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ABSTRACT

A MEAN VALUE THEOREM FOR DISCRIMINANTS OF ABELIAN

EXTENSIONS OF AN ALGEBRAIC NUMBER FIELD

Behailu Mammo

DOCTOR OF PHILOSOPHY

Temple University, May, 2005

Professor Boris Datskovsky, Chair

Let k be an algebraic number field and let N(k, C`,m) denote the number of

abelian extensions K of k with Gal(K/k) ∼= C`, the cyclic group of prime order

`, and the relative discriminant D(K/k) of norm equal to m. In this thesis,

we derive an asymptotic formula for
∑

m≤X N(k, C`,m), using the class field

theory and a method, developed by Wright [13]. We show that our result is

identical to the result of Cohen, Diaz y Diaz and Olivier [1], obtained by the

methods of classical algebraic number theory, although our methods allow for

a more elegant treatment and reduce a global calculation to a series of local

calculations.
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CHAPTER 1

INTRODUCTION AND THE

MAIN RESULT

1.1 Motivation and objectives

The principal objective of this thesis is to address the problem of counting

the number of finite extensions of an algebraic number field. More specifically,

given an algebraic number field k and a finite abelian group G, we would like

to count the number N(k, G; m) of Galois extensions K of k with Galois group

Gal(K/k) isomorphic to G and the relative discriminant D(K/k) of absolute

norm m. As usual in number theory, we will not be able to pinpoint individ-

ual values of N(k,G; m). However, we will be able to determine how large

N(k,G ; m) is on the average. The latter is equivalent to finding an asymptotic

formula for
∑

m≤X N(k,G ; m), the explicit computation of which is given in

this thesis.

The study of discriminants of algebraic number fields goes back to Dedekind

and Hermite. Hermite was the first to show that the number of extensions K

of k with discriminant of a given norm is finite. A breakthrough in the study

of the density of discriminants of abelian Galois extensions occurred with the



2

publication of Hasse’s Conductor-Discriminant formula [4] (a short proof can

be found in [9]). With the help of this formula, one can express the discrim-

inant of an abelian extension in terms of conductors of associated characters.

The earliest papers, such as [3] and [11], that gave asymptotics for k = Q and

a cyclic group G = Z/`Z of prime order `, appeared in the early 1950s. More

recently, Mäki [6] gave asymptotics for k = Q and arbitrary G. The underlying

principle invoked in his work is that abelian number fields of absolute conduc-

tor f are contained in the field generated by the fth roots of unity, and that

the conductor is the smallest such integer. In [10], Taylor produced partial

results for an arbitrary number field k by computing the density of conductors

of cyclic extensions of a number field. An extensive list of references to related

works can be found in [8].

Using class field theory, Wright [13] wrote the definitive paper on this sub-

ject. He proved that there exists a positive constant c(k, G) such that

∑
m≤X

N(k, G ; m) ∼ c(k, G)

(ν − 1)!
X1/α(log X)ν−1 as X →∞.

Here α = α(G) = |G|
(

1− 1

Q

)
where Q is the smallest prime divisor of the

order of G, and ν =
ΦQ(G)

dk

where ΦQ(G) is the number of elements of G of

order Q and dk = [k(ζQ) : k], where k(ζQ) is the field obtained by adjoining

the primitive Qth root of unity ζQ to k. (Un)fortunately the work of Wright

was so general that he neglected to find the constant c(k,G). Recently, Co-

hen, Diaz y Diaz and Oliver [1] determined this constant for G = Z/`Z using

classical algebraic number theory. Their methods are entirely global; no class

field theory is used in their paper. To state their result, we first introduce the

following notations.

Let kz = k(ζ) be the field obtained by adjoining the primitive `th root of

unity ζ to k. Notice that the extension kz/k is a cyclic extension whose degree

is some divisor dz of `− 1. For a detailed study of such cyclotomic extensions,
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we direct the reader to [2]. For notational simplicity, set qz = (`− 1)/dz. For

every divisor d of dz, let kz[d] be the unique subextension of kz/k such that

[kz : kz[d]] = d. If p is a prime ideal of k, we denote by e(pd/p), f(pd/p), and

g(pd/p) the ramification index, residual index, and the number of prime ideals

pd of kz[d] above p, respectively. Note that e(pd/p)f(pd/p)g(pd/p) = dz/d. If,

in addition, p|`, we denote by e(p) = e(p/`) the absolute ramification index of

p over `. Finally, for any integer e, we denote by r(e) the unique integer such

that e ≡ r(e) mod ( `− 1) with 1 ≤ r(e) ≤ `− 1.

Theorem 1.1 Let k be a number field of signature (r1, r2). Let R(resp., D)

be the set of prime ideals of k which are ramified (resp., totally split) in kz/k.

Then ∑

m≤X`−1

N(k, C`; m) ∼ c1c2c3c4X logqz−1 X

with

c1 =

(∏
d|dz

ζkz [d](d)µ(d)
)qz

dz`r2+rzqz!
,

c2 =
∏

p∈D




(
1 +

`− 1

Np

) ∏

d|dz

(
1− 1

Npd

)(`−1)µ(d)/d

 ,

c3 =


∏

p∈R

∏

d|dz

(
1− 1

Npdf(pd/p)

)g(pd/p)µ(d)



qz

,

c4 =
∏

p|`
p/∈D

(
1 +

`− 1

Np
− `− 1− r(e(p))(1− 1/Np)

Npde(p)/(`−1)e

)
.

Here, rz = 0 if ζ ∈ k, and rz = r1−1 otherwise. By abuse of notation, for any

number field L we write ζL(1) for the residue of the Dedekind zeta function

ζL(s) at s = 1.

In this thesis, we replicate the result given in [1] using class field theory

following the method of Wright’s paper [13]. We use the language of places
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rather than prime ideals to state our theorem. Consequently, let ν be a finite

place of k corresponding to the prime ideal pν of Ok, and let qν = Npν . Let

eν = e(pν1/pν), fν = f(pν1/pν), gν = g(pν1/pν) be the ramification index, the

residual index, and the number of prime ideals dividing pν in the cyclotomic

extension kz of k, respectively. We prove the following theorem.

Theorem 1.2 Let k be a number field of signature (r1, r2). For a place ν of

k that divides `, let e(ν) be the ramification index of ν over `, and let r0(ν) be

the least nonnegative residue of e(ν) mod (`− 1). Then

∑

m≤X`−1

N(k, C`; m) ∼ ζkz(1)qz

dz`r2+rzqz!
P0X(log X)qz−1

with

P0 =
∏

ν|`
ν∈D

(
1 + (`− 1)q−1

ν

) ∏

ν|`
ν /∈D

(
1 + (`− 1)q−1

ν − [
`− 1− r0(ν)(1− q−1

ν )
]
q
−b e(ν)

`−1
c−1

ν

)

∏

qν≡1 mod `

(
1 + (`− 1)q−1

ν

)
(1− q−1

ν )`−1
∏

qν 6≡1 mod `

(
1− q−fν

ν

)qzgν

where rz = 0 if ζ ∈ k and rz = r1−1 otherwise, and ζkz(1) denotes the residue

of the Dedekind zeta function ζkz(s) at s = 1.

We prove the above theorem by studying the discriminant series

DC`
(s) =

∑

Gal(K/k)∼= C`

|D(K/k)|−s.

Using class field theory, we express this series as a finite linear combination

of series with Euler products whose Euler factors can be explicitly computed.

Following Wright, we study analytic properties of the Euler products by com-

paring them with appropriate Dedekind zeta functions. As a result, DC`
(s)

is proved to be analytic in the region Re(s) >
1

2(`− 1)
except for a pole at
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s =
1

`− 1
of multiplicity qz. Evaluation of the leading coefficient of the Lau-

rent series at this pole leads us to the required constant.

Finally we show that even though our constant appears to be different, it

is actually the same as that of Cohen et.al. Thus the methods of Wright and

Cohen et. al. produce identical results. The advantage of our method, besides

being somewhat simpler than that of Cohen et. al., is that it is very much a

method in the spirit of modern algebraic number theory : it reduces a global

calculation to a series of local calculations.

1.2 What is class field theory?

The class field theory is one of the crowning achievements of twentieth

century number theory. This theory was born in the late nineteenth century

in the work of Leopold Kronecker, Henry Weber, and David Hilbert, who

together laid out a research program that became the main thrust of algebraic

number theory through the 1930s. It relates the arithmetic of an abelian

Galois extension of an algebraic number field to the arithmetic of the field

itself. Claude Chevalley summarized the main goal:

The object of class field theory is to show how abelian extensions
of an algebraic number field k can be determined by objects taken
from our knowledge of k itself; or, if one wishes to present things in
dialectical terms, how a field contains within itself the elements of
its own surpassing (and this without any internal contradictions).

1.3 Notations

Throughout this thesis, k denotes an algebraic number field and M(k) the

set of all places (equivalence classes of absolute values ) of k. For ν ∈ M(k),

let kν be the completion of k at ν, Oν the ring of integers in kν , O∗
ν the group
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of units in Oν , πν a fixed uniformizer of the prime ideal of Oν , qν the number

of elements in the residue field Fν = Oν/πνOν , and | · |ν the absolute value

of kν normalized so that |πν |ν = q−1
ν . For any place ν of M(k)0 (the set of

finite places of k), let pν be the prime ideal of Ok corresponding to ν. Let

eν = e(pz/pν), fν = f(pz/pν), and gν = g(pz/pν) be the ramification index,

residual index, and the number of prime ideals pz of kz above pν respectively.

Note that eνfνgν = dz.

Let A∗ =
∏′

ν∈M(k) k∗ν denote the group of ideles of k.
∏′ here means

that if x = (xν) ∈
∏′

ν∈M(k)
k∗ν is an element of A∗, then xν ∈ O∗

ν for all but

finitely many ν. Endowed with the restricted product topology, A∗ becomes a

locally compact topological group. We denote by | · |A the idele norm on A∗

given by

|x|A =
∏
ν

|xν |ν

for x = (xν) ∈ A∗. Set A1 = {x ∈ A∗ : |x|A = 1}. k∗ can be embedded into

A∗ by means of the diagonal embedding: a ∈ k∗ to (a)ν∈M(k). Then by the

product formula k∗ ⊂ A1. Moreover, A1/k∗ is compact. We call A∗/k∗ the

idele class group of k.

For a ring R, we denote by R∗ the group of units of R. Also, for any

positive integer n, Rn shall always denote the group of nth powers of units of

R.

Let S be the set of infinite places of k. The group of S−ideles of k is

the following direct product with the usual restricted product topology:

A∗(S) =
∏
ν∈S

k∗ν ×
∏

ν /∈S

O∗
ν .

Since O∗
ν is compact, the S−ideles form a locally compact abelian group under

multiplication.
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For a locally compact abelian group X, a character on X is a continu-

ous homomorphism χ : X 7→ S1 = {z ∈ C : |z| = 1}. Let ν ∈ M(k)0 and

χν be a character on k∗ν . Then ker
(
χν |O∗ν

)
is an open subgroup of O∗

ν . Conse-

quently, there exists a positive integer n such that χν = 1 on 1 + πn
νOν . If nν

is the smallest such integer, we define the conductor Φ(χν) of χν as follows:

Φ(χν) =

{
(πnν

ν ) if χν 6= 1 on O∗
ν

(1) if χν = 1 on O∗
ν .

Here we think of Φ(χν) as an ideal of Oν .

Now, let χ be a character on A∗. Then χ =
∏

ν∈M(k)

χν where χν are charac-

ters on k∗ν such that for all but finitely many ν, χν |O∗ν = 1. We set the conductor

of χ

Φ(χ) =
∏

ν∈M(k)0

Φ(χν).

Alternatively, we can write

Φ(χ) =
∏

ν∈M(k)

Φ(χν)

where by convention Φ(χν) = (1) if ν ∈ S.

Finally, for a character χS =
∏

ν∈M(k)0

χν of A∗(S), define

Φ(χS) =
∏

ν∈M(k)0

Φ(χν).
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CHAPTER 2

DECOMPOSITION OF THE

DISCRIMINANT SERIES

2.1 The Conductor and Discriminant Series

In this section, we introduce the Dirichlet series that counts the discrimi-

nants of abelian extensions of a number field with the Galois group isomorphic

to a cyclic group of prime order `. We use Hasse’s Conductor-Discriminant

formula [4] to express this series in terms of series counting conductors of char-

acters. The main result of this chapter is (2.4).

By the class field theory, there is a one-to-one correspondence between

finite abelian extensions of k and open subgroups of A∗ containing k∗. More-

over, if K is an abelian extension of k such that

K ↔ UK ⊂ A∗, then Gal(K/k) ∼= A∗/UK .

Now consider the dual group Â∗/UK of A∗/UK , that is, the group of all

characters χ on A∗ such that χ|UK
= 1. The Hasse Conductor-Discriminant

formula asserts that
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D(K/k) =
∏

χ∈Â∗/UK

Φ(χ).

Let C` denote the cyclic group of order `. An abelian extension K of k

with Gal(K/k) ∼= C` corresponds to an open subgroup UK ⊂ A∗ such that

A∗/UK
∼= C`. Let χ be a character on A∗/k∗. Define Uχ = ker χ. Then χ ∈

Â∗/UK if and only if UK ⊂ Uχ. Thus

A∗/Uχ =
(
A∗/UK

)
/
(Uχ/UK

)

is a factor group of A∗/UK . But A∗/UK is a cyclic group of order `. Therefore

Uχ = UK or Uχ = A∗. The former case occurs if χ 6= 1 and the latter if χ = 1.

Â∗/UK is also a cyclic group of order `. Therefore Â∗/UK =< χ > for

some character χ on A∗/k∗ such that χ` = 1. Then

D(K/k) =
`−1∏
i=0

Φ(χi). (2.1)

Note that the choice of generator χ of Â∗/UK is not unique. In fact Â∗/UK =

< χi > for any 1 ≤ i ≤ `− 1.

Definition 2.1 For a locally compact group X, let C`(X) denote the group of

all continuous characters χ on X such that χ` = 1. Define the discriminant

series DC`
(s), s ∈ C, and the conductor series FC`

(s) as follows:

DC`
(s) =

∑

Gal(K/k)∼= C`

|D(K/k)|−s (2.2)

and

FC`
(s) =

∑

χ∈C`(A
∗/k∗)

|ΦC`
(χ)|−s, (2.3)

where
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ΦC`
(χ) =

`−1∏
i=1

Φ(χi).

The previous discussion implies the following identity relating the conduc-

tor and the discriminant series:

FC`
(s) = 1 + (`− 1)DC`

(s). (2.4)

The next sections will be devoted to the decomposition of FC`
(s) into a finite

linear combination of series that have Euler products.

2.2 Characters on A∗(S)

Let S be the set of all infinite places of k. Recall that the group of S-ideles

is A∗(S) =
∏

ν∈S k∗ν ×
∏

ν /∈S O∗
ν . If χ ∈ C`(A

∗/k∗), then the restriction χ|A∗(S)

defines a continuous character χS on A∗(S) such that χ`
S = 1. In this section,

we will take a closer look at these characters. This in turn will allow us to

write FC`
(s) as a linear combination of Dirichlet series that have Euler product

decompositions.

To begin with, let us investigate the following questions:

• Which characters χS on A∗(S) that satisfy χ`
S = 1 come from the char-

acters of A∗/k∗ with the same property ?

• How many characters on A∗/k∗ of order ` induce the same character on

A∗(S) ?

Proposition 2.1 A character χS ∈ C`(A
∗(S)) is induced by a character χ ∈

C`(A
∗/k∗) if and only if χS = 1 on A`k∗ ∩A∗(S).
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Proof: Suppose χ|A∗(S) = χS where χ is a character on A∗/k∗ and χ` = 1.

Then χ = 1 on A`k∗, and therefore χS = 1 on A`k∗ ∩A∗(S).

Conversely, suppose χS = 1 on A`k∗ ∩ A∗(S). Observe that ker χS is an

open subgroup of A∗(S) (because χS is continuous) and therefore an open

subgroup of A∗. Now consider the following map:

A∗(S) ↪→ A∗ 7→ A∗/A`k∗ ker χS.

Since ker χS ⊂ A∗(S) and ker χS contains A`k∗ ∩ A∗(S), A`k∗ ker χS ∩
A∗(S) = (A`k∗ ∩A∗(S)) ker χS = ker χS. Then the map

A∗(S) 7→ A∗/A`k∗ ker χS

factors through a map

A∗(S)/ ker χS 7→ A∗/A`k∗ ker χS.

χS can be naturally thought of as a character on the finite group A∗(S)/ ker χS.

Any character on A∗/A`k∗ ker χS corresponds to a character χ on A∗/k∗ such

that χ` = 1. Now let H = A∗(S)/kerχS and G = A∗/A`k∗kerχS. Since

ker χS is open in A∗(S), both G and H are finite and H 7→ G is an embed-

ding. But for finite groups, every character of a subgroup H of G is induced by

a character of G. Hence there exists a character χ on A∗/k∗ such that χ` = 1

and χ|A∗(S) = χS. This concludes the proof of the proposition.

The next question we want to answer is how many characters on A∗/k∗ of

order ` induce the same character on A∗(S). First note that the map

φ : C`(A
∗/k∗) 7→ C`(A

∗(S)),

given by φ(χ) = χ|A∗(S), is a homomorphism. ker φ consists of all characters

χ such that χ = 1 on A∗(S). Since χ = 1 on A`k∗, χ = 1 on A`k∗A∗(S), that
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is, χ can be viewed as a character on A∗/A`k∗A∗(S).

Let H = A∗/k∗A∗(S). It is well-known that H ∼= Ck, the ideal class group

of k. Observe that H` = A`k∗A∗(S)/k∗A∗(S). Hence, ker φ is the dual of

H/H`. In particular, | ker φ|= |H/H`| = h`,k , where h`,k is the number of el-

ements M̄ ∈ Ck such that M̄` = 1. Therefore, the map χ 7→ χS is h`,k−to−1.

The map φ is not onto. We would like to be able to pinpoint those char-

acters in C`(A
∗(S)) that lie in the image of φ. Recall that χS ∈ C`(A

∗(S)) is

φ(χ) for some χ ∈ C`(A
∗/k∗) if and only if χS = 1 on A`k∗ ∩A∗(S).

Define

A`(S) = (A`k∗ ∩A∗(S))/A`(S).

The next proposition shows that A`(S) is finite. More precisely, we have

Proposition 2.2 |A`(S)| = h`,k|O∗
k/O`

k| where h`,k = |{M̄ ∈ Ck : M̄` = 1}|.

Proof: First note that the map

ϕ : (aν)ν 7→
∏

ν∈M(k)0

pordνaν
ν

is a homomorphism from A∗ to I(k) where I(k) is the group of fractional ideals

of k. This map, composed with the projection

I(k) 7→ I(k)/P (k) = Ck,

where P (k) is a group of principal fractional ideals, induces an isomorphism

from A∗/k∗A∗(S) to the ideal class group Ck of k. Therefore A∗ can be written

as disjoint union of the sets aik
∗A∗(S), namely,

A∗ = ∪hk
i=1aik

∗A∗(S),

where ai is a fixed idele corresponding to an ideal class M̄i ∈ Ck. Here Mi ∈
I(k) and ϕ(ai) = Mi. Then A`k∗ = ∪hk

i=1a
`
ik
∗A`(S).
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It is easy to see that a`
iαu ∈ A∗(S), where α ∈ k∗ and u ∈ A`(S), if and

only if a`
iα ∈ A∗(S). This in turn holds if and only if the ideal corresponding

to a`
iα is (1). Then M`

i = (α−1). In particular, the ideal class M̄`
i is 1. Hence

a`
iA

`(S)k∗ ∩A∗(S) =

{
∅, if M̄`

i 6= 1

not empty, if M̄`
i = 1.

Now consider an ai such that M̄`
i = 1. Then M`

i = (β) for some β in k∗,

and a`
i = βui where ui ∈ A∗(S). Consequently, a`

iα ∈ A∗(S) if and only if

M`
i(α) = (βα) = 1. The last equality holds if and only if α = β−1γ where

γ ∈ O∗
k, which implies that α ∈ β−1O∗

k.

Now we have

(a`
iA

`(S)k∗ ∩A∗(S))/A`(S) = βuiβ
−1O∗

kA
`(S)/A`(S)

= uiO∗
kA

`(S)/A`(S)

= ui

(O∗
k/O∗

k ∩A`(S)
)

= ui

(O∗
k/O`

k

)
.

Thus the number of distinct elements in a`
iA

`(S)k∗ ∩ A∗(S)/A`(S) is

|O∗
k/O`

k|. This holds for every ai such that M̄`
i = 1.

Now suppose M̄i 6= M̄j, and M̄`
i = M̄`

j = 1. We will show that the

sets

a`
iA

`(S)k∗ ∩A∗(S)/A`(S) and a`
jA

`(S)k∗ ∩A∗(S)/A`(S)

are disjoint. This in turn will imply that |A`(S)| = h`,k|O∗
k/O`

k|.

Assume not. Then for some α, β ∈ k∗, a`
iα = a`

jβ in A`(S) for some

α, β ∈ k∗, or alternatively, a`
iα = a`

jβu` for some u ∈ A∗(S). From the last

statement we conclude that αβ−1 = a`
ja
−`
i u`, that is αβ−1 is locally an `th
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power for all ν ∈ M(k)0. Therefore αβ−1 = γ` for some γ ∈ k∗. Now,

a`
iαβ−1 = a`

ju
`. Then a`

iγ
` = a`

ju
`. Hence for all ν ∈ M(k)0

(aiνγ)` = (ajνuν)
`.

Therefore

aiνγ = ajνuνµν .

where µν is an `th root of 1 in kν . But uνµν is in O∗
ν . Hence,

ϕ(aiγ) = Miγ

= ϕ(aj(uνµν))

= Mj.

This implies that M̄i = M̄j, which is a contradiction. Hence the sets

a`
iA

`(S)k∗ ∩A∗(S)/A`(S) and a`
jA

`(S)k∗ ∩A∗(S)/A`(S)

are disjoint. This concludes the proof of the proposition.

2.3 Decomposition of The Conductor Series

into Summands with Euler Products

In this section, we give decomposition of the conductor series into sum-

mands that have Euler products.

Let a`(S) = |A`(S)|, and let {εi : 1 ≤ i ≤ a`(S)} be a set of coset

representatives of A`(S) in A`k∗ ∩A∗(S). For χS ∈ C`(A
∗(S)), set

δ(χS) =
1

a`(S)

a`(S)∑
i=1

χS(εi).
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Then by orthogonality of characters

δ(χS) =

{
1, if χS ∈ φ (C`(A

∗/k∗))

0, otherwise.

Note that for a character χ ∈ C`(A
∗/k∗)

ΦC`
(χ) =

∏̀
i=1

Φ(χi).

Similarly, for χS ∈ C` (A∗(S)) , define

ΦC`
(χS) =

∏̀
i=1

Φ(χi
S).

Observe that if χS = χ|A∗(S), then Φ(χS) = Φ(χ), and therefore ΦC`
(χ) =

ΦC`
(χS).

Recall the generating series of conductors

FC`
(s) =

∑

χ∈C`(A
∗/k∗)

|ΦC`
(χ)|−s.

For ε ∈ A∗(S), define

FC`,S(s, ε) =
∑

χS∈C`(A
∗(S))

χS(ε)|ΦC`
(χS)|−s.

Then

1

a`(S)

a`(S)∑
i=1

FC`,S(s, εi) =
∑

χS∈φ(C`(A
∗/k∗))

|ΦC`
(χS)|−s

=
1

h`,k

∑

χ∈C`(A
∗/k∗)

|ΦC`
(χ)|−s.

Hence
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FC`
(s) =

h`,k

a`(S)

a`(S)∑
i=1

FC`,S(s, εi)

=
1

e`(S)

a`(S)∑
i=1

FC`,S(s, εi) (2.5)

where e`(S) = |O∗
k/O`

k|. We will compute e`(S) in Section 4.1.

Note that

C`(A
∗(S)) =

∏
ν∈S

C`(k
∗
ν)×

∏′

ν /∈S

C`(O∗
ν)

consisting only of those collections χ = (χν)ν∈M(k) for which χν = 1 for almost

all ν. For a given χ ∈ C`(A
∗(S)), χ(ε) and ΦC`

(χ) are given as follows:

χ(ε) =
∏
ν

χν(εν) and ΦC`
(χ) =

∏
ν

ΦC`
(χν).

This leads to the following Euler product factorization of FC`,S(s, ε):

FC`,S(s, ε) =
∏
ν∈S

∑

χν∈C`(k∗ν)

χν(εν) |ΦC`
(χν)|−s

∏

ν /∈S

∑

χν∈CC`
(O∗ν)

χν(εν) |ΦC`
(χν)|−s.

Thus (2.5) is the desired decomposition of the conductor series into a linear

combination of series that have Euler products.
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CHAPTER 3

ANALYTIC CONTINUATION

3.1 Overview

In Chapter 2, we decomposed the conductor series FC`
(s) into a finite linear

combination of Euler products FC`,S(s, ε). The principal goal of this chapter

is to study the analytic continuation of FC`,S(s, ε) where

FC`,S(s, ε) =
∏
ν∈S

∑

χν∈C`(k∗ν)

χν(εν)|ΦC`
(χν)|−s

∏

ν /∈S

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s

=
∏
ν∈S

∑

χν∈C`(k∗ν)

χν(εν)|ΦC`
(χν)|−s

∏

ν|`

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s

∏

ν-`

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s.

For ν ∈ S, kν = R or kν = C. If ` is odd, k`
ν = k∗ν . Hence C`(k

∗
ν) = {1}.

On the other hand, if ` = 2 and kν = C, then C2 = C∗ and C2(C∗) = {1},
and if ` = 2 and kν = R, then R∗/R2 ∼= {±1} and C2(R∗) has two characters:

χν ≡ 1 and χν(x) = sgn(x), x ∈ R∗. Therefore

∑

χν∈C2(R∗)
χν(εν)|ΦC`

(χν)|−s =
∑

χν∈C2(R∗)
χν(εν) =

{
2 if εν > 0;

0 if εν < 0.
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In any event, ∑

χν∈C`(k∗ν)

χν(εν)|ΦC`
(χν)|−s

is a constant for any ν ∈ S.

For ν|`,
∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s is a polynomial in q−s

ν and is therefore

entire. Hence ∏

ν|`

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s

is entire. Consequently, those places ν of M(k)0 dividing ` will not affect the

analyticity of FC`,S(s, ε).

It remains to compute

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χ)|−s

for ν - `.

3.2 Finite places not dividing `

In this section, we will study the finite places ν of k that do not divide `.

Since ν - `, qν and ` are relatively prime. We will first show in the following

lemma that all nontrivial characters of C`(O∗
ν) have the same conductor.

Lemma 3.1 If ν is a finite place of k such that ν - `, then 1 + πνOν ⊂ O`
ν .

Proof: Let α ∈ 1+πνOν , that is, α ≡ 1(modπν), and consider a polynomial

p(x) = x` − α ∈ Oν [x]. Observe that |p(1)|ν = |1− α|ν ≤ 1

qν

< 1, and since

p′(x) = `x`−1, |p′(1)|2ν = |`|2ν = 1. Consequently |p(1)|ν < |p′(1)|2ν . Thus, by

Hensel’s lemma, there exists a β ∈ O∗
ν such that p(β) = 0, that is, β` = α.

Therefore 1 + πνOν ⊂ O`
ν .
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Lemma 3.1 implies that if χν is a non-trivial character in C`(O∗
ν) then

χν = 1 on 1 + πνOν . Hence

Φ(χν) =

{
(πν) if χν 6= 1

(1) if χν = 1 .
(3.1)

If qν 6≡ 1 mod `, F∗qν
= F`

qν
. Thus O∗

ν = (1 + πνOν)O`
ν . But by Lemma

3.1, 1+πνOν ⊂ O`
ν , which implies that O∗

ν = O`
ν . Therefore, any χν ∈ C`(O∗

ν)

is identically equal to 1 and

∑

χν∈C`(O∗ν)

|ΦC`
(χν)|−s = 1.

If qν ≡ 1 mod `, any character χν on F∗qν
such that χ`

ν = 1 can be viewed as

a character on F∗qν
/F`

qν
. The latter is a cyclic group of order `. Hence F̂∗qν

/F`
qν

consists of precisely ` characters, (`− 1) of which are nontrivial. Therefore

∑

χν ∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s = 1 +

∑

χν ∈ ̂F∗qν /F`
qν

χν 6=1

χν(ε̄ν)q
−(`−1)s
ν

where ε̄ν is the reduction of εν mod πν .

Finally, note that

∑

χν ∈ ̂F∗qν /F`
qν

χν 6=1

χν(ε̄ν) =

{
−1 if ε̄ν /∈ F`

qν

`− 1 if ε̄ν ∈ F`
qν

.

Hence

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s =

{
1− q

−(`−1)s
ν if ε̄ν /∈ F`

qν

1 + (`− 1)q
−(`−1)s
ν if ε̄ν ∈ F`

qν
.
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Thus we have proved the following proposition.

Proposition 3.1 If ν is a finite place of k not dividing `,

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s =





1 if qν 6≡ 1 mod `

1 + (`− 1)q
−(`−1)s
ν if qν ≡ 1 mod ` and εν ∈ O`

ν

1− q
−(`−1)s
ν if qν ≡ 1 mod ` and εν /∈ O`

ν.

The above proposition implies that

FC`,S(s, ε) =
∏
ν∈S

∑

χν∈C`(k∗ν)

χν(εν)|ΦC`
(χν)|−s

∏

ν|`

∑

χν∈C`(O∗ν)

χν(εν)|ΦC`
(χν)|−s

∏

qν≡1 mod `
εν∈O`

ν

(
1 + (`− 1)q−(`−1)s

ν

) ∏

qν≡1 mod `
εν /∈O`

ν

(
1− q−(`−1)s

ν

)
. (3.2)

Since
∑

ν∈M(k)

q−(`−1)s
ν converges absolutely for Re(s) >

1

`− 1
, the series defin-

ing FC`,S(s, ε) also converges absolutely for Re(s) >
1

`− 1
.

Before studying the analytic continuation of FC`,S(s, ε), let us adopt the

following notation: for meromorphic functions F (s) and G(s), we write F (s) ≈
G(s) if

F (s)

G(s)
is analytic in Re(s) > σ for some σ <

1

`− 1
. In view of this no-

tation,

FC`,S(s, ε) ≈
∏

qν≡1 mod `
εν∈O`

ν

(
1 + (`− 1)q−(`−1)s

ν

) ∏

qν≡1 mod `
εν /∈O`

ν

(
1− q−(`−1)s

ν

)
.
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To continue FC`,S(s, ε) analytically beyond Re(s) >
1

`− 1
, we will need

to use the Dedekind zeta functions ζkz

(
(` − 1)s

)
and ζkα

(
(` − 1)s

)
where for

α ∈ k∗, kα = k(ζ, α1/`) = kz(α
1/`). Set dα = [kα : k] and dz = [kz : k].

Let L be an algebraic number field. Observe that

ζL(s) =
∏

ν∈M(L)0

(1− q−s
ν )−1.

Here qν = pfν
ν where pν ∈ Z is a rational prime such that ν|pν and fν = f(ν/pν).

Let T be any subset of M(L)0 that contains all but finitely many ν with

fν = 1. Then

ζL(s) =
∏
ν∈T

(1− q−s
ν )−1

∏

ν /∈T

(1− q−s
ν )−1,

and
∏

ν /∈T

(
1− q−s

ν

)−1
converges for Re(s) > 1

2
. Consequently

ζL((`− 1)s) ≈
∏
ν∈T

(
1− q−(`−1)s

ν

)−1
.

Now let L be an extension of k. If ω ∈ M(L)0, ω|ν, ν ∈ M(k)0, and ν|pν where

pν is a prime in Z, then f(ω/pν) = f(ω/ν)f(ν/pν). Therefore f(ω/pν) > 1 un-

less f(ω/ν) = 1. Finally, assume that L is Galois over k, and let DL denote all

places of k that split completely in L. Note that ν ∈ M(k)0 splits completely

in L if and only if f(ω/ν) = e(ω/ν) = 1. Also note that e(ω/ν) > 1 for only

finitely many ν.

Therefore

ζL ((`− 1)s) ≈
∏

ω|ν
ν∈DL

(1− q−(`−1)s
ω )−1

=
∏

ν∈DL

(1− q−(`−1)s
ν )−dL
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where dL = [L : k].

Let us apply the preceding discussion to the Galois extension kz of k.

To this end, let ν ∈ M(k)0, ν - `, and let ω ∈ M(kz)0 be such that ω|ν. It is

well known that [(kz)ω : kν ] = [kν(ζ) : kν ] = eνfν , where ζ is a primitive `th

root of unity. Since ν - `, eν = 1. Therefore fν = 1 if and only if kν contains

an `th primitive root of unity.

Proposition 3.2 Let ν be a finite place of k such that ν - `. Then kν contains

an `th primitive root of 1 if and only if qν ≡ 1 mod `.

Proof: First note that if ν - `, then ζ 6= 1 modπν . Otherwise πν |1 − ζ and

the fact 1 − ζ|` would imply that πν |`, a contradiction. Now let ζ̄ be the

residue of of ζ mod πν . By definition, ζ̄ ∈ Fqν , ζ̄ 6= 1, and ζ̄` = 1. This implies

that the order of ζ̄ in F∗qν
is `. Since F∗qν

is a group, then ` divides the order

qν − 1 of F∗ν . Therefore, qν ≡ 1 mod `.

To show the converse, we use Hensel’s lemma. Consider the polynomial

p(x) = x` − 1. Let ᾱ be the residue of α mod πν . Since qν ≡ 1 mod `, there

exists an ᾱ ∈ F∗qν
, ᾱ 6= 1, such that ᾱ` = 1. Then p(α) = α` − 1 ≡ 0 mod πν

and p′(α) = `α`−1 is not divisible by πν . Hence by Hensel’s lemma, there exists

β ≡ α mod πν such that β` = 1. But β is nontrivial because β ≡ α mod πν and

α 6= 1 modπν . Therefore kν contains an `th primitive root of 1, which concludes

the proof of the proposition.

The above proposition implies that

ζkz((`− 1)s) ≈
∏

qν≡1 mod `

(
1− q−(`−1)s

ν

)−dz
.

Similarly, since the prime ideal pν corresponding to the place ν - ` splits

completely in kα if and only if qν ≡ 1 mod ` and α ∈ k`
ν , we obtain
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ζkα((`− 1)s) ≈
∏

qν≡1 mod `
α∈k`

ν

(
1− q−(`−1)s

ν

)−dα
.

Moreover,

ζkz((`− 1)s)∏

qν ≡1 mod `

(
1− q−(`−1)s

ν

)−dz
and

ζkα((`− 1)s)∏

qν ≡1 mod `
α∈k`

ν

(
1− q−(`−1)s

ν

)−dα

are analytic in Re(s) >
1

2(`− 1)
.

Note that since ε ∈ A`k∗ ∩A∗(S), ε = a`α for some a ∈ A∗, α ∈ k∗.

In addition, εν ∈ O∗
ν for any ν ∈ M(k)0. Since O∗

ν ∩ k`
ν = O`

ν , εν ∈ O`
ν if and

only if εν ∈ k`
ν . But εν = a`

να. Hence εν ∈ O`
ν if and only if α ∈ k`

ν . Therefore

FC`,S(s, ε) ≈
∏

qν ≡1 mod `
α∈ k`

ν

(
1 + (`− 1)q−(`−1)s

ν

) ∏

qν≡1 mod `
α /∈ k`

ν

(
1− q−(`−1)s

ν

)
.

Observe that

∏

qν≡1 mod `

(
1 + (`− 1)q−(`−1)s

ν

) ≈
∏

qν≡1 mod `

(
1− q−(`−1)s

ν

)−(`−1)

since

(
1 + (`− 1)q−(`−1)s

ν

) (
1− q−(`−1)s

ν

)(`−1)
= 1 + O

(
q−2(`−1)s
ν

)
,

and therefore

∏

qν≡1 mod `

(
1 + (`− 1)q−(`−1)s

ν

) (
1− q−(`−1)s

ν

)(`−1)

converges absolutely for Re(s) >
1

2(`− 1)
.

Hence
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FC`,S(s, ε) ≈
∏

qν≡1 mod `
α∈ k`

ν

(
1− q−(`−1)s

ν

)−(`−1)
∏

qν≡1 mod `
α /∈ k`

ν

(
1− q−(`−1)s

ν

)
.

Consequently

FC`,S(s, ε) ≈
∏

qν≡1 mod `
α∈ k`

ν

(
1− q−(`−1)s

ν

)−(`−1)
∏

qν≡1 mod `
α /∈ k`

ν

(
1− q−(`−1)s

ν

)

=
∏

qν≡1 mod `
α∈ k`

ν

(
1− q−(`−1)s

ν

)−`
∏

qν≡1 mod `

(
1− q−(`−1)s

ν

)

≈ ζkα((`− 1)s)`/dα

ζkz((`− 1)s)1/dz
·

Proposition 3.3 Let α ∈ k, and ` be a prime. Then either α ∈ k` or[
k(α1/`) : k

]
= `.

Proof: Observe that α1/` is a root of a polynomial p(x) = x` − α ∈ k[x]

and that in kz[x] p(x) =
∏̀
i=1

(x − ζ iα1/`). If p(x) is irreducible in k[x], then

[
k(α1/`) : k

]
= `. Otherwise, p(x) = g(x)h(x) for some g(x), h(x) ∈ k[x]

with deg g, degh < `. But then g(x) =
∏m

j=1(x − ζ ijα1/`) = xm + . . . +

(−1)mζ ′αm/` where ζ ′ =
∏m

j=1 ζ ij . Hence β = ζ ′αm/` ∈ k for some 0 < m < `.

Thus β` = αm. Since m and ` are relatively prime, there exist rational integers

r and s such that rm + s` = 1, which in turn implies that α = αrm+s` =

αrmαs` = βr`αs` = (βrαs)` ∈ k`. This proves the proposition.

Corollary 3.1 Let α ∈ k. Then

dα = [kα : kz][kz : k] =

{
dz if α ∈ k`

`dz if α /∈ k`.
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Proof: If α ∈ k`, then α1/` ∈ k ⊂ kz. Hence kα = kz(α
1/`) = kz and[

kα : k
]

=
[
kz : k

]
= dz. On the other hand, if α /∈ k`, then

[
k(α1/`) : k

]
= `.

Since
[
kz : k

]
= dz and dz | `− 1,

[
k(α1/`) : k

]
and

[
kz : k

]
are relatively

prime. Now, kα = kzk(α1/`). Since
[
kz : k

]
and

[
k(α1/`) : k

]
are relatively

prime, [
kα : k

]
=

[
kz : k

][
k(α1/`) : k

]
= `dz,

proving the corollary.

Corollary 3.1 implies that

FC`,S(s, ε) ≈ ζkα((`− 1)s)`/dα

ζkz((`− 1)s)1/dz
=





ζkz((`− 1)s)
`−1
dz if α ∈ k`

ζkα((`− 1)s)1/dz

ζkz((`− 1)s)1/dz
if α /∈ k`.

If α ∈ k`, then α = β` for some β ∈ k∗. Therefore ε = a`α = (aβ)` ∈
A` ∩A∗(S) = A`(S). Conversely, if ε ∈ A`(S) then for all ν ∈ M(k), a`

να = b`
ν

for some bν ∈ k∗ν . Then α ∈ k`
ν for any ν ∈ M(k). Therefore (by the local-

global principle) α ∈ k`. Thus α ∈ k` if and only if ε ∈ A`(S), and ε ∈ A`(S) if

and only if ε̄ = 1 where ε̄ is the image of ε in A`(S) =
(
A`k∗∩A∗(S)

)/
(A`(S)).

Now if ε ∈ A`(S) (that is, ε̄ = 1), then

FC`,S(s, ε) ≈ ζkz((`− 1)s)qz where qz =
`− 1

dz

.

Therefore FC`,S(s, ε) has a pole of order qz at s =
1

`− 1
and can be continued

analytically to the half-plane Re(s) >
1

2(`− 1)
with the exception of the pole

at s =
1

`− 1
.

On the other hand, if ε /∈ A`(S), then
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FC`,S(s, ε) ≈
(

ζkα((`− 1)s)

ζkz((`− 1)s)

)1/dz

.

In this case,

ζkα((`− 1)s) =
∏

χ∈ ̂Gal(kα/kz)

L((`− 1)s, χ) = ζkz((`− 1)s)
∏

χ6=1

L((`− 1)s, χ),

and

ζkα((`− 1)s)

ζkz((`− 1)s)
=

∏

χ∈ ̂Gal(kα/kz)
χ6=1

L((`− 1)s, χ).

Since for χ 6= 1, L ((`− 1)s, χ) is entire,
ζkα((`− 1)s)

ζkz((`− 1)s)
is also entire. Also,

L(s, χ) =
∏

℘⊂Okz

(
1− χ(℘)

N(℘)s

)−1

. Here χ(℘) stands for χ ((℘, kα/kz)) where

(℘, kα/kz) is the Artin symbol.

Recall that kα = kz(α
1/`) = k(ζ, α1/`), which in turn gives kα = kzk(α1/`).

Using degree considerations, one can show that kz ∩ k(α1/`) = k. Let G =

Gal(kα/k). Then G = HK where H = Gal(kα/k(α1/`)), K = Gal(kα/kz)

and K is normal in G. Since H ∼= Gal(kz/k), |H| = dz. Let σ ∈ H. Then

σ(α1/`) = α1/` and σ(ζ) = ζ i for some i relatively prime to `. We will denote

σ ∈ H such that σ(ζ) = ζ i by σi. If τ ∈ K, then τ(ζ) = ζ and τ(α1/`) = α1/`ζm

for some 0 ≤ m ≤ `− 1. Then σiτσ−1
i (ζ) = ζ and

σiτσ−1
i (α1/`) = σi(τ(α1/`))

= σi(α
1/`ζm)

= σi(α
1/`)σi(ζ)m

= α1/`(ζ i)m = α1/`ζ im.
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But τ i(α1/`) = α1/`ζmi. Hence σiτσ−1
i = τ i.

Let σi ∈ H. Then σi maps kα to kα and kz to kz setwise. If ℘ ⊂ Okz

is prime then σi(℘) ⊂ Okz is prime and N(σi(℘)) = N(℘). Moreover, by the

properties of the Artin symbol, we obtain

(σi(℘), kα/kz) = (σi(℘), σi(kα)/σi(kz))

= σi(℘, kα/kz)σ
−1
i

= (℘, kα/kz)
i .

If χ ∈ ̂Gal (kα/kz), and (℘, kα/kz) is the Artin symbol,

L(s, χ) =
∏

℘⊂Okz

(
1− χ ((℘, kα/kz))

N(℘)s

)−1

=
∏

℘⊂Okz

(
1− χ ((σi(℘), kα/kz))

N(σi(℘))s

)−1

=
∏

℘⊂Okz

(
1− χ ((℘, kα/kz)

i)

N(℘)s

)−1

= L(s, χi).

Hence
∏

χ∈ ̂Gal(kα/kz)
χ6=1

L((` − 1)s, χ) decomposes into products of dz identical

factors. Therefore 


∏

χ∈ ̂Gal(kα/kz)
χ6=1

L((`− 1)s, χ)




1/dz

is a single-valued entire function. Hence for ε̄ 6= 1, FC`,S(s, ε) can be analyti-

cally continued to the half-plane Re(s) >
1

2(`− 1)
.

We summarize the above discussions in the following proposition.
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Proposition 3.4 If ε̄ = 1, then FC`,S(s, ε) can be continued analytically to

the half-plane Re(s) >
1

2(`− 1)
with an exception of a pole of order qz at

s =
1

`− 1
. If ε̄ 6= 1, then FC`,S(s, ε) can be continued analytically to the half-

plane Re(s) >
1

2(`− 1)
.
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CHAPTER 4

THE MAIN RESULT

4.1 Overview

We have previously shown that the discriminant series DC`
(s) and the

conductor series FC`
(s) are respectively given by

DC`
(s) =

FC`
(s)

`− 1
− 1

`− 1

and

FC`
(s) =

1

e`(S)

a`(S)∑
i=1

FC`,S(s, εi). (4.1)

By Proposition 3.4, for all ε̄ 6= 1, FC`,S(s, ε) can be analytically continued

to the half plane Re(s) >
1

2(`− 1)
. We also showed that

FC`,S(s, 1)

ζkz((`− 1)s)qz
is

analytic in Re(s) >
1

2(`− 1)
, which in turn implies that FC`,S(s, 1) has a pole

at s =
1

`− 1
of order qz. Consequently, the following limit exists:

c(k, C`) = lim
s→ 1

`−1

(
s− 1

`− 1

)qz

DC`
(s). (4.2)

Our principal objective in this chapter is to compute the limit in (4.2). For

the sake of brevity, we set

P (s) =
FC`,S(s, 1)

ζkz((`− 1)s)qz
.
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Then P (s) is analytic in the half plane Re(s) >
1

2(`− 1)
and therefore

lim
s→ 1

`−1

P (s) = P

(
1

`− 1

)
.

Now,

c(k, C`) = lim
s→ 1

`−1

(
s− 1

`− 1

)qz

DC`
(s)

= lim
s→ 1

`−1

(
s− 1

`− 1

)qz FC`,S(s, 1)

(`− 1)e`(S)

= lim
s→ 1

`−1

(
s− 1

`− 1

)qz ζkz((`− 1)s)qzP (s)

(`− 1)e`(S)

=
ζkz(1)qzP

(
1

`−1

)

e`(S)(`− 1)qz+1
,

where e`(S) = |O∗
k/O`

k|. Since P (s) =
FC`,S(s, 1)

ζkz((`− 1)s)qz
, for Re(s) >

1

`− 1

P (s) =
∏
ν∈S

∑

χν∈C`(k∗ν)

|ΦC`
(χν)|−s

∏

ν|`

∑

χν∈C`(O∗ν)

|Φ(χν)|−(`−1)s

∏

qν≡1mod `

(
1 + (`− 1)q−(`−1)s

ν

)
ζkz((`− 1)s)−qz .

Set

δ∞(`) =
∏
ν∈S

∑

χν∈C`(k∗ν)

|ΦC`
(χν)|−s.

Then

δ∞(`) =

{
1 if ` 6= 2

2r1 if ` = 2.

and

P

(
1

`− 1

)
= δ∞(`)P0,



31

where

P0 =
∏

ν|`

∑

χν∈C`(O∗ν)

|Φ(χν)|−1
∏

qν ≡ 1 mod `

(
1 + (`− 1)q−1

ν

)
(1− q−1

ν )`−1

∏

qν 6≡ 1 mod `

(
1− q−fν

ν

)qzgν
.

(4.3)

In the next section, we will compute

∏

ν|`

∑

χν∈C`(O∗ν)

|Φ(χν)|−1.

We will conclude this section by computing e`(S).

By the Dirichlet Unit Theorem,

O∗
k = µ(k) × Zr.

Here < µ > = µ(k) is the finite cyclic group of the roots of unity in k∗, and

r = r1 + r2 − 1. Then

O∗
k/O`

k
∼= < µ >/< µ` > × (Z/`Z)r ,

so that

e`(S) =

{
`r if ζ /∈ k

`r+1 if ζ ∈ k.

Observe that if ` = 2, ζ = −1 ∈ k. Then

e`(S)

δ∞(`)
=

2r1+r2

2r1
= 2r2 .

If ` is odd and a primitive `th root of unity ζ ∈ k, then r1 = 0, and

e`(S)

δ∞(`)
= `r1+r2 = `r2 .
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In all other cases,
e`(S)

δ∞(`)
= `r1+r2−1.

Hence,
e`(S)

δ∞(`)
= `r2+rz , where rz = 0 if ζ ∈ k and rz = r1 − 1 otherwise.

Therefore

c(k, C`) =
ζkz(1)qzP0

`r2+rz(`− 1)qz+1
.

4.2 Finite Places Dividing `

Suppose ν ∈ M(k) and ν|`. Let pν denote the prime ideal of Ok correspond-

ing to ν, and let ω be a place of kz such that ω|ν. Then (kz)ω = (k(ζ))ω = kν(ζ).

It is well known that [kν(ζ) : kν ] = eνfν .

Now, let πν be a uniformizer of pν in Oν . Then (`) = (πν)
e(ν)for some inte-

ger e(ν) > 0. Here e(ν) = e(ν/`) is the ramification index of ν over `. We will

write

e(ν) = d(ν)(`− 1) + r0(ν) where 0 ≤ r0(ν) ≤ `− 2.

Note that d(ν) =

⌊
e(ν)

`− 1

⌋
and r0(ν) is the least nonnegative residue of

e(ν) mod (` − 1) (here bxc denotes the floor function, that is, the greatest

integer less than or equal to x).

Our first task is to find an n > 0 such that

1 + πn
νOν ⊂ O`

ν .

Lemma 4.1 If n = d(ν)` + r0(ν) + 1, then 1 + πn
νOν ⊂ O`

ν .

Proof: Let x ∈ 1 + πd(ν)`+r0(ν)+1
ν Oν . Then x = 1+α where α ∈ πd(ν)`+r0(ν)+1

ν Oν ,

and an `th root of x is given by x
1
` =

∞∑
n=0

(
1
`

n

)
αn where
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(
1
`

n

)
=

1
`
(1

`
− 1) · · · (1

`
− n + 1)

n!
=

1(1− `) · · · (1− (n− 1)`)

`nn!
.

Since 1 − `, 1 − 2`, . . . , 1 − (n − 1)` are relatively prime to `, their ν-adic

norms are 1. Consequently

∣∣∣∣
(

1
`

n

)∣∣∣∣
ν

=
1

|`|nν |n!|ν ≤
1

|`|nν |`|n/`−1
ν

= |`|−n`/`−1
ν = |πν |−ne(ν) `/`−1

ν .

Thus ∣∣∣∣
(

1
`

n

)
αn

∣∣∣∣
ν

≤ |πν |n(d(ν)`+r0(ν)+1− e(ν)`
`−1 )

ν = |πν |
n
(
1− r0(ν)

`−1

)

ν .

But 1− r0(ν)

`− 1
> 0. Therefore

∣∣∣∣
(

1
`

n

)
αn

∣∣∣∣
ν

→ 0 as n →∞, and the series defining x
1
`

converges. This concludes the proof of the lemma.

Lemma 4.1 implies that if ν is a finite place dividing `, and χν is a non-

trivial character in C`(O∗
ν), then Φ(χν) = (πn

ν ) where 0 < n ≤ d(ν)`+r0(ν)+1.

We will next consider two cases: pν splits completely in kz and pν does

not split completely in kz.

Case 1 Suppose pν splits completely in kz. This occurs if and only if the

`th-root of unity ζ ∈ kν .

Consider the tower of field extensions

Q` ⊂ Q`(ζ) ⊂ kν .

It is well-known that (`) = (1 − ζ)`−1. Let (1 − ζ) = (π
d(ν)
ν ). Then (`) =

(πν)
d(ν)(`−1), so that e(ν) = d(ν)(`− 1) and r0(ν) = 0 in this case.

If χν ∈ C`(O∗
ν) has conductor (πn

ν ), then χν |1+πn
νOν = 1. Also, by Lemma

4.1,
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Φ(χν) = (πn
ν ), for some 0 ≤ n ≤ d(ν)` + 1.

This leads us to consider

Mn = {χν ∈ C`(O∗
ν) : χν |1+πn

νOν = 1}

for 0 ≤ n ≤ d(ν)` + 1. Actually, Mn consists of all characters χν ∈ C`(O∗
ν)

with Φ(χν) = (πm
ν ), for some m ≤ n. Therefore the number of characters

χν ∈ C`(O∗
ν) with Φ(χν) = (πn

ν ) is precisely |Mn| − |Mn−1|.
Since ν|`, (`, qν − 1) = 1. Hence F`

qν
= F∗qν

. Therefore, O∗
ν = (1 + πνOν)O`

ν ,

and

O∗
ν/O`

ν = (1 + πνOν)O`
ν/O`

ν

∼= (1 + πνOν)/(1 + πνOν) ∩ O`
ν

∼= (1 + πνOν)/(1 + πνOν)
`.

Now if we set Gn = (1 + πνOν)/(1 + πn
νOν), then χν |1+πn

νOν = 1 and χ`
ν = 1 if

and only if χν is a character on Gn/G`
n. Thus,

|Mn| = |Ĝn/G`
n| = |Gn/G

`
n|.

Define a map ϕn : Gn 7→ Gn, ϕn(x) = x`. Since ϕn is a group homomor-

phism, it is easy to see that

Gn/ ker ϕn
∼= ϕn(Gn) = G`

n.

Consequently, we have

|Gn/G
`
n| = | ker ϕn|,

where | ker ϕn| = |{x ∈ Gn : x` = 1}| = |{x ∈ 1 + πνOν/1 + πn
νOν : x` ≡ 1 modπn

ν }|.



35

Let ordπν (x− 1) = m. We will next determine ordπν (x
` − 1).

Consider

x` − 1 = (x− 1)(x− ζ)(x− ζ2) . . . (x− ζ`−1).

Since ordπν (1−ζ i) = d(ν) for every i = 1, 2, . . . `−1 and ζ i−ζj = ζ i(1−ζj−i),

ordπν (ζ
i − ζj) = d(ν) for all i 6= j. Now consider the following cases:

Case 1: Suppose m < d(ν).

In this case, ordπν (x− ζ i) = ordπν (x− 1 + 1− ζ i) = m. Thus

ordπν (x
` − 1) = m` < d(ν)`.

Case 2: Suppose m > d(ν).

Here ordπν (x− ζ i) = ordπν (1− ζ i + x− 1) = d(ν) for all i 6= 0. Thus

ordπν (x
` − 1) = m + (`− 1)d(ν) ≥ d(ν)` + 1.

In particular, this implies that x ∈ ker ϕn for any n ≤ d(ν)` + 1.

Case 3: Suppose m = d(ν).

ordπν (x− ζ i) = ordπν (x− 1 + 1− ζ i) ≥ d(ν). Thus ordπν (x
` − 1) ≥ d(ν)`.

Now, let us consider the characters χν ∈ Mn for n ≤ d(ν)`.

Cases 2 and 3 imply that for m ≥ d(ν), ordπν (x
` − 1) ≥ d(ν)` ≥ n, and thus

x` ∈ 1 + πn
νOν .

For m < d(ν), ordπν (x
` − 1) = m`. Hence x` ∈ 1 + πn

νOν if and only

if m` ≥ n. Consequently, for all n ≤ d(ν)`,

ker ϕn = (1 + π
dn

`
e

ν Oν)/(1 + πn
νOν),
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where dxe denotes the ceiling function (the smallest integer greater or equal

to x). Hence |Mn| = q
n−dn

`
e

ν .

Therefore for n < d(ν)`

|{χν ∈ C`(O∗
ν) : Φ(χν) = (πn

ν ), 1 ≤ n ≤ d(ν)`}| = q
n−dn

`
e

ν − q
n−1−dn−1

`
e

ν ,

and

∑

Φ(χν)=(πn
ν ),n≤d(ν)`

|Φ(χν)|−1 = 1 +

d(ν)`∑
n=1

(
q

n−dn
`
e

ν − q
n−1−dn−1

`
e

ν

)
q−n
ν

= 1 +

d(ν)`∑
n=1

(
q
−dn

`
e

ν − q
−1−dn−1

`
e

ν

)

= 1 +

d(ν)`∑
n=1

q
−dn

`
e

ν − q−1
ν

d(ν)`−1∑
n=0

q
−dn

`
e

ν

= 1 +

d(ν)`∑
n=1

q
−dn

`
e

ν − q−1
ν

d(ν)`∑
n=1

q
−dn

`
e

ν − q−1
ν + q−d(ν)−1

ν

= 1 + (1− q−1
ν )

d(ν)`∑
n=1

q
−dn

`
e

ν − q−1
ν + q−d(ν)−1

ν .

But since

d(ν)`∑
n=1

q
−dn

`
e

ν =

d(ν)∑
m=1

`q−m
ν ,

(
1− q−1

ν

) d(ν)`∑
n=1

q
−dn

`
e

ν = `
(
q−1
ν − q−d(ν)−1

ν

)
.

Therefore

∑

Φ(χν)=(πn
ν )

n≤d(ν)`

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν − (`− 1)q−d(ν)−1

ν . (4.4)

We will next determine
∑

Φ(χν)=(π
d(ν)`+1
ν )

|Φ(χν)|−1. To this end, we need to

determine
∣∣ ker ϕd(ν)`+1

∣∣. If ordπν (x − 1) = m < d(ν), then ordπν (x
` − 1) =

m` < d(ν)` + 1. Hence, x /∈ ker ϕd(ν)`+1.
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If ordπν (x − 1) = m > d(ν), then ordπν (x
` − 1) ≥ d(ν)` + 1. Hence

x ∈ ker ϕd(ν)`+1, that is, ker ϕd(ν)`+1 contains 1 + π
d(ν)+1
ν Oν . It remains to

determine
∣∣ ker ϕd(ν)`+1

/(
1 + π

d(ν)+1
ν Oν

)∣∣. That is, we want to determine

|{x ∈ 1 + πd(ν)
ν Oν : x` ≡ 1 modπd(ν)`+1

ν }/(
1 + πd(ν)+1

ν Oν

)|.

Observe that since ordπν (x − 1) ≥ d(ν), ordπν (x − ζ i) ≥ d(ν) for every

i = 0, 1, . . . , `− 1. Therefore, ordπν (x
` − 1) ≥ d(ν)` + 1 if and only if

ordπν (x − ζ i) ≥ d(ν) + 1 for some i = 0, 1, . . . , ` − 1. But for all i 6= j,

ordπν (ζ
i−ζj) = d(ν). Hence ζ i 6= ζj modπ

d(ν)+1
ν . Consequently, x ∈ ker ϕd(ν)`+1

if and only if x ≡ ζ i modπ
d(ν)+1
ν for some i = 0, 1, . . . , `− 1. Hence the number

of such xmod π
d(ν)+1
ν is `. Therefore

| ker ϕn| =
∣∣ ker ϕd(ν)`+1

/(
1 + πd(ν)+1

ν Oν

)∣∣∣∣(1 + πd(ν)+1
ν Oν

)/(
1 + πd(ν)`+1

ν Oν

)∣∣

= `qd(ν)(`−1)
ν .

Thus the number of characters χν with Φ(χν) = (π
d(ν)`+1
ν ) is

`qd(ν)(`−1)
ν − qd(ν)`−d(ν)

ν = (`− 1)qd(ν)(`−1)
ν .

Therefore in this case

∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν − (`− 1)q−d(ν)−1

ν + (`− 1)qd(ν)(`−1)−d(ν)`−1
ν

= 1 + (`− 1)q−1
ν .

Case 2: Suppose ν | ` and pν does not split completely in kz. In this case

ζ i /∈ kν for i = 1, 2, 3, ..., `− 1.

By Lemma 4.1, Φ(χν) = (πn
ν ), where n = 0, 1, . . . , d(ν)` + r0(ν) + 1. To

count the number of characters of conductor (πn
ν ), consider

Gn =
(
1 + πνOν

)/(
1 + πn

νOν

)
.
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As before, a character χν ∈ C`(O∗
ν) satisfying χν |1+πn

νOν = 1 is also a char-

acter on Gn/G`
n, and by conducting the same analysis as before, we deduce

that the number of such characters is | ker ϕn|, where ϕn : Gn 7→ Gn is given

by ϕn(x) = x`.

First, let us determine

ordπν (x
` − 1).

Recall that for ω|ν, (kz)ω = kν(ζ). Let πω be a uniformizer of the prime

ideal of Oω. Then

(πν) = (πez
ω ) where ez = e(ω/ν).

This implies that (`) = (π
e(ν)ez
ω ). But since (`) = (1 − ζ)`−1, (` − 1) divides

e(ν)ez, that is e(ν)ez = dzν(`− 1), for some positive integer dzν .

Let ordπω(x−1) = mz. Then if mz < dzν , then ordπω(x`−1) = `mz. More-

over, since ordπω(x`− 1) = ezordπν (x
`− 1), then for mz < dzν , ordπν (x

`− 1) =

` ordπν (x− 1).

If ordπν (x − 1) = m, then mz = ezm. Then mz < dzν =
e(ν)ez

`− 1
if

and only if m <
e(ν)

`− 1
= d(ν) +

r0(ν)

`− 1
. If r0(ν) ≥ 1, then for all m ≤ d(ν),

ordπν (x − 1) = m implies that ordπν (x
` − 1) = m`. If r0(ν) = 0, then for all

m < d(ν), ordπν (x− 1) = m implies that ordπν (x
` − 1) = `m.

Now suppose r0(ν) = 0 and m = d(ν). In this case, e(ν) = d(ν)(`− 1) and

dzν = ezd(ν). If we set ordπν (x− 1) = d(ν), then ordπω(x− 1) = ezd(ν) = dzν .

Note that ordπω(x` − 1) > `dzν if for some i, i 6= 0 mod `, ordπω(x− ζ i) > dzν .

But for j 6= i, ordπω(ζj − ζ i) = dzν . Hence for all j 6= imod `, ordπω(x− ζj) =

dzν . Therefore for all j 6= i mod `

|x− ζ i|ω < |ζj − ζ i|ω.
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Then by Krasner’s Lemma, kν(ζ
i) ⊂ kν(x) = kν . Therefore ζ i ∈ kν , which is

impossible. Hence for m = d(ν), ordπω(x`−1) = `dzν and ordπν (x
` − 1) =

`dzν

ez

= `d(ν).

Note that d(ν) + 1 >
e(ν)

`− 1
= d(ν) +

r0(ν)

`− 1
. Hence if m ≥ d(ν) + 1, mz =

ezm ≥ ez(d(ν)+1) >
e(ν)ez

`− 1
= dzν . Therefore for m ≥ d(ν)+1, ordπω(x`−1) =

dzν(`− 1) + mz, and

ordπν (x
` − 1) =

ordπω(x` − 1)

ez

=
mz + (`− 1)dzν

ez

= e(ν) + m.

Thus for m ≥ d(ν)+1 and e(ν) = d(ν)(`−1)+r0(ν), we get ordπν (x
`−1) ≥

d(ν)`+r0(ν)+1. But since n = 0, 1 . . . , d(ν)`+r0(ν)+1, then ordπν (x
`−1) ≥

d(ν)` + r0(ν) + 1 ≥ n for any n that occurs in the conductor of χν ∈ C`(O∗
ν).

Hence if ζ /∈ kν , and ordπν (x− 1) = m, then

ordπν (x
` − 1) = m` if m ≤ d(ν)

and

ordπν (x
` − 1) ≥ d(ν)` + r0(ν) + 1 if m ≥ d(ν) + 1.

The above discussion implies that if x ∈ Gn, 0 ≤ n ≤ d(ν)`+ r0(ν)+1 and

ordπν (x− 1) = m ≤ n, then x ∈ ker ϕn if and only if m` ≥ n. Thus

|kerϕn| = q
n−dn

`
e

ν .

Therefore
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∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 +

d(ν)`+r0(ν)+1∑
n=1

(
q

n−dn
`
e

ν − q
n−1−dn−1

`
e

ν

)
q−n
ν

= 1 +

d(ν)`+r0(ν)+1∑
n=1

q
−dn

`
e

ν − q−1
ν

d(ν)`+r0(ν)∑
n=0

q
−dn

`
e

ν

= 1− q−1
ν + (1− q−1

ν )

d(ν)`+r0(ν)+1∑
n=1

q
−dn

`
e

ν + q−1
ν · q−d(ν)−1

ν

= (1− q−1
ν ) + (1− q−1

ν )

d(ν)`∑
n=1

q
−dn

`
e

ν

+ (1− q−1
ν )

d(ν)`+r0(ν)+1∑

n=d(ν)`+1

q
−dn

`
e

ν + q−d(ν)−2
ν

= (1− q−1
ν ) + (1− q−1

ν )`

d(ν)∑
m=1

[
q−m
ν + (1− q−1

ν )(r0(ν) + 1)q−d(ν)−1
ν

+ q−d(ν)−2
ν

]

= 1 + (`− 1)q−1
ν − [

`− (r0(ν) + 1)(1− q−1
ν )− q−1

ν

]
q−d(ν)−1
ν

= 1 + (`− 1)q−1
ν − [

`− 1− r0(ν)(1− q−1
ν )

]
q−d(ν)−1
ν .

We summarize the results of this section in the following proposition:

Proposition 4.1 Suppose ν|`, (`) = (πν)
e(ν) and e(ν) = d(ν)(` − 1) + r0(ν)

where 0 ≤ r0(ν) ≤ `− 2. Then

1.
∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν if pν splits completely in kz.

2.
∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν − [

`− 1− r0(ν)(1− q−1
ν )

]
q−d(ν)−1
ν if

pν does not split completely in kz.

Applying the result of Proposition (4.1) to (4.3), we obtain:
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P0 =
∏

pν |`
pν /∈D

(
1 + (`− 1)q−1

ν − [
`− 1− r0(ν)(1− q−1

ν )
]
q−d(ν)−1
ν

)

∏

pν |`
pν∈D

(
1 + (`− 1)q−1

ν

) ∏

qν≡1mod `

(
1 + (`− 1)q−1

ν

)
(1− q−1

ν )`−1

∏

qν 6≡1mod `

(
1− q−fν

ν

)qzgν
.

Putting all these details together and using Theorem 3.9 and its corollary

in Chapter III of [7], we state the main theorem of the thesis.

Theorem 4.1 Let k be a number field of signature (r1, r2). Let D be the set

of prime ideals of k which are totally split in kz/k. Then

∑

m≤X`−1

N(k, C`; m) ∼ c(k, C`)(`− 1)

(qz − 1)!
(`− 1)qz−1X(log X)qz−1

∼ ζkz(1)qz

dz`r2+rzqz!
P0 X(log X)qz−1 as X →∞.

Here,

P0 =
∏

pν |`
pν /∈D

(
1 + (`− 1)q−1

ν − [
`− 1− r0(ν)(1− q−1

ν )
]
q−d(ν)−1
ν

)

∏

pν |`
pν∈D

(
1 + (`− 1)q−1

ν

) ∏

qν≡1mod `

(
1 + (`− 1)q−1

ν

)
(1− q−1

ν )`−1

∏

qν 6≡1mod `

(
1− q−fν

ν

)qzgν
,

rz = 0 if ζ ∈ k and rz = r1 − 1 otherwise, d(ν) =

⌊
e(ν/`)

`− 1

⌋
, r0(ν) is the least

nonnegative residue of e(ν/`) modulo (`− 1) and ζkz(1) denotes the residue of

the Dedekind zeta function ζkz(s) at s = 1.
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4.3 Verifying the result of Theorem 4.1

In this section, we will show that the result in Theorem 4.1 is identical to

that of Theorem 1.1 of [1] (also stated below in Theorem 4.2).

For reader’s convenience, we restate the theorem:

Theorem 4.2 Let k be a number field of signature (r1, r2). Let R(resp.,D)

be the set of prime ideals of k which are ramified (resp., totally split) in kz/k.

Then ∑

m≤X`−1

N(k, C`; m) ∼ c1c2c3c4X logqz−1 X

with

c1 =

(∏
d|dz

ζkz [d](d)µ(d)
)qz

dz`r2+rzqz!
,

c2 =
∏

p∈D




(
1 +

`− 1

Np

) ∏

d|dz

(
1− 1

Npd

)(`−1)µ(d)/d

 ,

c3 =


∏

p∈R

∏

d|dz

(
1− 1

Npdf(pd/p)

)g(pd/p)µ(d)



qz

,

c4 =
∏

p|`
p/∈D

(
1 +

`− 1

Np
− `− 1− r(e(p))(1− 1/Np)

Npde(p)/(`−1)e

)
;

here rz = 0 if ζ` ∈ k, while rz = r1 − 1 otherwise, and by abuse of notation,

for any number field L we write ζL(1) for the residue of the Dedekind zeta

function ζL(s) at s = 1.

Proposition 4.2 If c1, c2, c3, c4 are the constants of Theorem 4.2, then

c∗1c2c3c4 = ζkz(1)qzP0

where c∗1 = dz`
r2+rzqz!c1 =

( ∏

d|dz

ζkz [d](d)µ(d)

)qz
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Proof:

First, by Proposition 4.1,

∏

pν |`
pν /∈D

∑

χν∈C`(O∗ν)

|Φ(χν)|−1 =
∏

pν |`
pν /∈D

(
1 + (`− 1)q−1

ν − [
`− 1− r0(ν)(1− q−1

ν )
]
q−d(ν)−1
ν

)
.

For ν ∈ M(k)0, let p be the prime ideal of Ok corresponding to ν. Then

N(p) = qν . Recall that e(ν) ≡ r0(ν) mod (` − 1), where 0 ≤ r0(ν) ≤ ` − 2.

Also, recall that e(ν) = e(p) ≡ r(e(p)) mod (`− 1), where 1 ≤ r(e(p)) ≤ `− 1.

If 0 < r0(ν) ≤ `− 2, r0(ν) = r(e(p)) and
⌈

e(ν)

`− 1

⌉
=

⌈
d(ν) +

r0(ν)

`− 1

⌉
= d(ν) + 1.

Hence

∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν − [

`− 1− r0(ν)(1− q−1
ν )

]
q−d(ν)−1
ν

=

(
1 +

(`− 1)

Np
− `− 1− r0(ν)(1− 1/Np)

Npde(p)/(`−1)e

)
.

If r0(ν) = 0, and consequently r(e(p)) = `− 1, then

⌈
e(ν)

`− 1

⌉
= d(ν)

and

∑

χν∈C`(O∗ν)

|Φ(χν)|−1 = 1 + (`− 1)q−1
ν − (`− 1)q−d(ν)−1

ν

= 1 +
(`− 1)

Np
− `− 1

(Np)d e(p)
`−1e+1

= 1 +
(`− 1)

Np
−

(`− 1)− r(e(p))
(
1− 1

Np

)

Npd e(p)
(`−1)e

.
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Therefore,

c4 =
∏

pν |`
pν /∈D

∑

χν∈C`(O∗ν)

|Φ(χν)|−1.

Next note that ζkz ((`− 1)s) =
∏

ν ∈M(k)0

(
1− q−fν(`−1)s

ν

)−gν
.

Also, p ∈ D if and only if ν - ` and qν ≡ 1 (mod `) or ν | ` and ζ ∈ kν .

Now

c∗1c2c3c4 = ζkz(1)qz




∏

d|dz

d>1

ζkz [d](d)µ(d)




qz

∏

p∈D

(
1 +

(`− 1)

Np

)(
1− 1

Np

)`−1

∏

p∈D
d|dz

d≥2

(
1− 1

Npd

)(`−1)
µ(d)

d

c3 c4.

Hence

c∗1c2c3c4 = ζkz(1)qzP0




∏

d|dz

d>1

ζkz [d](d)µ(d)




qz

∏

p∈D
d|dz

d≥2

(
1− 1

Npd

)(`−1)
µ(d)

d

∏

p/∈D

(
1− 1

Npf(p1/p)

)−g(p1/p)qz

c3

where p1 is an ideal in kz[1] = kz that divides p.

We now claim that
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∏

d|dz

d>1

ζkz [d](d)µ(d)




qz

∏

p∈D
d|dz

d≥2

(
1− 1

Npd

)(`−1)
µ(d)

d ∏

p/∈D

(
1− 1

Npf(p1/p)

)−g(p1/p)qz

c3 = 1.

(4.5)

Note that



∏

d|dz

d>1

ζkz [d](d)µ(d)




qz

=




∏
p

∏

d|dz

d≥2

(
1− 1

Npdf(pd/p)

)−g(pd/p)µ(d)




qz

.

If p ∈ D , f(pd/p) = 1, g(pd/p) = dz/d and
qzdz

d
=

`− 1

d
. Hence these

factors (in c∗1) cancel with the factors

∏

p∈D

∏

d|dz

d≥2

(
1− 1

Npd

)( `−1
d

)µ(d)

in c2.

For p /∈ D , the left side of (4.5) contains

∏

d|dz

(
1− 1

Npdf(pd/p)

)−g(pd/p)µ(d)qz

.

If p ∈ R, these factors cancel with

∏

p∈R

∏

d|dz

(
1− 1

Npdf(pd/p)

)g(pd/p)µ(d))



qz

in c3.

It remains to show that

∏

p/∈D∪R

∏

d|dz

(
1− q−df(pd/p)

)−g(pd/p)µ(d)
= 1

where q = Np.
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Proposition 4.3 Let k be a number field and kz = k(ζ). If p is a prime ideal

in k such that p is unramified in kz/k and p is not totally split, then

∏

d|dz

(
1− q−df(pd/p)

)−g(pd/p)µ(d)
= 1.

Proof: Let f = f(p1/p) and let Gp be the decomposition group of p in

Gal(kz/k). Note that | Gp |= f(p1/p) and that Gp = < σ > is a cyclic group

generated by σ where σ = (p, kz/k) is the Artin symbol of p. Consider a tower

of field extensions

k ⊂ kz[d] ⊂ kz

and a corresponding chain of prime ideals

p ⊂ pd ⊂ p1.

Then

Gp = {τ ∈ Gal(kz/k) : τ(p1) = p1}

and

Gpd
= {τ ∈ Gal(kz/kz[d]) : τ(p1) = p1} = Gp1 ∩Gal(kz/kz[d]).

Note that Gal(kz/k) is isomorphic to a subgroup of (Z/`Z)∗. Hence G =

Gal(kz/k) is a cyclic group of order dz. Consequently Gal(kz/kz[d]) is a cyclic

subgroup G of order d. Also Gp is a cyclic subgroup of G of order f = f(p1/p).

Hence

Gp ∩Gal(kz/kz[d])

is the cyclic group of order (f, d), which implies that

f(p1/pd) = |Gpd
| = (f, d).

But

f(p1/pd)f(pd/p) = f(p1/p) = f.
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Hence f(pd/p) =
f

(f, d)
.

Moreover,

e(pd/p)f(pd/p)g(pd/p) = [kz[d] : k] =
dz

d
,

and since e(pd/p) = 1,

g(pd/p) =
dz(f, d)

fd
=

dz

[f, d]
.

Therefore the product in the proposition becomes

∏

d|dz

(
1− q

−df
(f,d)

)− dz(f,d)
df

µ(d)

=
∏

d|dz

(
1− q−[f,d]

)− dzµ(d)
[f,d] .

Since f |dz and d|dz, [f, d]|dz. Therefore the above product can be written as

∏

m|dz

∏

[f,d]=m

(
1− q−m

)− dzµ(d)
m .

To complete the proposition, we only need to show that if f > 1, then

∑

[f,d]=m

µ(d) = 0.

Consider the prime factorization of f, d and m : f =
∏

pα(p), m =
∏

pγ(p)

and d =
∏

pβ(p). [f, d] = m if and only if for all p, max{α(p), β(p)} = γ(p).

This means that if α(p) = γ(p), then 0 ≤ β(p) ≤ γ(p) and if α(p) < γ(p),

then β(p) = γ(p). We note that µ is multiplicative and the above conditions

are independent of each other for all primes p. Hence

∑

[f,d]=m

µ(d) =
∏

p

{ ∑α(p)
β=0 µ(pβ) if α(p) = γ(p)

µ(pγ(p)) if α(p) < γ(p).
(4.6)

But since f > 1 there exists a prime p such that α(p) ≥ 1. Then

α(p)∑

β=0

µ(pβ) = 0.



48

Also, if γ(p) > α(p), then γ(p) ≥ 2 and µ(pγ(p)) = 0. In any event, one of the

factors in the product that gives
∑

[f,d]= m µ(d) is 0 and therefore

∑

[f,d]= m

µ(d) = 0.

This concludes the proof of the proposition.
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