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ABSTRACT

REPRESENTATIONS OF POLYTOPES

Michael Gene Dobbins
DOCTOR OF PHILOSOPHY

Temple University, May, 2011

Igor Rivin, Chair

Here we investigate a variety of ways to represent polytopes and related
objects. We define a class of posets, which includes all abstract polytopes,
giving a unique representative among posets having a particular labeled flag
graph and characterize the labeled flag graphs of abstract polytopes. We
show that determining the realizability of an abstract polytope is equivalent
to solving a low rank matrix completion problem. For any given polytope, we
provide a new construction for the known result that there is a combinatorial
polytope with a specified ridge that is always projectively equivalent to the
given polytope, and we show how this makes a naturally arising subclass of
intractable problems tractable. We give necessary and sufficient conditions for
realizing a polytope’s interval poset, which is the polytopal analog of a poset’s
Hasse diagram. We then provide a counter example to the general realizablity
of a polytope’s interval poset.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

We begin with an overview of the context of concepts addressed in this
thesis and how they relate to each other, leaving details for later. We will
define basic concepts in the next section and others throughout the thesis as
they are needed.

The main impetus for this thesis is the observation that a Hasse diagram
of some given polytope’s face lattice may resemble a perspective drawing of
a larger polytope. Consider for example a triangle’s face lattice; this can be
drawn as the 1-skeleton of a cube balancing on a vertex as seen in Figure 1.1.
We would like the larger polytope itself to represent the combinatorics of the
original polytope, and for this we use its interval polytope. This is a polytope
that has as its face lattice the poset consisting of the intervals of the origi-
nal’s face lattice ordered by containment. Interval polytopes are related to E-
constructions for polytopes and bier spheres, which are both posets consisting
of a particular subset of intervals of a poset [3, 8, 17]. In general the interval
polytope of a simplex is a hypercube one dimension higher. The question then
is given a polytope, can we realize its interval polytope.

This question was asked by Lindström in [13]. Later an equivalent question
was considered in [4] where Broadie gives sufficient conditions for the realiz-
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Figure 1.1. A triangle and its face lattice.

ability of the antiprism of a polytope, the dual of the interval polytope, as part
of a program to find more efficient linear optimization algorithms, but gives no
indication as to whether all polytopes have an antiprism. The conditions re-
quire us to find a perfectly centered realization of the original polytope, a term
coined latter in [10]. This also appeared more recently as an open problem in
[11]. Note that realizability conditions make no distinction between duals since
one is realizable if and only if the other is. Here we give necessary and sufficient
conditions for the realizability of a polytope’s interval polytope. These condi-
tions require the original polytope to be realizable as part of a balanced pair.
We will show that if the original polytope is of dimension 3 or lower this can
always be realized, but we will give a counter example to this in 4-dimensions.

This puts the question into the more general class of problems of deter-
mining if a certain property holds for some realization of every combinatorial
type of polytope. Such problems are made difficult by consequences of the
universality theorem proved in [20], and recently exposed in [27], that for any
primary semialgebraic set, the solutions to a collection of multinomial equa-
tions and strict inequalities, we can find a corresponding combinatorial type
of 4-polytope that has this set, modulo some trivial transformations, as its re-
alization space. These transformations give a stably equivalent space, which
is slightly stronger then homotopy equivalence. Such a space may be discon-
nected, or have holes, or any manner of unpleasant topological feature we may
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hope to avoid in some search space.
A natural feature of properties that are general enough to be relevant to

polytopes in any dimension is to require an analogous property to hold for
the faces of the polytope as polytopes themselves. We say faces inherit such a
property. Prefect centeredness has this feature, and balance has an analogous
feature as well. For properties that faces inherit, we can use the same ideas in
the proof of the universality theorem to make these problems tractable.

If we start with a realization of some face of a combinatorial polytope,
it may not always be possible to extend this to a realization of the entire
polytope. The universality proof works by constructing a 4-polytope where
the combinatorics impose conditions on a ridge this way. The most restrictive
such condition possible is to force the ridge to be fixed up to projectivity
over all realizations of the combinatorial polytope. We call this a stamp
polytope of the projective type of the ridge. Below gave a construction for
the stamp polytope of any algebraic polytope in his thesis [1], and we give
another construction here. These are polytopes having algebraic coordinates
under some projectivity.

For algebraic polytopes, being able to fix the geometry of a polytope as
a ridge of a larger polytope reduces the problem of determining whether a
property that inherits to faces holds for some realization of every combinatorial
type to determining that for every projective type. This is a considerable
improvement since under combinatorial equivalence the space of realizations
could resemble any semialgebraic set, but under projective equivalence the
space, modulo affine transformations, is a convex set. Since the rigid face is of
codimension 2 this leaves a gap of 2 dimensions where some other argument
must be used to determine whether the property holds.

In contrast to polytopes of dimension d ≥ 4 we have from Steinitz simple
combinatorial rules for determining if a given poset can can be realized as the
face lattice of some 3-polytope [23]. In general when we want to determine
whether a poset is realizable, we can identify each face as a subset of vertices
and use Tarski’s theorem on the decidability of quantified algebraic statements
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to check if vectors can be chosen so that exactly the appropriate subsets satisfy
the definition of a face [11]. Here we reformulate realizability of a polytope as
a low rank matrix completion problem, which gives simpler conditions. This
is related to a result by Díaz in [6] showing that sign conditions on certain
minors of the Gram matrix of a polytope’s outward normals must hold for
every realization.

The realizability conditions we present here use facts about the flag graph
of a polytope, which are also used implicitly by Díaz. In [18], Peterin charac-
terizes the labeled flag graphs of graded posets. There may be several graded
posets having the same flag graph. Here we present a class of posets, which
we call cone connected, having a unique representative of every collection of
posets sharing the same labeled flag graph. Additionally we show there is an
equivalence of category between these, and we characterize the labeled flag
graphs of abstract polytopes. These are posets satisfying some necessary con-
ditions of face lattices, which are stronger than cone connectedness. This is
much more than what we would need to show the realizability conditions men-
tioned earlier, but gives a more complete picture of what is going on.

The content of this thesis is presented in nearly the reverse order of this
introduction. We begin with the most abstract and combinatorial results, then
proceed to successively more geometric and concrete ones. In Chapter 2, we
deal with labeled flag graphs and cone connected polytopes, then consider the
restriction to abstract polytopes. In Chapter 3, we give conditions for realizing
a polytope with a given lattice as its face lattice. In Chapter 4, we give more
detail on polytopes in projective space, and various operations we can preform
on polytopes. In Chapter 5, we use these operations to construct a stamp
polytope. In Chapter 6, we give conditions for realizing an interval polytope,
and we use the stamp polytope to construct a polytope that has no interval
polytope.
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1.2 Definitions

Here we briefly review definitions used throughout this thesis, and provide
sources where the reader may find detailed treatments. We write terms being
defined in bold, and we prefer to use the word ‘when’ for the definitional ‘if’ to
distinguish it from the logical ‘if’. The reader is advised to skim over the words
in bold, and use this section as a quick reference when needed. We assume basic
familiarity with predicate logic, quantification, sets, and the natural, rational,
and real numbers N ⊂ Q ⊂ R. As well as the corresponding standard notation.

We denote the disjoint union and product of sets by ⊔ and × respec-
tively. We use superscripts to represent multiple products of the same set
Xn ∶=X ×⋯ ×X, as well as exponentiation in R. To distinguish between an
indexed collection of a product’s elements {xi ∈ Xn}i∈I and the components
of a product’s element (xi)j ∈ X, we write both as a subscript but place the
subscript indicating the component outside of parentheses ( ⋅ )j, writing this
as {xi = ((xi)1, (xi)2,⋯, (xi)n) ∈Xn}i∈I .

A relation R is a predicate on two sets AB, R ∶A×B→ bool. When R
is true for a pair of elements we say they are related and write aRb. Otherwise
we say a and b are not related and write a /R b. We call related pairs the
incidences I of the relation.

I ∶= {(a, b) ∈A ×B ∶ aRb}

A partially ordered set or poset for short is a set O together with a relation
≤ on O2 satisfying the following axioms.

1. reflexivity: a ≤ a

2. antisymmetry: (a ≤ b and b ≤ a)⇒ a = b

3. transitivity: (a ≤ b and b ≤ c)⇒ a ≤ c

We call the elements of a poset clades, and we say a and b are comparable
when a ≤ b or b ≤ a, otherwise we say they are incomparable. The dual
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poset O∗ is the poset consisting of the same clades with order reversed. We
write c◇ instead of c when considering it in the context of O∗, so b◇ ≤ a◇ when
a ≤ b. Frequently when we define notation or terminology for posets we will
also define the corresponding term for the dual poset, which we call its dual.
This will often be the same term with the prefix ‘co-’. We denote by a < b, a ≤ b
but a ≠ b, and we let ≥ and > be the respective duals of ≤ and <. If there is a
minimal element it is denoted by � and maximal by ⊺, and when these exist we
say the poset is bounded from below and above respectively. The interval
[a, b] from a to b is the set of clades between them with the same order.

[a, b] ∶= {c ∈ O ∶ a ≤ c ≤ b}

In particular we always have [�,⊺] = O for bounded posets. We say a covers
b when this interval consists of its bounds alone, [a, b] = {a, b}. Generally the
way we visualized a poset is by drawing a Hasse diagram of it. This is a
diagram with a dot drawn for each clade in the poset and an edge between two
dots when one clade covers the other, drawn so the greater clade’s dot is higher.

For a subset C of a poset, we denote by ⋁C those clades that are minimal
among the upper bounds of C, and the dual by ⋀C.

⋁C ∶= {a ∈ O ∶ ∀c ∈ C(c ≤ a), ∄b ≤ a∀c ∈ C(c ≤ b)}

We call a poset O a join semi-lattice when for any pair of clades a, b ∈ O,
there is a single minimal upper bound ∣⋁{a, b}∣ = 1, which we call the join
and denote a ∨ b. We call the dual a meet semi-lattice with meet a ∧ b of
a and b. A poset is a lattice when it is both a meet and join semi-lattice.
We call a poset a complete lattice when, for any subset C, ⋁C is a single
clade, which is also how we denote that clade. Note that we could also define
complete lattices by the dual condition since they are equivalent. More about
lattices can be found in [22, 16].

Many times we are interested in posets consisting of a collection C of
subsets of some set X. In particular when this collection is closed under
intersection we call it a closure system consisting of closed sets. From this
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we get a closure operator sending each subset to the smallest closed set
containing it s ∶= ⋂{c ∈ C ∶ c ⊃ s}. We may also define a closure operator as a
function satisfying the following axioms.

1. A ⊂ A

2. A ⊂ B ⇒ A ⊂ B

3. (A) = A

The closure operator of a closure system always satisfies these axioms, and the
range of such a function is always a closure system. Also any closure system
is a complete lattice with meet and join given by ⋀C ∶= ⋂C and ⋁C ∶= ⋃C,
and for any complete lattice the intervals of the form [�, a] make up a closure
system that is order isomorphic to the lattice. In this way complete lattices,
closure systems, and closure operators are three ways of defining the same
mathematical object.

We call a closure system a topology when the finite union of closed sets is
again closed. In this case we call the complement of a closed set open. Usually
a topology is defined in terms of open sets as a collection where unions and
finite intersections of open sets are again open sets. These two definitions are
equivalent. We call the largest open subset A○ ∶= ⋃{U ⊂ A ∶ U open} of a set
A its interior. When a topology cannot be expressed as the disjoint union of
two nonempty closed sets we say it is connected, and we call the maximal
connected subsets of a topology its connected components.

An adjacency is a set of nodes N together with a relation ∼ satisfying
the following axioms.

1. antireflexivity: n ≁ n

2. symmetry: n ∼m⇒m ∼ n

We call the incidences E the edges, and G = (N,E) a graph. For any
given node the nodes adjacent to it are its neighbors nei(n). The induced
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subgraphs of N are graphs consisting of a subset of nodes M ⊂ N with the
edges that are between them {{n,m} ∈ E ∶ nm ∈M}. These form the closed
sets of a topology on N ⊔ E, and with this a graph is connected if and only
if for any nodes nm ∈ N there is a path between them, which is a sequence
of nodes n = n0,⋯, nk = m such that consecutive nodes are adjacent ni ∼ ni+1.
More on graph theory can be found in [7].

When the additional axiom totality a ≤ b or b ≤ a holds for a poset we say
it is totally ordered. We call a totally ordered subset of a poset a chain, and
when it is maximal among chains we call it a flag. We say a poset is graded
when all flags are isomorphic. We call the isomorphism class of clades ranks,
and when the flags are finite we attach a function rank ∶ O → Z that sends each
clade to the number of clades below it in a flag. The flag graph of a graded
poset is a graph consisting of a node for each flag F , and edges connecting F to
the other flags that contain all but one of F ’s clades nei(F) = {F ′ ∶ ∣F∖F ′∣ = 1}.
We say a poset is flag connected when its flag graph is connected, and we
say it is strongly connected when every interval is flag connected.

A group is a set Γ with an operation ∗ ∶ Γ2 → Γ satisfying the following
axioms.

1. identity: ∃id ∈ Γ ∶ id ∗ g = g ∗ id = g

2. inverse: ∀g∃g−1 ∈ Γ ∶ g−1 ∗ g = g ∗ g−1 = id

3. associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)

When we do not require the inverse axiom, we call this a monoid. We will
encounter a more general object than monoids in Section 2.2 called a category,
but since it is limited to only that section we do not define it here. A subgroup
is a subset of a group that is itself a group with the same operation. Subgroups
form a closure system, and we call the closure of a subset X ⊂ Γ of a group,
the subgroup generated by X. In many cases we will be interested in groups
consisting of functions with composition ○ as the group operation and the
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identity function as the identity group member. In this case we call function
application the action of the group.

A real vector space is a set of vectors V with two operations, vector
addition (+) ∶ V 2 → V , which must be a group operation, and scalar mul-
tiplication R × V → V , which we denote simply by sv for s ∈ R and v ∈ V ,
satisfying the following axioms.

1. additive commutativity: v + u = u + v

2. scalar distribution: s(v + u) = sv + su

3. vector distribution: (s + t)v = sv + tv

We call the group identity 0 the origin and a set of vectors {vi} linearly in-
dependent when the origin cannot be expressed as a nontrivial linear com-
bination of them ∑i sivi = 0⇒ ∀i, si = 0, otherwise we say they are linearly
dependent. When every vector can be expressed as a linear combination of
{vi} we say {vi} spans the vector space. We call a linearly independent set
that spans the vector space a basis. Every basis of a vector space has the
same size, which is usually called its dimension, but here we will call this size
its rank. We will restrict ourselves to only considering real vector spaces of
finite rank. The standard model for vector spaces we use is the rank r space
Rr with component wise addition and multiplication of reals for vector addi-
tion and scalar multiplication respectively, with the standard basis {ei}1≤i≤r
having (ei)i ∶= 1 and (ei)j ∶= 0 for j ≠ i. We call a function between vector
spaces preserving the vector space operations a linear transformation. For
any indexed basis (v1,⋯, vr) of a vector space there is a unique linear bijection
to Rr sending each vi to ei. We call the values in the image of a vector under
this linear bijection, its coordinates with respect to this basis. We then write
linear transformations as matrices with columns being the coordinates of the
images of the domain’s bases vectors. Note that all real vector spaces of the
same rank are isomorphic this way. Details on vector spaces and matrices in
general, not just real vector spaces, can be found in [12].
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We denote by V ∗ the space of linear functionals a∗ ∶ V → R and we recall
this is a vector space of the same dimension as V . We represent a∗ by a vector
a ∈ Rr where (a)i = a∗ei, which is enough to uniquely identify every linear
functional as a∗v ∶= ∑i(a)i(v)i. We denote the inner product of two vectors
by ⟨a, v⟩ ∶= a∗v, and may attach an inner product to any vector space V given
this way by a linear bijection between V and V ∗. We denote by ∥v∥ ∶=

√
⟨v, v⟩,

and we attach a topology to every real vector space with open sets given by
unions of open balls ⋃i∈I{u ∶ ∥vi − u∥ < εi}. Note that any choice of inner
product will generate the same topology. With this in mind we may refer to the
topology of a finite rank real vector space without specifying an inner product.

We call the monoid generated by linear transformations and translations,
which are functions ft ∶ V → V for t ∈ V of the form ft(v) ∶= v + t, affine
transformations, and we call a space X of points that this monoid acts
on an affine space when for any point x the monoid action gives a bijection
between translations and X by its images t ∈ V ↔ ft(x) ∈ X. We also use Rd

as the standard model for affine spaces. If we then choose a point to be the
origin we get back a vector space.

A linear subspace of a vector space is a subset that is closed under vec-
tor addition and scaler multiplication. That is, it is a vector space with the
same operations as the ambient space. The set of linear subspaces ordered by
containment forms a closure system with linear span as its closure operator,
which we call a real projective space. We treat this closure system as a space
consisting of the set of rank 1 linear subspaces, which would be lines in the
vector space, but we consider to be the points of this space, and we say the
set of points corresponding to a rank r vector space has dimension r − 1. The
origin in particular corresponds to the empty set in projective space and has
dimension −1. We call the action of the linear transformations of the underly-
ing vector space on the rank 1 subspaces a projective transformation. We
call a projective transformation a projectivity when it is invertible. In both
contexts we call the largest subspaces hyperplanes. The standard model we
use for real projective space is the space of linear subspaces of Rd+1, which we
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denote by RPd. We may represent a point by the coordinates of a vector span-
ning the corresponding subspace, which we call homogeneous coordinates.
An axiomatic treatment of projective spaces in general as lattices satisfying
some additional conditions, not just those coming from real vector spaces, is
presented in [9].

If we consider only those projective transformations leaving a particular
hyperplane fixed, which we call the horizon, we get a space of affine transfor-
mations acting on the space with the horizon deleted. In particular, in RPd we
will often delete the hyperplane xd+1 = 0, and send points in this affine space
to Rd by the map xi → xi/xd+1. We will also sometimes represent projective
transformations on Rd by their action under this map. These have the form
x → Ax+b

c∗x+1 . Since we delete the horizon, this may not be well defined every-
where, in particular where c∗x = 1. When c∗ = 0, this is an affine transforma-
tion and when A = I is the identity and b = 0 this is a perspectivity. Affine
space and projective space both inherit span and topology from vector spaces.
For projective space the span and the closed subsets come directly from those
of the underlying vector space, and for open subsets we ignore the origin. In
an affine space the span of a subset is the same as that of the vector space
with some point in the subset chosen as the origin, and open sets are given by
the open sets of this vector space. The relative interior of a subset S of a
vector, affine, or projective space is the interior of S in the topology attached
to the subspace spanned by S.

The convex hull conv(S) of a set S ⊂ Rd, or in general any real affine
or vector space, is the set of all points that can be expressed as a weighted
average of points in S.

conv(S) ∶= {∑
i

λisi ∶ si ∈ S,∑
i

λi = 1}

We note that convex hull is a closure operator, and we denote the convex join
by ⊍ to distinguish it from the join of other closure systems in the same space.
We also define the convex hull convh(S) of a subset of a real projective with
respect to a horizon h as the convex hull of that set in the corresponding affine
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space. Equivalently this is the positive and negative linear combinations of
vectors in some half space H with boundary h.

convh(S) ∶= {±∑
i

λisi ∶ si ∈ S ∩H, h = ∂H, λi ≥ 0}

We note that in projective space convexity looses the property being a closure
system, and we give more details in Section 4.3.

A polytope P = conv({vi}) is the convex hull of finitely many points vi.
In projective space a set is a polytope when it is a polytope in the affine space
with respect some horizon P = convh({vi}). The faces F of a polytope P
are subsets of P where a linear inequality that is satisfied at every point in
P , P ⊂ Ha,b s.t. Ha,b ∶= ⟨a, x⟩ ≤ b ∀x ∈ P , is an equality, F ∶= P ∩ Ha,b =
{x ∈ P ∶ ⟨a, x⟩ = b}. In this case we say the half space Ha,b and hyperplane
∂Ha,b support the face F , and a is an outward normal vector of F . The
face lattice of a polytope is the partially ordered set consisting of its faces
ordered by containment. The faces of a polytope form a closure system, so as
the name suggests, this is always a lattice. The dimension of a face is r − 1
where r is its rank in the lattice. For a polytope of dimension d we call the
0, 1, d − 2, and d − 1 dimensional faces vertices, edges, ridges, and facets
respectively, and the empty set ∅ has dimension −1. Details on polytopes can
be found in [26, 11].

A poset P is a combinatorial polytope when there exists a polytope P
with face lattice isomorphic to P . We say P is a realization of P . When two
polytopes are realizations of the same poset, we say they are the same com-
binatorial type. Our convention is to write geometric objects in a regular
font and use the same letters in a script font for the corresponding combinato-
rial objects. The only combinatorial 1-polytope is an edge, and its face lattice
is the only rank 2 poset with 4 clades. When every rank 2 interval of a poset
has 4 clades we say the poset satisfies the diamond condition. An abstract
polytope is a poset that satisfies the following conditions.
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1. It is bounded.

2. It is graded.

3. It is strongly connected.

4. It satisfies the diamond condition.

Note that these conditions are necessary for a poset to be a combinatorial
polytope. Abstract polytopes are presented in [15], which is concerned with
regular abstract polytopes and understanding their symmetry. These have
additional symmetry requirements. We will not, however, give the details of
regular abstract polytopes here.

We call a polytope with the dual face lattice P∗ a combinatorial dual
and in this context we call the orginal polytope the primal. We call a poly-
tope in a real vector centered when it contains the origin 0 ∈ P . For ev-
ery centered polytope we have a connonical realization of its dual, its po-
lar P ∗ ∶= {a ∶ ∀x ∈ P ∶ (⟨a, x⟩ ≤ 1)}, consisting of linear functionals that are
bounded by 1 on P .
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CHAPTER 2

LABELED FLAG GRAPHS

2.1 Cone Connected Posets

We call the flag graph of a graded poset with each edges labeled by the
rank of the clade where its flags differ, the labeled flag graph of the poset.
Peterin gives gives the following conditions for an edge labeled graph with
totally ordered labels to be a connected component of a graded poset’s labeled
flag graph [18]. We take the disjoint union of connected graphs satisfying the
conditions of this theorem to be axioms of an alternate definition of a labeled
flag graph, and we denote the space of such objects lfg.

Theorem 2.1. (Peterin) A connected edge labeled graph is the flag graph of a
graded poset if and only if it satisfies

lfg-1. For every triangle, all edges have the same label.

lfg-2. For every nonadjacent pair of distinct nodes u v, there are two labels
that appear on every path between u and v.

lfg-3. For every nonadjacent pair of distinct nodes u v with a unique
common neighbor z, the labels on uz and vz are consecutive.

The definition of a labeled flag graph implicitly describes a map ψ from
the space of graded posets to the space of edge labeled graphs. We may like
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to provide the inverse of ψ, but this function is not invertable. Instead we
provide a function χ constructing a poset that is in a sense universal among
the posets having isomorphic labeled flag graphs, and we will show that χ and
ψ restricted to these posets are inverses up to isomorphism. In the next section
we make the universality of these posets explicit by giving a round about way
of constructing these maps showing that ψ is a left-adjoint functor and χ is
its corresponding right-adjoint.

We start by seeing how to construct the appropriate poset from a labeled
flag graph. From a graph G with edges labeled by some totally ordered set
T where we represent the ranks of a poset O with rank ∶ O → T , we would
like to construct a poset χ(G) defined in terms of the graph in such a way
that χ ○ ψ(O) ≅ O and ψ ○ χ(G) ≅ G. We will, however, have to impose some
conditions on O and G. For this we define ψ and χ in the following way.

ψ(O) ∶= (flag(O),{({f, f ′}, rank(a)) ∶ {a} = f △ f ′})
χ(G) ∶= ({(g, r) ∶ g ∈ comp(G ∖ r), r ∈ T }, ≤∩)

Here χ(G) consists of the connected components of G with edges labeled
r removed, denoted G ∖ r, for each r ∈ T , and the relation on χ(G) is defined
by (g, r) ≤∩ (h, s) when g ∩ h ≠ ∅ are intersecting subgraphs of G and r ≤ s.
This relation does not, however, always give a poset as the notation may seem
to suggest. Specifically transitivity may fail in general. To avoid this we
restrict ourselves to graphs satisfying the following condition. We call an edge
labeled graph gap commuting when the labels are totally ordered and every
intersecting pair of edges with non consecutive labels belongs to an induced
square with alternating labels. We can think of this as allowing us to transform
a path so that edges identified by non consecutive labels effectively commute.
This is in fact an alternative formulation for one of the axioms of a labeled
flag graph.

Lemma 2.2. Under Conditions lfg-1 and lfg-2 of Theorem 2.1 Condition
lfg-3 is equivalent to the gap commuting property.
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Proof: We first show that a labeled flag graph is always gap commuting. Let
G be a graph where the conditions of Theorem 2.1 hold and let n0n1 and n1n2

be edges with non consecutive labels. If n0 and n2 are adjacent, then n0n1n2

is a triangle where more than one label appears, which violates lfg-1, so they
cannot be adjacent. Now, assuming that n1 is the unique common neighbor
between them violates lfg-3, so there must be another node n′ that is also
a common neighbor of n0 and n2, which gives us a square containing these
edges. If n1 and n′ are adjacent, then this edge either does not have the same
label as n0n1 or that of n1n2, and again lfg-1 is violated, so the square is
induced. Finally, by lfg-2 the edge labels are alternating, so the graph is gap
commuting.

For the reverse direction suppose G is gap commuting, and let n0 and n2 be
non adjacent nodes of G with a unique common neighbor n1. Assuming n0n1

and n1n2 have non consecutive labels, there are edges n′n2 and n0n′ with these
same respective labels, but this violates the uniqueness of n1, so the labels on
n0n1 and n1n2 must be consecutive and lfg-3 holds.

We now see that the gap commuting property ensures the relation is that
of a poset as desired.

Lemma 2.3. χ(G) is poset for any gap commuting graph G, and for any
chain a(g1,r1) < ⋯ < a(gk,rk) there is a node n ∈ ⋂i gi.

Proof: We proceed by induction on the length of chains having such a node.
Suppose a(g1,r1) < ⋯ < a(gj ,rj) and a(gj ,rj) < ⋯ < a(gk,rk) and there are nodes
n≤j ∈ ⋂i≤j gi and n≥j ∈ ⋂i≥j gi. Since both n≤j, n≥j ∈ gj are in the same compo-
nent of G∖rj, there is a path γ between them that does not include any edges
labeled rj. For any adjacent pair of edges of γ with labels r and r′ where
r < rj < r′, we can find a new path where all edges are the same except where
these two edges are replaced by edges that have these two labels appearing in
the reverse order. In this way we can construct a new two-part path γ>j ⋅ n ⋅ γ<j
from n≤j to n≥j passing through n where all edge labels of γ>j are greater than
rj and all edge labels of γ<j are less than rj. For i < j, the path γ>j between n
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Figure 2.1. Posets from the left are: not flag connect, flag connected but
not cone connected, cone connected but not strongly connected, strongly
connected.

and n≤j ∈ gi includes no edges labeled ri, so n ∈ gi, and for i > j, the path γ<j

between n and n≥j ∈ gi includes no edges labeled ri, so n ∈ gi, and none of these
edges are labeled rj, so n ∈ gj. Thus, n ∈ ⋂i gi. For a chain a(g1,r1) < a(g2,r2)
of length 2 this is trivial since by definition of ≤∩ the components must inter-
sect giving n ∈ g1 ∩ g2, and by induction on the length of a chain starting with
this case, this holds for any chain. In particular the case j = 2, k = 3 shows
that the relation is transitive. That χ(G) is reflexive and antisymmetric is an
immediate consequence of the definition of ≤∩, since two components of G ∖ r
are exclusively either identical or disjoint, and the ranks are totally ordered.
Hence, χ(G) is a poset.

In general several graded posets may have the same labeled flag graph, and
as such it cannon be the case that every poset arises as the image of some graph
under χ. We call a graded poset cone connected when for any clade c the
poset of all clades comparable to c is flag connected, and we denote the space
of these by ccp. As we will see χ(G) gives the unique cone connected poset
that has G as its labeled flag graph. This property is closely related to but
slightly weaker than strong connectedness, which is part of the definition of an
abstract polytope, but for bounded posets stronger than flag connectedness.
Figure 2.1 gives examples illustrating the differences between these.



18

Theorem 2.4. χ(G) is a cone connected poset for any gap commuting graph G.

Proof: To see this let c(gr,r) be a clade of χ(G), and consider two flags with
this element

f = {c(h0,0), ⋯, c(hr=gr,r), ⋯, c(ht,t)}, f ′ = {c(h′0,0), ⋯, c(h′r=gr,r), ⋯, c(h′t,t)}

For each of these flags, by Lemma 2.3 there is a node n ∈ ⋂s hs, n′ ∈ ⋂s h′s
in the respective subgraphs of these flags. Since n and n′ are both in the
same component of G ∖ r, there is some path γ = {n = n1 - n2 - ⋯ - nk = n′}
between them that does not include any edge labeled r, and all of the nodes
in γ are contained in gr. Moreover, the components for each rank of each
successive node of γ differs from that of the previous node in at most 1 of
these components, so the corresponding flags are either adjacent or identical,
and we get a path in the labeled flag graph of {c ∈ χ(G) ∶ c ⋛ c(gr,r)}. Hence,
χ(G) is cone connected.

Now that we have established the domain and range of ψ and χ we would
like to show that ψ and χ are inverses up to isomorphism on their respective
ranges. We get this isomorphism by looking at how they act elementwise on
the objects of their respective domains. For this we let ψO be a function on O
sending each clade c to the subgraph induced by flags containing c and its rank
(g, r). We let χO send these components in ψ(O) to the corresponding clades
in χ ○ ψ(O). We let χG be a function on G sending each node n to the flag
consisting of the connected components of G∖ r for each r ∈ T that contain n.
And, we let ψG send these flags in χ(G) to the corresponding nodes in ψ○χ(G).

Theorem 2.5. ψ and χ give a bijection up to isomorphism between the space
of labeled flag graphs lfg and cone connected posets ccp.

Proof: We first show χO ○ψO ∈ isoccp. Since χO is a partial function, we must
show that χO ○ ψO is a well defined function. Specifically we require that

dom(χO) = ψO(O)
{(g, r) ∶ g ∈ comp(ψ(O) ∖ r)} = {({nf ∶ a ∈ f ∈ flag(O)}, rank(a)) ∶ a ∈ O}
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For each clade a of the poset there is a flag f that includes this clade, a ∈ f .
Furthermore, the induced subgraph gf,r ∈ comp(ψ(O) ∖ r) consisting of all
nodes that can be reached by a path that does not include any edges labeled
r, where r is the rank of a, must also correspond to flags that include this
clade, so (gf,r, r) ∈ dom(χO) specifies a as the only clade of rank r in the
flags corresponding to some node of gf,r, and (gf,r, r) ⊂ ψO(a). Under cone
connectedness all nodes corresponding to flags containing a can be reached in
this manner, by the flag connectedness of the poset of clades comparable to a,
so all flags containing a are included in gf,r and (gf,r, r) = ψO(a). Furthermore,
each (g, r) in χO ○ ψO(O) comes from the unique clade of O that is the rank
r clade of a flag in g, and χO ○ ψO is a bijection.

To see that order is preserved, consider two clades a, b ∈ O of rank r ≤ s
respectively. If a ≤ b are comparable, then there is some flag f that includes
both, so nf ∈ ψO(a)1 ∩ ψO(b)1 and χO ○ ψO(a) ≤ χO ○ ψO(b). Otherwise a and
b are incomparable, and there is no such flag, so they remain incomparable
under χO ○ ψO. Thus, χO ○ ψO is an isomorphism.

We now show ψG ○ χG ∈ isolfg. For this we must also show that ψG ○ χG is
well defined. Specifically we require that

dom(ψG) = χG(G)
flag(χ(G)) = {{a(g,r) ∶ n ∈ g ∈ comp(G ∖ r)} ∶ n ∈ G}

For each node n of the graph, there is a unique sequence of induced subgraphs
{g0, ⋯, gt} with n ∈ gr ∈ comp(G∖ r). Since the intersection of any of these at
least includes n, we have a(gr,r) ≤ a(gs,s) for r ≤ s and {a(g0,0), ⋯, a(gt,t)} = χG(n)
is a flag of χ(G). To see that the map is an injection, we will show that for
any two distinct nodes n and m there is some r such that they are in different
component of G ∖ r. If n and m are not adjacent then by Condition lfg-2
there are two labels that appear on every path between n and m, and they
cannot be in the same component of the graph where edges with either label
are removed. Alternatively, suppose n and m are adjacent and let r be the
label on nm. For them to be in the same component of G ∖ r, there must
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be some path γ between n and m that does not include r. This would mean
that γ ⋅nm is a cycle with a label appearing only once, but that is impossible.
Such a cycle could not be a triangle, since this would violate Condition lfg-
1. If the cycle is not a triangle, then the first edge pn of γ with nm forms a
path between p and m, which cannot be adjacent since we would otherwise
have a triangle, but by Condition lfg-2 the labels on both edges must appear
somewhere on the rest of γ, including r. Thus, there is no such path γ and
ψG ○ χG is injective. By Lemma 2.3 there is some node in every subgraph of
each flag of χG(G), so the map is a bijection.

To see that edges and labels are preserved, consider two adjacent nodes
n and m with edge nm labeled r. For s ≠ r, both n and m are in the same
component of G ∖ s, and since they are distinct nodes and the map is injective
they must be in different components of G ∖ r. Therefore, ψG ○ χG(n) and
ψG ○χG(m) are adjacent with edge labeled r. In contrast, by Condition lfg-2
for any two non adjacent nodes will be two labels that appear on every path
between them, so their images will not be connected. Thus, ψG ○ χG is an
isomorphism.

2.2 Categories

Restricting ourselves to cone connected posets gives us a single represen-
tative for the posets having isomorphic labeled flag graphs, but we could have
chosen a different class of representatives. In this section we will see how this
choice is canonical.

A category is a class of objects O and morphisms M where every object
o has an identity morphism ido and every morphism α has a pair of objects,
its domain dom(α) and codomain cod(α) and every pair of morphisms αβ
with cod(α) = dom(β) has a composition morphism β ○ α such that the
following conditions hold.
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1. dom(β ○ α) = dom(α) and cod(β ○ α) = cod(β)

2. γ ○ (β ○ α) = (γ ○ β) ○ α

3. dom(ido) = cod(ido) = o

4. α ○ iddom(α) = idcod(α) ○ α = α

A functor Φ from a category c to a category d is a function sending each
object and morphism in c to one in d that preserves identity and composition.
That is so that Φ(ido) = idΦ(o) and Φ(β ○ α) = Φ(β) ○ Φ(α). A standard
reference text on categories is [14].

An example is the category set. This consists of all sets with morphism
being functions and composition and identity the usual composition and iden-
tity. Many categories consist of sets with some structure and with morphisms
being functions that preserve this structure, though this is not always the case.
The categories we are interested in here are gposet or ccp and lfg. So far
we have specified the objects, but we still need to specify the morphism.

There is not presently a standard category for posets. Monotonicity is
commonly required for a function to be a morphism between preorders, but
may not preserve transitivity. Pfaltz suggests an alternative in [19] that does
and has other nice properties, but we will not give their details here. We want
ψ and χ to carry morphisms between gposet and lfg, but they do not send
clades to nodes and back, so the morphisms we use cannot be functions on
these with special restrictions in both categories. In fact we have a lot of leeway
in what we could use and still get the same results. We only need to require
the isomorphisms to agree with Theorem 2.5. We provide a natural choice in
this setting setting below, which also uses functions between powersets.

As mentioned earlier we will present ψ in a way that acts on chains. For
this we denote the chains of the poset as chain(O), and ψ acting on the chains
of a particular poset as ψÔ. We also include among the chains all of O with
chain(O) so that it is a closure system.
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With this chain∗(O) is also a closure system from which we will get the
graph ψ(O). We would like to think of chain∗(O) as a closure system over
the flags of O, but chain∗(O) may not be atomistic. We can instead, however,
treat chain∗(O) as a closure system of flag(O) × T . Here the ranks T serve
to tell us the ranks of clades in the chain, which is necessary in cases where a
chain can only be extended to include a certain rank in a unique way. In such
a case just knowing what flags contain the chain would not provide enough
information to identify it.

A chain that is covered by a coatom in chain(O) is one clade shy of a flag,
and corresponds to a chain covering an atom in chain∗(O). We treat these
as subsets of flag(O) labeled with the missing rank of the chain. Finally we
get to ψ(O) as a graph on the atoms of chain∗(O) by replacing each of these
subsets with a clique of edges all labeled with the same rank as this subset.

Notice this gives a graph on flags of O with edges between flags that differ
in one clade labeled by the rank of that clade, and as such is consistent with
ψ as defined earlier. For a particular graded poset this gives us ψÔ.

ψÔ ∶ chain(O)→ comp∗↪ ○ ψ(O)
ψÔ(C) ∶= ({F ∈ flag(O) ∶ C ⊂ F}, rankp(C))

Here, for a graph G, comp↪(G) consists of sets of edge labels S together with
connected components of G with edges having labels not in S removed.

comp↪(G) ∶= {(g,S) ∶ g ∈ comp(G ∖ S),S ⊂ T }

For the other direction, χ acts on these subgraphs of G with subsets of edge
labels by passing through isomorphic copies of the same closure systems in the
reverse order, and we denote the function on comp↪(G) as χĜ to distinguish
it from the function acting on the space of gap commuting graphs.

We get the poset χ(G) in a way similar to the situation above. The clades of
the poset are the atoms of comp∗↪(G). These atoms, the coatoms of comp↪(G),
consist of a label r together with connected components of G without the edges
that have this label, comp(G ∖ r). Each such atom will correspond to a clade
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of rank r in χ(G), and two clades are comparable to each other when the
corresponding atoms are covered by their join. Since this gives comparability
and rank, it completely describes the poset.

Notice we get the same partial ordering on the same subgraphs as χ(G) as
defined earlier. For a particular gap commuting graph this gives us χĜ.

χĜ ∶ comp↪(G)→ chain∗ ○ χ(G)
χĜ(h,S) ∶= {(g, r) ∶ h ⊂ g ∈ comp(G ∖ r), r ∈ S}

To view ψ and χ as functors between categories, we need to specify how
they act on what morphisms. For this we use the usual lattice morphisms
of these closure systems, functions α such that α(a ∨ b) = α(a) ∨ α(b) and
α(a ∧ b) = α(a) ∧ α(b).

Now that we have seen ψ and χ to be inverses of each other up to isomor-
phism on their respective ranges it is just a matter of letting them carry the
appropriate morphisms along with the objects between gposet and lfg. For
a morphism α in gposet, we define ψ(α) to be the unique morphism in lfg
so that the following diagram commutes.

.

.

..Ô0 ..Ô1

..̂G0 ..̂G1

.α

.ψÔ1
.ψÔ0

.ψ(α) .

..α ∶ chain(O0)→ chain(O1)

..ψ(α) ∶ comp↪ ○ ψ(O0)→ comp↪ ○ ψ(O1)

..ψ(α) ○ ψÔ0
∶= ψÔ1

○ α

We also define χ(β) for a morphism β in lfg in this same way as repre-
sented below.

.

.

..̂G0 ..̂G1

..Ô0 ..Ô1

.β

.χĜ1
.χĜ0

.χ(β) .

..β ∶ comp↪(G0)→ comp↪(G1)

..χ(β) ∶ chain ○ χ(G0)→ chain ○ χ(G1)

..χ(β) ○ χĜ0
∶= χĜ1

○ β

Lemma 2.6. ψ and χ are well defined functors.
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Proof: For ψ to be well defined we need preimages of elements of the domain
of ψ(α) under ψÔ0

to give the same result on the right hand side. Given
any component with ranks (g,S) of Ĝ0, we can uniquely identify the chain C
of Ô0 contained in the flags that are nodes of g and have ranks S. For the
diagram to commute we let ψ(α)(g,S) ∶= ψÔ1

○ α(C), so the morphism ψ(α)
is uniquely defined. For χ this is well defined since χĜ0

is invertable so we let
χ(β)(C) ∶= χĜ1

○ β ○ χ−1
Ĝ0
(C).

A natural transformation η ∶ Φ→̇Γ from a functor Φ to a functor Γ that
are themselves both from c to d, is a function sending each object o in c to
a morphism ηo ∶ Φ(o) → Γ(o) in d such that for every morphism α in d we
have ηcod(α) ○Φ(α) = Γ(α) ○ ηdom(α). An isomorphism is a morphism α with
an inverse α−1 such that α−1 ○ α and α ○ α−1 are identity morphisms. When
ηo is an isomorphism for every object o we call η a natural isomorphism.
An equivalence of categories is a pair of functors Φ and Γ such that Γ ○Φ
and Φ ○ Γ are naturally isomorphic to the identity functors in their respective
categories.

Theorem 2.7. ψ and χ give an equivalence of categories between ccp and lfg.

Proof: For these to be equivalent categories there must be natural isomor-
phisms

.

.θ ∶ idccp→̇(χ ○ ψ) .ε ∶ idlfg→̇(ψ ○ χ)

.

..O0 ..O1

..χψ(O0) ..χψ(O1)

.α

.θO1
.θO0

.χψ(α) .

..G0 ..G1

..ψχ(G0) ..ψχ(G1)

.β

.εG1
.εG0

.ψχ(β)

We have these already as θO ∶= χÔ ○ ψÔ and εG ∶= ψĜ ○χĜ. Since χO ○ψO is an
order isomorphism, and chain(O) and its lattice structure are defined only in
terms of O, we have that θO is an isomorphism. We have only to see that these
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are natural transformations, which comes directly from the way we defined the
morphism, we just unpack the notation.

χψ(α) ○ θO0 = χψ(α) ○ χÔ0
○ ψÔ0

= χψ(α) ○ χψ̂(O0) ○ ψÔ0

= χψ̂(O1) ○ ψ(α) ○ ψÔ0

= χψ̂(O1) ○ ψÔ1
○ α

= χÔ1
○ ψÔ1

○ α
= θO1 ○ α

The same calculation for ψ ○χ shows that ε is also a natural isomorphism.
A left adjoint functor Φ is a functor from c to d such that for every

object o in d there is a universal arrow consisting of an object p in c and
morphism α ∶ Φ(p) → o in d that is universal in the sense that α factors
through any other such pair in a unique way. That is for any other object q
and morphism β ∶ Φ(q) → o there is a unique morphism γ ∶ q → p such that
α ○ Φ(γ) = β. When the universal arrow comes from a functor Γ giving an
object Γ(o) and natural transformation η giving a morphism ηo ∶ ΦΓ(o) → o

we say Γ is a right adjoint for Φ.

Theorem 2.8. ψ is a left-adjoint functor from gposet to lfg, with right
adjoint χ.

Proof: For any labeled flag graph G the universal arrow is the cone connected
poset χ(G) and morphism ε−1G . For any other graded poset O and morphism
β ∶ ψ(O)→ G, we get the required morphism as χ(β) ○ θO.

To see that this is the right morphism we first look at the relationship
between θ and ε.

εψ(O) ○ ψÔ = ψψ̂(O) ○ χψ̂(O) ○ ψÔ
= ψχ̂ψ(O) ○ χψ̂(O) ○ ψÔ
= ψχ̂ψ(O) ○ χÔ ○ ψÔ
= ψχ̂ψ(O) ○ θO
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This exactly matches the defining equation for how ψ acts on morphism, which
we have seen to be unique, so ψ(θO) = εψ(O). Now to check that the conditions
for being a left-adjoint are satisfied we see that β factors into this morphism’s
image under ψ and ε−1G .

ε−1G ○ ψ(χ(β) ○ θO) = ε−1G ○ ψχ(β) ○ ψ(θO)

= ε−1G ○ ψχ(β) ○ εψ(O)

= ε−1G ○ εG ○ β = β

2.3 Abstract Polytopes

The primary concern of this thesis is with polytopes, and in particular
their face lattices. In the introduction we provided a combinatorial object
with simple properties resembling that of a combinatorial polytope, namely
abstract polytopes. In this section, we will see how these properties translate
to their labeled flag graphs, and in doing so characterize the labeled flag graphs
of abstract polytopes. Alternatively, Eulerian posets, which are presented by
Stanley in [22, p. 135], may be used for this purpose. Shellable and Eulerian
lattices resemble the face lattices of polytopes much more closely, and both
properties are used by Paffenholz this way [17], but we do not consider them
here.

We first notice that all abstract polytopes are cone connected, and hence so
are all combinatorial polytopes, since cone connectedness is a weaker condition
then strong connectedness. This means their labeled flag graphs provide the
same information as the poset and the properties we will give could be used as
an alternate definition of abstract polytopes. We start by seeing what strong
connectedness means for the labeled flag graph.

Theorem 2.9. for G = ψ(O) where O is a cone connected bounded poset, the
following conditions are equivalent
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1. O is strongly connected.

2. For any chain of clades {ci} the poset of all clades comparable to every
ci of the chain is flag connected.

3. For any pair of nodes of G and collection of edge labels such that for each
label there is a path between the nodes where this label does not appear,
there is a path between the nodes where none of these labels appear.

4. For any pair of nodes of G and pair of edge labels such that for each
label there is a path between the nodes where this label does not appear,
there is a path between the nodes where neither label appears.

Proof: To see 1⇒ 2, let 1 hold and consider a pair of flags f f ′ and a collection
of ranks {rank(�) = r0, r1, ⋯, rk = rank(⊺)} where the clades of these flags are
equal ci ∶= fri = f ′ri . We now form a path between these flags by concatenating a
path for each interval, to show 2. Formally, let f is ∶= fs for s ≤ ri and f is ∶= f ′s for
s ≥ ri. By the flag connectedness of intervals for each pair f i−1 f i there is a path
γi between these flags in ψ([ci−1, ci]) ↪ ψ(⋂c∈f≤ri−1∪f ′≥ri Oc) ↪ ψ(⋂jOcj) ↪ G

where Oc ∶= {a ∶ a ⋛ c}. Taking these paths together gives us a path γ = γ1⋯γk

between f and f ′ in ψ(⋂jOcj), and since this holds for any pair of flags, 2
holds.

To see 2 ⇒ 3, let 2 hold and consider a pair of nodes n n′, a collection of
labels {ri}, and a path between these nodes for each label as in the first part
of 3. With this we have ci ∶= χ(n)ri = χ(n′)ri is the same component of G∖ ri)
for all i, so by 2 there is a path γ between χ(n) and χ(n′) in ψ(⋂iOci) ↪ G.
This path will have no edges labeled ri, and since there is always such a change
in path, 3 holds.

We have 3 ⇒ 4 immediately, since 4 is just a special case of 3 when the
collection of labels avoided consists of only two.

To see 4 ⇒ 1, let 4 hold and consider an interval [c, c′] of O with bounds
of respective ranks r r′ and a pair of flags fI f ′I of this interval. These flags
can each be extended respectively to flags fO f ′O of O. These extended flags



28

will have the same rank r clade (fO)r = (f ′O)r = c, so they will be in the same
component of G ∖ r and there will be a path γr between them with no edges
labeled r, and likewise a path γr′ for r′. By 4 there will be a path γ between
these flags where neither label appears. Since G is gap commuting, from γ we
can produce a three part path γ<r ⋅ γ(r,r′) ⋅ γ>r′ by moving labels less than r to
the first part, those greater then r′ to the last part, and leaving the rest for
the middle part. γ(r,r′) now projects to a path between fI and f ′I in ψ([c, c′])
by removing those clades with rank outside [r, r′], and since this can be done
for any pair of flags in the interval, it is flag connected. Finally, since this can
be done for any interval 1 holds.

We call an edge labeled graph that satisfies the conditions of Theorem
2.9 simultaneously connected. To be consistent with posets we may want
to call this strongly connected, but a strongly connected graph already has
an unrelated meaning that is widely used. We now see what the diamond
property, that every rank 2 interval has 4 clades, means for labeled flag graphs.

Lemma 2.10. For G = ψ(O) where O is a bounded poset, the diamond property
holds for O if and only if every label gives a perfect matching, that is each
node has exactly one edge with each label.

Proof: Suppose the diamond property holds for O, then for f ∈ flag(O) and
0 < r < d, the interval [fr−1, fr+1] is a diamond consisting of fr−1 < c, fr < fr+1.
f ′s ={c s=r; fs s≠r is a flag of O, but f(a)s ={a s=r; fs s≠r is not a flag for any
clade other then c or fr. Thus, ψG(f) has exactly exactly one edge labeled r.
Moreover this holds for any choice of f and r, and every label gives a perfect
matching.

For the reverse direction suppose every label gives a perfect matching in
G, and consider a rank 1 interval [c, c′] of O. The bounds of this interval can
be extended to a flag f ∋ c, c′. Now ψG(f) has exactly one neighbor in Gr for
each clade in (c, c′) other than the rank r clade of f , and since this is a perfect
matching, there is only one other such clade. Thus, the interval is a diamond,
and this holds for all intervals of O.
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We now have all the conditions we require. We could simply add these to
the list of conditions for an edge labeled graph to be a labeled flag graph, and
we would be done, but with the added conditions some of the conditions of
being a labeled flag graph would be redundant. We see first how simultaneous
connectedness relates to Condition lfg-2 of Theorem 2.1, then list the condi-
tions without the redundancies.

Lemma 2.11. A simultaneously connected graph cannot have a pair of paths
with distinct common end nodes that do not share any labels.

Proof: Let G be a simultaneously connected graph and assume there are
distinct nodes n and n′ with paths γ and γ′ between them such that no label
appears on both paths. With this, there must be a path between n and n′

with only labels that appear on both γ and γ′. Such a path would have no
labels at all, which is impossible, so any pair of paths between n and n′ must
share a label.

Theorem 2.12. An edge labeled graph G is the labeled flag graph of a an
abstract polytope P if and only if it satisfies the following conditions

ap-1. Every label gives a perfect matching

ap-2. G is simultaneously connected

ap-3. G is gap commuting

Moreover, P ≅ χ(G)

Proof: Suppose G = ψ(P) is the labeled flag graph of an abstract polytope.
We have that G is gap commuting by Theorem 2.1 and Lemma 2.2, since it is
the labeled flag graph of a poset; G is simultaneously connected by Theorem
2.9, since P is strongly connected; and every label gives a perfect matching by
Lemma 2.10, since the diamond property holds for P .

For the reverse direction, suppose G satisfies these conditions. We will
show that G also satisfies the conditions of Theorem 2.1 and as such is the
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flag graph of a graded poset. To see that Condition lfg-1 holds assume there
is a triangle n0n1n2 where more then one label appears. One of these labels r
must appear only once in the triangle, so let n0n1 be the edge with that label.
Now we have two paths between n0 and n1, one where only r appears, and
one where r does not appear, but the contradicts Lemma 2.11, so there can be
no such triangle, and Condition lfg-1 of holds. To see that Condition lfg-2
holds, consider a pair of distinct nodes n,n′ of G and the paths between them.
By Lemma 2.11 the paths must share at least one common label. Now, If
there is only one common label appearing on all paths, in which case there is a
path between them where only this label appears, the nodes must be adjacent
by ap-1, since such a path consists of a single edge. Thus, Condition lfg-2
holds. With this, Condition lfg-3 is equivalent to Condition ap-3 by Lemma
2.2, so G is the labeled flag graph of a graded poset P . We will now show that
G satisfies the conditions of an abstract polytope. For P to be bounded we
choose the ranks of P to include one rank greater than and one less than those
that appear in the graph. Condition ap-1 gives us the diamond property by
Lemma 2.10, and Condition ap-2 gives us strong connectedness by Theorem
2.9, so P is an abstract polytope. Finally, we have that this correspondence is
an isomorphism by Theorem 2.5



31

CHAPTER 3

REALIZABILITY

3.1 Filled Incidence Matricies

In this chapter we show that the problem of realizing a polytope with
specified combinatorics is equivalent to a low rank matrix completion problem.
For an abstract polytope lattice P , we call a ∣facet(P)∣ × ∣vert(P)∣ matrix
N with entries (N)i,j = 0 when vertex j is contained in facet i, vj ∈ Fi, and
(N)i,j < 0 for all other entries, a filled 0-incidence matrix of P , and when
we add 1 to all entries we call this a filled 1-incidence matrix.

We will see the rank d filled 1-incidence matrices of a combinatorial poly-
tope are the matrices of inner products of some realization’s vertices and cover-
tices. Robertson used this fact to count the dimension of a polytopes real-
ization space by showing that an infinitesimal perturbation of a polytope’s
vertices and covertices are that of some realization of its combinatorial type
if and only if the combinatorics of its filled 1-incidence matrix is preserved
[21, p. 14]. Similarly Díaz showed that the rank d+1 filled 0-incidence matrices
are that of a polytopal cone [6]. Both results, however, require the combina-
torics to be that of a polytope.

Díaz provides alternative conditions for finding realizations of polytopes in
non-Euclidean spaces. To state her theorem we need some additional defini-
tions. A bilinear form f ∶ V 2 → R is given by f(x, y) = x∗Fy for some matrix
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F on a real vector space V , which we say has a particular property of matri-
ces, such as being symmetric or definite, when the matrix F has that property.
We call f(x) = f(x,x) a quadratic form. The signature of a matrix, and
likewise a bilinear form, is the pair (p,n) where p and n are the total ranks
of eigenspaces with positive and negative eigenvalues respectively. An inner
product is a symmetric positive definite bilinear form. That is, it has signature
(r,0). A polytopal cone P̂ = con({vj}) generated by vectors {vj} is the set
of positive linear combinations con({vj}) ∶= {∑j λjvj ∶ λj ≥ 0} when this does
not contain a line v ∈ P̂ ⇒ −v ∉ P̂ , or equivalently by half spaces H−i is the
intersection P̂ ∶= ⋂iH−i when the intersection of their supporting hyperplanes
Hi = ∂H−i is the origin ⋂iHi = 0. For a half space H−, where the restriction
of f to its supporting hyperplane H has full rank, there is a unique vector h
such that H− = {x ∶ f(h,x) ≤ 0} and ∣f(h)∣ = 1, called the outward normal,
otherwise we say H is lightlike. We call the rays R+vj and R+hi the vertices
and covertices of P̂ respectively. Díaz considers polytopes P ∶= P̂ ∩ f−1(c)
in a level set at c ≠ 0 of a symmetric definite quadratic form f given by its
intersection with a polytopal cone P̂ having no lightlike facet supporting hy-
perplanes, and in particular its Grammian matrix G with (G)i,j = f (hi, hj)
where {hi} are their outward normals.

We call a sequence of facets Fi1 ,⋯, Fis of a polytope a truncated oriented
cycle when ⋂sk=1Fik is a face of the polytope, and when s = d we call this an
oriented cycle and when s = d+1 a maximal oriented cycle. We say two
maximal oriented cycles have the same orientation when the induced flags
∅ = ⋂d+1k=1 Fik , ⋂dk=1Fik ,⋯, Fi1 ,P are an even distance apart in the flag graph.
Here we denote the minor of a matrix G with rows i1⋯in and columns j1⋯jn
by G[i1⋯imj1⋯jn].

Theorem 3.1. (Díaz) Let P be a combinatorial d-polytope and G be a
∣facet(P)∣ × ∣facet(P)∣ symmetric matrix with diagonals ±1 and the same sig-
nature as f . There is a polytopal cone of type P with Grammian G if and only
if G satisfies the following:
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1. For every vertex of P and all facets Fi1⋯Fin incident to it, the submatrix
G[i1⋯ini1⋯in] has rank ≤ d.

2. For every pair of maximal cycles Fi1 ,⋯, Fid+1 and Fj1 ,⋯, Fjd+1 with the
same orientation, det(G[i1⋯id+1j1⋯jd+1

])det(f) > 0.

In the case of the usual inner product f( ⋅ , ⋅ ) = ⟨ ⋅ , ⋅ ⟩ we get the d-sphere
Sd = {x ∈ Rd+1 ∶ ∥x∥ = 1}, and we can specify a polytope by its vertices {vj},

P ∶= {x ∈ Sd ∶ x =∑
j

λjvj, λj ≥ 0}

or we can specify it by its covertices {hi}.

P ∶= {x ∈ Sd ∶ ⟨hi, x⟩ ≤ 0}

Note that for any polytope in the sphere RP is a polytope in RPd, and every
polytope in projective space is the image of some polytope in the sphere under
this map. Here we can restate Theorem 3.1 as follows.

Theorem 3.2. (Díaz) Let P be a combinatorial polytope and G be a
∣facet(P)∣× ∣facet(P)∣ symmetric matrix with diagonals all 1. There is a poly-
tope P ⊂ Sd of type P with Grammian G if and only if G satisfies the following:

1. For every vertex of P and all facets Fi1⋯Fin incident to it, the submatrix
G[i1⋯ini1⋯in] has rank d.

2. For every face of rank d−s with 2 ≤ s ≤ d+1 and truncated oriented cycle
Fi1 ,⋯, Fis incident to it, det(G[i1⋯isi1⋯is]) > 0.

3. For every pair of maximal cycles Fi1 ,⋯, Fid+1 and Fj1 ,⋯, Fjd+1 with the
same orientation, det(G[i1⋯id+1j1⋯jd+1

]) > 0.

Condition 2 is just an alternative to requiring that G be positive definite.
Having the Grammian is nice because it tells us what the dihedral angles of a
polytope can be. On the way to proving this she proves a lemma that is more
similar to Theorem 3.6. For both of these Díaz also proves analogous results
for finite volume hyperbolic polytopes as well as spherical ones.
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Lemma 3.3. (Díaz) Let P be a combinatorial polytope, {vj} and {hi} be a
vector in Rd for each vertex i and covertex j of P, and f a symmetric definite
bilinear form. These are the vertices and covertices of polytopal cone realizing
P if they satisfy the following.

1. For every oriented cycle i1⋯id the vectors hi1⋯hid have rank d.

2. (M)i,j = f (hi, vj) is a filled 0-incidence matrix for P.

3.2 Realizations

The most immediate way to get an algebraic statement for determining
when posets are realizable is to go directly to the definition, as Grünbaum
does in [11, p. 90].

Theorem 3.4. A poset P, given by a collection of subsets of I ∶= {1,⋯, n}
ordered by containment that includes {i} ∈ P for each i ∈ I but not I ∉ P, is
realizable if and only if there are vectors vi ∈ Rd such that for any subset f ⊊ I
there is a vector a ∈ Rd with ⟨a, vi⟩ = 1 for i ∈ f and ⟨a, vi⟩ < 1 for i ∉ f if and
only if f ∈ P.

We first note that the combinatorics of P are much more relaxed here than
what we will require, but this is compensated for by more stringent algebraic
conditions. If we put the required vectors vi in a matrix V and restrict the
conditions to just the maximal clades of P , which would be facets, and put
the required vectors a for each in a matrix A, then A∗V would give us a rank
d filled 1-incidence matrix of P . The algebraic part of Theorem 3.4 requires us
to additionally find such vectors a for all faces, and show that no such vectors
exist for all other subsets of I.

The problem of realizability as we have defined it is to find a polytope
having a particular poset as its face lattice, but the only combinatorial data
appearing in a filled incidence matrix are the incidences between vertices and
facets. These are in fact equivalent, and we can generate the lattice with
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these incidences as we shall see. We could just as well define realizability for
an adjacency relation to be the realizability of the lattice generated. We get
this lattice in a very intuitive way; we just recognize that each face can be
identified by the vertices and facets that are incident to it.

Before generating the lattice P from the the incidences between vertices and
facets we need some definitions. A bipartite graph is a graph with nodes in
two disjoint parts and edges only between nodes in different parts. A biclique
is a bipartite graph where every pair with one node from each part is connected
by an edge. A maxbiclique of a bipartite graph is a maximal set of nodes and
the edges between them such that this is a biclique. The maxbiclique lattice
of a bipartite graph with one part specified as the lower is the poset consisting
of it’s maxbicliques ordered by containment of nodes in the lower part. A join
irreducible is a clade of a lattice that cannot be expressed as the join of other
clades, and a meet irreducible is similarly defined with order reversed.

Lemma 3.5. Every lattice where all flags are finite is isomorphic to the maxbi-
clique lattice of its meet and join irreducibles. For abstract polytope lattices
these are the vertices and covertices respectively.

We are now ready to state the main theorem.

Theorem 3.6. For any bipartite graph B with a maxbiclique lattice P that is
flag connected and satisfies the diamond condition, the following are equivalent.

1. P is realizable

2. B has a rank d filled 1-incidence matrix

3. B has a rank d+1 filled 0-incidence matrix

Moreover, vectors wj ∈ Rr are the vertices and hi ∈ Rr the covertices of a type
P polytope if and only if [⟨hi,wj⟩]i,j is a rank d filled 1-incidence matrix of B,
and wj and hi are that of a type P polytopal cone if and only if [⟨hi,wj⟩]i,j is
a rank d+1 filled 0-incidence matrix of B.
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To prove Lemma 3.5 we will make use of the following lemma about lattices.
The argument used here appears in [16, p. 19] as part of a more general result.

Lemma 3.7. In a lattice with finite flags, every clade c can be identified uni-
quely as the join of all join irreducibles below it J or the meet of all meet
irreducibles above it M .

Proof: We first note that, allowing Zorn’s lemma, all lattices with finite flags
are complete, since the sequence of partial joins of ⋁(C) = c1∨c2∨⋯ is a finite
flag, so only finitely many clades {cik} contribute ⋁(C) = ci1 ∨⋯ ∨ cin .

Suppose the lemma does not hold, then there is some minimal clade c that
is not the join of join irreducibles below it. c cannot itself be a join irreducible
since c = ⋁{c}, so it can be expressed as c = ⋁D where each clade d ∈ D is
below c and as such can be expressed as the join of join irreducibles d = ⋁Jd,
so we have c = ⋁⋃d∈D Jd. Introducing more join irreducibles can only increase
their join, so c = ⋁J , and therefor, there can be no such c. Likewise the dual
statement holds for meet irreducibles by symmetry.

Proof of Lemma 3.5: The pair (J,M) we get for a clade c from Lemma
3.7 induces a biclique in the incidence graph of the meet and join irreducibles
of the lattice, since for any pair (j,m) ∈ (J,M), j ≤ c ≤m. From the definition
for clades ci = ⋁Ji, we have that c1 ≤ c2 if and only if J1 ⊆ J2. Now we only
have to see that these bicliques are maximal. Suppose they are not, then by
symmetry we can assume there is a join irreducible j ∉ J that is not less than
c, but is less than all meet irreducibles M of c, j ≰ c = ⋀M . We see this is
impossible, since by the construction of M we have j ∈ ⋂m∈M{⋅ ≤m} ≤ c, so c
must correspond to a maxbiclique.

For abstract polytope lattices if a d-face z is not a vertex, d ≠ 0, then there
is some (d−2)-face w contained in z, and the interval [w, z] contains exactly
two other faces {x, y} of dimension d − 1. This gives x ∨ y = z, so z is not join
irreducible. If z is a vertex then there is only one face below it �, so it must
be join irreducible. By symmetry the facets are the meet irreducibles.
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The proof of Theorem 3.6 works by constructing a polytope and showing
that there is an order preserving injection from the abstract polytope lattice
given to its face lattice. The following lemma shows that this is sufficient for
it to be a realization.

Lemma 3.8. An order monomorphism between bounded flag connected dia-
mond lattices of the same finite rank is an isomorphism.

Proof: Allowing the lattice to be cone connected, which we recall abstract
polytopes always are, from Theorem 2.7 we saw that there is an equivalence of
categories between these posets and their labeled flag graphs given by a functor
ψ. This functor then sends any monomorphism between abstract polytopes to
a monomorphism between their labeled flag graphs, which we will see must be
an isomorphism, so the original monomorphism must also be an isomorphism.
We do not, however, really need category theory to prove the claim, so we
provide the following alternative argument.

Suppose the lemma fails, then there are flag connected diamond lattices P
and Q of rank r = d+1 with a monomorphism sending P into Q that misses
some clade c ∈ Q. Without loss of generality we can take P to be a subset of
Q and the monomorphism to be the identity, otherwise just replace P with its
image. Consider now the flag graphs G of P and H of Q. Every flag of P is a
flag of Q and two flags differ by one clade in P if and only if they do so in Q,
so G is an induced subgraph of H. There is some flag in P , and c must belong
to some flag of Q, so ∅ ≠ G ⊊ H. We recall that the labeled flag graphs are
perfect matchings by Lemma 2.10 and connected. This means G is a d-regular
proper induced subgraph of a connected d-regular graph, namely H, which is
impossible.

To see this consider a path from a node that is in G to one that is not. Let n
be the last node along this path that is in G. This node must have d neighbors
in G and a neighbor that is not in G, the next node in the path, so n must have
at least d+1 neighbors in H contradicting the fact that H is also d-regular.
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We construct the polytope P from the filled 1-incidence matrix M in The-
orem 3.6 by first computing its compact singular value decomposition. The
entries of M represent the inner products of corresponding vertices and cover-
tices of the polytope. The compact singular value decomposition of a
n×m matrix M is three matrices: a n×r matrix U with orthonormal columns,
a r × r diagonal matrix Σ with only positive diagonal entries, and a m× r ma-
trix V with orthonormal columns such that UΣV ∗ =M . It is a theorem from
linear algebra that every matrix has such a decomposition [12, p. 414].

P ’s vertices are given by the rows of V
√
Σ, and covertices by the rows of

U
√
Σ. Each covertex corresponds to a facet of P and scaling it by the distance

from the origin to the affine span of this facet gives the outward normal. We
can construct the grammian of the vertices and covertices together as follows.

G̃ ∶=
⎡⎢⎢⎢⎢⎣

√
MM∗ M

M∗
√
M∗M

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

UΣU∗ UΣV ∗

V ΣU∗ V ΣV ∗

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

U

V

⎤⎥⎥⎥⎥⎦
Σ [ U∗ V ∗ ]

If we instead form G̃ from the filled 0-incidence matrix and symmetrically
rescale so the diagonal entries are all 1, we get the matrix from Lemma 3.3
on the off-diagonal blocks and the matrix from Theorem 3.1 on the diagonal
blocks for spherical polytopes ϕ(P ) and ϕ(P ∗) where ϕ(x) = [x1]/ ∥[

x
1
]∥. As

we will see neither the span of U nor of V can contain 1, the vector with all
entries equal to 1, since their rows are the vertices of rank(M)-polytopes. If
we first augment these with an orthogonal column so 1 is in their span and
then complete the augmented matricies to a full singular value decomposition,
the additional will columns give a gale transform of these polytopes.

Proof of Theorem 3.6: We refer to the conditions in the theorem by their
enumeration. We have that (1⇒ 2 and 3) immediately since these are just the
matrices with entries equal to the inner products of vertices and covertices.
To show (2⇒ 1) we will construct a realization of the polytope from a rank d
filled 1-incidence matrix M with appropriate combinatorics.

Let A ⊂ (I × J) be the pairs of indices for entries of M that are 1, and let
the lattice P of maxbicliques a = (Ia, Ja) of A be flag connected and satisfy
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the diamond condition. Now, let M = UΣV ∗ be the compact singular value
decomposition, and let {hi} be the rows of W = U

√
Σ, and {wj} be the rows

of H = V
√
Σ, and P = conv({wj}). We will show that P is a realization of P .

There is no reason why, however, we need to use this decomposition, any pair
such that HW ∗ = M would be fine. Since M has rank d so does W , and P

has dimension at most d. Moreover, wj is in the hyperplane h=1i ∶= {⟨hi, ⋅ ⟩ = 1}
for (i, j) ∈M, but is in the open half space h<1i ∶= {⟨hi, ⋅ ⟩ < 1} for (i, j) ∉M.
By Lemma 3.5 if M comes from the vertices and covertices of an abstract
polytope P ′, then P ′ is isomorphic to P . We use the terminology of abstract
polytopes for P regardless.

We will now construct a map from P to the face lattice of P and show
that it is an isomorphism. Let Fa ∶= P ⋂i∈Ia h=1i be the face of P we get by
intersecting it with the hyperplanes corresponding to covertices of a. We know
this is a face of P since these are all supporting hyperplanes of P .

First we see that Fa as a function on a preserves order. In this context we
require the very strong condition that Fa ⊆ Fb if and only if a ≤ b. Suppose
a ≤ b, then Ia ⊆ Ib and ⋂i∈Ia h=1i ⊆ ⋂i∈Ib h=1i so Fa ⊆ Fb. For the other direction
suppose a ≰ b, then there is some j ∈ Ja but j ∉ Jb, so wi ∈ Fa but wj ∉ Fb and
Fa ⊈ Fb. Thus order is maintained.

We also have that Fa is an injection. To see this consider a pair of faces
a, b of P that map to the same face F ∶= Fa = Fb of P . With this wj ∈ F ⊂ h=1i
for any i ∈ Ia∪Ib and j ∈ Ja∪Jb, so mij = 1 and vj ≤ Fi where vj and Fi are the
corresponding vertices and facets of P respectively. Since (Ia, Ja) and (Ib, Jb)
are maxbicliques that are subsets of the same biclique (Ia∪Ib, Ja∪Jb) we must
have that a = b, and Fa is a monomorphism.

This induces an injection from a flag of P to a totally ordered set of P ’s
faces, which must be of the same size or less. A larger set cannot be injected
into a smaller one, so they must be the same size, and P must be of dimension
d. Now this is a monomorphism between bounded flag connected diamond
lattices of the same dimension, and by Lemma 3.8 is therefore an isomorphism.
Thus, P is a realization of P .
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Suppose we have some other decomposition M = H ′W ′∗. The columns of
both H and H ′ give a basis of the same space, namely the range of M , so
there is a nonsingular linear transformation A between them H ′ = HA. For
H as given this is A = Σ− 1

2U∗H ′. Observe here Σ−
1
2U∗ is the pseudo-inverse of

H. We can see this formula more clearly by considering a completion of U to
a full orthogonal matrix U ′.

[ H 0 ]
⎡⎢⎢⎢⎢⎣

A

0

⎤⎥⎥⎥⎥⎦
= U ′
⎡⎢⎢⎢⎢⎣

Σ
1
2 0

0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Σ−
1
2 0

0 0

⎤⎥⎥⎥⎥⎦
U ′∗H ′

= U ′
⎡⎢⎢⎢⎢⎣

Σ
1
2 0

0 I

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Σ−
1
2 0

0 I

⎤⎥⎥⎥⎥⎦
U ′∗H ′ =H ′

Note we are able to replace the 0 blocks with I blocks, since every column of
H ′ is orthogonal to the extra rows of U ′∗. Similarly we have W ′ =WA−1, and
for any A nonsingular we get such a decomposition M = (HA)(WA−1)∗.

We could perhaps show (3⇒ 1) by going through a variation of the same
argument for spherical polytopes, but instead we will show that we can use
a rank r = d+1 filled 0-incidence matrix N with appropriate combinatorics to
find a corresponding rank d filled 1-incidence matrix M , (3 ⇒ 2). We first
note that N +E is a filled 1-incidence matrix, and can differ from N in rank by
at most 1. If the rank of N +E were 1 less we would be done, but that might
not be the case. Instead, we will find full diagonal matrices D1 D2 such that
M ∶= D1ND2 +E has rank d. We start by letting N = UΣV ∗ be the compact
singular value decomposition and U ′ and V ′ be respective completions of U
and V to orthogonal matrices.

We would like to find a vector y with positive entries such that V y has no
zero entries. Suppose every vector in the image of the positive orthant under V
has some zero entries. Since the range of V is a linear subspace and the set of
positive linear combinations of values v including non-zeros that give zero is of
measure 0 among positive linear combinations v ≠ 0⇒ µ({y ∶ ⟨v, y⟩ = 0}) = 0,
the assumption can only hold if V has a row of all zeros, and therefor N must
have a column of all zeros, which is impossible, since no meet irreducible of a
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finite non-trivial diamond lattice can be incident to all join irreducibles. Thus
we can find a vector y with all positive entries such that V y has all non-zero
entries, and similarly we can find such a vector x for U . Furthermore, we can
normalize these so that ⟨x,Σ−1y⟩ = 1.

With this in mind we let D1 = diag(−Ux)−1 and D2 = diag(V y)−1, and
we preform a change of bases to make the rank of the resulting matrix more
apparent.

(U ′∗D−11 )M(D−12 V ′) = U ′∗NV ′ +U ′∗D−11 ED−12 V ′

= U ′∗UΣV ∗V ′ +U ′∗D−11 11∗D−12 V ′

= U ′∗U(Σ − xy∗)V ∗V ′

=
⎡⎢⎢⎢⎢⎣

(Σ − xy∗) 0

0 0

⎤⎥⎥⎥⎥⎦

Under this change of bases we see ei is sent to 0 for i > r, so the rank is at most
r. We observe that it is actually r − 1, by showing the range is orthogonal to
[Σ
−1y
0
]. For this we consider only the first r coordinates.

⟨(Σ − xy∗)ei,Σ−1y⟩ = ⟨Σei − (y)ix,Σ−1y⟩

= (y)i − (y)i = 0

Thus M has rank d and (3⇒ 2).
For any decomposition M = HW ∗ we get one for N by N = HW ∗ + E =

[H 1][W 1]∗, and the rows of [W ′ 1] generate a polytopal cone of type P .
Multiplying by a diagonal matrix on the left or right of N corresponds to
scaling these vectors, and as such does not change the resulting polytopal
cone. Consequently, any decomposition of N = H ′W ′∗ can be expressed as
one coming in this way from M = HW ∗ that gives the same polytopal cone
by scaling the rows so the last entry of each is 1, and by the same argument
we gave for M such a decomposition is unique up to linear transformations.
As a final point we note that the diagonal matrices Di scale the vertices and
covertices of a polytopal cone and its dual to be those of the polytopes given



42

by the intersection of each cone with a hyperplane, and the choice of x and y

amount to choosing these hyperplanes.
Theorem 3.6 can be viewed as a stronger version of Lemma 3.3, which Díaz

used to prove Theorem 3.1. Consequently we can use this to prove a stronger
version of Theorem 3.1. This will not be substantially different from the proof
in [6]. We will just extract the part of the proof that uses the lemma and only
change it by using Theorem 3.6 instead. For this we must make use of notation
used in that proof. The exterior power ⋀m V of a vector space V is itself a
vector space consisting of that power of V modulo the addition of linearly de-
pendent vectors with scalar multiplication and vector addition acting compo-
nentwise and with vectors denoted by v1∧⋯∧vm, and ⋀0 V ∶= R by convention
for a real vector space. That is ⋀m V ∶= V m/ ∼ where u1 ∧⋯∧un ∼ v1 ∧⋯∧vn
when {u1 − v1,⋯, um − vm} is linearly dependent. This is equivalent to anti-
commutativity (⋯ ∧ vi ∧⋯ ∧ vj ∧ ⋯) ∼ −(⋯ ∧ vj ∧⋯ ∧ vi ∧ ⋯). We also treat
(∧) ∶ ⋀n V ×⋀m V → ⋀n+m V as a function acting on exterior powers by con-
catenation (v1 ∧⋯∧vn)∧ (vn+1 ∧⋯∧vn+m) = v1 ∧⋯∧vn+m. The standard basis
for ⋀mRr is {ei1 ∧ ⋯ ∧ eim ∶ 1 ≤ i1 < ⋯ < im ≤ m}. Given a bilinear form f

on V we define a bilinear form on ⋀m V by (⋀m f)(u1 ∧⋯∧ un, v1 ∧⋯∧ vn) ∶=
det([f(ui, vj)]i,j). Recall that real vector spaces of the same rank are isomor-
phic, and notice the space ⋀m V has rank ( rm) and ⋀r−m V has rank ( r

r−m) = (
r
m
).

The Hodge star operator ⋆ ∶ ⋀m V → ⋀r−m V defined with respect to f is
the canonical isomorphism between these given for m = r by ⋆(u1∧⋯∧ur) ∶= 1
for a positively oriented basis {ui} of V that is orthonormal ∣f(ui)∣ = 1 with
respect to f and otherwise by ⋆ ∶= τ−1 ○ ψ, which are as follows.

ψ ∶⋀mV → (⋀r−mV )∗ , ψ(x) ∶= v → ⋆(x ∧ v)

τ ∶⋀r−mV → (⋀r−mV )∗ , τ(x) ∶= v → (⋀r−mf)(x, v)

We review the following property of ⋆.

f(⋆(v1 ∧⋯ ∧ vr−1), vr) = ⋆(v1 ∧⋯ ∧ vr−1 ∧ vr)



43

Theorem 3.9. Let P be a flag connected diamond lattice and G be a
∣facet(P)∣ × ∣facet(P)∣ symmetric matrix with diagonals ±1 and the same sig-
nature as f . There is a polytopal cone of type P with Grammian G if and only
if G satisfies the following:

2. For every pair of maximal cycles Fi1 ,⋯, Fid+1 and Fj1 ,⋯, Fjd+1 with the
same orientation, det(G[i1⋯id+1j1⋯jd+1

])det(f) > 0.

Proof: Since we are only strengthening one side of a biconditional statement,
we only have to consider the argument showing one direction. Since G and
F , the matrix representation of f , are real symmetric matrices with the same
signature, there exists a ∣facet(P)∣×(d+1) matrix H such that G =HFH∗. We
denote rows ofH by hj, and we claim P̂ ∶= ⋂jH−j whereH−j ∶= {x ∶ f(hj, x) ≤ 0}
is a polytopal cone of type P . Following in the footsteps of [6], we show this
by using the Hodge star operator to find vertices of P̂ , which we collect in a
matrix W , and show that N =HW ∗ is a rank d+1 filled 0-incidence matrix of P .

With this in mind, choose an oriented cycle ij,1,⋯, ij,d incident to each
vertex j of P such that these all have the same orientation, and let wj =
⋆(hij,1 ∧⋯ ∧ hij,d). Since P is a flag connected diamond lattice we can choose
another covertex ij,d+1 that is not incident to j. By Condition 2 for all i j
we have det([f(hij,k , hij,l)]k,l) = det(G[

ij,1⋯ij,d+1
ij,1⋯ij,d+1

]) ≠ 0, so the vectors {hij,k} are
linearly independent and hij,1 ∧ ⋯ ∧ hij,d ≠ 0. Therefor, wj ≠ 0, since ⋆ is an
isomorphism. We let W ∗ = [wj]j and N =HFW ∗ =H(WF )∗.

We now show the incidences given by the 0s of N are consistent with P .
For i j incident we have the following.

(N)i,j = f(hi,wj) = f(hi,⋆(⋯∧ hi ∧⋯)) = ⋆(hi ∧⋯ ∧ hi ∧⋯) = 0

Alternatively suppose i j are not incident. As we have seen this means
{hij,1 ,⋯, hij,d , hi} are linearly independent, and by counting span Rd+1. We
have already that f(hij,k ,wj) = 0, and since f is definite this cannot be 0 for
every vector of a basis, so we must have f(hi,wj) ≠ 0. Thus (N)i,j = 0 if and
only if i and j are incident in P .
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We would like to show N is nonpositive. We will actually show N is either
that or nonnegative, which can be fixed by redefining W to be −W , so this is
enough. We do this by showing all nonzero entries have the same sign. Let
(i, j) and (ı, ) both be a vertex covertex pair of P that is not incident. By
Condition 2 we have the following, which shows they have the same sign.

f(hi,wj)f(hı,w) = det(G[
ij,1⋯ij,d i
i,1⋯i,d ı

]) sign(f) > 0

This gives us that N =H(WF )∗ is a rank d+1 filled 0-incidence matrix of
P , adjusting W ’s sign if needed. Thus, by Theorem 3.6 P̂ has type P .
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CHAPTER 4

OPERATIONS ON
PROJECTIVE POLYTOPES

4.1 Completion Conditions

When a realization of a face, or in general some portion, of a polytope can
be extended to a realization of the entire polytope if and only if it satisfies
some conditions, we call these the completion conditions of that face. The
main theorem of the next chapter is the following.

Theorem 4.1. (Below) Given an algebraic d-polytope P , the completion con-
dition for the specified face F of a combinatorial (d+2)-polytope SP is that it
be projectively equivalent to P .

We call SP from the theorem a stamp of P and the specified face F
the gum. Such a polytope was constructed in [1, p. 134], and we give a
different construction here. We say a statement about polytopes inherits to
a face of a polytope when, if the statement holds for the polytope then it
holds for the face. Here by a statement about a set’s elements we mean a
function from that set to the bool values, true or false. We are interested in
Theorem 4.1, because for statements about algebraic polytopes that inherit to
faces, it reduces the problem of finding some realization of every combinatorial
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polytope where the statement holds to finding one for every projective type of
algebraic polytope. As an example of such a statement, we can ask whether
the coordinates of polytope’s vertices are all rational. It is straightforward to
see that there are polygons with algebraic coordinates that do not have all
rational coordinates under any projective transformation. As a consequence
of Theorem 4.1 this gives us combinatorial 4-polytopes that cannot be realized
with all rational coordinates. Inheritance as we have defined it expresses well
the idea of what we want, but what we will actually need to use in the last
chapter is the following more technical definition. For statements about an
indexed collection of polytopes P of the same combinatorial type P, we say
the statement inherits projectively to a face of P when the statement holds
for some projective copies of that face of each of the polytopes in P.

Corollary 4.2. Let S be a statement about indexed collections of algebraic
polytopes of the same combinatorial type that inherits projectively to every
ridge. S is true for some indexed realizations of every combinatorial type of
polytope if and only if it is true for some indexed realizations of every projective
algebraic type. Moreover, there can be a gap of at most 2 dimensions.

Proof: Since projective equivalence is finer than combinatorial equivalence,
we have the ‘if’ direction trivially. For the other direction, suppose S satisfies
the conditions of the corollary and holds for some I indexed realizations of
every combinatorial polytope. Consider an algebraic polytope P . Since the
stamp SP has an I indexed collection of realizations where S holds, it must
also hold for some I indexed collection of projective copies of SP ’s gum, which
itself is projectively equivalent to P by Theorem 4.1. In this way S holds for
some I indexed projective copies of every algebraic polytope. Also, since SP
is 2 dimensions higher than P , if S holds for some I indexed realizations of
every combinatorial polytope up to dimension d+ 2, then by this argument, it
holds for some I indexed projective copies of every algebraic polytope up to
dimension d.
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4.2 Projective Coordinates

The goal of this chapter is to provide the background needed to construct
a stamp. Our approach will be to fix the coordinates of a polytope’s vertices
in projective space, so we need to determine a point’s coordinates in a projec-
tively invariant way. We do this, as in linear space, by choosing a basis. That
is determining the minimum elements of the space, so the only automorphism
preserving these is the identity. This is enough to uniquely determine a pro-
jective transformation to a completion of Rd.

For our basis we select d+2 points in general position that will correspond
to the origin, 0 = (0,⋯,0), the standard basis vectors e1 = (1,0,⋯,0) . . .
ed = (0,⋯,0,1), and the vector 1 = (1,⋯,1). As an alternative to 1, we may
instead choose a hyperplane ∆ to be the horizon, the hyperplane at infinity.

We could define a point’s coordinates as that of its image in Rd, but we
would rather define the coordinates purely in terms of projective operations.
We start by first determining the axis hyperplanes hi0 ∶= {x ∶ (x)i = 0},

hi0 ∶=
d

⋁
j=1
j≠i

ej ∨ 0

then the horizon, unless we started with ∆ instead of 1,

∆ ∶=
d

⋁
i=1
((ei ∨ 1) ∧ hi0)

then, the points, ∞ei on the horizon where the pencil of lines that are parallel
to the ith axis meet,

∞ei ∶= (0 ∨ ei) ∧∆

then, the facet supporting hyperplanes of the unit cube away from the origin
hi1 ∶= {x ∶ (x)i = 1}.

hi1 ∶=
d

⋁
j=1
j≠i

∞ej ∨ ei

We are now ready to determine a coordinate of a point by first projecting the
point into the two parallel hyperplanes where that coordinate is 0 and 1, and
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then taking the cross ratio of these points and the point where that coordinate
axis meets the horizon.

πij( ⋅ ) ∶= ( ⋅ ∨∞ei) ∧ hij

( ⋅ )i ∶= ( ⋅ , πi1( ⋅ )∣πi0( ⋅ ),∞ei)

4.3 Visibility

An intuitive way of thinking about polytopes, particularly in projective
space, is to consider what portion of a polytope’s boundary is visible from a
point in the space around the polytope. This perspective was used in [5] to
prove that all polytopes are shellable. We will define the portion of a polytope
P visible from a point p as the portion of P that is on the boundary of the space
between them. An issue we must always deal with when determining what is
visible in projective space is the distinction between what is in front of and
what is behind the observer. For this we will give p an orientation. The details
of oriented projective geometry, as well as convexity in oriented projective
space, can be found in [24], though we will present it in a different way.

Recall that the points p of a real projective space are the rank 1 subspaces
p ∶= Rv of a real vector space V ∋ v ≠ 0, and that a polytope P in projective
space is the union of a polytopal cone C in the underlying vector space and C’s
reflection through the origin P ∶= C ∪ −C. Alternatively, we can pass through
the unit sphere to get projective spaces by sending each rank 1 subspace to its
intersection with the unit sphere and then identifying the resulting antipodal
points. For p ∉ P there are two minimal convex sets containing both p and
P . To distinguish between these two sets we give p an orientation p+ with
respect to P by choosing one of them to be the convex join p+ ⊍P . We denote
the opposite orientation by p−, and both together by p↺ ∶= {p+, p−}. Fixing a
polytopal cone C representing P in the underlying vector space, an orientation
amounts to choosing a ray R+v to represent p. We then get the convex join of
p+ and P in projective space as positive and negative linear combinations of
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the cones representing each.

p+ ⊍ P ∶= {±(τ0v + τ1C) ∶ τi ≥ 0}

In projective space considered as a sphere with antipodal points identified,
choosing an orientation on p amounts to choosing one of the corresponding
antipital points v

∥v∥ . We define the line of sight region from p+ to P to be the
closure of their convex join with P removed.

los(p+, P ) ∶= (p+ ⊍B) ∖B

We say a face F of P is front visible from p+ when it is on the boundary
of its line of sight region region F ⊂ los(p+, P ), and we say a face of P is
back visible when it would be front visible with the opposite orientation
F ⊂ los(p−, P ). When a face is not visible we say it is obscured. This gives 4
posibilities: a face may be doubly visible, front only visible, back only visible,
or doubly obscured. We say orientations on a set are consistent when the
union of the corresponding rays in the underlying vector space is convex.

The space outside a polytope before assigning orientations is a punctured
real projective space. For example the space outside of a polygon in RP2 is
a möbius strip. Including orientations makes this an annulus, or in general a
thickened sphere, which is how we would like to think of the positions from
where we view a polytope. Choosing orientation on a hyperplane in projec-
tive space amounts to inverting the identification of antipital points on the
underlying sphere. We call orientations on a hyperplane h↺ with respect to a
polytope P that is disjoint from this hyperplane P ∩h = ∅ a celestial sphere.

We will use visibility from points on a celestial sphere to representing the
normal vectors of a polytope’s faces. Recall that the normal cone ncon(F )
of a face F of a polytope P in a vector space V is the set consisting of those
linear functionals that are maximized over the polytope on that face,

ncon(F ) ∶= {a ∈ V ∗ ∶ a(q) =max
p∈P
(a(p))⇔ q ∈ F}

= con(F ◇).
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Related to the normal cone is the solid tangent cone tcon(F ), which is the
intersection of every closed half space containing P with F on its boundary

tcon(F ) ∶=⋂{H =Ha,b = {x ∶ ⟨a, x⟩ ≤ b} ∶ P ⊂H, F ⊂ ∂H}

= con(F ◇)∗ + aff(F )

The normal fan of a polytope in V is the collection of its faces’ normal
cones. We call an element of a face’s normal cone a normal vector of the
face. We represent a vector in the normal fan as a sky, an open half space
of a celestial sphere. This is a hyperplane with a (d−2)-subspace removed
and orientation chosen consistently. We say a sky is visible from a face of a
polytope when it is visible from every point in the sky. The celestial view
from a face of a polytope is the set of skies that are visible from that face.
This corresponds to the normal cone of a polytope’s face. Notice that since
skies are defined to be open, this is a closed set. The celestial complex of
a polytope P is the collection of celestial views from its faces. This provides
the same information as the the normal fan of P , but in projective space. We
make this correspondence explicit in the following lemma.

Lemma 4.3. For polytopes in a vector space embedded in projective space,
there is a bijection between the unit sphere and skies sending the unit normal
vectors of each face to its celestial view.

Proof: Let P ⊂ Rd be a polytope and ϕ(P ) be the usual embedding in projec-
tive space ϕ ∶ Rd → RPd, ϕ(x) = R[x1]. Also let c be the hyperplane RPd∖ϕ(Rd)
with orientations relative to ϕ(P ). We claim ψ+ where

ψ+(a∗) ∶= {R+[v
0
] ∶ a∗v > 0}

oriented relative to R+[P1], that is

ψ+(a∗) = {q+ ∶ q = R[v
0
], q+ ⊍ ϕ(P ) = ±{τ0[

v

0
] + τ1[

P

1
] ∶ τi ≥ 0} , a∗v > 0} ,

gives the desired bijection. We have immediately that this is a bijection. We
only need to see that, for a∗ in the normal cone of F , ψ+(a∗) is in F ’s celestial
view, and every celestial view of F is the image of some normal vector.
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The first part holds if F is visible from q+ = R+[v0] for all q+ ∈ ψ+(a∗). Since
a∗ is in the normal cone of F , we have that ∀p ∈ P ∀f ∈ F , β ∶= a∗f ≥ a∗p, so
for ε > 0 we have β < a∗(f +εv) and f +εv ∉ P , but f +εv ∈ q+⊍ϕ(P ). Therefor,
letting ε → 0, we see F is on the boundary of los(q+, ϕ(P )), and as such F is
front visible from q+. Thus, ψ+(a∗) is in the celestial view of F .

Every celestial view of F is the image of some normal vector if for every
q+ = R+[v0] from where F is visible there is some normal vector a∗ such that
a∗v > 0. Since F is visible from q+, we have f + εv ∉ P for all f ∈ F and ε > 0,
so v ∉ tcon(F ). Translating so 0 ∈ F , by the Farkas lemma there is a linear
functional a∗ seperating v from tcon(F ) [26, p. 42]. That is a∗v > 0 and a∗ is
a normal vector of F . Thus, every celestial view of F has the form ψ+(a∗).

The lemma holds for a polytope in any real vector space embedded in a
projective space by an appropriate choice of bases.

.. .

..

.

..

Figure 4.1. Normal vector of an edge and a vertex with the corresponding sky
of each. Orientations are indicated by shading.

4.4 Prismoids

A polytope is a prismoid when every vertex of the polytope is in one of
two nonintersecting faces, the bases of the prismoid. We call the remaining
proper faces sides of the prismoid. When one base is of higher dimension than
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the other, we will call the smaller one the apex and use ‘base’ to refer to only
the larger one when the distinction is clear from context.

Any face of a prismoid can be determined by its intersection with each of
the bases. With this in mind we define an abstract prismoid P with bases
B0 and B1, which must be abstract polytopes, to be a sublattice of the product
of its bases’ faces P ⊂ B0 × B1 ordered by

(F0,F1) ≤ (F ′0,F ′1) ∶= (F0 ≤ F ′0 and F1 ≤ F ′1)

satisfying the following. We require that the bases with their subfaces be
included in the lattice as B0 ×�1 ⊂ P and �0× B1 ⊂ P as well as the polytope
as a face of itself ⊺P = (⊺0,⊺1) ∈ P. We call all other faces sides and further
require that every base face be contained in some side.

A realization of a prismoid is a set of the form

P = B0 ⊍B1 = {τ0B0 + τ1B1 ∶ τi ≥ 0, τ0 + τ1 = 1}

where B0⋂B1 = ∅ and ⋁Bi ∩ P = Bi. We give realizability conditions for
prismoids in terms of the following definition. The Minkowski sum X +Y of
two subsets X,Y of a vector space is the component wise sum of their elements,
X + Y ∶= {x + y ∶ x ∈X, y ∈ Y }.

Lemma 4.4. An abstract prismoid can be realized if and only if the poset given
by its sides S with bounds added can be realized as the Minkowski sum of the
bases. Moreover, the completion condition for Bi ⊂ Ui with common celestial
sphere (U0 ∧U1)↺ is that S be the set of pairs of faces having celestial views
with intersecting relative interiors,

S = {(F0,F1) ∈ B0 × B1 ∶ view(F0)○ ∩ view(F1)○ ≠ ∅}.

The common refinement of two collections X,Y of subsets is the pair
wise intersection of their members {X ∩ Y ∶ X ∈ X, Y ∈ Y}. Notice that the
completion condition in this lemma requires that the pairs of faces in S form
the common refinement of the bases’ celestial complexes.
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.. . . .

.

Figure 4.2. A horizontal slice of a prismoid with a square and a triangular base.
These slices are weighted Minkowski sums of the bases. The common refine-
ment of the normal fans gives the combinatorics of the sides of the prismoid.

Proof of Lemma 4.4: For the first part, given a realization P of a prismoid,
we can assume without loss of generality, that bases B0 and B1 are in the
hyperplanes xd = 0 and xd = 1 respectively. If this is not the case already we
can apply some projective map to make it so. Now we have

P = B′0 × 0 ⊍B′1 × 1 = {(τ0B′0 + τ1B′1) × τ1 ∶ τi ≥ 0, τ0 + τ1 = 1}

where B′i is Bi with the dth coordinate removed. We see from this that the
sides of the prismoid correspond to faces of the Minkowski sum of the bases
B′0 + B′1. For the other direction if we have a realization of a polytope with
nontrivial faces order isomorphic to the sides of P of the form B′0 +B′1, then
we get a realization of P as given above.

For the second part, first recall that the normal fan of the Minkowski sum
of two polytopes in affine space is the common refinement of the normal fans
of the polytopes [26, p. 198]. We can see this by considering what happens
to faces as the solution spaces to linear optimization problems upon summing
polytopes. A face is the complete set of optima for the linear functionals in
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the relative interior of its normal cone, so for any given linear functional a∗,
the complete set of optima in the Minkowski sum is the sum of the face of each
constituent polytope having this linear functional in its normal cone interior,
and these sets are in turn the faces of the Minkowski sum.

F ⊂ B0 +B1 s.t. a∗ ∈ ncon(F ) = {f0 + f1 ∶ (f0, f1) ∈ argmax
bi∈Bi

(a∗(b0 + b1))}

= {f0 + f1 ∶ fi ∈ argmax
bi∈Bi

(a∗bi)}

= ∑
i∈{0,1}

{fi ∈ Bi ∶ fi ∈ argmax
bi∈Bi

(a∗bi)}

= F0 + F1 s.t. Fi ⊂ Bi, a
∗ ∈ ncon(Fi)

Returning to projective space, by Lemma 4.3 the solutions to a linear opti-
mization problem form the face from where the corresponding sky is visible.
Finally, from the first part of this lemma, we see that (F0,F1) gives a side of
the prismoid if and only if there is a sky in the relative interior of the view
from each face.

Some examples of prismoids are prisms and pyramids. Earlier we visited
the antiprism, which is also a prismoid. Another prismoid that will appear
extensively is the Lawrence extension, or tent.

4.5 Tents

A tent is a prismoid where one of the bases is an edge, the apex. An
abstract prismoid is an abstract tent when a face of the base forms a side
with the apex if and only if it forms a side with either both apex vertices or
neither apex vertex.

If a combinatorial polytope B is to be realized as the base of a tent with
specified combinatorics it must satisfy some additional conditions beyond what
is required to realize it alone. Specifically the combinatorics of the tent deter-
mines the visibility of the faces of B from a point p ∉ B as described in the
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following lemma. A very similar result appears in [20, p. 32] and we will use
it for the same purposes. We also call a tent the Lawrence extension of B
over p. This is one operation we perform on the combinatorics of a polytope
alter realizability conditions, and in the next section we will present another.

Lemma 4.5. The completion conditions of the base B, with nontrivial faces
Fx,i, of a tent L, with apex Λ having vertices λ± and sides of the form

(F+,i, λ+) (F0,i,Λ) (F−,i, λ−)

(F∗,i, λ+) (F∗,i,Λ) (F∗,i, λ−),

are that the faces F+,i, F0,i, F−,i, F∗,i be front only visible, double obscured,
back only visible, and doubly visible respectively from a point p+ ∈ (Λ ∧B)↺.

Proof: This comes from a special case of the second part of Lemma 4.4. The
realizations of a line segment modulo projectivity is trivial The lemma tells us
that a realization of the base can be completed to a realization of L if and only
if the the sides come from pairs of faces having celestial views with intersecting
relative interiors, which we reformulate into statements about visibility from
p+ to get the lemma.

The interior of the celestial view from λ± consists of precisely those skies
that include p±, and as such the celestial view interior of a face F intersects that
of λ± if and only if F is visible from p±. These skies form two open hemispheres
among skies, and the remaining skies form the great sphere seperating these
hemispheres, which is the celestial view from Λ. The relative interior of any
base face’s celestial view must be contained in either one of the hemispheres,
the great sphere between them, or the great sphere and both hemispheres.
Thus we have the four cases stated in the lemma.

4.6 Gluing

In the next chapter we will present a catalog of polytopal pieces that we
will combine to construct a combinatorial polytope with specific realizability
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Figure 4.3. The normal fan of a tent’s apex and its base. For the apex this is
two half spaces separated by a hyperplane. The sides of the tent are determined
by how this hyperplane separates the outward normals of its base faces.

conditions, but first we will say a bit about how to combine them. To this end
we define a purely combinatorial operation for combining polytopes, gluing
them together, and give realizability conditions in terms of the components.

Given combinatorial polytopes P0 P1 and an isomorphism between the face
lattices of a facet of each ϕ ∶ [∅, F0]→ [∅, F1], we glue these abstract polytopes
along this isomorphism by removing the facet from each one and identifying a
face of one with its image in the other under the given isomorphism.

P0#ϕP1 ∶= (P0 ∖ F0)⊔(P1 ∖ F1)/ϕ

We may also denote this P0#FP1 for F either F0 or F1 when ϕ is understood.
We see examples of polytopes glued together in 3 and 4 dimensions in Figure
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5.2. We call the dual operation whittling (P∗0#v∗P∗1 )∗, and we say a vertex
v of a polytope P0 was whittled when its dual has been glued to another
polytope along the facet that is dual to v.

Realizability conditions are much simpler when gluing along facets that are
necessarily flat, which all facets we glue along will be. A d-polytope is neces-
sarily flat when any realization of its (d−1)-skeleton in space of arbitrarily
high dimension will be contained in a subspace of dimension d. The following
results are shown in [20, p. 29].

Lemma 4.6. For any pair of polytopes P1, P2 where a facet F of one is
projectively equivalent to that of the other, there is a projective map φ gluing
them along this facet, so

P1 ∩ φ(P2) = F, P1 ∪ φ(P2) = P, P = P1#FP2.

If F is necessarily flat then all realizations of P come from realization of P1,
P2 in this way.

Proof: For the first part we will construct the appropriate transformation.
We begin by noting that for each facet of a polytope there is some point with
orientation from where only that facet is front visible, and all other facets are
back visible. We find such a point in the following way. We can consider a
polytope to be the intersection of the half spaces supporting some facet of
the polytope. None of these half spaces can be redundant, since they would
otherwise not support a facet, so by removing one we get a strictly larger set.
Any point in this new portion of this larger sets has the desired property. For
the given polytopes and facets denote this new portion and a point in it by
pi ∈ F̂i.

Since we assume projectively equivalent facets we already have a projectiv-
ity φ′ sending F2 to F1. We now need to extend this to a projectivity between
the full spaces of the polytopes. For this we let φ∣F2 = φ′ and φ(p2) = p1. Un-
der this map we have φ(P2) ⊂ φ ○ los(p−2 , F2) = los(p+1 , F1) ⊂ F̂1
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For the second part, since F is necessarily flat, we can subdivide P by the
hyperplane containing F to get a realization of P1 and P2.

Lemma 4.7. Pyramids and Prisms over a polytope of dimension at least 2
are necessarily flat.

Proof: For Pyramids this is because adding a point can at most increase the
dimension by 1. For Prisms, consider starting with one base and adding sides.
Each side of the prism could potentially introduce a new dimension, but if one
side is contained in another then together they are still contained in a space
only one dimension higher. Since the base has dimension d ≥ 2, any side can be
reached through a sequence of sides where each side intersects its successor in
a side of the prism. Thus, one base and all sides must be contained in a space
of dimension d + 1. Adding the other base can not increase the dimension,
since this is the convex hull of faces we have already added, the Prism must
also be necessarily flat.
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CHAPTER 5

PRESCRIBED RIDGES

5.1 Transmitters

Here we define a catalog of polytopes culminating in the stamp. In [20]
a language is developed for encoding arithmetic operations into polytopes,
which is where the pieces described here come from, with some modifications
and additions. Before defining these polytopes we will say a bit about their
purpose and give the relevant properties motivating their construction.

The purpose of a transmitter is to impose a relationship between two of its
faces, the sockets, in the form of a projective transformation. In a sense the
most restrictive example of this, which we will use widely, is the full transmit-
ter. This forces the sockets to be projectively equivalent. Before saying more
about full transmitters we define the most general type of transmitter we will
use.

A projective transmitter TB+,B− of two polytopes B+ and B−, its sock-
ets, is a Lawrence extension of a prismoid, its trunk P = B+ ⊍ B−, having
the sockets as bases over a point from where B+ is front only visible and B−

is back only visible. That is, it is a tent over the trunk such that each socket
forms a side of the tent with exactly one of each of the vertices of the apex;
B+ ⊍λ+ and B− ⊍λ− are the only transmitter sides containing the sockets. We
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refer to sides of this tent as transmitter sides and sides of its base as trunk
sides to distinguish them from each other.

Analogously, an abstract projective transmitter TB+,B− is an abstract
tent with an abstract prismoid base as above, but additionally satisfying the
following conditions, which are consistent with what can be realized. We re-
quire that every face F± of a socket B± forms a transmitter side with the corre-
sponding apex vertex ((F+,�−), λ+), ((�+,F−), λ−) ∈ TB+,B− , and the remaining
transmitter sides be determined by the choice of faces of sockets B± forming a
transmitter side with the other apex vertex λ∓ in the following way. A trunk
side (F+,F−) ∈ P forms a transmitter side with λ− if and only if F+ does as
well, and likewise for λ+ and F−,

((F+,F−), λ−) ∈ TB+,B− ⇔ ((F+,�−), λ−) ∈ TB+,B−
((F+,F−), λ+) ∈ TB+,B− ⇔ ((�+,F−), λ+) ∈ TB+,B− .

Also, being an abstract tent, a face of P forms a transmitter side with Λ if
and only if it forms a side with both or neither λ±.

This allows us, when specifying the combinatorics of a transmitter, to
only indicate those socket faces forming a transmitter side with the other
apex vertex. We now show that these additional conditions are necessary for
realizability.

Lemma 5.1. The face lattice of a projective transmitter is always an abstract
projective transmitter.

Proof: For this the three conditions given above must hold for any projective
transmitter. The first two conditions must hold since all subfaces of a face are
visible from the same point with orientation if and only if the face is visible
from that point as well. For the first condition this applies to the sockets,
and for the second condition to the trunk sides. The third condition we get
directly from the characterization of tents given in Lemma 4.5.

A projective transmitter is a full transmitter TB of B when the trunk
P is a prism over B and every face of a socket forms a transmitter side with
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only that socket’s apex vertex. Equivalently we can define a full transmitter
of a polytope as a prism over a pyramid over that polytope TB ∶= pris○pyr(B).
Intuitively we can think of this as a Lawrence extension specifying a point p
from where a light sources would exactly form one copy B+ of B as the shadow
cast by the other copy B− on the projective span of the first ⋁B+.

A slightly more general transmitter that we also use widely is the forget-
ful transmitter. This is similar to a full transmitter except one socket B+
is a copy of the other socket B− with some simple vertices whittled. Specifi-
cally, faces formed by whittling form a trunk side with only the corresponding
whittled vertex, and other socket faces form a trunk side with only the corre-
sponding face of the other socket; and, the whittled vertices form a transmit-
ter side with both apex vertices, but all other socket faces form a transmitter
side with only that socket’s apex vertex. Like the full transmitter, the for-
getful transmitter forces the whittled socket to be projectively equivalent to a
whittled copy of the unwhittled socket.

. .

Figure 5.1. Schlegel diagrams for a full transmitter and a forgetful transmitter.

Before proving our claims about full and forgetful transmitters we give a
general treatment. We first note that removing two hyperplanes from a real
projective space U leaves two components, which we call half spaces, and we
denote by halfh(U) the set of half spaces where h is one of the two hyperplanes.
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Lemma 5.2. The completion conditions for the sockets B± ⊂ U± of an abstract
projective transmitter TB−,B+ with common celestial sphere c = (U− ∧U+)↺ are
that the common refinement of the celestial complexes be consistent with the
trunk sides, and that there be a projectivity φ ∶ U− → U+ fixing c, such that for
each face F of B±, there exists a supporting half space H ∈ halfc(U±) of F with
the image of the other socket φ±(B∓) in its interior if and only if F forms a
transmitter side with the opposite apex vertex λ∓.

∀F ∈ face(B± ↪ P) ∶

(∃H ∈ halfc(U±) ∶ F = B± ∖H○, φ±(B∓) ⊂H○)⇔ (F , λ∓) ∈ TB−,B+

Proof: Suppose we have a realization of the projective transmitter, then the
pairs of faces appearing in the common refinement of the celestial complexes
are the same as those of the trunk sides by Lemma 4.4. Projecting through
the point p = Λ∧P , where Λ is the apex and P is the trunk, gives the desired
transformation.

φ( ⋅ ) ∶= (p ∨ ⋅ ) ∧U+

To see this, suppose there is a half space H supporting a face F of B+ with
φ(B−) in its interior, then p∨ (∂H) does not intersect B−, so it only intersects
P at F . Since p− ⊍ F ⊂ p ∨ (∂H), we have p− ⊍ F intersects P at F , so
F ⊂ los(p−, P ) is visible from p−, and by Lemma 4.5, F ⊍ λ− is a transmitter
side of TB−,B+ . Now suppose F ⊍ λ− is a transmitter side of TB−,B+ , then F as
a face of P is doubly visible from p and there is some supporting hyperplane
∂H of F containing p. Restricting the half space H containing P bounded
by this hyperplane to U+ gives us an appropriate half space. Similarly these
conditions hold for the existence of such a half space supporting a face of B−.

For the other direction suppose we have realizations of the sockets with
a common refinement of their celestial spheres that is consistent with the
combinatorics of the trunk sides, and a projective transformation φ consistent
with the transmitter sides. By Lemma 4.4 we can complete the sockets to a
realization of P , since the relative interiors of celestial views intersect in the
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appropriate way. To be more explicit, we embed B− in the hyperplane (x)d = 0
in Rd where B− had dimension d − 1, and translate the preimage of B+ under
φ to be in the hyperplane (x)d = 1. The convex hull of the sockets with these
embeddings gives us a realization of P and a new projection φ′( ⋅ ×0) ∶= ( ⋅ ×1)
through ∞ed that is also consistent with the sides of the tent. Now by Lemma
4.5, the Lawrence extension over ∞ed gives us the correct realization. To see
this we observe that a face F of B± is doubly visible from ∞ed if and only if
F × R intersects P only in F , which happens if and only if it is contained in
some half space supporting F .

We now apply this to full and forgetful projective transmitters. Here we
include the full transmitter as a special case of the forgetful transmitter. A
variation of these appears in [20, p. 46].

Lemma 5.3. The completion conditions of a forgetful transmitter’s sockets
B0,B1 are that there be some projective transformation φ such that ⋁φ(F ) =
⋁ϕ(F ) for all socket facets F of B0. In particular, for full transmitters the
sockets are projectively equivalent. B0

proj∼ B1

Proof: This is just a special case of Lemma 5.2. We have only to see that
the common refinement of celestial complexes of a whittled polytope and the
original is just that of the whittled.

5.2 Connectors

Connectors Cn,B serve the same purpose as full transmitters, but have n
rather then just two sockets. A variation of these appears in [20, p. 47]. Here
sockets are always the base of a facet of the form pyr(B). When more then one
such facet shares the same base we treat it as a different socket for each such
facet. We now begin constructing larger polytopes by gluing smaller polytopes
together. Later we will glue along these pyramids, which we simply refer to
as gluing along sockets. We refer to the sockets have not been glued along as
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Figure 5.2. A pair of full transmitters glued along their trunks to make a con-
nector with 4 sockets. At the top are two perspective drawings of a transmitter
of an edge and a perspective drawing of these glued together. Beneath each of
these is a Schlegel diagram of the corrsiponding polytopes. At the bottom are
two Schlegel diagrams of a transmitter of a pentagon and a Schlegel diagram
of the connector we get by gluing these transmitters together.
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open sockets. We will define connectors so that the following lemma about
them holds.

Lemma 5.4. The completion conditions for the n sockets of Cn,B are that they
all be projectively equivalent.

The following constructions are connectors. We begin by letting a full
transmitter be a connector with 2 sockets. Cn,B ∶= TB We construct C4,B a
connector with 4 sockets by gluing two copies of a full transmitter of B together
along the trunk. We construct even many socket connectors C2n,B for n > 2

by gluing together n − 1 copies of C4,B along sockets. The choice of sockets we
glue along makes no difference so long as the result is a tree of connectors, so
we simply refer to all such polytopes as connectors. Finally, for any n we just
ignore extra sockets. We may omit subscripts where doing so is unambiguous.

Proof of Lemma 5.4: That C2 is a connector is just a restatement of Lemma
5.3 for full transmitters. We see that C4 is a connector since prisms are nec-
essarily flat, so the two copies of C2 that make up this polytope must keep
their realizability constraints forcing the two bases of the prism to be projec-
tively equivalent, and since each socket is a pyramid over one of these bases,
they must also be projectively equivalent. The sockets, as pyramids, are also
necessarily flat, so connectors glued along sockets must keep their realizability
conditions, with the constraint that the sockets glued along must be projec-
tively equivalent. This forces the remaining sockets of both connectors to be
projectively equivalent to each other, so the result for higher n even follows
by induction, and for n odd by ignoring one socket of Cn+1

5.3 Adapters

While gluing connectors and transmitters together, we may in some cases
want to glue a socket of lower dimension to an appropriate face of a higher
dimensional socket. For this we can repeatedly stellate a facet containing this
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face, starting with the larger socket’s pyramid until we have a facet that is
a multipyramid over this face, which is what we glue along. These repeated
stellations are equivalent to gluing a single polytope to the larger socket, which
we will refer to as an adapter [20, p. 149].

Lemma 5.5. The adapter AB,F between a d-polytope B and its (d−n)-face F
has a face of type F contained in a facet of the form pyr(B) and one of the form
pyrn+1(F), and any realization of B can be completed to a realization of AB,F .

When F is a facet of B we define the adapter between them to be a double
pyramid over the larger socket, AB,F ∶= pyr2(B). Otherwise we find an un-
broken chain ⊺,Fd−1,⋯,F and recursively define the adapter to consist of an
adapter between B and Fd−1 glued to a pyramid over an adapter between Fd−1
and F .

AB,F ∶= AB,Fd−1#pyr2(Fd−1)pyr(AFd−1,F)

Proof of Lemma 5.5: This is immediate from the construction.

5.4 Hubs

Portions of the polytopes we construct will consist of a collection H, which
we call a hub, of connectors, projective transmitters, and adapters of various
sockets B glued together along sockets. These give us a collection of projections
ΦH between the projective spans of their respective sockets. To deal with all
of these spaces together we mod out by the equivalence relation generated by
these projections, while being careful to treat points that are in more then one
of these spaces correctly, to get a single projective space.

RPkH ∶= ⊔
B∈B
⋁ B/ΦH

We call polytopes glued to a hub’s open sockets, its restricting polytopes,
and we use the hub to combine the completion conditions of the facets along
which we glue these polytopes.
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Lemma 5.6. The completion conditions of an open socket of a hub with a
collection of restricting polytopes are that it can be completed to a collection
satisfying the combined completion conditions of the restricting polytopes.

Proof: Let us assume at first that our hub consists of only one of the building
blocks mentioned. For each of these we have already proved a lemma show-
ing this: for forgetful transmitters Lemma 5.3, for connectors Lemma 5.4, and
for adapters Lemma 5.5. We now proceed by induction. Assume the lemma
holds for hubs consisting of fewer than n building blocks and consider a hub
H consisting of n. The specified open socket B is a socket of one of these
components P , which has other sockets that are each glued to a portion Hi
of the rest of the hub. This portion of the hub is itself a smaller hub, and by
inductive assumption it combines the completion conditions of its restricting
polytopes. As such we can treat Hi with its own restricting polytopes as a re-
stricting polytope of the single component hub P . With this the completion
conditions for B are the combination of those of P ’s restricting polytopes, Hi
with their own restricting polytopes, which together are in turn the combina-
tion of that of the restricting polytopes of H.

5.5 Unit Polytopes

Now that we can construct polytopes representing a common space popu-
lated by various polytopes sharing supporting hyperplanes, we would like to
use this to combine constraints imposed by the tools developed so far. We give
a simple example of this now, which is also a stamp Ud = S . of a hypercube . .
In the general stamp construction we will use this hypercube as a kind of scaf-
folding to which we fix points, and to give us a projective coordinate system.

Lemma 5.7. The completion conditions for the specified facet pyr( . ) of a d-
unit polytope is that . be projectively equivalent to the unit hypercube.
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The d-unit polytope Ud with specified facet of combinatorial type pyr( . )
consists of a connector Cd+1, . with one of its sockets the specified facet, and
for each opposite pair of facets W i

0 and W i
1 of . , which we will call walls, a

pyramid over a full transmitter Ti of a (d−1)-cube between these walls is glued
to a connector socket along the transmitter’s trunk.

Ti ∶= Twi
0,w

i
1

..C .

.pyr(Ti).1⋯ .⋯ d

.Ud .∶=

Figure 5.3. Gluing diagram for a unit polytope.

Proof of Lemma 5.7: First we note that the unit cube satisfies all conditions
imposed on . by Ud, namely that as a prism with any choice of an opposite
pair of facets to be its bases the projective spans of the sides of the cube all
meet at a common point.

Given a realization of Ud we proceed by selecting a basis of RPd. , and show
that with this basis the walls of . have supporting hyperplanes hi0 ∶= {(x)i = 0}
and hi1 ∶= {(x)i = 1}, and . must therefor be the unit hypercube. For this we
choose one vertex to be 0, each of 0’s neighbors to be ei for i ∈ {1,⋯, d}. Each
of the transmitters is a Lawrence extension at a point, which we label pi∞. To
complete the basis we choose ∆ ∶= ⋁di=1 pi∞ to be the horizon. With this we have
that each hyperplane hi0 supports the facet W i

0 of . containing ej for j ≠ i,
since this hyperplane is defined as the span of these points. For the remaining
facets first see that pi∞ ∈ 0 ∨ ei since by Lemma 4.5 the edge between 0 and ei
is doubly obscured from pi∞, so our choice of pi∞ = ∞ei is consistent with the
notation in Section 4.2. Also W i

1 is a trunk side of the transmitter Tj for j ≠ i,
and as such is doubly obscured from pj∞, so the supporting hyperplane of W i

1
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contains pj∞ as well as ei, and therefor must be hi1. Thus, in every realization
of Ud the projective transformation defined by this basis sends the supporting
hyperplanes of . to those of the unit cube and as such . must be projectively
equivalent to the unit cube.

5.6 Pencil Polytopes

We would like to impose further completion conditions on polytopes. Specif-
ically, we will force collections of lines to meet at a common point. To this
end we present the pencil polytope XG of a polygon G with a specified pair
of edges E ,E ′ separating a specified pair of vertices v+, v− contained in neither
edge. This is a varient of a polytope in [20, p. 50], about which we will prove
the following.

Lemma 5.8. The completion conditions for the specified facet pyr(G) of a
pencil polytope XG with appropriate edges and vertices specified is that the lines
⋁E, ⋁E′, and v+ ∨ v− intersect in a single common point. That is, the points
v+, v−, and E ∧E′ are collinear.

A pencil polytope XG is a projective transmitter from the polygon G

to an edge ΛL that sends the specified vertices v± to the vertices λL,± of ΛL.
As such the trunk of the transmitter is a tent L, which we require to be the
Lawrence extension at the point E ∧ E′ where lines supporting the specified
edges meet.

A combinatorial pencil polytope XG is a combinatorial projective trans-
mitter with a tent L over G for its trunk where the faces forming a side of L
with its apex ΛL are the edges E ,E ′. This separates the remaining faces of G
into two components, which each form trunk sides with one of the trunk apex
vertices. And, those socket faces forming a transmitter side with both trans-
mitter apex vertices λX,± are the faces of G containing neither v±. We say
combinatorial rather than abstract because its realizability is not in doubt.
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Proof of Lemma 5.8: By Lemma 4.5, G can be completed to a realization
of L if and only if E and E′ are doubly obscured from a point p = ΛL ∧G and
the other faces are front or back only visible as appropriate, which is equivalent
to the requirement that ⋁E, ⋁E′, and ⋁ΛL meet at p. Now by Lemma 5.2,
L can be completed to a realization of XG if and only if there is a projectivity
φ sending ΛL into ⋁G such that, first, no supporting half space of φ(ΛL)
contains G in its interior, second, φ(ΛL) is not in the interior of any of the
supporting half spaces of the edges containing v±, but is for other edges, and
third, φ preserves p. The first condition is equivalent to requiring that both
φ(λ±) be contained in G. For the second condition, notice the space outside
the supporting half spaces of edges containing v+ is the solid tangent cone of v+
reflected through v+. Making ⋁G a vector space, we can express this cone as
2v+ − tcon(v+). The second condition then requires that φ(ΛL) intersect both
cones 2v± − tcon(v±). That is, φ(λ±) must be in both cones. Let λ+ be the
one that lands in 2v+ − tcon(v+). Since 2v± − tcon(v±) ∩G = v±, we must have
φ(λ±) = v± and φ(p) = p, in which case the conditions are satisfied. Thus, G
can be completed to a realization of XG if and only if v+ ∨ v− = φ(λ+ ∨ λ−) ∋ p,
or equivalently ⋁E, ⋁E′, and v+ ∨ v− meet at p.

5.7 Arithmetic Polytopes

Arithmetic polytopes represent real values and arithmetic operations on
them. Values are represented by the cross ratios of 4-tuples among a collection
of collinear points determined by edges of a polygon in the following way. A
computational frame representing n values along with 0, 1, and ∞ is a
2(n+3)-gon where the meets of pairs of lines supporting opposite edges are all
collinear. Three of these point, specified as p0, p1, and p∞, along with their
corresponding edges represent the values 0, 1, and ∞ respectively. Each of
the remaining points {pαi

} along with its pair of edges represents one of the
computational frames values as αi = (pαi

, p1∣p0, p∞).
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.pα
.p1

.p∞

Figure 5.4. A computational frame representing the value α.

As a corollary to a variation of a theorem presented in [20, p. 68], for every
algebraic number α, we can construct a 4-polytope Rα that has, as one of its
faces, a computational frame representing α. This number will then appear as
a coordinate of a vertex in the stamp construction.

Corollary 5.9. For any positive algebraic number α, the completion condition
for the specified facet pyr(G) of a combinatorial 4-polytope Rα is that G be a
computational frame representing α.

To prove this lemma we will use the following theorem.

Theorem 5.10. (Richter-Gebert) For any pair of triples of indices A,M ⊂
{(i, j, k) ∶ 1 ≤ i ≤ j < k ≤ n} the completion condition for the specified facet
pyr(G) of an abstract 4-polytope RA,M is that G be a computational frame
representing values 1 < x1 < ⋯ < xn satisfying xi + xj = xk ∀(i, j, k) ∈ A and
xixj = xk ∀(i, j, k) ∈M.

We will say a bit about what this theorem means, how we will strengthen
it, how this strengthening leads to Rα, and why it is true. RA,M represents
a collection of values with one face a computational frame, like Rα, but with
several varying values. We see here that the indices in A and M tell us when
represented values added or multiplied together respectively must give another
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of the represented values. We would also like to include 1, for which we use
the index 0, as a represented value that can appear as part of these operations.
Although this was not stated as part of the theorem in [20], allowing it does
not substantially change the construction or the proof. We can actually allow
much more.

Theorem 5.11. Theorem 5.10 holds with positive values

0 < xn− < ⋯ < x−1 < x0 = 1 < x1 < ⋯ < xn+

and indices satisfying the appropriate inequalities.

The appropriate inequalities we refer to here are just what one would first
think. For A these inequalities are the same as in Theorem 5.10 with bounds
adjusted, since the sum of positive numbers is always greater then both argu-
ments, specifically i ≤ j < k. For M, however, we have now three possibilities
depending on how the values xi and xj compare to x0 = 1.

0 < i ≤ j < k or k < i ≤ j < 0 or i < 0 < j⇔ i < k < j

We do not include 0 as a possible index for i or j in M as this would represent
multiplication by 1.

With this we can get Rα by first constructing an appropriate polytope
RA,M with operations encoded in A and M forcing a particular represented
value xi to satisfy the minimal polynomial of α as well as rational bounds
sufficiently close to distinguish α from the polynomial’s other roots, then using
a forgetful transmitter to eliminate the extra intermediate variables.

To show Theorem 5.11 we review the proof of Theorem 5.10 with the
necessary modification. To this end we use polytopes provided by [20, p. 59]
for preforming basic arithmetic operations, doubling P2x or squaring Px2 a
single, or adding Px+y or multiplying Pxy two values.
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..TG,F

.RAα,Mα

.∶=.Rα

Figure 5.5. Gluing diagram for an arithmetic polytope representing α.

Lemma 5.12. (Richter-Gebert) Each of the following polytopes has a speci-
fied facet pyr(G) with completion condition that G be a computational frame
representing the following values.

P2x {0, 1, 2, ∞}
Px+y {0, 1, z, 1 + z, ∞}
Px2 {0, 1, x, x2, ∞}
Pxy {0, 1, x, y, xy, ∞}

We would like the values represented in the completion conditions for P2x

and Px+1 to be {0, x,2x,∞} and {0, x, y, x + y,∞} respectively, but we have 1
appearing here rather than x. This is because we have defined computational
frames to necessarily include 1, but addition is independent of the choice of
multiplicative identity, so we not actually need it. To reconcile this we divide
by x and let z = y

x . Note that scalar multiplication, a subclass of projectivities,
does not change the value of a cross ratio, so the completion conditions given in
the lemma are what we would like. We include the proof and construction for
the basic arithmetic polytopes in Appendix A. We will however now present
the construction for RA,M using these polytopes.

The arithmetic polytopeRA,M with specified facet of combinatorial type
pyr(G), where A and M are triples of indices satisfying the inequalities above
and G is a 2(n+−n−+3)-gon, consists of a connector C1+∣A∣+∣M∣,G with one of its
sockets the specified facet, and each of the remaining sockets glued to a for-
getful transmitter that in turn is glued to some basic arithmetic polytope rep-
resenting an operation of A or M. These forgetful transmitters identify those
edges of G representing relevant variables with edges of a basic arithmetic poly-
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. .CG

.TG,Gi,k

.P2x

.TG,Gi,j,k

.Px+y

.TG,G1,i,k

.Px2

.TG,G1,i,j

.Px2

.TG,G1,i,j,k

.Pxy

.
⋮

Ai=j

⋮

.
⋮

Ai≠j

⋮

.
⋮

Mi=j

⋮

.
⋮

Mk=0

⋮

.
⋮

Mi≠j,k≠0

⋮

.∶=.RA,M

.

.

..1 ..2

..xi ..xk .
..1 ..z ..1 + z
..xi ..xj ..xk

.

..1 ..x ..x2

..1 ..xi ..xk

..xk ..xi ..1
.

..1 ..x ..x2

..xi ..1 ..xj

.

..1 ..x ..y ..xy

..1 ..xi ..xj ..xk

..xi ..1 ..xk ..xj

..xi ..xk ..1 ..xj

..xk ..xi ..xj ..1

.Ai=j .Ai≠j .Mi=j .Mk=0 .Mi≠j,k≠0

Figure 5.6. Gluing diagram for a general arithmetic polytope. Below we list
the ways each edge of each basic arithmetic polytope is identified with an edge
of G by gluing along computational frames.

tope’s computational frame so as to preserve the choice of edges representing
0 and∞ and the order of the remaining variables. We break up the collections
of triples of indices into those satisfying some conditions, which we indicate
by subscript. For each triple of indices in Ai=j ∶= {(i, j, k) ∈ A ∶ i = j} a dou-
bling polytope P2x is glued by a forgetful transmitter TG,Gi,k leaving only the
edges of G representing 0, xi, xk, and ∞, which are identified with edges of
P2x representing 0, 1, 2, and ∞ respectively, to a socket of CG. For each triple
in Ai≠j ∶= A ∖Ai=j an adding polytope Px+y is glued by forgetful transmitter
TG,Gi,j,k leaving G’s edges representing 0, xi, xj, xk, ∞. For each triple in Mi=j

a squaring polytope Px2 is glued by forgetful transmitter TG,G1,i,k leaving G’s
edges representing 0, 1, xi, xk, ∞. For each triple in Mk=0 a squaring polytope
Px2 is glued by forgetful transmitter TG,G1,i,j leaving G’s edges representing 0,
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1, xi, xj, ∞. Finally, for each triple in Mi≠j,k≠0 a multiplying polytope Pxy is
glued by forgetful transmitter TG,G1,i,j,k leaving G’s edges representing 0, 1, xi,
xj xk, ∞.

As mentioned above, when identifying G’s edges with those of a basic arith-
metic polytope’s computation frame, we preserve the order of the variables,
but this may not in general be the order in which we listed the variables in our
description. For the triples of A this order is the same. For Mi=j, Px

2 ’s edges
representing 1, x, x2 may be identified with those of G’s representing either
1, xi, xk or xk, xi, 1 respectively. for Mk=0, Px

2 ’s edges representing 1, x, x2

will always be identified with those of G’s representing xi, 1, xj respectively.
Lastly, for Mi≠j,k≠0, Pxy’s edges representing 1, x, y, xy may be identified with
those of G’s representing either 1, xi, xj xk or xk, xi, xj, 1 or xi, 1, xk, xj or xi,
xk, 1, xj respectively. We can think of these computational frames as being
rescaled by whatever value has its edges identified with those representing 1.

Proof of Theorem 5.11: By Lemma 5.6 the completion conditions for the
open socket of RA,M are the combined completion conditions of the restricting
polytopes, which by Lemma 5.12 are the conditions of the theorem.

Proof of Corollary 5.9: This follows immediately from Theorem 5.11,
and the fact that every real algebraic number can be uniquely specified as the
solution to a polynomial equation in an interval with rational bounds.

We can explicitly construct Rα as follows. Note first we can construct
RAα,Mα so that G represents among its values any finite set of naturals by
repeatedly adding 1 in Aα. We also have G represent some value x that we
will eventually force to be α, and we can represent any finite set of powers
of x by repeatedly multiplying x in Mα. Since α is algebraic it is a root of
some polynomial p(x) ∶= ∑nk=0 ±kakxk, which we represent with the polynomial
equation y ∶= ∑±k=+ akxk = ∑±k=− akxk so as to avoid nonpositive values. We
impose this on x in G by multiplying akxk in Mα to get each monomial term
and adding the monomials in Aα to get y as the result of both sides of the
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polynomial equation. This polynomial will have finitely many other roots, so
there must be some positive minimum distance r between roots. We can now
find a pair of rational values (m−n− ,

m+
n+
) on either side of and within r from α,

which we also represent in G by multiplying m±
n±
n± = m± in Mα. Finally by

substituting in the value α for x we can determine the correct order for all
values represented in G, so that α is the only solution.

5.8 Anchor Polytopes

Now that we have a way to represent any algebraic constant in the com-
pletion conditions of a polytope’s facet, we would like make this constant the
coordinate of a vertex under some projective basis.

Lemma 5.13. For any algebraic number α, the completion conditions for a
specified facet pyr( .) of a combinatorial 4-polytope Ψα are that . be a projective
image of the unit square with (1,1) truncated so as to have a vertex p at (1, α).

The anchor polytope Ψα with specified facet of combinatorial type pyr( .)
consists of a hub, with one socket the specified facet, and other sockets glued to
the arithmetic polytope Rα of the constant α and two pencil polytopes Xα X1

in the following way. The hub sockets instantiate a common space RP2
H, which

contains an enneagon E and the supporting lines of its edges consecutively
labeled lx, ly, lα, l1, lx′ , lh, ly′ , lα′ , l1′ . The hub itself consists of a connector
C4,E glued to one forgetful transmitter leaving lx, ly, lx′ , lh, ly′ supporting the
pentagon ., and two forgetful transmitters leaving all but lh supporting an
octagon O. The hub’s pentagonal socket is the specified facet pyr( .). One
of the octagonal sockets is glued to Rα so that pairs of lines (ly, ly′), (lα, lα′),
(l1, l1′), (lx, lx′) are identified with those representing the values 0, α, 1, ∞
respectively. The other octagonal socket is glued to a pencil polytope X1 with
specified edges in l1, l1′ and vertices lx ∧ ly, lx′ ∧ ly′ . The remaining enneagonal
socket is glued to the other pencil polytope Xα with specified edges in lα, lα
and vertices lx ∧ ly, p ∶= lx′ ∧ lh.
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.

.T .,E

.CE

.Xα

.TE,O

.X1

.TE,O

.Rα

.Ψα .∶=

Figure 5.7. Gluing diagram for an anchor polytope representing α.

.

.∆

.y = 1

.y = 0

.x = 1.x = 0

.(1, α) .p0

.pα
.p1

.p∞

Figure 5.8. Collinearities in the completion conditions of an anchor polytope.

Proof of Lemma 5.13: We start by choosing a coordinate system for RP2
H

so . is a truncation of the unit square and (p)x = 1. For this let lx, ly, lx′ , ly′
be the line x = 0, y = 0, x = 1, y = 1 respectively. The Arithmetic polytope
Rα forces the meets of pairs of lines p0 ∶= ly ∧ ly′ , pα ∶= lα ∧ lα′ , p1 ∶= l1 ∧ l1′ ,
p∞ ∶= l∞ ∧ l∞′ to be on a line ∆ and (pα, p1∣p0, p∞) = α. The pencil polytopes
X1 and Xα force (0,0), (1,1), p1 and (0,0), p, pα to be collinear. The effect
of these collinearities is that the projection from lx′ to ∆ through (0,0) sends
(1,0), p, (1,1), p∞ to p0, pα, p1, p∞ respectively, thus

(p)y = (p, πy1(p)∣π
y
0(p), p∞) = (p, (1,1)∣(1,0), p∞) = (pα, p1∣p0, p∞) = α



78

5.9 Stamps

We now give an overview of the construction of the stamp SP from Theorem
4.1. We start by choosing a coordinate system for P . We do this so that each
wall of the unit cube . truncates one of P ’s vertices, and so the supporting
hyperplane h = ⋁ f of each facet f of P does not contain any of . ’s vertices.
Let H be the set of all these hyperplanes h.

We will fix P in projective space by fixing each h ∈H by, in tern, fixing the
coordinates of d points spanning h. These points will be on the intersection of
h with an edges of . . This edge determines all of such a point p’s coordinates
except one. To determine the remaining coordinate we use a hub to identify
a pentagon . of . ∩ H with the socket of an anchor polytope fixing that
coordinate, where H is the half space bounded by h containing P . We see
from the following lemma that we can always find d many such pairs ., p. We
denote this collection of pairs .

h.

Lemma 5.14. If H a closed half-space not containing the unit cube . and
with boundary h ∶= ∂H containing no vertex of . , but with H intersecting all
facets of . , then there are at least d distinct points in h that are vertices of
some pentagonal face . of . ∩H.

Proof: We represent the nonempty faces of . as elements of {0,1,∗}d where
‘∗’ indicates a free coordinate. Here, containment is equivalent to replacing ∗
with 0 or 1, and the vertices are given by their coordinates. We will indicate
an appropriate edge and truncated square with ‘y’ for the free coordinate of
the edge containing the point, ‘x’ for the other free coordinate in the square,
and 0 or 1 for the remaining coordinates.

Let CH be the set of maximal faces of . that do not intersect H. We
can assume without loss of generality that H is a lower-half-space and that
CH ⊂ {1,∗}d. If this is not the case, we can relabel vertices of the cube
so this assumption holds. To see this, let v be a vertex of . such that
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ncon(h) ⊂ ncon(v). Now, ⟨ncon(v),ncon(h)⟩ ≥ 0 and v ∈ ⋂CH is in every max-
imal face away from H, since for any face c of . that does not intersect H,
c + ncon(v) intersects . in a face that contains both c and v, but still does not
intersect H. Now relabel the faces of . by switching 0,1 in those coordinates
so that in the new labeling v = (1,⋯,1) and no face in CH has a 0 coordinate,
since such a face would not contain v.

Now with CH ⊂ {1,∗}d, let S ∶= ⋂c∈CH
{i ∶ ci = ∗} be the set of indices with

coordinate ∗ in all faces of CH . We claim that for each c ∈CH and T ⊂ S and
k ∈ {i ∶ ci = 1}, there is an edge e = e(c, T, k) of . that intersects h in a point
p and a j ∈ {i ∶ ci = 1} with j ≠ k and a square s = s(c, T, k, j) of . with

si =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x i = j
y i = k
0 ci = ∗, i ∉ T
1 else

that intersects H in a pentagon ., where e = s∣x=1, and where s∣x,y=1,1 is the
vertex truncated by H.

We can choose any T , since all coordinates of faces in CH are ∗ for those
with index in S, so the value of these coordinates is not relevant for determining
whether a vertex is in H. Among the coordinates with index not in S any
vertex with a set of indices with 0 coordinate properly containing the indices of
∗ coordinates of a face in CH must be in H, by the condition that the faces of
CH are maximal and have all fixed coordinates 1. Once we have chosen c, T, k
there must be an appropriate j, since otherwise c would be a facet, which it
cannot be by assumption. A vertex of s with x = 0 or y = 0 has a strictly larger
set of 0 coordinates then the ∗ coordinates of c among those with index not
in S, so these three are in H. The last vertex is also a vertex of c so it is not
in H, and the claim holds since s has exactly 3 vertices in H.

We can find d distinct points where h intersects an edge of . in such a
square by selecting s(ι) = s(c(ι), T (ι), k(ι), j(ι)) for 1 ≤ ι ≤ d in the following
way. For ι ∈ S let c(ι) be any element of CH and k(ι), j(ι) be any appropriate



80

index and T = {ι}. For ι ∉ S let c(ι) be such that c(ι)ι = 1 and k(ι) = ι and
j(ι) be any appropriate index and T = ∅.

We require that a hyperplane h of H does not contain any vertex of .

so as to avoid the case where h intersects the 1-skeleton of . at the points
(∗,1,1), (1,0,1), (1,1,0), because the point (∗,1,1) would not be contained
in any pentagon.

..TP, .∩P

.C .∩P

.T ′.∩P, .

.Ud

.T ′.∩P, .∩H

.C .∩H

.A .∩H, .

.pyrd−2(Ψα)

.⋯ H ⋯

.⋯ .
h ⋯

.SP .∶=

Figure 5.9. Gluing diagram for a stamp of P .

The stamp SP has a form similar to a hub with restricting polytopes, but
rather then forgetful transmitters we allow general projective transmitters.
The ‘hub’ consists of a connector Cd∣H ∣+2, .∩P glued to a projective transmitter
to P and one to . and one to . ∩H for each half space bounded by a hyperplane
h ∈ H, which are each in turn glued to a connector Cd+1, .∩H that is glued to
an adapter to each pentagon in .

h. The socket P is open and is the specified
facet. The socket . is glued to a unit polytope, and the socket coming from
each pentagon and vertex in .

H is glued to an anchor polytope Ψα where α
is the coordinate of the vertex not determined by the edge of . containing it
when the orientation of the edge is consistent with that of the unit square in
Lemma 5.13, and 1 − α when they have opposite orientations.
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Proof of Theorem 4.1: First we show that SP is always realizable. As
long as we can realize each piece such that every pair of sockets we glue along
is projectively equivalent, by Lemma 4.6 we can actually glue them together
to get a realization of SP . Among the pieces of the ‘hub’, only the projective
transmitters have nontrivial completion conditions for their sockets. However,
in defining SP we start with realizations of P and . in the same projective
space, and define the combinatorics of the various projective transmitters to
be consistent with these, so they can be realized with the appropriate sockets.
The unit polytope can be realized with . as one of its facets, since this is the
unit cube, and for each pentagon in .

H we can realize the appropriate anchor
polytope Ψα, since the algebraic constant α comes from this realization.

For the other direction we show that in every realization the specified facet
P ′ of combinatorial type P is projectively equivalent to P . We first note that
we can treat all sockets of a realization SP as being in a common projective
space RPdB containing P ′ and the hypercube . ′. In every realization . ′ must
be projectively equivalent to the unit cube by Lemma 5.7, since it appears as a
socket of a unit polytope, so we use . ′ to determine a coordinate system. For
each facet supporting hyperplane h ∈H of P ′, each of the specified vertices in
.
h must have the same coordinates as the corresponding point in that facet

supporting hyperplane of P , since it is on an edge of . ′, which determines d−1
coordinates, and appears as the specified vertex of an anchor polytope Ψα with
appropriate α, which by Lemma 5.13 means the the remaining coordinate must
be α. Since this determines d points of h in general position, the hyperplanes
must be equivalent with respect to their own coordinate systems, which forces
P ′ and P to be equivalent. Since the coordinate systems determine a projective
transformation between P ′ and P , they must be projectively equivalent.
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CHAPTER 6

ANTIPRISMS AND
INTERVAL POLYTOPES

6.1 Balanced Pairs

Recall that a polytope is centered when it contains the origin. A pair of
centered polytopes is called a balanced pair when they are combinatorial
duals of each other, they are centered, and the relative open cones over a face of
each intersect in a ray if and only if they are dual faces. We denote that a pair
P0, P1 is balanced by P0 ≏ P1. The main result of this chapter is the following.

Theorem 6.1. In dimensions d ≥ 4 there exists a combinatorial type of polytope
P that is realizable, but can not be realized as part of a balanced pair, and
neither the antiprism nor the interval polytope of P are realizable.

When a polytope together with its polar are a balanced pair, P ≏ P ∗,
we say the polytope is perfectly centered. Alternatively, this is when the
orthogonal projection of the origin into the affine span of each face of the
polytope is contained in the relative interior of that face. As mentioned earlier,
the following related result appeared in [4].

Theorem 6.2. (Broadie) If a polytope has a perfectly centered realization then
its antiprism is realizable.
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. .

Figure 6.1. A pair of polygons that is balanced and a pair that is not.

As we have stated the situation is simpler for 3-polytopes. From Steinitz
we have a complete combinatorial characterization of them [23], and Thurston
gave a particularly nice collection of realizations of each 3-polytope called
midscribed, namely where every edge of the polytope is tangent to the unit
sphere [25, p. 13.48]. As a consequence of this we have the following result
announced by Björner [2].

Theorem 6.3. The antiprism of every 3-polytope is realizable.

Proof: By Theorem 6.2 it is sufficient that any 3-polytope have a perfectly
centered realization, which we claim a midscribed polytope is. Since the or-
thogonal projection of the origin into an affine subspace is the point with min-
imal norm among points in the subspace, and each edge is tangential to the
sphere, the orthogonal projection is exactly the point of tangency. Each facet
is a polygon heaving each edge tangent to the unit sphere, so the unit ball in-
tersects the plane of the polygon in a disk, which is contained in the polygon
since its edges are also tangent to the disk, and the orthogonal projection of
the origin must be in this disk since its norm is minimal.

On the way to proving Theorem 6.1 we will give several other equivalent
ways to define ‘balanced pair’, including the appropriate definition in projec-
tive space. Before this however, we show the obstruction is not combinatorial
in nature.
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Lemma 6.4. The interval poset of an abstract polytope is again an abstract
polytope, and the property of being a lattice is preserved as well.

Proof: We will show this by induction on dimension, following the recursive
definition of an abstract polytope. We start with a point. The face lattice of
a point consists of {�,⊺}, so the interval lattice is {∅,{�},{⊺}, [�,⊺]}, which
is the face lattice for a line, the only 1 dimensional abstract polytope.

By inductive assumption the interval polytopes of the facets and cofacets
of P , [�, F ] and [v,⊺] respectively where v and F are vertices and covertices
of P, are abstract polytopes. We denote this set of abstract polytopes by F.
The facets of these consist of the interval posets of [�, r], [v,F ], [e,⊺] where
v e r F are clades of P of dimension 0, 1, d − 2, d − 1 respectively. By the
diamond property each interval [r,⊺] and [�, e] has exactly two elements other
than the bounds, so the interval posets of [�, r] and [e,⊺] are each a facet of
exactly two abstract polytopes of F, which come from intervals of the form
[�, F ] ⊃ [�, r] and [v,⊺] ⊃ [e,⊺] respectively. Also each interval poset of [v,F ]
is a facet of exactly two abstract polytopes of F, which come from [�, F ] and
[v,⊺]. Thus, we have a perfect matching between facets of abstract polytopes
in F without matching facets of the same abstract polytope.

Now we show that the result is connected. This is because P is flag con-
nected. Consider the intervals from where two elements of F come, and a path
between a flag for each that includes that interval’s bounds among its clades.
We construct a path between these elements of F as follows. For each edge of
this path where the difference between flags consists of vertices v0 and v1, we
get [v0,⊺] and [v1,⊺] connected along [e,⊺] where e is the rank 1 comparable
of both flags. Likewise where the difference consists of covertices, we get the
opposite connection. All other edges we ignore, since both flags remain in the
same interval. If we get an interval of the form [�, F ] on one end and [v,⊺] on
the other of a line of such flags, possibly a single flag, we connect these along
[v,F ]. This gives us the desired path through F.
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Finally we observe that we get a new top element [�,⊺], so the interval
poset of an abstract polytope is again an abstract polytope.

To see that this preserves lattices, suppose we started with a lattice, then
we have [a, b] ∧ [c, d] = [a ∨ c, b ∧ d] and [a, b] ∨ [c, d] = [a ∧ c, b ∨ d].

We now show the three conditions of Theorem 6.1 are equivalent. This
implicitly provides another definition of balanced pair, namely that P ≏ P ′∗

when for faces Fi ∈ P we have the following.

con(F1)○ ∩ con(F ′◇2 )○ ≠ ∅⇔ F1 < F2

Lemma 6.5. The antiprism, and hence interval polytope, of a polytope is
realizable if and only if that polytope can be realized as part of a balanced pair,
and the definitions are equivalent.

Proof: The existence of an antiprism is equivalent to the existence of an in-
terval polytope, since these are dual to each other. For a pair of combinatorial
dual polytopes first notice the existence of a balanced realization, by the orig-
inal deffinition, is equivalent to the existence of a realization where the open
normal cone of each face intersects that of its dual in a ray, since the cones
over faces of a polytope containing the origin are the normal cones of the po-
lar of that polytope. Thus we can get from a realization satisfying one set
of conditions to that of the other by keeping the fans and replacing the poly-
topes with their polars. Embedding these polytopes in projective space and
treating the horizon as a celestial sphere, we see that this is equivalent to the
condition that the open celestial view from each face intersects that of its dual
in a single sky. From Lemma 4.4 these are exactly the completion conditions
for the bases of a prismoid with a side facet (f, f◇) coming from each face f
of one base and the corresponding dual face f◇ of the other. This gives us all
the facets of an antiprism, which means this must actually be an antiprism,
because the incidences between vertices and facets include all those of the an-
tiprism, and since this is a lattice, its face lattice contains an isomorphic copy
of that of the antiprism by Lemma 3.5. By Lemma 3.8, the face lattice of the
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prismoid is an isomorphic copy of that of the antiprism. Thus the existence
of a balanced realization is equivalent to that of the antiprism, and the com-
binatorics of the sides of a prismoid shows us the deffinitions of balanced pair
are equivalent.

6.2 A Polytope without an Antiprism

We now set about constructing a counter example for Theorem 6.1. Specif-
ically, a polytope that cannot be realized as part of a balanced pair. We pro-
ceed by first paring down the space of realizations we will need to consider.

We will only deal with the case d = 4, since this immediately implies the
result for all higher dimensions. Also, by corollary 4.2 constructing a pair of
polygons that can not be balanced by applying distinct projective transfor-
mations to each is sufficient. Furthermore, since applying the same projec-
tive transformation to both of a pair of polytopes does not affect balance, the
problem of balancing a pair of polytopes by distinct projective transformations
on each is equivalent to applying a projective transformation to only one and
keeping the other polytope fixed. Finally, since positive scaling of individual
vectors does not change the cone of positive linear combinations of these vec-
tors, we can reduce this further to just affine transformations. For this last
part we note that a projective transformation consists of an affine part and a
part that preserves direction as seen by the following matrix representation of
a projective transformation in homogeneous coordinates.

⎡⎢⎢⎢⎢⎣

A b

0 1

⎤⎥⎥⎥⎥⎦

x

1
= Ax + b

1

⎡⎢⎢⎢⎢⎣

A b

c∗ 1

⎤⎥⎥⎥⎥⎦

x

1
= Ax + b
c∗x + 1

Projecting the vertices of the polygon and its polar to direction vectors
on the unit circle, as we see in Figure 6.1, we get that the pair is balanced
iff direction vectors of vertices and covertices alternate around the circle. An
affine transformation that balances the dual with the primal may have to
change some directions of the dual’s vertices to be between the appropriate
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direction vectors of the primal’s vertices. We will get a counter example by
requiring this affine transformation to turn the directions of vertices in too
many alternating orientations.

To get an idea of how many alternating orientations is too many consider
the orthogonal linear component (rotating), spd linear component (stretch-
ing), and translational component of an orientation preserving affine trans-
formation separately. The orthogonal linear component rotates all vectors in
the same way, where as the spd linear component divides the circle into 4
quadrants with direction vectors alternately turning clockwise and counter-
clockwise, and similarly the translation component divides the circle into 2
halves with direction vectors turning alternately. Naively adding this up we
get 7 regions where direction vectors turn.

.

Figure 6.2. From the left, orientations of the directions of vectors turning
under: rotation, spd stretching, translation.

With these limitations in mind we now construct the desired polygon.
Let G be the polygon with vertices (8,5), (7,7) and all permutations and
changes of sign. That is the vertices (8,5), (7,7), (5,8), (−5,8), (−7,7),
(−8,5), (−8,−5), (−7,−7), (−5,−8), (5,−8), (7,−7), (8,−5). We will see that
no affine transformation can accommodate all the alternating orientations in
which the direction vectors of vertices must turn to balance G∗ with G.

Lemma 6.6. G and G∗ cannot be balanced by projective transformation.

Proof: The dual of G has vertices (18 ,0), (
2
21 ,

1
21) and all permutations and

changes of sign. Since scale does not matter, however, we instead use the
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.

Figure 6.3. A polygon that cannot be balanced with its dual by projective
transformations.

vertices (218 ,0), (2,1) scaling by 21. We see that G is not perfectly centered
since that would require the slope s of the outward normal vector of the edge
between (8,5) and (7,7) to be between the slopes of the vertices, 5

8 < s < 1,
but the slope is s = 1

2 <
5
8 as given by the covertex (2,1). By construction the

reflection group of G and G∗ is the same as that of a square.

⎡⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0 −1
1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

−1 0

0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

−1 0

0 −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0 −1
−1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦

These transformations give us a total of 8 places where the perfectly centered
condition is violated. Moreover, we must turn the directions of the covertices
in alternating orientations for the polygons to be a balanced pair.
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Consider an affine transformation T .

T

⎡⎢⎢⎢⎢⎣

⋅
⋅

⎤⎥⎥⎥⎥⎦
∶=
⎡⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

⋅
⋅

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

s

t

⎤⎥⎥⎥⎥⎦

Here we must have a, d > 0. This is because, for a, in order to produce a
balanced pair both T (218 ,0) must point to the right and T (−21

8 ,0) must point
to the left, giving the following.

T (218 ,0)1 =
21
8 a + s > 0 T (−21

8 ,0)1 = −
21
8 a + s < 0

If s ≤ 0 then the first inequality implies a > 0, and if s ≥ 0 then the second
inequality implies a > 0. The same holds for d because of the corresponding
inequalities in the 2nd coordinate.

For T (G∗) to be balanced with G, the image of (2,1) must be a vector
with slope greater than 5

8 , and furthermore, this must be the case for images of
(2,1) under the transformations T conjugated by all elements of the reflection
group. This gives the following vectors.

⎡⎢⎢⎢⎢⎣

a2 + b1 + s
c2 + d1 + t

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

d2 + c1 + t
b2 + a1 + s

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

d2 − c1 − t
−b2 + a1 + s

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

a2 − b1 − s
−c2 + d1 + t

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

a2 + b1 − s
c2 + d1 − t

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

d2 + c1 − t
b2 + a1 − s

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

d2 − c1 + t
−b2 + a1 − s

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

a2 − b1 + s
−c2 + d1 − t

⎤⎥⎥⎥⎥⎦

For the first of these vectors the slope requirement is given by the following
equivalent inequalities.

T (2,1)2
T (2,1)1

= c2 + d1 + t
a2 + b1 + s

> 5

8

−10a − 5b + 16c + 8d − 5s + 8t > 0
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Putting the inequalities we get from all these slope requirements with the
sign requirements of a, d together we get the following matrix inequality.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 −5 16 8 −5 8

8 16 −5 −10 8 −5
8 −16 5 −10 8 5

−10 5 −16 8 5 8

−10 −5 16 8 5 −8
8 16 −5 −10 −8 5

8 −16 5 −10 −8 −5
−10 5 −16 8 −5 −8
1 0 0 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

s

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0

Finding a solution to this inequality amounts to finding a vector in the column
space of the matrix that has all positive entries. The columns of this matrix,
however, are all perpendicular to [1 1 1 1 1 1 1 1 8 8]∗, which has all positive
entries, so the column span of the matrix is outside of the positive orthant,
and no values for coefficients satisfy all of these inequalities. Therefor, there
is no affine transformation T such that T (G∗) ≏ G.

If there were projective transformations π1, π2 such that π1(G) ≏ π2(G∗),
then we would have π−11 ○ π2(G∗) ≏ G, and the affine part T of π−11 ○ π2 would
balance G with its dual T (G∗) ≏ G, which we have just shown to be impossible.
Thus G and G∗ cannot be balanced by projective transformations

Lemma 6.7. The statement that a pair of polytopes is balanced P ≏ P ′∗,
projectively inherits to faces.

Proof: Let P and P ′ be a pair of polytopes of the same combinatorial type
so that P ≏ P ′∗, and consider some face F of P and the corresponding face
F ′ of P ′. By balance, the cones R≥0F ○ and R≥0F ′◇○ intersect in a ray, and we
may assume without loss of generality that they are contained in a common
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supporting hyperplane. We will show first why the Lemma holds under this
assumption, then what we can do when it fails.

Under this assumption, F ○ and F ′◇○ intersect in a point w. To get a
combinatorial dual of F in its affine span we dilate the solid tangent cone of
F ′◇ by r > 1 and intersect it with this space. We make this a linear space V
by choosing the point w to be the origin. We claim this gives us a balanced
pair of projective copies of these faces.

V ∶= (aff(F ), ⊕, ⊙)

(a +w)⊕ (b +w) ∶= (a + b) +w s⊙ (a +w) ∶= sa +w

Q ∶= F ↪ V, Q′∗ ∶= r tcon(F ′◇) ∩ V ↪ V

We have already that Q is a projective copy of F . From the definition of
the solid tangent cone we have tcon(F ′◇) = con(F ′)∗ + aff(F ′◇). We see now
that C ∶= tcon(F ′◇) ∩ lin(F ) is the projection of con(F ′)∗ + w on to lin(F )
along aff(F ′◇), which intersects both lin(F ′) and lin(F ) in a point, so C is
projectively equivalent to con(F ′)∗, and since aff(F ∪ F ′◇) is a supporting
hyperplane of F ′◇ ⊂ P ′∗, aff(F ) is a supporting hyperplane of w ⊂ C in lin(F ).
By construction rC is the cone over Q′∗ from rw. Thus, Q′∗ is projectively
equivalent to F ′∗, and therefor Q′ is projectively equivalent to F ′.

To see that Q ≏ Q′∗, we consider what the face cones of Q are. For a point
q ∈ ∂F , the projection of q ∨0 into V through rw, the vertex of C, gives q ∨w,
since q ∈ V and 0 projects to w, which is lin(q) in V . As such the faces of the
cone over F project to the face cones of Q. In contrast, each face of r tcon(F ′◇)
projects through rw to its intersection with V , the corresponding face of Q′∗.
Also, the faces of tcon(F ′◇) consist of the tangent cones tconG′◇1 (F

′◇)○ of F ′◇

as a face of its superfaces G1 ⊂ F . We let D○ ∶= ⋃G⊂F G′◇○ denote the union
of relative interiors of these faces. By P ≏ P ′∗ the open faces tconG′◇1 (F

′◇)○

intersect an open face con(G2)○ of con(F ) if and only if it corresponds to a
subface G1 ⊂ G2. This is because ∂tcon(F ′◇)∩con(G2)○ is connected and does
intersect D○ but not ∂D since ∂D consists of faces G3 ⊄ F so we cannot have
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G3 ⊂ G2, therefor ∂tcon(F ′◇) ∩ con(G2)○ ⊂ D○ and tconG′◇1 (F
′◇)○ ∩ con(G2)○ =

G′◇1 ∩con(G2)○. Furthermore, scaling by r does not change this. Consequently
the face cones of Q intersect the apropriate faces of Q′∗, and we have a balanced
pair.

We now have only to justify our assumption. We will see that we can
always find balanced projective copies of P and P ′∗ so the assumption holds,
and since we are only interested in copies of the faces up to projectivity, this is
enough. Specifically we will find projective transformations π and π′ so π(F )
and π′(F ′◇) share a common supporting hyperplane, and the face fans of P
and P ′∗ remain unchanged.

We still have that the cones over F ○ and F ′◇○ intersect in a ray. Let v
and v′ be the points where this ray intersects these faces and v = sv′ noting
s > 0. Observe that lin(F − v)∩ lin(F ′◇ − v′) = 0, since F ○ ∩ sF ′◇○ = v, and that
dim(F ) + dim(F ′◇) = d − 1, so the following space l is a line.

l ∶= lin(F − v ∪ F ′◇ − v′)� = lin(F ◇) ∩ lin(F ′)

Since aff (F ∪ sF ′◇) is a supporting hyperplane of the vertex v of the centered
polytope P ∩ sP ′∗, we have v ∉ lin(F − v ∪ F ′◇ − v′) = l� and there is some
x ∈ l such that ⟨v, x⟩ = 1, which means l intersects the supporting hyperplane
hv ∶= ⟨v, ⋅ ⟩−1(1) of F ◇ at x, and similarly hv′ ∶= ⟨v′, ⋅ ⟩−1(1)∩ l = s−1x. Since P ∗

is centered, for any y ∈ aff(F ◇) and ε > 0 we have t ∶= y − εx ∈ tcon(F ◇)○. If
y ∈ F ◇○, since the only linear inequalities satisfied on P ∗ that are not strict on
y are also satisfied on tcon(F ◇), for ε sufficiently small t ∈ P ∗○. We have this
for P ′ as well, and taking u ∶= εx for the smaller such ε we find points in the
following sets.

u ∈ l, t ∈ (F ◇○ − u) ∩ P ∗○, t′ ∈ (F ′○ − u) ∩ P ′○

With this P ∗−t and P ′−t′ are centered and the dual faces intersect in a point.

(F ◇ − t)○ ∩ (F ′ − t′)○ = u
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We claim the following projectivities have the desired properties.

π ∶= (( ⋅ )∗ − t)∗, π′ ∶= (( ⋅ )∗ − t′)∗

The images π(P ) and π′(P ′∗) respectively have faces π(F ) and π′(F ′◇), which
share the common supporting hyperplane hu ∶= ⟨u, ⋅ ⟩−1(1). Also, since transla-
tion in the dual does not change the direction vectors of a polytope’s vertices,
the face fans are unchanged. Thus we can always find projective transforma-
tions such that our assumption holds, and so the statement inherits projec-
tively to faces.

Proof of Theorem 6.1: By Lemma 6.7, P ≏ P ′∗ as a statement about
P,P ′ satisfies the conditions of corollary 4.2. As such every combinatorial
type of polytope can be realized as part of a balanced pair if and only if every
algebraic polytope can be balanced with its polar by projectivities, but G is
algebraic and by Lemma 6.6 it cannot. Therefor, there is a combinatorial type
of 4-polytope, specifically the stamp SG, that cannot be realized as part of a
balanced pair. Furthermore, by Lemma 6.5 the interval polytope of SG, and
equivalently its antiprism, are not realizable.



94

REFERENCES

[1] Alexander Below. Complexity of Triangulation. PhD thesis, ETH Zürich,
2002. DISS No. 14672.

[2] Anders Björner. The antiprism fan of a convex polytope. Abstracts of the
AMS, 18(1):19, 1997. #918-05-688.

[3] Anders Björner, Andreas Paffenholz, Jonas Sjöstrand, and Günter M.
Ziegler. Bier spheres and posets. Discrete and Computational Geometry,
34, 2005.

[4] Mark N. Broadie. A theorem about antiprisms. Linear Algebra and its
Applications, 66:99–111, 1985.

[5] Heinz Bruggesser and Peter Mani. Shellable decompositions of cells and
spheres. Math. Scandinavica, 29:197–205, 1971.

[6] Raquel Díaz. A characterization of gram matrices of polytopes. Discrete
and Computational Geometry, 21:581–601, 1999.

[7] Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, Berlin
Heidelberg, third edition, 2005.

[8] David Eppstein, Greg Kuperberg, and Günter M. Ziegler. Fat 4-polytopes
and fatter 3-spheres. In Discrete Geometry: In honor of W. Kuperberg’s
60th birthday, Pure and Applied Math., 253:239–265, 2003.



95

[9] Claude-Alain Faure and Alfred Frölicher. Modern Projective Geometry,
volume 521 of Math. and its Applications. Kluwer Academic Publishers,
Dordrecht, 2000.

[10] Komei Fukuda and Christophe Weibel. f-vectors of minkowski additions
of convex polytopes. Discrete and Computational Geometry, 37:503–516,
2007.

[11] Branko Grünbaum. Convex Polytopes, volume 221. Springer-Verlag, New
York, second edition, 2003.

[12] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Pess, Cambridge, 1985.

[13] Bernt Lindström. Problem p73. Aequations Math, 6:113, 1971.

[14] Saunders Mac Lane. Categories for the Working Mathematician, volume 5
of Graduate Texts in Math. Springer-Verlag, New York, second edition,
1998.

[15] Peter McMullen and Egon Schulte. Abstract Regular Polytopes, volume 92
of Encyclopedia of Math. and its Applications. Cambridge University Pess,
Cambridge, 2002.

[16] James B. Nation. Notes on lattice theory.
http://www.math.hawaii.edu/~jb/books.html.

[17] Andreas Paffenholz. Construction for Posets, Lattices, and Polytopes.
PhD thesis, Technischen Universität Berlin, 2005.

[18] Iztok Peterin. Characterizing flag graphs and induced subgraphs of carte-
sian product graphs. Order, 21:283–292, 2004.

[19] John L. Pfaltz. A category of discrete prtially ordered sets, 2004.
http://www.cs.virginia.edu/~jlp/po.category.pdf.



96

[20] Jürgen Richter-Gebert. Realization Spaces of Polytopes, volume 1643 of
Lecture Notes in Math. Springer-Verlag, Berlin Heidelberg, 1996.

[21] Stewart A. Robertson. Polytopes and Symmetry, volume 90 of London
Math. Society Lecture Note Series. Cambridge University Pess, Cam-
bridge, 1984.

[22] Richard P. Stanley. Enumerative Combinatorics Volume I. Wadsworth &
Brooks/Cole Advanced Books & Software, Monterey, 1986.

[23] Ernst Steinitz. Polyeder und raumeinteilungen. Encyclopädie der math.
Wissenschaften, 3:1–139, 1922.

[24] Jorge Stolfi. Oriented Projective Geometry: A Framework for Geometric
Computations. Academic Press, New York, 1991.

[25] William P. Thurston. Geometry and Topology of Three-Manifolds. Lecture
Notes. Princeton University, Princeton, 1978.

[26] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts
in Math. Springer-Verlag, New York, 2007.

[27] Günter M. Ziegler. Non-rational configurations, polytopes, and surfaces.
Math. Intelligencer, 3(30):36–42, 2008.



97

APPENDIX A

BASIC ARITHMETIC
POLYTOPES

Here we provide constructions for the basic arithmetic polytopes of lemma
5.12. These were presented by Richter-Gebert in [20] as part of the proof
of the univsality theorem for 4-polytopes, and are used to preform the basic
arithmetic operations, doubling P2x or squaring Px2 a single, or adding Px+y

or multiplying Pxy two values represented in a computational frame.
We start with the simplist of these P2x, which we will also use in the

construction of the others. For this, however, we will use the polytope to
impose relationships among variables other then doubling. In these cases we
will denote the polytope H and call it a harmonic polytope to indicate that it
may not be doubling a value. We will construct H so the following holds, and
later see why this is the same.

Lemma A.1. The completion condition of the specified facet pyr(G) of H is
that G be a computational frame representing the values {−1, 0, 1, ∞}.

For this we construct a polygon F as the socket of a hub with restricting
polytopes that impose the collinearities indicated in figure A.4. Such a poly-
gon will have to be a computational frame representing the desired values,
but not every computational frame representing the values will satisfy these
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collinearities. To deal with this we construct the slope transmitter Z having
two specified facets that are octogonal pyramids pyr(F ) and pyr(G), and for
which the following lemma holds.

Lemma A.2. The completion conditions, for a realization of Z ′s faces F and
G where one is a computational frame, are that the other also be a computa-
tional frame and represent the same values.

Throughout this construction we will denote the edge supporting lines of G
consecutively by g−1, g0, g1, g∞, g−1, g0′ , g1′ , g∞′ and those of F by f−1, f0, f1,
f∞, f−1′ , f0′ , f1′ , f∞′ . We choose these labels so that subscrips will eventually
indicate the values represented by pairs of edges.
Z consists of two tents Y0 and Y1 over an octogonal prism with prism

sides between edges having the same index, which are glued along this prism,
and two adapters. For Yi the octogon edges with index i and i′ and the faces
containing these do not form a tent side either apex vertex. This leaves the
surface of the prism with two components. Each of these components form
tent sides with only one of each of the apex vertices. The adapters AF and
AG stelate the tent sides of Y0 containing the octogons.

.

.gi

.gi′

.fi

.fi′

Figure A.1. Schlegel diagram for Yi.
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..AF .Y0
.Y1

.AG.∶=.Z

Figure A.2. Gluing diagram for a slope transmitter Z.

Proof of Lemma A.2: We first observe that by lemma 4.5 the completion
conditions of the octagonal faces of Yi are that edge supporting lines with
index i and i′ all meet at a common point pi. Since prisms and pyramids are
necessarily flat every realization of Z must a union of realizations of Yi and
adapters. That is a pair of octagons F and G can be completed to Z if and
only if they can be completed to an octagonal prism P that can be completed
to Y0 and Y1. Since for such a prism P the points p0 and p1 are distinct and are
both in both ⋁F and ⋁G we have l ∶= F ∧G = p0 ∨p1. If we further assume F
is a computaional frame, then the meet of opposit pairs of F ’s edge supporting
lines are all collinear and in particular are on the line l. By lemma 4.4 F and
G can be completed to such a prism P if and only if the celestial spheres of F
and G on l have the same combinatorics as their common refinement, which
means they must actually be the same, and the resulting P can be completed
to Z if and only if opposit pairs of G’s edge supporting lines meet at the same
points as the corresponding pairs of F ’s. This is equivalent to the requirement
that G, considered up to projectivity, be a computational frame representing
the same value as F .

We are now ready to give the construction of H. This consists of an con-
nector with 8 octagonal sockets having a slope transmitter glued to one and
7 pencil polytopes glued to the others. As in lemma 5.6, we identify the con-
nector’s sockets by the projectivities between sockets it generates to a single
octagon F , and label its vertices a through h so that a = f−1 ∩f∞′ and h is the
other vertex of f−1. For each pencil polytopes Xi,j,k with this labeling the two
specified vertices are i and j and the specified edges are those defining k by
their meet as listed in figure A.3 and shown in A.4.
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..Xb,e,x .Xa,f,x .Xc,h,y .Xa,e,t .Xa,e,v .Xb,f,u .Xb,f,w

.CF

.Z.∶=.H

x ∶= (c ∨ d) ∧ (g ∨ h) t ∶= (c ∨ d) ∧ (f ∨ g) u ∶= (a ∨ h) ∧ (c ∨ d)

y ∶= (a ∨ b) ∧ (e ∨ f) v ∶= (b ∨ c) ∧ (g ∨ h) w ∶= (d ∨ e) ∧ (g ∨ h)

Figure A.3. Gluing diagram for H.

Lemma A.3. Any octagon F with collinearities as indicated in figure A.4 is
a computational frame representing the value −1.

Proof: We embed F in R2 → RP2 so that {a, b, e, f} is symmetric about the
x and y axis with a ∨ b vertical. That is so that (a)1 = (b)1 = −(e)1 = −(f)1
and (a)2 = −(b)2 = −(e)2 = (f)2. With this we have the slope r of a ∨ e is
the negative of the slope −r of b ∨ f . The slope s > r of b ∨ c determines the
hight of the segment between c and h, since (c)2 = ((b ∨ c) ∧ (c ∨ h))2 and
(h)2 = (v)2 = ((b ∨ c) ∧ (a ∨ e))2, monotonicly in the following way.

(c)2 − (h)2 = s((c)1 − (b)1) + s
s−r((b)2 − (a)2)

Since (h)1 − (a)1 = (c)1 − (b)1 and the slope of b ∨ f is −r, we have that the
slope of b∨c and the negative slope of a∨h determine the hight of the segment
monotonicly in the same way, and since this can have only one value the slope
of a∨h must be −s. This means that (c)2 = −(h)2, which gives us that t = −v,
and since we also have f = −b, this gives us that the slope of f ∨ t = f ∨ g is s.
Likewise we have that the slope of e∨d is −s. The result of this is that opposit
edges of F are parallel so x, y, p = (a∨h)∧ (e∨ d), and q = (b∨ c)∧ (f ∨ g) are
all collinear and with these slopes (p, q ∣x, y) = − ss = −1 as desired.
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Figure A.4. Collinearities of F . Horizontal and vertical lines meet at the
points x and y respectively.

Proof of Lemma A.1: By lemma A.3 the collinearities imposed on F by
the pencil polytopes force F to be a computational frame representing −1, so
by lemma A.2 the completion conditions for the specified face G of H are that
it be a computational frame representing −1.

We are now ready to begin giving the constructions for the basic arithmetic
polytopes. These will be composed to various polytopes glued together along
pyramids over polygons G that in all realizations will be computational frames.
We will label opposit pairs of edges by the values i they are ment to represent.
In any realization of G we let pi denote the meet of opposite edge supporting
lines labeled i, and αi = (pi, p1 ∣p0, p∞) for squaring and multiplying polytopes,
and αi = (pi, px ∣p0, p∞) for doubling and adding polytopes, which will amount
to letting αi = i

x , since these do not include a multiplicative identity. Not all of
these computational frames will reprsent the same set of values, so we indicate
the values represented with subscripts. In this way Cc1,⋯,cn denotes a connector
with n-gonal sockets and, for any realization as a component of the polytope
it belons to, these sockets will be computational frames representing c1,⋯, cn.
Similarly Hh1, h2, h3, h4 will impose the relation (h1, h3 ∣h2, h4) = −1 on the values
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represented. For forgetful transmitters we inicate the value represented by one
socket but not the other with subscripts. We only provide the gluing diagrams
for these polytopes since this is enough to fully specify the combinatorics. As
we have mentioned, we already have P2x as H with the specified octagon’s
edges labeled apropriately.

..H0, x,2x,∞.∶=.P2x

Figure A.5. P2x as H with labels.

Theorem A.4. The completion condition of the specified facet pyr(G) of P2x

is that G be a computational frame representing the values {0, 1, 2, ∞}.

Proof: Recall we divide by x so αx = 1. Computational frames representing
2 and computational frames representing −1 are the same up to a relabeling
of edges, since adding 1 is a projectivity on RP1 and sends {−1,0,1,∞} to
{0,1,2,∞} giving us the relabeling, so by lemma A.1 we are done.

..Tx+y
2

.C0, x, x+y
2
, y, x+y,∞

.Tx, y

.H0, x+y
2
, x+y,∞

.T0, x+y

.Hx, x+y
2
, y,∞

.∶=.Px+y

Figure A.6. Gluing diagram of Px+y.

Theorem A.5. The completion condition of the specified facet pyr(G) of Px+y

is that G be a computational frame representing the values {0, 1, z, 1+z, ∞}
for some 1 < z.
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Proof: We first observe that the completion conditions for H0, x+y
2
, x+y,∞ and

Hx, x+y
2
, y,∞ respectively require that p0, px+y and px, py be in the line px+y

2
∨ p∞,

so the requirement that G be a computational frame must be among its com-
pletion conditions. Recall we divide x, y, and x + y by x to get 1 represented
by αx in this computational frame, and use z = y

x = αy. With this Hx, x+y
2
, y,∞

imposes the following relation,
αx − αx+y

2

αy − αx+y
2

= (αx, αy ∣αx+y
2
,∞) = −1

which is equivalent to αx+y
2
= (αx + αy)/2. As we have seen H0, x+y

2
, x+y,∞ is

a doubling polytope so this imposes the relation αx+y = 2αx+y
2

. Returning to
our choice of values for these variables, this gives us αx+y = αx + αy = 1 + z.
Moreover, this exhausts the completion conditions of the restricting polytopes,
so we have the completion conditions for Px+y.

..T−x

.C−x,0,1, x, x2,∞

.T0,∞

.H−x,1, x, x2

.T1, x2

.H−x,0, x,∞

.∶=.Px2

Figure A.7. Gluing diagram of Px2 .

Theorem A.6. The completion condition of the specified facet pyr(G) of Px2

is that G be a computational frame representing the values {0, 1, x, x2, ∞}
for some 1 < x.

Proof: As with Px+y, the completion conditions for H−x,1, x, x2 and H−x,0, x,∞
respectively require that p1, px2 and p0, p∞ be in the line p−x ∨ px, so G being
a computational frame must be among its completion conditions. As we have
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seen the completion conditions of H−x,0, x,∞ require that α−x = −αx. With this
H−x,1, x, x2 imposes the following relation,

(−αx − 1)(αx − αx2)
(−αx − αx2)(αx − 1)

= (−x,x ∣1, x2) = −1

which is equivalent to αx2 = α2
x, and since this exhausts the completion con-

ditions of the restricting polytopes, so we have the completion conditions for
Px2 .

..Ty2

.C0,1, x, y, xy, y2,∞

.Ty

.T−xy, x2

.C−xy,0,1, x, x2, xy, y2,∞

.Tx, xy

.Px2
0,1, y, y2,∞

.T−xy, xy, y2

.Px2
0,1, x, x2,∞

.T1, x, x2, y2

.H−xy,0, xy,∞

.T0,1, x,∞

.H−xy, x2, xy, y2

.∶=.Pxy

Figure A.8. Gluing diagram of Pxy.

Theorem A.7. The completion condition of the specified facet pyr(G) of Pxy

is that G be a computational frame representing the values {0, 1, x, y, xy, ∞}
for some 1 < x < y.

Proof: The completion conditions for Px2
0,1, y, y2,∞ and Px2

0,1, x, x2,∞ and
H−xy,0, xy,∞ respectively require that p1, py, py2 and px, px2 and p−xy, pxy be in
the line p0 ∨ p∞, so G being a computational frame must be among its com-
pletion conditions. The completion conditions of each these also respectively
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require that αy2 = α2
y and αx2 = α2

x and α−xy = −αxy. With this H−xy, x2, xy, y2
imposes the following relation,

(−αxy − α2
x)(αxy − α2

y)
(−αxy − α2

y)(αxy − α2
x)
= (α−xy, αxy ∣αx2 , αy2) = −1

which is equivalent to α2
xy = α2

xα
2
y, and since we have 0 < αxy this gives us

αxy = αxαy. This exhausts the completion conditions of the restricting poly-
topes, so we have the completion conditions for Pxy.


