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ABSTRACT

Let ΓM be the fundamental group of a knot or link complement M . The

discrete faithful representation of ΓM into PSL2(C) has an associated quater-

nion algebra. We can extend this notation to other representations, which are

encoded by the character variety X(ΓM). The generalization is the canonical

quaternion algebra and can be used to find unifying features of irreducible

representations, such as the splitting behavior of their associated quaternion

algebras. Within this dissertation, we will determine properties of the canon-

ical quaternion algebra for the Whitehead link complement and explore how

the algebra can descend to quaternion algebras of the Dehn (d,m)-surgeries

thereon.
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CHAPTER 1

INTRODUCTION

I would like, if I may, to take you on a
strange journey.

The Rocky Horror Picture Show

1.1 Setting the stage

The root of our story lies in two invariants of hyperbolic 3-manifolds: character

varieties and quaternion algebras. Character varieties are algebraic varieties

that parametrize representations of finitely generated groups to algebraic, re-

ductive Lie groups. Quaternion algebras are central simple algebras that can

detect properties of 3-manifolds (or -orbifolds) such as arithmeticity. These

two concepts meet at SL2(C)-representations. The interest herein of SL2(C) is

as the double cover of the orientation-preserving isometry group of hyperbolic

3-space Isom+(H3) ∼= PSL2(C). A hyperbolic 3-manifold (or -orbifold) by def-

inition is realized as the quotient space of H3 by some discrete subgroup of
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Isom+(H3). A discrete subgroup of PSL2(C) is called a Kleinian group, and

we will thus also use the term Kleinian group to refer to a discrete subgroup

of SL2(C).

1.1.1 First object: character varieties

The scope of this dissertation is some families of hyperbolic 3-manifolds (and

-orbifolds) with finitely generated fundamental group. To this end, we will

assume that all groups in this dissertation are finitely generated. The funda-

mental group ΓM := π1(M) of a complete hyperbolic 3-manifold (or -orbifold)

M admits a discrete and faithful representation to PSL2(C) whose image acts

on H3 such that the quotient under this quotient precisely produces the 3-

manifold (or -orbifold). There are, of course, other possible representations

(e.g. the trivial representation). Motivated to encode all representations in

a single mathematical structure, Culler–Shalen introduced character vari-

eties X(ΓM) of hyperbolic 3-manifolds in [13]. They proved that X(ΓM) is

an algebraic set where each point (i.e. character) encodes a representation,

detailed further in Section 2.1. There may be multiple components, so the

component of X(ΓM) which contains the character corresponding to the cho-

sen discrete and faithful representation is called the canonical component.

The dimension of the canonical component is precisely the number of cusps of

the manifold ([35]).
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Character varieties have been used to address several questions in hyper-

bolic geometry; we give a non-exhaustive list of examples. In their seminal

paper [13], Culler–Shalen used character varieties to find essential surfaces

in certain 3-manifolds. Przytycki–Sikora drew connections to skein algebras

to address incompressible surfaces through a topological lens as well as pur-

sue quantum invariants in [38]. Paoluzzi–Porti handled knot symmetries with

character varieties in [37]. Another vital application was in Gordon–Luecke’s

proof in [18] that knots are determined by their complements.

1.1.2 Second object: quaternion algebras

Quaternion algebras enter the picture as an invariant of Kleinian groups. The

trace field kΓ of a non-elementary Kleinian group Γ is the field extension of

Q by all of the traces of all of the elements of Γ. The associated algebra A(Γ)

is the kΓ-algebra of all finite sums of elements from Γ. This construction is

proven to be a quaternion algebra ([25, Theorem 3.2.1]).

A quaternion algebra is a 4-dimensional central simple k-algebra where

k is a field with char k ̸= 2 for the extent of this dissertation. Two trivial

examples are Mat2(R) and Mat2(C) (trivial in the sense of Brauer groups in

Section 3.3.1). The quintessential non-trivial example (in the sense of motivat-

ing the concept; see Section 3.1) is Hamilton’s quaternions H — an R-algebra
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defined as R⊕ iR⊕ j R⊕ kR where

i2 = j2 = k2 = ijk = −1.

Hamilton’s quaternions become a matrix algebra under a tensor product:

H⊗R C ∼= Mat2(C). When the tensor product of a quaternion k-algebra and

a field extension F ⊃ k is isomorphic to Mat2(F), we say that quaternion

algebra splits over F. If not, then the quaternion algebra remains a division

algebra ([52, 8.3.4]). (Compatibility with notation in other sources causes us

to temporarily use “k” as both a field and a generator of H; this is addressed

in Section 3.1.)

There is a naturally arising associated quaternion algebra of a hyperbolic

3-manifold (or -orbifold) by considering the Kleinian group which is the im-

age of the fundamental group under a discrete and faithful representation.

However, other irreducible representations of the fundamental group ΓM have

images in PSL2(C) that are also Kleinian groups and thus also have associated

quaternion algebras. The goal here is to expand on the study of the associated

quaternion algebras of points on the character variety to an algebra over the

field of rational functions of the canonical component (see Section 3.3). This

object is dubbed the canonical quaternion algebra.

Any question that we may ask of an associated quaternion algebra may be

asked of this generalized object, with the added flavor of searching for connec-
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tion to the geometry of hyperbolic 3-manifolds (and -orbifolds). Chinburg–

Reid in [9] used associated quaternion algebras to find closed hyperbolic 3-

manifolds whose geodesics are all simple. The quadratic field extensions over

which a quaternion algebra split uniquely determine (up to isometry) the

quaternion algebra itself ([25, Theorem 7.3.3]), and further provide restric-

tions on eigenvalues of matrices in the Kleinian group ([25, Lemma 12.2.1]).

Let M be a hyperbolic 3-manifold (or -orbifold). A key difference between

the quaternion algebra associated with an irreducible representation and the

canonical quaternion algebra is that the underlying field of a canonical quater-

nion algebra is not a number field. Instead, the canonical quaternion algebra

is over the field of rational functions of an affine algebraic variety. When

discussing the canonical quaternion algebra “corresponding” to M , there is a

subtle distinction between the algebra being defined over the character variety

CM versus being defined over the function field k(CM). For the sake of this dis-

sertation, we will consider the canonical quaternion algebra denoted Ak(CM)

over the function field. These technical details are presented in Section 3.3.

1.2 Main results

We will discuss a family of two-bridge links and look at one of its most famous

members: the Whitehead link complement W (more details in Section 4.1.1),

as see below in Figure 1.1.
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Figure 1.1: Righthanded Whitehead link in lemniscate form

Let CW denote the canonical component of the SL2(C)-character variety of

the Whitehead link complement. Since the dimension of the canonical compo-

nent is equal to the number of cusps of a hyperbolic 3-manifold, the variety CW

is a complex surface (i.e. 2-dimensional C-space). A Dehn surgery point

on CW is a character that corresponds to a representation that produces a

Kleinian group associated with the fundamental group of a manifold (or orb-

ifold) arising from Dehn surgery.

Chapter 4 contains the proofs of the main results listed below. The over-

arching goal is to explore when (if ever) a canonical quaternion algebra splits

over some quadratic extension of Q. The progression of these theorems begins

with the Whitehead link complement and performs increasingly specific Dehn

surgeries (defined in Section 4.1.2) on this manifold.

Firstly, Theorem A proves that the canonical quaternion algebra of CW

will remain a division algebra under the tensor product of any quadratic field

extension of Q. Additionally, Theorem A provides an example criteria for a

character whose associated quaternion algebra does split over a given quadratic
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field extension. Theorem B looks at all possible Dehn (d,m)-surgeries on one

component of W to determine that there will always be a character on those

subvarieties that splits over the quadratic extension Q(i). Theorem C specifi-

cally concerns (d, 1)-surgeries and finds a criteria for the failure of a canonical

quaternion algebra to split over a quadratic extension. Finally, Theorem D

focuses entirely on the properties of Dehn (−1, 1)-surgery, which produces the

figure-eight knot complement.

A character variety can be considered as the vanishing set of some polyno-

mial Ψ with coefficients in Q (or C). For the Whitehead link complement, the

polynomial ΨW ∈ Q[x, y, z] is given explicitly by Landes in [21] and restated

here in Proposition 4.1.1. Furthermore, the component CW is the vanishing

set of every polynomial in the ideal (ΨW ) ⊂ Q[x, y, z]. Let k(CW ) denote the

function field Frac(Q[x, y, z]/(ΨW )). We can denote the canonical quaternion

algebra of CW as a quaternion algebra over k(CW ) whose generating elements

arise from tautological representations (see construction in Section 3.3.2).

The stacked parenthetical notation k(CW )(
√
d) := k(CW ) ⊗Q Q(

√
d) de-

notes a quadratic extension of a function field where d ∈ Z is squarefree. We

will occasionally, for the sake of saving notional space, refer to splitting over

k(CW )(
√
d) as splitting over Q(

√
d). The first main result of this dissertation

in technical language is:
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Theorem A. Let d ∈ Q. Then Ak(W )⊗k(CW )(
√
d) is a division algebra. In

contrast, for all primes p ≡ 3 mod 4, there exists a character χρ ∈ CW such

that the associated quaternion algebra Aρ splits over Q(
√
−p).

The surface CW contains several significant characters, such as the charac-

ters of many manifolds (and orbifolds) arising from Dehn surgery on the link

components of W . Dehn (d,m)-surgery is a procedure where a torus is glued

into the 3-manifold such that a curve of slope d/m on a boundary component

now bounds a disc (see Section 4.1.2). We denote this manifold (or orbifold)

as Wm
d with the canonical component CWm

d
. The appearance of CWm

d
as a

subvariety of CW is the result of the surjection of π1(W ) onto π1(W
m
d ) (by

construction of Dehn surgery in Section 4.1.2):

π1(W ) π1(W
m
d )

SL2(C)

ρ(d,m)

ρ ◦ ρ(d,m)
ρ

That is, every SL2(C) representation of π1(W
m
d ) can be precomposed with

this surjection to get a representation of π1(W ). Thus, there is an inclusion

CWm
d
↪→ CW . We use this inclusion to prove the following:

Theorem B. For all but two (d,m)-surgeries, there exists a character χρ ∈

CWm
d

such that Aρ splits over Q(i) but no subfield of R. The exceptional slopes

are (1, 0) and (2, 0).
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Remark 1.2.1. There is technically a third exceptional pair (d,m), namely,

(0, 0). However, we will see in Section 4.1.2 why (0, 0) does not qualify for a

Dehn surgery.

Remark 1.2.2. As a notational note, the seemingly unprecedented choice of

d and m is chosen here due to occurence in the literature of expressing fixed

surgeries with d, such as (d, 0)-surgeries on a knot complement in [43].

Our next step is to fix one of our surgery coefficients: consider the family of

manifolds produced by (d, 1)-surgeries. (Note that this is never an orbifold for

d > 0 because the coefficients are coprime.) These are once-punctured torus

bundles of tunnel number 1 (see Section 4.2), whose character varieties have

been studied in work such as [4, 5, 48]. Let W 1
d denote the manifold produced

by performing (d, 1)-surgery on W , and let Ed denote C
W 1

d
.

Theorem C. Let p ∈ Z be such that p = (p1)
2p2 where p1, p2 ∈ Z and |p2| is

squarefree with |p2| ≠ 0, 1. If

(i) p < 0 or

(ii) p > 4 such that p2 ≡ 7 mod 8

then Ak(Ep) does not split over any quadratic extension of Q.

Our final step takes us to a single yet vital manifold. The figure-eight knot

complement is infamous: the only arithmetic knot complement ([40, Theorem
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2]); the least volume orientable, cusped hyperbolic manifold (along with its

sibling, [6, Theorem 1.1]); the unique 1-cusped hyperbolic 3-manifold with

nine or more non-hyperbolic fillings ([17, Theorem 1.7]); and more. Chinburg–

Reid–Stover use the figure-eight knot complement as a springboard example

for the study of Azumaya algebras arising from knot complements in [10,

Theorem 1.7]. In particular, they show that the canonical quaternion algebra

of the figure-eight knot complement is a division algebra that splits over Q(i).

The following theorem strengthens their result:

Theorem D. The canonical quaternion algebra (over the function field) of the

figure-eight knot complement splits over Q(i) and no other quadratic extension

of Q.

The figure-eight knot complement and the Whitehead link complement

share a property called arithmeticity, which is directly bound to their asso-

ciated quaternion algebras. (For extensive details on arithmeticity regarding

hyperbolic 3-manifolds, we recommend [25].) One of the intriguing contrasts

between Theorem A and Theorem D is that a property dependent on the

behavior of the associated quaternion algebra seems is not directly depen-

dent on the canonical quaternion algebra. As further, there are examples

of non-arithmetic 3-manifolds that satisfy the conditions of Theorem C (see

Example 4.2.7). There are arithmetic once-punctured torus bundles of tun-

nel number 1 whose canonical quaternion algebra’s splitting behavior is cur-
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rently unknown. For example, (5, 1)-surgery produces the sibling manifold

to the figure-eight, which is arithmetic; determining the splitting behavior of

its canonical quaternion algebra may shed light on this issue, but that is not

within the scope of this dissertation.

1.3 Organization

The remainder of this dissertation has been divided into three chapters. Chap-

ter 2 will review character varieties of hyperbolic 3-manifolds (and -orbifolds)

as constructed by Culler–Shalen ([13]). The motivating example therein is a

family of two-bridge links, whose character varieties are viewed through the

lens of Vieta polynomials. Chapter 3 will assemble facts about quaternion

algebras in several ways: as algebraic structures, as invariants of hyperbolic

3-manifolds (or -orbifolds), and as invariants of a character variety. Again,

we will go through the example of a family of two-bridge links. Chapter 4

turns our attention towards the Whitehead link complement and its surgeries.

We will compare how previously studied versions of their character varieties

line up with methods as presented in this dissertation. Chapter 4 also com-

pletes the proofs of the main results regarding canonical quaternion algebras

as presented in Section 1.2.
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CHAPTER 2

CHARACTER VARIETIES

Age cannot wither her, nor custom stale her
infinite variety.

William Shakespeare,
Antony and Cleopatra (II.ii)

2.1 Origins of the character variety

The dawn of the 20th century saw the birth of representation theory. Frobe-

nius introduced characters for finite groups in a series of papers in 1896 and

1897 (listed in [14]). This construction soon expanded from finite groups to

finitely generated groups, including the possibility with infinitely many group

relations, throughout the next several decades. In 1983, Culler–Shalen forged

a path between hyperbolic manifolds and representation theory ([13], later

[12]). We present their construction here from [13, Section 1].
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Throughout this dissertation, Γ denotes a finitely generated group. Let

{γ1, . . . , γn} be a generating set of Γ. The set R(Γ) = Hom(Γ, SL2(C)) can be

given the structure of an affine algebraic set over Q by considering the image

(ρ(γ1), . . . , ρ(γn)) ∈ (SL2(C))n ⊂ C4n where ρ ∈ R(Γ). Given a different

choice of generators, there is a canonical isomorphism between the two subsets

of multi-dimensional complex space obtained in this way ([13, Section 1.4]).

There is a one-to-one correspondence between the points of R(Γ) and the set

of representations of Γ in SL2(C). This gives us a natural name for this set.

Definition 2.1.1. R(Γ) is called the representation space of Γ in SL2(C).

Let ρ, φ ∈ R(Γ). We call ρ and φ equivalent if there exists g ∈ SL2(C)

such that φ(C) = gρ(C)g−1 for all C ∈ SL2(C). The character of such a

representation ρ is the function χρ : Γ → C defined by

χρ(γ) = tr(ρ(γ))

If ρ and φ are equivalent, then χρ = χφ because trace is a conjugacy invariant.

For each γ ∈ Γ, consider the regular function (i.e. function with a finite

derivative) τ γ : R(Γ) → C defined by evaluating the character of ρ at γ:

τ γ(ρ) = χρ(γ) = tr(ρ(γ))

Since trace is a conjugacy invariant, the function τ γ is constant on equivalence

classes of representations. The subring T of the ring of regular functions on
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R(Γ) generated by {τ γ}γ ∈Γ is finitely generated, as shown in [13, Proposition

1.4.1]. Therefore, we can fix γ1, . . . , γr ∈ Γ such that {τ γi
}ri=1 generates T .

Define t : R(Γ) → Cr by

t(ρ) = (τ γ1(ρ), . . . , τ γr(ρ)) ∈ Cr

Definition 2.1.2. The SL2(C) character variety of Γ is X(Γ) = t(R(Γ)).

Every irreducible component of X(Γ) containing the character of an irre-

ducible representation is a closed affine algebraic variety by [13, Proposition

1.4.4]. We can additionally induce a rational map Iγ : X(Γ) → C by τ γ on

R(Γ):

Iγ(χρ) = χρ(γ)

Consider known properties of representations and apply them to characters.

In general, if a representation ρ has some property P , then we will say that

χρ also has property P .

Definition 2.1.3. A representation ρ ∈ R(Γ) is called reducible if all the

ρ(γ) with γ ∈ Γ have a common one-dimensional eigenspace. Otherwise, the

representation is called irreducible.

Definition 2.1.4. A representation ρ ∈ R(Γ) is called abelian if its image

is an abelian subgroup of SL2(C). Otherwise, the representation is called

nonabelian.
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With relevant precision from [13], we now develop further language for use

in Section 3.3. An affine scheme is a locally ringed space isomorphic to the

spectrum of some ring. In general, a scheme X is a topological space with

a structure sheaf OX comprised of affine schemes. Below we construct the

character variety X(Γ) as a scheme.

Character varieties within the scope of this dissertation will typically be

considered as the vanishing set of a family of polynomials; however, there is

ambiguity of the field to which the coefficients of these polynomials belong.

In general, the character variety X(Γ) has an affine coordinate ring k(C) :=

Q[x1, . . . , xr]/V , where V is the ideal of all polynomials that vanish on X(Γ)

under the identification xi = Iγi
. Also in [13], it is shown that X(Γ) is defined

over Q in the sense that V is generated by polynomials in the variables xi with

coefficients in Q. We denote this by X(Γ)Q. For a number field k ⊂ C, let

X(Γ)k denote the base change X(Γ)Q ⊗Q k.

Lemma 2.1.5 ([10, Lemma 2.3]). The morphism R(Γ)k → X(Γ)k is surjec-

tive. Suppose that ηC is the generic point of an irreducible curve C ⊂ X(Γ)k.

Then there is an irreducible curve D ⊂ R(Γ)k such that t(ηD) = ηC and

t(D) ⊂ C, where ηD denotes the generic point of D. The function field k(D)

of D is a finite extension of the function field k(C) of C. Further, there exists



16

a representation PC : Γ → SL2(k(D)) such that

χPC
(γ)(ρ) = χρ(γ)

for any representation ρ ∈ D and γ ∈ Γ. In other words, evaluating the

function χPC
(γ) ∈ k(D) at the point ρ gives the value of the character χρ at γ.

The representation PC produced by ηD is a so-called tautological repre-

sentation P : Γ → SL2(k(D)) denoted by

PC(γ) =

f 1,1
γ f 1,2

γ

f 2,1
γ f 2,2

γ


where f i,j

γ ∈ k(D) is the function such that f i,j
γ (ρ) is the (i, j)-entry of ρ(γ).

This tautological representation will arise in the shift from an associated

quaternion algebra to a canonical quaternion algebra in Section 3.3.

2.2 Vieta polynomials

We take a moment to address a vital tool to our approach. Many works re-

garding the SL2(C) character variety of cusped hyperbolic manifolds discussed

in Chapter 1 rely on recursive functions reproduced independently, particu-

larly as a hybrid of the Fibonacci polynomials and the Chebyshev polynomials

(e.g. [5, 7, 8, 49, 50]). This dissertation will use Vieta polynomials, which

first appeared in [51, Chapter IX, Theorems VI and VII].
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Definition 2.2.1. The Vieta–Fibonacci polynomials satisfy V0(x) = 0,

V1(x) = 1, and the second order recurrence relation

Vn−1(x) + Vn+1(x) = xVn(x) (2.1)

Definition 2.2.2. The Vieta–Lucas polynomials satisfy v0(x) = 2, v1(x) =

x, and the second order recurrence relation

vn−1(x) + vn+1(x) = xvn(x) (2.2)

These recurrence relations are traditionally defined only for n ≥ 2 by the

form, for example, Vn(x) = xVn−1(x)− Vn−2(x) in [20, Chapter 47]. However,

the symmetry displayed in (2.1) and (2.2) lend themselves to extend to n ≤ −1

by the form Vn(x) = xVn+1(x) − Vn+2(x). With this in mind, we will use

the second order recurrence relations in (2.1) and (2.2) to express the Vieta–

Fibonacci and Vieta–Lucas polynomials for all n ∈ Z with the initial conditions

V0(x) = 0, V1(x) = 1, v0(x) = 2, and v1(x) = x.

The Vieta polynomials’ relation to other recursive polynomials provides

a bond to other work on character varieties. The reparameterization of the

Chebyshev polynomials Cn(x) = 2Tn(x/2) and Sn(x) = Un(x/2) satisfy the

shared relation hn+1(x) = xhn(x)− hn−1(x) with initial conditions C0(x) = 2,

C1(x) = x, S0(x) = 1, and S1(x) = x as listed in [2, Table 22.2]. The Fi-

bonacci polynomials Fn(x) and Lucas polynomials Ln(x) are defined by the
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shared relation hn+1(x) = xhn(x) + hn−1(x) with initial conditions F0(x) = 2,

F1(x) = x, L0(x) = 0, and L1(x) = 1 ([23], [20, Chapter 31]). In spirit,

the Vieta–Fibonacci and Vieta–Lucas polynomials use the reparameterized

Chebyshev polynomial relation with the Fibonacci and Lucas polynomial ini-

tial conditions. This decision hopefully lends intuition to the notation within

this dissertation.

There is a generalization of the Vieta polynomials called the Dickson poly-

nomials of the first and second kinds that were introduced in Dickson and

Schur in [15] and [45], respectively. (Note that there is no reference to Vieta

polynomials within these works.) The respective polynomials Dn(x, a) and

En(x, a) satisfy the second order recurrence relation hn+1(x, a) = xhn(x, a)−

a hn−1(x, a) with initial conditions D0(x, a) = 2, D1(x, a) = x, E0(x, a) = 0,

and E1(x, a) = 1. There is extensive work on the Dickson polynomials over

finite fields and applications to permutations of integers mod p. For more

details, see [31].

Generally, discussion of the Vieta polynomials relies on the choice of ring

or field where our parameter x lies. For example, it may be possible to express

Vieta polynomials as functional equations:
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Lemma 2.2.3. [20, Section 47.1] When x = µ+µ−1, the functional equations

for Vn(x) and vn(x) are

Vn(µ+ µ−1) =


µn − µ−n

µ− µ−1
, µ− µ−1 ̸= 0;

µn+1n, µ− µ−1 = 0

(2.3)

and

vn(µ+ µ−1) = µn + µ−n (2.4)

The functional equation (2.4) provides motivation to involve Vieta polyno-

mials in the work of this dissertation. Let C ∈ SL2(C) be a matrix with eigen-

values µ and µ−1. Then tr(C) = µ+ µ−1 and tr(Cn) = µn + µ−n = vn(tr(C)).

We will explore more connections, such as in Lemma 2.2.10. First, however,

we list general facts about Vieta polynomials that will assist in later compu-

tations. The next several lemmas can be found among others in [20, Chapter

47 Exercises].

Lemma 2.2.4 ([20, Exercises 47]). Vieta–Fibonacci and Vieta–Lucas polyno-

mials admit an index symmetry by negation

V−n(x) = −Vn(x) and v−n(x) = vn(x)

as well as an argument symmetry by negation

Vn(−x) = (−1)n+1Vn(x) and vn(−x) = (−1)nvn(x)



20

Proof. Both follow from the recurrence relations (2.1) and (2.2), respectively,

but we will present the proofs for only Vn(x). Firstly, we have that V0(x) = 0

and V−1(x) = xV0(x) − V1(x) = −1 = −V1(x). Thus, if V−n(x) = −Vn(x) for

all n ≤ n0, then

V−n0(x) = xV−n0+1(x)− V−n0+2(x) = −xVn0−1(x) + Vn0−2(x) = −Vn0(x).

To show that Vn(−x) = (−1)n+1Vn(x), it is sufficient to notice that V2n(−x)

will be a polynomial with only odd powers of x (which are all exactly negated

under negation of x) and that V2n+1(−x) will be a polynomial with even powers

of x (which are all invariant under negation of x).

Section 2.3 and Section 3.4 extensively use the following identities.

Lemma 2.2.5 ([20, Exercises 47]). Let Vn(x) be the nth Vieta–Fibonacci poly-

nomial.

1. Vn(x)
2 = Vn−1(x)Vn+1(x) + 1

2. Vr+s(x) = Vr+1(x)Vs(x)− Vr(x)Vs−1(x)

3. V2n(x) = Vn+1(x)Vn(x)− Vn(x)Vn−1(x)

4. V2n+1(x) = Vn+1(x)
2 − Vn(x)

2

5. Vn+1(x)
2 + Vn(x)

2 = xVn+1(x)Vn(x) + 1
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Proof. We may assume that n > 0; the case of n < 0 can be deduced using

the index symmetry of Lemma 2.2.4. For Property 1, we begin with the base

case that V0(x)
2 = V−1(x)V1(x) + 1 = 0 Assume, then, that for some n0 > 0,

the equality Vn(x)
2 = Vn−1(x)Vn+1(x) + 1 holds for all n < n0. Then

Vn0+1(x)Vn0−1(x) + 1 = Vn0−1(x) · (xVn0(x)− Vn0−1(x)) + 1

= xVn0(x)Vn0−1(x)− Vn0−1(x)
2 + 1

= xVn0(x)Vn0−1(x)− Vn0(x)Vn0−2(x)

= Vn0(x)(xVn0−1(x)− Vn0−2(x))

= Vn0(x)
2

For Property 2, without loss of generality, we may assume that r, s > 0 because

s < 0 and r < 0 can be handled with index symmetry. The property holds for

r + s = 0, 1, so now we assume that, for some n0 > 1, the equality Vr+s(x) =

Vr+1(x)Vs(x)− Vr(x)Vs−1(x) holds for all r + s < n0. We get Property 2 by:

Vr+s+1(x) = xVr+s(x)− Vr+s−1(x)

= x(Vr+1(x)Vs(x)− Vr(x)Vs−1(x))− (Vr+1(x)Vs−1(x)− Vr(x)Vs−2(x))

= (xVr+1(x)Vs(x)− Vr+1(x)Vs−1(x))− (xVr(x)Vs−1(x)− Vr(x)Vs−2(x))

= Vr+1(x)Vs+1(x)− Vr(x)Vs(x)

Properties 3 and 4 follows from Property 2 by letting r = n as well as s = n

and s = n+ 1, respectively. Property 5 is the only identity in this lemma not
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explicitly given in [20], so we verify below using the second order recurrence

relation and Property 1:

Vn+1(x)
2 = Vn(x)Vn+2(x) + 1

= Vn(x)(xVn+1(x)− Vn(x)) + 1

= xVn(x)Vn+1(x)− Vn(x)
2 + 1

Therefore, Property 5 holds.

Remark 2.2.6. An immensely notable consequence from the above lemma is

the fact that Vieta–Fibonacci polynomials always factor nontrivially in Z[x]

with the exception of n = 0,±1,±2. Furthermore, V2n(x) is always divisible

by x but V2n+1(x) never is.

The next lemma provides an example where one can change an expression

from a Vieta–Lucas polynomial to an expression in terms of Vieta–Fibonacci

polynomials.

Lemma 2.2.7 ([20, Exercises 47]). Let Vn(x) and vn(x) be the nth Vieta–

Fibonacci and Vieta–Lucas polynomials, respectively. Then

vn(x) = Vn+1(x)− Vn−1(x)

= xVn(x)− 2Vn−1(x)

= 2Vn+1(x)− xVn(x)
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Proof. To show the first equality, we begin with the base cases that v0(x) = 2 =

1− (−1) = V1(x)− V−1(x) and v1(x) = x = x− 0 = V2(x)− V0(x). As before,

we will prove the statements for n > 2 with the understanding that symmetry

extends this statement to n < 0. If we assume that vn(x) = Vn+1(x)−Vn−1(x)

for all n ≤ n0, then

vn0+1(x) = xvn0(x)− vn0−1(x)

= x(Vn0+1(x)− Vn0−1(x))− (Vn(x)− Vn−2(x))

= (xVn0+1(x)− Vn(x))− (xVn0−1(x)− Vn−2(x))

= Vn0+2(x)− Vn0(x)

The second two equalities in the lemma statement follow by the second

order recurrence relation of Vn(x).

There are situations in Section 2.3, Section 3.4, and Chapter 4 that rely on

the vanishing sets of Vieta–Fibonacci polynomials. To that end, we find the

roots of such polynomials:

Lemma 2.2.8 ([31, Lemma 2.17]). The roots of Vn(x) are 2 cos jπ
n

for integers

0 < j < n.

Proof. Recall that Vn(x) = Un−1(x/2); that is, the polynomials are the same

up to an index shift and scaling the argument of Un−1(x/2) by 2. The roots
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of Un(x) are cos jπ
n+1

for integers 0 < j < n+ 1 ([20, Section 41.10]), so by the

index shift and doubling the argument, our proof is complete.

Remark 2.2.9. As a consequence, this lemma emphasizes that V±1(x) has no

roots and V0(x) is identically zero.

One of the connections between Vieta polynomials and linear algebra is the

appearance of Vieta polynomials in powers of matrices with determinant 1.

Versions of the following lemma appear in several places in various notations,

choices of language, and occasional variation of the proof (e.g. [25, Lemma

3.1.3], [49, Lemma 3.1]). We here present this fact about the powers of matrices

with Vieta polynomials.

Lemma 2.2.10. Let C ∈ SL2(C). Then for all n ∈ Z,

Cn = Vn(tr(C)) · C − Vn−1(tr(C)) · I2 (2.5)

where I2 is the 2× 2 identity matrix.

Proof. Cayley–Hamilton states that C2 = tr(C) ·C − I2. For n > 0, the proof

proceeds by induction. For n < 0, repeat the induction using C−1 and −n.

This is another way to see that tr(Cn) = Vn(tr(C)) · tr(C) − Vn(trC) as

in Lemma 2.2.7. With these polynomial tools in hand, we now apply them to

find the character varieties of some two-bridge links.
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2.3 Character varieties of two-bridge links

2.3.1 Two-bridge links (and knots)

A link L in S3 is a piecewise linear embedding of a disjoint union of copies of

S1 ([39, Definition 0.1]). The 3-manifold S3 \L is called a link complement.

A particularly plentiful source of examples is the family of two-bridge link

complements. These are link complements in the oriented 3-sphere S3 whose

link boundary admits a projection as visualized in Figure 2.1.

n even

n odd

positive twist region negative twist region

Figure 2.1: Schematic of two-bridge links [a1, . . . , an]

Each box in the figure corresponds to a twist region with ai half-twists.

Every two-bridge link can be expressed as a ratio of coprime integers p and q
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where as a finite continued fraction ([39, Section 10.1], [44]):

p

q
= a1 +

1

a2 +
1

a3+
1

···+ 1
an

This identification of p/q to such a continued fraction is a bijection ([3, Section

3.2]). Note that in some notation, it is allowed for some ai to be negative

integers (e.g. [49]), but it is always possible to convert this to a tuple where

each block is positive. We will use b(p, q) to denote the two-bridge knot or link

corresponding to the ratio p/q; furthermore, we denote the link complement

B(p, q) := S3 \ b(p, q).

a

ℓa

bℓb

Figure 2.2: Two-bridge Hopf link with meridians and longitudes

A presentation of the fundamental group of B(p, q) follows from the canon-

ical Schubert normal form in [44] of the two-bridge diagram ([42, Proposition

1], [32, (2.1)], [28, Proposition 1]). Each link compoment in Figure 2.1 ad-

mits a meridian, which is a loop corresponding topologically to the meridian

of a torus neighborhood. For example, a and b in Figure 2.2 represent the
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meridians of their respective components. Let

iq = kip+ ri, 0 < ri < p and ei = (−1)ki

The fundamental group of a link complement B(p, q) admits a presentation

given in [25, Section 4.5]:

π1(B(p, q)) = ⟨a, b | aw = wa⟩ (2.6)

where

w = be1ae2 · · · bep−1 (2.7)

Just as each link component admits a meridian associated with the compo-

nent’s torus neighborhood, there is a corresponding longitude. In Figure 2.2,

these are labeled ℓa and ℓb. These will serve an important role in computing the

fundamental groups of the Dehn surgeries on the Whitehead link complement

in Section 4.1.2.

Any representation ρ ∈ R(B(p, q)) can be conjugated so that

a 7→ A =

λ 1

0 λ−1

 b 7→ B =

κ 0

ζ κ−1


By consequence, the entries of ρ(w) = W come from computing the represen-

tation of the word (2.7), which is dependent on both p and q. To satisfy the
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group relation aw = wa of (2.6), we require the following equality of matrices.λW 1 +W 3 λW 2 +W 4

λ−1W 3 λ−1W 4

 =

λW 1 W 1 + λ−1W 2

λW 3 W 3 + λ−1W 4

 (2.8)

We get a system of equations for matrix equality, noting redundancy:
W 3 = 0

W 1 −W 4 = (λ− λ−1)W 2

We thus define (dropping p and q from the notation for visual convenience but

keeping in mind their continued relevance):
Φ1 = W 3

Φ2 = W 1 −W 4 − (λ− λ−1)W 2

(2.9)

These equations are in terms of λ, λ−1, κ, κ−1, and ζ. Hence, the repre-

sentation variety R(Γ) is cut out by the ideal (Φ1,Φ2) ⊂ C[λ, λ−1, κ, κ−1, ζ].

We will see that in cases such as B(2p, 3), Φ1 and Φ2 are both reducible.

In fact, they have a nontrivial greatest common denominator, and the re-

maining factors will be associated with the abelian representations. We will

find the character variety X(Γ) by finding a birational map between the van-

ishing set of (Φ1,Φ2) in C5 (considered with coordinates corresponding to

{λ, λ−1, κ, κ−1, ζ}) and a subspace of A3
C.

The parity of p distinguishes between two-bridge knots and links ([44]).

Namely, when p is odd, B(p, q) is a knot complement; when p is even, B(p, q)
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is a two-component link complement. Two-bridge knots have been extensively

explored, including their character varieties (e.g. [24], [33]). We are thus mo-

tivated to study links and their character varieties within this dissertation.

2.3.2 b(2p, 3) two-bridge links

Within this section, we find the character varieties of two-bridge links of the

form b(2p, 3) with p > 3. The character varieties of two-bridge links has

been studied with differing techniques, such as Chebyshev polynomials in [49]

and palindromic symmetry in [7]. We will reproduce those results in this

section with for the purpose of completeness to account for our use of Vieta

polynomials.

Figure 2.3: Hopf and Whitehead links in two-bridge form

The family of links b(2p, 3) contains two famous links: the Hopf link and

the Whitehead link (see Figure 2.3). Since gcd(3n, 3) ̸= 1, we will consider

p = 3n + 1 and p = 3n + 2. While we will make statements about both

p = 3n + 1 and p = 3n + 2, only proofs for the case of p = 3n + 1 will be
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provided for the sake of space. The procedure for the case of p = 3n+2 is the

same.

The link group of b(2p, 3) is

π1(S
3 \ b(2p, 3)) = ⟨a, b | awp = wpa⟩ (2.10)

where

wp =


(ba)nb−1(a−1b−1)na(ba)na−1 p = 3n+ 1

(ba)nb(a−1b−1)na−1(ba)nb p = 3n+ 2

(2.11)

as given in [25]. The word wp for p = 3n+1 reduces to (ba)nb−1(a−1b−1)n(ab)n.

We have intentionally written the form of wp in (2.11) to evoke the parallels

between the cases of p = 3n+ 1 and p = 3n+ 2.

Trace is invariant under conjugacy and inversion, so tr(AB) = tr(BA) =

tr(A−1B−1) = z. In particular, the powers of AB, BA, and A−1B−1 as matri-

ces can be expressed with Vieta–Fibonacci polynomials where the polynomials

are evaluated with the same argument:

(AB)n = Vn(z)AB − Vn−1(z)

(BA)n = Vn(z)BA− Vn−1(z)

(A−1B−1)n = Vn(z)A
−1B−1 − Vn−1(z)
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The entries of matrix W p can thus be neatly written in terms of λ, λ−1, κ,

κ−1, ζ, and z, where

z = ζ + λκ+ λ−1κ−1

is the argument of a Vieta–Fibonacci polynomial. For example, for p = 3n+1:

W p = (Vn(z)BA− Vn−1(z)) ·B−1

·
(
Vn(z)A

−1B−1 − Vn−1(z)
)
· (Vn(z)AB − Vn−1(z)) (2.12)

We use the entries of the above (after expansive multiplication) to compute

the expressions of interest from (2.9): Φ1 and Φ2. We gather terms by the oc-

currence of the Vieta–Fibonacci polynomials with argument z, using identities

to simplify using higher powers of Vieta–Fibonacci polynomials. Note that for

convenience of reading, we drop p from our notation here; however, the exact

expressions for Φ1 and Φ2 rely on p. For p = 3n+ 1:

Φ1 =− ζVn+1(z)
3 − ζ(ζ − λκ−1 − λ−1κ)Vn(z)

3

+ ζ(λ+ λ−1)(κ+ κ−1)Vn+1(z)
2Vn(z)

− ζ(λ2 + λ−2 + κ2 + κ−2 + 1)Vn+1(z)Vn(z)
2

Φ2 =− (κ− κ−1)Vn+1(z)
3 − (κ− κ−1)(ζ − λκ−1 − λ−1κ)Vn(z)

3

+ (κ− κ−1)(λ+ λ−1)(κ+ κ−1)Vn+1(z)
2Vn(z)

− (κ− κ−1)(λ2 + λ−2 + κ2 + κ−2 + 1)Vn+1(z)Vn(z)
2



32

These each nicely convert to a polynomial of two factors. The first factor is

purely in terms of κ, κ−1, and ζ. The second polynomial has vanishing set

birational to the vanishing set of a polynomial in terms of x, y, and z where

x = λ+ λ−1, y = κ+ κ−1, and z = ζ + λκ+ λ−1κ−1. For p = 3n+ 1:

Φ1 = −ζ
(
Vn+1(z)

3 − xy Vn(z)Vn+1(z)
2

+ (x2 + y2 − 3)Vn(z)
2Vn+1(z)− (xy − z)Vn(z)

3
)

Φ2 = −(κ− κ−1)
(
Vn+1(z)

3 − xy Vn(z)Vn+1(z)
2

+ (x2 + y2 − 3)Vn(z)
2Vn+1(z)− (xy − z)Vn(z)

3
)

Notably, Φ1 and Φ2 have a nonzero common denominator. Regardless of which

case of p we consider, we may set:

Ψp(x, y, z)

=



Vn+1(z)
3 −xy Vn(z)Vn+1(z)

2

+(x2 + y2 − 3)Vn(z)
2Vn+1(z)− (xy − z)Vn(z)

3, p = 3n+ 1

Vn(z)
3 −xy Vn+1(z)Vn(z)

2

+(x2 + y2 − 3)Vn+1(z)
2Vn(z)− (xy − z)Vn+1(z)

3, p = 3n+ 2

(2.13)

Hence we find that Φ1 = −ζ ·Ψp(x, y, z) and Φ2 = −(κ− κ−1) ·Ψp(x, y, z).

Lemma 2.3.1. The polynomial Ψp(x, y, z) is nonconstant and irreducible in

C[x, y, z] for p > 3.
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Proof. If p > 3, then n > 1, so neither Vn(z) nor Vn+1(z) are equal to 0. Since

their product is the coefficient of x2, we have that Ψp is nonconstant. The

polynomial is quadratic in both x and y; that is, there are terms with x2, y2,

xy, and neither x nor y. If Ψp is reducible, then it must be able to be factored

into the product of three irreducible factors of form:

Ψp(x, y, z) = h1(z) ·
(
f1(z) + xf2(z) + yf3(z)

)
·
(
g1(z) + xg2(z) + yg3(z)

)
for some f1, f2, f3, g1, g2, g3, h1 ∈ C[z] where {f1, f2, f3} (resp. {g1, g2, g3}) are

pairwise coprime. The occurrences of x and y are symmetric in (2.13), so

another valid factorization into three irreducible factors is:

Ψp(x, y, z) = h1(z) ·
(
f1(z) + yf2(z) + xf3(z)

)
·
(
g1(z) + yg2(z) + xg3(z)

)
Because each factor is irreducible, there are two cases. For p = 3n + 1, these

cases are as follows.

Case 1: Let f1(z) + xf2(z) + yf3(z) = f1(z) + yf2(z) + xf3(z). Then f2 = f3

and g2 = g1:

Ψp(x, y, z) = h1(z) ·
(
f1(z) + f2(z)(x+ y)

)
·
(
g1(z) + g2(z)(x+ y)

)
= h1(z)f1(z)g1(z) + (x+ y) · h1(z)

(
f1(z)g2(z) + f2(z)g1(z)

)
+ (x+ y)2 · h1(z)f2(z)g2(z)
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This implies that the coefficient of xy in Ψp is precisely twice the coeffi-

cient of x2 (and also y2). But by (2.13), this would mean that

−Vn(z)Vn+1(z)
2 − Vn(z)

3 = 2Vn(z)
2Vn+1(z)

Vn+1(z)
2 + Vn(z)

2 = −2Vn(z)Vn+1(z)(
Vn+1(z) + Vn(z)

)2
= 0

which never occurs. Thus we have a contradiction.

Case 2: Let f1(z) + xf2(z) + yf3(z) = g1(z) + yg2(z) + xg3(z). Then f2 = g3

and f3 = g2:

Ψp(x, y, z) = h1(z) ·
(
f1(z) + xf2(z) + yf3(z)

)
·
(
f1(z) + xf3(z) + yf2(z)

)
We again look at the coefficients of x2, y2, and xy in comparison to (2.13)

to deduce:

f2(z)f3(z) = Vn(z)
2Vn+1(z)

f2(z)
2 + f3(z)

2 = −Vn(z)Vn+1(z)
2 − Vn(z)

3

Thus, (
f2(z)

2 + f3(z)
)2

= −Vn(z)(Vn+1(z)− Vn(z))
2

If this were true, then −Vn(z) would be a square in C[x, y, z]. However

we know that there are no repeated roots of −Vn(z) by Lemma 2.2.8.

Thus we have our contradiction.
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The exact same procedure holds for p = 3n+ 2.

With this irreducible polynomial in hand, we now find the character variety

of this family of two-bridge links. The following theorem can also be found in

[49] in the language of Chebyshev polynomials of the second kind with a differ-

ent choice of final expression. We will be introducing a new substitution into

this polynomial that turns out to be very useful when discussing quaternion

algebras:

β̂ := tr[a, b]− 2 = x2 + y2 + z2 − xyz − 4 (2.14)

Theorem 2.3.2. The canonical component of X(π1(B(p, q))) is precisely the

vanishing set of the polynomial Ψp(x, y, z); that is, when p = 3n+ 1,

β̂ · Vn(z)
2Vn+1(z) + Vn+1(z)− (xy − z)Vn(z) = 0, (2.15)

and when p = 3n+ 2,

β̂ · Vn(z)Vn+1(z)
2 + Vn(z)− (xy − z)Vn+1(z) = 0. (2.16)

The abelian representations (for all p) are the union of the two lines in C[x, y, z]

(x, 2, x) and (x,−2,−x).

Proof. The ideal (Φ1,Φ2) cutting out the representation variety can be decom-

posed into the union of two ideals: (ζ, κ− κ−1) ∪ (Ψp). The ideal (ζ, κ− κ−1)

defines the affine variety R(Γ)ab = {λ, λ−1,±1,±1, 0} ⊂ A5
C, which is two
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copies of A1. These are precisely all the abelian representations of R(Γ) be-

cause κ− κ−1 = ζ = 0 precisely means that b 7→ id2×2.

All the discrete and faithful representations thus lie into the subvariety of

R(Γ) defined by the ideal (Ψp) where x, y, and z equal λ+ λ−1, κ+ κ−1, and

ζ + λκ + λ−1κ−1, respectively. This subvariety has precisely one component

because Ψp is irreducible by Lemma 2.3.1. Under this map, Ψp is a natural

polynomial to define the canonical component and the affine lines defining the

abelian representations are (x,±2,±x).

Lastly, we verify that (2.15) and (2.16) are, in fact, equivalent to Ψp under

this change of variables. For p = 3n+ 1, consider Ψp − β̂ · Vn(z)
2Vn+1(z). We

recall Properties 1 and 5 from Lemma 2.2.5.

Ψp − β̂ · Vn(z)
2Vn+1(z)

= Vn+1(z)
3 − xy Vn(z)Vn+1(z)

2 − (z2 − xyz − 1)Vn(z)
2Vn+1(z)

− (xy − z)Vn(z)
3

= xy
(
−Vn(z)Vn+1(z)

2 + zVn(z)
2Vn+1(z)− Vn(z)

3
)

+
(
Vn+1(z)

3 − z2Vn(z)
2Vn+1(z) + Vn(z)

2Vn+1(z) + zVn(z)
3
)

= −xy Vn(z)
(
Vn+1(z)

2 − zVn(z)Vn+1(z) + Vn(z)
2
)

− z Vn(z)
2 (zVn+1(z)− Vn(z)) + Vn+1(z)

(
Vn+1(z)

2 + Vn(z)
2
)

= −xy Vn(z)− zVn(z)
2Vn+2(z) + Vn+1(z) (z Vn(z)Vn+1(z) + 1)

= −xy Vn(z) + Vn+1(z) + zVn(z)
(
Vn+1(z)

2 − Vn(z)Vn+2(z)
)
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= −xy Vn(z) + Vn+1(z) + zVn(z)

= Vn+1(z)− (xy − z)Vn(z)

The same procedure can be performed for p = 3n + 2. This completes our

proof.

It is interesting to note that Ψp is almost identical for p = 3n + 1 and

p = 3n + 2, save for the exchanging of Vn(z) and Vn+1(z). This parallel will

appear repeatedly throughout our computations.
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CHAPTER 3

QUATERNION ALGEBRAS

Hamilton committed the most famous act of
mathematical vandalism in history. . .

Matroids: A Geometric Introduction [19]

3.1 Quaternion algebra as an algebraic object

The complex numbers C are a two-dimensional real algebra in the sense that

the addition and multiplication of complex numbers happen within the R-span

of the basis {1, i}. A next sensible step is to attempy to model a real three-

dimensional space with a similar structure. In 1843, Hamilton had a spark of

inspiration and in his excitement carved the following equation into the stone

of Brougham Bridge in Dublin:

i2 = j2 = k2 = ijk = −1
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This became the defining equation for the so-called Hamilton’s quaternions

which can be expressed as the following set:

H :=
{
r0 + r1i+ r2j + r3k

∣∣ i2 = j2 = k2 = ijk = −1, r0, r1, r2, r3 ∈ R
}

(3.1)

This has the structure of an R-algebra. The core structure of this algebra

are can be expressed with only a couple of features: the underlying field and

the two standard generators are i and j which skew-commute (ij = ji) and

individually square to elements of that field. The other two basis elements are

the identity of the field and the product ij.

The generalized form was written down by Dickson in [16]. Since we already

used k in Chapter 2 to denote a field, we now reaffirm our notation: “k”

will always be a field and not a basis element as given in Hamilton’s original

demonstration. Also, to avoid confusion with indices and the traditional use

of i ∈ C as
√
−1, we will use I and J as the other two nontrivial generators.

Definition 3.1.1. Let k be a field of characteristic not equal to 2. A quater-

nion algebra A over k is a k-algebra of the form

{r01 + r1I + r2J + r3IJ | I2 = α, J2 = β, IJ = −JI,

r0, r1, r2, r3 ∈ k, α, β ∈ k∗}
(3.2)

where k∗ denotes the multiplicative units of k.
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In words, A will be a k-span of the basis {1, I, J, IJ}, where we call I and

J the standard generators for A. There are three essential components to

a quaternion algebra as seen in (3.2): the underlying field k and the squares

α and β of the two standard generators. This triple encodes the quaternion

algebra. To that end, we have a classical expression:

Notation. A Hilbert symbol for the quaternion algebra given in (3.2) is

(
α, β

k

)
. (3.3)

Hilbert symbols are far from unique. We will take advantage of the many

congruences, such as:

Lemma 3.1.2 ([25, Lemma 2.1.2]). Let A ∼=
(

α,β
k

)
. Then

A ∼=
(
β, α

k

)
∼=
(
α,−αβ

k

)
∼=
(
λ2
1α, λ

2
2β

k

)
(3.4)

where λ1, λ2 ∈ k∗.

Proof. These isomorphisms arise from a change of basis of (3.2): {1, J, I, JI};

{1, I, IJ,−αJ}; and {1, λ1I, λ2J, λ1λ2IJ}.

Let F ⊇ k be a finite degree field extension of k. There is a natural

extension of a k-algebra to an F-algebra by tensoring. In the case of Hilbert

symbol expressions of quaternion algebra, there is an isomorphism

(
α, β

k

)
⊗k F =

(
α, β

F

)
(3.5)
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extending the scalar field while maintaining the basis.

3.1.1 Splitting quaternion algebras

By construction, quaternion algebras are 4-dimensional algebras. More specif-

ically, they are central simple algebras, which is to say that the center of

A over k is precisely k and A contains no nontrivial proper (two-sided) ideals.

This structure lends itself to a traditional algebra: 2-by-2 matrices over a field.

Proposition 3.1.3. [52, Proposition 2.2.8] Let A ∼=
(

α,β
k

)
be a quaternion

algebra over k, and let k(
√
α) be a splitting field over k for the polynomial

x2 − α. Then the map

A → Mat2(k(
√
α))

I, J 7→


√
α 0

0 −
√
α

 ,

0 β

1 0


is an injective k-algebra homomorphism and an isomorphism onto its image

(noting that r ∈ k maps to rI2).

Every quaternion algebra is thus a subalgebra of a matrix algebra, so it

behooves us to see when a quaternion algebra is isomorphic to a matrix algebra.
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Corollary 3.1.4. [52, Corollary 2.2.12] There is an isomorphism

A ∼=
(
1, β

k

)
→ Mat2(k)

I, J 7→

1 0

0 −1

 ,

0 β

1 0


The application of Lemma 3.1.2 to Corollary 3.1.4 returns

Mat2(k) ∼=
(
1, β

k

)
∼=
(
β,−β

k

)

For a general k-algebra B, we say that F ⊇ k is a splitting field for B if

B⊗kF ∼= Mat2(F). This language is naturally adopted for quaternion algebras.

Definition 3.1.5. A quaternion algebra A is called split if A is a matrix

algebra. If A ⊗k F is a matrix algebra, we say that A splits over F. We will

(when notationally or linguistically convenient) say a k-algebra A splits over

F′ if A ⊗k (k ⊗ F′) is a matrix algebra.

The failure of a quaternion algebra to be split is a simple dichotomy

in comparison to the following definition (keeping in mind that we suppose

char k ̸= 2).

Definition 3.1.6. A is called a division algebra if it is an algebra in which

every nonzero element has an inverse.

Theorem 3.1.7 ([52, 8.3.4]). If A is a quaternion algebra over a field k with

char k ̸= 2, then A either is isomorphic to Mat2(k) or is a division algebra.
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Remark 3.1.8 ([25, Theorem 2.5.1]). In particular, for k = R, the only two

possibilities are A ∼=
(−1,−1

R

)
=: H or A ∼= Mat2(R), according to whether

both α and β are negative or not, respectively. We note that H is precisely

Hamilton’s quaternions — the quaternion algebra which satisfies (3.1). More-

over, if k′ ⊆ R, then
(

α,β
k′

)
fails to split over a real extension if and only if

α, β < 0.

There are several ways to verify if A is split or splits over a given field F.

We begin with an approach using the reduced norm. A quaternion algebra

being a matrix algebra is equivalent to containing a nonzero zero-divisor ([25,

Theorem 2.3.1]). Let {1, I, J, IJ} be the generators of A such that I2 = α

and J2 = β. The conjugate of an element r = r0 + rII + rJJ + rKIJ ∈ A is

defined as r = r0 − rII − rJJ − rKIJ .

Definition 3.1.9. Let r ∈ A ∼=
(

α,β
k

)
. The (reduced) trace is trd : A → k

where trd(r) = r + r, and the (reduced) norm is nrd : A → k where

nrd(r) = rr.

A nonzero r ∈ A is a zero-divisor if and only if nrd(r) = 0 by [52, Lemma

3.3.5]. Furthermore:

Lemma 3.1.10 (within the proof of [25, Theorem 2.3.1]). A is split if and

only if there exists an element r = r0 + rII + rJJ ∈ A such that nrd(r) = 0.
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Proof. If such an element exists, then our previous discussion concludes that

A is split. Conversely, let s = s0 + sII + sJJ + sKIJ ∈
(

α,β
k

)
such that

nrd(s) = 0; that is,

s0
2 − sI

2α− sJ
2β + sK

2αβ = 0

s0
2 − sJ

2β = α(sI
2 − sK

2β)

If any of s0, sI , sJ , sK ∈ k are zero, then we are done by multiplying a basis

element {1, I, J, IJ} to achieve the form given in the statement. We assume

that s0, sI , sJ , sK ̸= 0. Consider the element r = r0 + rII + rJJ where

r0 = s0sI + sJsKβ

rI = sI
2 − sK

2β

rJ = s0sK + sIsJ

Then

nrd(r) = (s0sI + sJsKβ)
2 − α(sI

2 − sK
2β)2 − β(s0sK + sIsJ)

2

= (s0sI + sJsKβ)
2 − (s0

2 − sJ
2β)(sI

2 − sK
2β)− β(s0sK + sIsJ)

2

= s0
2sI

2 + sJ
2sK

2β2 + 2s0sIsJsKβ − (s0
2 − sJ

2β)(sI
2 − sK

2β)

− s0
2sK

2β − sI
2sJ

2β − 2s0sIsJsKβ

=
(
s0

2sI
2 − s0

2sK
2β − sI

2sJ
2β + sJ

2sK
2β2
)
− (s0

2 − sJ
2β)(sI

2 − sK
2β)

= 0
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Thus r has the desired form and reduced norm; this existence is necessary and

sufficient.

Let F ⊇ k be a finite field extension, and let A′ := A ⊗k F. If r ∈ A′ such

that nrdA′(r) = 0, then A′ is split, and thus A splits over F. An example of

this verification is as below:

Lemma 3.1.11. Let k ⊇ Q, and let A ∼=
(
α, α + η2

k

)
for α ∈ k∗ and η ∈ k

such that η2 ̸= −α. Then A splits over k(i) where i ∈ C is the usual square

root of −1.

Proof. A straightforward calculation shows that η + iI + J ∈ A ⊗k k(i) has

reduced norm 0:

nrd(η + iI + J) = η2 − i2I2 − J2 = η2 + α− (α + η2) = 0

Remark 3.1.12. The caveat η2 ̸= α is required or else the second entry of the

Hilbert symbol is 0, which would force A to be strictly less than 4 dimensional

and thus not a quaternion algebra.

The concept of splitting a quaternion algebra can also be expressed through

an abstraction that considers the local fields. Let σ : k → F be a field

embedding. Then, with respect to that embedding, we obtain an isomorphism

generalized from (3.5)

(
α, β

k

)
⊗σ F ∼=

(
σ(α), σ(β)

F

)
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induced by

(r0+rII1+rJJ1+rIJI1J1)⊗σ c → c · (σ(r0)+σ(rI)I2+σ(rJ)J2+σ(rIJ)I2J2)

where {1, I1, J1, I1J1} and {1, I2, J2, I2J2} are the standard bases of
(

α,β
k

)
and

(
σ(α),σ(β)

F

)
, respectively.

As seen in Chapter 1 and Chapter 2, we are particularly interested in

subfields of C, so we specialize the above to that context. Let k ⊆ C be a

number field; that is, k is a finite degree field extension of Q. For any complex

embedding σ,

(
α, β

k

)
⊗σ C ∼=

(
σ(α), σ(β)

C

)
∼= Mat2(C)

We now must tend to real embeddings:

Definition 3.1.13. If σ : k → R is a real embedding of a number field k, then(
α,β
k

)
is said to be ramified at σ if

(
σ(α), σ(β)

R

)
∼= H.

3.1.2 Ramification of quaternion algebras

The ramification defined at the end of the previous section focuses on number

fields and complex numbers. This concept can be introduced over any field.

To do so requires a discussion about valuations and places.

Definition 3.1.14 ([25, Definitions 0.6.1, 0.6.2]). Let k be a field. A valua-

tion v on k is a function v : k → R+ such that
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(i) v(α) ≥ 0 for all α ∈ k, and v(α) = 0 if and only if α = 0;

(ii) v(αβ) = v(α) v(β) for all α, β ∈ k;

(iii) v(α + β) ≤ v(α) + v(β) for all α, β ∈ k.

The valuation v is called non-Archimedean if v(α + β) ≤ max{v(α), v(β)}

for all α, β ∈ k. Otherwise, v is called Archimedean.

Two valuations v, v′ on k are equivalent if there exists n ∈ R+ such

that v′(α) = [v(α)]n for all α ∈ k. An equivalence class of valuations is

called a place. Archimedean places are referred to as infinite places; non-

Archimedean places are referred to as finite places.

A familiar example of a non-Archimedean valuation is the p-adic valua-

tion. Consider the valuation | · |p : Q → R+ defined by mapping |α/β|p =

pordp(α)−ordp(β) where ordp denotes the highest power of p dividing an integer

([26, Section 4.3.1]). The localization with respect to this valuation is the

p-adics Qp.

Localization leads to a general definition of ramification and splitting that

does not explicitly reference matrices or reduced norm.

Definition 3.1.15 ([25, Definition 2.7.1]). Let kσ denote the localization of

the field over the place σ. Denote Aσ := A ⊗k kσ. Then A is said to be

ramified at σ if Aσ is a division algebra over kσ. Otherwise, A splits at σ.

The (finite) set of places at which A is ramified is finite and is denoted RamA.
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The above definitions of ramification rely on places and the associated local

fields. There is a local-global principle for splitting behavior that allows for

easy and explicit methods to determine over which fields a quaternion algebra

can split. The following theorem can be extended to higher-degree extensions

such as in [25, Theorem 2.7.2] and [52, Proposition 14.6.7], but in the course

of this dissertation, we are primarily concerned with quadratic extensions of

Q.

Theorem 3.1.16 ([25, Theorem 7.3.3]). Let A be a quaternion algebra over

a number field k and F ⊃ k be a quadratic field extension. Then the following

are equivalent:

1. F embeds in A;

2. F splits A;

3. F ⊗k kv is a field for each v ∈ Ram(A).

3.2 Associated quaternion algebras of hyperbolic manifolds

To set the stage for the canonical quaternion algebras upcoming in Section 3.3,

we begin with a review of an analogous study of the geometric representation

of a Kleinian group.
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3.2.1 Trace fields

The study of character varieties in Chapter 2 centers around traces of matrices.

In this subsection, we study properties of traces and, in particular, the traces

of the geometric representation of a hyperbolic 3-manifold fundamental group.

Definition 3.2.1. Let Γ be a non-elementary subgroup of PSL2(C). Let

Γ̂ = P−1(Γ) where P : SL2(C) → PSL2(C) is the usual projection map. Then

the trace field of Γ is the field

Q(tr(Γ)) := Q(tr ĝ | ĝ ∈ Γ̂).

Theorem 3.2.2 ([25, Theorem 3.1.2]). Let Γ be a Kleinian group of finite

covolume. Then the field Q(tr(Γ)) is a finite extension of Q.

By Mostow rigidity from [30, 27], hyperbolic structure is a topological

invariant of a finite volume hyperbolic 3-manifold, so we have the following:

Corollary 3.2.3 ([25, Corollary 3.1.6]). Let M = H3/Γ be a hyperbolic 3-

manifold of finite volume. Then Q(tr(Γ)) is a topological invariant of M .

The geometric importance of the trace field is the connection to lengths

of geodesics in the base manifold. Let M be a hyperbolic 3-manifold with

the associated Kleinian group Γ. Every closed geodesic arises as the axis of a

loxodromic element γ ∈ Γ, and the length of that geodesic is related to the

translation length ℓ0(γ) of γ. The specific conversion between length and trace
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is cosh(ℓ(γ)/2) = ± tr(γ)/2 by [25, Lemma 12.1.2] where ℓ(γ) is the complex

length. Thus the trace field determines the set of lengths of geodesics up to

rational multiplicities.

In the spirit of Lemma 2.2.10, the computation of the trace set {tr(ĝ) | ĝ ∈ Γ}

is given through integer polynomials in terms of a finite set. Firstly, directly

from Lemma 2.2.10,

tr(C−1) = tr(C) and tr(C2) = tr(C)2 − 2

Similarly,

tr(C1C2) = tr(C1) tr(C2)− tr(C1C
−1
2 ).

There is a significant identity that will appear in both associated and canonical

quaternion algebras regarding commutators. Let [C1, C2] denote the commu-

tator C1C2C
−1
1 C−1

2 . Then

tr([C1, C2]) = tr(C1)
2 + tr(C2)

2 + tr(C1C2)
2 − tr(C1) tr(C2) tr(C1C2)− 2.

3.2.2 Associated quaternion algebras

Let Γ be the fundamental group of a hyperbolic 3-manifold.

Theorem 3.2.4 ([25, Theorem 3.2.1]). For Γ ⊂ SL2(C) non-elementary, let

A(Γ) =
{∑

aiγi

∣∣∣ ai ∈ Q(tr(Γ)), γi ∈ Γ
}
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where only finitely many ai are nonzero. Then A(Γ) is a quaternion algebra

over Q(tr(Γ)).

This presentation of A(Γ) as a(n infinite) set is often intractable. Fortu-

nately, for nice groups, there is a more accessible expression for this algebra

encoded in the Hilbert symbol.

Theorem 3.2.5 ([25, Theorem 3.6.2]). If g and h are elements of the nonele-

mentary group Γ such that ⟨g, h⟩ is irreducible, g and h do not have order 2

in PSL2(C), and g is not parabolic, then

A(Γ) ∼=

(
tr(g)2

(
tr(g)2 − 4

)
, tr(g)2 tr(h)2

(
tr[g, h]− 2

)
k(Γ)

)
.

We know from the end of Section 3.2.1 that the trace field determines the

set of all possible lengths of geodesics. We now take a step further to see a

geometric implication of the splitting or ramification of a quaternion algebra.

The trace tr(γ) decomposes as the sum of the two eigenvalues λγ and λ−1
γ of

γ. These eigenvalues appear usefully in the following lemma.

Lemma 3.2.6 ([25, Lemma 12.2.1]). Let Γ be a non-elementary group and

assume that kΓ = Q(tr Γ) is a number field. For all non-trivial γ ∈ Γ, kΓ(λγ)

embeds isomorphically as a subfield of AΓ.

Recall from Theorem 3.1.16 that embedding into a quaternion algebra is

equivalent to splitting that quaternion algebra. We are therefore motivated to
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explore a general form of an associated quaternion, its splitting behavior, and

the geometric consequences thereof.

3.3 Canonical quaternion algebras

The associated quaternion algebras in the previous subsection are related to

the discrete, faithful representation with the associated trace field of a Kleinian

group. We now zoom out to view all representations via the character variety

(and its canonical component) and we ask: what would an analogous canonical

quaternion algebra look like?

3.3.1 Brauer groups and splitting with local rings

Let C be a curve. We look at the Brauer group of the function field k(C) cor-

responding to that curve versus the Brauer group of the curve itself. For the

former case, let A,A′ be central simple F-algebras (not restricted by dimen-

sion). We say that A ∼ A′ are Brauer equivalent if there exists n, n′ ∈ N

such that Matn(A) ∼= Matn′(A′).

Definition 3.3.1 ([52, Definition 8.3.3]). The Brauer group of F is the

set Br(F) of equivalence classes of central simple F-algebras under Brauer

equivalence.
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A curve C is, of course, not a field, so Brauer equivalence and the objects

thereof must be adapted. The first necessary definition is the generalization

when the algebra is not itself central simple.

Definition 3.3.2. A local ring R is one with a unique maximal ideal m

(without loss of generality, suppose m is a left ideal). The residue field of R

is k := R/m.

Definition 3.3.3 ([29, Section IV.1]). An algebra A over a commutative local

ring R with residue field k is called an Azumaya algebra if A is free of finite

rank as an R-module and A⊗R k is a central simple algebra over k.

Let A⊗R k be a quaternion algebra, in particular. Then we can talk about

the splitting behavior of A⊗Rk. While a ring R lacks the useful multiplicative

inverses of fields, we can address that issue by extending to the fraction field:

Frac(R) :=
{r
s

∣∣∣ r ∈ R, s ∈ R∗
}

that carries the behavior of fractions in a natural way:

• r1
s1

+
r2
s2

=
r1s1 + r2s1

s1s2
;

• r1
s1

· r2
s2

=
r1r2
s1s2

;

• 1R
s1

· s1
1R

=
1R
1R

= 1Frac(R);

where 1R is the multiplicative unit of R. With this in mind, we have the

following lemma:
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Lemma 3.3.4. If A⊗R k is a division algebra, then so is A⊗R Frac(R).

Proof. We prove this lemma by contrapositive. Suppose A ⊗R Frac(R) is

the matrix algebra Mat2(Frac(R)).The matrix algebra A′ = Mat2(R) is the

unique maximal order of Mat2(Frac(R)) ([41, Theorem 12.8]), so the R-order

A of A⊗R Frac(R) is conjugate into A′. Thus A⊗R k ⊆ A′ ⊗R k are central

simple algebras over k of the same dimension with a containment relation,

which means that they are equal. Since A′ ⊗R k ∼= Mat2(R⊗R k) ∼= Mat2(k),

we conclude that A ⊗R k = Mat2(k), which has nilpotents and thus is not a

division algebra.

The objects of Definition 3.3.3 can be applied to the scheme C with its

structure sheaf OC , with the aim of being able to use Lemma 3.3.4. Let χ ∈ C

be a point. The stalk OC,χ of OC is the local ring of C at χ. The residue class

field of that point is denoted k(χ). Thus, over the entirety of the variety:

Definition 3.3.5 ([29, Section IV.2]). An Azumaya algebra A on C is a

locally free sheaf of OC-algebras such that Aχ is an Azumaya algebra over the

local ring OC,χ for every χ ∈ C.

It is helpful to note that the description of Azumaya algebras in Defini-

tion 3.3.3 is simply a reduction of Definition 3.3.5 where the variety C is a

single point. The Brauer equivalence in this context is

A⊗OC
EndOC

(E) ∼= A′ ⊗OC
EndOC

(F)
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where E and F are OC-modules.

Definition 3.3.6 ([29, Section IV.2]). The Brauer group of a variety C

is the set Br(C) of equivalence classes of Azumaya algebras under Brauer

equivalence.

The desired object is a quaternion algebra. This requires a shift from

the Brauer group Br(C) to the Brauer group Br(k(C)) so that we can use

properties discussed in Section 3.1.

Theorem 3.3.7 ([29, Corollary IV.2.6]). The natural homomorphism Br(C) →

Br(k(C)) is injective. An Azumaya algebra Ak(C) over k(C) is defined up to

isomorphism by its image in Br(k(C)).

The formal construction of this homomorphism and proof of this corollary

relies on cohomologies as explored in [29, Example III.2.22], but this is beyond

the scope of this dissertation.

3.3.2 The Hilbert symbol of a canonical quaternion algebra

We proceed with the construction of the canonical quaternion algebra from

[10]. Let C be a canonical component for some character variety. Define

A(k(C)) to be the k(C) subalgebra over Mat2(F) generated by the elements

of PC(Γ) from Section 2.1; that is,

A(k(C)) =
{∑

aiPC(γi)
∣∣∣ ai ∈ k(C), γi ∈ Γ

}
(3.6)



56

where only finitely many ai are nonzero. The representation PC is irreducible

if C contains the character of an irreducible SL2(C) representation by [13,

Lemma 1.3.1]. Thus this A(k(C)) is a quaternion algebra over k(C) called the

canonical quaternion algebra, analogous to A(Γ) in Section 3.2:

Theorem 3.3.8 ([10, Theorem 1.1]). Suppose that Γ is a finite generated

group with SL2(C) character variety X(Γ) = X(Γ)Q ⊗Q C. Let k ⊂ C be a

number field, and suppose that C is a geometrically integral curve on X(Γ)k =

X(Γ)Q⊗Qk such that C⊗kC ⊂ X(Γ) has field of definition k. Further assume

that C contains an irreducible character. Then taking the k(C)-span of PC(Γ)

(as in (3.6)) defines a k(C)-quaternion algebra Ak(C) ⊂ Mat2(F) for some

finite extension F of k(C).

Lemma 3.3.9 ([10, Lemma 2.8]). There exists a pair of elements g, h ∈ Γ so

that the regular functions Ig
2 − 4 and I[g,h] − 2 are not identically zero on C.

More specifically, given any g ∈ Γ so that Ig is not constant with value ±2 on

C there is an element h ∈ Γ so that I[g,h] − 2 is not identically zero on C̃.

Observe that the set presentation in (3.6) resembles the set presentation

of an associated quaternion algebra in Theorem 3.2.4 by subsituting rational

functions for traces. The substitution similarly appears in the expressibility

of a canonical quaternion algebra by a Hilbert symbol:
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Corollary 3.3.10 ([10, Corollary 2.9]). Let Γ be a finitely generated group and

C be a geometrically integral curve over k that is a closed subscheme of X(Γ).

Assume that C contains the character of an irreducible representation, and let

g, h ∈ Γ be two elements such that there exists a representation ρ ∈ R(Γ) with

character χρ ∈ C for which the restriction of ρ to ⟨g, h⟩ is irreducible. Then

the canonical quaternion algebra A(k(C)) is described by the Hilbert symbol

(
I2g − 4, I[g,h] − 2

k(C)

)
.

We now discuss how behavior of the canonical quaternion algebra can be

determined by its behavior at a point. The algebra A(C) is called split when

its image under the injection in Theorem 3.3.7 is the matrix algebra. The local

ring OC,χ acts as the ring R from Lemma 3.3.4. Since k(C) ↪→ Frac(OC,χ), the

quaternion algebra
(

α,β
k(C)

)
injects into

(
α,β

Frac(OC,χ )

)
. Thus if

(
α,β
k(C)

)
is a matrix

algebra, then so is
(

α,β
Frac(OC,χ )

)
. Furthermore, if we consider the residue field

k(χ) at χ, Lemma 3.3.4 tells us that A ⊗OC,χ
k(χ) is also a matrix algebra.

All in all:

Lemma 3.3.11. Let A =
(

α,β
k(C)

)
be the canonical quaternion algebra of C

over its function field. If there exists a number field F and a point χ in CF

such that A⊗OC,χ
(k(χ)⊗Q F) is a division algebra, then A is also a divison

algebra.
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3.4 Canonical quaternion algebra of two-bridge link complements

Let Γ be the fundamental group of B(2p, 3), as given in (2.10). Let Vp = (Ψp)

be the ideal in C[x, y, z] generated by Ψp(x, y, z) from (2.13). The ideal Vp is

prime because Ψp is irreducible and C[x, y, z] is a UFD. Thus C[x, y, z]/Vp is

a field which we will denote k(B(2p, 3)).

Theorem 3.4.1. The canonical quaternion algebra of B(2p, 3) with p = 3n+1

or p = 3n+ 2 is

Ak(B(2p, 3)) ∼=
(
αp, βp

Vp

)
where αp ∈ {x2 − 4, y2 − 4, z2 − 4} (whichever is nonzero) and

βp =


(xy − z)Vn(z)Vn+1(z)− Vn+1(z)

2, p = 3n+ 1

(xy − z)Vn(z)Vn+1(z)− Vn(z)
2, p = 3n+ 2

(3.7)

Proof. Recall the expression of the canonical quaternion algebra from Corol-

lary 3.3.10: (
I2g − 4, I[g,h] − 2

k(C)

)
Here we have a choice of two elements of Γ to satisfy the conditions of Corol-

lary 3.3.10. We may choose any of the following pairs: ⟨a, b⟩; ⟨b, a⟩; or ⟨ab, a⟩.

Then the first entry αp of our Hilbert symbol may be any of the following:

I2a − 4 = x2 − 4; I2b − 4 = y2 − 4; I2ab − 4 = z2 − 4
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In all three pairs, however,

I[a,b] − 2 = I[b,a] − 2 = I[ab,a] − 2 = x2 + y2 + z2 − xyz − 4 = β̂

where we’re recalling β̂ = x2 + y2 + z2 − xyz − 4 from (2.14) for notational

shorthand. Thus we have an initial form

Ak(B(2p, 3)) ∼=
(
αp, x

2 + y2 + z2 − xyz − 4

Vp

)

where αp ∈ {x2 − 4, y2 − 4, z2 − 4} (whichever is nonzero).

The second entry βp requires more work. We will use Lemma 3.1.2 and

multiply β̂ by Vn(z)
2Vn+1(z)

2 (which is not identically 0 except when n =

0,−1).

(
α, x2 + y2 + z2 − xyz − 4

Vp

)
∼=
(
α, Vn(z)

2Vn+1(z)
2 (x2 + y2 + z2 − xyz − 4)

Vp

)

Again, we will only prove the situation for p = 3n + 1. From Theorem 2.3.2,

we know that

β̂ · Vn(z)
2Vn+1(z) +Vn+1(z)− (xy − z)Vn(z) = 0

β̂ · Vn(z)
2Vn+1(z) = (xy − z)Vn(z)− Vn+1(z)

β̂ · Vn(z)
2Vn+1(z)

2 = Vn+1(z) ((xy − z)Vn(z)− Vn+1(z))

This rightside expression is precisely βp in (3.7).

With this Hilbert symbol in hand, we tackle the specific example of the

Whitehead link complement and its Dehn surgeries.
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CHAPTER 4

THE WHITEHEAD LINK COMPLEMENT

If [J. H. C. Whitehead] expected concentrated
attention, he gave it in full measure himself.

M. H. A. Newman [36]
“John Henry Constantine Whitehead.

1904-1960”

4.1 The Whitehead link complement

4.1.1 The canonical quaternion algebra of the Whitehead link

complement

The Whitehead link complement is one of the most iconic hyperbolic two-

bridge two-component link complements. In the language of this dissertation,

we view the Whitehead link as the two-bridge link b(8, 3), which is the form

b(2(3 · 1 + 1), 3). We harness the work from earlier Section 2.3 and Section 3.4.
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Figure 4.1: Righthanded Whitehead link: twist, lemniscate, and two-bridge

The fundamental group of W is

ΓW = ⟨a, b | aw = wa⟩

where w = bab−1a−1b−1ab. The equation defining the Whitehead link com-

plement SL2(C) character variety was written down by Landes in [21] and

repeatedly verified in work such as [49]. It can also be directly computed from

Theorem 2.3.2 to present this dissertation as self-contained in this computa-

tion.

Proposition 4.1.1 ([21, Proposition 4]). The canonical component CW of the

SL2(C) character variety of the Whitehead link complement is cut out by the

polynomial

ΨW := z(x2 + y2 + z2 − xyz − 4)− (xy − 2z). (4.1)

The set of all the abelian representations in X(ΓW ) is the union of the two

lines

(x, 2, x) and (x,−2,−x).
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Remark 4.1.2. Of the abelian representations, the affine lines (x, 2, x) and

(x,−2,−x) contain the characters where the image of x is nontrivial.

Figure 4.2: Canonical component of the Whitehead link complement in A3
R

Having the canonical component of the character variety in hand, we apply

Theorem 3.4.1 to find a Hilbert symbol expression for the canonical quaternion

algebra.

Lemma 4.1.3. The Hilbert symbol of the quaternion algebra on the canonical

component CW of the Whitehead link complement character variety can be

written as

Ak(CW ) =

(
αW , x2 + y2 + z2 − xyz − 4

k(CW )

)
(4.2)

for αW ∈ {x2−4, y2−4, z2−4} nonzero. Furthermore, away from the subvariety

comprised of the intersection with the affine lines (x, 0, 0) and (0, y, 0),

Ak(CW ) =

(
αW , z(xy − 2z)

k(CW )

)
(4.3)
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On the intersection with the affine lines (x, 0, 0) and (0, y, 0), the canonical

quaternion algebra has the form, respectively,

Ak(CW ) =

(
x2 − 4,−1

k(CW )

)
and Ak(CW ) =

(
y2 − 4,−1

k(CW )

)
. (4.4)

Proof. The Whitehead link complement is of the form b(2p, 3), so Theo-

rem 3.4.1 immediately gives (4.2). The same theorem also gives (4.3) away

from z ∈ {2 cos π
2
} = {0}. At this value of z, we know that xy = z; moreover,

since z = 0, either x = 0 or y = 0. This gives us our exceptions along the

affine lines (x, 0, 0) and (0, y, 0). Substituting these affine lines directly into

(4.2) and using the congruences from Lemma 3.1.2 returns (4.4).

4.1.2 Dehn surgery on the Whitehead link complement

A Dehn filling of a 3-manifold with a torus boundary component is the proce-

dure of gluing a solid torus to the 3-manifold along that boundary component.

A Dehn surgery with surgery coefficients (d,m) along a link complement L

will mean the removal of a regular neighborhood of the link and then perform-

ing a Dehn filling along the resulting torus boundary, such that the meridian

of the solid torus T is glued to a simple closed curve in the homotopy class

[dµ + mℓ] where µ is a meridian and ℓ is its corresponding longitude as dis-

cussed in Section 2.3.1. Equivalently, one attaches a torus T to the manifold

such that the curve of slope d/m bounds a disc in T . Dehn surgery is a method
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through which one can obtain new manifolds (and orbifolds) whose geometry

can often be determined. For example, a powerful result is Thurston’s hy-

perbolic Dehn surgery theorem. We state it here for the relevant case of link

complements.

Theorem 4.1.4 ([47, Theorem 5.8.2]). Let M be a hyperbolic link complement.

If a finite number of integral pairs (d,m) is excluded from each boundary com-

ponent, then all remaining manifolds (or orbifolds) obtained by Dehn surgery

on M are also hyperbolic. Furthermore, all but finitely many Dehn surgeries

on a hyperbolic knot complement produce hyperbolic manifolds (or orbifolds).

Dehn surgeries produce a manifold when gcd(d,m) = 1 and an orbifold

otherwise. We will examine Dehn surgery on ∂aW with the understanding

that surgery can be analogously defined on the ∂bW component. First recall

the homological longitude described in Section 2.3.1. Just as w can be found

by using the Wirtinger presentation, we may use the same method to find

the longitude by tracking the undercrossings: ℓa = a−1w. Performing (d,m)-

surgery here is equivalent to trivializing the element adℓam in the fundamental

group ΓW . More details can also be found in [22].

Remark 4.1.5. We note that (d,m)-surgery and (−d,−m)-surgery produce

the same manifold (or orbifold).
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Remark 4.1.6. We take a moment to highlight that we are using the right-

handed Whitehead link, whose Dehn (1,−1)-surgery returns the figure-eight

knot complement. Many sources, such as SnapPy [11], use the left-handed

Whitehead link, where the figure-eight knot complement arises from Dehn

(1, 1)-surgery. We choose to use the right-handed to conform to the standard

construction of the Weeks manifold achieved by simultaneously performing

(5, 1)- and (5, 2)-surgery on the boundary components of the Whitehead link

complement, as introduced in [53, Chapter 5].

We now manipulate the trivialized word adℓa
m = id to be expressed as

ad−3m = (a−2w−1)m.

We use this form in particular to compensate for the λ and λ−1 factors in the

diagonal entries of W := ρ(w), so let ŵ := a−2w−1. The matrix Ŵ := ρ(ŵ)

can be found by multiplying A−2W−1 where W is from (2.12):

Ŵ =

Ŵ 1 Ŵ 2

0 Ŵ 4


where

Ŵ 2 = −(z2 − 1)

t̂ := tr(Ŵ )

= y(x2 − 2)z + x(z2 − xyz + 1)

= x(z2 − 1) + 2(x− yz)

(4.5)
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Definition 4.1.7. Consider the polynomials

ΨW := z(x2 + y2 + z2 − xyz − 4)− (xy − 2z)

Φm
d := Vd−3m(x) + (z2 − 1) · Vm(t̂)

Θm
d := Vd−3m+1(x)−

(
(x− yz) · Vm(t̂)− Vm−1(t̂)

)
where t̂ is as in (4.5). Let Vm

d := (ΨW ,Φm
d ,Θ

m
d ) ⊆ C[x, y, z]. We define the

algebraic set Cm
d as the vanishing set of Vm

d ; that is, the coordinate ring of Cm
d

is C[x, y, z]/Vm
d .

Proposition 4.1.8. The SL2(C) character variety of W d
m equals the variety

Cm
d from Definition 4.1.7, with some additional some abelian characters. Fur-

thermore, when m ̸= 0, the canonical quaternion algebra is

Ak(C
m
d ) ∼=

(
α, Vm(t̂)

(
(x2 − 2)Vm(t̂)− xVm−1(t̂)− vd−3m+1(x)

)
k(Cm

d )

)
(4.6)

where α ∈ {x2 − 4, y2 − 4, z2 − 4}.

Proof. Recall from (2.2.10) that Cn = Vn(tr(C)) · C − Vn−1(tr(C)) · I2. Thus:

Ad−3m = Vd−3m(x) · A− Vd−3m−1(x) · I2 (4.7)

Ŵm = Vm(t̂) · Ŵ − Vm−1(t̂) · I2

The equality Ad−3m = Ŵm relies on the equality of three matrix entries:

Vd−3m(x) · A1 − Vd−3m−1(x) = Vm(t̂) · Ŵ 1 − Vm−1(t̂) (4.8a)
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Vd−3m(x) · A4 − Vd−3m−1(x) = Vm(t̂) · Ŵ 4 − Vm−1(t̂) (4.8b)

Vd−3m(x) · A2 = Vm(t̂) · Ŵ 2 (4.8c)

We must be the solution set of the triple {(4.8a), (4.8b), (4.8c)}. This is

equivalent to being the solution set of the triple {(4.8a) + (4.8b), (4.8a) −

(4.8b), (4.8c)}, where we use “+” (resp. “−”) of equalities here to denote equat-

ing the sum (resp. difference) of the lefthand sides with the sum (resp. differ-

ence) of the righthand sides. The equations of this new tuple are, respectively,

xVd−3m(x)− 2Vd−3m−1(x) = t̂ Vm(t̂)− 2Vm−1(t̂) (4.9a)

(λ− λ−1)Vd−3m(x) = (Ŵ 1 − Ŵ 4)Vm(t̂) (4.9b)

Vd−3m(x) = Vm(t̂) · Ŵ 2 (4.8c)

Since A and Ŵ commute, we can adapt (2.8) to see that any solution of (4.8c)

is also a solution to (4.9b). We can next apply Lemma 2.2.7 to the lefthand

side of (4.9a) to get a pair of equalities {(4.10a), (4.8c)} with the same solution

set as {(4.8a), (4.8b), (4.8c)}:

2Vd−3m+1(x)− xVd−3m(x) = t̂ Vm(t̂)− 2Vm−1(t̂) (4.10a)

Vd−3m(x) = Vm(t̂) · Ŵ 2 (4.8c)
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The usefulness of (4.10a) is that we can use (4.8c) to convert the xVd−2m(x)

term to get a pair of equations with the same solution set:

2Vd−3m+1(x) = (t̂+ xŴ 2)Vm(t̂)− 2Vm−1(t̂) (4.11a)

Vd−3m(x) = Vm(t̂) · Ŵ 2 (4.8c)

The next step is to use (4.5) to see that t̂+ xŴ 2 = 2(x− yz) Thus, we divide

both sides of (4.11a) by 2 and get the pair of polynomials

Vd−3m+1(x) = (x− yz) Vm(t̂)− Vm−1(t̂) (4.12a)

Vd−3m(x) = −(z2 − 1)Vm(t̂) (4.8c)

The solution set of {(4.12a), (4.8c)} is precisely the zero set of {Θm
d ,Φ

m
d } as

given in Definition 4.1.7. Hence Bm
d is the SL2(C) character variety, excluding

some abelian characters. These abelian characters would lie on the pair of

affine lines (x, 2, x) and (x,−2,−x) instead of the variety cut out by Ψp, as

demonstrated in Theorem 2.3.2.

To write the canonical quaternion algebra, we use the form in Lemma 4.1.3

to get that

Ak(C
m
d ) =

(
α, β′

k(Cm
d )

)
where α ∈ {x2 − 4, y2 − 4, z2 − 4} and (where β is the second entry in the

Hilbert symbol from Lemma 4.1.3):
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β′ = Vm(t̂)
2β

= Vm(t̂)
2(xyz − 2z2)

= Vm(t̂)
2(−x(x− yz) + x2 − 2− 2(z2 − 1))

= Vm(t̂)
(
−x(x− yz)Vm(t̂) + (x2 − 2)Vm(t̂)− 2(z2 − 1)Vm(t̂)

)
= Vm(t̂)

(
−x(Vd−3m+1(x) + Vm−1(t̂)) + (x2 − 2)Vm(t̂) + 2(Vd−3m(x))

)
= Vm(t̂)

(
(x2 − 2)Vm(t̂)− xVm−1(t̂)− vd−3m+1(x)

)
which is precisely the second entry of the Hilbert symbol of (4.6).

Remark 4.1.9. The exclusion of m = 0 is rooted in the requirement that

Vm(t̂) ̸= 0, which will be addressed in Section 4.3.

In [34], the set of hyperbolic Dehn filling slopes of one component of the

Whitehead link complement is computed and is shown to be all but six slopes

(excluding the ill-defined (0, 0)): (0, 1), (1, 0), (1, 1), (2, 1), (3, 1), and (4, 1).

We will thus look at the contextual behavior in the families of (d, 1) and

(d, 0). The surgeries (d, 1) will produce manifolds; (d, 0)-surgeries, however,

will produce orbifolds.

4.2 Once-punctured torus bundles of tunnel number 1

The construction of character varieties arising from (d,m)-surgery in the previ-

ous section can be applied to known families of manifolds. We’ll start with the

once-punctured torus bundles with tunnel number one, where tunnel number
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one means that the once-punctured torus bundle admits a genus-two Heegaard

splitting ([4]). This is a one parameter family that can be found through Dehn

(d, 1)-surgery on the Whitehead link complement ([4, Theorems 1.2, 1.3]). For

small d, there are some familiar manifolds ([5]):

• W 1
1 is the positive trefoil knot complement;

• W 1
−1 is the figure-eight knot complement, which we discuss in more detail

in Section 4.2.2;

• W 1
5 is the figure-eight sibling manifold.

The family of manifolds W 1
d are all hyperbolic except for d = 0, 1, 2, 3, 4. Ex-

cluding those four cases, the fundamental group π1(W
1
d) has a discrete, faithful

representation into SL2(C) and so is of interest through the lens of the SL2(C)

character variety. Much work has been done on the SL2(C) and PSL2(C)

character varieties, typically using a different presentation of the fundamental

group (e.g. [5, 48]). Results here are compatible with those works but are

presented and proved in the language of this dissertation for consistency.

4.2.1 Quaternion algebra for (d, 1)-surgery

Definition 4.2.1. Recall that

ΨW := z(β̂)− (xy − 2z) (4.1)
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and the specialization of (d, 1) on Definition 4.1.7

Θ1
d := Vd−2(x)− (x− yz) (4.13)

Φ1
d := Vd−3(x)− (1− z2) (4.14)

Let I1 = (ΨW ,Θ1
d,Φ

1
d), and let Ed be the vanishing set of I1.

Lemma 4.2.2. The curve Ed is the SL2(C) character variety of (d, 1)-surgery

on the Whitehead link complement. Furthermore, the canonical quaternion

algebra admits the Hilbert symbol:

Ak(Ed) ∼=
(
x2 − 4, x2 − 2− vd−2(x)

k(Ed)

)
(4.15a)

∼=
(
(Vd−1(x)(x) + 2) (Vd−3(x)(x)− 2) + x2 + 1, x2 − 2− vd−2(x)

k(Ed)

)
(4.15b)

∼=
(
−Vd−3(x)− 3, x2 − 2− vd−2(x)

k(Ed)

)
(4.15c)

Proof. The character variety follows directly from Proposition 4.1.8 by set-

ting m = 1 with an interesting quirk: the element ΨW in the ideal is often

redundant.

Case 1 Let z ̸= 0. Then z ·ΨW is a nonzero polynomial:

z ·ΨW = (z2)2 − x(yz)z2 + z2(x2 − 2) + (yz)2 − x(yz)

= (z2 − 1)2 − (x− yz)(−x(z2 − 1)− (x− yz))− 1

= Vd−3(x)
2 − Vd−2(x)(xVd−3(x)− Vd−2(x))− 1
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= Vd−3(x)
2 − Vd−2(x)Vd−4(x)− 1

= 0

Since z ̸= 0, we must have ΨW = 0; that is, ΨW ∈ (Φ1
d,Θ

1
d) as an element

of an ideal in C[x, y, z]. This means that (4.13) and (4.14) are sufficient

to define Ed. We can find the canonical quaternion algebra through

Lemma 4.2.2. We first verify the second entry using the form from

(4.15c), which we can do since z ̸= 0. Recalling that z2 = 1 − Vd−3(x))

and yz = x− Vd−2(x),

z(xy − 2z) = x(yz)− 2(z2)

= x(x− Vd−2(x))− 2(1− Vd−3(x))

= x2 − 2− (2Vd−3(x)− xVd−2(x))

= x2 − 2− vd−2(x).

Thus (4.15a) and (4.15c) immediately follow from Proposition 4.1.8. The

equation (4.15b) requires a bit more work. By Proposition 4.1.8 when

m = 1,

Ak(Ed) ∼=
(
y2 − 4, x2 − 2− vd−2(x)

k(Ed)

)
∼=
(
z2(y2 − 4), x2 − 2− vd−2(x)

k(Ed)

)

We can see that:

z2(y2 − 4) = (yz)2 − 4z2
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= (x− Vd−2(x))
2 − 4(1− Vd−3(x))

= x2 − 2xVd−2(x) + Vd−2(x)
2 − 4 + 4Vd−3(x)

= x2 − 2(Vd−1(x) + Vd−3(x)) + (Vd−1(x)Vd−3(x) + 1)

− 4 + 4Vd−3(x)

= (Vd−1(x)(x)− 2) (Vd−3(x)(x) + 2) + x2 + 1

This completes (4.15b).

Case 2 Let z = 0. Then ΨW = xy, Vd−2(x) = x, and Vd−3(x) = 1. From

this, Vd−4(x) = 0. The zeroes of this function are x = 2 cos jπ
d−4

by

Lemma 2.2.8, and x ̸= 0 except when k/(d − 4) = 1/2. If x ̸= 0, then

we are on the affine line (x, 0, 0) and are thus one of the finite characters(
2 cos jπ

d−4
, 0, 0

)
. Let ˆk(Ed)j := C[x, y, z]/(x − 2 cos jπ

d−4
, y, z) denote the

coordinate ring at such a character. Then its specialized quaternion

algebra is:

Ak(Ed) ∼=

(
(2 cos jπ

d−4
)2 − 4,−1

ˆk(Ed)

)

∼=

(
cos2 jπ

d−4
− 1,−1

ˆk(Ed)

)

∼=

(
− sin2 jπ

d−4
,−1

ˆk(Ed)

)
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There’s an interesting mirror fact that pops up if d1 + d2 = 4; that is,

d1 − 2 = 2− d2.

Vd1−2(x) = V2−d2(x) = −Vd2−2(x)

Vd1−1(x) = V(2−d2)+1(x) = −Vd2−3(x)

vd1−2(x) = v2−d2(x) = vd2−2(x)

So if d1 + d2 = 4, working through the quaternion algebras from Lemma 4.2.2

tells us that the entries of the forms (4.15a) and (4.15b) are the same for

Ak(Ed1) and Ak(Ed2); the distinguishing feature is the underlying function

field:

Ak(Ed1) =

(
(Vd1−1(x) + 2) (Vd1−3(x)− 2) + x2 + 1, x2 − 2 + vd1−2(x)

k(Ed1)

)

Ak(Ed2) =

(
(Vd2−1(x) + 2) (Vd2−3(x)− 2) + x2 + 1, x2 − 2 + vd2−2(x)

k(Ed2)

)
This applies, for example, to the figure-eight knot complement and its sibling,

coming from (−1, 1) and (5, 1)-surgery, respectively.

Remark 4.2.3. In [5, Proposition 5.23], Baker and Petersen used the defining

polynomials of the form fn(y) = y− xz, etc. This seeming difference between

their notation and ours arises because they consider Dehn −(n + 2)-surgery

on the left-handed Whitehead link, and there is an index shift of the recursive

polynomial. The conversion of surgery notation is d = n + 2. By further
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recalling the index shift from Section 2.2, we see fn(x) = fd−2(x) = Vd−3(x),

which confirms consistency with the result of (4.2.2).

Given the nice form of a character variety and its canonical quaternion

algebra, we delve into splitting behavior.

Lemma 4.2.4. Let p ∈ Z such that Ep is hyperbolic (i.e., p ̸= 0, 1, 2, 3, 4). If

Ak(Ep) splits over k(Ep)⊗Q Q(
√
d), then either −p or −p(4− p) is a square

in k(Ep)⊗Q Q(
√
d).

Proof. The proof will use the reduced norm approach to make claims about

splitting. Considering the reduced norm of some element r0 + rII + rJJ ∈

Ak(Ep) (which is sufficient by Lemma 3.1.10), we deduce that certain elements

must exist inside the candidate field. (Later proofs will rely on their necessary

absence.) Let r0, rI , rJ ∈ k(Ep)⊗Q(
√
d); then the reduced norm of r0 + rII +

rJJ is

r0
2 − (−Vp−3(x)− 3) rI

2 − (x2 − 2− vp−2(x)) rJ
2 = 0.

Recall that Vn(2) = n and vn(2) = 2, so restricting to x = 2 gives z2 = 4− p.

As long as z ̸= 0 (that is, p ̸= 4),

r0
2
∣∣
x=2

+ p rI
2
∣∣
x=2

= 0(
r0

2

rI2

)∣∣∣∣
x=2

= −p
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for all p ̸= 4. However, r0 + rII + rJJ need not be free in x; by (4.13), y is

expressible in terms of x and z, but x and z are not linear terms and thus

cannot be free. Recall that z2 = 1 + Vp−3(x). Evaluated at x = 2, we get z =

±
√

1− (p− 3) = ±
√
4− p. Thus −p is a square in k(Ep)⊗Q(

√
d,
√
4− p) for

any quadratic splitting extension Q(
√
d), except possibly when p = 4. Because

p ∈ Z, this means that either −p or −p(4−p) is a square in k(Ep)⊗QQ(
√
d).

A direct corollary is the beginning of the proof of Theorem A.

Corollary 4.2.5. Let d ∈ Q. Then Ak(CW )⊗ k(CW )(
√
d) is a division alge-

bra.

Proof. If A(W ) ⊗ k(CW )(
√
d) is a matrix algebra, then so is the canonical

quaternion algebra of each character subvariety by Lemma 3.3.11. Lemma 4.2.4

says that if A(Ep) ⊗ k(Ep)(
√
d) is a matrix algebra, then either −p or 4 − p

is a square in k(Ep)(
√
d). We proceed by contradiction: if −p is a square in

k(Ep)(
√
d) for infinitely many primes p, then k(Ep)(

√
d) must be isomorphic

to an infinite field extension of Q, which is a contradiction. If instead only

finitely many −p are squares in k(Ep)(
√
d), then there exists some prime p0

such that 4 − p is a square in k(Ep)(
√
d) for all prime p > p0; this similarly

compels k(Ep)(
√
d) to be isomorphic to an infinite degree field extension of Q.

Therefore, A(W )⊗ k(CW )(
√
d) is a division algebra.



77

The requirement that either −p or 4− p is a square in the extension field

has thus been addressed across the entirety of CW . It is interesting to see if

there are subvarieties of CW whose canonical quaternion algebras do, in fact,

split over a quadratic number field.

Theorem C. Let p ∈ Z be such that p = (p1)
2p2 where p1, p2 ∈ Z and |p2| is

squarefree with |p2| ≠ 0, 1. If

(i) p < 0 or

(ii) p > 4 such that p2 ≡ 7 mod 8

then Ak(Ep) does not split over any quadratic extension of Q.

Proof. Proving this theorem requires examining the two cases of Lemma 4.2.4:

−p or −p(4− p) is a square in k(Ep)⊗Q Q(
√
d); that is,

•
√
−p ∈ k(Ep)⊗Q(

√
d) or

•
√

−p(4− p) ∈ k(Ep)⊗Q(
√
d)

The next step is to find a character in Ep where neither of the above inclusions

can hold for any d. Consider characters where x = 0. The satisfying polyno-

mials in (4.13) and (4.14) tell us that Vp−2(0) = −yz and Vp−3(0) = z2 − 1.
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This is dependent on p mod 4:

Vn(0) =



0, n ≡ 0 mod 2

1, n ≡ 1 mod 4

−1, n ≡ 3 mod 4

This work requires that z ̸= 0, so we must exclude the case Vp−2(0) = 0; that

is, the following machinery only works for odd p. Fortunately, there are the

following naturally arising characters on Ep:

χρ =


(0, 1,−1) ⇒ kρ(Ed) = Q and Aρ

∼=
(

−1,−2
Q

)
, p ≡ 1 mod 4

(0, 1, 1) ⇒ kρ(Ed) = Q and Aρ
∼=
(

−1,−2
Q

)
, p ≡ 3 mod 4

The ramification set of
(

−1,−2
Q

)
is Ram(Aρ) = {2,∞}. Theorem 3.1.16 tells

us that Aρ splits over Q(
√
d) if and only if every place in RamAρ does not

split in Q(
√
d) (i.e. Q(

√
d)v is a field for all v ∈ RamAρ. We know that the

real place returns a field, so Aρ splits over Q(
√
d) if and only if 2 does not

split in Q(
√
d). Recall from [46, Section 10] that the prime ideal (2) ⊂ Q(

√
d)

splits if d ≡ 1 mod 8; remains prime if d ≡ 5 mod 8; and ramifies otherwise.

Let’s examine the two cases −p and −p(4− p).

•
√
−p ∈ Q(

√
d): assuming that −p ̸∈ Q×2, let d = −p2, and we see that

d < 0 only for p2 > 0, so we may immediately rule out p < 0 with

|p| ̸∈ Q×2, giving us the necessary failure for (i). If p > 4, the necessary



79

failure arises when the prime ideal (2) splits in Q(
√
−p2); that is, the

necessary failure occurs when −p2 ≡ 1 mod 8, which gives us (ii).

•
√
−p(4− p) ∈ Q(

√
d): because of the gap between integer squares, we

know that −p(4 − p) ̸∈ Q×2 for all odd p ∈ Z. Thus, we may set

d = −p(4− p). But d = p2 − 4p > 0 for all p ̸= 0, 1, 2, 3, 4 which means

that Aρ cannot split over Q(
√
d) because of Remark 3.1.8. This gives us

the necessary conditions of failure for p < 0 in (i) and for p > 4 in (ii).

To make sure both bullet points are addressed when p > 4, we need to ensure

that −p2 ≡ mod 1 mod 8; that is, p2 ≡ 7 mod 8.

Example 4.2.6. The canonical quaternion algebra of the manifold m023 in the

SnapPy census [11] does not split over any quadratic extension because it arises

from (−3, 1)-surgery on one component of the Whitehead link complement.

Example 4.2.7. The canonical quaternion algebra of the manifold m022 in

the SnapPy census [11] does not split over any quadratic extension. This

manifold is nonarithmetic ([25, Appendix 13.6]) and comes from (7, 1)-surgery

on one component of the Whitehead link complement.

Remark 4.2.8. Note that p itself need not be square-free. For example,

the canonical quaternion algebra of the manifold produced by (63, 1)-surgery

(which is hyperbolic!) does not split over any quadratic extension because

63 = (3)2 · 7.
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4.2.2 Figure-8 knot complement

The figure-eight knot complement is an example throughout the theory of hy-

perbolic manifolds with abundant compelling properties. This manifold arises

from (1,−1)-surgery on one component of the Whitehead link complement.

Chinburg–Reid–Stover proved that Ak(E−1) splits over Q(i) in [10, Lemma

7.1]. We extend their statement by proving that Q(i) is the unique quadratic

extension.

Theorem D. The canonical quaternion algebra (over the function field) of the

figure-eight knot complement splits over Q(i) and no other quadratic extension

of Q.

Proof. Lemma 4.2.2 requires that V−3(x) = x − yz and V−4(x) = −(z2 − 1).

The former equation tells us that y is entirely dependent on x and z. The

latter equation tells us that z2 = x3 − 2x + 1. Thus we can neatly transition

our curve from A3
C to A2

C to obtain the curve y2 = x3 − 2x+ 1 in A2
C. This is

the same curve that Chinburg–Reid–Stover consider in [10], with a change of

notation that we will follow from the remainder of this proof: their y is our z.

They show that this coincides with the canonical component of the figure-eight

knot SL2(C) character variety. Specifically in [10, Lemma 7.1], they prove that

Ak(E−1) ∼=
(
x3 − 4x2 + 6x− 3, x− 2

k(E−1)

)
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and that this quaternion algebra splits over k(E−1)(i) via the reduced norm

of the word r = r0 + rII + rJJ where r0 = −2 − i + (1 + i)x, rI = i, and

rJ = 1 − i − x. We now go further. Now let’s assume that there exists some

other word r0 + rII + rJJ with reduced norm 0. Then we can evaluate the

polynomial equality at x = 1 (and so y = 0 as in Chinburg–Reid–Stover’s

notation):

r0
2 − rI

2(x3 − 4x2 + 6x− 3)− rJ
2(x− 2) = 0

r0
2
∣∣
x=1

− rJ
2
∣∣(−1) = 0(
r0
rJ

)2

= −1

Thus if Ak(E−1) splits over Q(
√
d), then −1 must be a square in any k(E−1)(

√
d).

But there exist characters ρ ∈ E−1 (such as constructed in the proof of The-

orem C) such that i ̸∈ kρ, so d = i itself and is the unique quadratic exten-

sion.

One clear distinction between Theorem D and Example 4.2.7 is that the

figure-eight knot complement is arithmetic while the manifold m022 is not.

However, as we witness through Theorem A, the splitting of the canonical

quaternion algebra seems to be unrelated to the arithmeticity of a manifold.

An interesting approach would be to find the splitting behavior of the figure-

eight sibling manifold (m003 in [11]), which comes from (5, 1)-surgery on one

component of the Whitehead link complement.
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(a) E−1 as subvariety of CW
(b) Side view of E−1 suggests

birational equivalence to
projection z2 = x3 − 2x+ 1

Figure 4.3: Canonical component of the figure-eight knot complement in A3
R

4.3 Dehn filling of the form (d, 0)

Dehn (d, 0)-surgery surgery has peculiar effects on a manifold. All such surg-

eries produce orbifolds with the exceptions of (0, 0), (1, 0), and (−1, 0). Dehn

(0, 0)-surgery fails to produce a manifold of any kind, whereas (1, 0)-surgery is

the trivial filling. In the case of the Whitehead link complement, (1, 0)-surgery

on one component produces the unknot complement. The Dehn (d, 0)- and

(−d, 0)-surgeries produce the same orbifold by Remark 4.1.5, so we will assume

d > 0 for the remainder of this section.

The behavior of (d, 0)-surgery has been studied on various knot comple-

ments. Of particular relevance to this dissertation is Rouse’s work on (d, 0)-

surgery on the 74 knot complement in [43].
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Theorem 4.3.1 ([43, Theorem 1.2]). Let M be the 74 knot complement. Let

T be the set of rational primes p such that there exists a place p lying above

p of the trace field of some hyperbolic Dehn (d, 0)-surgery on M at which the

canonical quaternion algebra associated to that surgery is ramified. Then T is

infinite.

The success of analyzing this orbifold surgery behavior on 74 motivates us

to pursue the same results for the Whitehead link complement. Let us consider

the ideal (x− y) ⊂ C[x, y, z] and the corresponding vanishing curve D ⊂ A3
C.

The intersection Cdiag := D ∩ CW is defined as the vanishing set of the ideal

(ΨW , x − y) ⊂ C[x, y, z], with the subscript to encode the sense that (x − y)

produces a diagonal affine subspace of A3
C. By substitution,

(ΨW , x− y) = (x− y, x2(z − 1)2 − z(z2 − 2))

as ideals in C[x, y, z], so the canonical quaternion algebra over the curve Cdiag

is:

Ak(Cdiag)
∼=

(
x2 − 4,−1

k(Cdiag)

)
∼=

(
y2 − 4,−1

k(Cdiag)

)
∼=

(
z2 − 4,−1

k(Cdiag)

)

We will take advantage of the above canonical quaternion algebra by pursuing

subvariety of X(W ) which intersects Cdiag.

Definition 4.3.2. Let Dd be the set in A3
C which is the solution set defined

by the ideal (ΨW , x− y, Vd(x)).
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Lemma 4.3.3. Dd is the finite collection of points which form the SL2(C)

character variety of the orbifold obtained by performing (d, 0)-surgery on both

components of the Whitehead link complement. Furthermore, Dd contains real

points; that is, there is a character χρ = (x, y, z) ∈ Dd such that x, y, z ∈ R.

Proof. Let m = 0 in Proposition 4.1.8. Then Vd(x) = 0, which is satisfied

precisely when x ∈ {2 cos jaπ
d
} where 0 < ja < d. The second polynomial in the

triple of Proposition 4.1.8 Vd+1(x) = 1 is also satisfied by this same set of x. If

Proposition 4.1.8 were repeated for surgery on the ∂b component, we would see

that there is no direct dependence on the longitude of ∂b when m = 0. Instead,

y must satisfy precisely the analogous Vd(y) = 0 and Vd+1(y) = 1 equations.

There are finitely many pairs coming from x ∈ {2 cos jaπ
d
} and y ∈ {2 cos jbπ

d
}

where 0 < jb < d. When a pair of x and y are known, Ψ becomes a cubic

polynomial of parameter z, which means that there are at most 3 roots for

each pair. This is a finite collection of points. Finally, because Ψ is cubic in z

with real coefficients, at least one of those roots must be real.

We now find a character on Dd that holds a property of particular interest:

splitting nontrivially over its underlying function field.

Lemma 4.3.4. Let p ≡ 3 mod 4 be prime. Then there exists a character

on Dd whose associated quaternion algebra splits over the quadratic extension

Q(
√
−p).
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Proof. Let p ≡ 3 mod 4 be prime. As curves, Dp ⊂ Cdiag for all p ̸= 0. This

returns that the canonical quaternion algebra for Dd can be written as

Ak(Dd) ∼=
(
x2 − 4,−1

k(Dd)

)
∼=
(
y2 − 4,−1

k(Dd)

)
∼=
(
z2 − 4,−1

k(Dd)

)

Consider the real character where x = y = 2 cos(π
p
). We know that there must

be a real character because z must be the root of a cubic polynomial with real

coefficients. There must be a real character χρ ∈ Dd such that

Aρ
∼=

(
(2 cos(π

p
)2 − 4,−1

k(Dd)

)
∼=

(
− sin2(π

p
),−1

k(Dd)

)

This Aρ splits over k(Dd)(i sin(
π
p
)). Since cos(π

p
) ∈ k(Dd) already, Aρ hence

splits over k(Dd)(ωp) where ωp is the primitive pth root of unity. In particular,

since we already have cos(2π/p) in our field, our quaternion algebra splits over

a root ωp of the p cyclotomic polynomial Φp(x). By [26, Example 4.14],

disc(Q(ωp)) = disc(Φp(x)) = (−1)(p−1)/2pp−2

For p ≡ 3 mod 4,

−p =
disc(Q(ωp))

pp−3

Both disc(Q(ωp)) and pp−3 are squares in Q(ωp), so −p must also be a square

in Q(ωp). Because Q(cos(2π/p)) ⊆ R, we know that

Q(cos(2π/p)) ⊊ Q(cos(2π/p),
√
−p) ⊆ Q(ωp)
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However, [Q(ωp) : Q(cos(2π/p))] = 2p, so we must have Q(cos(2π/p),
√
−p) =

Q(ωp). Because Q(cos(2π/p), z) is real and splits over ωp, it must also split

over
√
−p.

Corollary 4.3.5. Let p ≡ 3 mod 4 be prime. No closed manifolds (or possibly

orbifolds) arising from performing (p, 0)-surgery on both components of the

Whitehead link complement admits a canonical quaternion algebra that splits

over a real extension of the function field of the canonical component.

Proof. As shown in the proof of Lemma 4.3.4, there exists a character whose

real quaternion algebra has negative values in both entries of its Hilbert sym-

bol. Thus, there is no real extension over which the canonical quaternion

algebra splits.

4.4 Finale: splitting behavior of Ak(W )

We at last return to prove Theorem A:

Theorem A. Let d ∈ Q. Then Ak(W )⊗k(CW )(
√
d) is a division algebra. In

contrast, for all primes p ≡ 3 mod 4, there exists a character χρ ∈ CW such

that the associated quaternion algebra Aρ splits over Q(
√
−p).

Proof. If there existed d ∈ Q such that Ak(W )⊗ k(CW )(
√
d) where a matrix

algebra, then by Lemma 3.3.4, the specialization of the canonical quaternion

algebra at each point would also have to split over Q(
√
d). However from the
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handling of once-punctured torus bundles from Section 4.2, we know that this

is impossible from Theorem C.

Conversely, by Lemma 4.3.4, we have that for p ≡ 3 mod 4 prime, there

always exists a representation of Whitehead link complement whose associated

quaternion algebra does split over Q(
√
−p).
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