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ABSTRACT

A MEAN VALUE THEOREM FOR DISCRIMINANTS OF ABELIAN
EXTENSIONS OF AN ALGEBRAIC NUMBER FIELD

Behailu Mammo
DOCTOR OF PHILOSOPHY

Temple University, May, 2005

Professor Boris Datskovsky, Chair

Let k be an algebraic number field and let N (k, Cy, m) denote the number of
abelian extensions K of k with Gal(K/k) = Cy, the cyclic group of prime order
¢, and the relative discriminant Z(K/k) of norm equal to m. In this thesis,
we derive an asymptotic formula for ng + N(k,Cy,m), using the class field
theory and a method, developed by Wright [13]. We show that our result is
identical to the result of Cohen, Diaz y Diaz and Olivier [1], obtained by the
methods of classical algebraic number theory, although our methods allow for
a more elegant treatment and reduce a global calculation to a series of local

calculations.
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CHAPTER 1

INTRODUCTION AND THE
MAIN RESULT

1.1 Motivation and objectives

The principal objective of this thesis is to address the problem of counting
the number of finite extensions of an algebraic number field. More specifically,
given an algebraic number field k£ and a finite abelian group G, we would like
to count the number N (k, G; m) of Galois extensions K of k with Galois group
Gal(K/k) isomorphic to G and the relative discriminant Z(K/k) of absolute
norm m. As usual in number theory, we will not be able to pinpoint individ-
ual values of N(k,G; m). However, we will be able to determine how large
N(k,G ;m) is on the average. The latter is equivalent to finding an asymptotic
formula for ng « N(k,G;m), the explicit computation of which is given in
this thesis.

The study of discriminants of algebraic number fields goes back to Dedekind
and Hermite. Hermite was the first to show that the number of extensions K
of k£ with discriminant of a given norm is finite. A breakthrough in the study

of the density of discriminants of abelian Galois extensions occurred with the



publication of Hasse’s Conductor-Discriminant formula [4] (a short proof can
be found in [9]). With the help of this formula, one can express the discrim-
inant of an abelian extension in terms of conductors of associated characters.
The earliest papers, such as [3] and [11], that gave asymptotics for £ = Q and
a cyclic group G = Z/{Z of prime order ¢, appeared in the early 1950s. More
recently, Maki [6] gave asymptotics for £ = Q and arbitrary G. The underlying
principle invoked in his work is that abelian number fields of absolute conduc-
tor f are contained in the field generated by the fth roots of unity, and that
the conductor is the smallest such integer. In [10], Taylor produced partial
results for an arbitrary number field k£ by computing the density of conductors
of cyclic extensions of a number field. An extensive list of references to related
works can be found in [8].

Using class field theory, Wright [13] wrote the definitive paper on this sub-
ject. He proved that there exists a positive constant ¢(k, G) such that

c(k, Q)

> N(k,Gim) ~ le/o‘(logX)”_l as X — o0.
m< X )

1
Here o = o(G) = |G| (1 - a) where Q is the smallest prime divisor of the

o
order of G, and v = % where ®¢(G) is the number of elements of G of

order Q and dj = [k:(CQ)k k], where k((g) is the field obtained by adjoining
the primitive Qth root of unity (g to k. (Un)fortunately the work of Wright
was so general that he neglected to find the constant c(k,G). Recently, Co-
hen, Diaz y Diaz and Oliver [1] determined this constant for G = Z/¢Z using
classical algebraic number theory. Their methods are entirely global; no class
field theory is used in their paper. To state their result, we first introduce the

following notations.

Let k., = k(¢) be the field obtained by adjoining the primitive ¢** root of
unity ¢ to k. Notice that the extension k,/k is a cyclic extension whose degree

is some divisor d, of £ — 1. For a detailed study of such cyclotomic extensions,



we direct the reader to [2]. For notational simplicity, set ¢, = (¢ —1)/d,. For
every divisor d of d,, let k,[d] be the unique subextension of k,/k such that
[k, : k.[d]] = d. If p is a prime ideal of k, we denote by e(ps/p), f(ps/p), and
g(pa/p) the ramification index, residual index, and the number of prime ideals
pq of k.[d] above p, respectively. Note that e(pq/p)f(pa/p)g(pa/p) = d./d. If,
in addition, p|¢, we denote by e(p) = e(p/{) the absolute ramification index of
p over (. Finally, for any integer e, we denote by r(e) the unique integer such

that e = r(e)mod (£ — 1) with 1 <r(e) < ¢ —1.

Theorem 1.1 Let k be a number field of signature (r1,73). Let X (resp., D)
be the set of prime ideals of k which are ramified (resp., totally split) in k,/k.
Then

Z N(k,Cp;m) ~ cregeses X logh ™t X

m<Xe-1

with

(Mo, Geopa(@) )"

1 = dzgm_,'_,,,zqz! )
¢ —1 1 (£=1)u(d)/d
@ =1l (H NP)H(l_NPd> ’
pPED dld
g(pa/p)p(d)
€ = H H ( dif pa/p) ) ’
PEZ d|d
_ (-1 (—1—r(e(p))(1—1/Np)
G = 1_! (1+ Np Nple® /D] '
p
p¢7

Here, r., =014f( € k, and r, = r1 — 1 otherwise. By abuse of notation, for any
number field L we write (1 (1) for the residue of the Dedekind zeta function
Cr(s) at s =1.

In this thesis, we replicate the result given in [1] using class field theory

following the method of Wright’s paper [13]. We use the language of places



rather than prime ideals to state our theorem. Consequently, let v be a finite
place of k corresponding to the prime ideal p, of O, and let q, = Np,. Let
e, = e(Ppu,/pu), fo = f(Pu, /D), 9 = g(pu,/p,) be the ramification index, the
residual index, and the number of prime ideals dividing p, in the cyclotomic

extension k, of k, respectively. We prove the following theorem.

Theorem 1.2 Let k be a number field of signature (ry,13). For a place v of
k that divides ¢, let e(v) be the ramification index of v over £, and let ro(v) be
the least nonnegative residue of e(v) mod (¢ — 1). Then
1)%
> N(k,Cim) ~ &Poxaog X)e=t

m<Xt-1 d 07277 g

with

Py = H (1+(€— 1)qy_1) H (1+(€— I [E— 1—7“0(V)(1—q;1)} q;L
v\l v|e
veED 1237

H (1 + (0 — 1)(];1) (1-— q;l)zf1 H (1 . q;fy)fhgy

quv=1mod/? quZlmod/{

where r, =0 if ( € k andr, = r; — 1 otherwise, and (. (1) denotes the residue

of the Dedekind zeta function (x_(s) at s = 1.

We prove the above theorem by studying the discriminant series

De,(s)= ) |2(K/k)| ™.

Gal(K/k)=C,

Using class field theory, we express this series as a finite linear combination
of series with Euler products whose Euler factors can be explicitly computed.
Following Wright, we study analytic properties of the Euler products by com-
paring them with appropriate Dedekind zeta functions. As a result, D¢, (s)

is proved to be analytic in the region Re(s) >

except for a pole at

1
20— 1)




1
=71 of multiplicity ¢.. Evaluation of the leading coefficient of the Lau-
rent series at this pole leads us to the required constant.

S

Finally we show that even though our constant appears to be different, it
is actually the same as that of Cohen et.al. Thus the methods of Wright and
Cohen et. al. produce identical results. The advantage of our method, besides
being somewhat simpler than that of Cohen et. al., is that it is very much a
method in the spirit of modern algebraic number theory : it reduces a global

calculation to a series of local calculations.

1.2 What is class field theory?

The class field theory is one of the crowning achievements of twentieth
century number theory. This theory was born in the late nineteenth century
in the work of Leopold Kronecker, Henry Weber, and David Hilbert, who
together laid out a research program that became the main thrust of algebraic
number theory through the 1930s. It relates the arithmetic of an abelian
Galois extension of an algebraic number field to the arithmetic of the field

itself. Claude Chevalley summarized the main goal:

The object of class field theory is to show how abelian extensions
of an algebraic number field k can be determined by objects taken
from our knowledge of k itself; or, if one wishes to present things in
dialectical terms, how a field contains within itself the elements of
its own surpassing (and this without any internal contradictions).

1.3 Notations

Throughout this thesis, & denotes an algebraic number field and M (k) the
set of all places (equivalence classes of absolute values ) of k. For v € M(k),

let k, be the completion of £ at v, O, the ring of integers in k, , O} the group



of units in O,, 7, a fixed uniformizer of the prime ideal of O,, ¢, the number
of elements in the residue field F, = O, /7,0, and | - |, the absolute value
of k, normalized so that |m,|, = ¢, '. For any place v of M(k)y (the set of
finite places of k), let p, be the prime ideal of Oy corresponding to v. Let
ey = e(p./py), fv = f(p./p,), and g, = g(p./p,) be the ramification index,
residual index, and the number of prime ideals p, of k., above p, respectively.

Note that e, f, g, = d..

Let A* = [[ . Mk kv denote the group of ideles of k. [T here means
that if x = (z,) € Hlng(k) k! is an element of A*, then z, € O} for all but

finitely many v. Endowed with the restricted product topology, A* becomes a

locally compact topological group. We denote by |- |a the idele norm on A*

|z|a = H EAP
v

for v = (z,) € A*. Set A' = {x € A* : |z|p = 1}. k* can be embedded into
A" by means of the diagonal embedding: a € k* to (a)yem). Then by the
product formula k* C A'. Moreover, A'/k* is compact. We call A*/k* the

given by

idele class group of k.

For a ring R, we denote by R* the group of units of R. Also, for any
positive integer n, R™ shall always denote the group of n'* powers of units of
R.

Let S be the set of infinite places of k. The group of S—ideles of k is
the following direct product with the usual restricted product topology:

AS) =]]x <[] o
ves vgsS

Since O} is compact, the S—ideles form a locally compact abelian group under

multiplication.



For a locally compact abelian group X, a character on X is a continu-
ous homomorphism y : X — S' = {z € C: |z|] = 1}. Let v € M(k)o and
X» be a character on k. Then ker (x,

o;) is an open subgroup of Q7. Conse-

quently, there exists a positive integer n such that x, =1 on 1+ 7,0O,. If n,

is the smallest such integer, we define the conductor ®(x,) of x, as follows:

(7)) ifx, #1 on O}
(1) ifx,=1 on O}.

Here we think of ®(x,) as an ideal of O,,.

Now, let x be a character on A*. Then x = H X» Where Y, are charac-
veM (k)
ters on &, such that for all but finitely many v, x, |o; = 1. We set the conductor

of x

Alternatively, we can write

Finally, for a character xg = H X of A*(S), define
I/EM(k)o

Oxs) = [[ @)

I/GM(k)Q



CHAPTER 2

DECOMPOSITION OF THE
DISCRIMINANT SERIES

2.1 The Conductor and Discriminant Series

In this section, we introduce the Dirichlet series that counts the discrimi-
nants of abelian extensions of a number field with the Galois group isomorphic
to a cyclic group of prime order /. We use Hasse’s Conductor-Discriminant
formula [4] to express this series in terms of series counting conductors of char-

acters. The main result of this chapter is (2.4).

By the class field theory, there is a one-to-one correspondence between
finite abelian extensions of k and open subgroups of A* containing k*. More-

over, if K is an abelian extension of k such that

K < Ux C A*, then Gal(K/k) = A* /Uy.

Now consider the dual group A*/Uk of A*/Uk, that is, the group of all
characters xy on A* such that x|y, = 1. The Hasse Conductor-Discriminant

formula asserts that



2(K/k)= ] ok

XEA*/L{K

Let C, denote the cyclic group of order . An abelian extension K of k
with Gal(K/k) = C, corresponds to an open subgroup Ux C A" such that
A" Ui = Cy. Let x be a character on A*/k*. Define U, = ker x. Then y €
A* /Uy if and only if Uy C U,,. Thus

AU, = (A*/MK)/(UX/UK)

is a factor group of A*/Uk. But A*/Uk is a cyclic group of order ¢. Therefore
U, = Uk or U, = A*. The former case occurs if x # 1 and the latter if y = 1.

A/*/HK is also a cyclic group of order ¢. Therefore m{ =< x > for
some character y on A*/k* such that y* = 1. Then

P(K[k) = H@(x")' (2.1)

Note that the choice of generator y of A/*/E( is not unique. In fact A/*/DK =
<x'>forany 1 <i</—1.

Definition 2.1 For a locally compact group X, let Co(X) denote the group of
all continuous characters x on X such that x* = 1. Define the discriminant

series D¢, (s), s € C, and the conductor series Fg,(s) as follows:

De(s)= ) |2(K/b)| (2:2)

Gal(K k) =
and
Fo(s)= > |®c,(0) (2.3)
X € Ce(A* [k*)

where
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/-1

oo, (x) = [[200)-

i=1
The previous discussion implies the following identity relating the conduc-

tor and the discriminant series:

FC@(5> =1+ (@ — 1)DCZ(S)- (24)

The next sections will be devoted to the decomposition of Fi,(s) into a finite

linear combination of series that have Euler products.

2.2 Characters on A*(S)

Let S be the set of all infinite places of k. Recall that the group of S-ideles
is A*(S) = [,esky x [L¢s Oy If x € Co(A"/k"), then the restriction x|a=(s)
defines a continuous character x5 on A*(S) such that y4 = 1. In this section,
we will take a closer look at these characters. This in turn will allow us to
write F¢,(s) as a linear combination of Dirichlet series that have Euler product

decompositions.

To begin with, let us investigate the following questions:

e Which characters ys on A*(S) that satisfy x4 = 1 come from the char-
acters of A*/k* with the same property ?

e How many characters on A*/k* of order ¢ induce the same character on
A*(S) 7

Proposition 2.1 A character xs € Cy(A*(5)) is induced by a character x €
Co(A*/k*) if and only if xs =1 on Ak* N A*(S).
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Proof: Suppose x|a+s) = xs where x is a character on A*/k* and Y= 1.
Then y = 1 on A’%&*, and therefore yg = 1 on A“k* N A*(S).

Conversely, suppose ys = 1 on A’k* N A*(S). Observe that ker yg is an
open subgroup of A*(S) (because s is continuous) and therefore an open

subgroup of A*. Now consider the following map:

A*(S) — A" — A*/A'E" ker xs.

Since ker ys € A*(S) and ker xg contains A‘k* N A*(S), A’k*ker xg N
A*(S) = (A'k* N A*(9)) ker xg = ker 5. Then the map

A*(S) — A*/A'k" ker x5

factors through a map

A*(S)/ ker yg — A*/A'k" ker xs.

Xs can be naturally thought of as a character on the finite group A*(S)/ ker ys.
Any character on A*/Ak* ker x5 corresponds to a character Y on A*/k* such
that xy* = 1. Now let H = A*(S)/kerxs and G = A*/A‘k*kerys. Since
ker xs is open in A*(S), both G and H are finite and H +— G is an embed-
ding. But for finite groups, every character of a subgroup H of G is induced by

a character of G. Hence there exists a character y on A*/k* such that x* =1

and x|a+(s) = Xxs. This concludes the proof of the proposition.

The next question we want to answer is how many characters on A*/k* of

order ¢ induce the same character on A*(S). First note that the map

¢ Ce(A*/k*) = Ce(A*(S));

given by ¢(x) = x|a*(s), is a homomorphism. ker ¢ consists of all characters

x such that y = 1 on A*(S). Since x = 1 on Ak*, x = 1 on A’k*A*(9), that



12

is, x can be viewed as a character on A*/A‘k*A*(S).

Let H = A" /k*A*(S). It is well-known that H = C}, the ideal class group
of k. Observe that H* = A‘k*A*(S)/k*A*(S). Hence, ker ¢ is the dual of
H/H* In particular, | ker ¢|= |H/H"| = hy;, , where hyy is the number of el-
ements M € Cy such that M = 1. Therefore, the map y — Yg is hej—to—1.

The map ¢ is not onto. We would like to be able to pinpoint those char-
acters in Cy(A*(S)) that lie in the image of ¢. Recall that xg € C,(A*(S)) is
o(x) for some x € Cy(A*/k*) if and only if yg = 1 on A“k* N A*(S).
Define
(8) = (A'k* N A*(S))/A(S).

The next proposition shows that <7(.S) is finite. More precisely, we have
Proposition 2.2 |(9)| = hy 1|0}/ OL] where hyy = [{M € Cy : M* =1}].
Proof: First note that the map

¢ (ay), — H p(;rd,,a,,

VEM(k)o
is a homomorphism from A* to I (k) where I(k) is the group of fractional ideals
of k. This map, composed with the projection

I(k) — I(k)/P(k) = C},

where P(k) is a group of principal fractional ideals, induces an isomorphism
from A*/E*A*(S) to the ideal class group Cy, of k. Therefore A* can be written

as disjoint union of the sets a;k*A*(S), namely,
A* = UM k" AY(S),

where a; is a fixed idele corresponding to an ideal class M; € C},. Here M; €

I(k) and @(a;) = M;. Then A’k* = U alk*AY(S).

1=
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It is easy to see that afau € A*(S), where o € k* and u € AY(9), if and
only if afe € A*(S). This in turn holds if and only if the ideal corresponding
to ala is (1). Then M! = (o). In particular, the ideal class M! is 1. Hence

, if M!#£1
SALS)E N AT(S) = 4 M #
not empty, if M!=1.

Now consider an a; such that M! = 1. Then M = (8) for some 3 in k*,
and af = Bu; where u; € A*(S). Consequently, ata € A*(S) if and only if
M) = (Ba) = 1. The last equality holds if and only if @ = S~y where
v € O, which implies that a € 371 Oj.

Now we have

(a; A“(S)k" N A(S))/ANS) = Puf7 OLA'(S)/AN(S)
= wOFA(S)/AY(S)
— w (0;/0; N AY(S))
= U (OZ/Oﬁ) .

Thus the number of distinct elements in a!A‘(S)k* N A*(S)/AY(S) is
|0 /O%]. This holds for every a; such that M¢ = 1.

Now suppose M; # M;, and M} = ./\;lﬁ = 1. We will show that the

sets
afA“(S)K* N A*(S)/AY(S)  and  afAY(S)k* N A(S)/AY(S)

are disjoint. This in turn will imply that |2(S)| = hex|O;/OL.

Assume not. Then for some a,3 € k*, ata = aﬁﬁ in 27(S) for some

o, B € k*, or alternatively, afa = affu’ for some u € A*(S). From the last

statement we conclude that a3~! = aﬁa;zué, that is a3~ ! is locally an ¢
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power for all v € M(k)o. Therefore a3~ = ~¢ for some v € k*. Now,

asf~" = afu’. Then afy* = afu’. Hence for all v € M(k)o

(aizf}/)e - (ajl/ully'

Therefore
QY = AUy y -
where 1, is an £** root of 1 in k,. But u,pu, is in O%. Hence,
play) = My
= @(aj (U ph))
= M,
This implies that M; = M j» which is a contradiction. Hence the sets

afA“(S)k* N A*(S)/A(S) and a A (S)k* N A*(S)/AY(S)

are disjoint. This concludes the proof of the proposition.

2.3 Decomposition of The Conductor Series

into Summands with Euler Products

In this section, we give decomposition of the conductor series into sum-

mands that have Euler products.

Let a,(S) = |4(95)|, and let {; : 1 < i < au(S)} be a set of coset
representatives of A“(S) in A’k* N A*(S). For xs € Cy(A*(S)), set

ay(S)

o(xs) = is) Z Xs(&i)-

=1
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Then by orthogonality of characters

5(xs) = { L, if xs € ¢ (Ce(A"/k))

0, otherwise.
Note that for a character x € Cy(A*/k*)

14

oo, (x) = [[200)-

=1

Similarly, for xs € Cy (A*(5)), define

¢
e, (xs) = H D(x%).

Observe that if xg = x|a~(s), then ®(xs) = ®(x), and therefore ®¢,(x) =
q)Ce (XS)

Recall the generating series of conductors

Fo(s)= > 1,001

XEC (A" /k*)
For e € A*(S5), define
Foos(sie) = Y. xs(e)|®e,(xs) ™"
xs€C(A*(S))
Then
1 ay(S)
FC&S(Sagi) - Z |(I)CZ(XS)|_S
ar(S) = e
i= XsEP(Ce(A*/k*))

- =Y el

h
bR e (A% k)

Hence
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where e,(S) = |0} /O%|. We will compute e,(S) in Section 4.1.

Note that
/
=[] cuk) x ] c(0;)

ves vgS
consisting only of those collections x = (X )vem) for which x, = 1 for almost

all v. For a given x € Cy(A*(S)), x(¢) and ¢, (x) are given as follows:

= Hxl,(a,,) and D¢, (x H@Ce Xv)-

This leads to the following Euler product factorization of Fg, s(s,€):

Fos(s,9) =11 D wE@)®e)™]] D xl@) @abn)l™

veS  xueC (k) vES  xu€Cc,(0F)

Thus (2.5) is the desired decomposition of the conductor series into a linear

combination of series that have Euler products.
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CHAPTER 3

ANALYTIC CONTINUATION

3.1 Overview

In Chapter 2, we decomposed the conductor series F¢, (s) into a finite linear
combination of Euler products Fg, s(s,¢). The principal goal of this chapter

is to study the analytic continuation of Fi, s(s,¢) where

Fosse)=[] D wE)eatw)™][] > xE)leaw)™

VES X, €Cy(K}) vES x, €Ce(O})
= H Z XV(5V)|(DCe(XV)‘_SH Z Xo(€0)| P, (X))
vES x, €Co (k) vl x, €Ce(OF)

H Z XV(8V>|(I)C%(XV)‘7S.

vl xv €Cy(O)

Forv e S, k, =Ror k, = C. If £ is odd, k = k. Hence Cy(k}) = {1}.
On the other hand, if £ = 2 and k, = C, then C?> = C* and Cy(C*) = {1},
and if £ = 2 and k, = R, then R*/R? = {+1} and C5(R*) has two characters:
X» = 1 and y,(x) = sgn(x), x € R*. Therefore

2 ife, >0;

Y @)= ) X”(E”):{o

XvECa(R*) XwEC(R¥) ife, <0.
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In any event,

Z XV(EV)|(I)C£ (XV)|_S

Xuecf(k:)

is a constant for any v € S.

For v|¢, Z Xv(€2)|Pe, ()| ° is a polynomial in ¢, ® and is therefore

XUGCZ (O;‘;)
entire. Hence

H Z XV(EI/)|®CZ (XV)’_S

vl xv€C(O})
is entire. Consequently, those places v of M (k) dividing ¢ will not affect the
analyticity of F, s(s,¢).

It remains to compute
Z XV(SV)‘(I)CZ(X)TS
XVGC@(O;)

for v { (.

3.2 Finite places not dividing /

In this section, we will study the finite places v of k£ that do not divide /.
Since v { £, g, and ¢ are relatively prime. We will first show in the following

lemma that all nontrivial characters of Cy(O}) have the same conductor.
Lemma 3.1 If v is a finite place of k such that v { {, then 1 + 7,0, C O°.

Proof: Let o € 14,0, that is, « = 1(mod 7, ), and consider a polynomial
p(z) = 2* —a € O,[x]. Observe that [p(1)|, = |1 — a, < 1 < 1, and since
Pw) = ' PO = 6 = 1. Consequently [p(1)], < [5/(1)[Z. Thus, by
Hensel’s lemma, there exists a 3 € O} such that p(3) = 0, that is, 3* = a.
Therefore 1 + 7,0, C Of.
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Lemma 3.1 implies that if x, is a non-trivial character in Cy(O}) then

Xy =1on 1+ 7,0,. Hence

_ (m,)) if x, #1
D(x,) = { 1) =1, (3.1)

If ¢, # 1modl, F; = F . Thus O; = (14 m,0,)O,. But by Lemma
3.1, 14+ m,0, C O, which implies that O = O°. Therefore, any x, € Cy(O?)

is identically equal to 1 and

Z |®C€(XV)’75 =L

XDGCE(O;)

If ¢, = 1mod {, any character y, on F} such that X, = 1 can be viewed as
a character on F; / Ff;u. The latter is a cyclic group of order ¢. Hence F; /F

consists of precisely ¢ characters, (¢ — 1) of which are nontrivial. Therefore

Z X ()P, (X0)| P =1+ Z Yo (E) s Vs

* —_—
Xv € Ce(O) xv €F;, /Fq,
Xv#1

where &, is the reduction of ¢, mod .

Finally, note that

> x(e)={ LoradE,

(-1 ifg, eF, .

Hence

1-¢ M ife, ¢

Z Xu (€)1 P, (x)| 7 = { —(t=1)s .p -
Xv€C(0%) 1+ —1)q ife, e .
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Thus we have proved the following proposition.

Proposition 3.1 If v is a finite place of k not dividing ¢,

1 if g, Z 1 mod/
> wlE)Ra () =4 1+ (= 1a T ifg, = Tmod( and e, € O
Xv€C(O7) 1— g 70 if ¢ = 1mod(l and e, ¢ OF.

The above proposition implies that

FC£7S(S78) = H Z XV(5V)|(D04<XV)|_S H Z Xu(gu)I(PCe(XV”_S

veS x, eCy(kt) vl x,€Ce(O3)
[T G+@e-ng“") ] (1-¢“"). 32
qu=1mod/ qu=1mod/
e, €0L e, gL

1
Since Z q;, “~V* converges absolutely for Re(s) > 1 the series defin-
veM (k) N
1
ing Fe, s(s,€) also converges absolutely for Re(s) > —1

Before studying the analytic continuation of Fg, s(s,¢), let us adopt the
following notation: for meromorphic functions F(s) and G(s), we write F'(s) ~

F
G(s) if GES; is analytic in Re(s) > o for some o < —1 In view of this no-
S p—
tation,

Fostsd)~ TI (e =g ) T (-G,

qu=1mod/ q=1mod/
e, €0L v @O%
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1
To continue Fg, s(s,e) analytically beyond Re(s) > 1 e will need
to use the Dedekind zeta functions ¢ ((¢ — 1)s) and (i, ((¢ — 1)s) where for
o € k¥, ko = k(C,a) = k,(a?). Set dy = [ko : k] and d, = [k : K]

Let L be an algebraic number field. Observe that

G = I a-a)

VGM(L)O

Here g, = p/* where p, € Z is a rational prime such that v|p, and f, = f(v/p,).

Let T be any subset of M (L), that contains all but finitely many v with
f, = 1. Then

e =Tla-a9" T[a-a""

veT v¢T
and H (1 —-q, S)_1 converges for Re(s) > 1. Consequently

vg¢T

Glt=s) ~ [T (=g )"

veTl

Now let L be an extension of k. If w € M (L), w|v, v € M(k)y, and v|p, where
py is a prime in Z, then f(w/p,) = f(w/v)f(v/p,). Therefore f(w/p,) > 1 un-
less f(w/v) = 1. Finally, assume that L is Galois over k, and let Z;, denote all
places of k that split completely in L. Note that v € M (k) splits completely
in L if and only if f(w/v) = e(w/v) = 1. Also note that e(w/v) > 1 for only

finitely many v.

Therefore

Q

(L (€= 1)s) IT =g

wlv
VED],

— H (1 _ qy—(ﬁ—l)s)—dL

vEYD],
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where dj, = [L : k].

Let us apply the preceding discussion to the Galois extension k, of k.
To this end, let v € M(k)o, v 1 ¢, and let w € M(k,)o be such that w|v. Tt is
well known that [(k.), : k] = [k, (C) : k] = e, f,, where ( is a primitive ("
root of unity. Since v 1 ¢, e, = 1. Therefore f, = 1 if and only if k, contains

an (" primitive root of unity.

Proposition 3.2 Let v be a finite place of k such that vt {. Then k, contains

an ("™ primitive root of 1 if and only if ¢, = 1 mod (.

Proof: First note that if v 1 ¢, then { # 1 modr,. Otherwise m,|1 — ¢ and
the fact 1 — ¢|¢ would imply that m,|¢, a contradiction. Now let  be the
residue of of ¢ mod,. By definition, ( € F,,, ¢ # 1, and ¢* = 1. This implies
that the order of ¢ in 7, is . Since F; is a group, then ¢ divides the order
q, — 1 of . Therefore, ¢, = 1 mod (.

To show the converse, we use Hensel’s lemma. Consider the polynomial
p(r) = 2 — 1. Let @ be the residue of a mod,. Since ¢, = 1 mod ¢, there

exists an & € F* | & # 1, such that a’ = 1. Then p(a) = o — 1 =0 mod 7,

qv’
and p/(a) = a1 is not divisible by 7,. Hence by Hensel’s lemma, there exists
B = o mod m, such that 8 = 1. But 3 is nontrivial because 3 = a mod 7, and
a # 1mod,. Therefore k, contains an ¢** primitive root of 1, which concludes

the proof of the proposition.

The above proposition implies that

G ((0—1)s) =~ H (1 _ q;(f—l)s)_dz '

qu=1mod/{

Similarly, since the prime ideal p, corresponding to the place v 1 ¢ splits

completely in k, if and only if ¢, = 1modf and « € k!, we obtain
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Ceo (0 —1)s) = H (1 _ q;(f—l)s)—da ‘

qu=1mod/{
ack?
Moreover,
(-1 (-1
Gr. (( )s) — and Gra (( )s) -
H (1 - q;(f—l)s) z H (1 - qy—(ﬁ—l)s) o
qv =1 mod/ qv =1mod?
ackl
lytic in Re(s) > !
are ana 1C 1N ne(s .
Y 200 —1)

Note that since ¢ € Ak* N A*(S), ¢ = a’a for some a € A*, a € k*.
In addition, €, € O for any v € M(k)o. Since Oz Nkl = O ¢, € OF if and

only if ¢, € kY. But €, = a’a. Hence ¢, € OF if and only if o € k!. Therefore

Fosts= [1 (+@-0g ) I (0-g0)

qv =1mod?{ qp=1mod?t
ek, agkl

Observe that

H (1 + (0 — 1)q;(571)s) ~ H (1 _ q;(g,l)s)—(e—n

q=1mod¢ qu=1mod ¥

since

(14 (0= g 0) (1=, 0) T =140 (20,

v

and therefore

[T (+¢-1)g0) - D)

qv=1mod¥

converges absolutely for Re(s) >

2(0—1) ’
Hence
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Fos(se) ~ [ (=g )0 I (1-g),

q=1mod/{ q=1mod/{
ackf ag¢kl

Consequently

FCZ,S<S75> =~ H (1 _ q;(f—l)s)—(f—l) H (1 B q;(f—l)s)

qu=1mod/ qu=1mod/{
ackl agkl
S0 NECER ) RIS
v v
qyzlmgdﬁ qu=1mod/
a €k,

Gho (£ = 1)s)/de
G (£ = 1))/

Proposition 3.3 Let a € k, and ¢ be a prime. Then either o € k' or
[k(aV*) k] = €.

Proof: Observe that a'/* is a root of a polynomial p(z) = z* — a € k[z]
¢

and that in k,[z] p(z) = H(m — 'Y, If p(x) is irreducible in k[z], then
i=1

[k(a/*) : k] = €. Otherwise, p(z) = g(z)h(z) for some g(z),h(z) € klz]
with degg, degh < (. But then g(z) = [[/L,(z — Ciallty = ™ + ...+
(—=1)™¢'a™* where (' = [152, ¢4. Hence 8 = '™/’ € k for some 0 < m < /.
Thus 3 = a™. Since m and / are relatively prime, there exist rational integers
r and s such that rm + s/ = 1, which in turn implies that o = o™ =

amast = frfas = (B7a®) € k. This proves the proposition.
Corollary 3.1 Let o € k. Then

d, ifack

do = [ko : Rk < k] = { t ifa ¢k
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Proof: If a € kY then o/’ € k C k.. Hence k, = k.(a'/%) = k, and
[ko : k] = [k. : k] = d.. On the other hand, if o ¢ &, then [k(a'/*) : k] = £.
Since [k‘z : k:] =d,and d, | (-1, [k’(aw) : k:] and [ k] are relatively
prime. Now, ko = k.k(a!/?). Since [k, : k] and [k(a'/?) : k] are relatively

prime,

(ko 0 k] = [ks k] [k(a™) 1 k] = €d.,

proving the corollary.

Corollary 3.1 implies that

e (0 — 1)5)%1 if o € k'
G (€ — 1))/
F, ~ =
DGO T e = sy
C. (£ —1)s)1/e

if o ¢ K.

If @ € kY then a = 3¢ for some B € k*. Therefore ¢ = a‘a = (af)’ €
AP N A*(S) = AY(S). Conversely, if ¢ € A*(S) then for all v € M (k), a’a = b,
for some b, € k. Then o € k! for any v € M (k). Therefore (by the local-
global principle) a € kf. Thus « € k% if and only if e € AY(S), and e € AY(S) if
and only if £ = 1 where £ is the image of £ in #(S5) = (A’k*NA*(S)) /(AY(S)).

Now if € € AY(S) (that is, £ = 1), then

(-1
d, '

Fe,s(s,€) = (., (0 —1)s)* where ¢, =

Therefore F, s(s,¢) has a pole of order ¢, at s = and can be continued

(-1
with the exception of the pole

analytically to the half-plane Re(s) >

1
-1

20— 1)

at s =

On the other hand, if € ¢ AY(S), then
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1/d.
— Cro (£ —1)s)
fostne)= (W) |

In this case,

G (=)= JT Lt =150 = (= D)s) [T L€ = 1)s. x),
XEGallka k) x

and

G (€= 1)s) I L-1sx.

G (£ =1)s) ol
x€Gal(ka [k-)
x#1

is also entire. Also,
Ce. (£ —1)s)

= —M B ere stands I10r whnere
s = 1 (1= 35) - Here (o) stands for x {9k /R))

(9, ka/k.) is the Artin symbol.

Since for x # 1, L((£ —1)s,x) is entire,

Recall that ky = k.(a'/*) = k(¢,a'/*), which in turn gives k, = k.k(a!/?).
Using degree considerations, one can show that k, N k(a/*) = k. Let G =
Gal(ka/k). Then G = HK where H = Gal(k,/k(a'?)), K = Gal(ka/k.)
and K is normal in G. Since H = Gal(k./k), |H| = d,. Let 0 € H. Then
o(al’?) = '/ and o(¢) = ¢' for some i relatively prime to £. We will denote
o € H such that o(¢) = ¢’ by 0;. If 7 € K, then 7(¢) = ¢ and 7(a'/*) = /(™
for some 0 < m < ¢ — 1. Then o;70; '(¢) = ¢ and

airo; (@) = oi(r(a'))
= oyt
= oi(a)a ()"
N e
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But 7 (a'/*) = /(™. Hence 0,707 ' = 7.

Let 0, € H. Then o; maps k, to k, and k, to k, setwise. If p C O,
is prime then o;(p) C Oy, is prime and N(o;(p)) = N(p). Moreover, by the

properties of the Artin symbol, we obtain

(0i(p), ka/k2) = (0i(p),0i(ka)/0i(k-))
= oi(p ka/k:)o; !
= (@7 ka/kz)i .

o —

If x € Gal (ko /k.), and (p, ko /k.) is the Artin symbol,

Lisv) = ]

Hence H L((¢ — 1)s,x) decomposes into products of d. identical

x€Gal(ka/k=)
x#1

factors. Therefore
1/d.

[T z¢-1sx)

XEGal(ka k=)
x#1

is a single-valued entire function. Hence for & # 1, Fi, 5(s,¢) can be analyti-

cally continued to the half-plane Re(s) > =1

We summarize the above discussions in the following proposition.
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Proposition 3.4 If ¢ = 1, then Fg, 5(s,e) can be continued analytically to

the half-plane Re(s) > m with an exception of a pole of order q, at
1
s=,-1 If € # 1, then Fg, s(s,€) can be continued analytically to the half-
1

plane Re(s) > =)
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CHAPTER 4

THE MAIN RESULT

4.1 Overview

We have previously shown that the discriminant series D¢, (s) and the

conductor series Fg,(s) are respectively given by

Fe,(s) 1
and
1 ag(S)
Fe,(s) = ——— F 8,€;)- 4.1
c.(s) e0(S) ; o5 (8, €i) (4.1)

By Proposition 3.4, for all £ # 1, F, s(s,e) can be analytically continued

1 F 1
to the half plane Re(s) > ———. We also showed that cr.5(5: 1) is

2(6—1) Qe (£ = 1)s)%
, which in turn implies that F, s(s, 1) has a pole

analytic in Re(s) > =)

of order g,. Consequently, the following limit exists:

ts—=
at s 71

c(h,Ce) = Timy (s _ K_Ll)q Do (s). (4.2)

£—1
Our principal objective in this chapter is to compute the limit in (4.2). For

the sake of brevity, we set

. FC@,S(Sa 1)
Pl) = -



Then P(s) is analytic in the half plane Re(s) > and therefore

1
i P =Pl —.
Jim P(s) (g_J

£—1

1
20— 1)

Now,
1 qz
c(k,Cp) = lim (5 - 6—1) De,(s)
SHm -
. 1 % FC S(S 1)
= lim (s— R
sl ( - 1) (0 —1)es(S)
. L \" Gt =1)s)*=P(s)
= lim (s— -
s ( - 1) (0 —1)es(S)
L G(D)EP (i)
- e(S)(0 - 1)t
where ¢,(S) = |0;/O%]. Since P(s) = Feus(s: 1) , for Re(s) > b

G (0= 1)s) ‘-1

Pis)=1] Y. 120 D [1@00)

veS x,€Cy (k) V|t x,€Ce(O5)

30

I @+ =1g ) G ((t—1)s)%.

qu=1mod/{

Set
b =T] D [2c,(x)l™
ves XVECZ(kZ)

Then

1 fe+£2

5oo(l) = e

2 if =2

and
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where

B=1] Y. 10wl JI @+e-1g")@-g"H""

vt x,€Ce(O}) qv =1mod?l

H (1 _q;fl,>ngu.

quZ 1 mod/l

(4.3)

In the next section, we will compute

II > 1w

vt xv€CL(O})

We will conclude this section by computing e,(S).
By the Dirichlet Unit Theorem,

Or = u(k) x 7.

Here < > = p(k) is the finite cyclic group of the roots of unity in £*, and
r=ry+7ry—1. Then

O;)Oy < u>/< ' >x (207,
so that

roACEk
S —
%) {6”1ﬁgeh

Observe that if { =2, ( = —1 € k. Then

6@(5) _ ritrz — 92
6so(l) 20 T

If / is odd and a primitive £** root of unity ¢ € k, then r; = 0, and

64(8) +
— gt g2
)
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In all other cases,

— €T1+T‘2—1.
doo (£)
Hence, ?((52) = ("1 where r, = 0 if ( € k and r, = r; — 1 otherwise.
Therefore

G (DR
c(k, Cp) = fratr=(f — 1)a=+1"

4.2 Finite Places Dividing /

Suppose v € M (k) and v|l. Let p, denote the prime ideal of Oy, correspond-
ing to v, and let w be a place of k, such that w|v. Then (k.), = (k(()), = k. ().
It is well known that [k, (C) : k,] = e, f,.

Now, let m, be a uniformizer of p, in O,. Then (¢) = (m,)**for some inte-
ger e(v) > 0. Here e(v) = e(v/{) is the ramification index of v over ¢. We will
write

e(v) =dv)(l —1)+ro(v) where 0<ro(r)</{-—2.
e(v)

Note that d(v) = and r(v) is the least nonnegative residue of

-1
e(v)ymod (¢ — 1) (here |z] denotes the floor function, that is, the greatest

integer less than or equal to x).

Our first task is to find an n > 0 such that
1+ 770, C O
Lemma 4.1 Ifn=d(v)l +ro(v) + 1, then 1 + 72O, C O°.
Proof: Let z € 1 4 ndW00+10  Then z = 14 where a € 720+
and an " root of x is given by x7 = i (%) o where

n
n=0
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| =

<%): (%_1)...(%-71—}—1):1(1—4)"'(1—(71_1)@‘

n! /nnl

Since 1 — ¢,1 — 2¢,...,1 — (n — 1) are relatively prime to ¢, their v-adic
norms are 1. Consequently

(%)’ _ 1 < 1 _ M‘—nf/f—l _ |7T ‘—ne(z/)Z/Z—l‘
n)l, W = et Y Y

Thus

< fﬂu\:(d(y)um(y)“_%) = \m\:(l_?j?)

1
But1 — % > 0. Therefore | [ * Ja™| — 0 as m — oo, and the series defining xt
- n

converges. This concludes the proof of the lemma.

Lemma 4.1 implies that if v is a finite place dividing ¢, and x, is a non-

trivial character in Cy(O%), then ®(x,) = (77) where 0 < n < d(v)l+ro(v)+1.

We will next consider two cases: p, splits completely in k. and p, does
not split completely in k,.

Case 1 Suppose p, splits completely in k,. This occurs if and only if the
(*"_root of unity ¢ € k,.

Consider the tower of field extensions

QK - QE(C) C ku-

It is well-known that (£) = (1 — ()L Let (1 — ¢) = (7). Then (¢)
()41 "s0 that e(v) = d(v)(¢ — 1) and ro(r) = 0 in this case.
If x, € Cy(O;) has conductor (7]}), then x,|14-n0, = 1. Also, by Lemma

4.1,
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®(x,) = (7)), for some 0 <n <d(v)l+1.

v

This leads us to consider
M, = {xv € C(O)) : Xul14p0, = 1}

for 0 < n < d(v)l + 1. Actually, M, consists of all characters x, € Cy(O;)
with ®(x,) = (7), for some m < n. Therefore the number of characters

Xv € Co(O3) with ®(x,) = (7]}) is precisely |M,| — |M,_1].

Since v|(, (¢,q, —1) = 1. Hence F|, = F; . Therefore, O} = (1+m,0,)0;,

and

0:/0) = (1+m,0,)0°0"
= (14+7m10,)/1+m0,)N Of
~ (1+7m,0,)/(1+m0,)"

Now if we set G,, = (1 + m,0,)/(1 + 7O,), then X, |1+mm0, = 1 and x!, =1 if
and only if , is a character on G, /G*. Thus,

M| = |G /Gl| = |G /G-

Define a map ¢, : G, — G, ¢n(x) = x¢. Since ¢, is a group homomor-

phism, it is easy to see that
Gn/ker o, = 0, (G,) = G*.
Consequently, we have

|G/ Gl = [ et nl,

where |ker p,| = [{z € G, :2' =1} = {z € 1 + 1,0,/1 + 70, : 2" = 1 mod 7"}|.



35

Let ord,,(z — 1) = m. We will next determine ord,, (z* — 1).

Consider

=1 = (= D= e —¢)...(x =),

Since ord,, (1—C") = d(v) foreveryi =1,2,... f—1and ' — ¢ = *(1 -7,
ord,,(¢" — ¢?) = d(v) for all i # j. Now consider the following cases:

Case 1: Suppose m < d(v).
In this case, ord,, (r — (') = ord,,(x — 1+ 1 — (") = m. Thus

ordy, (" —1) = ml < d(v)L.

Case 2: Suppose m > d(v).
Here ord,, (v — (') = ord,, (1 — ' +x — 1) = d(v) for all i # 0. Thus

ord, (' — 1) =m+ ({ — 1)d(v) > d(v)l + 1.
In particular, this implies that = € ker p,, for any n < d(v)¢ + 1.

Case 3: Suppose m = d(v).
ordy, (r — (') = ord,, (x — 1+ 1 —¢") > d(v). Thus ord,, (z* — 1) > d(v)L.

Now, let us consider the characters x, € M, for n < d(v)¢.
Cases 2 and 3 imply that for m > d(v), ord,,(z* — 1) > d(v){ > n, and thus
e 1+ 7"0,.

For m < d(v), ord,, (z* — 1) = ml. Hence 2* € 1 + 770, if and only

if m¢ > n. Consequently, for all n < d(v)¢,

ker p, = (1 + WIE%OV)/(l +7,0,),
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where [z] denotes the ceiling function (the smallest integer greater or equal

n—[%]

to ). Hence |M,| = qv

Therefore for n < d(v)l

n—1-[271]

{xy € Cl(O%) : ®(x) = (7)1 < < dw)l}| = qp ' T — g ,

and

n

d(v)e

. nel2] | nolofER\

> el = Y (@ g
n=1

d(v)¢ -
=1+ (qjﬂ —q ])
n=1

d(v)e d(v)t—1
=1+ 6 gt Y g
n=1 n=0
d(v)e d(v)¢
= 1+> a0 mgt Y e g g
n=1 n=1
d(v)¢
= 1+ (=) Y =g g
n=1
d(v)¢ . d(v) d(v)e .
Butsinee Yo a1 =3t (- ) Y e = 0 (@ - ).
n=1 m=1 n=1
Therefore
Do 1RO T =1+ (= 1)t = (0= 1)g, (4.4)
®(xv)=(77)
n<d(v)¢

We will next determine Z |®(x,)| . To this end, we need to

@ (x)=(m )
determine | ker pyei1]. If ordy, (x — 1) = m < d(v), then ord,, (z* — 1) =

ml < d(v)l + 1. Hence, & ¢ ker ©q()e41.
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If ord,,(r —1) = m > d(v), then ord,, (z* — 1) > d(v)¢ + 1. Hence
T € ker o441, that is, ker ¢gq)e41 contains 1 + wﬁ(”)“(oy. It remains to

determine ‘ ker g1 / (1 + Wg(y)ﬂ(’),,) | That is, we want to determine
{z € 1+ 70O, : 2' = 1mod 71} /(1 4 700,
Observe that since ord,, (z — 1) > d(v), ord,,(x — ) > d(v) for every
i=0,1,...,0 — 1. Therefore, ord,, (z* — 1) > d(v){ + 1 if and only if
ord,,(x — () > d(v) + 1 for some i = 0,1,...,¢£ — 1. But for all i # j,
ordy,, ((*—¢?) = d(v). Hence ' # (Y mod 70 Consequently, = € ker ()1
if and only if z = (* mod 7 for some i = 0,1,...,¢/—1. Hence the number

of such zmod 78+t is ¢. Therefore

[ker | = |ker papyers/ (1 + 780N | |(1 + 78 0O,) /(1 + 7l 0O,)|
_ g,

( d(v)l+1

Thus the number of characters x, with ®(x,) = (m, ) is

£gEWIE) _ qd0)=dw) _ (¢ _ 1)),

Therefore in this case

TR0 = 14+ ((=1)g " = (0= 1)g, T 4 (£ = 1)gd DA
XVGCZ(O?;)
= 1+ ((—1)g"

Case 2: Suppose v | £ and p, does not split completely in k.. In this case

"¢k, fori=1,23 ..,0-—1.

By Lemma 4.1, ®(x,) = (7}), where n = 0,1,...,d(v)l + ro(v) + 1. To

count the number of characters of conductor (7?), consider

Gy = (1+m,0,)/(1+70,).
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As before, a character x, € C;(O;) satisfying x,|i14-n0, = 1 is also a char-
acter on G, /G*, and by conducting the same analysis as before, we deduce

that the number of such characters is | ker ¢, |, where ¢, : G, — G, is given

by @n () = a.

First, let us determine
ord,, (' —1).
Recall that for w|v, (k.), = k,(¢). Let 7, be a uniformizer of the prime

ideal of O,,. Then

(m,) = (757) where e, = e(w/v).

This implies that (¢) = (75)%*). But since (¢) = (1 — )1, (¢ — 1) divides

e(v)e,, that is e(v)e, = d,, (¢ — 1), for some positive integer d,.

Let ord,, (v —1) = m.. Then if m, < d.,,, then ord, (z*—1) = ¢m.. More-
over, since ord, (z* —1) = e ord,, (z* — 1), then for m, < d.,,, ord,, (z* —1) =
Cord,, (x —1).

e(v)e,

If ord,,(r —1) = m, then m, = e,m. Then m, < d,, = 71 if
and only if m < ;(_—V)l =d(v) + %. If ro(v) > 1, then for all m < d(v),

ord,, (z — 1) = m implies that ord,, (z* — 1) = ml. If ro(v) = 0, then for all
m < d(v), ord,, (r — 1) = m implies that ord,, (z* — 1) = ¢m.

Now suppose r9(r) = 0 and m = d(v). In this case, e(v) = d(v)(¢ — 1) and
d,, = e, d(v). If we set ord,, (r —1) = d(v), then ord, (r —1) = e, d(v) = d,,.
Note that ord,, (x¢ — 1) > (d.,, if for some 4, i # 0mod {, ord, (v — (') > d.,.
But for j # i, ord,, (¢ — (%) = d.,. Hence for all j # imod{, ord, (x —¢7) =
d,,. Therefore for all j # ¢ mod /¢

|z = o < [¢ = (o
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Then by Krasner’s Lemma, k,((*) C k,(x) = k,. Therefore ¢ € k,, which is
ld,

impossible. Hence for m = d(v), ord,, (z'—1) = {d,, and ord,, (z* — 1) = = ld(v).
€
ev) _ ro(v) : _
Note that d(v) + 1 > 1= d(v) + 71 Hence if m > d(v) + 1, m, =
e.;m > e, (dv)+1) > e;i—)elz = d_,. Therefore for m > d(v)+1, ord, (z*—1) =

d., (¢ —1) 4+ m,, and

dr, (2t — 1 .+ —=1)d,,
ordy, (' —1) = > W(ex )_m +(€ v _ e(v) +m.

Thus for m > d(v)+1 and e(v) = d(v)({—1)+7o(v), we get ord,, (z*—1)
d(v)l+ro(v)+1. But sincen = 0,1...,d(v){+ro(v)+1, then ord,, (z*—1)
d(v)l +ro(v) +1 > n for any n that occurs in the conductor of x, € Cy(O;).
Hence if ¢ ¢ k,, and ord,, (xr — 1) = m, then

>
>

ord, (2" —1)=ml  if m <d(v)
and
ordy, (2 —1) > dW)l +ro(v) +1 i m>d(v) + 1.

The above discussion implies that if z € G,,, 0 < n < d(v){+1¢(v)+1 and

ord.,(xr —1) =m < n, then x € ker ¢, if and only if m¢ > n. Thus
|kery,| = qlr,b_{%.

Therefore
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d(v)l+ro(v)+1 = .
RO IS E o S (A A A P
xv€C(O}) n=1
d(v)l+ro(v)+1 - d(v)l+ro(v) =
=1+ Z @ _qul Z @
n=1 n=0
d(v)l+ro(v)+1
—1-q'+(1-q" Y @ gt g
n=1
d(v)t

:(1_QV 71 quj%

d(v)l4ro(v)+1

_ 121 )
+(1—q") DY g g
n=d(v){+1
d(v)

—(1-¢)+(1-gq EZ + (1 =g, ) (ro(v) +1)g,
+ q;d(y)fﬂ
=1+ (=g, = [ = (o) + 1)1 = ¢, ") =g, '] ¢,
=1+ —-1)g " = [(—1—ro(w)(1—¢")] ¢,

We summarize the results of this section in the following proposition:

Proposition 4.1 Suppose v|(, (£) = (7,)") and e(v) = d(v)({ — 1) + ro(v)
where 0 < ro(v) < € —2. Then

1. Z D)t =1+ —1)g "  ifp, splits completely in k..
XVGCZ(O;;)

XvEC(OF)
p, does not split completely in k..

Applying the result of Proposition (4.1) to (4.3), we obtain:
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Po=J] @+ -1g"' = [t=1-r@)(1-q")] g ")

4
wE?

[T @+e-ng") J] Q+@-1g")@-ghH""

pull qu=1mod ¢
PED

H (1 _q;fy)ngu‘

quZElmod{

Putting all these details together and using Theorem 3.9 and its corollary
in Chapter III of [7], we state the main theorem of the thesis.

Theorem 4.1 Let k be a number field of signature (r1,r2). Let 2 be the set
of prime ideals of k which are totally split in k,/k. Then

c(k,Cp)(0—1)

> N(k,Cim) ~ (0 —1)="1X(log X)%=!

m< X1 (Qz - 1)!
Ck'z(]‘)qz »—1
dzémﬂqu!POX(lOg X)* as X — 00.
Here,

Py = H (1 + (- 1)(];1 — [f —1—=ro(v)(1— qy_l)} q;d(V)—l)
2

[T @+e-ng") J] Q+@-1g")@-ghH""

pull q=1mod(
PED

H (1 _q’/—fy)ngu’

quZElmod/{

e(v/l)
(-1
nonnegative residue of e(v/f) modulo (¢ — 1) and (. (1) denotes the residue of

the Dedekind zeta function (i, (s) at s = 1.

r,=04f( €k andr, =r; — 1 otherwise, d(v) =

, To(v) is the least
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4.3 Veriftying the result of Theorem 4.1

In this section, we will show that the result in Theorem 4.1 is identical to

that of Theorem 1.1 of [1] (also stated below in Theorem 4.2).

For reader’s convenience, we restate the theorem:

Theorem 4.2 Let k be a number field of signature (r1,712). Let X (resp., D)
be the set of prime ideals of k which are ramified (resp., totally split) in k,/k.
Then

Z N(k,Cp;m) ~ creacses X log® ™t X

mSXl—l

with

(M. Guta(@y )"

1 = )

d.0r2+7=q.
{—1 1 (e=1)u(d)/d
o ()T we) )
g(pa/p)u(d)
€ = H H ( dif pa/p) ) ’
pER d|d.
(=1 0= 1= r(elp >><1—1/Np>>
Cy = 1+ — ;
4 lp_tl ( Np Nplew)/(t=1]
p¢7

here r, = 0 if (4 € k, while r, = ry — 1 otherwise, and by abuse of notation,
for any number field L we write (r(1) for the residue of the Dedekind zeta
function (r(s) at s = 1.

Proposition 4.2 If ¢y, co, c3,cq4 are the constants of Theorem 4.2, then

CT020304 = Ckz(l)quo

q=
where ¢ = d 0 "=q,le; = <H C.jq (d )

d|d.
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Proof:
First, by Proposition 4.1,
I > el =] C+¢-1g" = [t—1-r()(1-¢")]q"").

Pl xv€CL(O) Pl
Pt gD

For v € M(k)o, let p be the prime ideal of Oy, corresponding to v. Then
N(p) = qu. Recall that e(v) = ro(v)mod (¢ — 1), where 0 < ro(v) < £ — 2.
Also, recall that e(v) = e(p) = r(e(p)) mod (£ —1), where 1 < r(e(p)) < ¢ —1.

0 <ro(v) < €=2,m0(v) = r(e(p)) and
()~ far+ 2] <1,

Hence

et = 1+ (- Dgt = [{—1=n)(1—g")] ¢!

XuEC[(O;)
_ (=) f=1—r()(1—1/Np)
- U TN Nple®)/(E=1)] '

If 7o(v) = 0, and consequently r(e(p)) = ¢ — 1, then

and

ST = 14+ (- 1g = (€ —1)g, !
xvEC(OF)
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Therefore,

=11 > |e0w)™

pull xv€CL(O5)
wEg

Next note that ¢ (€ —1)s) = H (1- q,jf”(z’l)s)fg”.
VGM(k)Q

Also, p € Z if and only if v 1 ¢ and ¢, = 1 (mod{) or v | £ and ¢ € k,.

Now

creacseq = C (1)% HCk . (d)#(d) H (1 4 (£ — 1)) (1 . L)E—1
1 2 z[d] Np D

d|d- peY
d>1
( 1\ e
H 1——— C3 Cy
Npd
pED p
d|d,
d>2

Hence

qz

(t—1) D
* 1 d
C1C2C3Cy = Ckz(l)quo HCkz[d} (d)'u(d) H (1 — N_pd

dld. peD
d>1 d|d.
d>2
1 _g(pl/p)QZ
11 (1 N Npﬂm/p)) “
p¢9

where p; is an ideal in k,[1] = k, that divides p.

We now claim that
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qz

@ 1\ DEP 1 ~g(p1/p)g=
o) T ) T o) ™o
d|d. pED pED
d>1 d‘dz
d>2
(4.5)
Note that
qz qz
@ —g(pa/p)p(d)
H@z[dl(d)“ HH ( pdf Pa/p) )
d|d. p d|d-
d>1 d>2
QZdz € -
If p e 2 flpa/p) =1, g(pa/p) = R Hence these

factors (in ¢f) cancel with the factors

in cy.

For p ¢ 2, the left side of (4.5) contains
1 ) —9(pa/P)p(d)q=

H(“W

d|d.

If p € Z, these factors cancel with

H H ( dif(Pd/p

) g(pa/p)p(d))
PER d|d.

It remains to show that

H H —df (pa/p) ) —9(pa/P)u(d) _ 1

PEDUZ d|d.

where ¢ = Np.
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Proposition 4.3 Let k be a number field and k, = k(C). If p is a prime ideal
in k such that p is unramified in k,/k and p is not totally split, then

H (1 B q_df(pd/p))_g(Pd/P)M(d) —1
d|d.

Proof: Let f = f(pi/p) and let G be the decomposition group of p in
Gal(k,/k). Note that | G, | = f(p1/p) and that G, =< o > is a cyclic group
generated by o where o = (p, k. /k) is the Artin symbol of p. Consider a tower
of field extensions

k Ck,[d] Ck,

and a corresponding chain of prime ideals
p Cpa C p1.

Then

Gp ={7 € Gal(k./k) : 7(p1) = p1}

and
Gy, = {7 € Gal(k,/k.[d]) : T(p1) = p1} = Gy, N Gal(k,/k.[d]).

Note that Gal(k,/k) is isomorphic to a subgroup of (Z/¢Z)*. Hence G =
Gal(k,/k) is a cyclic group of order d,. Consequently Gal(k,/k,[d]) is a cyclic
subgroup G of order d. Also G|, is a cyclic subgroup of G of order f = f(p1/p).

Hence
Gy, N Gal(k,/k,[d])

is the cyclic group of order (f,d), which implies that
Fp1/pa) = [Goyl = (, ).

But
f(p1/pa)f(pa/p) = f(pr/P) = [
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f
Hence = —.
Moreover,
d.
c(Pa/p)f(pa/P)g(Pa/p) = |k:ld] k] = —,
and since e(pg/p) = 1,
o dZ(f? d) . dz
Therefore the product in the proposition becomes
_dz(f.d) »
H (1 B q%> a Hld) _ H (1 _ qf[f,d]>—d[szf) _

d|d. d|d.

Since f|d, and d|d., [f,d]|d,. Therefore the above product can be written as

_ dzp(d)

IIT I a-am)

m‘dz [f7d]:m

To complete the proposition, we only need to show that if f > 1, then

> () =o0.
[f,d]=m
Consider the prime factorization of f, d and m : f = [[p*®), m = [[p"®
and d = [[p®®). [f,d] = m if and only if for all p, maxz{a(p), B(p)} = v(p).
This means that if a(p) = v(p), then 0 < F(p) < v(p) and if a(p) < v(p),
then G(p) = v(p). We note that p is multiplicative and the above conditions

are independent of each other for all primes p. Hence

> u(d) :H{ o0 wp?) i a(p) =

y
Fdm p(p"®) if a(p) < (p).

a(p)
But since f > 1 there exists a prime p such that a(p) > 1. Then Z u(p®) = 0.
5=0
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Also, if v(p) > a(p), then y(p) > 2 and pu(p?*®) = 0. In any event, one of the
factors in the product that gives >, ,_, p(d) is 0 and therefore

> u(d)=0.

[f,d]=m

This concludes the proof of the proposition.
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