near the boundary,

∂z = z(−z∂z) = x(−eiyz∂z) = selog x.

Therefore the ∂̄ form with respect to s is

−∂̄(log x) = −L̄(log x)λ̄ = −λ̄

near the boundary, which is a smooth section of bΛ0,1M . Thus the bundle is a holomorphic

line bundle over the b-holomorphic curve M (in our sense). We still need to compute the
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invariants. For this, just compare the holomorphic interior frame ∂z to the global C∞ frame

s. In the interior, they agree. Near the boundary, ∂z = selog x. Therefore

∂z = s̃eφ log x

for some other global C∞ frame s̃ and some cut-off function φ. In other words, z0 = 1 and

all the other zn are zero.

We conclude this section by examining a natural class of examples of bundles over a

cup M , namely, lifts of bundles over M̌ = the Riemann sphere. (Actually, when we treat

bundles over a generic b-holomorphic complex curve, we will prove that there is a bundle

on M̌ of which bT 1,0M is the lift; so properly speaking, we have already studied one lifted

bundle.) To begin, we need to characterize bundles over the sphere. It is well known that

bundles over a sphere are characterized by their degree, which may be defined as the integral

of the first Chern class of the bundle. We take the Chern class to be defined as i/2π times

the curvature of any connection on the bundle. See [15].

Theorem 4.14. Let M be the Riemann sphere. Let q ∈ M and z be a holomorphic chart

centered at q.

Let E be a holomorphic line bundle over M . Then for degree(E) = d, it is necessary

and sufficient that there exist a local holomorphic frame τ for E near q and a holomorphic

frame σ for E�(M\q) such that σ = τzd.

Proof of sufficiency. We will use σ, τ as a system of local holomorphic frames. Define a

metric on E such that |τ |2 = 1. Our strategy is to use the induced connection to compute

the degree.

The curvature of the induced connection is ∂̄∂ log h, where h is defined as |σ|2 or |τ |2

depending on the patch. Although h is not well defined as a function, ∂̄∂ log h is well defined

as a 2-form.

Let BR be the ball around q of radius R. We will need the formula |σ|2 = |τzd|2 =
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|z|2d = r2d, where we have written z = reiθ. Now we can compute∫
M
∂̄∂ log h = lim

R→0

∫
Bc

R

∂̄∂ log |σ|2

= lim
R→0

∫
Bc

R

d∂ log |σ|2

= lim
R→0

∫
∂Bc

R

∂ log |σ|2

= − lim
R→0

∫
∂BR

∂ log r2d

= −2d lim
R→0

∫
∂BR

∂ log r.

But we can compute

∂ log r =
1
2
(r∂r − i∂θ) log r

(
dr

r
+ i dθ

)
=

1
2

(
dr

r
+ i dr

)
.

So we can continue the calculation as

−d lim
R→0

∫
∂BR

i dθ = −2πid.

So the degree of E is i/2π times that integral; in other words, d.

Proof of necessity. Choose a local holomorphic frame τ̃ for E near q. Then choose a C∞

frame s̃ for E�(M\q). I claim that the winding number of s̃/τ̃ on a small oriented loop

around q is d. Therefore the winding number of g = z−ds̃/τ̃ , defined on a punctured

neighborhood of q, is zero. So we may write g = eγ for some smooth function γ defined in

a punctured neighborhood of q.

Let φ be a cut-off function supported near q. Then define s = s̃e−φγ . This is clearly

another C∞ frame for E�(M\q). And, we have

s = s̃e−φγ

= τ̃ zdge−φγ

= τ̃ zdeγ−φγ

= τ̃ zd

near q.

Let α be the ∂̄ form of E with respect to s. Since s is holomorphic near q, α is

zero near q; so α is a smooth (0, 1)-form on M . Let f be a C∞ solution on M to the
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equation ∂̄f = −α. Now define σ = sef and τ = τ̃ ef . Then σ is a holomorphic frame for

E�(M\q). Furthermore, since α was zero near q, f is holomorphic near q; so τ is another

local holomorphic frame near q. Finally,

σ = sef = τ̃ zdef = τzd.

So it only remains to prove the claim. Let h = s̃/τ̃ . Define connections ∇s̃ and ∇τ̃ by

∇s̃s̃ = 0 and ∇τ̃ τ̃ = 0. Then define ∇ = (1 − φ)∇s̃ + φ∇τ̃ . To compute the connection

form with respect to s̃, observe that

∇s̃ = ∇τ̃ s̃

= ∇τ̃hτ̃

= dhτ̃

= (dh/h)s̃.

So the connection form is ω = dh/h. Now we can compute that

d = degree(E)

=
i

2π
lim
R→0

∫
Bc

R(q)
dω

=
i

2π
lim
R→0

∫
∂Bc

R(q)
ω

=
1

2πi
lim
R→0

∫
∂BR(q)

dh

h
,

which is the winding number of h around zero on a small oriented loop around q.

We want to show that we can pull back a holomorphic line bundle over S2 to a holo-

morphic line bundle over M . Think of S2 as the compactified plane C ∪∞, and let E be a

holomorphic line bundle over S2.

Choose an interior coordinate z for M , and let z = 1/z be the associated first integral.

Then we may define π : M−→S2 by

π(p) =

z(p) p ∈M◦

∞ p ∈ ∂M.

(This construction is essentially the same as that given in Theorem 3.2, particularized to

the case of a cup.) π is clearly a diffeomorphism from M◦ to C. But in coordinates, π looks



55

like

x, y 7→ xeiy

near ∂M . Since this is smooth at x = 0, π is a smooth map from M to S2. Thus we may

use π to lift the smooth line bundle E over S2 to a smooth line bundle Ê over M .

Now π
∣∣
M◦ = z is a biholomorphism from M◦ to C, by definition. So we may also

use π to lift the holomorphic structure of E�C to a holomorphic structure for Ê�M◦. The

question is, does this define a holomorphic structure for Ê�M , in our sense? To prove that

it does, it suffices to show that the ∂̄ form (of Ê�M◦) with respect to some frame which is

smooth up to the boundary extends to a smooth compressed (0, 1)-form.

But this is easy. Choose a local holomorphic frame for E near ∞. This frame is smooth

in a neighborhood of ∞. So it lifts to a local smooth frame for Ê, defined in a neighborhood

of the boundary. It is holomorphic in M◦, so the ∂̄ form is zero. This certainly extends as

the zero form to a neighborhood of ∂M in M .

We have shown that a holomorphic line bundle over S2 lifts (in a natural way) to a

holomorphic line bundle over M .

Theorem 4.15. Let E be a holomorphic line bundle over S2, and let Ê be its lift to a

holomorphic line bundle over M . Then

zn(Ê) =

degree(E) n = 0

0 n ≥ 1.

Proof. Choose an interior coordinate z forM , and let z = 1/z be the associated first integral.

Regard S2 as C∪∞. Let d be the degree of E. Then there exists a local holomorphic frame

τ for E near ∞, and a holomorphic frame σ for E�C, such that σ = τzd in a punctured

neighborhood of ∞. Let φ be a cut-off function on M supported near ∂M . Then define

s = σ/xdφ.

This is a smooth frame for Ê�M◦. Away from the boundary, s = σ, and so is holomorphic.

Near the boundary,

s =
τzd

xd

= τeidy.

Since τ is smooth at ∞ ∈ S2, τ is also smooth at ∂M on M . eidy is also smooth at ∂M .

So s is smooth up to the boundary.
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So we have a global C∞ frame s for Ê. Furthermore

σ = sxdφ = sedφ log x

is a global holomorphic frame for Ê over the interior of M . A comparison of this formula

with Theorem 4.8 now shows that z0 = d, and all the other zn are zero.

Corollary 4.16. Let F be a holomorphic line bundle over M . Then F is isomorphic to Ê

for some holomorphic line bundle E over S2 if and only if z0(F ) ∈ Z and zn(F ) = 0 for all

n ≥ 1.

4.4 b-connections: c arbitrary

Before we proceed with the search for an analog of the theorem of Narasimhan and

Seshadri, we must examine b-connections in some generality. In this section, M is a cup

with arbitrary collar invariant c.

Theorem 4.17. Let E be a holomorphic line bundle over M . Then every hermitian metric

on E determines a unique hermitian holomorphic b-connection.

Proof of uniqueness. Choose a global C∞ frame s. Define the real C∞ function p by 〈s, s〉 =

ep. Let α be the ∂̄ form with respect to s. Suppose we have a hermitian holomorphic b-

connection. Let ω be the connection form with respect to s. Then holomorphicity and

hermitianity translate into

ω0,1 = α

and

ω + ω̄ = dp.

The first equation says that the (0, 1) piece of the connection form is determined (unique).

We claim that the second equation says that the (1, 0) piece is also determined. Why? We

can re-write the second equation as

(ω1,0 + ᾱ) + (ω̄1,0 + α) = ∂p+ ∂̄p,

which implies

ω1,0 + ᾱ = ∂p.
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Thus ω1,0 is determined:

ω1,0 = ∂p− ᾱ.

Proof of existence. Choose a global C∞ frame s. Define the real C∞ function p by 〈s, s〉 =

ep. Let α be the ∂̄ form with respect to s. Then define

ω = ∂p− ᾱ+ α, (4.1)

a compressed 1-form, and let ∇ be the b-connection whose connection form this is. Then

∇ is clearly holomorphic, because the (0, 1) piece of ω is α. And we compute

ω + ω̄ = dp

so that ∇ is also compatible with the metric.

Definition 4.18. A b-connection is called non-singular if its connection form with respect

to a smooth frame is a non-singular 1-form. A b-connection is called smoothly curved if its

curvature is a non-singular 2-form.

Theorem 4.19. Let E be a holomorphic line bundle over M . Then the space of smoothly

curved hermitian holomorphic b-connections on E is an affine space, with the underlying

vector space being the space of real C∞ functions on M which are constant on ∂M .

Proof. First, we will show that one such b-connection exists. So choose a global C∞ frame

s which is holomorphic away from ∂M , and let α be the corresponding ∂̄ form. What we

seek is a real C∞ function p on M such that

∂α− ∂̄ᾱ+ ∂̄∂p (4.2)

is non-singular as a 2-form. (By differentiating (4.1), we see that this is the curvature of the

hermitian holomorphic b-connection induced by the metric defined by 〈s, s〉 = ep.) Write

α = fλ̄ near the boundary. Then our curvature 2-form may be written as

∂(fλ̄)− ∂̄(f̄λ) + ∂̄(Lpλ) = (Lf + L̄f̄ − L̄Lp)λ ∧ λ̄. (4.3)

We have used the fact that ∂λ̄ = ∂̄λ = 0, which is true because λ and λ̄ are locally exact.

For example, λ = (1/2a)d(c log x+ iy).
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It may be computed that λ∧ λ̄ = −(i/2a)dx
x ∧ dy, so for our 2-form to be non-singular

we must have L̄Lp = Lf + L̄f̄ on the boundary. We can compute that

L̄Lp = xpx + x2pxx − 2bxpxy + |c|2pyy.

So we need to choose the smooth function p so that

|c|2pyy = −ic̄fy + icf̄y,

or

pyy = 2=(f/c)y.

We will now produce such a p. Let

H = =(z0/c) =
−1
2π

∫
∂M

=(f/c) dy.

Since the average value of =(f/c) +H over ∂M is zero, we may choose a smooth function

ϕ on ∂M such that

ϕy = =(f/c) +H.

Finally, let p be a real C∞ function on M which agrees with 2ϕ on the boundary. Then p

has the desired property.

It only remains to check that the quotient of a metric which defines a smoothly curved

hermitian holomorphic b-connection by another such metric has the form eu where u is

constant on the boundary, and that modifying one such metric by multiplying by eu with

u constant on the boundary produces another. This is a triviality.

Definition 4.20. Let E be a holomorphic line bundle over a cup M . Let c be the collar

invariant and z0 the invariant zeroth integral of the bundle. Then we may define a new

bundle invariant

γ =
<z0
<c

.

Theorem 4.21. Let E be a holomorphic line bundle over a cup M . Then for any smoothly

curved hermitian holomorphic b-connection ∇,∫
M
R(∇) = −2πiγ.
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Proof. Let s be a global C∞ frame for E. Let α be the corresponding ∂̄ form. Then let p

be a real C∞ function on M such that the metric defined by 〈s, s〉 = ep induces a smoothly

curved (hermitian) holomorphic b-connection ∇. Then the connection form with respect to

s is

ω = α− ᾱ+ ∂p,

as we have seen in (4.1). We wish to compute the integral over M of R(∇) = dω. We know

that dω is a non-singular 2-form on M , but ω might be singular. So to compute the integral

over M , we will take the limit of the integral over the region x ≥ x0 as x0 tends to zero.

Each of these integrals, for x0 > 0, may be computed via Stokes’s theorem. So we will find∫
M
R(∇) =

∫
M
dω

= − lim
x0→0

∫
x=x0

ω.

(The minus sign appears because of our orientation convention; see Section 2.2.) So we

have to examine the form of ω on circles of constant x near the boundary.

Write α = fλ̄. Then we compute, using the formula for ω above, that

2aω = f(2aλ̄)− f̄(2aλ) + Lp(2aλ)

= f

(
c̄
dx

x
− i dy

)
+ (Lp− f̄)

(
c
dx

x
+ i dy

)
= (c̄f − cf̄ + cLp)

dx

x
+ (−if − if̄ + iLp)dy

= |c|2([f/c]− [f̄/c̄] + [1/c̄](xpx − ic̄py))
dx

x
− i(f + f̄ − (xpx − ic̄py))dy

= |c|2(i[2=(f/c)− py] + (1/c̄)xpx)
dx

x
− i(2<f − xpx + ic̄py)dy.

(4.4)

So we can compute that∫
x=x0

ω =
−i
a

∫
x=x0

<f dy +
ix0

2a

∫
x=x0

px dy,

or

−
∫

x=x0

ω =
i

a

∫
x=x0

<f dy − ix0

2a

∫
x=x0

px dy.

All the dx terms of the integrand disappear when we pull back to the circle of constant x,

and the term involving py clearly integrates to zero. Since px dy defines a smooth 1-form

on M , the second term is killed by the coefficient x0 in the limit. So the only thing that
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survives in the limit is
i

a

∫
∂M

<f dy =
−2πi
a

<
(
−1
2π

∫
∂M

f dy

)
= −2πi<z0/<c

= −2πiγ.

Theorem 4.22. If z0/c is real, then every smoothly curved hermitian holomorphic b-

connection is actually non-singular. Otherwise, no such b-connection is non-singular.

Proof. Differentiate the last formula for 2aω in (4.4). You find that

2a dω = |c|2(i[2=(f/c)y − pyy] + (1/c̄)xpxy)dy ∧
dx

x

plus something non-singular. We know that this form is non-singular, so we must have

pyy = 2=(f/c)y

on ∂M . Thus py = 2=(f/c) + H for some constant H. If we average both sides over the

boundary (with respect to the measure dy), then we find that H is −2 times the average of

=(f/c) over the boundary, or

H = 2=(z0/c).

Now we can finish the argument:

The connection form is non-singular iff py = 2=(f/c). (This is by inspecting the last

formula for 2aω in (4.4).) But, py = 2=(f/c) iff H = 0. (By the above remarks.) And,

since H = 2=(z0/c), H = 0 iff z0/c is real.

Note 4.23. In the analysis of lifting bundles from a sphere to a cup with c = 1 (Section

4.3), we saw that the quantity z0 is a “generalized degree.” We will see later that for a cup

with c /∈ Q, the generalized degree is actually z0/c. When z0/c is real, it is equal to γ, as

an elementary calculation will show. When c is itself real, we see that γ is equal to the real

part of this generalized degree. So our formula for the integral of the curvature would seem

to agree with the usual formula

−2πi · degree

(for bundles over a compact surface) as closely as possible. It cannot agree precisely, because

the integral of the curvature of a hermitian connection must always be purely imaginary;

but our generalized degree is not necessarily real.
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4.5 Connections of constant curvature

Here we take M to be a geometric cup with c = 1.

First we must establish some notation. Whenever we speak of the Laplacian ∆ in the

plane, we mean the positive one. With this in mind, we have the formula ∂̄∂ = (i/2) ?∆.

Choose an interior coordinate z and let z = 1/z be the associated first integral. Then we

have x, y, L, L̄, λ, λ̄ as in (2.2) and (2.3). Define

L = L̄L =
(x∂x ∂y )

1 0

0 1

 x∂x

∂y

 (4.5)

and

T =
( dx

x dy )
1 0

0 1

 dx
x

dy

 .

Define h = 〈L,L〉. Then h vanishes to second order on the boundary. We have the

formulas
g = h

4T

∆ = 4
hL

vol = h
4

dx
x ∧ dy.

(4.6)

(These are taken to be valid near the boundary only, of course.) Note that the volume form

is a smooth 2-form which vanishes to first order on the boundary.

In trying to construct a holomorphic section of a bundle in the case c = 1, we found

that eventually it boiled down to solving the ∂̄ problem. So we made use of the Cauchy

integral formula. Here, we will be trying to construct a connection with special properties,

and we will see that it boils down to solving the Laplace equation. So we will be using the

standard integral formula for solving the Laplace equation in the plane. This we present as

Lemma 4.24. Let f be a compactly supported C∞ function in C, and define Q to be the

integral of f with respect to Lebesgue measure. Define

u(x) =
1
2π

∫
C

log |x− y| f(y) dy

where dy represents Lebesgue measure in the variable y. Then ∆u = f , and

u(x)− Q

2π
log |x| → 0

as x→∞.
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Proof. The fact that ∆u = f is so well known that we do not need to prove it here. (See,

for example, [2].) We only need to prove the assertion about the behavior of the solution u

at infinity.

So, let R be a positive real number such that the support of f is contained in the ball of

radius R (which we will call B). Also, let A be the integral of |f | with respect to Lebesgue

measure. Compute that

u(x)− Q

2π
log |x| = 1

2π

∫
C

log |x− y| f(y) dy − 1
2π

∫
C

log |x| f(y) dy

=
1
2π

∫
B

(log |x− y| − log |x|)f(y) dy

=
1
2π

∫
B

log
(
|x− y|
|x|

)
f(y) dy

=
1
2π

∫
B

log |1− y/x| f(y) dy,

where the quotient is taken in the sense of complex numbers. So

2π |u(x)− (Q/2π) log |x| | ≤
∫

B
|log |1− y/x| | · |f(y)| dy.

Choose ε > 0. We will find a δ such that |x| > δ implies that |log |1− y/x| | < ε/A for all

y ∈ B; then we’ll be done.

So define

δ =
R

1− e−ε/A
.

Suppose |x| > δ. Then we have

1− R

|x|
> e−ε/A.

So

min
y∈B

|1− y/x| = 1−R/|x| > e−ε/A,

or

log |1− y/x| > −ε/A

for all y ∈ B.

Also, cosh ε/A ≥ 1. So eε/A − 1 ≥ 1− e−ε/A. So if |x| > δ, it is also true that

|x| > R

eε/A − 1
.

This leads to

1 +
R

|x|
< eε/A.
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Therefore

max
y∈B

|1− y/x| = 1 +R/|x| < eε/A,

or

log |1− y/x| < ε/A

for all y ∈ B.

Thus we have

−ε/A < log |1− y/x| < ε/A

or

|log |1− y/x| | < ε/A

for all y ∈ B.

Corollary 4.25. Let f be a compactly supported function in C whose integral is zero, and

define u as in the lemma. Then u and f are smooth functions on the sphere C ∪ ∞, and

∆u = f there.

The following lemma applies to all cups, not just those with c = 1.

Technical Lemma 4.26. Let u be a smooth function on the interior of M . Suppose xux

extends as a continuous function on M , and ∂̄∂u extends as a continuous non-singular

2-form on M . Then ∫
M
∂̄∂u =

−i
2a

∫
∂M

(xux) dy.

Proof. Since ∂̄∂u is continuous on M , it is integrable. So we have∫
M
∂̄∂u = lim

x0→0

∫
x≥x0

∂̄∂u

= lim
x0→0

∫
x≥x0

d∂u

= − lim
x0→0

∫
x=x0

(Lu)λ

=
−1
2a

lim
x0→0

∫
x=x0

(xux − ic̄uy)
(
c
dx

x
+ i dy

)
=
−i
2a

lim
x0→0

∫
x=x0

(xux − ic̄uy)dy

=
−i
2a

lim
x0→0

∫
x=x0

xux dy

=
−i
2a

∫
∂M

(xux) dy.
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The minus sign appears in Stokes’s formula because of our orientation convention.

Note 4.27. Using the relation ∂̄∂ = (i/2) ?∆, we can re-formulate the conclusion of this

technical lemma as ∫
M

∆u · vol =
−1
a

∫
∂M

(xux) dy. (4.7)

From now on, we will assume that M is a geometric cup with c = 1.

Proposition 4.28. Fix an interior coordinate z for M , and let z = 1/z be the associated

first integral. Write z = xeiy as usual. Then there exist real smooth functions u1 and u2 on

M such that

1. u2 is supported near the boundary; and at the boundary,

u2 ∼ 1−
∑
m≥1

n=±m

π

4m
hmnx

meiny.

2. Setting V = u1 + u2 log x, we have ∆V = −2π.

Proof. Choose a cut-off function φ supported near the boundary. Define u0 to be any

real smooth solution to ∆u0 = −2π on the interior of M . Such a solution exists by the

ellipticity of the Laplacian over the interior. Next, let u1 and u2 be real smooth functions

on M , supported near the boundary, such that

u1 ∼ −π
2

∑
m≥1

n6=±m

hmn

m2 − n2
xmeiny

u2 ∼ 1− π

2

∑
m≥1

n=±m

hmn

2m
xmeiny

at the boundary. Then let u3 be a real smooth function on M such that

∆u3 = −2π −∆[(1− φ)u0 + u1 + u2 log x].

(The claim is that such a function exists.) Then

∆[(1− φ)u0 + u1 + u2 log x+ u3] = −2π;
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and (1−φ)u0, u1, u3 are smooth on M . Relabel the sum of these three functions as u1, and

leave u2 (which is also smooth on M) labeled as it is. We’re done, as long as we prove the

claim.

To prove the claim, we first take note of three facts about the datum

−2π −∆[(1− φ)u0 + u1 + u2 log x].

First, it is supported near the boundary. That’s because −2π −∆[(1− φ)u0] is supported

near the boundary by the construction of u0; and ∆(u1 + u2 log x) is supported near the

boundary since u1 and u2 were, by their construction.

Second, the datum vanishes to infinite order on ∂M . To see this, write it as(
−π

2
h− L[(1− φ)u0 + u1 + u2 log x]

) 4
h
.

Since (1− φ)u0 is zero in a neighborhood of the boundary, we only need to show that

−π
2
h− L(u1 + u2 log x)

vanishes to infinite order on the boundary. This can easily be seen by using the definition

L = (x∂x)2 + ∂2
y

and the asymptotic formulas for u1, u2, and h. When this calculation is made, it must be

remembered that h vanishes on the boundary, so that

h ∼
∑
m≥1
n∈Z

hmnx
meiny

(the m = 0 terms do not appear).

Third, the integral over M of the datum times the volume form is zero. To see this, just

compute the integral of each of the five functions −2π, ∆[(1−φ)u0], ∆u1, ∆[(u2−φ) log x],

and φ log x. The first piece gives −2π, obviously. The second, third, and fourth pieces give

zero by Note 4.27. And finally, the fifth piece gives∫
M

∆(φ log x) · vol = −
∫

∂M
x∂x(φ log x) dy

= −
∫

∂M
dy

= −2π
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by Note 4.27. A subtraction, and the full integral is zero.

Now we want to transfer this problem to the z plane. The equation

∆u3 = −2π −∆[(1− φ)u0 + u1 + u2 log x]

may be re-written as

Lu3 =
h

4
(−2π −∆[(1− φ)u0 + u1 + u2 log x]).

But we know that

L = L̄L = 2z̄∂z̄2z∂z = 4x2∂z̄∂z = x2∆z.

So we can re-write the equation again as

∆zu
3 =

h

4x2
(−2π −∆[(1− φ)u0 + u1 + u2 log x]).

By facts 1 and 2, the datum is compactly supported and smooth in the z plane (in fact, it

vanishes to infinite order at the origin). And we can use fact 3, along with the formula

vol =
h

4
dx

x
∧ dy

=
h

4x2
x dx ∧ dy

=
h

4x2
dµ(z),

to conclude that ∫
C

h

4x2
(−2π −∆[(1− φ)u0 + u1 + u2 log x]) dµ(z) = 0.

So by Lemma 4.24 (and its corollary), there exists solution which is smooth on the z sphere.

Therefore its lift is smooth on M .

Theorem 4.29. Let M be a geometric cup with c = 1. Mark an interior point, and fix an

interior coordinate z which respects the marking. Let z = 1/z be the associated first integral.

Then define h = 〈L,L〉. Express h as an asymptotic sum at the boundary:

h ∼
∑
m≥0
n∈Z

hmnx
meiny.

Let E be a holomorphic line bundle over M . Let zn be the invariant integral sequence

of E with respect to the chosen marking of M . Define γ = <z0 as usual. Then for there
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to exist a hermitian holomorphic b-connection on E whose curvature is −2πiγ · vol, it is

necessary and sufficient that

zn = −πγ
2n
hnnz

n

for all n ≥ 1.

Proof of necessity. Choose a smooth frame s. Let α be the ∂̄ form with respect to s, and

write α = fλ̄. Then write f as an asymptotic series in the usual way, so that zn = −fnnz
n.

We need to show that

fnn =
πγ

2n
hnn

for n ≥ 1.

To do this, let 〈s, s〉 = ep be the metric associated to the special connection, and start

with the equation

∂α− ∂̄ᾱ+ ∂̄∂p = −2πiγ · vol .

(In (4.2), we saw that the left hand side is the curvature.) As in (4.3), the left hand side

can be re-written as

(Lf + L̄f̄ − L̄Lp)λ ∧ λ̄ = (Lf + L̄f̄ − L̄Lp)(−i/2)
dx

x
∧ dy,

and the right hand side can be re-written by (4.6) as

−2πiγ
h

4
dx

x
∧ dy =

−πiγh
2

dx

x
∧ dy.

This gives the equation

Lf + L̄f̄ − L̄Lp = πγh.

Now we will work with the asymptotic formulas for f and h. On the left, we have

(x∂x − i∂y)
∑

fmnx
meiny + (x∂x + i∂y)

∑
f̄mnx

meiny − ([x∂x]2 + ∂2
y)

∑
pmnx

meiny

=
∑

(m+ n)fmnx
meiny +

∑
(m− n)(fm,−n)̄ xmeiny −

∑
(m2 − n2)pmnx

meiny,

and on the right we have

πγ
∑

hmnx
meiny.

Now examine the m = n terms, for n ≥ 1. We find that

2nfnn = πγhnn
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or

fnn =
πγ

2n
hnn,

which was to be proved.

Proof of sufficiency. As per Theorem 4.8, choose a smooth frame s for E and a smooth

function u on E which is supported near the boundary, in such a way that

seu log x

is a holomorphic frame over the interior and

u ∼
∑
n≥0

zn.

Define a metric for E by stipulating that

〈s, s〉 = e2(γV−(<u) log x)

where V is the function whose existence is asserted in Proposition 4.28. We claim that

the function p = 2(γV − (<u) log x) is smooth on M , so the metric is smooth and non-

degenerate.

Now compute the curvature of the induced connection ∇. The ∂̄ form with respect to

s is α = −∂̄(u log x). So

R(∇) = ∂α− ∂̄ᾱ+ ∂̄∂p

= −∂∂̄(u log x) + ∂̄∂(ū log x) + 2∂̄∂(γV − (<u) log x)

= ∂̄∂(u log x) + ∂̄∂(ū log x) + 2γ∂̄∂V − ∂̄∂((2<u) log x)

= 2γ∂̄∂V

= 2γ(i/2)∆V · vol

= −2πiγ · vol .

All that remains is to prove the claim. Write V = u1 + u2 log x as in Proposition 4.28.

Then

p = 2(γu1 + γu2 log x− (<u) log x).
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So it suffices to prove that γu2 − (<u) vanishes to infinite order at the boundary. But by

the asymptotic formula for u2,

γu2 ∼ γ

1−
∑
m≥1

n=±m

πhmn

4m
xmeiny


= γ −

∑
m≥1

n=±m

πγhmn

4m
xmeiny

= γ −
∑
m≥1

πγhmm

4m
zm −

∑
m≥1

πγhm,−m

4m
z̄m

= γ −
∑
m≥1

πγhmm

4m
zm −

∑
m≥1

πγh̄mm

4m
z̄m

= γ − 2<

∑
m≥1

πγhmm

4m
zm


= <

z0 − ∑
m≥1

πγhmm

2m
zm

 .

By hypothesis, the mth term of the sum is equal to zm. Thus

γu2 ∼ <
∑
n≥0

zn,

which is the same as the asymptotic expansion for <u. So our function does vanish to

infinite order at the boundary.

Remarks 4.30. Fix a marking on M , and a compatible first integral z, and define h as in

the theorem. Then for each n ≥ 1, the nth integral

Qn =
−π
2n

hnnz
n (4.8)

does not depend on the first integral z used in the construction, so long as z respects the

marking. (This will be proved in Invariance Theorem 4.32 at the end of this section.) That

is, we have here (part of) an invariant integral sequence associated to the marked geometric

cup. Since the zn(E) are also invariant with respect to a change of first integral (though

not a change of marking), the condition of Theorem 4.29 (that zn(E) = γ(E) · Qn) is

self-consistent, if we think of it as applying to bundles over a marked cup.
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But more is true. In fact, if the condition is true (of a certain bundle) for one marking,

it is true for any marking. (This will also be proved in the invariance theorem.) Thus the

condition is fully self-consistent, and applies to bundles over an unmarked geometric cup,

which is what we want. A consequence of this is that the Qn must transform under a change

of the marking in the same way that the integral sequence of a bundle transforms under

a change of marking. So we can build a bundle class G over M , which we could call the

metric line bundle class of the geometric cup M , by stipulating that its invariant integral

sequence (with respect to a given marking) be

1, Q1, Q2, Q3, . . . ,

with the Qn defined using that same marking.

The advantage of this is that we can now develop a coordinate-free condition on holo-

morphic line bundles for the existence of a constant-curvature hermitian holomorphic b-

connection. The condition of Theorem 4.29 is that the invariant integral sequence of the

bundle (with respect to any marking) be equal to γ times the invariant integral sequence

of G (with respect to the same marking), except for a purely imaginary discrepancy in the

zeroth integral. This needs a bit of further interpretation.

First of all, if we denote by Gγ the holomorphic line bundle class whose invariant

integral sequence is γ times the sequence for G, then it seems reasonable to call Gγ the

“gammath power of the metric line bundle class.” That’s because taking a positive integer

power of a bundle (which is well defined as the tensor product of that many copies of the

bundle) has the effect of multiplying the invariant integral sequence by the power. All we

are doing here is generalizing from positive integers to real numbers.

Next, we have to understand the condition of Theorem 4.29 in these terms. The

condition is that zn(E) = zn(Gγ) for all n ≥ 1, and z0(E) − z0(Gγ) is purely imaginary.

When this is so, it can easily be seen that there is a holomorphic isomorphism over the

interior from E to any representative Gγ
0 of Gγ , which has the form

Ieitφ log x

where I is a genuine C∞ diffeomorphism over M from E to Gγ
0 , t is some real number,

and φ is a cut-off function supported near the boundary. That is, we have a holomorphic

isomorphism over the interior which only fails to be smooth up to the boundary by virtue

of the function eit log x. This function represents a pure twist in the fibres which accelerates
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as you approach the boundary of M . You might say, in this case, that the bundles E and

Gγ
0 are twist-isomorphic, and that the classes [E] and Gγ are twist-equivalent.

With these remarks in mind, we could re-formulate Theorem 4.29 as follows:

Reformulated Theorem 4.31. Let M be a geometric cup with c = 1, and let G be the

metric line bundle class of M . Then a holomorphic line bundle E over M posesses a

constant-curvature hermitian holomorphic b-connection if and only if [E] is twist-equivalent

to Gγ(E).

Now that we’ve seen (in the remarks above) how we can get from Theorem 4.29 to

Reformulated Theorem 4.31, we must actually get there. That means, we should prove the

invariance theorem, construct the metric line bundle class and its real powers, define twist

isomorphism, and finally prove the re-formulated theorem using all this.

Invariance Theorem 4.32. Let M be a geometric cup with c = 1.

1. Fix a marking on M . Choose an interior coordinate z which respects the marking,

and let z = 1/z be the associated first integral. Then for each n ≥ 1, the formula

Qn =
−π
2n

hnnz
n

is independent of the choice of interior coordinate z.

2. If a holomorphic line bundle satisfies the condition

zn(E) = γ(E) ·Qn for all n ≥ 1

for one choice of marking, then it satisfies this condition for every choice of marking.

Proof of the first assertion. Let z, z̃ be two interior coordinates which respect the marking.

Then z̃ = (1/a)z for some nonzero complex number a = reiθ. Let z, z̃ be the associated first

integrals. Then
z̃ = az

x̃ = rx

ỹ = y + θ.
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Therefore ∂z̃ = (1/a)∂z, and L̃ = 2z̃∂z̃ = 2az(1/a)∂z = 2z∂z = L. Therefore, h̃ = h. So all

we have to do in order to compute the h̃nn is to write h as a series in x̃meinỹ, as follows:

h =
∑

hmnx
meiny

=
∑

hmn(x̃/r)mein(ỹ−θ)

=
∑ hmn

rmeinθ
x̃meinỹ.

Therefore

h̃nn =
hnn

rneinθ
= (1/an)hnn.

Now it’s easy to see that

Q̃n =
−π
2n

h̃nnz̃
n

=
−π
2n

(1/an)hnna
nzn

=
−π
2n

hnnz
n

= Qn.

Proof of the second assertion. If we were in posession of a formula which showed explicitly

how the invariant integral sequence of a bundle transforms under a change of the marking,

then we would merely have to show that the γQn transform the same way under a change

of marking. This would be best. But since we don’t have that formula, we have to argue

more abstractly, in a boot-strapping sort of way. The idea is that Theorem 4.29 states the

equivalence of two conditions on a bundle over a marked cup. The first is the condition

on the invariant integral sequence. The second is the existence of a constant-curvature

hermitian holomorphic b-connection. But since the second condition is independent of the

marking, so must be the first.

Explicitly, we may argue as follows. Suppose the condition on the integral sequence

is satisfied with respect to a certain marking p0. Then by Theorem 4.29, there exists a

constant-curvature hermitian holomorphic b-connection. Now choose any other marking p̃0.

Then, again by the theorem, the condition on the integral sequence is satisfied with respect

to this other marking.

Definition 4.33 (metric line bundle class). Let M be a geometric cup with c = 1.

Mark an interior point, and define G to be the holomorphic line bundle class whose invariant
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integral sequence with respect to this marking is

zn(G) =

1 n = 0

Qn n ≥ 1,

where the Qn are of course defined as in Invariance Theorem 4.32 using the same marking.

Then G is called the metric line bundle class of the geometric cup M .

Proof of the soundness of the definition. Note that any representative G0 of G satisfies the

condition expressed in part 2 of Invariance Theorem 4.32 with respect to this marking (by

its construction). So by the invariance theorem, G0 satisfies the same condition with respect

to every other marking. That is, if we had chosen any other marking and defined a class

the same way with respect to that marking, we would have ended up with the same class

as that defined by means of the original marking.

Note 4.34. As defined here, G is an isomorphism class of holomorphic line bundles. For

our purposes, this is sufficient. But it might be possible to achieve a more coordinate-

free way of constructing a specific representative of this class, perhaps by modifying the

holomorphic structure of the holomorphic compressed tangent bundle (which we know has

zeroth integral 1 and all others 0). We leave this point unresolved.

Definition 4.35 (real power of a line bundle class). Let M be a cup, and [E] be a

holomorphic line bundle class over M . Choose any real number γ. We will define a new

class, the γth power [E]γ of [E], by constructing a representative Eγ as follows: as a C∞

object, Eγ is the trivial bundle. Now let s be a global C∞ frame for E, and α the ∂̄ form

for E with respect to s. Then stipulate that the ∂̄ form for Eγ with respect to the global

C∞ frame 1 is γ · α. Finally, set [E]γ = [Eγ ].

Proof of the soundness of the definition. First, suppose we had performed the construction

with s̃ = seu instead of with s. Then α̃ = α + ∂̄u. So the ∂̄ form of Ẽγ with respect to

the global C∞ frame 1 is γα + γ∂̄u. Now define a C∞ isomorphism Φ from Eγ to Ẽγ by
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Φ1 = 1e−γu. I claim that this is a holomorphic map. This is so because, in Ẽγ ,

∂̄(Φ1) = ∂̄(1e−γu)

= ∂̄1 · e−γu + 1∂̄e−γu

= 1(γα+ γ∂̄u)e−γu + 1(−γ∂̄u)e−γu

= 1e−γu(γα+ γ∂̄u− γ∂̄u)

= Φ1(γα),

so the the ∂̄ form of Ẽγ with respect to the frame Φ1 is equal to the ∂̄ form of Eγ with

respect to the frame 1. Thus Eγ and Ẽγ are equivalent, and so the class [E]γ does not

depend on the choice of frame for E.

We must show that the class [E]γ is also independent of the choice of the representative

E. So let Ẽ be another bundle equivalent to E, and construct Ẽγ ; we must show that this

is isomorphic to Eγ . So let s be a global C∞ frame for E, and let Φ be a holomorphic

isomorphism from E to Ẽ. So s̃ = Φs is a global C∞ frame for Ẽ. Let α be the ∂̄ form

of E with respect to s. Then α̃ = α is also the ∂̄ form for Ẽ with respect to s̃, since

Φ is a holomorphic map. So both Eγ and Ẽγ (constructed by means of s and s̃) are

the same bundle: namely, the trivial C∞ bundle with holomorphic structure defined by

∂̄1 = 1⊗ α.

Remark 4.36. If t ∈ {1, 2, 3, . . . }, then

E ⊗ · · · ⊗ E︸ ︷︷ ︸
t times

∈ [E]t.

(This justifies the name.) The reason is that tensor product becomes addition at the level

of ∂̄ forms.

Definition 4.37. Let M be a cup, and let E,F be holomorphic line bundles over M . Then

E is twist-isomorphic to F if there exists a C∞ isomorphism I : E −→ F such that the map

Ieitφ log x

is holomorphic over the interior, for some real number t and some cut-off function φ sup-

ported near the boundary of M .

Remarks 4.38. As was mentioned in Remarks 4.30, E is twist-isomorphic to F if and

only if zn(E) = zn(F ) for all n ≥ 1 and z0(E) − z0(F ) is purely imaginary; the invariant
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integral sequences both computed with respect to any chosen marking. From this, it is

easy to see that twist-isomorphism is a relation of equivalence on the set of holomorphic

line bundles over M . And since “isomorphic” implies “twist-isomorphic,” this relation of

equivalence extends to the set of isomorphy classes of holomorphic line bundles over M ;

here, the relation will be called twist-equivalence.

Now we are ready to prove Reformulated Theorem 4.31, using the original theorem

(Theorem 4.29).

Proof of necessity. Suppose E has a constant-curvature hermitian holomorphic b-connection.

Then by Theorem 4.21, the curvature must be −2πiγ ·vol. Choose a marking p0 and a com-

patible interior coordinate z. Let z = 1/z. Then by Theorem 4.29,

zn(E, p0) = γ(E) ·Qn(p0)

for all n ≥ 1. So the invariant integral of E with respect to p0 equals the invariant integral

sequence of Gγ(E) with respect to p0, except for the discrepancy

z0(E)− z0(Gγ(E)) = z0(E)− γ(E),

which is purely imaginary. So [E] is twist-equivalent to Gγ(E).

Proof of sufficiency. Suppose [E] is twist-equivalent to Gγ(E). Choose a marking p0. Then

for all n ≥ 1,
zn(E, p0) = zn(Gγ(E), p0)

= γ(E) · zn(G, p0)

= γ(E) ·Qn(p0).

So, by Theorem 4.29, E has a constant-curvature hermitian holomorphic b-connection.

Theorem 4.39. Let M be a cup with c = 1. Then any line bundle class over M having

z0 = 1 and z1 = 0 may be realized as the metric line bundle class associated to some

geometric structure for M .

Proof. Choose an appropriate line bundle class and a marking on M . Let zn denote the

invariant nth integral for this class with respect to the chosen marking. Then the condition

for this class to be the metric line bundle class is zn = Qn = −(π/2n)hnnz
n, or

hnn =
−2n
π

zn
zn
,
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for all n ≥ 1. (The class already satisfies the necessary condition z0 = 1.) So we only need

to find an h which has a part of its asymptotic sequence at the boundary specified by this

formula. According to a theorem of Borel (or actually, a variant), it is always possible to

find a smooth function with the total asymptotic sequence specified. So we are free (under

the condition) to stipulate that h vanishes (to first order) at the boundary, since there is

no condition on the h0n. Also, since z1 = 0, it must be that h11 = 0. So we are also free to

stipulate that h vanishes to second order at the boundary. Thus h = 〈L,L〉 indeed defines

a metric for M . We can adjust h smoothly away from the boundary so as to make the

volume form integrate to 1, so our metric will be normal. And since the above condition is

satisfied, the metric line bundle class induced by this metric is the chosen class.

Let us take a moment now to discuss the significance of constant-curvature connections.

(This discussion is valid for arbitrary c.) On any manifold M , the ordinary d operator can

be regarded as the natural connection on the trivial complex line bundle M×C, and d◦d = 0

is then the curvature. So if we are seeking a connection with which to do analysis on some

non-trivial bundle over a manifold, it makes sense to seek one which is somehow of minimal

curvature. This would be a choice which brings us closest to euclidean flatness. One way to

measure the size of the curvature of a connection is by means of the Yang–Mills functional

(see [1]), which may be reasonably defined in the b-holomorphic context as follows:

Definition 4.40. Let M be a geometric cup, and E a holomorphic line bundle over M .

Then the Yang–Mills functional on smoothly curved hermitian holomorphic b-connections

on E is defined by

YM(∇) =
∫

M
‖R(∇)‖2 · vol .

The following theorem may now be regarded as a justification for our interest in con-

nections of constant curvature.

Theorem 4.41. A hermitian holomorphic b-connection ∇0 on E whose curvature is const · vol

is an absolute minimum for the Yang–Mills functional for E.

Proof. Suppose R(∇0) = const · vol. We know that
∫
M vol = 1 and

∫
M R(∇0) = −2πiγ, so
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we must have R(∇0) = −2πiγ · vol. And so,

YM(∇0) =
∫

M
‖R(∇0)‖2 · vol

=
∫

M
‖ − 2πiγ · vol ‖2 · vol

=
∫

M
| − 2πγ|2 · vol

= | − 2πγ|2

= 4π2γ2.

Now let ∇ be any smoothly curved hermitian holomorphic b-connection. Write R(∇) =

f · vol . Then

YM(∇) =
∫

M
‖f · vol ‖2 · vol

=
∫

M
|f |2 · vol

≥
∣∣∣∣∫

M
f · vol

∣∣∣∣2
=

∣∣∣∣∫
M
R(∇)

∣∣∣∣2
= | − 2πiγ|2

= 4π2γ2.

So the value of the Yang–Mills functional on any smoothly curved hermitian holomorphic

b-connection is at least as great as the value of the Yang–Mills functional on ∇0.
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5

The Cup: c non-rational

In this chapter, M is a cup with c /∈ Q.

5.1 Classification of cups

As in the case c = 1, we call a biholomorphism from M◦ to C an interior coordinate.

Interior coordinates exist by Theorem 3.2.

We saw in Chapter 4 that there is essentially only one cup with c = 1. In this section,

we will show that there are many inequivalent cups whose collar invariant is a given number

c /∈ Q.

Lemma 5.1. Let M be a cup. Choose a first integral z for the collar of M . Then there

exists a unique interior coordinate z for M such that the Laurent series at zero for ψ = z◦z−1

has residue 1 and constant term 0.

From now on, when we do calculations using a first integral and an interior coordinate,

we will assume that they are paired in this fashion.

Proof of the lemma. Choose a first integral z. Suppose z̃ is an arbitrary interior coordinate.

Then z̃ ◦ z−1 is a biholomorphism from a punctured neighborhood of zero to a punctured

neighborhood of infinity. Thus it is of the form

z̃ ◦ z−1(ξ) = c−1ξ
−1 + c0 + c1ξ + c2ξ

2 + · · ·

with c−1 6= 0. Now, z is another interior coordinate if and only if z◦ z̃−1 is an automorphism

of the plane; that is, if and only if

z = ãz + b

for some a, b ∈ C, a 6= 0. In this case, we can write

z ◦ z−1(ξ) = ãz ◦ z−1(ξ) + b = ac−1ξ
−1 + (ac0 + b) + ac1ξ + ac2ξ

2 + · · · .
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The system of equations
ac−1 = 1

ac0 + b = 0

has a unique solution in a 6= 0, b. So there’s a unique interior coordinate z such that z ◦ z−1

has residue equal to 1 and constant term equal to 0.

Lemma 5.2. Suppose z and z are paired and that z̃ and z̃ are paired as well. If we write

z̃ = az (which we can do by Corollary 2.22), then z̃ = (1/a)z.

Proof. Suppose z̃ = az. Then z̃−1(ξ) = z−1(ξ/a). Now define Q = 1
az. Then Q is an

interior coordinate. And we compute that

Q ◦ z̃−1 =
1
a
z ◦ z−1(

1
a
ξ).

But we know that

z ◦ z−1(ξ) = ξ−1 + 0 + c1ξ + c2ξ
2 + · · · ,

so we find that

Q ◦ z̃−1(ξ) = ξ−1 + 0 +
c1
a2
ξ +

c2
a3
ξ2 + · · · .

That is, Q and z̃ are paired. So z̃ = Q = 1
az by uniqueness of the pairing.

Theorem 5.3. Let M be a cup. Then there’s a biholomorphism β from a neighborhood of

zero to a neighborhood of zero in the complex plane, taking 0 to 0, associated to each choice

of a first integral for the collar of the cup. If z̃ = az, then β̃ = (a) ◦β ◦ (a−1). So to the cup

itself corresponds a class of biholomorphisms from a neighborhood of zero to a neighborhood

of zero, taking 0 to 0, under the relation of equivalence “conjugacy via multiplication by a

nonzero constant.”

Construction. Choose a first integral z. Let z be the induced interior coordinate. Then

define

β = 1/z ◦ z−1.

Proof of dependence on the first integral. Let z̃ = az (so that z̃−1 = z−1 ◦ ( 1
a)), and let z̃ be

the induced interior coordinate. Then by the lemma, z̃ = 1
az. So we find

β̃ = inversion ◦̃z◦z̃−1 = inversion ◦1
a
z◦z−1◦(a−1) = (a)◦inversion ◦z◦z−1◦(a−1) = (a)◦β◦(a−1).
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Note 5.4. It is evident that any representative of this class may be realized as z ◦ z−1 for

an appropriate choice of first integral z (and its associated interior coordinate z).

Remark 5.5. For any c ∈ C with <c > 0 and any biholomorphism β from a neighborhood

of zero to a neighborhood of zero which takes 0 to 0, there’s a cup whose invariants these

are. This is a direct consequence of Theorem 4.2.

Theorem 5.6. Let M1 and M2 be two cups whose collar invariants are not rational. Then

M1 'M2 if and only if c(M1) = c(M2) and β(M1) = β(M2).

Proof. Suppose M1 'M2. Then the collars are equivalent. So the collar invariants must be

equal. Now choose z, z to be a paired first integral and interior coordinate for M2 and let ϕ

be a C∞ biholomorphism from M1 to M2. Then z ◦ ϕ and z ◦ ϕ are a paired first integral

and interior coordinate for M1. We see directly that

β(M1) = 1/(z ◦ ϕ) ◦ (z ◦ ϕ)−1 = 1/z ◦ z−1 = β(M2).

Now suppose that c and β are the invariants for both M1 and M2. Choose a represen-

tative function for β and call it still β. Now choose a pair z, z for M1 and pair z̃, z̃ for M2

such that

1/z ◦ z−1 = β = 1/̃z ◦ z̃−1.

Define ϕ = z̃−1 ◦ z, a biholomorphism from the interior of M1 to the interior of M2. We

need to prove that this function extends as a C∞ function from M1 to M2. But near the

boundary, we can write

z̃ ◦ ϕ ◦ z−1 = z̃ ◦ z̃−1 ◦ inversion ◦ inversion ◦z ◦ z−1 = β−1 ◦ β = identity .

This says that

ϕ = z̃−1 ◦ z = z̃−1 ◦ χ−1
c ◦ χc ◦ z = (χc ◦ z̃)−1 ◦ (χc ◦ z).

Since z and z̃ are first integrals for M1 and M2, χc ◦ z̃ and χc ◦ z are biholomorphisms from

M2 to Mc and from M1 to Mc respectively which are C∞ up to the boundary. This is by

Remark 2.17. Thus ϕ is also C∞ up to the boundary.

We can say something about cup automorphisms. But first a comment about the power

series of β. Since for a paired z, z we have

z ◦ z−1(ξ) = ξ−1 + 0 + c1ξ + c2ξ
2 + · · · ,
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It must be that

β(ξ) = ξ + 0 + c̃3ξ
3 + c̃4ξ

4 + · · · .

That is, the first three power series coefficients of the analytic function β are necessarily

0, 1, 0. The meaning of this is unclear.

Definition 5.7. There’s a cup invariant ` ∈ {0, 1, 2, 3, . . . } which can be derived from

β as follows. Let ck be the power series coefficients for some representative of β. Let

K = {k ≥ 2 : ck+1 6= 0}. Since β̃(ξ) = (a) ◦ β ◦ (a−1), this set K is independent of the

representative used for β. So we can define

` =

0 K = ∅

gcd(K) K 6= ∅.

Technical Lemma 5.8. Let M be a cup. Let β be (a representative function for) the cup

invariant. Let a be a nonzero complex number. Then (a) ◦ β = β ◦ (a) if and only if a is an

`th root of unity.

Proof. The case ` = 0 is vacuous, so we assume ` ≥ 1. Suppose (a) ◦ β = β ◦ (a). We can

write β(ξ) = ξ + c3ξ
3 = c4ξ

4 + · · · , so this equation becomes

aξ + ac3ξ
3 + ac4ξ

4 + · · · = aξ + a3c3ξ
3 + a4c4ξ

4 + · · · .

So for each n ≥ 3 such that cn 6= 0, we must have a = an, or an−1 = 1. This just says that

ak = 1 for every k ∈ K. Since ` is the gcd of K, we can write ` as a linear combination of

elements of K. Thus

a` = am1k1+···+mrkr = (ak1)m1 · · · (akr)mr = 1,

and we find a to be an `th root of unity.

The reverse direction is similar. Suppose a is an `th root of unity. Then ak = 1 for

every k ∈ K, since ` divides each element of K. So for each n ≥ 3 such that cn 6= 0, we

have a = an. So
(a) ◦ β(ξ) = aξ + ac3ξ

3 + ac4ξ
4 + · · ·

= aξ + a3c3ξ
3 + a4c4ξ

4 + · · ·

= β ◦ (a)(ξ).
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Theorem 5.9. The automorphism group of M is isomorphic to the multiplicative group of

`th roots of unity.

Proof. Choose a first integral z, and let z be the associated interior coordinate. Let β =

1/z ◦ z−1, and define ` as above. We will prove that the map

a 7→ z−1 ◦ (a) ◦ z

defines an isomorphism from the multiplicative group of `th roots of unity to the automor-

phism group of M .

First, choose an `th root of unity a. (So 1/a also is an `th root of unity.) Define

ϕ = z−1 ◦ (a) ◦ z. This is clearly an automorphism of the interior of M . So we only have to

check that it’s also a collar automorphism. So compute

z ◦ ϕ ◦ z−1 = z ◦ z−1 ◦ (a) ◦ z ◦ z−1

= z ◦ z−1 ◦ (a) ◦ inversion ◦ inversion ◦z ◦ z−1

= z ◦ z−1 ◦ inversion ◦(1/a) ◦ inversion ◦z ◦ z−1

= β−1 ◦ (1/a) ◦ β.

By Technical Lemma 5.8, (1/a) ◦ β = β ◦ (1/a) since 1/a is an `th root of unity. So

z ◦ ϕ ◦ z−1 = (1/a), or z ◦ ϕ = (1/a)z, which is a first integral. Therefore ϕ is a collar

automorphism. We already know it’s an interior automorphism; so ϕ is actually a cup

automorphism. So our map is at least well defined.

Injectivity is fairly evident.

Next, surjectivity. Choose an arbitrary cup automorphism ϕ. Then z ◦ϕ and z ◦ϕ are

a new paired first integral and interior coordinate, with z ◦ ϕ = (1/a)z and z ◦ ϕ = az by

Lemma 5.2. Therefore
β = inversion ◦z ◦ z−1

= inversion ◦(z ◦ ϕ) ◦ (z ◦ ϕ)−1

= inversion ◦(a)z ◦ z−1 ◦ (a)

= (1/a) ◦ inversion ◦z ◦ z−1 ◦ (a)

= (1/a) ◦ β ◦ (a).

That is, (a) ◦ β = β ◦ (a). By Technical Lemma 5.8, a must be an `th root of unity. And

from above, ϕ = z−1 ◦ (a) ◦ z. Thus our map is surjective.



83

PSfrag replacements

z =∞ z = 0

the collar (z is defined)

1 is holomorphic (α = 0)

φ = 1

φ = 0

supp φ

supp (1− φ)

supp ∂̄φ

χc ◦ z

x

y

M

z = xceiy

D

χc

Mc

z

u

ϕ

z

ψ

C1

C2

C3

M

π

p1

p2

p3

M̌

Figure 4: Domains

We only need to check that the map respects the group structure. But this is obvious,

because

(z−1 ◦ (a) ◦ z) ◦ (z−1 ◦ (b) ◦ z) = z−1 ◦ (ab) ◦ z.

5.2 Bundles over a cup

Theorem 5.10. To each holomorphic line bundle E over a cup M there corresponds an

integral sequence on M . This sequence is a bundle invariant. Moreover, the class it repre-

sents is the invariant integral sequence class for the pull-back of E to the collar of M , which

was defined in Theorem 2.37.

Construction. Choose a first integral z and let z be the induced interior coordinate. Choose

a global C∞ frame 1 which is holomorphic away from the boundary. We assume without

any loss of generality that the domain of holomorphicity of 1 overlaps the domain of z in
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an annulus (we can actually make the section holomorphic as close to the boundary as we

wish). Choose a cut-off function φ which is 1 near the boundary, 0 in the interior, and

whose variation takes place only within that annulus. (Please refer to Figure 4.) Let α be

the ∂̄ form for E with respect to the frame 1.

Since α is supported within the domain of z, we may regard α as a compactly supported

(0, 1)-form on Mc(z). Define f = 〈α, L̄〉. Let r = h1 − f00 log x + h2 be the unique good

solution to ∂̄r = −α on Mc(z). (Refer to Section 2.7 for the terminology.) Then let u be

the Cauchy solution to

∂̄u = −r∂̄φ

in the z plane. Then, lifting this solution up to M , we see that u is holomorphic near ∂M

and tends to zero at ∂M . So u is an analytic function of z near z = 0. We now take our

integral sequence to be the asymptotic expansion of h2 in positive powers of z plus the

(convergent) power series for u in positive powers of z, with constant term equal to −f00.

We may note at this point that this integral sequence represents the invariant class for the

pull-back of E to the collar.

Proof of invariance under change of first integral and interior coordinate. α does not depend

on the coordinates used. So f also does not. So z0 does not.

In Section 2.7, we saw that r is independent of z (and certainly does not depend on

the z). So we only need to show that u is independent of z. But this is obvious, because u

may be defined as the unique solution on the cup’s interior to ∂̄u = −r∂̄φ which has certain

growth properties. The r, the φ, and the growth conditions are independent of the z.

Proof of invariance under change of cut-off function. Let φ and φ̃ be two appropriate cut-

off functions. α does not depend on φ, so z0 also does not. r does not depend on φ either.

So we get the same r with φ and with φ̃. Then if we proceed with the construction, we

have u being the z-plane Cauchy solution to ∂̄u = −r∂̄φ and ũ being the z-plane Cauchy

solution to ∂̄ũ = −r∂̄φ̃. Let v = ũ − u. Then v must be the z-plane Cauchy solution to

∂̄v = −r∂̄(φ̃ − φ). v is analytic at z = ∞ and has value zero there. We can compute the

coefficient of z−n (n ≥ 1) in the power series for v at z = ∞ using the Cauchy formula

(ignoring multiplicative constants). It is∫
C

znr∂̄(φ̃− φ)
dz

z
.
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Choose an annular region G in the z plane which contains the support of φ̃ − φ. Then we

have ∫
G

znr∂̄(φ̃− φ)
dz

z
=

∫
G
d(r(φ̃− φ)d(zn)) =

∫
∂G
r(φ̃− φ)d(zn) = 0.

This calculation depends upon the fact that r is holomorphic on the support of φ̃ − φ, as

can be seen from the figure. We conclude that ũ − u is constant near z = ∞, so that the

asymptotic expansions for h2 + u and h2 + ũ are the same.

Proof of invariance under change of frame. Let s, s̃ be C∞ frames which are holomorphic

away from the boundary. Write s̃/s = eg. We can do this, because the quotient can not

wind around zero on a deformation of ∂M and still be non-vanishing on the cup. Then

α̃− α = ∂̄g. We take the same z, z for both calculations.

Note that f̃ − f = L̄g. So z̃0 − z0 = −(L̄g)00 = 0 as we have seen in the proof of

Theorem 2.37.

Now to n ≥ 1. We would like to take the same cut-off function for both calculations, so

that the only difference is between the two ∂̄ forms α, α̃. But the choice of cut-off function

depends on the choice of the frame, in particular on the support of the ∂̄ form. So in

general, we will have to use two different cut-off functions φ and φ̃, each chosen appropriate

to the corresponding frame. However, I claim that it is actually enough to show that the

asymptotic series for h̃2 + ũ equals that for h2 + u under the assumption that the same

cut-off function φ0 (which is chosen to be appropriate to both frames) is used in each

calculation. The reason is that this assertion, along with the invariance under a change of

cut-off function we have just proved above, allows us to leap-frog:

(h2 + u)[s̃, φ̃] = (h2 + u)[s̃, φ0] = (h2 + u)[s, φ0] = (h2 + u)[s, φ].

So we proceed WLOG to choose a single cut-off function φ which is appropriate to both

frames.

Before we begin, note that g is holomorphic in an annular region on the collar which

contains the region where φ takes its variation. Let γ be the restriction of g to that region.

One frame is s; the other is s̃ = seg. Let α be the ∂̄-form with respect to s; then

α̃ = α + ∂̄g. Let f = 〈α, L̄〉. Then f̃ = f + L̄g. Let r be the good z-plane solution to

L̄r = −f . Then r̃ = r−g+HPz(γ) by Sub-lemma 2.35. Finally, let u be the z-plane Cauchy

solution to ∂̄u = −r∂̄φ. I claim that ũ = u+ (φ− 1)g − φHPz(γ).
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Proof of this claim: first, note that this function is well defined and C∞ on the z plane.

That’s because u is well defined on the z-plane, g is well defined on the z plane, and HPz(γ)

is well defined on the collar (where φ has its domain). Next, observe that u tends to zero

at z = ∞. That’s because u tends to zero, φ− 1 = 0, and HPz(γ) tends to zero at z = ∞.

Finally, compute that

∂̄ũ = ∂̄u+ (∂̄φ)g + (φ− 1)∂̄g − (∂̄φ) HPz(γ)− φ∂̄HPz(γ)

= −r∂̄φ+ (∂̄φ)g − (∂̄φ) HPz(γ)

= −(r − g + HPz(γ))∂̄φ

= −r̃∂̄φ.

We have a solution which has the right properties to be the Cauchy solution.

Now let’s examine

(h̃2+ũ)−(h2+u) = (ũ−u)+(h̃2−h2) = ((φ−1)g−φHPz(γ))+HPz(γ) = (1−φ)(−g+HPz(γ)).

(We know that h̃2−h2 = HPz(γ) for the following reason: r̃−r = −g+HPz(γ); and h̃2−h2

is that part of r̃ − r which has an expansion in powers of z at the boundary.) This is zero

near the boundary. Therefore the asymptotic series for h̃2 + ũ and for h2 + u must be the

same.

Theorem 5.11. Let E be a holomorphic line bundle over the cup M . Let z0, z1, . . . be

its invariant integral sequence. Then there exists a holomorphic global C∞ frame for the

pull-back of E to the interior of M of the form

sev1+v2

where s is a global C∞ frame for E, v1 = z0 log x near the boundary of M , and v2 ∼
∑

n≥1 zn

at the boundary of M .

Proof. Choose a paired first integral z and interior coordinate z for M . Choose a global

C∞ frame 1 for E. Let α be the ∂̄ form with respect to this frame. Define f = 〈α, L̄〉.
Let r be the unique good solution to L̄r = −f on Mc(z). (Then ∂̄r = −α.) Write

r = h1 − f00 log x+ h2. By definition, −f00 = z0. So actually r = h1 + z0 log x+ h2.

Next choose a cut-off function φ as in the construction of the invariant sequence and

let u be the Cauchy solution in the z plane to ∂̄u = −r∂̄φ. Then I claim that the interior

frame

1eφr+u = 1eφh1+φz0 log x+φh2+u
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is holomorphic. Why? Because the ∂̄ form with respect to this frame is

α+ ∂̄(φr + u) = α+ r∂̄φ+ φ∂̄r + ∂̄u

= α+ r∂̄φ− α− r∂̄φ

= 0.

Now we simply define
s = 1eφh1

v1 = φz0 log x

v2 = φh2 + u.

Theorem 5.12. Let E be a holomorphic line bundle over the cup M . Let z0, z1, . . . be its

invariant integral sequence. Then there exists a holomorphic global C∞ frame for E if and

only if zn = 0 for every n.

Proof. If there is a holomorphic global C∞ frame, then we may use this frame in the

construction of the invariant integral sequence. But the ∂̄ form α with respect to this frame

is zero. In particular, the average value of 〈α, L̄〉 over ∂M is zero; this says that z0 = 0.

Now for n ≥ 1. Since α = 0, the construction will show that r and u are zero. Thus the

asymptotic expansion at the boundary for h2 + u in positive powers of a first integral z is

identically zero. Thus all the zn are zero.

On the other hand, if all the zn are zero, then Theorem 5.11 gives us a global holo-

morphic frame over the interior which has the form sev2 , with s a global C∞ frame for E,

and v2 vanishing to infinite order at the boundary of M . This is a holomorphic global C∞

frame for E.

Corollary 5.13. Two holomorphic line bundles over a cup are equivalent (in the sense that

there is a C∞ bundle isomorphism from one to the other which preserves the holomorphic

structure) if and only if their integral sequences are the same.

Proof. If two bundles are equivalent, then clearly their integral sequences must be the same.

To prove the converse, we have to note that at the level of ∂̄ forms, tensor multiplication of

two bundles (and their frames) becomes addition and dualization becomes additive inver-

sion; and that addition and additive inversion carry over (by the construction) from ∂̄-forms

to integral sequences. Thus if you take the tensor product of two bundles, the new integral
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sequence is the sum of the old ones; and if you take the dual of a bundle, the new integral

sequence is minus the old one.

With this in mind, how does the argument go? E and F are equivalent if and only if

E∗ ⊗ F has a holomorphic global C∞ frame. By Theorem 5.12, this is so if and only if the

integral sequence for E∗ ⊗ F is zero. By the remarks in the above paragraph, this is so if

and only if the integral sequence for E equals the integral sequence for F .

Theorem 5.14. Let M be a cup. Then any integral sequence on M may be realized as the

invariant integral sequence for a holomorphic line bundle over M .

Construction. Choose a paired first integral z and interior coordinate z for M . Choose an

integral sequence. As a set we take E to be M ×C. Choose a function v1 supported in the

collar of M which equals z0 log x near the boundary. Choose a function v2 supported in the

collar of M which has the asymptotic development

v ∼
∑
n≥1

zn.

The existence of such a function is guaranteed by a variant of Borel’s theorem. Then define

the holomorphic structure of E by stipulating that

1ev1+v2

be holomorphic. Note that this defines the correct sort of a holomorphic structure, for the

same reason as outlined in the proof of Theorem 2.42.

Computation of invariant sequence. Since v1 and v2 are compactly supported, we may take

1 as our C∞ frame which is holomorphic away from the boundary. The ∂̄ form with respect

to this frame is α = −∂̄(v1 + v2). So f = 〈α, L̄〉 = −L̄(v1 + v2). So one solution to L̄r = −f
is v1 + v2. But a moment’s inspection of the definitions shows that this is, in fact, the good

solution. So r = v1 + v2; this means that h2 = v2.

Now we have to compute u. For this, we take the z-plane Cauchy solution to

∂̄u = −r∂̄φ,

where φ is chosen as in the construction of the invariant integral sequence. But r = 0 in

the support of ∂̄φ; so u = 0. Thus our integral sequence is the sequence for h2 alone; that

is, the one we chose (arbitrarily) at the beginning. It’s no trouble to check that the zeroth

term is also as chosen.
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We have completed a classification of the holomorphic line bundles over a cup M with

c /∈ Q. That is, we have found an isomorphism from the group of equivalence classes

of holomorphic line bundles over such an M to a prima facie simpler group, namely the

additive group of integral sequences on M . The isomorphism is natural.

5.3 Examples of bundles

First, we examine bT 1,0M .

Theorem 5.15. Let M be a cup with c /∈ Q. Then bT 1,0M is a holomorphic line bundle

over M . Furthermore, z0 = c; and the rest of the zn depend upon the cup invariant β.

Proof. Choose a first integral z and let z be the associated interior coordinate. We start with

the global holomorphic frame ∂z over the interior. Our strategy is to compare this frame to

a global C∞ frame over M (taking the quotient); from this, we will see that the bundle is

a holomorphic line bundle over M , and we will also be able to see what the invariants are.

To do this, we need to construct a global C∞ frame for this bundle. We have the C∞

frame z∂z defined near the boundary and the holomorphic frame ∂z defined in the interior.

We would like to glue these together (by taking a pointwise linear combination) to get a

global C∞ frame.

This is possible if and only if the winding number of the quotient z∂z÷∂z around z = 0

on a small deformation of ∂M is zero. We need to check whether this condition is satisfied.

The quotient is
z∂z

∂z
= z

∂z

∂z

= z · ∂
∂z

(z−1 + 0 + a1z + a2z
2 + · · · )

= z · (−z−2 + 0 + a1 + 2a2z + · · · )

= −z−1 + 0 + a1z + 2a2z
2 + · · · .

A small deformation of ∂M is a small counterclockwise circuit of z = 0 in the z plane. Here,

the term −z−1 dominates; and the winding number is seen to be −1.

So we cannot glue as we wished. But if we take our C∞ boundary frame to be eiyz∂z

instead of z∂z, the winding number will become zero. Therefore, there exists a global C∞

frame s for bT 1,0M which equals ∂z in the interior and equals eiyz∂z near the boundary.

Note that s is holomorphic away from the boundary.
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Now we can compute the quotient. In the interior, it is smooth. Near the boundary, it

is
∂z

s
=

∂z

eiyz∂z

=
e−iy

z
· 1
∂z/∂z

=
xc

z2∂z/∂z

= ec log x−log(z2∂z/∂z).

We are justified in writing z2∂z/∂z as the exponential of a logarithm because this function,

near the boundary, is (analytic and) non-vanishing:

z2∂z/∂z = z2(−z−2 + 0 + a1 + 2a2z + · · · ) = −1 + 0 + a1z
2 + 2a2z

3 + · · · .

Therefore the term log(z2∂z/∂z) is a series in non-negative powers of z.

We have computed that the global holomorphic frame ∂z may be written near ∂M as

sec log x−log(z2∂z/∂z).

The ∂̄ form near the boundary with respect to s is

−∂̄[c log x− log(z2∂z/∂z)] = −L̄[c log x− log(z2∂z/∂z)]λ̄ = −cλ̄,

since L̄ log x = 1 and log(z2∂z/∂z) is analytic. Since this is a smooth section of bΛ0,1M , our

bundle is a holomorphic line bundle (in our sense) over the b-holomorphic complex curve

M .

Finally, since s is holomorphic away from the boundary, we can read the invariants

directly from the interior holomorphic frame

sec log x−log(z2∂z/∂z).

We see that z0 = c, and the other zn are given by the entries in the expansion of the analytic

function − log(z2∂z/∂z) in powers of z. Since β = 1/z ◦ z−1, this function clearly depends

on β.

We conclude this section by examining lifts of bundles from M̌ = S2. Unfortunately,

there is no natural way to lift a bundle from the sphere to M , as there was in the situation

of c = 1. That’s because there is no surjective smooth holomorphic map from M to the
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sphere. The reason is that a holomorphic map must be representable as a power series in

a first integral z near ∂M ; but the only such series which is also smooth is the constant

series, since z = xceiy and c is not rational. So the map is constant near ∂M , and therefore

constant on M . In particular, the blow-down map π : M−→M̌ fails to be smooth at the

boundary of M .

Nevertheless, π is continuous, and it is smooth and holomorphic in the interior of M .

So given a line bundle E over the sphere M̌ , we can lift it to a continuous line bundle Ê over

M . We can also lift the smooth and holomorphic structures of E to smooth and holomorphic

structures for the pull-back of Ê to M◦. All that remains is to extend the smooth structure

of Ê�M◦ to a smooth structure for Ê�M , in such a way that the holomorphic structure of

Ê�M◦ makes Ê a holomorphic line bundle over M in our sense.

This requires a choice. So choose a local holomorphic frame ν of E near q, and let ν̂ be

its lift to a local frame of Ê. We now stipulate that a local section of Ê near the boundary

is smooth if and only if its quotient by ν̂ is smooth. The resulting bundle will be called

Êν , the “lift of E by means of ν.” Note that this is a holomorphic line bundle in our sense,

because the ∂̄ form with respect to the local C∞ frame ν̂ is zero, which is smooth as a

compressed (0, 1)-form.

Theorem 5.16. Let M be a cup, and let π : M−→M̌ be the blow-down. Let q ∈ M̌

be the distinguished point. Let E be a holomorphic line bundle over M̌ . Let τ be a local

holomorphic frame for E near q, and σ be a global holomorphic frame for E over M̌\q,
such that σ = τzd near q, where z is any first integral of M (pushed down to M̌ , so that it

becomes a local analytic chart). Such frames exist by Theorem 4.14. Here d is the degree of

E.

Choose a local holomorphic frame ν for E near q, and let Êν be the lift of E to M by

means of ν. Let zn be the invariant integral sequence of Êν . Then

z0
c

= d,

and for n ≥ 1, zn equals the nth entry in the power series expansion of the holomorphic

function log(τ/ν) in terms of a first integral for M .

Proof. Let z be a first integral. Then z, regarded as a function on M̌ by means of the

projection π, is a local analytic coordinate centered at q. Define f = log(τ/ν), so that
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τ = νef . Then near q,
σ = τzd

= νefxdceidy

= νef0+idyedc log x+[f−f0].

Choose a cut-off function φ supported near the boundary. Let ν̂ and σ̂ be the lifts of

ν and σ. Then define

s = σ̂e−φ(dc log x+[f−f0]).

This is a frame over M◦. Away from the boundary, it agrees with σ̂, and is therefore

holomorphic. Near the boundary, it equals

ν̂ef0+idy,

and is therefore smooth up to the boundary. That is, s is a global C∞ frame for Êν which

is holomorphic away from the boundary. Furthermore, we have the holomorphic interior

frame σ̂ which equals

seφ(dc log x+[f−f0])

near ∂M . The invariants can now be read off from this formula.

Corollary 5.17. Let F be a holomorphic line bundle over M . Then F is isomorphic to

Êν for some holomorphic line bundle E over S2 and some local holomorphic frame ν for

E if and only if z0(F )/c ∈ Z and
∑

n≥1 zn(F ) has a positive radius of convergence, when

expressed as a series in positive powers of a first integral for M .

5.4 Connections of constant curvature

In this section, we take M to be a geometric cup (see Definition 1.10) with c /∈ Q.

Choose a first integral z. Then we have x, y, L, L̄, λ, λ̄ as in (2.2) and (2.3). Define

L = L̄L =
(x∂x ∂y )

 1 −b
−b |c|2

 x∂x

∂y

 (5.1)

and

T = (a−2)
( dx

x dy )
|c|2 b

b 1

 dx
x

dy

 .
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Define h = 〈L,L〉. Then h vanishes to second order on the boundary. We have the formulas

g = h
4T

∆ = 4
hL

vol = h
4a

dx
x ∧ dy.

(5.2)

(These are taken to be valid near the boundary only, of course.) Note that the volume form

is a smooth 2-form which vanishes to first order on the boundary.

We have ∂̄∂ = (i/2) ?∆, as before. Also, we will be using Lemma 4.24 on solving the

Laplace equation in the plane, and Technical Lemma 4.26 as well, which is valid for a cup

with any c (not just c = 1).

Proposition 5.18. There exists a real smooth function V on M◦ that satisfies ∆V = −2π/a

and such that V can be written as V = φ log x+ V 1 + V 2 with

1. φ a cut-off function supported near ∂M ;

2. x is a smooth defining function for the boundary arising from some first integral z =

xceiy;

3. V 1 a smooth function on M ; and

4. V 2 a smooth function on M◦ which is asymptotically equal at ∂M to the real part of

a series in non-negative powers of z.

Such a function is unique up to an additive constant.

Proof of uniqueness. Suppose V and Ṽ are two such functions, and let f = Ṽ −V . Then f

is harmonic. Also, near the boundary of M ,

f = (log x̃− log x) + (Ṽ 1 − V 1) + (Ṽ 2 − V 2).

Since c /∈ Q we know that z̃ = const ·z, which implies that x̃ = const ·x. Therefore log x̃−
log x is constant. Also, each of the four “V ” functions on the right hand side is bounded in

a neighborhood of the boundary of M . So f is bounded and harmonic on M◦, which means

that M is bounded and harmonic in the z plane (where z is any interior coordinate for M).

Thus f is everywhere constant.
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Proof of existence. Choose a first integral z and let z be its associated interior coordinate.

Choose a cut-off function φ supported near the boundary and taking its variation in the

collar (the region where z and z are both defined). Let h = 〈L,L〉, and define hmn in the

usual way.

We begin the construction. Let u0 be any real smooth solution to ∆u0 = −2π/a on

the interior of M . Such a solution exists by the ellipticity of the Laplacian over the interior.

Next, let u1 be a real smooth function on M , supported near the boundary, such that

u1 ∼ −π
2a

∑
m≥1
n∈Z

hmn

m2 − 2ibmn− |c|2n2
xmeiny

at the boundary. Next, we need to solve

∆u2 = −2π
a
−∆[φ log x+ (1− φ)u0 + u1],

which we can write (in the z plane) as

∆zu
2 =

h

4a2|z|2

(
−2π
a
−∆[φ log x+ (1− φ)u0 + u1]

)
.

To re-write the equation in this form, we have used the definition of L as 2az∂z, and the

general fact that if 〈∂z, ∂z〉 = F , then ∆ = (1/F )∆z.

The construction of the u0 and the u1 was geared to making this equation solvable

in the z plane via the usual kernel. That means that the datum should be smooth and

compactly supported in the z plane. We argue that it is. First, note that ∆(φ log x) is

supported in an annulus in the z plane, since log x is harmonic. Next, note that

−2π
a
−∆[(1− φ)u0]

is supported near the boundary. Finally, we have to check that ∆u1 agrees with

−2π
a
−∆[(1− φ)u0]

to infinite order at the boundary. But since (1 − φ)u0 is zero near the boundary, this

amounts to showing that ∆u1 agrees with the constant function −2π/a to infinite order at

the boundary. To see this, you can check directly from the definition of L (5.1) and the

asymptotic formula for u1 that

Lu1 ∼ −π
2a

h
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at the boundary; so by (5.2)

∆u1 =
4
h
Lu1

∼ −4
h

π

2a
h

= −2π
a

at the boundary.

Thus, the full datum vanishes to infinite order at the boundary; or, in the z plane, the

full datum vanishes to infinite order at z = 0 (hence is smooth there); and it is compactly

supported. So we can indeed solve by means of the kernel. The solution is smooth in z.

This (real) solution will be “asymptotically harmonic” at z = 0, which implies that there’s

an asymptotic development

u2 ∼ <
∑
n≥0

anz
n.

Since we cannot lift a function defined on all of the z plane (such as u2) to the manifold

M , we are obliged to cut it off first. So our final task is to solve

∆u3 = −2π
a
−∆[φ log x+ (1− φ)u0 + u1 + φu2].

Let z be the interior coordinate associated to z. Let F = 〈∂z, ∂z〉. Then we can re-write this

equation as

∆zu
3 = F

(
−2π
a
−∆[φ log x+ (1− φ)u0 + u1 + φu2]

)
.

Since the previous datum was supported near ∂M , this new datum is supported in an

annulus. So we may solve by means of the kernel. Then we set

V 1 = (1− φ)u0 + u1

V 2 = φu2 + u3.

By our construction, we have

∆(φ log x+ V 1 + V 2) = −2π/a.

V 1 is smooth on M . V 2−u3 = φu2 is asymptotic to the real part of a series in non-negative

powers of z at ∂M . So it suffices to show that u3 is equal to the real part of a series in

positive powers of z near ∂M .

To show this, we claim that ∫
C

datum3 dµ(z) = 0.
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Then, the solution u3 is a real smooth function which is harmonic in a neighborhood of ∞
in the z plane, and which tends to zero at z = ∞ by Lemma 4.24. Thus we may regard u3

as a real smooth function which is harmonic in a punctured neighborhood of zero in the z

plane, and tends to zero at z = 0. So u3 is actually smooth in a (full) neighborhood of zero

in the z plane. Since it is real, smooth, and harmonic in a neighborhood of z = 0 and tends

to zero at z = 0, it may be expressed as

u3 = <
∑
n≥1

bnz
n.

We are therefore done, as long as we prove the claim about the integral of the datum.

Proof of the claim: Write z = ξ + iη. Then vol = F dξ ∧ dη = F dµ(z). So we may

compute∫
C

datum3 dµ(z) =
∫

C
F

(
−2π
a
−∆[φ log x+ (1− φ)u0 + u1 + φu2]

)
(1/F ) · vol

=
∫

M

(
−2π
a
−∆[φ log x+ (1− φ)u0 + u1 + φu2]

)
· vol .

The first piece obviously integrates to −2π/a. The second piece integrates to 2π/a by

Technical Lemma 4.26. The third, fourth, and fifth pieces integrate to zero by the technical

lemma. So the full integral is zero. The claim is proved.

Note 5.19. The decomposition of any such V as φ log x + V 1 + V 2 is unique, except for

the shifting of a term of the form const ·ψ between V 1 and V 2, where ψ is a cut-off function

supported near ∂M . Also, we have seen that the V itself is unique up to an additive

constant. Therefore the positive power entries in the asymptotic expansion of V 2 at ∂M

are independent of the V and also of the decomposition V = φ log x + V 1 + V 2. We will

call this invariant thing f . That is, we define the formal series of nth integrals f (over n

positive) by the relation

V 2 ∼ const +<f

at the boundary.

Theorem 5.20. Let M be a geometric cup with c /∈ Q. Let E be a holomorphic line

bundle over M . Then for there to exist a hermitian holomorphic b-connection on E whose

curvature is −2πiγ · vol, it is necessary and sufficient that the invariant integral sequence

of E satisfy the equation ∑
n≥1

zn(E) = [<z0(E)]f.
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Proof of necessity. As per Theorem 5.11, let seu
1+u2

be a holomorphic frame over the inte-

rior, where s is a global smooth frame over M , u1 = z0 log x near the boundary, and

u2 ∼
∑
n≥1

zn

at the boundary. Then the ∂̄ form with respect to s is α = −∂̄(u1 + u2).

Now let 〈s, s〉 = ep denote the metric associated to the special connection. Start with

the equation curvature = −2πiγ · vol, which by (4.2) can be written

∂α− ∂̄ᾱ+ ∂̄∂p = −2πi<z0
a

· vol .

Using α = −∂̄(u1 + u2), we can re-write the left hand side as

∂̄∂[2<(u1 + u2) + p].

And using ∂̄∂V = −πi
a · vol, we can re-write the right hand side as

∂̄∂[2(<z0) · V ].

Using this, we can interpret the equation as saying that

<(u1 + u2) + p/2− (<z0) · V

is harmonic. Since p and V are real, we can re-write this as

<[u1 + u2 + p/2− z0V ].

Now, using the decomposition V = z0φ log x+ V 1 + V 2, we can re-write this as

<[(u1 − z0φ log x) + (p/2− z0V
1) + (u2 − z0V

2)],

or using the asymptotic relations u2 ∼
∑

n≥1 zn and V 2 ∼ const +<f , as

<

(u1 − z0φ log x) + (p/2− z0V
1) +

∑
n≥1

zn − (<z0)f

 + const

 .
This first parenthetic term vanishes near the boundary. The second is smooth up to the

boundary. And the third is an asymptotic series in non-negative powers of z. So all terms

are bounded, and we have a bounded harmonic function on M◦ (which is equivalent to the

plane). So this function is constant.
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Now, the terms in the asymptotic expansion of the smooth second piece (terms like

xmeiny) cannot cancel the terms in the asymptotic expansion of the non-smooth third

piece (terms like xmceiny). So all non-constant terms in each expansion must be zero. In

particular, ∑
n≥1

zn = (<z0)f.

Proof of sufficiency. Choose a global smooth frame s for E, a cut-off function φ supported

near the boundary, and a smooth function u2 on M◦ which has the asymptotic expansion

u2 ∼
∑
n≥1

zn

at the boundary, in such a way that

sez0φ log x+u2

is holomorphic over the interior of M . Let V be the function whose existence is asserted in

Proposition 5.18. Now define a hermitian metric for E by stipulating that

〈s, s〉 = e2<(z0V−z0φ log x−u2).

We claim that the function p = 2<(z0V − z0φ log x− u2) is smooth up to the boundary of

M , so that this defines a smooth metric on E.

We now compute the curvature. Note that α = −∂̄(z0φ log x+ u2). So

R(∇) = ∂α− ∂̄ᾱ+ ∂∂̄p

= −∂∂̄(z0φ log x+ u2) + ∂̄∂(z̄0φ log x+ ū2) + ∂̄∂[2<(z0V − z0φ log x− u2)]

= ∂̄∂(z0φ log x+ u2) + ∂̄∂(z̄0φ log x+ ū2) + 2(<z0)∂̄∂V − ∂̄∂[2<(z0φ log x+ u2)]

= 2(<z0)(i/2)∆V · vol

= 2(<z0)(−πi/a) · vol

= −2πiγ · vol .

It only remains to prove the claim. We have to show that

<(z0V − z0φ log x− u2)
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is smooth up to the boundary. Write V = z0ψ log x+ V 1 + V 2 as in the construction of V ;

and so our function is

<[(z0ψ log x− z0φ log x) + (z0V 1) + (z0V 2 − u2)].

The first piece, <(z0ψ log x− z0φ log x), vanishes near the boundary, and so is smooth. The

second piece, (<z0)V 1, is smooth since V 1 is smooth by its construction. And the third

piece we can write (in asymptotic form) as

<

(<z0)f −
∑
n≥1

zn

 + const .

This asymptotic series is the constant series. So the third piece is constant to infinite order

at ∂M , and is therefore smooth. So the claim is proven.

Definition 5.21. Let M be a geometric cup with c /∈ Q. Let G be the holomorphic line

bundle class whose invariant zeroth integral is 1 and whose invariant nth integral is the nth

entry in the formal power series f . Then G is called the metric line bundle class of the

geometric cup M .

Corollary 5.22. Let M be a geometric cup with c /∈ Q, and let G be the metric line bundle

class of M . Then a holomorphic line bundle E over M posesses a constant-curvature

hermitian holomorphic b-connection if and only if [E] is twist-equivalent to G<z0(E).



100

6

Compact Riemann Surfaces — an interlude

Our analysis of the cup made strong use of the fact that the blow-down was the Riemann

sphere. In particular, we used precise formulas for solving the ∂̄ problem and the Laplace

equation on the sphere.

When we turn to the generic b-holomorphic complex curve, we will need to have some

sort of precise information about solutions to the ∂̄ problem and the Laplace equation on

the blow-down, which is a generic compact Riemann surface. This chapter therefore studies

the ∂̄ problem on a generic compact Riemann surface, and has nothing to do with anything

of type b. We will find sufficiently precise information on the solutions to allow us to proceed

with our analysis of the generic b-holomorphic complex curve in a fashion analogous to our

treatment of the cup.

In Section 7.5 we will discuss the complications that arise in solving the Laplace equa-

tion on a generic compact Riemann surface, and we leave the issue partially unresolved.

The references for this chapter are [5], [10], and [32].

6.1 Background (part one)

Definition 6.1. Let M be a compact Riemann surface. We define the genus g of M to be

the topological “number of handles” that must be attached to a sphere in order to get (a

surface homeomorphic to) M .

From now on, we assume that M is a compact Riemann surface of genus g ≥ 1.

Theorem 6.2. dimH1(M,Z) = 2g.

This is a standard theorem of elementary algebraic topology.

Theorem 6.3. dimH1
dR(M,C) = 2g.



101

This theorem is proved by constructing a differential co-cycle ηi for each homological

generator ci, in such a way that∫
ci

ηj = the intersection number between ci and cj .

The pairing is non-degenerate.

Lemma 6.4. Let ω be a smooth 2-form on M . Then there exists a smooth function f on

M for which ∂̄∂f = ω if and only if
∫
M ω = 0. Such a solution is unique up to an additive

constant. If ω is purely imaginary, then f may be chosen purely real.

Theorem 6.5. There exist natural isomorphisms

1. H1
dR ' H1,0

∂ ⊕H0,1

∂̄
; and

2. H1,0
∂ ' H0,1

∂̄
.

Proof of the first assertion. We define the map to be

[α] 7→ ( [α1,0], [α0,1] ).

This is clearly a well-defined homomorphism. To prove injectivity, let α be a closed 1-form

such that α1,0 = ∂f and α0,1 = ∂̄g. Then

0 = dα

= ∂̄∂f + ∂∂̄g

= ∂̄∂(f − g).

So f − g is harmonic. So it must be a constant. (We have used the “uniqueness” part of

Lemma 6.4 here.) So we have α1,0 = ∂f and α0,1 = ∂̄g = ∂̄(f + const) = ∂̄f . So α = df .

To prove surjectivity, let p and q be smooth 1-forms of type (1, 0) and (0, 1). It suffices

to find a function f such that (p+ ∂f) + q is closed. For then,

[p+ ∂f + q] 7→ ( [p+ ∂f ], [q] ) = ( [p], [q] )

which is our chosen element of the range. So we need to solve the equation d(p+∂f)+dq = 0

for a smooth f . Rewrite the equation as

∂̄∂f = −d(p+ q).

There exists a solution by Lemma 6.4.
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Proof of the second assertion. The map is conjugation. This is clearly an isomorphism,

because of the formula

conjugate of ∂f = ∂̄f̄ .

Corollary 6.6. dimH0,1

∂̄
M = g.

Weierstrass Gap Theorem. Let p ∈M . Then there exist g numbers

1 = n1 < · · · < ng < 2g

such that: there does not exist a meromorphic function on M whose only singularity is a

pole at p of order n if and only if n = ni for some i.

These g numbers are called the Weierstrass gaps at p. The theorem is a consequence

of the Riemann–Roch formula.

6.2 A surface with one marked point

Definition 6.7. Let M be a compact Riemann surface of genus g ≥ 1 with one point p

marked. For any s ∈ Z≥0, we define Assertion s to be the following: For every smooth

(0, 1)-form α on M , there exists a smooth function f = u1 + u2 on M\p such that

1. ∂̄f = α on M\p;

2. u1 is smooth on M ; and

3. u2 is holomorphic in a punctured neighborhood of p, and p is a pole of order at most

s.

When Assertion s is true, we call the number s a pole number for this marked surface.

Clearly the set of pole numbers, if non-empty, must have the form {s0, s0+1, s0+2, . . . }
for some number s0. Our objective is to compute the minimal pole number s0 from the

Weierstrass gaps at p.

Proposition 6.8. Let z be a holomorphic chart centered at p and φ be a cut-off function

supported near p. For each n > 0, define

ηn = (∂̄φ)z−n
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Then the g smooth (0, 1)-forms

ηn1 , . . . , ηng

form a basis for H0,1

∂̄
M , where n1, . . . , ng are the Weierstrass gaps at p.

Proof. Suppose a1η
n1 + · · ·+ agη

ng = ∂̄f for some smooth function f on M . Then define

h = φ
(
a1z

−n1 + · · ·+ agz
−ng

)
− f.

Then h is smooth on M\p, and holomorphic there. Further, f is holomorphic near p, and

the other piece is meromorphic there, the only singularity being a pole at p, of order

max
i=1...g

(
1− δ(ai,0)

)
ni.

This number is either a Weierstrass gap (if at least one of the ai is nonzero) or zero (if all

the ai are zero). Since it cannot be a Weierstrass gap, it must be zero, and so all the ai are

zero. So the ηni are independent in the sense of ∂̄ cohomology. Since there are g of them,

they span H0,1

∂̄
M .

Theorem 6.9. The set of pole numbers is non-empty, and the minimal pole number is the

maximal Weierstrass gap at p.

Proof. First we show that the maximal Weierstrass gap is a pole number. So let α be an

arbitrary smooth (0, 1)-form on M . Now choose numbers a1, . . . , ag such that

α ∼ a1η
n1 + · · ·+ agη

ng .

Then choose a smooth function u1 on M such that

α− a1η
n1 − · · · − agη

ng = ∂̄u1.

Finally, define

u2 = φ
(
a1z

−n1 + · · ·+ agz
−ng

)
.

If we take f = u1 + u2, then ∂̄f = α on M\p; u1 is smooth on M ; and u2 is smooth on

M\p, holomorphic in a punctured neighborhood of p, and has a pole of at most ng at p.

Thus Assertion ng is true.

We have shown that the maximal Weierstrass gap ng is a pole number. It only remains

to show that there is no lesser pole number.
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So suppose Assertion m is true, for some m < ng. Then for any smooth (0, 1)-form α,

we have ∂̄u1 + ∂̄u2 = α with u1 smooth on M , u2 smooth on M\p, u2 holomorphic in a

punctured neighborhood of p, with p a pole of order at most m. in particular, this is true

with α = ηng . Thus we find that

∂̄(u1 + u2 − φz−ng) = 0

on M\p. And it is clear that the singularity of this function at p is a pole of order ng. So

we have a meromorphic function on M whose only singularity is a pole at p of order ng.

But this contradicts the fact that ng is a Weierstrass gap.

6.3 Background (part two)

Divisors on a manifold of dimension 0 or 1 are merely finite formal products of points

of the manifold and their formal inverses. The divisors obviously form a group under multi-

plication. The unit is called 1. The divisors are partially ordered by pointwise comparison

of exponent. The degree of a divisor is defined as the sum of all the exponents occurring in

an expression for the divisor. An integral divisor is one which has no negative powers in its

unique reduced expression.

Let f be a meromorphic function on a Riemann surface, and let the order of f at q be

the number n such that f = zng near q, where z is a local coordinate centered at q and g

is analytic and non-vanishing. The divisor (f) of f is defined as

(f) =
∏
q∈M

qordq f .

The polar divisor [f ] of f is defined as

[f ] =
∏
q∈M

qmax(− ordq f,0).

We will refer to the germ of the principal part (singular part) of f by the symbol 〈f〉.

Noether Gap Theorem. Let M be a compact Riemann surface with g ≥ 1. Let q1, q2, . . .

be a sequence of points on M . Define the sequence of divisors on M

D0 = 1

D1 = q1

D2 = q1q2

D3 = q1q2q3
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etc. We formulate “Statement j” as follows: there exists a meromorphic function f on M

such that (f) ≥ D−1
j but (f) � D−1

j−1.

There are g integers

1 = n1 < n2 < · · · < ng < 2g

such that Statement j is false if and only if j is in this list.

Remark 6.10 (Statement j). Let q̃1, . . . , q̃k be the distinct entries of the list q1, . . . , qj ,

with q̃k = qj . Then write q1 · · · qj as q̃m1
1 · · · q̃mk

k . Then Statement j can be equivalently

formulated as follows: there exists a meromorphic function f whose only singuarities are

poles at the q̃i, with the order of the pole at q̃k being precisely mk, and the order of the

pole at any other q̃i (i 6= k) being at most mi.

Note 6.11. For a given infinite sequence of points of M , the set of numbers {gaps ≤ j}
depends only on the first j entries of the sequence. Thus, if we are given a finite sequence

of j points, it is sensible to ask whether i is a gap, for any i ≤ j.

We will refer to the Noether gap scheme of a marked surface. By this we mean the set

of all the Noether gaps for all sequences (of length 2g−1) involving only the marked points.

6.4 A surface with several marked points

Definition 6.12. Now let M be a compact Riemann surface of genus g ≥ 1 with points

p1, . . . , pk marked. For any s ∈ Zk
≥0, we define Assertion s to be the following: For every

smooth (0, 1)-form α on M , there exists a smooth function f = u1 + u2 on M\{p1, . . . , pk}
such that

1. ∂̄f = α on M\{p1, . . . , pk};

2. u1 is smooth on M ; and

3. u2 is holomorphic in a punctured neighborhood of {p1, . . . , pk}, and pi is a pole of

order at most si (i = 1 . . . k).

When Assertion s is true, we call the vector s a pole vector for this marked surface.

By the arguments in Section 6.2, for each i = 1 . . . k there exists a pole vector s with

si < 2g and sr = 0 when r 6= i. Thus pole vectors < (2g, . . . , 2g) exist. (We refer to the

standard partial ordering on Zk
≥0 given by entrywise comparison.)
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We will see that, for any pole vector s, there’s another pole vector s′ ≤ s with s′ <

(2g, . . . , 2g). Therefore the set of all minimal pole vectors is finite, and every one of them

is < (2g, . . . , 2g). In order to (try to) compute the minimal pole vectors, we will make use

of the Noether gap theorem.

We ask the following questions.

Question 6.13. Is the set of all minimal pole vectors determined by the Noether gap

scheme?

Question 6.14. Is the set of all minimal pole vectors computable from the Noether gap

scheme?

In the case of k = 1, the Noether gap scheme is the set of Weierstrass gaps at p1, and

the set of minimal pole vectors is just the minimal pole number. Therefore the results of

Section 6.2 show that these questions are both answered in the affirmative in the case k = 1.

So we now turn our attention to the case k > 1. We will first address Question 6.13. We

will come back to Question 6.14 in Section 6.9.

6.5 Noether gaps and polar divisors

Definition 6.15. Let P be the set of integral divisors on {p1, . . . , pk}. We define the

operation + on P by

pn1
1 · · · pnk

k + pm1
1 · · · pmk

k = p
max(n1,m1)
1 · · · pmax(nk,mk)

k .

The empty sum is defined to be 1.

The operation is commutative and associative, as is clear from the definition.

Definition 6.16. We define the map t : P−→{N,Y} by

t(p) =

N if there does not exist a meromorphic function on M whose polar divisor is p

Y if there does exist a meromorphic function on M whose polar divisor is p.

Note that t(1) = Y. This is because the constant functions are meromorphic and have

no poles. Also, t(pi) = N for any i. This is because no meromorphic function can have only

a single simple pole and no other singularities.
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Proposition 6.17. t−1(Y) is closed under addition.

Proof. Suppose t(f) = t(g) = Y for some f, g ∈ P . If f = g = 1, then the conclusion follows

trivially, for t(f + g) = t(1 + 1) = t(1) = Y. So assume from now on that not both f and g

are 1.

Let pi1 , . . . , pi` (i1 < · · · < i`, ` ≤ k) be the points of {p1, . . . , pk} which occur in the

reduced expression of either f or g with a nonzero exponent. Write

f = pn1
i1
· · · pn`

i`

g = pm1
i1
· · · pm`

i`

and define Mr = max(nr,mr). (Thus we know that Mr > 0 for all r = 1 . . . `.) Then

f + g = pM1
i1
· · · pM`

i`
.

We need to prove that there exists a meromorphic function on M whose polar divisor

this is. So let f and g be meromorphic functions such that [f ] = f and [g] = g. It suffices

to prove that there exist numbers a, b such that [af + bg] = f + g. Write the germs of the

principal parts of f and g as

〈f〉 = f1
1 z

−1
i1

f `
1z
−1
i`

+ · · ·+

+

· · ·

+

+ · · ·+

f1
M1
z−M1
i1

f `
M`
z−M`
i`

and
〈g〉 = g1

1z
−1
i1

g`
1z
−1
i`

+ · · ·+

+

· · ·

+

+ · · ·+

g1
M1
z−M1
i1

g`
M`
z−M`
i`

.
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We need to find a, b such that the ` numbers

coeff. of z−M1
i1

= af1
M1

+ bg1
M1

·

·

·

coeff. of z−M`
i`

= af `
M`

+ bg`
M`

are all non-zero. So define the two `-vectors

F = (f1
M1
, . . . , f `

M`
)

G = (g1
M1
, . . . , g`

M`
).

We know that, for each r = 1 . . . `, either Fr or Gr is nonzero. We want to prove that there

exist a, b such that every entry of aF + bG is nonzero. So suppose not. That is, suppose

that span{F,G} is contained in the union of subspaces of R`

⋃̀
r=1

{xr = 0}.

Then it is contained in one of them. That is,

span{F,G} ⊂ {xr = 0}

for some r ∈ {1, . . . , `}. Therefore, the rth entries of both F and G are zero. This cannot

be.

Theorem 6.18. Let pn1
i1
· · · pn`

i`
(` ≤ k) be an element of P , where the pir are distinct and

ordered so that i1 < · · · < i`. Let n = n1 + · · ·+ n` be its degree. Then for t(pn1
i1
· · · pn`

i`
) =

N, it is necessary and sufficient that n be a Noether gap for at least one of the possible

permutations of the finite sequence

pi1 , . . . , pi1 , . . . . . . , pi` , . . . , pi` .

(In this sequence, pir appears nr times.)

Proof of sufficiency. Let n be a gap for a permutation in which pir is the last (rightmost)

entry. This means that there does not exist any meromorphic function on M whose polar

divisor is pm1
i1
· · · pm`

i`
with mr = nr and ms ≤ ns (s 6= r). In particular, there does not exist

a meromorphic function on M whose polar divisor is pn1
i1
· · · pn`

i`
. That is, t(pn1

i1
· · · pn`

i`
) =

N.
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Proof of necessity. Suppose n is not a gap for any of those permuted sequences. Then for

each r = 1 . . . `, n is not a gap for a sequence whose last entry is pir . This may be restated as

follows: there exists a meromorphic function fr on M whose polar divisor is pr = p
mr

1
i1
· · · pmr

`
i`

with mr
r = nr and mr

s ≤ ns (s 6= r).

We have t(pr) = Y. We also have p1+· · ·+p` = pn1
i1
· · · pn`

i`
. Therefore, t(pn1

i1
· · · pn`

i`
) = Y

by Proposition 6.17.

Corollary 6.19. t is determined on P by the Noether gap scheme. And in particular,

t(p) = Y for every p ∈ P of degree at least 2g.

Proof. If n = degree p ≥ 2g, then n is not a gap for any sequence. Thus t(p) = Y by

Theorem 6.18. If n = degree p < 2g, then t(p) depends upon the gaps of sequences of length

n, again by the theorem.

So we have established that t (as a function from P to {N,Y}) is computable from the

Noether gap scheme; and it is clear that the Noether gap scheme is computable from t, by

Remark 6.10. Thus we have shown that Question 6.13 is equivalent to “Is the set of all

minimal pole vectors determined by t : P−→{N,Y}?” And similarly for Question 6.14.

6.6 η chains

From now on, fix g ≥ 1 and k ≥ 1.

For Q ≥ 1, we define VQ to be the free complex vector space on the letters

ηn
i : i ∈ {1 . . . k}, n ∈ {1 . . . Q}.

Note that we have canonical inclusions VQ ⊂ VQ+1.

We define an η chain to be an element of VQ for some Q. That is, it is an element of⋃
Q=1,2,...

VQ,

but we will never need to deal with this full union. Whenever we have a finite bunch of η

chains, we will deal with them as elements of VQ for some fixed Q.
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The order of an η chain C is the smallest Q for which C ∈ VQ. An η chain C of order

≤M can be thought of as a k ×M matrix cni , via the identification

C = c11η
1
1

c1kη
1
k

+ · · ·+

+

· · ·

+

+ · · ·+

cM1 η
M
1

cMk η
M
k .

An η chain collection is a set of g independent η chains. The order of an η chain

collection is the maximal order of its chains.

Let A = 1A, . . . , gA be an η chain collection of order M . Write each member of A as

jA = ja1
1η

1
1

ja1
kη

1
k

+ · · ·+

+

· · ·

+

+ · · ·+

jaM
1 η

M
1

jaM
k η

M
k .

For each i = 1 . . . k, we define the symbol of A at pi to be

si(A) = max
⋃

j=1...g

{
r ∈ {1, . . . ,M} : jar

i 6= 0
}

;

that is, the highest η-superscript over the subscript i occurring among all the jA. Then we

define the symbol of A to be the k-vector s(A) = (s1(A), . . . , sk(A)).

Now let M be again a compact Riemann surface of genus g with k marked points

p1, . . . , pk. Choose (once and for all) an analytic coordinate zi centered at pi, and a cut-

off function φi supported near pi (for each i = 1 . . . k). Then for each Q we define the

homomorphism

VQ−→Λ0,1M

by specifying its value on basis elements:

ηn
i 7→ (∂̄φi)z−n

i .

This map is clearly injective.
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Thus we may regard any η chain as either an element of some VQ, or as an element of

Λ0,1M , or as an element of H0,1

∂̄
M (by taking the class of the (0, 1)-form).

Definition 6.20. An η chain collection is called an η chain basis if its image in H0,1

∂̄
M is

an independent set (and therefore, a basis, by Corollary 6.6).

In order to be able to write down our arguments in a reasonable way, we must now

make some more definitions. So let f be a smooth function on M\{p1, . . . , pk} which is

meromorphic in a neighborhood of {p1, . . . , pk} with poles only at the pi; and let C be an

η chain. Let M represent the maximal order of the poles of f or the order of C, whichever

is appropriate.

Definition 6.21.

〈f〉 = the germ of the principal part of the restriction of f to a neighborhood of the pi

[f ] = the polar divisor of the restriction of f to a neighborhood of the pi.

Note that if 〈f〉 = 〈g〉, then [f ] = [g].

Definition 6.22. Write
C = c11η

1
1

c1kη
1
k

+ · · ·+

+

· · ·

+

+ · · ·+

cM1 η
M
1

cMk η
M
k .

We define the function associated to C to be

funcC = c11φ1z
−1
1

c1kφkz
−1
k

+ · · ·+

+

· · ·

+

+ · · ·+

cM1 φ1z
−M
1

cMk φkz
−M
k .

funcC is always meromorphic in a neighborhood of {p1, . . . , pk}. Note that ∂̄ funcC =

C; this is an equation between (0, 1)-forms on M\{p1, . . . , pk}.
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Definition 6.23. Write
〈f〉 = f1

1 z
−1
1

f1
kz

−1
k

+ · · ·+

+

· · ·

+

+ · · ·+

fM
1 z−M

1

fM
k z−M

k .

The η chain associated to f is

chain f = f1
1 η

1
1

f1
kη

1
k

+ · · ·+

+

· · ·

+

+ · · ·+

fM
1 ηM

1

fM
k ηM

k .

Note that 〈func chain f〉 = 〈f〉; therefore, [func chain f ] = [f ].

Now three brief lemmas having to do with the addition operation on P which was

introduced in Definition 6.15. Then we will be able to prove the main result for this

section, which will explain our interest in η chains.

Lemma 6.24. Let p, p1, p2 ∈ P . If p1 ≤ p and p2 ≤ p, then p1 + p2 ≤ p.

Lemma 6.24 follows from the definition of addition.

Lemma 6.25. Let C,D be η chains, and let a, b be numbers. Then

[func(aC + bD)] ≤ [funcC] + [funcD].

Proof. The exponent of pi in the divisor on the left hand side is

expi[func(aC + bD)] = max{r : acri + bdr
i 6= 0}.

The exponent of pi in the divisor on the right hand side is

expi( [funcC] + [funcD] ) = max {max{r : cri 6= 0},max{r : dr
i 6= 0}}

= max{r : cri 6= 0 or dr
i 6= 0}.

But if acri + bdr
i 6= 0, then either cri 6= 0 or dr

i 6= 0. That is,

{r : acri + bdr
i 6= 0} ⊂ {r : cri 6= 0 or dr

i 6= 0}.
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So the exponent of pi in the divisor on the left is ≤ the exponent of pi in the divisor on the

right. That is, the divisor on the left is ≤ the divisor on the right.

Definition 6.26. We define the map

[ · ] : Zk
≥0−→P

by [(v1, . . . , vk)] = pv1
1 · · · pvk

k . This map establishes a one-to-one correspondence which

respects the partial orderings of Zk
≥0 and P .

Lemma 6.27. Let A = { 1A, . . . , gA} be an η chain collection. Then

[s(A)] = [func 1A] + · · ·+ [func gA].

Lemma 6.27 follows directly from the definitions of s(A), func, [ · ], and +.

Theorem 6.28. For Assertion s to be true, it is necessary and sufficient that there exist

an η chain basis whose symbol is less than or equal to s.

Proof of sufficiency. Suppose there exists an η chain basis A = { 1A, . . . , gA} with s(A) ≤ s.

Let α be a smooth (0, 1)-form. Write α ∼ c1
1A+ · · ·+ cg

gA for some c1, . . . , cg. Then let u1

be a smooth function on M such that

α = c1
1A+ · · ·+ cg

gA+ ∂̄u1.

Then define

u2 = func(c1 1A+ · · ·+ cg
gA).

As has been remarked just after Definition 6.22, this function is smooth on M\{p1, . . . , pk},
and meromorphic in a neighborhood of {p1, . . . , pk}, the only poles being the points pi.

Define f = u1 + u2. We may now easily compute that

∂̄f = ∂̄u1 + ∂̄u2

= α− (c1 1A+ · · ·+ cg
gA) + ∂̄ func(c1 1A+ · · ·+ cg

gA)

= α
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on M\{p1, . . . , pk}. So it only remains to check that the order of the pole of u2 at pi is ≤ si;

in other words, that [u2] ≤ [s]. We compute that

[u2] = [func(c1 1A+ · · ·+ cg
gA)]

≤ [func 1A] + · · ·+ [func gA]

= [s(A)]

≤ [s].

The first inequality is by Lemma 6.25. The second inequality is because [ · ] respects

partial orderings.

Proof of necessity. Suppose Assertion s is true. Choose any basis 1α, . . . , gα for H0,1

∂̄
M .

Then, for each i = 1 . . . g, choose if = iu1 + iu2 such that ∂̄ if = iα as guaranteed by

Assertion s (and satisfying all the properties stated there). Then define iA = chain iu2.

I claim that iA ∼ iα. Therefore A = { 1A, . . . , gA} is an η chain basis. We then compute

that
[s(A)] = [func 1A] + · · ·+ [func gA]

= [func chain 1u2] + · · ·+ [func chain gu2]

= [ 1u2] + · · ·+ [ gu2].

(The first equality is by Lemma 6.27.) Assertion s guarantees that [ iu2] ≤ [s] for every i.

So by Lemma 6.24, we find that

[s(A)] ≤ [s],

which is the same as saying that s(A) ≤ s.

It only remains to prove the claim. For this part we drop the superscript i. Define

g = u1 + u2 − func chainu2.

Since u1 is smooth on M and

〈u2〉 = 〈func chainu2〉,

the function g is smooth on M . Also,

∂̄g = ∂̄u1 + ∂̄u2 − ∂̄ func chainu2

= ∂̄f − chainu2

= α−A.
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That is, α and A are ∂̄-cohomologous. The claim is proved, and so is the theorem.

Corollary 6.29. The set of all minimal pole vectors is equal to the set of all minimal η

chain basis symbols.

Proof. Suppose s is a minimal η chain basis symbol. The Assertion s is true. That is, s is a

pole vector. Now suppose s′ ≤ s is another pole vector. Then there exists an η chain basis

with symbol s′′ ≤ s. So s′′ = s. Therefore s′ = s, and s is a minimal pole vector.

Now suppose s is a minimal pole vector. Then there exists an η chain basis with symbol

s′ ≤ s. So Assertion s′ is true. So s′ is a pole vector. So s′ = s. Therefore, s is an η chain

basis symbol. Now suppose there were another η chain basis symbol s′ ≤ s. Then Assertion

s′ would be true. So s′ would be a pole vector. Therefore s′ = s, and so s is a minimal η

chain basis symbol.

Thus we have shown that Question 6.13 is equivalent to “Is the set of all minimal η

chain basis symbols determined by t : P−→{N,Y}?” And similarly for Question 6.14. Now

it is time to show that by re-formulating the question in this way, we have made some

progress.

6.7 Conditions B, N, and W

For future reference: B is for Basis, N is for N, and W is for Weak.

Our strategy is as follows.

1. Formulate a sufficient condition for an η chain collection to be an η chain basis, in

such a way that the condition may be checked by “examining” the (finite) table of

the values of t on P . Understood weakly, this simply means that the condition has

no explicit dependence on anything but the values of t.

2. Prove that among the symbols of η chain collections that satisfy the sufficient condi-

tion, there appear all minimal η chain basis symbols.

If we can achieve this, then we will have shown that the answer to Question 6.13 is “yes.”

Before getting started on the first item, let us seek a necessary and sufficient condition

for an η chain collection to be an η chain basis; then, we will look for a stronger condition

which is “easier to check.”
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Lemma 6.30. Let C be an η chain. Then C ∼ 0 if and only if there exists a meromorphic

function f on M such that 〈f〉 = 〈funcC〉.

Proof. Suppose f is meromorphic and 〈f〉 = 〈funcC〉. Then the function g = funcC − f is

smooth. Also, ∂̄g = ∂̄ funcC− ∂̄f = C; this equation is valid on M\{p1, . . . , pk}. But since

g and C are smooth, the equation is valid on M , and C ∼ 0.

For the converse, suppose C ∼ 0, and choose a smooth function g such that ∂̄g = C.

Then define f = funcC−g. We see that ∂̄f = ∂̄ funcC−∂̄g = C−C = 0 onM\{p1, . . . , pk}.
We know that funcC is meromorphic near the pi with poles at the pi, and g is smooth.

Therefore f is meromorphic on M , with 〈f〉 = 〈funcC〉.

In the “Conditions” we will write, A represents an η chain collection.

Condition B. The existence of a meromorphic function f on M such that

〈f〉 = 〈func(c1 1A+ · · ·+ cg
gA)〉

implies that c1 = · · · = cg = 0.

Theorem 6.31. For an η chain collection to be an η chain basis, Condition B is necessary

and sufficient.

Proof.
A is an η chain basis.

m

If c1 1A+ · · ·+ cg
gA ∼ 0, then ci = 0∀i.

m

If there exists a meromorphic function f on M

such that 〈f〉 = 〈func(c1 1A+ · · ·+ cg
gA)〉, then ci = 0∀i.

The second equivalence is by Lemma 6.30.

Condition B is clearly impossible to check solely from the knowledge of which integral

divisors on {p1, . . . , pk} occur as polar divisors of meromorphic functions onM (that is, from

the knowledge of t : P−→{N,Y}). To check Condition B for a given η chain collection would

require more, namely the knowledge of which meromorphic function germs on {p1, . . . , pk}
appear as germs of principal parts of meromorphic functions on M .

We now present a stronger condition, which relies only on t:
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Condition N. The existence of a meromorphic function f on M such that

[f ] = [func(c1 1A+ · · ·+ cg
gA)]

implies that c1 = · · · = cg = 0.

The fact that Condition N =⇒ Condition B follows directly from the fact that if

〈f〉 = 〈g〉, then [f ] = [g]. We can reformulate this new condition as follows:

Condition N. For every c ∈ Rg\0, t( [func(c1 1A+ · · ·+ cg
gA)] ) = N.

This reformulation explains the name, and shows that the condition relies solely upon

the data given by t. We will call an η chain collection that satisfies Condition N a CN η chain

basis. Note that the object [funcC], which is the “polar divisor of the function associated

to the η chain C,” is easily ascertained by looking at the matrix for C. Specifically: let M

be the order of C, and represent C by the k ×M matrix cni . Define

ni(C) = max{r : cri 6= 0}. (6.1)

We will call this number the order of C at pi. Then

[funcC] = p
n1(C)
1 · · · pnk(C)

k . (6.2)

Conjecture 6.32. For every η chain basis A, there’s a CN η chain basis A′ with s(A′) ≤
s(A).

Consequence 6.33.

{minimal η chain basis symbols} = {minimal CN η chain basis symbols}.

Proof of the consequece. Let s be a minimal η chain basis symbol. Choose an η chain basis

A such that s = s(A). Now choose a CN η chain basis A′ such that s(A′) ≤ s(A). Then

s(A′) = s(A). That is, s is a CN η chain basis symbol. Now suppose s′ ≤ s is another CN

η chain basis symbol. Then s′ = s. So s is a minimal CN η chain basis symbol.

To prove the reverse inclusion, let s be a minimal CN η chain basis symbol. Then s is

certainly an η chain basis symbol. So let s′ ≤ s be another η chain basis symbol. Choose an

η chain basis A′ such that s(A′) = s′. Then there’s a CN η chain basis A with s(A) ≤ s(A′).

So we have s(A) ≤ s(A′) = s′ ≤ s. But A is a CN η chain basis, and s is a minimal CN η

chain basis symbol. So s(A) = s. Therefore s′ = s. That is, s is a minimal η chain basis

symbol.
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If we prove Conjecture 6.32, we will have answered Question 6.13 in the affirmative, as

is shown in the following diagram:

Noether gap scheme

l

t : P → {N,Y}

↓

{CN η chain bases}

↓

{CN η chain basis symbols}

↓

{minimal CN η chain basis symbols}

‖

{minimal η chain basis symbols}

‖

{minimal pole vectors}.

I don’t know whether Conjecture 6.32 is true. In the next section, we will verify it in the

cases g = 1 and g = 2 (for arbitrary k). It might be possible to prove Conjecture 6.32

in general using a variation of the following arguments, which lead to a theorem which is

weaker than Conjecture 6.32. The first proposition is essentially a re-phrasing of Lemma

6.30.

Proposition 6.34. Let p ∈ P . Then t(p) = Y if and only if there exists an η chain C ∼ 0

such that [funcC] = p.

Proof. Suppose t(p) = Y. Choose a meromorphic function f on M such that [f ] = p. Then

let C = chain f . We find 〈funcC〉 = 〈func chain f〉 = 〈f〉, and f is meromorphic; therefore

by Lemma 6.30, C ∼ 0. Also, [funcC] = [f ] = p.

For the converse, suppose that there exists an η chain C ∼ 0 with [funcC] = p. By

Lemma 6.30, there exists a meromorphic function f on M such that 〈f〉 = 〈funcC〉. So

[f ] = [funcC] = p. So t(p) = Y.

Proposition 6.35. For any η chain C such that t( [funcC] ) = Y, there’s an η chain Ĉ ∼ 0

such that ni(Ĉ) = ni(C) for all i ∈ {1, . . . , k}.
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Proof. This follows directly from the previous proposition, because [func Ĉ] = [funcC] is

the same thing as ni(Ĉ) = ni(C)∀i.

In this situation Ĉ will be called a shadow of C.

Proposition 6.36. Let C be an η chain with t( [funcC] ) = Y. Let i ∈ {1, . . . , k} be such

that ni(C) 6= 0. Then there exists an η chain C ′ ∼ C such that nr(C ′) ≤ nr(C) for all

r ∈ {1, . . . , k}, with

ni(C ′) < ni(C).

Proof. Let Ĉ be a shadow of C. Then ĉnr(C)
r 6= 0 for all r such that nr(C) 6= 0. Define

C ′ = C −
c
ni(C)
i

ĉ
ni(C)
i

Ĉ.

Since Ĉ ∼ 0, C ′ ∼ C. Since nr(Ĉ) ≤ nr(C)∀r, we have nr(C ′) ≤ nr(C)∀r. And since

(c′)ni(C)
i = 0, we have ni(C ′) < ni(C).

Proposition 6.37. For any η chain C � 0 such that t( [funcC] ) = Y, there’s an η chain

C̃ ∼ C such that nr(C̃) ≤ nr(C) for every r, ni(C̃) < ni(C) for some i, and t( [func C̃] ) =

N.

Proof. Since C � 0, there’s an r ∈ {1, . . . , k} such that nr(C) 6= 0. Choose the smallest

such, and call it i. Then we can choose C ′ ∼ C with nr(C ′) ≤ nr(C)∀r and ni(C ′) < ni(C).

We can repeat this procedure to get C ′′, C ′′′, . . . for as long as t( [funcC(`)] ) = Y. But

since one of the ni is strictly reduced with each iteration, we would end up with C(`) = 0

if we went on long enough. This is contrary to our hypothesis that C � 0. So the process

must terminate with t( [funcC(`)] ) = N for some `. We take C̃ = C(`).

Formula 6.38. Let A = { 1A, . . . , gA} be an η chain collection. Then

si(A) = max{ni( 1A), . . . , ni( gA)}.

Proof.

si(A) = max
⋃

j=1...g

{
r ∈ {1, . . . ,M} : jar

i 6= 0
}

= max
{
max

{
r ∈ {1, . . . ,M} : 1ar

i 6= 0
}
, . . . ,max {r ∈ {1, . . . ,M} : gar

i 6= 0}
}

= max{ni( 1A), . . . , ni( gA)}.
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Condition W. For every j ∈ {1, . . . , g}, t( [func jA] ) = N.

Condition W is certainly weaker than Condition N; in fact, it is not strong enough to

guarantee that the η chain collection A is an η chain basis. That is, Condition W does not

imply Condition B. But we can prove the following

Theorem 6.39. For every η chain basis A, there exists a CW η chain basis Ã with s̃(Ã) ≤
s(A).

Proof. If t( [func jA] ) = N, then define jÃ = jA. If t( [func jA] ) = Y, then perform the

construction of jÃ from jA as in Proposition 6.37. Since jÃ ∼ jA, Ã is an η chain basis. And

t( [func jÃ] ) = N for every j; that is, Ã satisfies Condition W. So we only need to verify

that s(Ã) ≤ s(A). But since ni( jÃ) ≤ ni( jA) for every i and j, we find that

si(Ã) = max{ni( 1Ã), . . . , ni( gÃ)} ≤ max{ni( 1A), . . . , ni( gA)} = si(A)

by Formula 6.38.

We can use this theorem to prove the statement we made in Section 6.4.

Corollary 6.40. Let s be a pole vector. Then there’s a pole vector s̃ ≤ s with s̃ <

(2g, . . . , 2g).

Proof. Since s is a pole vector, there’s an η chain basis A with s(A) ≤ s by Theorem 6.28.

By Theorem 6.39, there’s an η chain basis Ã with s(Ã) ≤ s(A) and t( [func jÃ] ) = N for

all j. So s̃ = s(Ã) is a pole vector, and s̃ ≤ s. Further, degree[func jÃ] < 2g since t of this

divisor is N. So [func jÃ] < p2g
1 · · · p2g

k . That is, ni( jÃ) < 2g for every i and j. So

si(Ã) = max{ni( 1Ã), . . . , ni( gÃ)} < 2g.

for every i. Therefore s̃ = s(Ã) < (2g, . . . , 2g).

We can also now offer a second conjecture, which together with Theorem 6.39 would

imply Conjecture 6.32.

Conjecture 6.41. Every CW η chain basis satisfies Condition N.

This can be re-phrased as follows:

Conjecture 6.41. Together, Condition B and Condition W imply Condition N.
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6.8 Special cases

g = 1, k arbitrary

For any i ∈ {1, . . . , k}, the η chain collection {η1
i } satisfies Condition N. So it is a CN

η chain basis. Its symbol is the k-vector which has a 1 in position i and zeros elsewhere,

which we call ei. Thus ei is a pole vector for any i. Each of the ei is clearly minimal among

non-zero k-vectors, and therefore is a minimal pole vector. And since every element of Zk
≥0

is comparable to at least one of the ei, there can be no other minimal pole vectors. Thus

{minimal pole vectors} = {ei}i=1...k.

Note that Conjecture 6.32 is true in this case.

g = 2,k = 2

We start by making a list of the prima facie consistent Noether gap schemes, and

computing t : P−→{N,Y} for each of them.

There are 23 sequences of length 2g − 1 = 3 involving p1 and p2. So a gap scheme

means a choice of Noether gap sequence (either 1, 2 or 1, 3) for each of these 8 sequences.
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In order to see which schemes are actually consistent, we start with the following list:

sequence second gap t−1(Y) contains t−1(N) contains

p1p1p1 2 p3
1 p2

1

3 p2
1 p3

1

p1p1p2 2 p1p2 or p2
1p2 p2

1

3 p2
1 p1p2 and p2

1p2

p1p2p1 2 p2
1 or p2

1p2 p1p2

3 p1p2 p2
1 and p2

1p2

p1p2p2 2 p2
2 or p1p

2
2 p1p2

3 p1p2 p2
2 and p1p

2
2

p2p1p1 2 p2
1 or p2

1p2 p1p2

3 p1p2 p2
1 and p2

1p2

p2p1p2 2 p2
2 or p1p

2
2 p1p2

3 p1p2 p2
2 and p1p

2
2

p2p2p1 2 p1p2 or p1p
2
2 p2

2

3 p2
2 p1p2 and p1p

2
2

p2p2p2 2 p3
2 p2

2

3 p2
2 p3

2

Label these eight sequences 1 through 8; and let the ordered pair (n, i) represent the as-

sertion that the second gap in sequence n is i. The first thing to notice is that sequences

3 and 5 yield precisely the same alternatives in the Y and N columns. This means that a

choice of second gap for sequence 3 determines the second gap for sequence 5. Likewise for

sequences 4 and 6. Therefore, a gap scheme can be thought of as a choice of second gap for

each of the sequences

1, 2, 3, 4, 7, 8.

Now, keeping in mind that one or the other alternative (2 or 3) must hold for each

sequence, we find the following relations:

(1, 2) ⇐⇒ (2, 2) ⇐= (3, 3) ⇐⇒ (4, 3) =⇒ (7, 2) ⇐⇒ (8, 2)

(1, 3) ⇐⇒ (2, 3) =⇒ (3, 2) ⇐⇒ (4, 2) ⇐= (7, 3) ⇐⇒ (8, 3)



123

Therefore, there are only five consistent gap schemes, as listed below:

1 2 3 4 5

(1, 2) (1, 2) (1, 2) (1, 3) (1, 3)

(2, 2) (2, 2) (2, 2) (2, 3) (2, 3)

(3, 3) (3, 2) (3, 2) (3, 2) (3, 2)

(4, 3) (4, 2) (4, 2) (4, 2) (4, 2)

(7, 2) (7, 2) (7, 3) (7, 2) (7, 3)

(8, 2) (8, 2) (8, 3) (8, 2) (8, 3)

For each consistent gap scheme, we can now determine the value of t on each integral

divisor of degree < 2g = 4, using just the two tables above. The result is

1 2 3 4 5

p3
1 Y Y Y N N

p2
1 N N N Y Y

p2
1p2 N Y Y N N

p1 N N N N N

p1p2 Y N N N N

p2 N N N N N

p1p
2
2 N Y N Y N

p2
2 N N Y N Y

p3
2 Y Y N Y N

The value of t on every other integral divisor is Y.

We will now list (for each gap scheme) all the CN η chain bases of the form {ηn1
i1
, ηn2

i2
}

(which are called η bases since each element is a single η and not a (compound) η chain).

To do this is easy. First, choose any two distinct monomial elements of P , say pn1
i1

and pn2
i2

.

Then, {ηn1
i1
, ηn2

i2
} is a CN η basis if and only if t(pn1

i1
) = t(pn2

i2
) = t(pn1

i1
+ pn2

i2
) = N, because

[func(aηn1
i1

+ bηn2
i2

)] =


pn1

i1
a 6= 0, b = 0

pn2
i2

a = 0, b 6= 0

pn1
i1

+ pn2
i2

a 6= 0, b 6= 0.
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The result is listed below.

1 2 3 4 5

{η1
1, η

2
1} {η1

1, η
2
1} {η1

1, η
2
1} {η1

1, η
3
1} {η1

1, η
3
1}

{η1
1, η

2
2} {η1

1, η
1
2} {η1

1, η
1
2} {η1

1, η
1
2} {η1

1, η
1
2}

{η2
1, η

1
2} {η1

2, η
2
2} {η1

2, η
3
2} {η1

2, η
2
2} {η1

2, η
3
2}

{η1
2, η

2
2}

So we have discovered the following pole vectors (the symbols of the CN η bases listed

above):

1 2 3 4 5

(2, 0) (2, 0) (2, 0) (3, 0) (3, 0)

(1, 2) (1, 1) (1, 1) (1, 1) (1, 1)

(2, 1) (0, 2) (0, 3) (0, 2) (0, 3)

(0, 2)

Claim 6.42. This is the list of all minimal pole vectors for each Noether gap scheme.

Proof. For each pole vector of the form (n, 0) or (0, n), the condition t(pn
i ) = N ensures that

n is the highest Weierstrass gap at pi. So by the results of Section 6.2, these pole vectors

are minimal. The pole vectors (1, 1) are minimal, because there cannot be an η basis whose

symbol is (1, 0) or (0, 1) (it would have only one element, but dimH0,1

∂̄
M = 2).

So we have shown that all the pole vectors listed are minimal, with the possible ex-

ceptions of (1, 2) and (2, 1) in gap scheme 1. So we will now show that (1, 1) is not a pole

vector for gap scheme 1, so these pole vectors are in fact minimal. We start by noting that,

in scheme 1, t(p1p2) = Y. So by Proposition 6.34, there’s an η chain C ∼ 0 such that

[funcC] = p1p2. This means that n1(C) = n2(C) = 1. So C = aη1
1 + bη1

2 with a and b both

non-zero. Thus η1
1 and η1

2 are co-linear. So no η collection A = { 1A, 2A} of the form

1A = 1a1
1η

1
1 + 1a1

2η
1
2

2A = 2a1
1η

1
1 + 2a1

2η
1
2

can be an independent set. Therefore no η chain basis has symbol (1, 1). So (1, 1) is not a

pole vector.

Thus every pole vector listed is minimal. And, for each scheme, every element of Z2
≥0

is comparable to one of the pole vectors listed; so there can be no other minimal pole

vectors.

Note that Conjecture 6.32 is true in this case.
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g = 2, k arbitrary

It follows from the results of Section 6.2 that Conjecture 6.32 is true for g arbitrary,

k = 1. So in particular, Conjecture 6.32 is true in case g = 2, k = 1. We have also shown

(above) that Conjecture 6.32 is true in case g = 2, k = 2. So we focus here on g = 2, k > 2.

We will prove that Conjecture 6.32 is true in this case as well, by imitating the arguments

for the case g = 2, k = 2. So let A be an η collection with the following property: for all

CN η chain bases B, s(B) 
 s(A). We need to show that A is not an independent set (in

the sense of ∂̄-cohomology).

First, suppose A is localized at pi; that is, every η appearing in the η chains 1A, 2A

has subscript i. We know that we have the CN η basis {ηn1
i , ηn2

i } where n1 = 1, n2 are the

Weierstrass gaps at pi. So by our hypothesis, n2 
 s(A). Since A is localized at pi, this

forces s(A) < n2. Therefore A is not an η basis, because n2 is the minimal pole number of

the marked surface (M,pi); this was the result of Section 6.2.

Before proceeding, define eij ∈ Zk
≥0 to be the vector with entries of 1 in positions i and

j and entries of 0 elsewhere. Also, define fij ∈ Zk
≥0 to be the vector with an entry of 1 in

position i, an entry of 2 in position j, and entries of 0 elsewhere.

Now, suppose A is not localized at pi for any i. Then s(A) has at least two non-zero

entries. Let i, j be distinct elements of {1, . . . , k} such that si(A) 6= 0 and sj(A) 6= 0. For

a moment, mentally replace i by 1 and j by 2. If gap scheme 2, 3, 4, or 5 above held for pi

and pj (thinking of i as 1 and j as 2), then eij would be a CN η chain basis symbol, and

certainly eij ≤ s(A). This is contrary to our hypothesis on A.

Therefore we must be in the case of gap scheme 1. This means that fij and fji are CN

η chain basis symbols whenever si(A) 6= 0 and sj(A) 6= 0. So fij 
 s(A) and fji 
 s(A)

for any such i, j, by our hypothesis on A. This shows that all the non-zero entries in s(A)

are 1. Let I ⊂ {1, . . . , k} be the set of indices i for which si(A) 6= 0. Write I = {i1, . . . , i`}.
Then we have

1. |I| ≥ 2;

2. For every i, j ∈ I, the Noether gap scheme with respect to i, j (re-labelled as 1, 2) is

scheme 1; and

3. For every i ∈ I, si(A) = 1.
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By (3), we easily see that
1A = 1a1η

1
i1 + · · ·+ 1a`η

1
i`

2A = 2a1η
1
i1 + · · ·+ 2a`η

1
i`
,

with either 1air 6= 0 or 2air 6= 0 for each r ∈ {1, . . . , `}.
Choose r, s ∈ {1, . . . , `}. By (2), t(pirpis) = Y. So there’s an η chain C ∼ 0 such that

[funcC] = pirpis . This means that nir(C) = nis(C) = 1, and nj(C) = 0 for j /∈ {ir, is}. So

C = aη1
ir + bη1

is

with both a and b non-zero. So η1
ir

and η1
is

are not independent as cohomology classes.

Since dimH0,1

∂̄
M = 2, this means that η1

ir
and η1

is
are co-linear. Thus η1

i1
, . . . , η1

i`
are all

co-linear. Thus we find that 1A and 2A are co-linear. That is, A is not an independent set.

This ends the proof of Conjecture 6.32 in the case g = 2, k > 2.

6.9 Computability

Assume, in this section, that Conjecture 6.32 is true. The answer to Question 6.13 is

therefore “yes”: the set of minimal pole vectors is determined by the Noether gap scheme.

Question 6.14 now asks whether one could actually compute the (finite) set of minimal pole

vectors from the Noether gap scheme, which is a finite set of data. In other words, could

we write a computer program which takes as its input g, k, and the Noether gap scheme,

and gives as output the list of minimal pole vectors? In the case k = 1 we know that the

answer is “yes.” In this case, the inputs are g and the g Weierstrass gaps; the output is the

minimal pole number. The program is very simple: it prints out the highest Weierstrass

gap.

We would like to see what must be proved (in addition to Conjecture 6.32) in order to

answer this question in the affirmative for arbitrary g and k. So let us take another look at
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the following diagram:

Noether gap scheme

1 l

t : P → {N,Y}

2 ↓

{CN η chain bases}

3 ↓

{CN η chain basis symbols}

4 ↓

{minimal CN η chain basis symbols}

‖

{minimal η chain basis symbols}

‖

{minimal pole vectors}.

We have labeled the “determines” arrows. We need to see whether (and how) they can

be regarded as meaning “computably determines.” Note that all the data sets shown are

finite, except for {CN η chain bases}.

(1) The results of Section 6.5 clearly show that each of these two determinations (up and

down) is computable.

(4) This determination is clearly computable.

(2), (3) The first obstacle here is that the data set {CN η chain bases} is uncountable.

We could try to get around this by specifying a normalization. That is, replace {CN

η chain bases} by {normalized CN η chain bases}, where we call an η chain basis

normalized if for each j, jaM
r = 1 for some r, where M is the order of jA. Every η

chain basis has a normalized form, and there are only finitely many normalized forms

for each η chain basis. And the determinations (2) and (3) are still valid. But it is

not in fact clear that there are only finitely many normalized CN η chain bases. So

this approach is not so promising.
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Our strategy will be to try to leap-frog over the troublesome data set {CN η chain

bases}; that is, we will try to get from t to {CN η chain basis symbols} in a computable

way.

We define, once and for all, M = 2g − 1.

Definition 6.43. Let c ∈ Rg and A be an η chain collection of order ≤ M . Define the

k ×M matrix (cA) over R by

(cA)n
i = c1

1an
i + · · ·+ cg

gan
i .

Then define

|cA|ni =

0 (cA)n
i = 0

1 (cA)n
i 6= 0.

(cA) is just the matrix representation of the η chain cA = c1
1A + · · · + cg

gA. |cA| is

called the binary matrix of the η chain cA.

Definition 6.44. Let A be an η chain collection of order ≤M . We define the binary matrix

set of A to be

M(A) = {|cA| : c ∈ Rg}.

The set G of all k ×M matrices over {0, 1} is finite. So the set H of all subsets of G

is also finite. For each A, M(A) ⊂ G, or M(A) ∈ H.

Definition 6.45. For each s < (2g, . . . , 2g),

m(s) = {M(A) : A is an η chain collection of symbol s}.

Note that for any s, m(s) is a subset of the finite set H. That is, m(s) is finite. So

there exists a finite set As of η chain collections of symbol s such that

m(s) = {M(A) : A ∈ As}.

We call such a set a sufficient set of symbol s η chain collections.

Theorem 6.46. Let As be a sufficient set of of symbol s η chain collections. Then there

exists a CN η chain basis of symbol s if and only if some element of As satisfies Condition

N.
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Proof. If some element A ∈ As satisfies Condition N, then A itself is a CN η chain basis of

symbol s.

So suppose instead that there exists a CN η chain basis B of symbol s. Choose A ∈ As

such that M(A) = M(B). Now choose c ∈ Rg\0. Then |cA| = |c̃B| for some c̃ ∈ Rg\0.

So clearly [func cA] = [func c̃B]. But B satisfies Condition N. Therefore t( [func c̃B] ) = N.

Therefore t( [func cA] ) = N. As this is true for any c ∈ Rg\0, we have found that A satisfies

Condition N.

Conjecture 6.47. There exists an algorithm for constructing a sufficient set of symbol s

η chain collections for every s < (2g, . . . , 2g).

The truth of this conjecture would evidently reduce our task to computing whether

or not Condition N holds for a given η chain collection. We now examine whether this is

feasible. Let A be an η chain collection of symbol < (2g, . . . , 2g).

Definition 6.48. We define the coefficient set of A to be

C(A) =
{

jan
i : j ∈ {1, . . . , g}, i ∈ {1, . . . , k}, n ∈ {1, . . . ,M}

}
.

Note that C(A) is a finite set.

Definition 6.49. Let c ∈ Rg\0. Then α ∈ C(A)g is called a relation of c over C(A) if

c1α1 + · · ·+ cgαg = 0.

We define Rc
C(A) to be the set of relations of c over C(A).

Note that Rc
C(A) is a subset of the finite set C(A)g.

Definition 6.50. We define the collection of relation sets over C(A) to be

R(C(A)) = {Rc
C(A) : c ∈ Rg\0}.

Note that R(C(A)) is a subset of the set of all subsets of the finite set C(A)g, and is

therefore finite. So there exists a finite subset CA of Rg\0 such that

R(C(A)) = {Rc
C(A) : c ∈ CA}.

Such a set CA will be called a sufficient set of g-vectors for A.



130

Condition NCA. For every c ∈ CA, t( [func cA] ) = N.

Let CA be a sufficient set of g-vectors for A. If A satisfies Condition N, then clearly A

satisfies Condition NCA .

Theorem 6.51. A satisfies Condition N if and only if A satisfies Condition NCA.

Proof. We only need to prove one direction. So suppose A satisfies Condition NCA . Choose

c ∈ Rg\0. Then there exists c̃ ∈ CA such that Rc̃
C(A) = Rc

C(A). So for any given α ∈ C(A)g,

α is a relation of c over C(A) if and only if α is a relation of c̃ over C(A). In particular, take

α = ( 1an
i , . . . ,

gan
i )

for any i, n. Then c1
1an

i + · · · + cg
gan

i = 0 if and only if c̃1 1an
i + · · · + c̃g

gan
i = 0. This

shows that |cA| = |c̃A|. Therefore [func cA] = [func c̃A]. Since A satisfies Condition NCA ,

we know that t( [func c̃A] ) = N. Therefore t( [func cA] ) = N. Since c ∈ Rg\0 was arbitrary,

this shows that A satisfies Condition N.

Conjecture 6.52. There exists an algorithm for constructing a sufficient set of g-vectors

for any given η chain collection whose symbol is < (2g, . . . , 2g).

Let us assume the truth of Conjectures 6.47 and 6.52. We are then ready to show

that {CN η chain basis symbols} is computable from t : P−→{N,Y}. The algorithm is as

follows:

1. For each s < (2g, . . . , 2g), construct a sufficient set As of symbol s η chain collections.

2. For each A ∈ As, construct a sufficient set CA of g-vectors.

3. Check Condition NCA for each A ∈ As. If Condition NCA is satisfied for some A ∈ As,

then s is a CN η basis symbol. Otherwise, s is not a CN η basis symbol.

We may summarize our efforts up to this point as follows. We have asked two Questions

(6.13 and 6.14) and offered four Conjectures (6.32, 6.41, 6.47, and 6.52). Conjecture 6.32

implies that the answer to Question 6.13 is “yes.” Conjectures 6.32, 6.47, and 6.52 together

imply that the answer to Question 6.14 is “yes.” And incidentally, Conjecture 6.41 implies

Conjecture 6.32.
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7

The Generic b-holomorphic Complex Curve

We take M to be a b-holomorphic complex curve. We assume that each collar invariant

is in (C\Q) ∪ 1, and that first integrals exist.

7.1 Classification

Theorem 7.1. Let M and N be b-holomorphic curves. Then for M and N to be equivalent,

it is necessary and sufficient that there exist an ordering of the boundary circles of M and

N as
C1(M), . . . , Ck(M)

C1(N), . . . , Ck(N)

such that

1. ci(M) = ci(N)∀ i; and

2. there exist first integrals
zM
1 , . . . , zM

k

zN
1 , . . . , z

N
k

and a biholomorphism of marked surfaces

ϕ̌ : M̌−→Ň

such that, for every i,

π−1
N ◦ ϕ̌ ◦ πM = (zN

i )−1 ◦ zM
i

on collar◦i (M).

Proof of necessity. Let ϕ : M−→N be an isomorphism. Label the boundary circles of M

(as you please) as

C1(M), . . . , Ck(M).
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Then define

Ci(N) = ϕ(Ci(M)).

Since ϕ : collari(M)−→ collari(N) is an isomorphism, we must have ci(M) = ci(N); so the

first condition is necessary.

Next, choose first integrals zN
1 , . . . , z

N
k for N , and define first integrals for M by zM

i =

zN
i ◦ ϕ. Now define ϕ̌ = πN ◦ ϕ̌ ◦ π−1

M as a biholomorphism

M̌\{pM
1 , . . . , p

M
k }−→Ň\{pN

1 , . . . , p
N
k }.

Clearly, on collar◦i (M), we have

π−1
N ◦ ϕ̌ ◦ πM = ϕ = (zN

i )−1 ◦ zM
i .

So we only have to verify that ϕ̌ extends as a biholomorphism

M̌−→Ň .

ϕ̌ clearly extends to a bijection between these blow-downs. And ϕ̌ takes pM
i to pN

i . We

only need to check analyticity at pM
i . But, in coordinates centered at pM

i , ϕ̌ takes the form

(zN
i ◦ π−1

N ) ◦ (πN ◦ ϕ ◦ π−1
M ) ◦ (zM

i ◦ π−1
M )−1 = zN

i ◦ ϕ ◦ (zM
i )−1,

which is ϕ written in holomorphic coordinates near Ci(M). So this function is a biholomor-

phism from a punctured disk to a punctured disk. So it’s a biholomorphism from a disk to

a disk.

Therefore the second condition is necessary.

Proof of sufficiency. Define ϕ : M◦−→N◦ by ϕ = π−1
N ◦ϕ̌◦πM . Then ϕ is a biholomorphism.

We need to show that ϕ extends to a diffeomorphism M−→N .

Fix i. We have the maps

χci(M) ◦ zM
i : collar◦i (M)−→M◦

ci(M)

χci(N) ◦ zN
i : collar◦i (N)−→M◦

ci(N).

Since the zM
i and zN

i are first integrals, each of these maps extends (by Remark 2.17) to a

diffeomorphism
χci(M) ◦ zM

i : collari(M)−→Mci(M)

χci(N) ◦ zN
i : collari(N)−→Mci(N).
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Since we have ci(M) = ci(N) ≡ ci, then χci(M) = χci(N) ≡ χci . So now we can write ϕ on

collar◦i (M) as

ϕ = π−1
N ◦ ϕ̌ ◦ πM

= (zN
i )−1 ◦ zM

i

= (zN
i )−1 ◦ χ−1

ci
◦ χci ◦ zM

i

= (χci ◦ zN
i )−1 ◦ (χci ◦ zM

i ).

Now it becomes clear that this map collar◦i (M)−→ collar◦i (N) extends to a diffeomorphism

collari(M)−→ collari(N).

Let us try to see the equivalence of this condition to the condition for equivalence of cups

with c /∈ Q which was given in Chapter 5, namely, that c(M) = c(N) and β(M) = β(N).

Of course, we could at this point simply say

(A)

(B)

(C)

M and N satisfy the particular condition for equivalence of cups

m

M ' N

m

M and N satisfy the general condition for equivalence of cups,

but this is not the point. We wish to see how to go directly from (A) to (C) and back,

without passing through (B).

Proof that (C) =⇒ (A). We need to show that β(M) = β(N). So choose zM , zN , and

ϕ̌ : M̌−→Ň as in Theorem 7.1, so that π−1
N ◦ ϕ̌ ◦ πM = z−1

N ◦ zM . Then let zM and zN be

the interior coordinates associated to zM and zN . Then

zN ◦ π−1
N ◦ ϕ̌ ◦ πM ◦ z−1

M

is an automorphism of S2 which fixes ∞. So it has the form ξ 7→ aξ+ b for some a 6= 0 and

some b. Near ∞, this map equals

zN ◦ z−1
N ◦ zM ◦ z−1

M .

Therefore

zN ◦ z−1
N = a(zM ◦ z−1

M ) + b.
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But both of the functions zN ◦ z−1
N and zM ◦ z−1

M have residue 1 and constant term 0. So

a = 1 and b = 0. So in fact zN ◦ z−1
N = zM ◦ z−1

M . Thus

β(M) = (1/zM ◦ z−1
M )

= (1/zN ◦ z−1
N )

= β(N).

Proof that (A) =⇒ (C). We assume here that c(M) = c(N) and β(M) = β(N). We need

to show the existence of the map ϕ̌.

Choose a first integral zM , and let zM be the associated interior coordinate. Then

choose zN such that

1/zN ◦ z−1
N = 1/zM ◦ z−1

M ,

where zM is of course the interior coordinate associated to zN . (It was remarked in Chapter

5 that the equivalence of β(M) and β(N) entails this freedom of choice, simply by an

appropriate adjustment of the first integral by a multiplicative constant.) Thus zM ◦ z−1
M =

zN ◦ z−1
N . Now define ϕ̌ : M̌\pM

1 −→Ň\pN
1 by

ϕ̌ = πN ◦ z−1
N ◦ zM ◦ π−1

M .

Clearly, this is a biholomorphism. It extends to a bijection M̌−→Ň which takes pM
1 to pN

1 .

In coordinates near pM
1 , it looks like

(zN ◦ π−1
N ) ◦ (πN ◦ z−1

N ◦ zM ◦ π−1
M ) ◦ (zM ◦ π−1

M )−1 = (zN ◦ z−1
N )−1 ◦ (zM ◦ z−1

M ) = identity .

This is certainly a diffeomorphism. Therefore, ϕ̌ : M̌−→Ň is a biholomorphism of marked

surfaces.

Finally, by our construction,

π−1
N ◦ ϕ̌ ◦ πM = π−1

N ◦ (πN ◦ z−1
N ◦ zM ◦ π−1

M ) ◦ πM

= z−1
N ◦ zM

= z−1
N ◦ zM

on the collar.

We may say that there are three joint conditions for the equivalence of two cups M

and N :
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1. the c are equal

2. the β are equal

3. the blow-downs are equivalent as marked surfaces,

with (3) automatically satisfied (any two once-marked spheres are equivalent). So it might

be wondered whether we could formulate three joint conditions for equivalence in the general

case, something like:

1. the ci are equal

2. Ci(M) is glued to M◦ in the same fashion as Ci(N) is glued to N◦

3. M̌ ' Ň .

This seems indeed to be so; but it so happens that our formulation of (2) entails (3).

So instead of conditions (1), (2), and (3) jointly necessary and sufficient for equivalence of

b-holomorphic complex curves, we merely have (1) and (2) jointly necessary and sufficient

(with (3) a consequence of (2)).

It may be possible to split our second condition into distinct conditions for glueing of

boundary circles and equivalence of blow-downs (perhaps using the universal cover?), but I

have not been able to do it.

7.2 Bundles over a b-holomorphic complex curve

Theorem 7.2. To each holomorphic line bundle E over M is associated an element κ of

H0,1

∂̄
M̌ . The map E 7→ κ(E) is a surjective homomorphism from the group of equivalence

classes of holomorphic line bundles over M to H0,1

∂̄
M̌ .

Construction. Choose a global C∞ frame 1 for E which is holomorphic away from ∂M ,

and let α be the associated ∂̄ form. Label the boundary circles of M as C1, . . . , Ck. Now fix

i ∈ {1, . . . , k}. Choose a first integral zi for collari, and define f = 〈α, L̄〉.
First suppose that ci = 1. Define

u1
mn =

−
fmn

m−n n 6= m

0 n = m
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and

u2
mn =

0 n 6= m

−fmn n = m.

Let u1 and u2 be C∞ functions onM which are supported near Ci and which have asymptotic

expansions at Ci

u1 ∼
∑
m≥0
n∈Z

u1
mnx

meiny

u2 ∼
∑
m≥0
n∈Z

u2
mnx

meiny.

Then let gi = u1 + u2 log x. Note that ∂̄gi agrees with −α to infinite order on Ci.

Now suppose instead that ci /∈ Q. Choose a cut-off function φi supported near Ci and

let r be the unique good solution to ∂̄r = −α on Mci(zi), as in Lemma 2.33. Then define

gi = φir. Note that ∂̄gi agrees with −α near Ci.

Now define g = g1 + · · ·+ gk on M . This is a C∞ function in M◦, and ∂̄g agrees with

−α to infinite order on ∂M . So if we define κ = −α − ∂̄g, then κ is a smooth (0, 1)-form

on M̌ . It therefore defines a class in H0,1

∂̄
M̌ .

Proof of invariance under a change of φi (ci /∈ Q). Perform the construction with φi and

then again with φ̃i. Then g̃i − gi = (φ̃i − φi)r. So g̃ − g = (φ̃i − φi)r, which is a smooth

function on M̌ . Thus
κ̃− κ = −α− ∂̄g̃ + α+ ∂̄g

= −∂̄(g̃ − g),

and so κ̃ and κ define the same class.

Proof of invariance under a change of zi (ci /∈ Q). Perform the construction with zi and

then again with z̃i. As we saw in the construction of the integral sequence class for a

bundle over a collar in Chapter 2, r̃ = r. So g̃i = gi. So g̃ = g. So κ̃ = κ.

Proof of invariance under a change of u1 and u2 (ci = 1). Perform the construction with

u1, u2, and then with ũ1, ũ2. We know that ũ1 agrees with u1 to infinite order at Ci and ũ2

agrees with u2 to infinite order at Ci. Therefore g̃i agrees with gi to infinite order at Ci. So

g̃ − g vanishes to infinite order on ∂M . That is, g̃ − g is a smooth function on M̌ . Thus

κ̃− κ = −α− ∂̄g̃ + α+ ∂̄g

= −∂̄(g̃ − g),
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and so κ̃ and κ define the same class.

Proof of invariance under a change of zi (ci = 1). Perform the construction with zi and

then again with z̃i. We know that ∂̄g̃i and ∂̄gi both agree with −α to infinite order at

Ci. Therefore ∂̄(g̃i − gi) vanishes to infinite order at Ci. So g̃i − gi is asymptotic to a series

in non-negative powers of zi (or z̃i) at Ci. So g̃−g is smooth on M̌ . So, reasoning as before,

κ̃ and κ define the same class.

Proof of invariance under a change of frame. Let f be a C∞ function on M which is holo-

morphic away from ∂M , and define 1̃ = 1ef . Then α̃− α = ∂̄f ; or (−α̃)− (−α) = −∂̄f .

Fix i such that ci /∈ Q, and perform the construction of gi and g̃i. Then by Sub-lemma

2.35, r̃ − r = −f . So g̃i − gi = −φif .

Now fix i such that ci = 1, and perform the construction of gi and g̃i. Since ∂̄g̃i agrees

with −α̃ to infinite order on Ci and gi agrees with −α to infinite order on Ci, ∂̄(g̃i − gi)

agrees with (−α̃) − (−α) = −∂̄f to infinite order on Ci. So ∂̄([g̃i − gi] + f) vanishes to

infinite order at Ci. So (g̃i − gi) + f is asymptotic to a series in non-negative powers of zi

at Ci. So (g̃i − gi) + f is smooth near pi on M̌ .

Now we can compute that

κ̃− κ = (−α̃− ∂̄g̃)− (−α− ∂̄g)

= (α− α̃) + ∂̄(g − g̃)

= −∂̄f + ∂̄(g − g̃)

= −∂̄(g̃ − g + f),

which is a smooth function on M̌ . So κ̃ and κ define the same class.

Proof of the rest. Since tensor product of bundles becomes addition at the level of ∂̄ forms,

and dualization becomes additive inversion, it is clear that the map E 7→ κ(E) is a homo-

morphism. Now suppose E is equivalent to the trivial bundle. Then there’s a global C∞

section which is holomorphic in the interior. The associated ∂̄ form is zero. So clearly κ is

zero. This means that the kernel of the mapping E 7→ κ(E) contains all bundles equivalent

to the trivial one. So κ(E) = κ(F ) whenever E and F are equivalent. So κ is actually a

homomorphism from equivalence classes of bundles to H0,1

∂̄
M̌ .

All that remains is to prove surjectivity. So choose an element of H0,1

∂̄
M̌ . If we choose

an η chain basis A for the marked surface M̌ , then our cohomology class can be represented
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as α = b1
1A+ · · ·+ bg

gA for some constants b1, . . . , bg. Since α vanishes in a neighborhood

of the pi, we can lift it to a smooth (compressed) (0, 1)-form on M . The trivial C∞ bundle,

with α as the ∂̄ form with respect to 1, has κ = α.

Theorem 7.3. Let E be a holomorphic line bundle over M . Let A be an η chain basis for

H0,1

∂̄
M̌ and write κ(E) = b1

1A+ · · ·+ bg
gA.

Choose first integrals z1, . . . , zk for the collars of M , cut-off functions φi supported near

Ci, and a global C∞ frame 1 for E which is holomorphic away from the boundary. Define

v = func(b1 1A+ · · ·+ bg
gA), making use of the chosen first integrals and cut-off functions.

Then there exist a smooth function u on M and smooth functions w and f on M◦, and

complex constants a0
i , a

1
i , a

2
i , . . . for each i = 1 . . . k, such that

1. 1eu+v+w+f is a holomorphic frame for E�M◦;

2. w = a0
i log xi near Ci; and

3. When ci /∈ Q, f ∼
∑

n≥1 a
n
i z

n
i at Ci; and when ci = 1, f/ log xi ∼

∑
n≥1 a

n
i z

n
i at Ci.

Proof. Let α be the ∂̄ form with respect to 1. Construct g as in Theorem 7.2. Then we have

the smooth (0, 1)-form κ = −α− ∂̄g on M̌ , and κ ∼ b1
1A+ · · ·+ bg

gA in H0,1

∂̄
M̌ . Choose a

smooth function h on M̌ such that κ = b1
1A+ · · ·+ bg

gA+ ∂̄h on M̌ . Then

∂̄(v + h) = ∂̄ func(b1 1A+ · · ·+ bg
gA) + ∂̄h

= b1
1A+ · · ·+ bg

gA+ ∂̄h

= κ

= −α− ∂̄g

on M̌\{p1, . . . , pk}. Let a0
i = −(i<ci/π)

∫
Ci
α, and define w =

∑k
i=1 φia

0
i log xi. Then

∂̄(v + w + [g + h− w]) = ∂̄(v + g + h)

= −α

on M◦. Thus 1ev+w+[g+h−w] is a holomorphic frame for E�M◦, as claimed in (1); and w

has the form claimed in (2). So it only remains to show that g + h− w may be written as

u+ f , with u smooth on M and f having the form stated in (3).

Examine the procedure for construction of the gi. If ci = 1, then near Ci

gi = (smooth at Ci) + a0
i log xi + (sum in positive powers of zi) log xi.
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And if ci /∈ Q, then near Ci

gi = (smooth at Ci) + a0
i log xi + (sum in positive powers of zi).

Therefore, near Ci,

g − w =

(smooth at Ci) + (sum in positive powers of zi) log xi ci = 1

(smooth at Ci) + (sum in positive powers of zi) ci /∈ Q.

Now h is a smooth solution to a ∂̄ problem on M̌ whose datum vanishes to infinite order

at each of the pi. Therefore near Ci,

h = (sum in non-negative powers of zi)

=

(smooth at Ci) ci = 1

(constant) + (sum in positive powers of zi) ci /∈ Q

So we can see that

g − w + h =

(smooth at Ci) + (sum in positive powers of zi) log xi ci = 1

(smooth at Ci) + (sum in positive powers of zi) ci /∈ Q.

Therefore this function can be split into u and f as claimed, with the correct properties.

As a start toward finding a classification of bundles over M , we ask the question: given

that the η chain basis A and the first integrals zi are fixed for a given M , how unique is

the frame constructed in the previous theorem? That is, could the construction lead to two

different frames, depending on some choice made in the construction?

Theorem 7.4. Fix an η chain basis A and first integrals zi for M . Let E be a holomorphic

line bundle over M .

Suppose 1eu+v+w+f and 1̃eũ+ṽ+w̃+f̃ are holomorphic frames for E�M◦ constructed

according to the procedure of the previous theorem. Then the quotient of these two frames

is a meromorphic function on M̌ whose poles and zeros occur only at the pi.

Proof. Call the quotient g = (1̃/1)e(ũ−u)+(ṽ−v)+(w̃−w)+(f̃−f). Then g is certainly holomor-

phic and non-vanishing on M̌\{p1, . . . , pk}.
The quotient 1̃/1 is C∞ on M , and therefore bounded. Since u and ũ are C∞ on M ,

their difference ũ−u is also bounded. Since κ(E) ∈ H0,1

∂̄
M̌ is a bundle invariant, and the A
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and zi are fixed, v and ṽ may differ only by virtue of a different choice of cut-off functions.

But even so, it must be that ṽ − v = 0 in a neighborhood of pi, so that ṽ − v is bounded.

Since f and f̃ both tend to zero at ∂M , their difference f̃ − f is bounded. And near Ci,

w̃ − w is equal to a constant times log xi.

So the quotient g is a bounded function on M̌\{p1, . . . , pk} times a function that equals

|zi| to a (constant) power near each of the pi. This implies that g must be meromorphic on

M̌ , with poles and zeros only at the pi.

Theorem 7.5. This non-uniqueness is non-trivial.

Proof. We give one example. Let M be a pipe, so that M̌ = S2 with 0 and ∞ marked.

Let z0 = z and z∞ = 1/z. Let E be a holomorphic line bundle over M with c0 = c∞ = 1.

Suppose 1F is a frame for E�M◦ of the sort we are considering. Let 1̃ = 1e(1−φ0−φ∞) log x+iy.

This equals 1z away from the boundary, and so is holomorphic there (since 1 was). Then

1̃Feφ0 log x0−φ∞ log x∞ = 1̃Fe(φ0+φ∞) log x = 1Fz.

This is a different frame from 1F , and it is of the same sort.

We can now move toward a classification. From now on, a holomorphic frame for E�M◦

that can be written as 1eu+v+w+f as in the above discussion will be called a good frame for

E. We assume throughout that M is a fixed b-holomorphic curve with fixed first integrals

z1, . . . , zk.

Note 7.6. Let us examine the quotient of two good frames, 1̃eũ+ṽ+w̃+f̃/1eu+v+w+f . For

simplicity of notation, we define
Q = 1̃/1

U = ũ− u

V = ṽ − v

W = w̃ − w

F = f̃ − f.

Then the quotient may be written as QeU+V +W+F , and the properties of the functions
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Q,U, V,W,F are as follows (each entry in the list is smooth on M◦):

Q non-vanishing; holomorphic away from ∂M ; smooth at Ci

U smooth at Ci

V 0 near pi, or meromorphic near pi with a pole at pi

W = const · log xi near pi

F

(asymptotically holomorphic at pi and tending to 0 at pi) · log xi ci = 1

asymptotically holomorphic at pi and tending to 0 at pi ci /∈ Q

(7.1)

Proposition 7.7. Let m be a meromorphic function on M̌ whose poles and zeros occur

only at the pi. Write m = zdi
i e

τi+νi near pi, where di is an integer, τi is a constant, and

νi is a holomorphic function with value zero at pi. (This decomposition is unique up to a

choice of τi.)

Then m may be written in the form QeU+V +W+F by choosing cut-off functions φi

supported near pi and setting

Q = me−
∑

φi(cidi log xi+τi+νi)

U =

φiτi ci /∈ Q

φi(τi + νi) ci = 1

V = 0

W =
∑

φicidi log xi

F =

φiνi ci /∈ Q

0 ci = 1.

This decomposition is unique up to a choice of φi.

We omit the proof; it is elementary.

Definition 7.8. Let {an
i }i=1...k

n≥0
be a group of sequences of complex numbers. We say that

{an
i } ∼ 0 if an

i = 0∀n ≥ 1 when ci = 1, and there exists a meromorphic function on M̌

whose zeros and poles occur only at the pi, such that

1. When ci = 1, orderi(m) = a0
i /ci; and

2. When ci /∈ Q, m = (const) · za0
i /ci

i · e
∑

n≥1 an
i zn

i .
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This is an equivalence relation. We denote the class of {an
i } by [an

i ].

Theorem 7.9. If {an
i } is associated to a good frame for a line bundle which is trivial, then

[an
i ] = 0.

Proof. By hypothesis, there exists a global C∞ holomorphic frame 1̃; and there also exists

a good frame 1eu+v+w+f with the {an
i } as the associated sequences. This means that 1 is

a C∞ frame that is holomorphic away from the boundary, and

1. 1eu+v+w+f is a holomorphic frame for E�M◦;

2. w = a0
i log xi near Ci; and

3. When ci /∈ Q, f ∼
∑

n≥1 a
n
i z

n
i at Ci; and when ci = 1, f/ log xi ∼

∑
n≥1 a

n
i z

n
i at Ci.

Taking note of the fact that κ(E) = 0, we find immediately that v = 0.

Set Q = 1/1̃. Then define m = Qeu+w+f to be the quotient of our two frames.

Obviously, 1̃ is a good frame. So m is meromorphic on M̌ with zeros and poles only at the

pi, by Theorem 7.4. So by Proposition 7.7 above,

Q = me−
∑

φi(cidi log xi+τi+νi)

u =

φiτi ci /∈ Q

φi(τi + νi) ci = 1

w =
∑

φicidi log xi

f =

φiνi ci /∈ Q

0 ci = 1.

where τi and νi are defined by the relation m = zdi
i e

τi+νi .

Compare these equations to the description of u,w, f just prior. We find that

1. an
i = 0∀n ≥ 1 when ci = 1;

2. a0
i = cidi; and

3.
∑

n≥1 a
n
i z

n
i = νi at Ci.

So m is the meromorphic function whose existence figures in Definition 7.8, and {an
i } ∼

0.
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Theorem 7.10. Let E be a holomorphic line bundle over M . Then for E to possess a

global C∞ holomorphic frame, it is necessary and sufficient that κ(E) = 0 and [an
i ] = 0.

Proof. We only need to prove the sufficiency. So choose an η chain basis, and define the

bi and thus the v. Construct the good frame 1eu+v+w+f . Since κ(E) = 0, we know that

v = 0.

We know that an
i = 0∀n ≥ 1 when ci = 1. We also are guaranteed the existence

of a meromorphic function m on M̌ having the properties stated in Definition 7.8. So

1eu+w+f · m−1 is a holomorphic frame for E�M◦. We wish to show that this frame is

smooth at the boundary. So write m as QeU+W+F as in Proposition 7.7, where

Q = me−
∑

φi(a
0
i log xi+τi+νi)

U =

φiτi ci /∈ Q

φi(τi + νi) ci = 1

W =
∑

φia
0
i log xi

F =

φiνi ci /∈ Q

0 ci = 1.

Then write our holomorphic frame as

(1m−1e
∑

φi(a
0
i log xi+τi+νi))e(u−U)+(w−W )+(f−F ).

This is smooth at the boundary.

Corollary 7.11. Let E and F be holomorphic line bundles over M . Then for E and F to

be equivalent, it is necessary and sufficient that κ(E) = κ(F ) and [an
i ](E) = [an

i ](F ).

Theorem 7.12. For every κ ∈ H0,1

∂̄
M̌ and group of sequences {an

i }, there’s a holomorphic

line bundle over M whose invariants these are.

This completes the classification of bundles over an M with fixed first integrals.

7.3 Examples of bundles

We will now study lifts of bundles from M̌ , which are defined by analogy to the case

of the cup. (See Sections 4.3 and 5.3.)
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Definition 7.13. Let E be a holomorphic line bundle over M̌ . Define {i1, . . . , i`} = {i :

ci /∈ Q}. Choose local holomorphic frames νir near pi. We define the lift of E by means of

νi1 , . . . , νi` , which we denote by Ê(νi1 , . . . , νi`), as follows. As a topological line bundle, it is

the pull back of E from M̌ to M via the continuous map π. The smooth and holomorphic

structures for E�M◦ are defined via pull back by π as well. For i such that ci = 1, a section

is smooth at Ci if and only if its quotient by the pull-back of any local frame for E near pi

is smooth at Ci; and a section is smooth at Cir if and only if its quotient by νir is smooth

at Cir .

Note 7.14. The only questionable part of this definition is the condition for smoothness

at Ci when ci = 1; but by the same arguments as in the case of the cup, this condition is

self-consistent.

Before we begin to examine the properties of lifts, we need the following proposition

and theorem.

Proposition 7.15. Let M be a b-holomorphic curve. Then the quantity

d =
k∑

i=1

a0
i

ci

is a bundle invariant.

Proof. If E and F are equivalent as holomorphic line bundles over M , then [an
i ](E) ∼

[an
i ](F ) by Theorem 7.10. By the definition of this equivalence (Definition 7.8), there exists

a meromorphic function m on M̌ with poles and zeros only at the pi; and the order of m

at pi is a0
i (E)/ci − a0

i (F )/ci. So

0 =
k∑

i=1

(
a0

i (E)
ci

− a0
i (F )
ci

)

=
k∑

i=1

a0
i (E)
ci

−
k∑

i=1

a0
i (F )
ci

.

Theorem 7.16. Let E be a C∞ line bundle over the marked compact Riemann surface

M̌(p1, . . . , pk). Then for degree(E) = d it is necessary and sufficient that there exist in-

tegers d1, . . . , dk with
∑
di = d and local C∞ frames τi near pi and a C∞ frame σ for

E�(M̌\{p1, . . . , pk}) such that: for each i, the winding number of σ/τi around zero on a

small oriented loop around pi is di.
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Proof of sufficiency. Define∇σ on E�(M̌\{p1, . . . , pk}) by∇σσ = 0. Define∇τi on E�neigh(pi)

by ∇τiτi = 0. Then choose cut-off functions φi supported near pi, and define ∇ on E by

∇ =
∑

φi∇τi +
(
1−

∑
φi

)
∇σ.

Define gi = σ/τi near pi. We compute the connection form ω with respect to σ as

follows:
∇σ =

∑
φi∇τiσ

=
∑

φi∇τi(giτi)

=
∑

φi(dgi)τi

=
∑

φi(dgi/gi)σ.

So ω =
∑
φidgi/gi.

Let BR = ∪BR(pi), and write ∂BR = ∪γR(pi) where γR(pi) = ∂BR(pi). We have

degree(E) = (i/2π) lim
R→0

∫
Bc

R

dω

= (i/2π) lim
R→0

∫
∂Bc

R

ω

= (1/2πi) lim
R→0

∫
∂BR

ω

= (1/2πi) lim
R→0

∫
∪γR(pi)

ω

= lim
R→0

∑
(1/2πi)

∫
γR(pi)

dgi/gi

=
∑

di

= d.

Proof of necessity. Choose local C∞ frames τi for E near pi and let σ be a C∞ frame for

E�(M̌\{p1, . . . , pk}). Define di = winding number of σ/τi around zero on a small oriented

loop around pi. Now compute the degree of E, just as we did in the proof of sufficiency.

We find that d = degree(E) =
∑
di.

Now we are ready to turn our attention back to lifts. From now on, M is a b-

holomorphic curve. The following theorem shows that the bundle invariant d is a gen-

eralization of “degree.”
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Theorem 7.17. Let E be a holomorphic line bundle over M̌ , and let νi1 , . . . , νi` be local

holomorphic frames near pi1 , . . . , pi`. (Here the indices are those for which cir /∈ Q.) Then

d(Ê(νi1 , . . . , νi`)) = degree(E).

Proof. We will construct some frames τi and σ for E as in Theorem 7.16. Then we will use

these to construct a good frame for Ê = Ê(νi1 , . . . , νi`), from which we will be able to read

off the a0
i . This will yield the desired equality.

So take τir = νir for each r = 1 . . . `. We are free to choose the τ in this way. We

make no stipulation on τi when ci = 1. Also, take σ to be holomorphic away from the pi.

Choose first integrals for M and define di = w.n.(σ/τi)∀ i. Then w.n.(z−di
i σ/τi) = 0. So

we can write z−di
i σ/τi = eui in a punctured neighborhood of pi, with ui smooth. Now define

σ̃ = σe−
∑

φiui where the φi are cut-off functions supported near the pi.

Regard τi and σ̃ as frames for Ê. Notice that

(a) The τi are smooth holomorphic frames for Ê� collari.

(b) σ̃ is a smooth frame for E�M◦ that is holomorphic away from ∂M .

(c) σ̃ = τiz
di
i near Ci.

Now let α be the ∂̄ form of Ê with respect to σ̃. Since σ̃ is holomorphic near Ci, α = 0 in

a neighborhood of Ci. So α may be regarded as a smooth (0, 1)-form on M̌ . Choose an η

chain basis A for H0,1

∂̄
M̌ and write −α ∼ b1

1A+ · · ·+ bg
gA. Then choose a smooth g on M̌

such that −α = b1
1A+ · · ·+bg gA+ ∂̄g. Let v = func(b1 1A+ · · ·+bg gA). Then ∂̄(v+g) = −α.

Therefore σ̃ev+g is a holomorphic frame for Ê�M◦. We need to express σ̃ev+g in the form

of a good frame. So it suffices to write σ̃eg in the form 1eu+w+f , where w =
∑
φicidi log xi;

for then

d(Ê) =
∑

di = degree(E).

All this means that it suffices to show that σ̃eg−w can be written as 1eu+f , with

1. 1 a global smooth frame for Ê which is holomorphic away from the boundary;

2. u a smooth function on M ; and

3. At Ci,

f ∼


∑

n≥1 a
n
i z

n
i ci /∈ Q(∑

n≥1 a
n
i z

n
i

)
log xi ci = 1.
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Note that g is smooth on M̌ , so that when ci = 1, g is smooth at Ci, and when ci /∈ Q,

g ∼ g0
i + a sum in positive powers of zi. Define 1 = σ̃e−w, u = g −

∑
ci /∈Q φi(g − g0

i ), and

f =
∑

ci /∈Q φi(g−g0
i ). Clearly σ̃eg−w = 1eu+f . It’s easy to see that u and f have the correct

properties by our construction; that is, u is smooth on M , and f is zero near Ci when ci = 1

and is asymptotic to a series in positive powers of zi at Ci when ci /∈ Q. Finally, near Ci,

1 = σ̃e−w

= τiz
di
i e

−cidi log xi

= τix
cidi
i eidiyix−cidi

i

= τie
idiyi ,

which is smooth at Ci.

Corollary 7.18. If d(E) /∈ Z, then E is not isomorphic to a lift.

We finish this discussion by examining the holomorphic line bundle bT 1,0M . In par-

ticular, we wish to calculate d for this bundle.

Theorem 7.19. degree(T 1,0M̌) = 2− 2g.

This theorem is well known, and we omit the proof.

Definition 7.20. From T 1,0M̌ , we construct a new holomorphic line bundle T̃ 1,0M̌ over

M̌ as follows. For p ∈ M̌ ,

fiber over p =



{germs of holomorphic sections

of T 1,0M̌ at p} modulo

equality (to zeroth order) at p p /∈ {p1, . . . , pk}

{germs of holomorphic sections

of T 1,0M̌ at p which vanish at p} modulo

equality to first order at p p ∈ {p1, . . . , pk}.

The union of these fibers has the structure of a holomorphic line bundle (defined naturally),

and there is a natural map π : T̃ 1,0M̌−→T 1,0M̌ whose restriction to the part lying over the

complement of the pi is an isomorphism.

Theorem 7.21. degree(T̃ 1,0M̌) = 2− 2g − k.
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Proof. Choose (local) frames τi and σ for T 1,0M̌ as in Theorem 7.16. Then the winding

numbers of σ/τi, which we call di, satisfy
∑
di = 2− 2g.

σ may be regarded as a C∞ frame for T̃ 1,0M̌ over M̌\{p1, . . . , pk}, via the map π.

Also, τ̃i = ziτi are local C∞ frames for T̃ 1,0M̌ near pi. Clearly,

d̃i = w.n.(σ/τ̃i) = w.n.(z−1
i σ/τi) = w.n.(σ/τi)− 1 = di − 1.

So d̃ ≡
∑
d̃i =

∑
(di − 1) =

∑
di − k = 2 − 2g − k. And by the Theorem 7.16, d̃ is the

degree of T̃ 1,0M̌ .

Theorem 7.22. If zi1 , . . . , zi` are first integrals for the collars of M that have non-rational

c, then
bT 1,0M ' ̂̃

T 1,0M̌(zi1∂zi1
, . . . , zi`∂zi`

).

This theorem follows from the various definitions, so we omit the proof.

Corollary 7.23. d( bT 1,0M) = 2− 2g − k.

This follows from Theorems 7.17, 7.21, and 7.22. Note that this agrees with the formula

d( bT 1,0M) = 1 for M a cup, which we computed directly in Sections 4.3 and 5.3.

7.4 b-connections

This section parallels the developments of Section 4.4, where we discussed b-connections

on bundles over a cup.

Theorem 7.24. Let E be a holomorphic line bundle over M . Then every hermitian metric

on E determines a unique hermitian holomorphic b-connection.

Proof. This theorem is identical to the one in Section 4.4, and so is the proof. Note that,

as before, we have the formula ω = α − ᾱ + ∂p for the connection form with respect to s

of the hermitian holomorphic b-connection induced by the metric 〈s, s〉 = ep. Therefore the

curvature is dω = ∂α− ∂̄ᾱ+ ∂̄∂p.

Definition 7.25. A b-connection is called non-singular if its connection form with respect

to a smooth frame is a non-singular 1-form. A b-connection is called smoothly curved if its

curvature is a non-singular 2-form.
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Theorem 7.26. Let E be a holomorphic line bundle over M . Then the space of smoothly

curved hermitian holomorphic b-connections on E is an affine space, with the underlying

vector space being the space of real C∞ functions on M which are locally constant on ∂M .

Proof. First, we will show that one such b-connection exists. So choose a global C∞ frame

s which is holomorphic away from the boundary and let α be the corresponding ∂̄ form.

What we seek is a real C∞ function p on M such that

∂α− ∂̄ᾱ+ ∂̄∂p

is non-singular as a 2-form. (In the proof of Theorem 7.24, we saw that this is the curvature

of the hermitian holomorphic b-connection induced by the metric 〈s, s〉 = ep.) Choose first

integrals z1, . . . , zk for the collars of M . Write α = fiλ̄i near Ci. Then our curvature 2-form

may be written near Ci as

∂(fiλ̄i)− ∂̄(f̄iλi) + ∂̄(Lipλi) = (Lifi + L̄if̄i − L̄iLip)λi ∧ λ̄i.

We have used the fact that ∂λ̄i = ∂̄λi = 0, which is true because λi and λ̄i are locally exact.

For example, λi = (1/2ai)d(ci log xi + iyi).

It may be computed that λi∧λ̄i = −(i/2ai)dxi
xi
∧dyi, so for our 2-form to be non-singular

we must have L̄iLip = Lifi + L̄if̄i on Ci, for each i. We can compute that

L̄iLip = xipxi + x2
i pxixi − 2bixipxiyi + |ci|2pyiyi .

So we need to choose the smooth function p so that

|ci|2pyiyi = −ic̄i(fi)yi + ici(f̄i)yi ,

or

pyiyi = 2=(fi/ci)yi .

We will now produce such a p. Let a0
i , a

1
i , . . . be the bundle invariants of Section 7.2,

computed with respect to our chosen frame s and first integrals z1, . . . , zk. Note that, by

definition,

a0
i = −aii

π

∫
Ci

α

= −aii

π

∫
Ci

fiλ̄i

= −aii

π

∫
Ci

fi
1

2ai

(
c̄i
dxi

xi
− i dyi

)
= − 1

2π

∫
Ci

fi dyi.
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Let

Hi = =(a0
i /ci) = − 1

2π

∫
Ci

=(fi/ci) dyi.

Since the average value of =(fi/ci) +Hi over Ci is zero, we may choose a smooth function

ϕi on Ci such that

(ϕi)yi = =(fi/ci) +Hi.

Finally, let p be a real C∞ function on M which agrees with 2ϕi on Ci for each i. Then p has

the desired property. This shows the existence of a smoothly curved hermitian holomorphic

b-connection on E.

Next, let u be a real smooth function on M which is constant on Ci for each i. The

metric above was given by 〈s, s〉 = ep; define a new metric by 〈s, s〉 = ep+u. Then the new

curvature (that is, the curvature of the hermitian holomorphic b-connection induced by the

new metric) is ∂α− ∂̄ᾱ+ ∂̄∂p+ ∂̄∂u, which is the old curvature plus ∂̄∂u. Up to a nonzero

multiplicative constant, ∂̄∂u is equal (near Ci) to

(L̄iLiu)λi ∧ λ̄i = (xiuxi + x2
iuxixi − 2bixiuxiyi + |ci|2uyiyi)

(
dxi

xi
∧ dyi

)
,

which is smooth up to Ci as a non-singular 2-form since uyiyi vanishes on Ci. So, since the

old curvature was non-singular and ∂̄∂u is non-singular, the new connection is also smoothly

curved.

Finally, it only remains to show that the quotient of any two metrics that induce

smoothly curved hermitian holomorphic b-connections is of the form eu, where u is a real

smooth function on M which is locally constant on ∂M . This is essentially the same

calculation as that of the previous paragraph.

Definition 7.27. Let E be a holomorphic line bundle overM . Let ci be the collar invariants

of M and κ, [an
i ] the bundle invariants of E. Then we may define new bundle invariants

γ1, . . . , γk ∈ C/Z and γ ∈ C by

γi =
<an

i

<ci
γ = γ1 + · · ·+ γk.

We need to check that these definitions make sense; that is, we have to check that the

γi and γ come out the same if they are computed by means of two sequence groups {ãn
i }

and {an
i } that represent the same bundle. When this is the case, we know that there exists
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a meromorphic function m on M̌ with zeros and poles only at the pi, such that

orderi(m) =
ã0

i − a0
i

ci
.

Therefore we know that (ã0
i − a0

i )/ci is an integer for each i, and
∑

(ã0
i − a0

i )/ci = 0.

Proof of invariance of γi. Since (ã0
i − a0

i )/ci is real, it is equal to <(ã0
i − a0

i )/<ci; this is

seen by examining similar triangles. Therefore γ̃i − γi ∈ Z.

Proof of invariance of γ. Just compute that

γ̃ − γ =
k∑

i=1

<ã0
i −<a0

i

<ci

=
k∑

i=1

<(ã0
i − a0

i )
<ci

=
k∑

i=1

ã0
i − a0

i

ci

= 0.

Theorem 7.28. Let E be a holomorphic line bundle over M . Then for any smoothly curved

hermitian holomorphic b-connection ∇,∫
M
R(∇) = −2πiγ.

Proof. Let s be a global C∞ frame for E. Let α be the corresponding ∂̄ form. Then let p

be a real C∞ function on M such that the metric defined by 〈s, s〉 = ep induces a smoothly

curved (hermitian) holomorphic b-connection ∇. Then the connection form with respect to

s is

ω = α− ᾱ+ ∂p,

as we have seen. We wish to compute the integral over M of R(∇) = dω. We know that dω

is a non-singular 2-form on M , but ω might be singular. So to compute the integral over

M , we will take the limit as r → 0 of the integral over the complement of the region

k⋃
i=1

{xi ≤ r}.
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For any fixed r > 0, the integral may be computed via Stokes’s theorem. So we will find

that ∫
M
R(∇) =

∫
M
dω = − lim

r→0

k∑
i=1

∫
xi=r

ω.

(The minus sign appears because of our orientation convention.) So we have to examine

the form of ω on circles of constant xi near Ci.

Write α = fiλ̄i near Ci. Then we compute, using the formula for ω above, that

2aiω = fi(2aiλ̄i)− f̄i(2aiλi) + Lip(2aiλi)

= fi

(
c̄i
dxi

xi
− i dyi

)
+ (Lip− f̄i)

(
ci
dxi

xi
+ i dyi

)
= (c̄ifi − cif̄i + ciLip)

dxi

xi
+ (−ifi − if̄i + iLip)dyi

= |ci|2([fi/ci]− [f̄i/c̄i] + [1/c̄i](xipxi − ic̄ipyi))
dxi

xi
− i(fi + f̄i − (xipxi − ic̄ipyi))dyi

= |ci|2(i[2=(fi/ci)− pyi ] + (1/c̄i)xipxi)
dxi

xi
− i(2<fi − xipxi + ic̄ipyi)dyi.

So we can compute that∫
xi=r

ω =
−i
ai

∫
xi=r

<fi dyi +
ir

2ai

∫
xi=r

pxi dyi,

or

−
∫

xi=r
ω =

i

ai

∫
xi=r

<fi dyi −
ir

2ai

∫
xi=r

pxi dyi.

All the dxi terms of the integrand disappear when we pull back to the circle of constant xi,

and the term involving pyi clearly integrates to zero. Since pxi dyi defines a smooth 1-form

on M , the second term is killed by the coefficient r in the limit. So the only thing that

survives in the limit is

i

ai

∫
Ci

<fi dyi =
−2πi
ai

<
(
−1
2π

∫
Ci

fi dyi

)
= −2πi<a0

i /<ci

= −2πiγi.

The final step, taking the sum of these integrals over all the Ci, gives us
∑

(−2πiγi) =

−2πiγ.

Theorem 7.29. If a0
i /ci is real for every i, then every smoothly curved hermitian holomor-

phic b-connection is actually non-singular. Otherwise, no such b-connection is non-singular.
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Proof. Differentiate the last formula for 2aiω in the proof of the previous theorem. You

find that, near Ci,

2ai dω = |ci|2(i[2=(fi/ci)yi − pyiyi ] + (1/c̄i)xipxiyi)dyi ∧
dxi

xi

plus something non-singular. We know that this form is non-singular because the connection

is assumed to be smoothly curved. So we must have

pyiyi = 2=(fi/ci)yi

on Ci. Thus pyi = 2=(fi/ci) + Hi for some constant Hi. If we average both sides over Ci

(with respect to the measure dyi), then we find that Hi is −2 times the average of =(fi/ci)

over the boundary, or

Hi = 2=(a0
i /ci).

Now we can finish the argument:

The connection form is non-singular iff pyi = 2=(fi/ci) for all i. (This is by inspecting

the last formula for 2aiω in the proof of the previous theorem.) But, pyi = 2=(fi/ci) iff

Hi = 0. (By the above remarks.) And, since Hi = 2=(a0
i /ci), Hi = 0 iff a0

i /ci is real.

Let us compare these results with the analogous results for connections on a bundle over

a compact Riemann surface. In that case, the integral of the curvature of any connection

is −2πi · γ where γ is the degree. In the present situation, the generalized degree is

d =
a0

1

c1
+ · · ·+

a0
k

ck
,

and the integral of the curvature of any hermitian holomorphic b-connection is −2πi · γ
where

γ =
<a0

1

<c1
+ · · ·+

<a0
k

<ck
.

So we can say that, in the case of the compact Riemann surface, γ (defined as the number

that appears in the formula for the integral of the curvature) is equal to the degree, which

is an integer; but in the case of a b-holomorphic complex curve, γ is some sort of a “real

version” of the degree, which may be any complex number.

7.5 Connections of constant curvature

In order to prosecute the analyses of this section in full generality, we would need to

understand in some detail the spaces of real harmonic functions on the blow-down, both
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those without singularities and those with singularities of specified types at the distinguished

points. Such an investigation would be appropriate here, and would constitute a second

“interlude” on compact Riemann surfaces. But it would be a considerable expenditure of

time and ink.

We therefore restrict our attention in the remainder to the case of b-holomorphic com-

plex curves M whose blow-down M̌ is the sphere. On a sphere, the only harmonic functions

are the constants. Note also that, sinceH0,1

∂̄
S2 = 0, the κ bundle invariant disappears. That

is, κ(E) = 0 for every holomorphic line bundle E over M .

From now on, M is a geometric b-holomorphic complex curve whose blow-down M̌ is

the Riemann sphere, and all of whose collar invariants lie in (C\Q) ∪ 1.

Choose first integrals z1, . . . , zk. Then we have xi, yi, Li, L̄i, λi, λ̄i, as in (2.2) and (2.3).

Define

Li = L̄iLi =
(xi∂xi ∂yi )

 1 −bi
−bi |ci|2

 xi∂xi

∂yi

 (7.2)

and hi = 〈Li, Li〉. Then hi vanishes to second order on Ci. We have the formula

∂̄∂ = ?
2i
hi
Li (7.3)

valid near Ci.

Technical Lemma 7.30. Let u be a smooth function on the interior of M . Suppose xiuxi

extends to Ci as a continuous function for each i, and ∂̄∂u extends as a continuous non-

singular 2-form on M . Then∫
M
∂̄∂u =

k∑
i=1

−i
2<ci

∫
Ci

(xiuxi) dyi.
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Proof. Since ∂̄∂u is continuous on M , it is integrable. So we have (with Gr =
⋃k

i=1{xi ≤ r})∫
M
∂̄∂u = lim

r→0

∫
Gc

r

d∂u

=
k∑

i=1

lim
r→0

(−1)
∫

xi=r
∂u

=
k∑

i=1

lim
r→0

(−1)
∫

xi=r
Liuλi

=
k∑

i=1

lim
r→0

(−1)
∫

xi=r
(xiuxi − ic̄iuyi)

1
2<ci

(ci dxi
xi

+ i dyi)

=
k∑

i=1

lim
r→0

−1
2<ci

∫
xi=r

(xiuxi − ic̄iuyi)(i dyi)

=
k∑

i=1

−i
2<ci

∫
Ci

(xiuxi) dyi.

The minus sign appears in Stokes’s formula because of our orientation convention.

Proposition 7.31. Choose first integrals z1, . . . , zk and cut-off functions φ1, . . . , φk for

M . Then for each j = 1 . . . k there exists a real smooth function Vj on M◦ that satisfies

∂̄∂Vj = −(πi/<cj) · vol and such that Vj can be written as a sum of real functions Vj =

φj log xj + V 1
j + V 2

j with

1. V 1
j smooth on M ; and

2. V 2
j smooth on M◦, and at Ci

V 2
j ∼

<
(∑

n≥1
jdn

i z
n
i

)
log xi ci = 1

<
(∑

n≥1
jdn

i z
n
i

)
ci /∈ Q.

Such a function is unique up to an additive constant.

Proof of uniqueness. The difference between two such functions (defined by means of the

same first integrals) is a bounded harmonic function on M̌\{p1, . . . , pk}. So the singularities

are removable, and the difference is a harmonic function on M̌ ; that is, a constant.
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Proof of existence. Let u1
j be a real smooth function onM◦, supported near ∂M , and having

the asymptotic formulas at Ci

u1
j ∼


−π

2<cj

∑
m≥1

n6=±m

(hi)mn

m2−n2x
m
i e

inyi ci = 1

−π
2<cj

∑
m≥1
n∈Z

(hi)mn

m2−2ibimn−|ci|2n2x
m
i e

inyi ci /∈ Q.

(It is easy to see that, since hi is real, these asymptotic formulas are real; so u1
j may be

chosen real.) Next, let u2
j be a real smooth function on M◦, supported near ∂M , and having

the asymptotic formulas at Ci

u2
j ∼


−π

2<cj

∑
m≥1

n=±m

(hi)mn

2m xm
i e

inyi · log xi ci = 1

0 ci /∈ Q.

(Again, it is easy to see that, since hi is real, this asymptotic formulas is real; so u2
j may be

chosen real.)

We wish now to solve

∂̄∂u3
j = (−[πi/<cj ] · vol)− ∂̄∂(φj log xj + u1

j + u2
j ).

We claim that the datum vanishes to infinite order on ∂M and satisfies
∫
M datum = 0.

Then the datum will be smooth on M̌ and integrate to zero there. Therefore, by Lemma

6.4, there exists a real smooth solution u3
j on M̌ , and we will have

∂̄∂(φj log xj + u1
j + u2

j + u3
j ) = −(πi/<cj) · vol .

Now we can define

V 1
j = u1

j +

u3
j −

∑
ci /∈Q

φiu
3
j


V 2

j = u2
j +

∑
ci /∈Q

φiu
3
j .

Define Vj = φj log xj + V 1
j + V 2

j . Then ∂∂̄Vj = −(πi/<cj) · vol. To see that V 1
j has the

correct form, first note that u1
j is smooth on M . Then, note that the parenthetic term is

smooth on M̌ , 0 near Ci when ci /∈ Q, and smooth at Ci when ci = 1. So it remains to check

that V 2
j has the correct form. u2

j has the right form; and because the “datum” we discussed

above vanished to infinite order at each of the pi, u3
j is “asymptotically harmonic” at pi. So
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u3
j is asymptotic to the real part of a holomorphic function at pi. If we transfer the constant

terms back to V 1
j by means of cut-off functions, then V 2

j will have the correct form.

So all that remains is to prove the two-part claim, that the datum vanishes to infinite

order on ∂M , and that it integrates to zero. First, the vanishing. Using (7.3) we can write

the datum near Ci as

datum =
πi

(<cj)hi
vol

(
−hi −

2<cj
π

Li[φj log xj + u1
j + u2

j ]
)
.

Near Ci, φj log xj is either 0 or log xj , and so is annihilated by Li. So we need to show that

Li(
2<cj

−π u
1
j + 2<cj

−π u
2
j ) agrees with hi to infinite order at Ci. This is a simple consequence of

the asymptotic formulas for u1
j and u2

j that were used in their definition, and formula (7.2)

for Li.

Finally, the vanishing of the integral of the datum. The first piece clearly integrates to

−πi/<cj . We can compute the integrals of the second, third, and fourth pieces by means of

Technical Lemma 7.30. The third and fourth integrate to zero. For the second, note that

at Ci,

xi∂xi(φj log xj) =

1 i = j

0 otherwise.

Therefore, by the technical lemma,∫
M
∂̄∂(φj log xj) =

−i
2<cj

∫
Cj

dyj

= −πi/<cj .

A subtraction, and the full integral of the datum is zero. This proves the claim, and therefore

the proposition.

Theorem 7.32. Let M be a geometric b-holomorphic complex curve of genus zero, all of

whose collar invariants lie in (C\Q) ∪ 1. Label the boundary circles as C1, . . . , Ck, and fix

first integrals z1, . . . , zk and cut-off functions φ1, . . . , φk for the collars of M . Let Vj =

φj log xj + V 1
j + V 2

j be as in Proposition 7.31.

Let E be a holomorphic line bundle over M , and let γ be the derived bundle invariant

of Definition 7.27. Let 1eu+w+f be a good frame for E in the sense of Theorem 7.3, with

w =
∑k

j=1 a
0
jφj log xj (this relation defines the a0

j). The v is absent because κ = 0.
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For there to exist a hermitian holomorphic b-connection on E whose curvature is −2πiγ·
vol, it is necessary and sufficient that

<f ∼
k∑

j=1

(<a0
j )V

2
j

at ∂M (that is, the difference vanishes to infinite order).

Proof of necessity. Define s = 1eu. Then s is a smooth frame for E. Let 〈s, s〉 = ep represent

a smooth hermitian metric for E, the curvature of whose induced hermitian holomorphic

b-connection is −2πiγ · vol.

As usual, we can write the curvature as

∂α− ∂̄ᾱ+ ∂̄∂p

where α is the ∂̄ form with respect to s. So we have the equation

∂α− ∂̄ᾱ+ ∂̄∂p = −2πiγ · vol .

Since sew+f is holomorphic, we know that α = −∂̄(w + f). So the left hand side may be

re-written as

−∂∂̄(w + f) + ∂̄∂(w̄ + f̄) + ∂̄∂p = ∂̄∂(2<w + 2<f + p).

We now re-write the right hand side as follows: define V =
∑k

j=1 2(<a0
j )Vj . We see that

∂̄∂V =
k∑

j=1

2(<a0
j )∂̄∂Vj

=
k∑

j=1

2(<a0
j )

(
−πi
<cj

)
· vol

= −2πi

 k∑
j=1

<a0
j

<cj

 · vol

= −2πiγ · vol .

So our equation becomes

∂̄∂(2<w + 2<f + p− V ) = 0.

That is, 2<w + 2<f + p− V is harmonic.
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If we write

V =
k∑

j=1

2(<a0
j )φj log xj +

k∑
j=1

2(<a0
j )V

1
j +

k∑
j=1

2(<a0
j )V

2
j

and

2<w =
k∑

j=1

2(<a0
j )φj log xj ,

then our harmonic function can be written asp− k∑
j=1

2(<a0
j )V

1
j

 + 2

<f − k∑
j=1

(<a0
j )V

2
j

 .

Since p and V 1
j are smooth onM , they are bounded; so the first parenthetic term is bounded.

Since f and V 2
j tend to zero at ∂M , the second parenthetic term is bounded. So we have a

real harmonic function on M̌\{p1, . . . , pk} which is bounded. Thus it is harmonic on M̌ .

Since M̌ is a sphere, this harmonic function is constant. Therefore <f ∼
∑k

j=1(<a0
j )V

2
j

at ∂M .

Proof of sufficiency. Define s = 1eu. Then s is a smooth frame for E. Then define V =∑k
j=1 2(<a0

j )Vj . Now let p = V − 2<w − 2<f . We are left with two tasks. The first is to

show that p is a smooth function on M . The second is to show that, if we define a metric

on E by 〈s, s〉 = ep, then the curvature of the induced hermitian holomorphic b-connection

is −2πiγ · vol.

The first task. Write

V =
k∑

j=1

2(<a0
j )φj log xj +

k∑
j=1

2(<a0
j )V

1
j +

k∑
j=1

2(<a0
j )V

2
j

and

2<w =
k∑

j=1

2(<a0
j )φj log xj .

Then

V − 2<w − 2<f =
k∑

j=1

2(<a0
j )V

1
j +

k∑
j=1

2(<a0
j )V

2
j − 2<f.

Since V 1
j is smooth on M for each j, and <f ∼

∑k
j=1(<a0

j )V
2
j at ∂M , we see that p is

smooth at ∂M . So p is smooth on M .
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The second task. Since sew+f is holomorphic over M◦, the ∂̄ form with respect to s is

α = −∂̄(w + f). Therefore the curvature of our hermitian holomorphic b-connection is

∂α− ∂̄ᾱ+ ∂̄∂p = −∂∂̄(w + f) + ∂̄∂(w̄ + f̄) + ∂̄∂p

= ∂̄∂(2<w + 2<f + p)

= ∂̄∂V

=
k∑

j=1

2(<a0
j )∂̄∂Vj

=
k∑

j=1

2(<a0
j )

(
− πi

<cj

)
· vol

= −2πi

 k∑
j=1

<a0
j

<cj

 · vol

= −2πiγ · vol .

Invariance Theorem 7.33. Let M be a geometric b-holomorphic complex curve of genus

zero, all of whose collar invariants lie in (C\Q) ∪ 1. Let E be a holomorphic line bundle

over M . If E satisfies the necessary and sufficient condition of Theorem 7.32 with respect to

one choice of first integrals for M and one good frame for E, then E satisfies the condition

with respect to every choice of first integrals for M and every good frame for E.

Proof. Suppose E satisfies the condition with respect to one choice of first integrals and

good frame. Then by the sufficiency of the condition, there exists a hermitian holomorphic

b-connection of constant curvature for E. So now make a different choice of first integrals

and good frame. By the necessity of the condition, E satisfies this condition with respect

to the new choice of first integrals and good frame.

The important consequence of this invariance theorem is that the coefficients in the

asymptotic expansion of V 2
j at ∂M transform (under a change of first integrals) precisely

in the same way as the n ≥ 1 part of the {an
i } bundle invariant.

Definition 7.34 (metric line bundle classes). Let M be a b-holomorphic complex curve

of genus zero, all of whose collar invariants lie in (C\Q) ∪ 1. Label the boundary circles

C1, . . . , Ck, and fix j ∈ {1, . . . , k}.
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We define the jth metric line bundle class Gj of M by constructing a representative,

(Gj), as follows. As a smooth bundle, (Gj) = M ×C. Let 1 be the canonical smooth frame.

Choose first integrals z1, . . . , zk for M , and let Vj = φj log xj + V 1
j + V 2

j as in Proposition

7.31. We then stipulate that 1ew+f be a good frame, where w = φj log xj and <f ∼ V 2
j .

Proof of the soundness of the definition. On its face, the definition depends on a choice

of first integrals. We need to show that bundles defined by different first integrals are

isomorphic.

We can re-phrase the definition of (Gj) as follows: (Gj) is the bundle which has (with

respect to the chosen first integrals z1, . . . , zk)

a0
i =

1 i = j

0 i 6= j

and an
i (n ≥ 1) given by the coefficients in the asymptotic expansion of V 2

j with respect

to the same first integrals. But by Invariance Theorem 7.33, these coefficients transform

(under a change of first integrals) exactly as the n ≥ 1 part of the bundle invariant {an
i }

does. And by the definition of a0
i , it is clear that a0

i does not change with a change of

first integrals, just as we have here. So the an
i of the (Gj) transform correctly, as bundle

invariants, and our definition is sound.

Definition 7.35 (real power of a line bundle class). LetM be a b-holomorphic complex

curve of genus zero, all of whose collar invariants lie in (C\Q)∪1. Let [E] be a holomorphic

line bundle class over M . Let δ be any real number. We will define a new class [E]δ, called

the δth power of [E], by constructing a representative Eδ as follows: Let 1Ee
u+w+f be a

good frame for E. As a smooth bundle, we take Eδ to be M × C; and we stipulate that

1eδ(u+w+f) be holomorphic. (Here, 1 is the canonical frame.) Finally, set [E]δ = [Eδ].

Definition 7.36. Let E and F be two line bundles. We call E and F twist-equivalent if

there exists a C∞ isomorphism ϕ : E−→F such that

ϕe
∑k

j=1 itjφj log xj

is holomorphic. Here, tj are real numbers, φj are cut-off functions supported near Cj , and

zj = x
cj

j e
iyj are first integrals.
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It’s easy to see that twist-isomorphism is a relation of equivalence, and that it also

defines a relation of equivalence (called twist-equivalence) on bundle classes.

Reformulated Theorem 7.37. Let M be a geometric b-holomorphic complex curve of

genus zero, all of whose collar invariants lie in (C\Q) ∪ 1. Label the boundary circles

C1, . . . , Ck, and let G1, . . . , Gk be the metric line bundle classes of M .

Let E be a holomorphic line bundle over M with zeroth invariants a0
i (with respect

to some C∞ frame) and derived bundle invariant γ. Then for there to exist a hermitian

holomorphic connection on E whose curvature is −2πiγ · vol, it is necessary and sufficient

that [E] be twist-equivalent to

G
<a0

1
1 ⊗ · · · ⊗G

<a0
k

k .

Proof of necessity. Choose first integrals z1 . . . , zk and cut-off functions φ1, . . . , φk. Let

Vj = φj log xj + V 1
j + V 2

j be as in Proposition 7.31. Let FE = 1Ee
u+w+f be a good frame

for E, with {an
i } the associated sequences (with respect to the chosen first integrals). Then

by Theorem 7.32, we must have <f ∼
∑k

j=1(<a0
j )V

2
j .

Let (G1), . . . , (Gk) be representatives for G1, . . . , Gk defined by means of the chosen

first integrals. Then define the representative (G) for G = G
<a0

1
1 ⊗ · · · ⊗ G

<a0
k

k as in the

construction of the real powers of bundle classes, using the representatives (Gj). This

means that (G) has the good frame

F = 1e
∑k

j=1(<a0
j )φj log xj+fG

where <fG ∼
∑k

j=1(<a0
j )V

2
j .

So now we define the map ϕ : (G)−→E by

ϕ(F ) = FEe
−

∑k
j=1 i(=a0

j )φj log xj .

Then ϕ(1) = FEe
−

∑k
j=1 a0

jφj log xj−fG , which agrees to infinite order with 1Ee
u at ∂M . So

ϕ is a C∞ isomorphism. Furthermore, ϕe
∑k

j=1 i(=a0
j )φj log xj takes F to FE , and is therefore

holomorphic. This means that ϕ is a twist-equivalence map.

Proof of sufficiency. Choose first integrals z1, . . . , zk for M , and a good frame 1Ee
u+w+f

for E. Let {an
i } be the associated sequences.

Let (G1), . . . , (Gk) be representatives for G1, . . . , Gk, constructed by means of our cho-

sen first integrals. This means that (Gj) is M × C and has the good frame

1eφj log xj+fj ,
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where <fj ∼ V 2
j at ∂M . So we have the good frame

1e
∑k

j=1(<a0
j )φj log xj+fG

for (G) = (G1)<a0
1 ⊗ · · · ⊗ (Gk)<a0

k where <fG ∼
∑k

j=1(<a0
j )V

2
j at ∂M .

By hypothesis, E is twist-isomorphic to (G). So there exists a C∞ isomorphism ϕ :

(G)−→E such that ϕe
∑k

j=1 itjφj log xj is holomorphic. Let 1̃E = ϕ(1). Then the image under

ϕe
∑k

j=1 itjφj log xj of the good frame for (G) is

1̃Ee
∑k

j=1(<a0
j+itj)φj log xj+fG ,

and this is a new good frame for E. So we have two good frames for E:

1Ee
u+w+f

1̃Ee
w̃+f̃

where w̃ =
∑k

j=1 φj(<a0
j + itj) log xj and <f̃ ∼

∑k
j=1(<a0

j )V
2
j . By Theorem 7.4, we know

that the quotient

1̃Ee
w̃+f̃ ÷ 1Ee

u+w+f

is meromorphic on M̌ , with poles and zeros only at the distinguished points; and the order

of m at pj is
1
cj

[<a0
j + itj − (<a0

j + i=a0
j )] =

i(tj −=a0
j )

cj
.

Since <cj is positive, the only way for this to be real is for it to be zero. So m is a

holomorphic function on M̌ . So it is a constant. So our two good frames agree up to a

multiplicative constant. In particular, f ∼ f̃ . Therefore, at the boundary,

<f ∼ <f̃

∼
k∑

j=1

(<a0
j )V

2
j .

So by Theorem 7.32, there exists a hermitian holomorphic b-connection of constant curva-

ture.

An immediate consequence of this theorem is that, whenever {an
i } ∼ 0, the class

G = G
<a0

1
1 ⊗ · · · ⊗G<a0

k
k is twist-equivalent to the trivial class. The reason is as follows. Let

E be a bundle whose associated sequences are the {an
i }. Then E is equivalent to the trivial
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bundle. So E has a hermitian holomorphic b-connection whose curvature is zero. So by the

theorem, [E] is twist-equivalent to G.

However, it is not obvious why this should be so. We will conclude this section by

proving this consequence of the reformulated theorem directly, to make sure there has been

no error.

Proof of the consequence. Choose first integrals z1, . . . , zk for M . Let Vj = φj log xj +V 1
j +

V 2
j be as usual. Construct the (Gj) and (G) = (G1)<a0

1 ⊗ · · · ⊗ (Gk)<a0
k as usual. For (Gj)

we have the good frame

1eφj log xj+fj

where <fj ∼ V 2
j . So for (G) we have the good frame

1e
∑k

j=1(<a0
j )φj log xj+f

where <f ∼
∑k

j=1(<a0
j )V

2
j .

Since {an
i } ∼ 0, there exists a meromorphic function m on M̌ with zeros and poles only

at the pi; and m can be written (by Proposition 7.7) as QeU+W+F where

Q is nonvanishing, and smooth at Cj

U is smooth at Cj

W =
k∑

j=1

a0
jφj log xj

F ∼

0 cj = 1∑
n≥1 a

n
j z

n
j cj /∈ Q

at Cj .

Define the frame H for (G) by

H = 1e
∑k

j=1(<a0
j )φj log xj+f ·m−1.

H is clearly holomorphic. So it will suffice to show that

He
∑k

j=1 i(=a0
j )φj log xj

is smooth; for then (G) is twist-isomorphic to the trivial bundle.

Write

He
∑k

j=1 i(=a0
j )φj log xj
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as

1e
∑k

j=1(<a0
j )φj log xj+fe

∑k
j=1 i(=a0

j )φj log xjQe−U−
∑k

j=1 φja0
j log xj−F = 1Qe−U+(f−F ).

It now suffices show that f ∼ F ; for then 1Qe−U is smooth, and so is ef−F . We know that,

at Ci,

F ∼

0 c1 = 1∑
n≥1 a

n
i z

n
i ci /∈ Q.

So we have to show that f has this same asymptotic expansion at Ci.

Define V =
∑k

j=1(<a0
j )Vj . Then

∂̄∂V =
k∑

j=1

(<a0
j )∂̄∂Vj

=
k∑

j=1

(<a0
j )

(
−πi
<cj

)
· vol

= −πi

 k∑
j=1

<a0
j

<cj

 · vol

= 0,

since the parenthetic term is equal to the sum of the orders of the zeros and poles of m

(which is zero). So V is harmonic. We also know that < logm = log |m| is harmonic. We

wish to see that V and < logm agree.

Write V =
∑k

j=1(<a0
j )φj log xj + V 1 + V 2, where V 1 is smooth and

V 2 ∼

<
(∑

n≥1

(∑k
j=1

jdn
i

)
zn
i

)
log xi ci = 1

<
(∑

n≥1

(∑k
j=1

jdn
i

)
zn
i

)
ci /∈ Q.

Then write < logm = smooth +
∑k

j=1(<a0
j )φj log xj + <F , where

<F ∼

0 ci = 1

<
∑

n≥1 a
n
i z

n
i ci /∈ Q.

So V − < logm = smooth + V 2 − <F , which is harmonic on M̌\{p1, . . . , pk} and bounded

there. Therefore this function is constant, and V 2 ∼ <F .
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A comparison between the asymptotic formulas for V 2 and <F shows that

k∑
j=1

jdn
i =

0 ci = 1

an
i ci /∈ Q.

We can now conclude the argument. We already know that

<f ∼ V 2

∼

<
(∑

n≥1

(∑k
j=1

jdn
i

)
zn
i

)
log xi ci = 1

<
(∑

n≥1

(∑k
j=1

jdn
i

)
zn
i

)
ci /∈ Q

∼

0 ci = 1

<
∑

n≥1 a
n
i z

n
i ci /∈ Q.

Therefore

f ∼

0 ci = 1∑
n≥1 a

n
i z

n
i ci /∈ Q.

This concludes the proof.



167

Bibliography

[1] Atiyah, M. F.; and R. Bott. “The Yang–Mills equations over Riemann surfaces.”

Philos. Trans. Roy. Soc. London A 308, no. 1505 (1983): 523–615.

[2] Axler, Sheldon; Paul Bourdon; and Wade Ramey. Harmonic Function Theory.

New York: Springer-Verlag, 1992.

[3] Bergamasco, A.; and A. Meziani. “Semi-global solvability of a class of planar

vector fields of infinite type.” Preprint (2000).

[4] Berhanu, S.; and A. Meziani. “Global properties of a class of planar vector fields

of infinite type.” Comm. Partial Differential Equations 22, no. 1–2 (1997): 99–

142.

[5] Bers, Lipman. Riemann Surfaces. Lecture notes prepared by E. Rodlitz and R.

Pollack, Courant Institute. New York: 1957–58.

[6] Birkhoff, Garrett; and Gian-Carlo Rota. Ordinary Differential Equations. 3d

ed. New York: John Wiley & Sons, 1978.

[7] Boothby, William M. An Introduction to Differentiable Manifolds and Rieman-

nian Geometry. 2d ed. San Diego: Academic Press, 1986.

[8] Conway, John B. Functions of One Complex Variable I. 2d ed. New York:

Springer-Verlag, 1983.

[9] Donaldson, S. K. “A new proof of a theorem of Narasimhan and Seshadri.” J.

Differential Geom. 18, no. 2 (1983): 269–277.

[10] Farkas, H. M.; and I. Kra. Riemann Surfaces. New York: Springer-Verlag, 1980.

[11] Forster, Otto. Lectures on Riemann Surfaces. Translated by Bruce Gilligan.

New York: Springer-Verlag, 1981.

[12] Gil, J. B. “Heat trace asymptotics for cone differential operators.” Ph.D thesis,

Universität Potsdam (1998).



168

[13] Gilkey, Peter B. Invariance Theory, the Heat Equation, and the Atiyah-Singer

Index Theorem. 2d ed. Boca Raton: CRC Press, 1995.

[14] Grieser, D. “Basics of the b-calculus.” In Approaches to Singular Analysis, edited

by J. Gil, D. Grieser, and M. Lesch (Basel: Birkhäuser, 2001), 30–84.
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