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ABSTRACT

METASURFACES AND WAVEGUIDES IN OPTICS

Luca Pallucchini

DOCTOR OF PHILOSOPHY

Temple University, May 2019

Professor Cristian E. Gutiérrez, Chair

This thesis analyzes metasurfaces and waveguides in geometric optics. In the first

and second chapters, we give a mathematical approach to study metasurfaces. A

metasurface is a surface together with a function called phase discontinuity. The

phase discontinuity is chosen so that the metasurface produces a desired reflection

or refraction job. We give analytical conditions between the curvature of the surface

and the set of refracted directions to guarantee the existence of phase discontinu-

ities. The approach contains both the near and far field cases. A starting point is

the formulation of a vector Snell’s law in the presence of abrupt discontinuities on

the interfaces. Also, we derive the equations that the phase discontinuity function

must satisfy in order for the metasurface to refract or reflect energy with a pre-

scribed energy pattern, they are Monge-Ampére partial differential equations, and

we prove the existence of solutions. In the third chapter, we model energy losses in

waveguides. In particular, we give quantitative estimates of the energy internally

reflected in case of a straight guide and a circularly curved guide. We give a detailed
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ray tracing and internally reflected energy analysis for each striking point on the

boundary of the guide.
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CHAPTER 1

INTRODUCTION

This dissertation concerns the solution of three problems in Geometric Op-

tics. The first two problems are related to metalenses, and the third one is related

to waveguides. Metalenses are ultra thin surfaces which use nano structures to focus

light. The shaping of light wave fronts with standard lenses relies on gradual phase

changes accumulated along the optical path inside the lens. Metalenses introduce

abrupt phase shifts (phase discontinuities) over the scale of the wavelength along

the optical path to bend light in unusual ways. The nano structures used are com-

posed of arrays of tiny pillars, rings, and other arrangements of materials, which

work together to manipulate light waves as they pass by. The subject of metalenses

is a flourishing area of research and one of the nine runners-up for Science’s Break-

through of the Year 2016 [37]. That year, researchers used computer chip-patterning

techniques to create the first metamaterial lens, or metalens, that can focus the full

spectrum of visible light. A purpose in this dissertation is to give a mathematically
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rigorous foundation for metalenses, in particular, when it is theoretically possible to

find non flat metalenses that bend light in the desired way or that yield prescribed

distributions of energy. These questions are potentially important in the applica-

tions because metalenses are thinner than a sheet of paper and far lighter than

glass, and they could revolutionize everything from microscopes to virtual reality

displays to cameras, including the ones in smartphones [37]. The third question

considered in this dissertation concerns energy losses in waveguides. A waveguide is

a structure that leads the way of electromagnetic or sound waves. Waveguides can-

not guide electromagnetic energy around bends without losing power by radiation,

and therefore, we study energy losses in circularly curved waveguides.

We next describe more precisely the problems solved in the thesis and how

it is organized. The first problem solved is about the existence of nonflat metalenses

that bend light in a desired way. This is done in Chapter 2, and the results have

appeared in [17]. For classical lens design, a typical problem is to find two surfaces

so that the region sandwiched between them and filled with a homogeneous material

refracts light in a desired manner. For metalens design, a surface is given and the

question is to find a function on the surface -a phase discontinuity- so that the pair,

surface together with the phase discontinuity -the metalens-, refracts light in a de-

sired manner. We first derive in Section 2.1 the following generalized Snell’s law in

the presence of a phase discontinuity using wavefronts. Let n1, n2 be the refractive

indices of two homogeneous media I and II, respectively. Suppose a surface Γ sepa-

rates these media, and an incoming light ray in medium I with unit direction vector
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(Γ,ψ)

m

O

n1

n2

x

Figure 1.1: Metalens refracting into a fixed direction

x strikes Γ. Assume that there is a real-valued function ψ, the phase discontinuity,

defined in a neighborhood of the surface Γ. If ν denotes the unit normal vector to

Γ, then the refracted wave vector m satisfies (see (2.6))

n1x− n2m = λν +∇ψ,

where λ satisfies

λ2 − [2(n1x−∇ψ) · ν]λ+ |n1x−∇ψ|2−n2
2 = 0.

If ψ is constant, then we recover the classical Snell law in vector form. Using this

generalized Snell’s law, we introduce a mathematical method to construct phase

discontinuities on a given surface, not necessarily flat, so that radiation is steered into

a prescribed set of directions. More precisely, given a surface Γ in three dimensional

space, we determine when it is possible to have a function ψ defined on a very thin
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(comparable to the wave length of the radiation) neighborhood of Γ so that radiation

emanating from a point source is refracted by the pair (Γ, ψ), surface and function,

into a set of directions prescribed in advance. In other words, for a given set of

directions where we want to steer the radiation, we discover what kind of surfaces

Γ allow the existence of a function ψ so that the pair (Γ, ψ) directs the radiation in

the desired way. This leads to ultra thin (not flat) optical components that produce

abrupt changes over the scale of the free-space wavelength in the phase. This is

in contrast with classical lens design, where the question is to engineer the gradual

accumulation of phase delay as the wave propagates in the device, reshaping the

scattered wavefront and beam profile at will. In particular, in standard lenses light

propagates over distances much larger than the wavelength to shape wavefronts.

The existence of phase discontinuity functions is intimately related with the shape

of the given surface and the given set of directions. If these two objects satisfy the

following condition

mu · rv = mv · ru

and the determinant of the matrix

− ρ

xu · xu xu · xv

xv · xu xv · xv

+ κ

ru ·mu ru ·mv

rv ·mu rv ·mv

−B
ruu · ν ruv · ν

rvu · ν rvv · ν

 , (1.1)

is not zero, then the existence of the desired phase discontinuity is guaranteed (see

Theorem 2.3.1). Here m(u, v) = (m1(u, v),m2(u, v),m3(u, v)) is the given C2 unit

field of directions, r(u, v) = ρ(u, v)x(u, v) is a parametrization of Γ where x(u, v)

are spherical coordinates and ρ(u, v) > 0 is the polar radius, B = (x− κm) · ν and

κ = n2
n1

. Notice that the first and third matrices in (1.1) are respectively the first
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fundamental form of the 2-sphere, and the second fundamental form of the surface

Γ. In particular, given a surface, one can obtain from these conditions what kind

of sets of steering directions are allowed. Conversely, given a phase discontinuity

and a desired transmission direction, we described the admissible surfaces that are

possible (see Theorem 2.4.1).

The second problem solved is about the derivation of the partial differential

equations governing light reflection and refraction in metalenses. This is the content

of Chapter 3 and the results have appeared in [18]. A reflection problem considered

in [41] is to find a perfectly reflecting surface Γ such that rays emitted from the origin

with direction x ∈ Ω1 ⊂ S2 and intensity f(x), after being reflected by Γ cover a

prescribed region Ω2 ⊂ S2, and the density of the distribution of the reflected rays

is a prescribed function g(y) of the direction y. In [41] it is assumed conservation of

energy, i.e. ∫
Ω1

f(x) dσ(x) =

∫
T (Ω1)

g(y) dσ(y),

where T indicates the reflection map. The surface Γ is given as a solution of a Monge-

Ampére type equation [41]. In our case for metalenses the surface Γ is given and

the question consists in finding the phase discontinuity ψ doing a similar reflection

job. We answer this question when either rays are emitted in a collimated way from

an extended source (see Section 3.1.1) or when rays are emitted from a point source

(see Section 3.1.2 ). For example, in Section 3.1.1 we consider the case in which

rays are emitted from an open set of the x − y plane, Γ is a plane parallel to the

x− y plane and the rays have direction e3 = (0, 0, 1). We have found that the phase
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discontinuity is given by the solution of the following Monge-Ampére type equation

1√
1− ψx(x, y)2 − ψy(x, y)2

|detD2ψ|= f(x)

g(T (x))
.

We then study existence, uniqueness, and smoothness of the solutions. In addition,

we also derive similar pdes and solve similar problems in case of refraction (see

Sections 3.2.1 and 3.2.2). In Section 3.3 we give a summary of the equations, in all

cases considered, when Γ is a plane.

The third problem solved in this dissertation is about energy losses in

waveguides which is the contents of Chapter 4. The first mathematical analysis

of electromagnetic waves in metal cylindrical structures was performed by Lord

Rayleigh in [34]. For sound waves, Lord Rayleigh published a full analysis of prop-

agation modes in his seminal work, “The Theory of Sound”[36]. For a detailed

history about the origin of waveguides, we refer the reader to [32]. In this thesis,

we give quantitative estimates of the energy internally reflected in the case of a

straight guide (Section 4.1) and of a circularly curved guide (Section 4.2). To model

this we use the Fresnel formulas and the set up is as follows. Suppose we have

two homogeneous media I and II with refractive indices n1, n2, respectively, and

with n1 > n2; we set κ =
n2

n1
. Suppose media I and II are separated by a smooth

surface S. If an incident wave with unit direction x is traveling within medium I

and strikes S at a point P , then the wave splits into two waves: one transmitted

into medium II and another internally reflected into medium I. The unit directions

of these waves are mt and mr, respectively, which are determined by the Snell law

(2.2). Therefore, the incident energy Ei carried by the incident wave with direction
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x splits into two: the transmitted energy Et carried by the wave having direction mt

and the internally reflected energy Er carried by the wave having direction mr, with

Ei = Et + Er, assuming no losses. The percentages of energy carried by the trans-

mitted and internally reflected waves depends on the incident direction x via the

Fresnel formulas, a consequence of Maxwell’s equations [5]. With these, we model

the losses of energy within a waveguide confined between two parallel surfaces S1

and S2. These surfaces are planes in the case of a straight waveguide and circularly

curved surfaces for the circularly curved guide; we assume the dielectric within the

two surfaces has refractive index n1, and the cladding, i.e., the material outside,

has refractive index n2 with n1 > n2. An incident polarized wave will zigzag inside

between the two surfaces. Depending on the normal to the surfaces at the striking

points, one can calculate the energy transmitted and internally reflected. In other

words, we follow the path of the ray and tally the internally reflected energy at each

striking point on the boundary of the waveguide. Finally, in Section 4.4 we study

asymptotics for the integral that represent the energy internally reflected. In case

of a periodic circular guide, as N → ∞, where N is the number of striking points

on the outer contour of the guide, we show that the energy internally reflected goes

to zero as
C

N2
where C is a positive constant. This result requires a careful analysis

of the integrals that represent the energy internally reflected and it follows from

Theorem 4.4.1 and 4.4.3. At the end of the thesis (Section 4.5), we briefly describe

some open problems to continue the research in this area.
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CHAPTER 2

GENERAL REFRACTION

PROBLEMS WITH PHASE

DISCONTINUITIES ON NON

FLAT METASURFACES

Here, we recall the classical Snell law in vector form. Suppose Γ is a surface

in R3 that separates two media I and II that are homogeneous and isotropic, with

refractive indices n1 and n2 respectively. If a light ray 1 having direction x ∈ S2,

the unit sphere in R3, and traveling through medium I strikes Γ at the point P ,

then this ray is refracted in the direction m ∈ S2 through medium II according to

1Since the refraction angle depends on the frequency of the radiation, we assume that light rays
are monochromatic.
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the Snell law in vector form:

n1(x× ν) = n2(m× ν), (2.1)

where ν is the unit normal to the surface to Γ at P pointing towards medium II; see

[29, Subsection 4.1]. It is assumed here that x·ν ≥ 0. This has several consequences:

(a) the vectors x,m, ν are all on the same plane (called the plane of incidence);

(b) the well known Snell law in scalar form holds:

n1 sin θ1 = n2 sin θ2,

where θ1 is the angle between x and ν (the angle of incidence), and θ2 is the

angle between m and ν (the angle of refraction).

Equation (2.1) is equivalent to (n1x − n2m) × ν = 0, which means that the vector

n1x− n2m is parallel to the normal vector ν. If we set κ = n2/n1, then

x− κm = λν, (2.2)

for some λ ∈ R. Notice that (2.2) univocally determines λ. Taking dot products

with x and m in (2.2) we get λ = cos θ1 − κ cos θ2, cos θ1 = x · ν > 0, and cos θ2 =

m · ν =
√

1− κ−2[1− (x · ν)2]. In fact, there holds

λ = x · ν − κ
√

1− κ−2 (1− (x · ν)2). (2.3)

The formulation (2.2) is useful to solve refraction problems for lens design,

see [12], [13], [14], [15], and [8] for a numerical implementation.
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2.1 Derivation of a Vector Snell’s Law with phase dis-

continuity using wavefronts

Let n1, n2 be the refractive indices of two homogeneous media I and II,

respectively. Suppose a surface Γ separates these media, and an incoming light ray

in medium I with wave vector k1 strikes Γ. Assume that there is a real-valued

function ψ, the phase discontinuity, defined in a neighborhood of the surface Γ.

Notice that ψ must be defined in a neighborhood of Γ because the gradient of ψ will

be considered. If ν denotes the unit normal vector to Γ, then the refracted wave

vector k2 satisfies [2, Equation (2)]:

ν × (k2 − k1) = ν ×∇ψ. (2.4)

We give an alternate formulation and derivation of this result by using wavefronts;

our starting point is [16, Section 2.2]. For each t, Ψ(x, y, z, t) = 0 denotes a surface

in the variables x, y, z that separates the part of the space that is at rest from the

part of the space that is disturbed by the electric and magnetic fields. This surface

is called a wave front, and the light rays are the orthogonal trajectories to the wave

fronts at each time t. We assume that Ψt 6= 0, and so we can solve Ψ(x, y, z, t) = 0

in t, obtaining that φ(x, y, z) = ct; so letting t run, the wave fronts are then the

level sets of φ(x, y, z).

Let n1, n2, and Γ be as above. An incoming wave front Ψ1 on medium

I strikes the surface Γ and it is then transmitted into a wave front Ψ2 in medium

II (of course, there is also a wave front reflected back). Assuming as before that
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(Ψj)t 6= 0, j = 1, 2, and solving in t, we get that the wave fronts are given by

φj(x, y, z) = ct for j = 1, 2, respectively. Suppose the surface Γ is parameterized by

x = f(ξ, η), y = g(ξ, η), z = h(ξ, η). If there were no phase discontinuity on the

surface Γ, then we would have φ1 = φ2 along Γ. But since there is now a phase

discontinuity ψ on Γ, we have the following jump condition along Γ:

φ1(f(ξ, η), g(ξ, η), h(ξ, η))− φ2(f(ξ, η), g(ξ, η), h(ξ, η)) = ψ(f(ξ, η), g(ξ, η), h(ξ, η)).

Taking derivatives in ξ and η yields

(∇φ1 −∇φ2 −∇ψ) · (fξ, gξ, hξ) = 0,

and

(∇φ1 −∇φ2 −∇ψ) · (fη, gη, hη) = 0.

That is, the vector ∇φ1 − ∇φ2 − ∇ψ must be normal to Γ; as such there exists a

real number λ such that

∇φ1 −∇φ2 −∇ψ = λν (2.5)

where ν is the unit normal to Γ.

Let γj(t) denote the light rays in medium j having speed vj , for j = 1, 2;

i.e., the orthogonal trajectories to φj . In particular, we have that φj(γj(t)) = ct,

and by the chain rule

∇φj(γj(t)) · γ′j(t) = c, j = 1, 2

If we parameterize the rays so that |γ′j(t)|= vj , then we obtain

|∇φj(γj(t))|=
c

vj
= nj , j = 1, 2
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since ∇φj is parallel to γ′j . Letting

x =
∇φ1(γ1(t))

|∇φ1(γ1(t))|
, m =

∇φ2(γ2(t))

|∇φ2(γ2(t))|

we obtain from (2.5) the following formula

n1x− n2m = λν +∇ψ. (2.6)

Taking cross products with the unit normal ν in (2.6), we obtain the equivalent

formula

ν × (n1x− n2m) = ν ×∇ψ. (2.7)

Recall that x is the unit direction of the incident ray, m is the unit direction of

the refracted ray, ν is the unit outer normal at the incident point on Γ and ∇ψ is

calculated at the incident point. Note that in the case ψ is constant, we recover the

classical Snell law in vector form (2.1)2.

Starting from (2.6), we now calculate λ. Taking dot products in (2.6) and

solving for x ·m yields

x ·m =
n1 − λx · ν − x · ∇ψ

n2
.

Next taking dot products in (2.6) with itself, expanding, and substituting x ·m from

the previous expression, yields that λ satisfies the quadratic equation:

λ2 − [2(n1x−∇ψ) · ν]λ+ |n1x−∇ψ|2−n2
2 = 0. (2.8)

2Notice that if ψ =constant, then n1 ν × x = n2 ν × m. Taking dot product with m yields
n1m · (ν × x) = 0. This means that m is on the plane through the origin having normal ν × x
which is the plane generated by ν and x. Therefore, ν, x,m are all on the same plane, i.e., the
plane of incidence. On the other hand, if ψ is not necessarily constant, then from (2.7) n1 ν × x =
n2 ν ×m+ ν ×∇ψ. Again taking dot product with m yields n1m · (ν × x) = m · (ν ×∇ψ), that is,
m · (ν × (n1 x−∇ψ)) = 0. That is, now the refracted vector m lies on the plane through the origin
and perpendicular to the vector ν× (n1 x−∇ψ) where ∇ψ is calculated at the point on the surface
Γ where the ray with direction x strikes it. This shows that in the general case the refracted vector
m is not on the plane generated by ν and x.



13

Solving for λ yields

(2.9)λ = (n1x−∇ψ) · ν ±
√
n2

2 −
(
|n1x−∇ψ|2 − [(n1x−∇ψ) · ν]2

)
.

Since λ must be a real number, the quantity under the square root must be non-

negative, i.e.,

n2
2 ≥ |n1x−∇ψ|2− [(n1x−∇ψ) · ν]2 . (2.10)

Assuming this for now, it remains to check which sign (±) to take in (2.9). Dotting

(2.6) with ν and using (2.9) yields

n1x · ν − n2m · ν = (n1x−∇ψ) · ν

±
√
n2

2 −
(
|n1x−∇ψ|2 − [(n1x−∇ψ) · ν]2

)
+∇ψ · ν,

so

−n2m · ν = ±
√
n2

2 −
(
|n1x−∇ψ|2 − [(n1x−∇ψ) · ν]2

)
.

Since n2 > 0 and m · ν ≥ 0, we obtain that

λ = (n1x−∇ψ) · ν −
√
n2

2 −
(
|n1x−∇ψ|2− [(n1x−∇ψ) · ν]2

)
. (2.11)

We next analyze (2.10), which will yield the critical angles. Equation (2.10)

is equivalent to ((
x− ∇ψ

n1

)
· ν
)2

≥
∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2.

Thus, if x is such that ∣∣∣∣x− ∇ψn1

∣∣∣∣ ≤ κ,
then (2.10) holds. On the other hand, if

∣∣∣∣x− ∇ψn1

∣∣∣∣ > κ
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then (2.10) holds when either

x · ν ≥ ∇ψ
n1
· ν +

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2 or x · ν ≤ ∇ψ
n1
· ν −

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2.

Therefore, the critical angles between x and ν are θc with

x · ν = cos θc =
∇ψ
n1
· ν +

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2

or

x · ν = cos θc =
∇ψ
n1
· ν −

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2.

Remark 2.1.1. In two dimensions the critical angles are considered in [43]. It

is assumed there that the interface Γ is the x-axis, the region y > 0 is filled with a

material with refractive index n1, and the region y < 0 with a material with refractive

index n2. Also the phase discontinuity satisfies that ∇ψ is constant and is tangential

to the interface, i.e., ∇ψ = (a, 0) with, for example, a > 0. Therefore, the above

calculations applied to this case yield

cos θc = x · ν =

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2 =

√
1− 2|∇ψ|

n1
cos(π/2− θc) +

|∇ψ|2
n2

1

− κ2,

where κ =
n2

n1
. Squaring both sides we obtain

cos2 θc = 1− 2|∇ψ|
n1

sin θc +
|∇ψ|2

n2
1

− κ2,

and the critical angles θc are therefore the solutions to the equation

sin2 θc −
2|∇ψ|
n1

sin θc +
|∇ψ|2

n2
1

− κ2 = 0,

i.e.,

θc = arcsin

(
|∇ψ|
n1
± κ
)
,
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which is in agreement with [43, Formula (3)].

In three dimensions the critical angles are considered in [2]. The interface

Γ is the x− y-plane, the region z > 0 is filled with a material with refractive index

n1, and the region z < 0 with a material with refractive index n2. Also the phase

discontinuity is tangential to the interface, i.e., ∇ψ =
(
∂ψ
∂x ,

∂ψ
∂y , 0

)
and without loss

of generality we may assume x = (0, y, z). Once again, the above calculations applied

to this case yield

cos θc = x · ν =

√∣∣∣∣x− ∇ψn1

∣∣∣∣2 − κ2 =

√
1− 2

n1

∣∣∣∣∂ψ∂y
∣∣∣∣ cos(π/2− θc) +

|∇ψ|2
n2

1

− κ2.

Proceeding as before we find

θc = arcsin

 1

n1

∂ψ

∂y
±

√
κ2 − 1

n2
1

∣∣∣∣∂ψ∂x
∣∣∣∣2
 ,

recovering [2, Formula (8)].

Remark 2.1.2. The reflection case is when n1 = n2, so (2.6) and (2.11) become

x−m =
1

n1
λ ν+

∇ψ
n1

, λ = (n1 x−∇ψ)·ν+

√
n2

1 −
(
|n1x−∇ψ|2− [(n1x−∇ψ) · ν]2

)
,

with x the unit incident direction, m the unit reflected vector, ν the unit normal

to the interface at the striking point, and ∇ψ at the striking point. Notice that the

choice of the plus sign in front of the square root is because for reflection m · ν ≤ 0.

2.2 Far field uniformly refracting planar and spherical

metalenses

Let Γ be a surface in three dimensional space and V be a vector valued

function defined on Γ; V : Γ → R3. If x is an incident unit direction striking Γ at
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a point P , and m is the unit refracted direction, then we obtain, dividing by n1 in

the generalized Snell law (2.6), that

x− κm = λ ν(P ) + V (P ), (2.12)

where ν(P ) is the unit outer normal to Γ at P for some λ ∈ R; κ = n2/n1. Suppose

rays emanate from the origin and we are given a fixed unit vector m. Our goal is

to answer the following two questions. First, given a surface Γ separating media n1

and n2, find a field V defined on Γ so that all rays from the origin are refracted into

the direction m. The second question is, given a field V defined in a region of R3,

find a separation surface Γ between n1 and n2 within that region so that all rays

emanating from the origin are refracted into the direction m.

We begin in this section answering the first question when Γ is either a

plane or a sphere, surfaces of traditional interest in optics, showing explicit phase

discontinuities. For general surfaces, the first question is considered in Section 2.3,

even for the more general case of variable m. The second question is answered in

Section 2.4.

2.2.1 Case of the plane

Let Γ be the plane x1 = a in R3 with a > 0. We want to determine a

field V = (V1, V2, V3) defined on Γ so that all rays emanating from the origin are

refracted into the unit direction m = (m1,m2,m3), with m1 > 0, Figure 2.1. Using

spherical coordinates x(u, v) = (cosu sin v, sinu sin v, cos v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ π,
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(Γ,ψ)

m

O

n1

n2

x

Figure 2.1: Planar metalens
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Γ is described parametrically by

r(u, v) =
a

cosu sin v
x(u, v) = a

(
1, tanu,

1

cosu tan v

)
. (2.13)

Since the normal to the plane Γ is ν = (1, 0, 0), then (2.12) implies that sinu sin v−

κm2 = V2(r(u, v)) and cos v − κm3 = V3(r(u, v)). Hence V2 and V3 are univocally

determined. Also, from (2.12) we get

V1(r(u, v)) = cosu sin v − κm1 − λ(u, v). (2.14)

Notice also that from (2.11),

λ = ν · (x− V )−
√

(ν · (x− V ))2 − |x− V |2+κ2,

which in the present case yields

λ = cosu sin v − V1 −
√
κ2 − (sinu sin v − V2)2 − (cos v − V3)2

= cosu sin v − V1 −
√
κ2 − (κm2)2 − (κm3)2

= cosu sin v − V1 − κm1 since m1 > 0

=
a√

a2 + x2
2 + x2

3

− V1(a, x2, x3)− κm1.

This means that in (2.14) each V1 determines λ and vice-versa.

We now write the field V in rectangular coordinates x1, x2, x3. Since√
a2 + x2

2 + x2
3 =

a

cosu sin v
, we can write

V2(a, x2, x3) =
x2√

a2 + x2
2 + x2

3

− κm2 =
∂

∂x2

√
x2

1 + x2
2 + x2

3

∣∣∣∣
x1=a

− κm2,

V3(a, x2, x3) =
x3√

a2 + x2
2 + x2

3

− κm3 =
∂

∂x3

√
x2

1 + x2
2 + x2

3

∣∣∣∣
x1=a

− κm3
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V1(a, x2, x3) =
a√

a2 + x2
2 + x2

3

− κm1 − λ =
∂

∂x1

√
x2

1 + x2
2 + x2

3

∣∣∣∣
x1=a

− κm1 − λ,

for −∞ < x2, x3 <∞. From (2.13) u = arctan(x2/a) and v = arctan

(√
a2 + x2

2

x3

)
,

so λ(u, v) = h(x2, x3). Let ψ(x1, x2, x3) =
√
x2

1 + x2
2 + x2

3 − κm1 x1 − κm2 x2 −

κm3 x3. Therefore, if on the plane x = a we give the field

V (x1, x2, x3) := ∇ψ(x1, x2, x3)− h(x2, x3) i, (2.15)

then resulting metasurface does the desired refraction job. If we want V to be the

gradient of a function, then h(x2, x3) i must be a gradient, which is only possible

when h(x2, x3) = C0 a constant; that is, V = ∇ (ψ(x1, x2, x3)− C0 x1). As a partic-

ular case when m1 = 1, m2 = m3 = 0, and C0 = 0, we obtain the equivalent [42, For-

mula (2)] (where a different orientation of the coordinates is used) with x1 = a = f .

Notice also that if we want V in (2.15) to be tangential to the plane x1 = a, that

is, (∇ψ(a, x2, x3)− h(x2, x3) i) · (1, 0, 0) = 0, then h =
a√

a2 + x2
2 + x2

3

− κm1.

2.2.2 Case of the sphere

Now, the surface Γ considered is a sphere of radius R centered at the

origin, that is, r(u, v) = Rx(u, v), with x(u, v) spherical coordinates. We denote by

x = x(u, v); Figure 2.2. Since Γ is a sphere, the normal ν = x and from (2.12) we

get (x− κm− V )× x = 0, so

(V + κm)× x = 0. (2.16)



20

(Γ,ψ)

m

O

n1

n2

x

Figure 2.2: Spherical metalens
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That is, 
x2 −x1 0

−x3 0 x1

0 x3 −x2




V1 + κm1

V2 + κm2

V3 + κm3

 = 0.

Notice that det


x2 −x1 0

−x3 0 x1

0 x3 −x2

 = 0. Set Wi = Vi + κmi, so the system is

equivalent to 
0 0 0

x2x3 −x1x3 0

0 x1x3 −x1x2




W1

W2

W3

 = 0.

If x1x2x3 6= 0, the last matrix has rank two, so the space of solutions has dimension

one and the solutions are given by

(W1,W2,W3) =

(
x1

x3
,
x2

x3
, 1

)
W3,

with W3 arbitrary. Therefore,

V1 (Rx(u, v)) =
x1

x3
(V3 (Rx(u, v)) + κm3)− κm1

V2 (Rx(u, v)) =
x2

x3
(V3 (Rx(u, v)) + κm3)− κm2,

with V3 arbitrary.

Notice that if in (2.16) we take cross product with x, we get

0 = x× ((V + κm)× x)

= (V + κm) (x · x)− x ((V + κm) · x)
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= V + κm− (κ (m · x) + V · x) x.

Hence, if we want to pick V tangential to the sphere, we obtain

V (Rx) = −κm+ κ (m · x)x with |x|= 1.

V is a field defined on the sphere of radiusR. We shall determine a function ψ defined

in a neighborhood of the sphere of radius R such that V (Rx) = ∇ψ(Rx)||x|=1, and

satisfying

ψxj (Rx) = −κmj + κ (m · x)xj , for |x|= 1, 1 ≤ j ≤ 3. (2.17)

In fact, we have (x = x(u, v))

∂ψ(Rx(u, v))

∂u
= R

3∑
k=1

∂ψ

∂xk
(Rx(u, v)) (xk)u = R (Dψ)(Rx(u, v)) · xu

= R (−κm · xu + κ (m · x) (x · xu)) = −κR (m · xu) = −κR ∂

∂u
(m · x),

and similarly,

∂ψ(Rx(u, v))

∂v
= −κR ∂

∂v
(m · x).

Integrating the derivative in u yields

ψ(Rx(u, v)) = −κR (m · x) + g(v),

and integrating the derivative in v we obtain

ψ(Rx(u, v)) = −κR (m · x(u, v)) + C1,

with C1 an arbitrary constant. Writing this in rectangular coordinates yields

ψ (R (z1, z2, z3)) = −κR (m · (z1, z2, z3)) + C1, for |(z1, z2, z3)|= 1.



23

We now define ψ on a neighborhood of |z|= R so that (2.17) holds. Define

ψ(z) = −κR (m · z) |z|−1+C1, for R− ε < |z|< R+ ε. (2.18)

We have

∇ψ(z) = −κRm |z|−1+κR (m · z) z |z|−3,

so for z = Rx, with |x|= 1, we obtain

∇ψ(Rx) = −κm+ κ (m · x)x

as desired. Therefore, the phase discontinuity ψ from (2.18) has gradient tangential

to the sphere and can be placed on the spherical interface |z|= R so that all rays

from the origin are refracted into the fixed direction m.

2.3 Metalenses refracting into a set of variable direc-

tions

Suppose m(u, v) = (m1(u, v),m2(u, v),m3(u, v)) is a given C2 unit field of

directions, and let Γ be a C2 surface given parametrically by r(u, v) = ρ(u, v)x(u, v)

where x(u, v) are spherical coordinates and ρ(u, v) > 0 is the polar radius. We want

to see when is it possible to have a phase discontinuity ψ on the surface Γ so that

each ray from the origin with direction x(u, v) is refracted into the direction m(u, v).

The following theorem gives sufficient conditions for such a phase discontinuity to

exist.

Theorem 2.3.1. If a variable field m and a surface Γ given parametrically by

r(u, v) = ρ(u, v)x(u, v), where x(u, v) are spherical coordinates and ρ(u, v) > 0 is
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the polar radius, satisfy the compatibility condition

mu · rv = mv · ru, (2.19)

and the determinant of the matrix−ρ
xu · xu xu · xv

xv · xu xv · xv

+ κ

ru ·mu ru ·mv

rv ·mu rv ·mv

−B
ruu · ν ruv · ν

rvu · ν rvv · ν


 ,

(2.20)

with B = (x−κm)·ν, is not zero at a point (u0, v0), then there is a neighborhood U of

the point r(u0, v0) and a phase discontinuity function ψ defined in U for the surface

Γ, with gradient ∇ψ tangential to Γ, so that each ray emanating in the direction

x(u, v), for (u, v) in a neighborhood of (u0, v0), is refracted by the metasurface (Γ, ψ)

into the direction m(u, v).

Notice that the first and third matrices in (2.20) are respectively the first

fundamental form of the 2-sphere, and the second fundamental form of the surface

Γ.

Proof. From (2.12)

x(u, v)− κm(u, v)− V (r(u, v)) = λ ν(r(u, v))

so

(x− κm− V )× ν = 0.

Taking cross product with ν yields

0 = ν × ((x− κm− V )× ν) = (x− κm− V ) (ν · ν)− ν ((x− κm− V ) · ν) .



25

If V is tangential to Γ, then V · ν = 0 and so

0 = x− κm− V − ((x− κm) · ν) ν,

that is,

V = x− κm− ((x− κm) · ν) ν.

If V (r(u, v)) = (∇ψ)(r(u, v)), then

ψxj (r(u, v)) = xj(u, v)− κmj(u, v)− ((x(u, v)− κm(u, v)) · ν(r(u, v))) νj(r(u, v)).

Since ν · ru = ν · rv = 0 and x · xu = x · xv = 0,

∂

∂u
(ψ(r(u, v)))

= (∇ψ)(r(u, v)) · ru = (x− κm) · ru − ((x− κm) · ν) (ν · ru)

= (x− κm) · ru = (x− κm) · (ρu x+ ρ xu)

= ρu (x− κm) · x+ ρ (x− κm) · xu

= ρu (1− κm · x)− κ ρm · xu = ρu (1− κm · x)− κ ρ (m · x)u + κ ρ (mu · x)

= {ρ (1− κm · x)}u + κ ρ (mu · x),

and similarly

∂

∂v
(ψ(r(u, v))) = {ρ (1− κm · x)}v + κ ρ (mv · x).

Let us now consider the first order system in Φ
Φu = κ ρ (mu · x)

Φv = κ ρ (mv · x).

(2.21)
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where Φ(u, v) = ψ(r(u, v))− ρ (1− κm · x). Then (2.21) can be written as

∇Φ = H(u, v,Φ), (2.22)

where H(u, v,Φ) = (κ ρ (mu · x), κ ρ (mv · x)). To solve the system (2.21) we need

an initial condition, say Φ(u0, v0) = Φ0, and use a result from [23, Chapter 6, pp.

117-118], that is, if

∂H1

∂v
(u, v,Φ) +

∂H1

∂Φ
(u, v,Φ)H2(u, v,Φ) =

∂H2

∂u
(u, v,Φ) +

∂H2

∂ρ
(u, v,Φ)H1(u, v,Φ)

(2.23)

holds for all (u, v,Φ) in an open set O, then for each (u0, v0,Φ0) ∈ O there is

neighborhood U of (u0, v0) and a unique solution Φ(u, v) defined for (u, v) ∈ U

solving the system (2.21) and satisfying Φ(u0, v0) = Φ0. Therefore, if the given set

of directions m(u, v) and the surface Γ satisfy

mu · rv = mv · ru, (2.24)

that is condition (2.23) for H(u, v,Φ) = (κ ρ (mu · x), κ ρ (mv · x)), then there exists

Φ solving (2.21). By integration we then obtain that the phase discontinuity ψ

satisfies along Γ that

ψ(r(u, v)) = ρ (1−κm·x)+Φ(u, v) = |r(u, v)|−κ (m(u, v)·r(u, v))+Φ(u, v). (2.25)

To find the gradient of ψ we need to have ψ defined in a neighborhood of the surface

r(u, v) such that (2.25) holds and that its gradient satisfies on r(u, v)

(∇ψ)(r(u, v)) = x− κm− ((x− κm) · ν) ν. (2.26)
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Notice that this implies (∇ψ)(r(u, v)) ⊥ ν. To construct the function ψ in a neigh-

borhood of the surface Γ (we will construct it in a neighborhood of each point in Γ),

given parametrically by r(u, v), we use the notion of envelope from classical differ-

ential geometry; see for example [33, Chapter 5, Section 4] or [7, Chapter 3]. Since

the required ψ must satisfy (2.25), consider the surface Γ′ given parametrically by

P (u, v) = (r(u, v), |r(u, v)|−κ (m(u, v) · r(u, v)) + Φ(u, v)) (2.27)

in four dimensions. At each point P (u, v), consider the 4-dimensional vector

N(u, v) = (x− κm− ((x− κm) · ν) ν,−1) ,

where x = x(u, v) and ν is the unit normal to the surface Γ at r(u, v). Next consider

the plane Πuv passing through the point P (u, v) and with normal N(u, v), that is,

in coordinates x1, x2, x3, x4, Πuv has equation

F (x1, x2, x3, x4, u, v) := N(u, v) · ((x1, x2, x3, x4)− P (u, v)) = 0. (2.28)

Therefore, we have a family of planes Πuv depending on the parameters

u, v, and we will let x4 = ψ(x1, x2, x3) be by definition the envelope to this family

of planes. Of course, we need to know under what conditions on r(u, v) and m(u, v)

this envelope ψ exists. It will be defined by solving the system of equations

F (x1, x2, x3, x4, u, v) = 0

∂F

∂u
(x1, x2, x3, x4, u, v) = 0

∂F

∂v
(x1, x2, x3, x4, u, v) = 0.

(2.29)
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In fact, let us fix values u = u0, v = v0, and let P0 = P (u0, v0) = (p1, p2, p3, p4) be

the corresponding value on the surface Γ′; and consider the map

G (x1, x2, x3, x4, u, v) =(
F (x1, x2, x3, x4, u, v),

∂F

∂u
(x1, x2, x3, x4, u, v),

∂F

∂v
(x1, x2, x3, x4, u, v)

)
.

The function G has continuous partial derivatives in a neighborhood of the point

(p1, p2, p3, p4, u0, v0), and

G (p1, p2, p3, p4, u0, v0) = 0.

By the implicit function theorem, if the Jacobian determinant

∂G

∂(x4, u, v)
(p1, p2, p3, p4, u0, v0) = det



∂F

∂x4

∂F

∂u

∂F

∂v

∂2F

∂x4∂u

∂2F

∂u∂u

∂2F

∂v∂u

∂2F

∂x4∂v

∂2F

∂u∂v

∂2F

∂v∂v



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(p1,p2,p3,p4,u0,v0)

6= 0,

(2.30)

then there are unique differentiable functions g1, g2, g3 in the variables x1, x2, x3

defined in a neighborhood U of (p1, p2, p3) such that p4 = g1(p1, p2, p3), u0 =

g2(p1, p2, p3) and v0 = g3(p1, p2, p3) with

G (x1, x2, x3, g1(x1, x2, x3), g2(x1, x2, x3), g3(x1, x2, x3)) = 0

for all (x1, x2, x3) ∈ U . Therefore, if we let ψ(x1, x2, x3) = g1(x1, x2, x3) for

(x1, x2, x3) ∈ U , then ψ is the function we need, i.e., ψ is by construction defined in

a neighborhood of the point (p1, p2, p3) ∈ Γ and satisfies (2.25) and (2.26). We now

analyze under what conditions on the surface Γ and m, (2.30) holds. Notice first
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that since ∂x4F = −1, the matrix inside the determinant in (2.30) equals

1
∂F

∂u

∂F

∂v

0
∂2F

∂u∂u

∂2F

∂v∂u

0
∂2F

∂u∂v

∂2F

∂v∂v


,

and therefore, (2.30) means

det


∂2F

∂u∂u

∂2F

∂v∂u

∂2F

∂u∂v

∂2F

∂v∂v

 6= 0.

Let us find what this means in terms of the initial surface Γ and the field m. To

simplify the notation let X = (x1, x2, x3, x4), so we can write (2.28) as

F (X,u, v) = N(u, v) · (X − P (u, v)) .

By calculation

Fu = Nu · (X − P )−N · Pu

Fuu = Nuu · (X − P )− 2Nu · Pu −N · Puu

Fuv = Nuv · (X − P )−Nu · Pv −Nv · Pu −N · Puv

Fvv = Nvv · (X − P )− 2Nv · Pv −N · Pvv.

(2.31)

We first show that

N · Pu = N · Pv = 0. (2.32)

Indeed, we have

P (u, v) = ρ(u, v) (x, 1− κm · x) + (0,Φ),
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so

Pu = ρu (x, 1− κm · x) + ρ (xu,−κm · xu − κmu · x) + (0,Φu) (2.33)

Pv = ρv (x, 1− κm · x) + ρ (xv,−κm · xv − κmv · x) + (0,Φv).

Hence

N · Pu =

{ρu (x, 1− κm · x) + ρ (xu,−κm · xu − κmu · x) + (0,Φu)} ·

(x− κm− [(x− κm) · ν] ν,−1)

= (ρu x+ ρ xu) · (x− κm− [(x− κm) · ν] ν)− ρu (1− κm · x)

+ ρ (κm · xu + κmu · x)− Φu

= ρu − ρu κx ·m− ρ κxu ·m− ρu + ρu κm · x+ ρ κm · xu

+ ρ κmu · x− ρ κmu · x

= 0,

since (ρu x+ ρ xu) · ν = ru · ν = 0 and xu · x = 0. The same calculation with Pv

instead of Pu yields the second identity in (2.32).

Next, differentiating (2.32) with respect to u and v yields

N · Puu = −Nu · Pu, N · Puv = −Nu · Pv = −Nv · Pu, N · Pvv = −Nv · Pv,

since Puv = Pvu. Hence letting X = P in (2.33) yields

Fuu = −Nu · Pu, Fuv = −Nv · Pu = −Nu · Pv, Fvv = −Nv · Pv.
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Now let us calculate these dot products. First set

B = (x− κm) · ν,

and write

Nu · Pu

= {ρu (x, 1− κm · x) + ρ (xu,−κm · xu) + (0,Φu)} ·

{xu − κmu − [(x− κm) · ν]u ν − [(x− κm) · ν] νu, 0}

= (ρu x+ ρ xu) · (xu − κmu −Bu ν −B νu)

= (ρu x+ ρ xu) · xu − κ (ρu x+ ρ xu) ·mu −Bu (ρu x+ ρ xu) · ν

−B (ρu x+ ρ xu) · νu

=
(
sin2 v

)
ρ− κ (ρu x+ ρ xu) ·mu −B (ρu x+ ρ xu) · νu

=
(
sin2 v

)
ρ− κ ru ·mu −B ru · νu,

since x · xu = 0, xu · xu = sin2 v, and (ρu x+ ρ xu) · ν = ru · ν = 0. Also xv · xv = 1

and xu · xv = 0, so we obtain similarly

Nv · Pv = ρ− κ rv ·mv −B rv · νv, Nu · Pv = −κ ru ·mv −B ru · νv.

Next, differentiating ru · ν = rv · ν = 0 yields

ru · νu = −ruu · ν, ru · νv = −ruv · ν, rv · νv = −rvv · ν. (2.34)

Therefore,Fuu Fuv

Fvu Fvv

 =

− (sin2 v
)
ρ+ κ ru ·mu −B ruu · ν κ ru ·mv −B ruv · ν

κ ru ·mv −B ruv · ν −ρ+ κ rv ·mv −B rvv · ν





32

= −ρ

xu · xu xu · xv

xv · xu xv · xv

+ κ

ru ·mu ru ·mv

rv ·mu rv ·mv

−B
ruu · ν ruv · ν

rvu · ν rvv · ν

 ,

with B = (x− κm) · ν.

Remark 2.3.2 (Case when m is a constant vector). If m(u, v) = (m1,m2,m3) is

constant, then (2.19) is clearly satisfied by any Γ and, in condition (2.20), the second

matrix on the right hand side is zero.

Remark 2.3.3. To illustrate the determinant condition in Theorem 2.3.1, let us

consider the special case when Γ is a sphere centered at the origin, and m is a

constant vector. We have r(u, v) = Rx(u, v), and ν = x(u, v). So ruu = Rxuu and

similarly for rvv and ruv. Also B = 1 − κm · x, xuu · x = − sin2 v, xuv · x = 0, and

xvv · x = −1. Hence ruu · x = −R sin2 v, ruv · x = 0, and rvv · x = −R. Therefore,

the determinant in (2.20) equals

R2 sin2 v (1−B)2 = R2 κ2
(
sin2 v

)
(m · x)2.

For example, if m = (0, 0, 1), i.e., all rays are refracted vertically, then the determi-

nant equals

R2 κ2 (sin v cos v)2 =
R2 κ2

4
sin2(2v)

which is not zero as long as v 6= π/2 or zero. This shows also that for the sphere, the

phase discontinuity ψ exists and can be obtained by solving the system of equations

(2.29). Notice that in this case, a phase discontinuity ψ was calculated explicitly in

Section 2.2.2 and given by (2.18).
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Remark 2.3.4 (Case when Γ is off centered). A case considered in [2, Section 3]:

a sphere of radius R is centered at a point (0, 0, a) with a > R, and the authors

claim there that it is not possible to find a phase discontinuity on such a sphere so

that all rays from the origin are refracted into the vertical direction. We believe

this claim is in error and in fact, with the method above, will show that for each

unit m = (m1,m2,m3) with m3 > 0, there is a phase discontinuity ψ defined in a

neighborhood of such a sphere so that its gradient is tangential to the sphere and so

that radiation from the origin is refracted into a fixed direction m, see Figure 2.3.

In particular, when m is vertical, a phase discontinuity exists. By reversibility of

(Γ,ψ)

m

(0,a)

O

R

n1

n2

x

Figure 2.3: Off centered spherical metalens refracting into a fixed direction

optical paths, this shows that the conclusion in [2, Section 3] is incorrect.
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First, the lower part of the sphere with center at (0, 0, a) and radius R is

parametrized by the vector r(u, v) = ρ(u, v)x(u, v) with

ρ(u, v) = a cos v −
√
R2 − a2 sin2 v,

where 0 ≤ v ≤ arcsin(R/a); and the unit normal to the sphere pointing upwards is

ν =
(0, 0, a)− ρ(u, v)x(u, v)

R
.

To show our claim, we need to verify that the determinant in (2.20) is not zero.

From (2.34), we obtain by simple calculations that

ruu · ν = −ru · νu =
1

R

(
sin2 v

)
ρ2

ruv · ν = −ru · νv =
1

R
ρu ρv = 0

rvv · ν = −rv · νv =
1

R

(
(ρv)

2 + ρ2
)
.

Therefore, the determinant in (2.20) equals

det

Fuu Fuv

Fvu Fvv

 = ρ (sin2 v)

(
1 +

B

R
ρ

) (
ρ+

B

R

(
ρ2 + (ρv)

2
))

, (2.35)

with

B = (x− κm) · ν =
1

R
(x− κm) · ((0, 0, a)− ρ x)

=
1

R

(√
R2 − a2 sin2 v − κ am3 + κ ρ (m · x)

)
.

The last determinant is not zero for u, v such that

sin2 v 6= 0, 1 +
B

R
ρ 6= 0, and ρ+

B

R

(
ρ2 + (ρv)

2
)
6= 0.
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Let us take, for example, m = (0, 0, 1), i.e., rays are refracted vertically, then we get

B =
1

R

(
(1− κ cos v)

√
R2 − a2 sin2 v − κ a sin2 v

)
,

so B is independent of u. If v ≈ 0, then B ≈ 1− κ, ρ ≈ a−R and ρv ≈ 0, so

1 +
B

R
ρ ≈ 1 + (1− κ)

( a
R
− 1
)

ρ+
B

R

(
ρ2 + (ρv)

2
)
≈ (a−R)

(
1 + (1− κ)

( a
R
− 1
))

.

Recall that κ = n2/n1. If κ < 1, since a > R, we obtain that 1+(1−κ)
( a
R
− 1
)
6= 0.

If κ > 1, then 1+(1−κ)
( a
R
− 1
)
6= 0 if and only if κ 6= 1+

R

a−R
. This shows that

in these cases, the determinant in (2.35) is not zero for v 6= 0 with v close to zero.

Therefore, there exists a phase discontinuity ψ, on the sphere centered at (0, 0, a)

with radius R, defined in a neighborhood of each point of the form ρ(u, v)x(u, v)

with v close to zero.

2.4 Given a phase discontinuity, find an admissible sur-

face

We now turn to the second question proposed at the beginning of Section

2.2, that is, of finding the surface Γ when the field V = (V1, V2, V3) is given. The

unknown surface is given parametrically by

r(u, v) = ρ(u, v)x(u, v),

where x(u, v) are spherical coordinates as before, m is a constant vector, and we

seek the polar radius ρ; the value of V along the surface is V (r(u, v)). The following

theorem gives a sufficient condition for the existence of Γ.
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Theorem 2.4.1. If the field V (r(u, v)) = ∇ψ(r(u, v)) for some function ψ, and

x · (Ax×W ) = 0, 3 (2.36)

holds in an open set O in the variables (ρ, u, v), where W (ρ, u, v) = κm+V (ρ x(u, v))

and A(ρ, u, v) = ∇2ψ(ρ x(u, v)), then for each (ρ0, u0, v0) ∈ O with x(u0, v0) ·

W (ρ0, u0, v0) 6= 1, the system (2.37) has a unique solution ρ(u, v) defined in a neigh-

borhood of (u0, v0) and satisfying the initial condition ρ(u0, v0) = ρ0.

Proof. From the generalized Snell law (2.12), x(u, v)−κm−V (r(u, v)) is a multiple

of the normal ν at r(u, v), so

ru(u, v) · (x(u, v)− κm− V (r(u, v))) = 0 and

rv(u, v) · (x(u, v)− κm− V (r(u, v))) = 0.

We have

ru(u, v) = [ρ(u, v)]u x(u, v) + ρ(u, v)xu(u, v),

rv(u, v) = [ρ(u, v)]v x(u, v) + ρ(u, v)xv(u, v),

so

0 = ru(u, v) · (x(u, v)− κm− V (r(u, v)))

= ([ρ(u, v)]u x(u, v) + ρ(u, v)xu(u, v)) · (x(u, v)− κm− V (r(u, v)))

= [ρ(u, v)]u (1− x(u, v) · [κm+ V (r(u, v))])− ρ(u, v)xu(u, v) · [κm+ V (r(u, v))] ,

3Equivalently W · (Ax× x) = Ax · (x×W ) = 0.
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and a similar equation for rv. That is, ρ(u, v) satisfies the first order nonlinear

system of pdes (depending on V )4:
ρu(u, v)− xu · [κm+ V (ρ(u, v)x(u, v))]

1− x(u, v) · [κm+ V (ρ(u, v)x(u, v))]
ρ(u, v) = 0

ρv(u, v)− xv · [κm+ V (ρ(u, v)x(u, v))]

1− x(u, v) · [κm+ V (ρ(u, v)x(u, v))]
ρ(u, v) = 0.

(2.37)

If F = (F1, F2) with

F1(u, v, ρ) =
xu · [κm+ V (ρ x(u, v))]

1− x(u, v) · [κm+ V (ρ x(u, v))]
ρ

F2(u, v, ρ) =
xv · [κm+ V (ρ x(u, v))]

1− x(u, v) · [κm+ V (ρ x(u, v))]
ρ,

then (2.37) can be written as

∇ρ = F (u, v, ρ). (2.38)

To solve the system (2.38) we need an initial condition, say ρ(u0, v0) = ρ0, and use

the result from [23, Chapter 6, pp. 117-118] as in the previous section. We will see

under what circumstances on the field V , F satisfies condition (2.23), and therefore,

the existence of the desired surface r(u, v) will be guaranteed. Set

W (u, v, ρ) = κm+ V (ρ x(u, v)) , (2.39)

then

F1(u, v, ρ) =
xu ·W (u, v, ρ)

1− x(u, v) · [W (u, v, ρ)]
ρ,

F2(u, v, ρ) =
xv ·W (u, v, ρ)

1− x(u, v) · [W (u, v, ρ)]
ρ.

4We are assuming that 1− x(u, v) · [κm+ V (ρ(u, v)x(u, v))] 6= 0.
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We have

∂F1

∂v
= (xuv ·W + xu ·Wv) (1− x ·W )−1ρ

+ (xv ·W + x ·Wv) (xu ·W ) (1− x ·W )−2ρ

∂F2

∂u
= (xvu ·W + xv ·Wu) (1− x ·W )−1ρ

+ (xu ·W + x ·Wu) (xv ·W ) (1− x ·W )−2ρ

∂F1

∂ρ
= (xu ·W ) (1− x ·W )−1

+
{

(xu ·Wρ) (1− x ·W )−1 + (xu ·W ) (x ·Wρ) (1− x ·W )−2
}
ρ

∂F2

∂ρ
= (xv ·W ) (1− x ·W )−1

+
{

(xv ·Wρ) (1− x ·W )−1 + (xv ·W ) (x ·Wρ) (1− x ·W )−2
}
ρ.

Hence,

∂F1

∂v
− ∂F2

∂u
=
{

(xu ·Wv − xv ·Wu) (1− x ·W )−1

+ [(x ·Wv) (xu ·W )− (x ·Wu) (xv ·W )] (1− x ·W )−2
}
ρ

and

∂F1

∂ρ
F2 −

∂F2

∂ρ
F1 =

[
(xu ·W ) (1− x ·W )−1 +

{
(xu ·Wρ) (1− x ·W )−1

+ (xu ·W ) (x ·Wρ) (1− x ·W )−2
}
ρ
]

(xv ·W ) (1− x ·W )−1

−
[
(xv ·W ) (1− x ·W )−1 +

{
(xv ·Wρ) (1− x ·W )−1

+ (xv ·W ) (x ·Wρ) (1− x ·W )−2
}
ρ
]
(xu ·W ) (1− x ·W )−1

= [(xu ·Wρ) (xv ·W )− (xv ·Wρ) (xu ·W )] (1− x ·W )−2 ρ.
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Therefore, (2.23) holds if

∂F1

∂v
− ∂F2

∂u
+
∂F1

∂ρ
F2 −

∂F2

∂ρ
F1

=
{

(xu ·Wv − xv ·Wu) (1− x ·W )−1 +
(

(x ·Wv) (xu ·W )

− (x ·Wu) (xv ·W )
)

(1− x ·W )−2
}
ρ

+ [(xu ·Wρ) (xv ·W )− (xv ·Wρ) (xu ·W )] (1− x ·W )−2 ρ

= 0.

Since we assume 1− x ·W 6= 0 and ρ > 0, this is equivalent to

(xu ·Wv − xv ·Wu) (1− x ·W ) + ((x ·Wv) (xu ·W )− (x ·Wu) (xv ·W ))

+ ((xu ·Wρ) (xv ·W )− (xv ·Wρ) (xu ·W )) = 0,

that is,

(xu ·Wv − xv ·Wu) (1− x ·W ) (2.40)

+
{

[(x ·Wv)− (xv ·Wρ)](xu ·W )− [(x ·Wu)− (xu ·Wρ)] (xv ·W )
}

= 0.

We have

Wu = ρ (∇V1 · xu,∇V2 · xu,∇V3 · xu)

Wv = ρ (∇V1 · xv,∇V2 · xv,∇V3 · xv)

Wρ = (∇V1 · x,∇V2 · x,∇V3 · x) .

Now

x ·Wv = ρ

3∑
k=1

xk (∇Vk · xv) = ρ
3∑

k=1

xk

3∑
j=1

∂Vk
∂yj

(xj)v = ρ

3∑
k,j=1

∂Vk
∂yj

(xj)v xk.
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If we let

A =



∂V1

∂y1

∂V1

∂y2

∂V1

∂y3

∂V2

∂y1

∂V2

∂y2

∂V2

∂y3

∂V3

∂y1

∂V3

∂y2

∂V3

∂y3


,

then

x ·Wv = ρ xA (xv)
t,

where x, xv are row vectors and t denotes the transpose. Similarly,

x ·Wu = ρ xA (xu)t xu ·Wv = ρ xuA (xv)
t

xv ·Wu = ρ xv A (xu)t xu ·Wρ = xuA (x)t xv ·Wρ = xv A (x)t.

Since by assumption V = ∇ψ, then A = ∇2ψ is a symmetric matrix, so

xu ·Wv = xv ·Wu

(x ·Wv)− (xv ·Wρ) = (ρ− 1)xA (xv)
t =

ρ− 1

ρ
(x ·Wv)

(x ·Wu)− (xu ·Wρ) = (ρ− 1)xA (xu)t =
ρ− 1

ρ
(x ·Wu)

and (2.40) reads

(ρ− 1)
{

(xA (xv)
t) (xu ·W )− (xA (xu)t) (xv ·W )

}
= 0, 5 (2.41)

which can be written as

det

xA (xu)t xA (xv)
t

xu ·W xv ·W

 = det

xu ·Ax xv ·Ax

xu ·W xv ·W

 = 0.

5Since (x ·W )u = xu ·W +ρ xA (xu)t and similarly for (x ·W )v, this condition can be re-written
as (ρ− 1)

{
xA (xv)t (x ·W )u − xA (xu)t (x ·W )v

}
= 0.
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From the Cauchy-Binet formula for cross products6, this means that

(xu × xv) · (Ax×W ) = 0,

and since xu × xv ‖ x, (2.41) is equivalent to 2.36:

x · (Ax×W ) = 0.

Notice that if V = V0 is a constant field, then A = 0, and so (2.41)

obviously holds. In this case, (2.37) can be easily integrated, and the solution is

ρ(u, v) =
C1

1− x(u, v) · (κm+ V0)
+ C2

with Ci constants.

Notice also that with the choice V , as in (2.15), with h 6= 0 so 1−x ·W 6= 0,

the system of equations (2.37) becomes

ρu(u, v)− sinu

cosu
ρ(u, v) = 0

ρv(u, v) +
cos v

sin v
ρ(u, v) = 0,

whose solution is ρ(u, v) =
C

cosu sin v
, where the constant C is determined by the

point where the solution passes through. This is in agreement with (2.13).

6(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
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2.5 Near field refracting metasurfaces

The near field case can be regarded as a special case from Section 2.3,

when the vector field m(u, v) points towards a fixed point Q, and therefore, the

method from that section can be used to derive conditions for the existence of

the desired metasurface. In fact, if the surface Γ is parametrized by r(u, v) and

m(u, v) =
Q− r(u, v)

|Q− r(u, v)|
, then it is easy to see that the compatibility condition (2.19)

holds. The existence of the phase discontinuity then follows when the determinant

in (2.20) is not zero.

However, the phase discontinuities in the planar and spherical cases can

be obtained explicitly as follows; see Figure 2.4 and Figure 2.5.

(Γ,ψ)

m

O

Q

n1

n2

x

Figure 2.4: Planar metalens in the near field
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(Γ,ψ)

m

O

Q

n1

n2

x

Figure 2.5: Spherical metalens in the near field
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2.5.1 Case of a plane interface

Let O be the origin in medium I with index n1, and let Q = (q1, q2, q3) be

a point in medium II with index n2. Denote by Γ the plane with equation x1 = a

so that it separates the points O and Q. We find the field V so that rays from O

are refracted into Q. We know from Section 2.2.1 that Γ is given parametrically

by (2.13); the normal ν = (1, 0, 0). So we seek V such that (2.12) holds. Since the

refracted vector from each point r(u, v) on the plane interface to the point Q has

unit direction
Q− r(u, v)

|Q− r(u, v)|
, V must satisfy

cosu sin v − κ q1 − a
|Q− r(u, v)|

= λ+ V1

sinu sin v − κ q2 − a tanu

|Q− r(u, v)|
= V2

cos v − κ q3 − a/cosu tan v

|Q− r(u, v)|
= V3.

Rewriting these equations in rectangular coordinates yields

a√
a2 + x2

2 + x2
3

− κ q1 − a
|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

= λ+ V1

x2√
a2 + x2

2 + x2
3

− κ q2 − x2

|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

= V2

x3√
a2 + x2

2 + x2
3

− κ q3 − x3

|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

= V3.

Therefore, Vi, i = 1, 2, 3, are determined:

V1(a, x2, x3) = ∂x1

(√
x2

1 + x2
2 + x2

3

)∣∣∣∣
x1=a

+ κ
∂

∂x1
|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

− λ

V2(a, x2, x3) = ∂x2

(√
x2

1 + x2
2 + x2

3

)∣∣∣∣
x1=a

+ κ
∂

∂x2
|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

V3(a, x2, x3) = ∂x3

(√
x2

1 + x2
2 + x2

3

)∣∣∣∣
x1=a

+ κ
∂

∂x3
|Q− (x1, x2, x3)|

∣∣∣∣
x1=a

,
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where λ is chosen arbitrarily. Notice that if we let

ψ(x1, x2, x3) =
√
x2

1 + x2
2 + x2

3 + κ |Q− (x1, x2, x3)|

and choose λ = 0, then V = ∇ψ, and so the plane with the phase discontinuity

function ψ does the desired refraction job.

2.5.2 Case of a spherical interface

If Γ is the sphere of radius R centered at the origin, that is, r(u, v) =

Rx(u, v), then the normal ν = x, and from (2.12), we get

(
x− κ Q− r(u, v)

|Q− r(u, v)|
− V

)
× x = 0.

As before, taking cross product with x yields

V + κ
Q− r(u, v)

|Q− r(u, v)|
−
(
κ

(
Q− r(u, v)

|Q− r(u, v)|
· x
)

+ V · x
)
x = 0.

Assuming V is tangential to the sphere,

V = −κ Q− r(u, v)

|Q− r(u, v)|
+ κ

(
Q− r(u, v)

|Q− r(u, v)|
· x
)
x.

If V (Rx(u, v)) = (∇ψ)(Rx(u, v)), then

ψxj (Rx(u, v)) = −κ qj −Rxj(u, v)

|Q−Rx(u, v)|
+ κ

(
Q−Rx(u, v)

|Q−Rx(u, v)|
· x
)
xj , j = 1, 2, 3.

(2.42)

Hence,

∂

∂u
(ψ(Rx(u, v))) = (∇ψ)(Rx(u, v)) ·Rxu = −κR Q−Rx(u, v)

|Q−Rx(u, v)|
· xu, (2.43)
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and similarly,

∂

∂v
(ψ(Rx(u, v))) = −κR Q−Rx(u, v)

|Q−Rx(u, v)|
· xv, (2.44)

since x · xu = x · xv = 0. Since ψ is assumed C2, we get

(
Q−Rx(u, v)

|Q−Rx(u, v)|

)
u

· xv =

(
Q−Rx(u, v)

|Q−Rx(u, v)|

)
v

· xu. (2.45)

Integrating (2.43) in u yields

ψ(Rx(u, v)) = −κR
∫

Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xu(u′, v) du′ + h(v),

for some function h. To calculate h, we differentiate the integral with respect to v

and use (2.45):

∂

∂v
(ψ(Rx(u, v))) = −κR

∫
∂

∂v

(
Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xu(u′, v)

)
du′ + h′(v)

= −κR
∫ { ∂

∂v

(
Q−Rx(u′, v)

|Q−Rx(u′, v)|

)
· xu(u′, v)

+
Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xuv(u′, v)

}
du′ + h′(v)

= −κR
∫ { ∂

∂u

(
Q−Rx(u′, v)

|Q−Rx(u′, v)|

)
· xv(u′, v)

+
Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xvu(u′, v)

}
du′ + h′(v)

= −κR
∫

∂

∂u

(
Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xv(u′, v)

)
du′ + h′(v)

= −κR
(
Q−Rx(u, v)

|Q−Rx(u, v)|
· xv(u, v)

)
+ h′(v)

which implies h′(v) = 0 from (2.44). Therefore, the phase discontinuity ψ on the

sphere satisfies

ψ(Rx(u, v)) = −κR
∫

Q−Rx(u′, v)

|Q−Rx(u′, v)|
· xu(u′, v) du′ + C



47

= κ

∫
∂u(|Q−Rx(u′, v)|) du′ + C = κ |Q−Rx(u, v)|+C,

with C a constant. Writing this in rectangular coordinates yields

ψ(R(z1, z2, z3)) = κ |Q−R(z1, z2, z3)|+C, for |(z1, z2, z3)|= 1.

We now define ψ on a neighborhood of |z|= R so that (2.42) holds. Let

ψ(z) = κ

∣∣∣∣Q−R z

|z|

∣∣∣∣+ C, for R− ε < |z|< R+ ε. (2.46)

We have

∇ψ(z) = −κR
Q−R z

|z|∣∣∣Q−R z
|z|

∣∣∣ 1

|z|
+ κR

 Q−R z
|z|∣∣∣Q−R z
|z|

∣∣∣ · z|z|
 z

|z|2
,

so for z = Rx, with |x|= 1, we obtain

∇ψ(Rx) = −κ Q−Rx
|Q−Rx|

+ κ

(
Q−Rx
|Q−Rx|

· x
)
x

as desired. Therefore, the phase discontinuity ψ in (2.46) has gradient tangential to

the sphere and can be placed on the spherical interface |z|= R so that all rays from

the origin are refracted into the point Q.
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CHAPTER 3

DERIVATION OF PARTIAL

DIFFERENTIAL EQUATIONS

FOR METASURFACES

In this chapter we solve the following. Let Ω1 ⊂ R2 , Ω2 ⊂ S2, and Γ a

surface given by the graph of the function u : Ω1 → R+. We are given two intensities,

i.e, two non negative functions, f defined in Ω1 and g defined in Ω2 satisfying the

energy conservation condition∫
Ω1

f(x, y) dxdy =

∫
Ω2

g(z) dσ(z),

where dσ(z) denotes as usual the element of area in the unit sphere of R3. A

collimated beam is emanating from Ω1. That is, for each (x, y) ∈ Ω1 a ray is emitted

in the vertical direction e3 = (0, 0, 1) with intensity f(x, y) and strikes the surface

Γ at the point (x, y, u(x, y)) = P . According to the generalized law of reflection
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in Remark 2.1.2, this ray is reflected by the metasurface (Γ, ψ), into a ray having

direction T (x, y) = e3 − λ ν(P )−∇ψ(P ), where ν(P ) is the normal to Γ at P . The

question is then to find a function ψ defined in Γ, called a phase discontinuity, such

that the metalens, i.e., the pair (Γ, ψ) reflects all rays from Ω1 into Ω2, that is,

T (Ω1) = Ω2, and the energy conservation balance

∫
E
f(x, y) dxdy =

∫
T (E)

g(z) dσ(z) (3.1)

holds for each subset E of Ω1, see Figure 3.1. This problem is solved in Section 3.1.1

when Γ is an horizontal plane above the x−y plane. We also solve similar problems

when the incident rays emanate from a point source into a set of unit directions Ω1,

see Figure 3.2. Such a problem is solved in Section 3.1.2 when Γ is an horizontal

plane.

In addition, we consider and solve similar problems for refraction using the

generalized law (2.6), both in the collimated and point source cases when Γ is an

horizontal plane above the x − y plane, see Figures 3.3 and 3.4, Sections 3.2.1 and

3.2.2.

To do this we derive the partial differential equation, for each problem,

satisfied by the phase discontinuity ψ and show it is a Monge-Ampère equation.

Next we show that the resulting equations have solutions by application of a result

by Urbas [40]. The equations corresponding to the four problems considered are

(3.5), (3.16), (3.17) and (3.19), and they can be regarded as particular cases of

(3.20). A summary of these equations can in found in Section 3.3.

Monge-Ampère equations appear naturally in optics for freeform lens de-
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sign that have been the subject of recent research, see for example [41]-[21]. There-

fore, it is natural that these type of equations appear also for metasurfaces. Monge-

Ampère equations have been recently the subject of important mathematical re-

search due to their connections with various topics such us optimal mass transport.

We refer the reader to [22] and [10] for details and references therein.

We mention that using the ideas from [17], recent work for reflection is

done in [4] to design graphene-based metasurfaces that can be actively tuned be-

tween different regimes of operation, such as anomalous beam steering and focusing,

cloaking, and illusion optics, by applying electrostatic gating without modifying the

geometry of the metasurface.

Finally, if the surface Γ is not necessarily a plane, then is possible to

derive the corresponding partial differential equation that the phase discontinuity ψ

satisfies, in both the reflection and refraction cases. These are equations of Monge-

Ampère type that require a more complicated derivation carried out in Section 3.4

and Section 3.5. Existence of solutions to these equations will be considered in

future works.

3.1 Reflection when Γ is a plane

3.1.1 Collimated case

Here, we solve the first problem stated in the introduction. From Remark

2.1.2 with n1 = 1, the vertical ray emanating from the point (x, y) ∈ Ω1 is reflected
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by the metasurface (Γ, ψ) into the unit direction

T (x, y) = i(x, y)− λν(x, y)−∇ψ(x, y), (3.2)

where i(x, y) = (0, 0, 1), ν(x, y) is the normal to Γ = {z = 1}, and

λ = (i−∇ψ) · ν +
√

1− (|i−∇ψ|2−[(i−∇ψ) · ν]2) = 1 +
√

1− ψ2
x − ψ2

y .

We remark that, in the last identity we have used, ψz = 0 because we seek a phase

discontinuity ψ tangential to the surface Γ.

(Γ,ψ)

x

Ω1

m

Figure 3.1: Reflection from an extended source (rays are monochromatic; colors are
used only for visual purposes).

Therefore,

T (x, y) = (T1, T2, T3) = −
(
ψx(x, y), ψy(x, y),

√
1− ψ2

x(x, y)− ψ2
y(x, y)

)
.

From the conservation of energy condition (3.1) and the formula of change of vari-

ables for surface integrals∫
E
f(x) dx =

∫
T (E)

g(y) dσ(y) =

∫
E
g(T (z))|JT (z)| dz, (3.3)
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for each open set E ⊂ Ω1, and where |JT |= |Tx(x, y) × Ty(x, y)|. From (3.3), we

obtain

f(x) = g(T (x, y)) |JT (x, y)| for (x, y) ∈ Ω1. (3.4)

To calculate |JT (x, y)|, because |T (x, y)|= 1, differentiating with respect to x and y

yields the equations T · Tx = T · Ty = 0. Hence, assuming T3(x, y) 6= 0 and solving

these equations in (T3)x and (T3)y, we obtain

(T3)x = −T1(T1)x + T2(T2)x
T3

and (T3)y = −T1(T1)y + T2(T2)y
T3

.

Using these two equations in the determinant defining the cross product Tx × Ty,

from an elementary calculation, we obtain

Tx × Ty =
1

T3
det

(T1)x (T1)y

(T2)x (T2)y

 T.

Hence,

|JT |=
1

|T3(x, y)|
|det(D2ψ)|,

where D2ψ is the matrix of the second derivatives in x and y. Therefore, from (3.4)

the phase discontinuity ψ satisfies the following Monge-Ampère equation

1√
1− ψ2

x(x, y)− ψ2
y(x, y)

|det(D2ψ)|= f(x, y)

g (T (x, y))
. (3.5)

To show that (3.5) has solutions, we invoke [40, Theorem 2], which says

the following:

Theorem 3.1.1. Let Ω1 and Ω∗ be uniformly convex domains in Rn with ∂Ω1,

∂Ω∗ ∈ C2,1 and let f1 ∈ C1,1(Ω̄1), f2 ∈ C1,1(Ω̄∗) be positive functions satisfying∫
Ω1

f1(x) dx =

∫
Ω∗
f2(p) dp. (3.6)
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Then the boundary value problem

det(D2u) =
f1(x)

f2(∇u)
in Ω1, ∇u(Ω1) = Ω∗,

has a convex solution u belonging to C3,α(Ω1) ∩ C2,α(Ω̄1) for any α ∈ (0, 1). Any

two such solutions differ by a constant.

In fact, to apply this result to show existence of solutions to (3.5), set

n = 2, let

f1(x, y) = f(x, y) for (x, y) ∈ D1 = Ω1 ,

f2(p1, p2) =
g
(
−
(
p1, p2,

√
1− p2

1 − p2
2

))
√

1− p2
1 − p2

2

,

for (p1, p2) ∈ D2 = −Π(Ω2), where Π is the orthogonal projection from a set on

the unit sphere onto the x, y-plane. In particular, Ω2 is a subset of the lower unit

hemisphere z ≤ 0. We need to verify (3.6). From the conservation of energy

assumption ∫
Ω1

f(x) dx =

∫
Ω2

g(y) dσ(y),

and using the parametrization q = (q1, q2)→
(
q,−

√
1− |q|2

)
, we can write

∫
Ω2

g(y) dσ(y) =

∫
Π(Ω2)

g
(
q,−

√
1− |q|2

)
√

1− |q|2
dq

=

∫
−Π(Ω2)

g
(
−p,−

√
1− |p|2

)
√

1− |p|2
dp =

∫
D2

f2(p1, p2) dp.

Therefore, (3.6) holds; hence, the existence of solutions to (3.5) follows.
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(Γ,ψ)

x

O

m

Figure 3.2: Reflection from a point source

3.1.2 Point Source Reflection

We now have a domain Ω1 of the unit sphere in R3, and rays emanate from

the origin with intensity f(x) ≥ 0 for each x ∈ Ω1. Let Ω2 be as in the previous

section, i.e., a domain of the unit sphere, and let g > 0 be a function in Ω2 such

that the following energy conservation condition holds:

∫
Ω1

f(x) dσ(x) =

∫
Ω2

g(y) dσ(y). (3.7)

Again, Γ is the plane z = 1. Of course, we assume that rays from the origin with unit

direction in Ω1 reach the plane Γ. The question is then to find a phase discontinuity

ψ on Γ such that all rays emitted from the origin with direction x ∈ Ω1 and intensity

f(x) are reflected by the metasurface (Γ, ψ) into Ω2 such that

∫
E
f(x) dσ(x) =

∫
T (E)

g(y) dσ(y) (3.8)
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for each subset E of Ω1 and T (Ω1) = Ω2, where T is the reflection map. In order

to find the equation ψ satisfies, we parametrize the domains in the sphere using

spherical coordinates: s(u, v) = (cosu sin v, sinu sin v, cos v), 0 ≤ u ≤ 2π, 0 ≤ v ≤

π/2. Parametrizing Ω1 in these coordinates, we obtain Ω1 = s(O), for some domain

O ⊂ [0, 2π]× [0, π/2]. Rewriting the integrals in (3.8) in spherical coordinates, and

letting s(U) = E, we have

∫
U
f(s(u, v))|su × sv|dudv =

∫
E
f(x) dσ(x)

=

∫
T (E)

g(y) dσ(y) =

∫
U
g(T (s(u, v)))|(T ◦ s)u × (T ◦ s)v|dudv.

Because this equation must hold for all open sets U ⊂ O, it follows that T satisfies

the equation

|(T ◦ s)u × (T ◦ s)v|
|su × sv|

=
f(s(u, v))

g(T (s(u, v)))
. (3.9)

The plane Γ is described in spherical coordinates by the polar radius

r(u, v) =
1

cos v
s(u, v) = (cosu tan v, sinu tan v, 1). (3.10)

From Remark 2.1.2 with n1 = 1, if the incident ray has direction i = s(u, v), then

the reflected ray that has unit direction

T (s(u, v)) = s(u, v)− λν −∇ψ(r(u, v)),

where ν = (0, 0, 1) is the normal to Γ at the incident point. Because we seek, as be-

fore, for a phase ψ tangential to Γ, we have ∇ψ(x, y, 1) = (ψx(x, y, 1), ψy(x, y, 1), 0).

In addition, from Remark 2.1.2,

λ = i · ν +
√

1− (|i−∇ψ|2−(i · ν)2)
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= cos v +
√

1− (cosu sin v − ψx(r(u, v)))2 − (sinu sin v − ψy(r(u, v)))2

= cos v +
√

∆,

where ∆ = 1 − (cosu sin v − ψx(r(u, v)))2 − (sinu sin v − ψy(r(u, v)))2. Therefore,

writing T in components

T (s(u, v)) = (T1(s(u, v)), T2(s(u, v)), T3(s(u, v)))

=
(

cosu sin v − ψx(r(u, v)), sinu sin v − ψy(r(u, v)),−
√

∆
)
. (3.11)

Because |T (s(u, v))|= 1, it follows as in Section 3.1.1 that

|(T ◦ s)u × (T ◦ s)v|=
1

|T3 ◦ s|
det

(T1 ◦ s)u (T1 ◦ s)v

(T2 ◦ s)u (T2 ◦ s)v

 . (3.12)

From (3.11),

(T1 ◦ s)u = − sinu sin v − ψxx(r(u, v))(− sinu tan v)− ψxy(r(u, v))(cosu tan v),

(T1 ◦ s)v = cosu cos v − ψxx(r(u, v))
( cosu

cos2 v

)
− ψxy(r(u, v))

(
sinu

cos2 v

)
,

(T2 ◦ s)u = cosu sin v − ψxy(r(u, v))(− sinu tan v)− ψyy(r(u, v))(cosu tan v),

(T2 ◦ s)v = sinu cos v − ψxy(r(u, v))
( cosu

cos2 v

)
− ψyy(r(u, v))

(
sinu

cos2 v

)
.

Inserting these in (3.12) yields

|(T ◦ s)u × (T ◦ s)v|=
1

|T3 ◦ s|
det (A(u, v)−D2

(x,y)ψ(r(u, v))B(u, v)), (3.13)

where

A(u, v) =

− sinu sin v cosu cos v

cosu sin v sinu cos v

 ,
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B(u, v) =

− sinu tan v cosu
cos2 v

cosu tan v sinu
cos2 v

 .

We can rewrite the above quantities in rectangular coordinates, noticing that x =

cosu tan v, y = sinu tan v, r(u, v) = (x, y, 1),
√
x2 + y2 + 1 =

1

cos v
and

√
x2 + y2 =

tan v. We obtain

T1 =
x√

x2 + y2 + 1
− ψx(x, y, 1) =

(√
x2 + y2 + 1− ψ(x, y, 1)

)
x
,

T2 =
y√

x2 + y2 + 1
− ψy(x, y, 1) =

(√
x2 + y2 + 1− ψ(x, y, 1)

)
y
,

|T3| =

√√√√1−

(
x√

x2 + y2 + 1
− ψx(x, y, 1)

)2

−

(
y√

x2 + y2 + 1
− ψy(x, y, 1)

)2

=

√
1−

((√
x2 + y2 + 1− ψ(x, y, 1)

)
x

)2
−
((√

x2 + y2 + 1− ψ(x, y, 1)
)
y

)2

,

A =


−y√

x2 + y2 + 1

x√
x2 + y2 + 1

√
x2 + y2

x√
x2 + y2 + 1

y√
x2 + y2 + 1

√
x2 + y2

 ,

B =


−y x(1 + x2 + y2)√

x2 + y2

x
y(1 + x2 + y2)√

x2 + y2

 .

Also,

|su × sv| =
1

|cos v|
− sin2 u cos v sin v − cos2 u cos v sin v (3.14)

= sin v =

√
x2 + y2√

x2 + y2 + 1
.

Now note that

det(A−D2ψB) = det(B) det(AB−1 −D2ψ),
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with

B−1 = − 1

(x2 + y2 + 1)
√
x2 + y2


y(1 + x2 + y2)√

x2 + y2

−x(1 + x2 + y2)√
x2 + y2

−x −y

 (3.15)

and

AB−1 =


y2

b(x)
+

x2

c(x)

−xy
b(x)

+
xy

c(x)

−xy
b(x)

+
xy

c(x)

x2

b(x)
+

y2

c(x)

 = D2
(√

x2 + y2 + 1
)
,

where b(x) = (x2+y2)(x2+y2+1)1/2 and c(x) = (x2+y2)(x2+y2+1)3/2. Therefore,

det(A−D2ψB) = det(B) det
(
D2
(√

x2 + y2 + 1− ψ
))

.

Letting φ(x, y) =
√
x2 + y2 + 1 − ψ(x, y), using the last equation in (3.13), and

using (3.14), we obtain from (3.9) that φ satisfies the following equation:

(x2 + y2 + 1)3/2√
1− φ2

x(x, y)− φ2
y(x, y)

|det(D2φ(x, y))| (3.16)

=

f

(
1√

x2+y2+1
(x, y, 1)

)
g
(
φx(x, y), φy(x, y),−

√
1− φ2

x(x, y)− φ2
y(x, y)

) .
The above equation holds for (x, y) ∈ D, where D is obtained as follows: for each

direction e ∈ Ω1, the ray with this direction intersect the plane z = 1 at a unique

point (x, y), this collection of x and y is D.

We now proceed as in the previous section to show existence of solu-

tions to (3.16). To this end, we need to identity the functions f1, f2 in (3.6).

Parametrizing Ω1 by q : D → Ω1 with q(x, y) = 1√
x2+y2+1

(x, y, 1), we let f1(x, y) =

f (q(x, y))

(x2 + y2 + 1)3/2
for (x, y) ∈ D1 = D. Also let f2(p1, p2) =

g
(
p1, p2,−

√
1− p2

1 − p2
2

)
√

1− p2
1 − p2

2

,
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for (p1, p2) ∈ D2 = Π(Ω2). With these choices and observing that

∫
Ω1

f(z) dσ(z) =

∫
D

f

(
1√

x2+y2+1
(x, y, 1)

)
(x2 + y2 + 1)3/2

dxdy,

which is a similar calculation as at the end of last section, we obtain that (3.7) is

equivalent to (3.6); therefore, the existence of solutions to (3.16) follows as before,

invoking Theorem 3.1.1.

3.2 Refraction when Γ is a plane

Here, we solve two problems similar to the ones considered in the previous

sections but for refraction.

3.2.1 Collimated case

Incident rays are emitted from an open set Ω1 of the x-y plane with direc-

tion i(x, y) = e3 = (0, 0, 1), and Γ is the plane z = 1.

From the generalized law of refraction (2.6) and (2.8), the metasurface

(Γ, ψ) refracts the incident ray i(x, y) into a ray r(x, y) with direction satisfying

n1i(x, y)− n2r(x, y) = λν(x, y) +∇ψ(x, y),

where n1 and n2 are the refractive indices of the two homogeneous and isotropic

media separated by the plane Γ, ν is the unit normal to the plane Γ. Also

λ = (n1i−∇ψ) · ν −
√
n2

2 − |n1i−∇ψ|2+[(n1i−∇ψ) · ν]2

= n1 −
√
n2

2 − (ψ2
x + ψ2

y),
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(Γ,ψ)

n1

n2

Ω1

x

m

Figure 3.3: Refraction from an extended source

because we seek ψ tangential to Γ; i.e., ψz = 0. We then let T : Ω1 → Ω2 to be

T (x, y) := r(x, y) =

(
− 1

n2
ψx(x, y),− 1

n2
ψy(x, y),

√
1− 1

n2
2

(
ψ2
x(x, y) + ψ2

y(x, y)
))

.

We seek ψ defined on Γ with T (Ω1) = Ω2 and satisfying the conservation of energy

balance

∫
E
f(x) dx =

∫
T (E)

g(y) dσ(y) =

∫
E
g(T (z))|JT | dz for each E ⊂ Ω1,

where |JT |= |Tx(x, y) × Ty(x, y)|. Because |T (x, y)|= 1; similarly, as for reflection,

we have that

|JT |=
1

|T3(x, y)|

∣∣∣∣det

(
D2 1

n2
ψ

)∣∣∣∣ .
Therefore, proceeding as in the reflection case, the phase discontinuity ψ must satisfy
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the following Monge-Ampére equation

1√
1− 1

n2
2

(
ψ2
x(x, y) + ψ2

y(x, y)
) ∣∣∣∣det

(
D2 1

n2
ψ

)∣∣∣∣ (3.17)

=
f(x, y)

g
(
− 1
n2
ψx,− 1

n2
ψy,
√

1− 1
n2
2

(
ψ2
x + ψ2

y

)) ;

notice that this equation is independent of the value of n1. Similar to the reflection

case, T (Ω1) = Ω2 implies that 1
n2

(ψx, ψy) ∈ −Π(Ω2), where Π is once again the

orthogonal projection onto the x-y plane. We claim, also in this case, that [40,

Theorem 2] can be applied to obtain a solutions ψ to (3.17). Indeed, letting

f1(x, y) = f(x, y) for (x, y) ∈ D1 = Ω1 ,

f2(p1, p2) =
g
(
− 1
n2
p1,− 1

n2
p2,
√

1− 1
n2
2

(
p2

1 + p2
2

))
√

1− 1
n2
2

(
p2

1 + p2
2

) ,

for (p1, p2) ∈ D2 = −n2Π(Ω2), and proceeding as before, we obtain that∫
Ω1

f(x) dx =

∫
Ω2

g(y) dσ(y)

is equivalent to (3.6), and so existence of solutions follows as before.

3.2.2 Point Source Refraction

We now analyze a problem similar to the one in Section 3.1.2 for refraction.

That is, rays emanate for a point source and we seek a phase discontinuity ψ defined

on the plane Γ = {z = 1}, so that the refraction map T (to be calculated in a

moment) satisfies the conservation of energy condition (3.8). As in Section 3.1.2,

this implies (3.9), i.e.,

|(T ◦ s)u × (T ◦ s)v|
|su × sv|

=
f(s(u, v))

g(T (s(u, v)))
,
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(Γ,ψ)

n1

n2

O

x

m

Figure 3.4: Refraction from a point source

and T (Ω1) = Ω2. Let us calculate the refraction map T . As in Section 3.1.2, the

plane Γ is described by the polar radius (3.10). Then from (2.6), the refracted ray

has unit direction

T (s(u, v)) =
n1

n2
s(u, v)− 1

n2
λν − 1

n2
∇ψ(r(u, v)),

where ν = (0, 0, 1) is the normal to Γ at the incident point, s(u, v) are spheri-

cal coordinates, ∇ψ(x, y, 1) = (ψx(x, y, 1), ψy(x, y, 1), 0) (because we seek a phase

discontinuity ψ tangential to Γ), and

λ = n1i · ν +
√
n2

2 − (|n1i−∇ψ|2−(n1i · ν)2)

= n1 cos v +
√
n2

2 − (n1 cosu sin v − ψx(r(u, v)))2 − (n1 sinu sin v − ψy(r(u, v)))2

= n1 cos v +
√

∆,
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where ∆ = n2
2− (n1 cosu sin v−ψx(r(u, v)))2− (n1 sinu sin v−ψy(r(u, v)))2. There-

fore,

T (s(u, v)) = (T1(s(u, v)), T2(s(u, v)), T3(s(u, v)))

=

(
n1

n2
cosu sin v − 1

n2
ψx(r(u, v)),

n1

n2
sinu sin v − 1

n2
ψy(r(u, v)),

1

n2

√
∆

)
.

Because |T (s(u, v))|= 1, we have as in (3.12) that

|(T ◦ s)u × (T ◦ s)v|=
1

|T3 ◦ s|

∣∣∣∣∣∣∣∣det

(T1 ◦ s)u (T1 ◦ s)v

(T2 ◦ s)u (T2 ◦ s)v


∣∣∣∣∣∣∣∣ . (3.18)

On the other hand,

(T1 ◦ s)u = −n1

n2
sinu sin v − 1

n2
ψxx(r(u, v))(− sinu tan v)

− 1

n2
ψxy(r(u, v))(cosu tan v),

(T1 ◦ s)v =
n1

n2
cosu cos v − 1

n2
ψxx(r(u, v))

( cosu

cos2 v

)
− 1

n2
ψxy(r(u, v))

(
sinu

cos2 v

)
,

(T2 ◦ s)u =
n1

n2
cosu sin v − 1

n2
ψxy(r(u, v))(− sinu tan v)

− 1

n2
ψyy(r(u, v))(cosu tan v),

(T2 ◦ s)v =
n1

n2
sinu cos v − 1

n2
ψxy

(
r(u, v))(

cosu

cos2 v

)
− 1

n2
ψyy(r(u, v))

(
sinu

cos2 v

)
.

Inserting these into (3.18) yields

|(T ◦ s)u × (T ◦ s)v|=
1

|T3 ◦ s|
det (A(u, v)− 1

n2
D2

(x,y)ψ(r(u, v))B(u, v))

where

A(u, v) =
n1

n2

− sinu sin v cosu cos v

cosu sin v sinu cos v

 ,
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B(u, v) =

− sinu tan v cosu
cos2 v

cosu tan v sinu
cos2 v

 .

As in the point source reflection case in Section 3.1.2, we can rewrite the above

quantities in rectangular coordinates, noticing that x = cosu tan v, y = sinu tan v,

r(u, v) = (x, y, 1),
√
x2 + y2 + 1 =

1

cos v
and

√
x2 + y2 = tan v. We obtain

T1 =
n1

n2

x√
x2 + y2 + 1

− 1

n2
ψx(x, y, 1) =

(
n1

n2

√
x2 + y2 + 1− 1

n2
ψ(x, y, 1)

)
x

,

T2 =
n1

n2

y√
x2 + y2 + 1

− 1

n2
ψy(x, y, 1) =

(
n1

n2

√
x2 + y2 + 1− 1

n2
ψ(x, y, 1)

)
y

,

|T3|=

(
1−

(
n1

n2

x√
x2 + y2 + 1

− 1

n2
ψx(x, y, 1)

)2

−

(
n1

n2

y√
x2 + y2 + 1

− 1

n2
ψy(x, y, 1)

)2) 1
2

=

(
1−

((
n1

n2

√
x2 + y2 + 1− 1

n2
ψ(x, y, 1)

)
x

)2

−

((
n1

n2

√
x2 + y2 + 1− 1

n2
ψ(x, y, 1)

)
y

)2) 1
2

,

A =
n1

n2


−y√

x2 + y2 + 1

x√
x2 + y2 + 1

√
x2 + y2

x√
x2 + y2 + 1

y√
x2 + y2 + 1

√
x2 + y2

 ,

B =


−y x(1 + x2 + y2)√

x2 + y2

x
y(1 + x2 + y2)√

x2 + y2

 .

Also, from (3.14), |su × sv|=
√
x2+y2√
x2+y2+1

. Now note that

det

(
A− 1

n2
D2ψB

)
= det(B) det

(
AB−1 − 1

n2
D2ψ

)
,
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with B−1 as in (3.15), and

AB−1 =
n1

n2

 y2

b(x)
+

x2

c(x)

−xy
b(x)

+
xy

c(x)

−xy
b(x)

+
xy

c(x)

x2

b(x)
+

y2

c(x)

 =
n1

n2
D2
(√

x2 + y2 + 1
)
,

where b(x) = (x2+y2)(x2+y2+1)1/2 and c(x) = (x2+y2)(x2+y2+1)3/2. Therefore,

det

(
A− 1

n2
D2ψB

)
= det(B) det

(
D2

(
n1

n2

√
x2 + y2 + 1− 1

n2
ψ

))
.

Letting φ(x, y) = n1
n2

√
x2 + y2 + 1− 1

n2
ψ(x, y), we obtain that φ satisfies the follow-

ing equation

(x2 + y2 + 1)3/2√
1− φ2

x(x, y)− φ2
y(x, y)

|det(D2φ(x, y))| (3.19)

=

f

(
1√

x2+y2+1
(x, y, 1)

)
g
(
φx(x, y), φy(x, y),

√
1− φ2

x(x, y)− φ2
y(x, y)

) .
The above equation holds for (x, y) ∈ D, where D is obtained as at the end of

Section 3.1.2. The existence of solutions to this equation follows as before, let-

ting f1(x, y) =

f

(
1√

x2+y2+1
(x, y, 1)

)
(x2 + y2 + 1)3/2

for (x, y) ∈ D1 = D, and f2(p1, p2) =

g
(
p1, p2,

√
1− p2

1 − p2
2

)
√

1− p2
1 − p2

2

for (p1, p2) ∈ D2 = Π(Ω2), where Π is once again the

orthogonal projection.

Remark 3.2.1. If a ray is emitted from a point Q and strikes the plane Γ = {z = 1}

at the point P = (x, y, 1), let dQ(x, y) be the distance from Q to P . In the collimated

case, because all rays are vertical dQ(x, y) = 1. And when the point source Q is the

origin, dQ(x, y) =
√
x2 + y2 + 1. Then writing φ(x, y) =

n1

n2
dQ(x, y) − 1

n2
ψ(x, y),

and noticing that n1 = n2 = 1 in the reflection cases, the equations (3.5), (3.16),
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(3.17) and (3.19) can be written as

d
3/2
Q (x, y)√

1− φ2
x(x, y)− φ2

y(x, y)
|det(D2φ(x, y))|= f̃ (x, y)

g (T (x, y))
, (3.20)

where f̃(x, y) = f(x, y) in the collimated case, and f̃(x, y) = f

(
1√

x2+y2+1
(x, y, 1)

)
in the point source case.

3.3 Summary of the equations in the planar case

Collimated reflection

1√
1− ψ2

x(x, y)− ψ2
y(x, y)

∣∣det(D2ψ)
∣∣ =

f(x, y)

g
(
−ψx,−ψy,−

√
1− ψ2

x(x, y)− ψ2
y(x, y)

) .
Collimated refraction

1√
1− 1

n2
2
ψ2
x(x, y)− 1

n2
2
ψ2
y(x, y)

∣∣∣∣det(D2 1

n2
ψ)

∣∣∣∣
=

f(x, y)

g
(
− 1
n2
ψx,− 1

n2
ψy,
√

1− 1
n2
2
ψ2
x(x, y)− 1

n2
2
ψ2
y(x, y)

) .
Point source reflection

(x2 + y2 + 1)3/2√
1− φ2

x(x, y)− φ2
y(x, y)

∣∣det(D2φ(x, y))
∣∣

=

f

(
x√

x2+y2+1
, y√

x2+y2+1
, 1√

x2+y2+1

)
g
(
φx(x, y), φy(x, y),−

√
1− φ2

x(x, y)− φ2
y(x, y)

) ,
where φ(x, y) =

√
x2 + y2 + 1− ψ(x, y).

Point source refraction

(x2 + y2 + 1)3/2√
1− φ2

x(x, y)− φ2
y(x, y)

∣∣det(D2φ(x, y))
∣∣
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=

f

(
x√

x2+y2+1
, y√

x2+y2+1
, 1√

x2+y2+1

)
g
(
φx(x, y), φy(x, y),

√
1− φ2

x(x, y)− φ2
y(x, y)

) .
where φ(x, y) =

n1

n2

√
x2 + y2 + 1− 1

n2
ψ(x, y).

3.4 Reflection when Γ is a general surface

In this section we derive the equations for the reflection problems for a

given general surface Γ.

3.4.1 Collimated case

Figure 3.5: Reflection from an extended source

Incident rays are emitted from an open set Ω1 of the x − y plane with

direction e3 = (0, 0, 1), and Γ is the surface given by the graph of the function

u : Ω1 → R+. As before, the reflected rays are r(x, y) = (0, 0, 1)−λν(x, y)−∇ψ(x, y),
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where ∇ψ = (Dψ,ψz), ν =
(−Du, 1)√
1 + |Du|2

, and because ν · ∇ψ = 0, from Remark

2.1.2, we have

λ =
1√

1 + |Du|2
+

√
2ψz − ψ2

x − ψ2
y − ψ2

z +
1

1 + |Du|2
.

Because we assume ψ is tangential to Γ, ψz = Du · (ψx, ψy) = Du ·Dψ. Therefore,

λ =
1√

1 + |Du|2
+

√
2Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +

1

1 + |Du|2

=
1√

1 + |Du|2
+
√

∆,

where ∆ = 2Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +
1

1 + |Du|2
, and we set

T (x, y) = r(x, y)

=

(
λux√

1 + |Du|2
− ψx,

λuy√
1 + |Du|2

− ψy, 1−
λ√

1 + |Du|2
−Du ·Dψ

)
.

As before, we now have to calculate

1

|T3|
det

(T1)x (T1)y

(T2)x (T2)y

 .

Notice that(T1)x (T1)y

(T2)x (T2)y

 = −D2ψ +

λx
ux√

1+|Du|2
λy

ux√
1+|Du|2

λx
uy√

1+|Du|2
λy

uy√
1+|Du|2



+ λ

( ux√
1+|Du|2

)x ( ux√
1+|Du|2

)y

(
uy√

1+|Du|2
)x (

uy√
1+|Du|2

)y



= −∇2ψ +
1√

1 + |Du|2

ux
uy

⊗
λx
λy

+ λB(Du,D2u),
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where B(Du,D2u) =

( ux√
1+|Du|2

)x ( ux√
1+|Du|2

)y

(
uy√

1+|Du|2
)x (

uy√
1+|Du|2

)y

. We can calculate the deriva-

tives of λ obtaining,

λx =

(
1√

1 + |Du|2

)
x

+

(√
2Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +

1

1 + |Du|2

)
x

=

(
1√

1 + |Du|2

)
x

+
1

2
∆−1/2

[
2(Du ·Dψ)x − 2(Du ·Dψ)(Du ·Dψ)x+

(
1

1 + |Du|2

)
x

− (|Dψ|2)x

]
=

(
1√

1 + |Du|2

)
x

+
1

2
∆−1/2

[
2((Du)x ·Dψ)− 2(Du ·Dψ)((Du)x ·Dψ)+(

1

1 + |Du|2

)
x

]
+

1

2
∆−1/2

[
2(Du · (Dψ)x)− 2(Du ·Dψ)(Du · (Dψ)x)− (|Dψ|2)x

]
= h1(Du,D2u,Dψ) +

1

2
∆−1/2

[
2(Du · (Dψ)x)− 2(Du ·Dψ)(Du · (Dψ)x)

− (|Dψ|2)x

]
= h1(Du,D2u,Dψ) +

1

2
∆−1/2

[
2(1−Du ·Dψ)(Du · (Dψ)x)− (|Dψ|2)x

]
,

where ∆ = 2Du · Dψ − |Dψ|2−(Du · Dψ)2 + 1
1+|Du|2 and h1(Du,D2u,Dψ) =(

1√
1+|Du|2

)
x

+ 1
2∆−1/2

[
2((Du)x ·Dψ)− 2(Du ·Dψ)((Du)x ·Dψ) +

(
1

1+|Du|2

)
x

]
.

Similarly,

λy = h2(Du,D2u,Dψ) +
1

2
∆−1/2

[
2(1−Du ·Dψ)(Du · (Dψ)y)− (|Dψ|2)y

]
.

Therefore,

1√
1 + |Du|2

ux
uy

⊗
λx
λy

 =

H̃(Du,D2u,Dψ) +
∆−1/2√
1 + |Du|2

[(1−Du ·Dψ)(Du⊗ (D2ψ)(Du))−
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(Du⊗ (D2ψ)(Dψ))],

where H̃ = Du⊗ (h1, h2)√
1 + |Du|2

.

All in all,(T1)x (T1)y

(T2)x (T2)y

 = −∇2ψ +
∆−1/2√
1 + |Du|2

[(1−Du ·Dψ)(Du⊗ (D2ψ)(Du))

− (Du⊗ (D2ψ)(Dψ))] + λB(Du,D2u, ) + H̃(Du,D2u,Dψ)

= [− Id +
∆−1/2√
1 + |Du|2

((1−Du ·Dψ)Du⊗Du−Du⊗Dψ)]D2ψ

+ F (Du,D2u,Dψ)

= −[Id +Du⊗ −∆−1/2((1−Du ·Dψ)Du−Dψ)√
1 + |Du|2

]D2ψ

+ F (Du,D2u,Dψ)

= −[Id +Du⊗A(Du,Dψ)]D2ψ + F (Du,D2u,Dψ)

= −[Id +Du⊗A)](D2ψ − [Id +Du⊗A]−1F ),

where

A(Du,Dψ) =
−∆−1/2((1−Du ·Dψ)Du−Dψ)√

1 + |Du|2
,

and

F (Du,D2u,Dψ) = λB(Du,D2u) + H̃(Du,D2u,Dψ).

Therefore,

det

(T1)x (T1)y

(T2)x (T2)y

 = det
(
[Id +Du⊗A)]

(
D2ψ − [Id +Du⊗A]−1F

))

= det (Id +Du⊗A) det
(
D2ψ − [Id +Du⊗A]−1F

)
.
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Using Sherman-Morrison’s formula 1, we obtain

det

(T1)x (T1)y

(T2)x (T2)y

 = (1 +Du ·A) det

(
D2ψ −

[
Id− Du⊗A

1 +Du ·A

]
F

)
.

Therefore, the phase discontinuity ψ satisfies the equation,

(1 +Du ·A)

1− λ√
1 + |Du|2

−Du ·Dψ
det

(
D2ψ −

[
Id− Du⊗A

1 +Du ·A

]
F

)
=

f(x, y)

g(T (x, y))
.

3.4.2 Point source Reflection

Figure 3.6: Reflection from a point source

Here we derive the equation when the incident rays are emitted from the

origin. We use the following parametrization of Ω1:

s : D → Ω1,

1det(A + u ⊗ v) = (1 + uTA−1v) det(A), where A is an invertible matrix and u, v are vectors.
https://en.wikipedia.org/wiki/Matrix_determinant_lemma

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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s(x, y) =

(
x√

x2 + y2 + u2(x, y)
,

y√
x2 + y2 + u2(x, y)

,
u(x, y)√

x2 + y2 + u2(x, y)

)
.

In this case ν =
(−Du, 1)√
1 + |Du|2

, and ∇ψ = (Dψ,Du ·Dψ), because we assume ∇ψ is

tangential to Γ. Therefore,

λ = i · ν +
√

1− (|i−∇ψ|2−(i · ν)2)

=
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+

[
1−

(
x√

x2 + y2 + u2
− ψx

)2

−

(
y√

x2 + y2 + u2
− ψy

)2

−

(
u√

x2 + y2 + u2
−Dψ ·Du

)2

−

(
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2

)2 ] 1
2

=
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+

[
2Dψ · ((x, y) + uDu)√

x2 + y2 + u2
− |Dψ|2− (Dψ ·Du)2

+

(
u− (x, y) ·Du√

x2 + y2 + u2
√

1 + |Du|2

)2 ] 1
2

=
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+
√

∆(x, y, u,Du,Dψ),

where

∆(x, y, u,Du,Dψ)

=
2Dψ · ((x, y) + uDu)√

x2 + y2 + u2
− |Dψ|2− (Dψ ·Du)2 +

(
u− (x, y) ·Du√

x2 + y2 + u2
√

1 + |Du|2

)2

.

We set

T (s(x, y))

=

(
x√

x2 + y2 + u2
+

λux√
1 + |Du|2

− ψx,
y√

x2 + y2 + u2
+

λuy√
1 + |Du|2

− ψy,

u√
x2 + y2 + u2

− λ√
1 + |Du|2

−Du ·Dψ

)
.
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Because |T (s(x, y))|= 1, we have that

|(T ◦ s)x × (T ◦ s)y|=
1

|T3 ◦ s|
det

(T1 ◦ s)x (T1 ◦ s)y

(T2 ◦ s)x (T2 ◦ s)y

 .

On the other hand,(T1 ◦ s)x (T1 ◦ s)y

(T2 ◦ s)x (T2 ◦ s)y

 = −D2ψ +

λx
ux√

1+|Du|2
λy

ux√
1+|Du|2

λx
uy√

1+|Du|2
λy

uy√
1+|Du|2



+ λ


(

ux√
1+|Du|2

)
x

(
ux√

1+|Du|2

)
y(

uy√
1+|Du|2

)
x

(
uy√

1+|Du|2

)
y



+


(

x√
x2+y2+u2

)
x

(
x√

x2+y2+u2

)
y(

y√
x2+y2+u2

)
x

(
y√

x2+y2+u2

)
y



= −D2ψ +
1√

1 + |Du|2

ux
uy

⊗
λx
λy


+ λB(Du,D2u) + C(x, y, u,Du),

where B(Du,D2u) =


(

ux√
1+|Du|2

)
x

(
ux√

1+|Du|2

)
y(

uy√
1+|Du|2

)
x

(
uy√

1+|Du|2

)
y

, and

C(x, y, u,Du) =


(

x√
x2+y2+u2

)
x

(
x√

x2+y2+u2

)
y(

y√
x2+y2+u2

)
x

(
y√

x2+y2+u2

)
y

 . We can calculate the deriva-

tives of λ obtaining,

λx =

(
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2

)
x

+
1

2
∆−1/2

[
2(Dψ)x ·

(
(x, y) + uDu√
x2 + y2 + u2

)
+ 2(Dψ)·

(
(x, y) + uDu√
x2 + y2 + u2

)
x
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− 2(Du ·Dψ)(Du ·Dψ)x +

( −(x, y) ·Du+ u√
x2 + y2 + u2

√
1 + |Du|2

)2

x

− (|Dψ|2)x

]

= h1(x, y, u,Du,D2u,Dψ)

+
1

2
∆−1/2

[
2(Dψ)x ·

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
−
(
|Dψ|2

)
x

]
,

similarly,

λy = h2(x, y, u,Du,D2u,Dψ)

+
1

2
∆−1/2

[
2(Dψ)y ·

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
−
(
|Dψ|2

)
y

]
,

where hi(x, y, u,Du,D
2u,Dψ), with i+ 1, 2, are the collections of all the terms that

do not contain second derivative of ψ. Therefore,

1√
1 + |Du|2

ux
uy

⊗
λx
λy

 = H̃(x, y, u,Du,D2u,Dψ)

+
∆−1/2√
1 + |Du|2

[
Du⊗ (D2ψ)

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
− (Du⊗ (D2ψ)(Dψ))

]
,

where H̃ = Du⊗ (h1, h2)√
1 + |Du|2

.

All in all,(T1)x (T1)y

(T2)x (T2)y


= −D2ψ +

∆−1/2√
1 + |Du|2

[Du⊗ (D2ψ)

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)

− (Du⊗ (D2ψ)(Dψ))] + λB(Du,D2u) + C(x, y, u,Du)
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+ H̃(x, y, u,Du,D2u,Dψ)

=

[
− Id +

∆−1/2√
1 + |Du|2

Du⊗

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du−Dψ

)]
D2ψ

+ F (x, y, u,Du,D2u,Dψ)

= −[Id +Du⊗A(x, y, u,Du,Dψ)]D2ψ + F (x, y, u,Du,D2u,Dψ)

= −[Id +Du⊗A)](D2ψ − [Id +Du⊗A]−1F ),

where

A(x, y, u,Du,Dψ) =
∆−1/2√
1 + |Du|2

(
(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du−Dψ

)
,

(3.21)

and

F (x, y, u,Du,D2u,Dψ) (3.22)

= λB(Du,D2u) + C(x, y, u,Du) + H̃(x, y, u,Du,D2u,Dψ).

Therefore,

det

(T1)x (T1)y

(T2)x (T2)y

 = det
(
[Id +Du⊗A)]

(
D2ψ − [Id +Du⊗A]−1F

))

= det (Id +Du⊗A) det
(
D2ψ − [Id +Du⊗A]−1F

)
.

Using Sherman-Morrison’s formula 2, we obtain

det

(T1)x (T1)y

(T2)x (T2)y

 = (1 +Du ·A) det

(
D2ψ − [Id− Du⊗A

1 +Du ·A
]F

)
.

2det(A + u ⊗ v) = (1 + uTA−1v) det(A), where A is an invertible matrix and u, v are vectors.
https://en.wikipedia.org/wiki/Matrix_determinant_lemma

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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Therefore, the phase discontinuity ψ satisfies the equation,

(1 +Du ·A)

s̃(x, y)
u√

x2 + y2 + u
− λ√

1 + |Du|2
−Du ·Dψ

det

(
D2ψ −

[
Id− Du⊗A

1 +Du ·A

]
F

)

=
f(s(x, y))

g(T (s(x, y)))

where s̃(x, y) = |sx × sy|, A as in (3.21), and F as in (3.22).

3.5 Refraction when Γ is a general surface

We consider the problems in the case of refraction for a given general

surface. Even if the calculations are similar to the case of reflection (Section 3.4) ,

we include them for convenience of the reader.

3.5.1 Collimated case

Figure 3.7: Refraction from an extended source
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Consider the case in which rays are emitted from an open set Ω1 of the

x− y plane, Γ is the surface given by the graph of the function u(x, y) : Ω1 → R+,

and the incident rays have direction e3 = (0, 0, 1). As before r(x, y) =
n1

n2
(0, 0, 1)−

1

n2
λν(x, y) − 1

n2
∇ψ(x, y), where r(x, y) are the refracted rays, ∇ψ = (Dψ,ψz),

ν =
(−Du, 1)√
1 + |Du|2

and, because ν · ∇ψ = 0, from [17, Remark 2] we have

λ =
n1√

1 + |Du|2
−

√
n2

2 − n2
1 + 2n1ψz − ψ2

x − ψ2
y − ψ2

z +
n2

1

1 + |Du|2
.

Using that ψ is tangential to Γ, we have that ψz = Du · (ψx, ψy) = Du · Dψ.

Therefore,

λ =
n1√

1 + |Du|2
−

√
n2

2 − n2
1 + 2n1Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +

n2
1

1 + |Du|2

=
n1√

1 + |Du|2
−
√

∆,

where ∆ = n2
2 − n2

1 + 2n1Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +
n2

1

1 + |Du|2
, and

T (x, y) = r(x, y)

=
( λux

n2

√
1 + |Du|2

− ψx
n2
,

λuy

n2

√
1 + |Du|2

− ψy
n2
,
n1

n2
− λ

n2

√
1 + |Du|2

− Du ·Dψ
n2

)
.

As before, we now have to calculate

1

|T3|
det

(T1)x (T1)y

(T2)x (T2)y

 .

Notice that(T1)x (T1)y

(T2)x (T2)y

 = −D
2ψ

n2
+

1

n2

λx
ux√

1+|Du|2
λy

ux√
1+|Du|2

λx
uy√

1+|Du|2
λy

uy√
1+|Du|2


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+
λ

n2

( ux√
1+|Du|2

)x ( ux√
1+|Du|2

)y

(
uy√

1+|Du|2
)x (

uy√
1+|Du|2

)y



= −D
2ψ

n2
+

1

n2

√
1 + |Du|2

ux
uy

⊗
λx
λy

+ λB(Du,D2u).

where B(Du,D2u) = + 1
n2

( ux√
1+|Du|2

)x ( ux√
1+|Du|2

)y

(
uy√

1+|Du|2
)x (

uy√
1+|Du|2

)y

. We can calculate the

derivatives of λ obtaining,

λx =

(
n1√

1 + |Du|2

)
x

−

(√
n2

2 − n2
1 + 2n1Du ·Dψ − |Dψ|2−(Du ·Dψ)2 +

n2
1

1 + |Du|2

)
x

=

(
n1√

1 + |Du|2

)
x

− 1

2
∆−1/2

[
2n1(Du ·Dψ)x − 2(Du ·Dψ)(Du ·Dψ)x

+

(
n2

1

1 + |Du|2

)
x

− (|Dψ|2)x

]

= h1(Du,D2u,Dψ)

− 1

2
∆−1/2

[
2n1(Du · (Dψ)x)− 2(Du ·Dψ)(Du · (Dψ)x)− (|Dψ|2)x

]
= h1(Du,D2u,Dψ)

− 1

2
∆−1/2

[
2(n1 −Du ·Dψ)(Du · (Dψ)x)− (|Dψ|2)x

]
.

Similarly,

λy = h2(Du,D2u,Dψ)− 1

2
∆−1/2

[
2(n1 −Du ·Dψ)(Du · (Dψ)y)− (|Dψ|2)y

]
,

where ∆ = n2
2−n2

1+2n1Du·Dψ−|Dψ|2−(Du·Dψ)2+
n2
1

1+|Du|2 , and hi(Du,D
2u,Dψ),
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with i = 1, 2, are the collection of all the terms that do not contain second derivative

of ψ. Therefore,

1

n2

√
1 + |Du|2

ux
uy

⊗
λx
λy

 =

H̃(Du,D2u,Dψ)− ∆−1/2

n2

√
1 + |Du|2

[(n1 −Du ·Dψ)(Du⊗ (D2ψ)(Du))

− (Du⊗ (D2ψ)(Dψ))],

where H̃ = Du⊗ (h1, h2)

n2

√
1 + |Du|2

.

All in all,(T1)x (T1)y

(T2)x (T2)y

 = −D
2ψ

n2
− ∆−1/2

n2

√
1 + |Du|2

[(n1 −Du ·Dψ)(Du⊗ (D2ψ)(Du))

− (Du⊗ (D2ψ)(Dψ))] + λB(Du,D2u) + H̃(Du,D2u,Dψ)

= [− Id− ∆−1/2√
1 + |Du|2

((n1 −Du ·Dψ)Du⊗Du−Du⊗Dψ)]
D2ψ

n2

+ F (Du,D2u,Dψ)

= −[Id +Du⊗ ∆−1/2((n1 −Du ·Dψ)Du−Dψ)√
1 + |Du|2

]
D2ψ

n2
+ F (Du,D2u,Dψ)

= −[Id +Du⊗A(Du,Dψ)]
D2ψ

n2
+ F (Du,D2u,Dψ)

= −[Id +Du⊗A](
D2ψ

n2
− [Id +Du⊗A]−1F ),

where

A(Du,Dψ) =
∆−1/2((n1 −Du ·Dψ)Du−Dψ)√

1 + |Du|2
,

and

F (Du,D2u,Dψ) = λB(Du,D2u) + H̃(Du,D2u,Dψ).
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Therefore,

det

(T1)x (T1)y

(T2)x (T2)y

 = det

(
[Id +Du⊗A)](

D2ψ

n2
− [Id +Du⊗A]−1F )

)
=

det (Id +Du⊗A) det (
D2ψ

n2
− [Id +Du⊗A]−1F ).

Using Sherman-Morrison’s formula, 3 we obtain

det

(T1)x (T1)y

(T2)x (T2)y

 = (1 +Du ·A) det

(
D2ψ

n2
− [Id− Du⊗A

1 +Du ·A
]F

)
.

Therefore, we obtain that the phase discontinuity ψ satisfies the following equation,

(1 +Du ·A)

n1

n2
− λ

n2

√
1 + |Du|2

− Du ·Dψ
n2

det

(
D2ψ

n2
− [Id− Du⊗A

1 +Du ·A
]F

)
=

f(x, y)

g(T (x, y))
.

3.5.2 Point source Refraction

Incident rays are emitted from the origin. We use the following parametriza-

tion of Ω1:

s : D → Ω1,

s(x, y) =

(
x√

x2 + y2 + u2(x, y)
,

y√
x2 + y2 + u2(x, y)

,
u(x, y)√

x2 + y2 + u2(x, y)

)
.

In this case ν =
(−Du, 1)√
1 + |Du|2

, and ∇ψ = (Dψ,Du ·Dψ), because we assume ∇ψ is

tangential to Γ. Therefore,

λ = n1i · ν +
√
n2

2 − (|n1i−∇ψ|2−(n1i · ν)2)

3det(A + u ⊗ v) = (1 + uTA−1v) det(A), where A is an invertible matrix and u, v are vectors.
https://en.wikipedia.org/wiki/Matrix_determinant_lemma

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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Figure 3.8: Refraction from a point source

= n1
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+

[
n2

2 −

(
n1x√

x2 + y2 + u2
− ψx

)2

−

(
n1y√

x2 + y2 + u2
− ψy

)2

−

(
n1u√

x2 + y2 + u2
−Dψ ·Du

)2

−

(
n1

−(x, y) ·Du+ u√
x2 + y2 + u2

√
1 + |Du|2

)2 ] 1
2

= n1
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+

[
n2

2 − n2
1

2Dψ · ((x, y) + uDu)√
x2 + y2 + u2

− |Dψ|2− (Dψ ·Du)2 +

(
n1

u− (x, y) ·Du√
x2 + y2 + u2

√
1 + |Du|2

)2 ] 1
2

= n1
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2
+
√

∆(x, y, u,Du,Dψ),

where

∆(x, y, u,Du,Dψ) =n2
2 − n2

1 + n1
2Dψ · ((x, y) + uDu)√

x2 + y2 + u2
− |Dψ|2− (Dψ ·Du)2
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+

(
n1

u− (x, y) ·Du√
x2 + y2 + u2

√
1 + |Du|2

)2

.

We set

T (s(x, y))

=

(
n1x

n2

√
x2 + y2 + u2

+
λux

n2

√
1 + |Du|2

− 1

n2
ψx,

n1y

n2

√
x2 + y2 + u2

+
λuy

n2

√
1 + |Du|2

− 1

n2
ψy,

n1u

n2

√
x2 + y2 + u2

− λ

n2

√
1 + |Du|2

− 1

n2
Du ·Dψ

)
.

Because |T (s(x, y))|= 1, we have that

|(T ◦ s)x × (T ◦ s)y|=
1

|T3 ◦ s|
det

(T1 ◦ s)x (T1 ◦ s)y

(T2 ◦ s)x (T2 ◦ s)y

 .

On the other hand,(T1 ◦ s)x (T1 ◦ s)y

(T2 ◦ s)x (T2 ◦ s)y

 =
−D2ψ

n2
+

1

n2

λx
ux√

1+|Du|2
λy

ux√
1+|Du|2

λx
uy√

1+|Du|2
λy

uy√
1+|Du|2



+
λ

n2


(

ux√
1+|Du|2

)
x

(
ux√

1+|Du|2

)
y(

uy√
1+|Du|2

)
x

(
uy√

1+|Du|2

)
y



+
n1

n2


(

x√
x2+y2+u2

)
x

(
x√

x2+y2+u2

)
y(

y√
x2+y2+u2

)
x

(
y√

x2+y2+u2

)
y



=
−D2ψ

n2
+

1

n2

√
1 + |Du|2

ux
uy

⊗
λx
λy


+ λB(Du,D2u) + C(x, y, u,Du),
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where B(Du,D2u) = 1
n2


(

ux√
1+|Du|2

)
x

(
ux√

1+|Du|2

)
y(

uy√
1+|Du|2

)
x

(
uy√

1+|Du|2

)
y

 and

C(x, y, u,Du) = n1
n2


(

x√
x2+y2+u2

)
x

(
x√

x2+y2+u2

)
y(

y√
x2+y2+u2

)
x

(
y√

x2+y2+u2

)
y

. We can calculate the

derivatives of λ obtaining,

λx = n1

(
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2

)
x

+
1

2
∆−1/2

[
2n1(Dψ)x ·

(
(x, y) + uDu√
x2 + y2 + u2

)

+ 2n1(Dψ)·

(
(x, y) + uDu√
x2 + y2 + u2

)
x

− 2(Du ·Dψ)(Du ·Dψ)x

+

(n1
−(x, y) ·Du+ u√

x2 + y2 + u2
√

1 + |Du|2

)2

x

− (|Dψ|2)x

]

= h1(x, y, u,Du,D2u,Dψ)

+
1

2
∆−1/2

[
2(Dψ)x ·

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
−
(
|Dψ|2

)
x

]
,

similarly,

λy = h2(x, y, u,Du,D2u,Dψ)

+
1

2
∆−1/2

[
2(Dψ)y ·

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
−
(
|Dψ|2

)
y

]
,

where hi(x, y, u,Du,D
2u,Dψ), with i+ 1, 2, are the collection of all the terms that

do not contain second derivative of ψ. Therefore,

1√
1 + |Du|2

ux
uy

⊗
λx
λy

 = H̃(x, y, u,Du,D2u,Dψ)

+
∆−1/2

n2

√
1 + |Du|2

[
Du⊗ (D2ψ)

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)
−
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(Du⊗ (D2ψ)(Dψ))

]
,

where H̃ = Du⊗ (h1, h2)

n2

√
1 + |Du|2

.

All in all,(T1)x (T1)y

(T2)x (T2)y


=
−D2ψ

n2
+

∆−1/2

n2

√
1 + |Du|2

[Du⊗ (D2ψ)

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du

)

− (Du⊗ (D2ψ)(Dψ))] + λB(Du,D2u) + C(x, y, u,Du) + H̃(x, y, u,Du,D2u,Dψ)

=

[
− Id +

∆−1/2√
1 + |Du|2

Du⊗

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du−Dψ

)]
D2ψ

n2

+ F (x, y, u,Du,D2u,Dψ)

= −[Id +Du⊗A(x, y, u,Du,Dψ)]
D2ψ

n2
+ F (x, y, u,Du,D2u,Dψ)

= −[Id +Du⊗A)](
D2ψ

n2
− [Id +Du⊗A]−1F ),

where

A(x, y, u,Du,Dψ) =
∆−1/2√
1 + |Du|2

(
n1

(x, y) + uDu√
x2 + y2 + u2

− (Du ·Dψ)Du−Dψ

)
,

(3.23)

and

F (x, y, u,Du,D2u,Dψ) (3.24)

= λB(Du,D2u) + C(x, y, u,Du) + H̃(x, y, u,Du,D2u,Dψ).
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Therefore,

det

(T1)x (T1)y

(T2)x (T2)y

 = det

(
[Id +Du⊗A)]

(
D2ψ

n2
− [Id +Du⊗A]−1F

))

= det (Id +Du⊗A) det

(
D2ψ

n2
− [Id +Du⊗A]−1F

)
.

Using Sherman-Morrison’s formula 4, we obtain

det

(T1)x (T1)y

(T2)x (T2)y

 = (1 +Du ·A) det

(
D2ψ

n2
− [Id− Du⊗A

1 +Du ·A
]F

)
.

Therefore, the phase discontinuity ψ satisfies the equation,

(1 +Du ·A)

s̃(x, y)E(x, y, u,Du,Dψ)
det

(
D2ψ

n2
−
[
Id− Du⊗A

1 +Du ·A

]
F

)
=

f(s(x, y))

g(T (s(x, y)))

where s̃(x, y) = |sx × sy|,

E(x, y, u,Du,Dψ) =
n1u

n2

√
x2 + y2 + u

− λ

n2

√
1 + |Du|2

−Du · Dψ
n2

, A as in (3.23),

and F as in (3.24).

4det(A + u ⊗ v) = (1 + uTA−1v) det(A), where A is an invertible matrix and u, v are vectors.
https://en.wikipedia.org/wiki/Matrix_determinant_lemma

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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CHAPTER 4

WAVEGUIDES

As we said in the introduction, the problem considered in this chapter is

that of modeling energy losses in waveguides. We investigate this problem within

the regime of geometric optics in a dielectric into two cases: a straight guide and

a circularly curved guide. To model this we use the Fresnel formulas. Let us first

explain the set up. Suppose we have two homogeneous media I and II with refractive

indices n1, n2, respectively, with n1 > n2, and set κ =
n2

n1
. Suppose media I and

II are separated by a smooth surface S. If an incident wave with unit direction x

is traveling within medium I and strikes S at a point P , then the wave splits into

two waves: one transmitted into medium II and another internally reflected into

medium I. The unit directions of these waves are mt and mr, respectively, which

are determined by the Snell law. If ν is the unit outer normal to the surface S at

the point P , then x − κmt = λ ν and mr = x − 2 (x · ν)ν, where λ = Φ(x · ν) and

Φ(t) = t− κ
√

1− κ−2(1− t2), see [13].
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Therefore, the incident energy Ei carried by the incident wave with direc-

tion x splits into two: the transmitted energy Et carried by the wave having direction

mt and the internally reflected energy Er carried by the wave having direction mr,

with Ei = Et + Er, assuming no losses. The percentages of energy carried by the

transmitted and internally reflected waves depends on the incident direction x via

the Fresnel formulas, a consequence of Maxwell’s equations, [5, Section1.5.3]. It is

convenient to write these formulas in terms of the vectors x,mr and mt as follows,

see [13]. Indeed, the percentage of internally reflected energy can be conveniently

written for our purposes as

r(x) =
1

(1− κ2)2

([
2κ

x ·mt
− (1 + κ2)

]2 I2
‖

I2
‖ + I2

⊥
+
[
1− 2κx ·mt + κ2

]2 I2
⊥

I2
‖ + I2

⊥

)
,

(4.1)

see [13]. Therefore, the percentage of energy transmitted is t(x) = 1 − r(x). Here

I⊥ and I‖ are the coefficients of the amplitude of the incident wave, which might

depend of x in a continuous way. Notice that from the Snell law, the function r(x)

is a function only depending on the dot product between x and the normal ν. And

notice also that the critical angle is when x ·mt = κ and for such value of x ·mt we

have r(x) = 1, that is, all the incident energy is internally reflected.

Given this set up, we want to model the losses of energy within a waveguide

confined between two parallel surfaces S1 and S2; we assume the dielectric within

the two surfaces has refractive index n1, and the cladding, i.e., the material outside,

has refractive index n2 with n1 > n2. An incident polarized wave will zig-zag inside

between the two surfaces. Depending on the normal to the surfaces at the striking
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points, one can calculate the energy transmitted and internally reflected by using

the formulas above. In other words, the idea is to follow the path of the ray and

tally the energy at each striking point on the boundary of the waveguide.

We will first work out this analysis for a straight guide between two parallel

planes in Section 4.1. Second, we used this technique to carry out a similar but more

difficult analysis when the guide is circular, see Section 4.2. This section contains

several subsections analyzing in detail all the geometric possibilities that may arise.

This is then used in Section 4.3 to get estimates for the energy internally reflected

in the circular guide. The chapter ends showing asymptotics for periodic circular

guides, Section 4.4, and final remarks on future research.

4.1 Straight waveguide

We consider an infinite waveguide with the form

S = {(x1, x2, x3) : −a < x3 < a}

so that, the material inside S has refractive index n1 and the material outside S has

refractive index n2, where we assume n1 > n2. We analyze the energy losses for a

zig-zagging ray that is internally reflected inside S, and confined to the x1x3-plane.

Depending on the normal at the surfaces at the striking points, one can

calculate the energy transmitted and internally reflected by using the equation (4.1).

In other words, the idea is to follow the path of the ray and tally the energy at each

striking point on the boundary of the waveguide. Let si be the incident unit vector

impinging the boundary of S at the point A = (0, 0,−a) from inside the guide, and
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assume si lies on the x1x3-plane as in Figure 4.1. The outer unit normal at A is

νA = (0, 0,−1), and let θi be the angle between νA and the incident unit direction

si. We then have

si = − sin θi i− cos θi k, (4.2)

as usual i, j,k are the unit coordinate vectors. We assume the magnetic and electric

fields impinging the wave guide at a point A on the boundary x3 = −a of the guide

are plane waves having direction si and traveling in the material n1. The incident

electric field at A is then

Ei
A(r, t) (4.3)

=
(
−IA‖ cos θi, I

A
⊥ , I

A
‖ sin θi

)
cos

(
ω

(
t− r · si

v1

))
= Ei

A cos

(
ω

(
t− r · si

v1

))
,

where the values IA‖ and IA⊥ are given, since E is perpendicular to the direction of

propagation si. Being E and H plane waves we also have that

E = −v1 si ×H, H =
1

v1
si ×E, (4.4)

where H is the magnetic field, and therefore, the Poynting vector is given by

S =
c

4π
E×H =

c

4πv1
E× (si ×E) =

n1

4π
|E|2 si.

From (4.4)

Hi
A(r, t) (4.5)

=
1

v1

(
IA⊥ cos θi, I

A
‖ ,−I

A
⊥ sin θi

)
cos

(
ω

(
t− r · si

v1

))
= Hi

A cos

(
ω

(
t− r · si

v1

))
.

Let st be the direction of propagation of the transmitted wave, and let θt be the

angle between the normal νA and st, so st = − sin θt i− cos θt k. Similarly, let sr be



90

the direction of propagation of the reflected wave and θr is the angle between the

normal νA and sr. From the Snell law θr = π − θi and so

sr = − sin θr i− cos θr k = − sin θi i + cos θi k. (4.6)

Then the electromagnetic field corresponding to transmission is

Et
A(r, t) =

(
−TA‖ cos θt, T

A
⊥ , T

A
‖ sin θt

)
cos

(
ω

(
t− r · st

v2

))
(4.7)

= Et
A cos

(
ω

(
t− r · st

v2

))
Ht
A(r, t) =

1

v2

(
TA⊥ cos θt, T

A
‖ ,−T

A
⊥ sin θt

)
cos

(
ω

(
t− r · st

v2

))
= Ht

A cos

(
ω

(
t− r · st

v2

))
;

and similarly the fields corresponding to reflection are

Er
A(r, t) =

(
−RA‖ cos θr, R

A
⊥, R

A
‖ sin θr

)
cos

(
ω

(
t− r · sr

v1

))
(4.8)

= Er
A cos

(
ω

(
t− r · sr

v1

))
Hr
A(r, t) =

1

v1

(
RA⊥ cos θr, R

A
‖ ,−R

A
⊥ sin θr

)
cos

(
ω

(
t− r · sr

v1

))
= Hr

A cos

(
ω

(
t− r · sr

v1

))
.

Here the values RA‖ , R
A
⊥, T

A
‖ and TA⊥ are determined from the Fresnel for-

mulas below and depend only on IA‖ , IA⊥ and the incident direction si. In fact, let

us replace si by x and st by m, so cos θi = x · νA and cos θt = m · νA. In addition,

setting κ = n2/n1 < 1, from the Snell law x− κm = λνA, so the Fresnel equations
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Figure 4.1: Wave guide paths configuration
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have the form 1

TA‖ =
2x · νA

κx · νA +m · νA
IA‖ =

2x · νA
(κx+m) · νA

I‖ =
2x · (x− κm)

(κx+m) · (x− κm)
IA‖

TA⊥ =
2x · νA

x · νA + κm · νA
IA⊥ =

2x · νA
(x+ κm) · νA

IA⊥ =
2x · (x− κm)

(x+ κm) · (x− κm)
IA⊥

RA‖ =
κx · νA −m · νA
κx · νA +m · νA

IA‖ =
(κx−m) · νA
(κx+m) · νA

IA‖ =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
IA‖

RA⊥ =
x · νA − κm · νA
x · νA + κm · νA

IA⊥ =
(x− κm) · νA
(x+ κm) · νA

IA⊥ =
(x− κm) · (x− κm)

(x+ κm) · (x− κm)
IA⊥ ,

for x ·m ≥ κ, see [13, Section 4] for a derivation of these formulas. The reflection

coefficient at A is

RA =

(
|Er

A|
|Ei

A|

)2

,

[5, Eq. (27), Section 1.5.3], representing the percentage of energy internally reflected

at A, which can be calculated as follows. We have

|Ei
A|2= (IA‖ )2 + (IA⊥)2,

and from the Fresnel equations above

|Er
A|2 = (RA‖ )2 + (RA⊥)2

=

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

(IA‖ )2 +

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

(IA⊥)2.

Now let

∆1 =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
, ∆2 =

(x− κm) · (x− κm)

(x+ κm) · (x− κm)
,

and since x,m are unit vectors we get by calculation that

∆1 =
1

1− κ2

(
2κ

x ·m
− (1 + κ2)

)
, ∆2 =

1

1− κ2

(
1− 2κx ·m+ κ2

)
,

1Fresnel equations are generally written in terms of angles of incidence. The formulation here
is more convenient for our purposes.



93

i.e., ∆i depend only on x ·m. So

RA =

(
|Er

A|
|Ei

A|

)2

=
(RA‖ )2 + (RA⊥)2

(IA‖ )2 + (IA⊥)2

=
1

(1− κ2)2

([
2κ

x ·m
− (1 + κ2)

]2 (IA‖ )2

(IA‖ )2 + (IA⊥)2

+
[
1− 2κx ·m+ κ2

]2 (IA⊥)2

(IA‖ )2 + (IA⊥)2

)
,

a function of x ·m only. We then have that if the energy of the wave striking at A

is E , then the amount of energy internally reflected at A inside the guide is RA E .

We now follow the path of the reflected ray inside the guide until it strikes

the boundary of the wave-guide at a point B on x3 = a as in Figure 4.1. Notice

that the normal at B is νB = (0, 0, 1) = −νA, the new incident unit direction at

B is siB = sr given by (4.6) -the direction after reflection at A- and the angle θiB

between siB and νB equals θi. Since the incident electromagnetic field striking at B

are the fields coming after reflection from A we have

Ei
B(r, t) = Er

A(r, t) Hi
B(r, t) = Hr

A(r, t). (4.9)

Now the incident field at B (perpendicular to siB) is

Ei
B(r, t) =

(
IB‖ cos θi, I

B
⊥ , I

B
‖ sin θi

)
cos

(
ω

(
t−

r · siB
v1

))
,

and

Hi
B(r, t) =

1

v1
siB ×Ei

B =
1

v1

(
−IB⊥ cos θi, I

B
‖ ,−I

B
⊥ sin θi

)
cos

(
ω

(
t−

r · siB
v1

))
.

So from (4.9) and (4.8) we get

Ei
B(r, t) =

(
IB‖ cos θi, I

B
⊥ , I

B
‖ sin θi

)
cos

(
ω

(
t−

r · siB
v1

))
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=
(
−RA‖ cos θr, R

A
⊥, R

A
‖ sin θr

)
cos

(
ω

(
t− r · sr

v1

))
,

Hi
B(r, t) =

1

v1

(
−IB⊥ cos θi, I

B
‖ ,−I

B
⊥ sin θi

)
cos

(
ω

(
t−

r · siB
v1

))
=

1

v1

(
RA⊥ cos θr, R

A
‖ ,−R

A
⊥ sin θr

)
cos

(
ω

(
t− r · sr

v1

))
.

The internally reflected wave at B has direction srB with srB = si = − sin θi i−cos θi k

and is then given by

Er
B(r, t) =

(
−RB‖ cos θi, R

B
⊥, R

B
‖ sin θi

)
cos

(
ω

(
t−

r · srB
v1

))
(4.10)

= Er
B cos

(
ω

(
t− r · si

v1

))
,

Hr
B(r, t) =

1

v1
si ×Er

B(r, t)

=
1

v1

(
RB⊥ cos θi, R

B
‖ ,−R

B
⊥ sin θi

)
cos

(
ω

(
t−

r · srB
v1

))
= Hr

B cos

(
ω

(
t− r · si

v1

))
,

which from the Fresnel formulas at B

RB‖ =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
IB‖

RB⊥ =
(x− κm) · (x− κm)

(x+ κm) · (x− κm)
IB⊥ ,

where x = siB = sr and m = srB = si. We have IB‖ = RA‖ and IB⊥ = RA⊥. Also from

Fresnel formulas at A

RA‖ =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
IA‖

RA⊥ =
(x− κm) · (x− κm)

(x+ κm) · (x− κm)
IA⊥ ,

with x = si and m = sr.



95

Since siB · srB = sr · si, we therefore, obtain

RB‖ =

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

IA‖

RB⊥ =

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

IA⊥

with x = si and m = sr. So the percentage of energy internally reflected at B is

RB =

(
|Er

B|
|Ei

B|

)2

=
(RB‖ )2 + (RB⊥)2

(IB‖ )2 + (IB⊥ )2

=

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2 (IB‖ )2

(IB‖ )2 + (IB⊥ )2

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2 (IB⊥ )2

(IB‖ )2 + (IB⊥ )2

=
1

(1− κ2)2

([
2κ

x ·m
− (1 + κ2)

]2 (RA‖ )2

(RA‖ )2 + (RA⊥)2

+
[
1− 2κx ·m+ κ2

]2 (RA⊥)2

(RA‖ )2 + (RA⊥)2

)
,

and

(RA‖ )2

(RA‖ )2 + (RA⊥)2

=

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

(IA‖ )2[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

(IA‖ )2 +

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

(IA⊥)2

=

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

(IA‖ )2

RA
(

(IA‖ )2 + (IA⊥)2
)

(RA⊥)2

(RA‖ )2 + (RA⊥)2

=

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

(IA⊥)2[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

(IA‖ )2 +

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

(IA⊥)2
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=

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

(IA⊥)2

RA
(

(IA‖ )2 + (IA⊥)2
) .

Then

RBRA =

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]4 (IA‖ )2

(IA‖ )2 + (IA⊥)2

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]4 (IA⊥)2

(IA‖ )2 + (IA⊥)2
,

where x = si and m = sr. Hence if the energy of the wave striking A is E , then the

energy internally reflected by the guide at the point B equals RBRA E .

We now continue in this way and follow the reflected ray inside the guide

until it strikes the boundary of the wave-guide at a point C on x3 = −a. The incident

direction at C is siC = si in (4.2), and the reflected direction at C is srC = sr in

(4.6); see Figure 4.1. The incident fields striking at C are the fields coming after

reflection from B, that is,

Ei
C(r, t) = Er

B(r, t) Hi
C(r, t) = Hr

B(r, t).

We then have from (4.10)

Ei
C(r, t) =

(
−IC‖ cos θi, I

C
⊥ , I

C
‖ sin θi

)
cos

(
ω

(
t−

r · siC
v1

))
=
(
−RB‖ cos θi, R

B
⊥, R

B
‖ sin θi

)
cos

(
ω

(
t− r · si

v1

))
,

Hi
C(r, t) =

1

v1
si ×Ei

C(r, t) =
1

v1

(
IC⊥ cos θi, I

C
‖ ,−I

C
⊥ sin θi

)
cos

(
ω

(
t−

r · siC
v1

))
=

1

v1

(
RB⊥ cos θi, R

B
‖ ,−R

B
⊥ sin θi

)
cos

(
ω

(
t− r · si

v1

))
.
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The internally reflected wave at C has direction srC = sr and is given by

Er
C(r, t) =

(
−RC‖ cos θr, R

C
⊥, R

C
‖ sin θr

)
cos

(
ω

(
t−

r · srC
v1

))
(4.11)

= Er
C cos

(
ω

(
t− r · sr

v1

))
Hr
C(r, t) =

1

v1
sr ×Er

C(r, t) (4.12)

=
1

v1

(
RC⊥ cos θr, R

C
‖ ,−R

C
⊥ sin θr

)
cos

(
ω

(
t− r · sr

v1

))
= Hr

C cos

(
ω

(
t− r · sr

v1

))
,

with from the Fresnel formulas at C

RC‖ =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
IC‖

RC⊥ =
(x− κm) · (x− κm)

(x+ κm) · (x− κm)
IC⊥ ,

where x = siC = si and m = srC = sr. We have IC‖ = RB‖ and IC⊥ = RB⊥ and from

Fresnel formulas at B

RB‖ =
(κx−m) · (x− κm)

(κx+m) · (x− κm)
IB‖

RB⊥ =
(x− κm) · (x− κm)

(x+ κm) · (x− κm)
IB⊥ ,

where x = siB = sr and m = srB = si. As before and since ∆1 and ∆2 depend only

on x ·m and siC · srC = srB · siB = si · sr, we obtain

RC‖ =

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2

IB‖

RC⊥ =

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2

IB⊥ .

So

RC =

(
|Er

C |
|Ei

C |

)2

=
(RC‖ )2 + (RC⊥)2

(IC‖ )2 + (IC⊥ )2
=

(RC‖ )2 + (RC⊥)2

(RB‖ )2 + (RB⊥)2
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=

[
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]4 (IB‖ )2

(RB‖ )2 + (RB⊥)2

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]4 (IB⊥ )2

(RB‖ )2 + (RB⊥)2

=
∆4

1 (IB‖ )2 + ∆4
2 (IB⊥ )2

(RB‖ )2 + (RB⊥)2
=

1

RB

∆4
1 (IB‖ )2 + ∆4

2 (IB⊥ )2

(IB‖ )2 + (IB⊥ )2

=
1

RB

([
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]4 (RA‖ )2

(RA‖ )2 + (RA⊥)2

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]4 (RA⊥)2

(RA‖ )2 + (RA⊥)2

)

=
1

RBRA

([
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]6 (IA‖ )2

(IA‖ )2 + (IA⊥)2

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]6 (IA⊥)2

(IA‖ )2 + (IA⊥)2

)

and therefore, we get

RC RBRA =

([
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]6 (IA‖ )2

(IA‖ )2 + (IA⊥)2
+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]6 (IA⊥)2

(IA‖ )2 + (IA⊥)2

)
,

where x = si and m = sr.

In general and continuing with this process, if we have a sequence of points

A1, · · · , AN along which the wave zig-zags, then

N∏
j=1

RAj =

([
(κx−m) · (x− κm)

(κx+m) · (x− κm)

]2N (IA‖ )2

(IA‖ )2 + (IA⊥)2
(4.13)

+

[
(x− κm) · (x− κm)

(x+ κm) · (x− κm)

]2N (IA⊥)2

(IA‖ )2 + (IA⊥)2

)
,

with RAj =

(
|Er

Aj
|

|Ei
Aj
|

)2

, A1 = A, and x = si and m = sr. Therefore, if the wave has
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energy E when it strikes A1, then the amount of energy internally reflected at the

last point AN of the zig-zag equals
∏N
j=1RAj E .

Let us rewrite this percentage in terms of the incident direction si at A1

and the normal to the guide at A1. We have

(κx−m) · (x− κm)

(κx+m) · (x− κm)
=

1

1− κ2

(
2κ

x ·m
− (1 + κ2)

)
,

and

(x− κm) · (x− κm)

(x+ κm) · (x− κm)
=

1

1− κ2

(
1− 2κx ·m+ κ2

)
.

From the Snell law x− κm = λ ν, where ν is the outer unit normal and

λ = φ(x · ν),

with

φ(t) = t− κ
√

1− κ−2(1− t2).

Here we assume x ·ν ≥
√

1− κ2, that is equivalent to say that the angle of incidence

is smaller than the critical angle θc = arcsinκ. Therefore,

x ·m =
1

κ
(1− φ(x · ν) (x · ν)) ,

and we have

1

1− κ2

(
2κ

x ·m
− (1 + κ2)

)
=

1

1− κ2

 2κ
1

κ
(1− φ(x · ν) (x · ν))

− (1 + κ2)


:= Φ1(x · ν) (4.14)

and

1

1− κ2

(
1− 2κx ·m+ κ2

)
=

1

1− κ2

(
1− 2κ

(
1

κ
(1− φ(x · ν) (x · ν))

)
+ κ2

)
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:= Φ2(x · ν). (4.15)

Then (4.13) can be written as

N∏
j=1

RAj = [Φ1(x · ν)]2N
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(x · ν)]2N

(IA⊥)2

(IA‖ )2 + (IA⊥)2
, A1 = A.

(4.16)

Since

Ei
Aj+1

= Er
Aj

for 1 ≤ j ≤ N − 1, we get

N∏
j=1

RAj (4.17)

=

(
|Er

AN
|

|Ei
A1
|

)2

=
1

(IA‖ )2 + (IA⊥)2

(
[Φ1(x · ν)]2N (IA‖ )2 + [Φ2(x · ν)]2N (IA⊥)2

)
.

(4.18)

Hence

RAN =

∏N
j=1RAj∏N−1
j=1 RAj

=
[Φ1(x · ν)]2N (IA‖ )2 + [Φ2(x · ν)]2N (IA⊥)2

[Φ1(x · ν)]2(N−1) (IA‖ )2 + [Φ2(x · ν)]2(N−1) (IA⊥)2
.

4.2 Circular Waveguide

Let 0 < R1 < R2. We consider a wave guide having a circular section:

W = {(x, y, z) : −∞ < x ≤ 0, R1 ≤ y ≤ R2, −∞ < z < +∞}

∪ {(x, y, z) : R2
1 ≤ x2 + y2 ≤ R2

2, x ≥ 0, y ≥ 0, −∞ < z < +∞}

∪ {(x, y, z) : R1 ≤ x ≤ R2, −∞ ≤ y ≤ 0, −∞ < z < +∞}.
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The interior of W has refractive index n1, and the outside refractive index n2. We

assume that n1 > n2, and we let κ =
n2

n1
. We recall that if a surface S separates

two media with refractive indices n1 and n2, with n1 > n2, and if a ray with unit

direction x traveling in medium n1 impinges S at a point P , where the unit normal

at P going from medium n1 to medium n2 is denoted by ν, then the ray is refracted

into medium n2 into a ray having unit direction m with x − κm = λ ν, where

λ = x · ν − κ
√

1− κ−2 (1− (x · ν)2). Since κ < 1, then total internal reflection

occurs if and only if

x · ν ≤
√

1− κ2, (4.19)

or in other words, the angle ψ between the unit vectors x and ν satisfies

cosψ ≤
√

1− κ2. (4.20)

We also recall that the critical angle of refraction is θc = arcsinκ. In case of total

internal reflection, the ray is internally reflected within medium n1 and into the

direction m = x− 2 (x · ν) ν.

We assume that we are having a plane wave traveling upwards in the

straight lower part of the waveguide, and want to analyze the energy transmitted

on the circular part. We are assuming the vector direction of propagation of the

plane wave lies on the xy-plane. This wave is realized as a ray impinging the sides of

the lower straight guide that is internally reflected inside the circular section of the

guide. In other words, we assume that the ray forms an angle θ with either normal

to the walls of the straight guide. We shall then analyze ray tracing and the energy

internally reflected in four cases separately:
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Case A (to be done in Section 4.2.1): the incoming ray is going

towards the circle of radius of radius R2 and it forms an angle θ ≥ θc with x-axis

directed to +∞;

Case B (to be done in Section 4.2.2): the incoming ray is going

towards the circle of radius of radius R1 and it forms an angle θ ≥ θc with x-axis

directed to −∞.

Case C (to be done in Section 4.2.3): the incoming ray is going

towards the circle of radius of radius R2 and it forms an angle θ < θc with x-axis

directed to +∞;

Case D (to be done in Section 4.2.4): the incoming ray is going

towards the circle of radius of radius R1 and it forms an angle θ < θc with x-axis

directed to −∞

The analysis of these four cases is not trivial and it requires a careful

and somehow long geometrical argument to understand and quantify all possible

configurations. The most complicated is Case A, the others somehow follow from

this one. For convenience of the reader we present all details.

4.2.1 Analysis of Case A

Let R1 ≤ x ≤ R2, θ ≥ θc and let us assume

κ ≤ R1

R2
. (4.21)

Since κ < 1 is fixed, this condition always holds when R1 and R2 are sufficiently

close.
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xO

A

B

C

α

δ

θ

ω

n1

R1 R2

n2

n2

Figure 4.2: Case A and C
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xO

A

B

C

α

δ

θ

ω

n1

R1 R2

n2

n2

Figure 4.3: Whispering gallery



105

Ray tracing analysis at the first striking point

Consider a ray ` = `(x, θ) that passes through (x, 0), making an angle θ

with the positive x-axis, and therefore, striking the circle with radius R2 for the first

time at a point A, see Figure 4.2. We denote by θ the angle AxR2, and let α be the

angle 0Ax, that is, α is the angle of incidence at A. By the sine theorem we have

x

sinα
=

R2

sin(π − θ)

which implies

α = arcsin

(
x

R2
sin θ

)
. (4.22)

Energy losses analysis at the first striking point

We first analyze when is there total internal reflection at A. From (4.20),

total internal reflection at A occurs if and only if cosα ≤
√

1− κ2. This means

cosα = cos

(
arcsin

(
x

R2
sin θ

))
=

√
1−

(
x

R2

)2

sin2 θ ≤
√

1− κ2,

which is equivalent to

x ≥ κR2

sin θ
. (4.23)

We see where is the point
κR2

sin θ
located relative to the interval [R1, R2]. First, since

θ ≥ θc = arcsinκ, we have that sin θ ≥ κ, and so
κR2

sin θ
≤ R2. Second, R1 ≤

κR2

sin θ

holds iff sin θ ≤ κR2

R1
. Therefore,

if sin θ ≤ κR2

R1
, then total internal reflection at A occurs iff x ∈

[
κ
R2

sin θ
,R2

]
.

(4.24)
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On the other hand,

if sin θ > κ
R2

R1
, then there is total internal reflection at A for all x ∈ [R1, R2].

(4.25)

Summarizing, (see also Figure 4.4)

arcsin
kR2

R1

Total internal reflection
at A

Energy
losses

at A

R2R1 x

θ

arcsin(k)

π

2

Figure 4.4: Total internal reflection region

(C1) If θ ∈ [arcsinκ, arcsin (κR2/R1)], then we have total internal reflection at A if

and only if x ∈
[
κ
R2

sin θ
,R2

]
.

(C2) If θ ∈ (arcsin (κR2/R1) , π/2], then we have total internal reflection at A for

all x ∈ [R1, R2].
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Ray tracing analysis at the second striking point

We next analyze the trajectory of the ray ` to see where strikes next. After

being reflected at the point A, the ray ` continues traveling and either strikes the

inner circle C1 (see Figure 4.2) or the outer circle C2 (see Figure 4.3) at a point

denoted by B. From the point A the angle α for which the ray ` is possibly tangential

to the smaller circle is αT with sinαT =
R1

R2
. So ` strikes the smaller circle iff α ≤ αT

and ` strikes the larger circle iff α > αT . Suppose α ≤ αT . So sinα ≤ R1

R2
, and

from (4.22) we get sin θ ≤ R1

x
, that is, the ray ` strikes the circle C1 if and only if

x ≤ R1

sin θ
. Suppose that R2 ≤

R1

sin θ
, that is, sin θ ≤ R1

R2
. Recall that x ≤ R2. So

if sin θ ≤ R1

R2
, then the ray ` strikes C1 for all x ∈ [R1, R2]. On the other hand, if

R1

sin θ
< R2, that is, when

R1

R2
< sin θ, then ` strikes C1 for x ∈

[
R1,

R1

sin θ

]
and `

strikes C2, when x ∈
(
R1

sin θ
,R2

]
. Summarizing, (see also Figure 4.5)

Second
striking

point on
C
2

Second
striking

point on
C
1

x

θ

R2R1

arcsin
R1

R2

arcsin(k)

π

2

Figure 4.5: Second striking point region
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(C3) If θ ∈ [arcsinκ, arcsin(R1/R2)], then ` strikes C1 for all x ∈ [R1, R2].

(C4) If θ ∈ (arcsin(R1/R2), π/2], then ` strikes C1 for x ∈
[
R1,

R1

sin θ

]
, and ` strikes

C2 when x ∈
(
R1

sin θ
,R2

]
.

Combining (C1), (C2), (C3) and (C4) we get the following Figures (4.6, 4.7) and

summary:

Case 1. See Figure 4.6. Suppose κ ≤
(
R1

R2

)2

. This means κ
R2

R1
≤ R1

R2
.

We analyze what happens when θ belongs to various intervals.

arcsin
kR2

R1

R2xR1

arcsin
R1

R2

arcsin(k)

θ

π

2

Figure 4.6: Case 1

Suppose κ ≤ sin θ ≤ κR2

R1
. From (C3) ` strikes C1 for all x ∈ [R1, R2], and

from (4.24) there is total internal reflection at A for all x ∈
[
κ
R2

sin θ
,R2

]
.

Suppose κ
R2

R1
< sin θ ≤ R1

R2
. From (C3) all rays strike C1 and from (4.25)
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there is total internal reflection at A for all x ∈ [R1, R2].

Suppose
R1

R2
< sin θ. From (C4) ` strikes C1 for x ∈

[
R1,

R1

sin θ

]
and strikes

C2 for x ∈
(
R1

sin θ
,R2

]
, and from (4.25) there is total internal reflection at A for all

x ∈ [R1, R2].

Case 2. See Figure 4.7. Suppose

(
R1

R2

)2

< κ ≤ R1

R2
. This implies

κ
R2

R1
>
R1

R2
.

arcsin
kR2

R1

R2R1 x

θ

arcsin
R1

R2

arcsin(k)

π

2

Figure 4.7: Case 2

Suppose κ ≤ sin θ ≤ R1

R2
. From (C3) ` strikes C1 for all x ∈ [R1, R2], and

from (4.24) there is total internal reflection at A for all x ∈
[
κ
R2

sin θ
,R2

]
.

Suppose
R1

R2
< sin θ ≤ κR2

R1
. By (C4), ` strikes C1 for x ∈

[
R1,

R1

sin θ

]
, and `

strikes C2 when x ∈
(
R1

sin θ
,R2

]
. From (4.21), we have κ

R2

sin θ
≤ R1

sin θ
. From (4.24),
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total internal reflection at A occurs iff x ∈
[
κ
R2

sin θ
,R2

]
. Also if x ∈

[
κ
R2

sin θ
,
R1

sin θ

]
,

then ` strikes C1; and if x ∈
(
R1

sin θ
,R2

]
, then ` strikes C2.

Suppose κ
R2

R1
< sin θ ≤ 1. From (C4), ` strikes C1 when x ∈

[
R1,

R1

sin θ

]
,

and ` strikes C2 when x ∈
(
R1

sin θ
,R2

]
, and from (4.25) there is total internal

reflection at A for all x ∈ [R1, R2].

Energy losses analysis at the second striking point

Let us analyze what happens at B with internal reflection.

Suppose B ∈ C1. From (C3) and (C4) this happens only when sin θ ≤ R1/R2 and

for each x ∈ [R1, R2] or when sin θ > R1/R2 and for each x ∈ [R1, R1/sin θ]. Let ω

be the angle of incidence at B, then the angle OBA is π − ω and the angle BA0 is

α. By the sine theorem

R2

sin(π − ω)
=

R2

sinω
=

R1

sinα
,

and so from (4.22)

ω = arcsin

(
R2

R1
sinα

)
= arcsin

(
R2

R1

x

R2
sin θ

)
= arcsin

(
x

R1
sin θ

)
. (4.26)

Notice that to have the function arcsin well defined we need
x

R1
sin θ ≤ 1, which

holds because of the assumption that B ∈ C1. Then

cosω =

√
1−

(
x

R1

)2

sin2 θ.

We have that

√
1−

(
x

R1

)2

sin2 θ ≤
√

1− κ2 is equivalent to x ≥ κR1

sin θ
. Since

x ≥ R1 and κ/sin θ ≤ 1, such inequality always holds and therefore, there is total
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internal reflection at B for any x for which B is on C1 (regardless of weather or not

there is total internal reflection at A).

Next suppose B ∈ C2. From (C4), this happens when sin θ > R1/R2 and x ∈

(R1/sin θ,R2]. Let ω be the angle 0BA and let α be the angle 0AB. By the sine

theorem
R2

sinα
=

R2

sinω
, and therefore, ω = α. From (4.21)

R1

sin θ
≥ κ

R2

sin θ
. Since

x > R1/sin θ, it follows that x satisfies (4.23) and therefore, there is total internal

reflection at B. Summarizing,

(C5) Regardless of weather B ∈ C1 or B ∈ C2, there is total internal reflection at

B for each x ∈ [R1, R2].

Ray tracing and energy losses analysis at the third and successive striking

points

We now analyze the next striking point. If B ∈ C1, then the ray ` will

continue traveling and will strike C2 at some point C, as in Figure 4.2. If B ∈ C2,

then the ray ` will continue traveling, it will never strike C1 again and it will strike

C2 at some point C, as in Figure 4.3.

Let us first analyze the case when B ∈ C1. The ray ` then continues

traveling and strikes C2 at some point C. We show that there is total internal

reflection at C only if (4.23) holds. In fact, let δ be the angle 0CB, we have that

0BC equals π − ω. Again by the sine theorem

R1

sin δ
=

R2

sinω
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so from (4.26)

δ = arcsin

(
R1

R2
sinω

)
= arcsin

(
x

R2
sin θ

)
.

Therefore,

cos δ =

√
1−

(
x

R2

)2

sin2 θ ≤
√

1− κ2

if and only if (4.23) holds.

Suppose B ∈ C2. Let δ be the angle 0CB and ω be the angle CBO. By

the sine theorem R2/sin δ = R2/sinω and so δ = ω. Therefore, the incident angle at

C equals the incident angle at A since ω = α, and there is total internal reflection

at C if and only if there is total internal reflection at A. Now the analysis of the

striking points follows the same pattern, in other words, the angles of incidence

repeat themselves. Summarizing, under (4.23) there are no losses at both all the

striking points on the inner circle and all the striking points on the outer circle. We

remark that the points B,C, etc. can all be on the outer circle C2. From (C4) this

is the case when
R1

R2
< sin θ, and x ∈

(
R1

sin θ
,R2

]
. In fact, in this case the striking

points are all on the outer circle and have the form

R2 (cos (θ − (2N + 1)α+N π) , sin (θ − (2N + 1)α+N π)) , N = 0, 1, · · · .

This sequence of points resembles the points on a whispering gallery, see [35, Section

287, p. 115].

Next we consider the complementary case to (4.23), that is, when

R1 ≤ x <
κR2

sin θ
. (4.27)
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Let us first analyze internal reflection at the first striking point A. Since the angle

of incidence at A is α, then from (4.22) we have

cosα =

√
1−

(
x

R2

)2

sin2 θ

which from (4.27) is greater than or equal to
√

1− κ2 and therefore, there is no total

internal reflection at A and so there are losses at A. At the next striking point B it

was shown before that if B ∈ C1, then there is total reflection at B. On the other

hand, if B ∈ C2, then from (C4) and (C3) this happens only when x > R1/sin θ.

Then from (4.27) we must have
κR2

sin θ
> x >

R1

sin θ
, which is impossible from the

assumption (4.21), and therefore, B cannot be on C2. Then at the next point C we

must have C ∈ C2. We will show that there is no total internal reflection at C. In

fact, let δ be the angle 0CB, we have that 0BC equals π − ω. Again by the sine

theorem

R1

sin δ
=

R2

sinω

so from (4.26)

δ = arcsin

(
R1

R2
sinω

)
= arcsin

(
x

R2
sin θ

)
= α.

Therefore, from (4.27)

cos δ =

√
1−

(
x

R2

)2

sin2 θ ≥
√

1− κ2

implying that there are losses at C. In summary, under (4.27) there are no losses

at all the striking points on the inner circle and there are losses at all the striking

points on the outer circle. We will calculate now a formula for the points where the
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ray ` strike the outer circle under the assumption (4.27). The first point on C2 is

A and we have A = R2 (cos(θ − α), sin(θ − α)). The next striking point B is on the

circle C1 and the radius 0B forms with the positive x-axis an angle δ′+θ−α, where

δ′ = ω − α with ω being the incident angle at B given by (4.26). The next point C

is on C2 and has the form

C = R2 (cos(θ + 2ω − 3α), sin(θ + 2ω − 3α)) .

The next striking point is on C1 and after that the following striking point is on C2

and has the form

R2

(
cos(4δ′ + θ − α), sin(4δ′ + θ − α)

)
= R2 (cos(θ + 4ω − 5α), sin(θ + 4ω − 5α)) ,

since the δ′ repeats itself. Continuing in this way we get that the Nth-striking point

on the outer circle is given by

PN = R2 (cos(θ + 2Nω − (2N + 1)α), sin(θ + 2Nω − (2N + 1)α)) , N = 0, 1, · · ·

(4.28)

where α is given by (4.22) and ω given by (4.26). The angle of incidence at PN is α

for N ≥ 0.

Summarizing,

(L1) If x ∈
[
κR2

sin θ
,R2

]
, there are no losses at both all the striking points on the

inner circle and all the striking points on the outer circle.

(L2) If x ∈
[
R1,

κR2

sin θ

)
there are no losses at all the striking points on the inner

circle and there are losses at all the striking points on the outer circle.
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Notice that if θ > arcsin
(
κR2
R1

)
, then

[
R1,

κR2

sin θ

)
is empty.

4.2.2 Analysis of Case B

The analysis is similar to Case A (Section 4.2.1) and we obtain the same

results (L1) and (L2).

Ray tracing and energy losses analysis at the first striking point. Consider

a ray ` that passes through (x, 0), R1 ≤ x ≤ R2, making an angle θ ≥ θc with

the x-axis going to −∞. There are two possibilities: the ray first strikes C1 or it

first strikes C2. Notice that the ray can be tangential to C1, in fact, this happens

at θT (x) with sin θT (x) =
R1

x
. This is possible for θT ≥ θc because from (4.21),

R1

κ
≥ R2 ≥ x. If the ray passing through (x, 0) has an angle θ > θT (x), then the ray

does not strike C1 and strikes C2. On the other hand, if the angle κ ≤ θ ≤ θT (x)

then the ray strikes C1 at a point A. This means that x ≤ R1

sin θ
, and in this case, the

ray is reflected at A with an angle of incidence α such that x/sin(π−α) = R1/sin θ.

That is, α = arcsin

(
x

R1
sin θ

)
. Total internal reflection at A occurs if and only

if cosα ≤
√

1− κ2. That is,

√
1−

(
x

R1

)2

sin2 θ ≤
√

1− κ2, which holds if and

only if x ≥ κ
R1

sin θ
. This holds for all x ≥ R1 since κ

R1

sin θ
≤ R1 because θ ≥ θc.

If sin θ >
R1

R2
(≥ κ), then R2 >

R1

sin θ
. On the other hand, if sin θ ≤ R1

R2
, then

R2 ≤
R1

sin θ
. Summarizing, if sin θ >

R1

R2
and x ∈

[
R1,

R1

sin θ

]
, then the ray strikes

C1 at a point A where there is total internal reflection. If sin θ ≤ R1

R2
, then the ray

strikes C1 at a point A where there is total internal reflection for all x ∈ [R1, R2].

Let us then assume now that θ > θT (x). Then the ray strikes C2 into a point A. If



116

ω is the angle 0Ax, then by the sine theorem we have

x

sinω
=

R2

sin θ
,

which gives

ω = arcsin

(
x

R2
sin θ

)
.

Total internal reflection at A happens if and only if cosω ≤
√

1− κ2, that is, if and

only if x ≥ κ
R2

sin θ
. Since θ > θT (x), we have sin θ >

R1

x
, so x >

R1

sin θ
≥ κ

R2

sin θ
,

where the last inequality follows from (4.21). If sin θ ≤ R1/R2, then R1/sin θ ≥ R2

and so x cannot be bigger than R1/sin θ. Summarizing, if sin θ >
R1

R2
and x ∈(

R1

sin θ
,R2

]
, then the ray strikes the circle C2 at which there is total internal reflec-

tion.

Ray tracing and energy losses analysis at the second and successive strik-

ing points. We next analyze what happens at the next striking point. Suppose

the first strike is on a point A in C1, which means x ≤ R1

sin θ
. Then the ray strikes

next a point B in C2. Let ω be the angle 0BA and π−α be the angle 0Ax. By the

sine theorem R1/sinω = R2/sinα. So ω = arcsin

(
R1

R2
sinα

)
= arcsin

(
x

R2
sin θ

)
.

Total internal reflection at B happens iff x ≥ κ
R2

sin θ
. We then have total internal

reflection when x ∈
[
κ
R2

sin θ
,
R1

sin θ

]
. Notice that

R1

sin θ
< R2 iff sin θ > R1/R2. If

sin θ ≤ R1/R2, then total internal reflection happens for x ∈ [κ
R2

sin θ
,R2]. When

the first striking point is on C2, that is when x ∈
(
R1

sin θ
,R2

]
, we have total inter-

nal reflection at A for all x ∈
(
R1

sin θ
,R2

]
. We also have total internal reflection

at any successive point as in the Analysis of case A (Section 4.2.1). For the third

and successive striking points the analysis is the same as in case A (Section 4.2.1).
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Therefore, we have obtained,

(L1) If x ∈
[
κR2

sin θ
,R2

]
, there are no losses at both all the striking points on the

inner circle and all the striking points on the outer circle.

(L2) If x ∈
[
R1,

κR2

sin θ

)
there are no losses at all the striking points on the inner

circle and there are losses at all the striking points on the outer circle.

Notice that if θ > arcsin
(
κR2
R1

)
, then

[
R1,

κR2

sin θ

)
is empty.

4.2.3 Analysis of Case C

This is the analogue of Case A (Section 4.2.1) for θ < θc but we will indicate

the differences in the analysis. Let R1 ≤ x ≤ R2 and let us assume κ ≤ R1

R2
. Since

κ < 1 is fixed, this condition always holds when R1 and R2 are sufficiently close.

Consider a ray ` = `(x, θ) that passes through (x, 0), making an angle θ

with the positive x-axis, and therefore, striking the circle with radius R2 for the first

time at a point A. We denote by θ the angle AxR2, and let α be the angle 0Ax,

that is, α is the angle of incidence at A. By the sine theorem we have

x

sinα
=

R2

sin(π − θ)

which implies

α = arcsin

(
x

R2
sin θ

)
.

We first analyze when is there total internal reflection at A. From (4.20),

total internal reflection at A occurs if and only if cosα ≤
√

1− κ2. This means

cosα = cos

(
arcsin

(
x

R2
sin θ

))
=

√
1−

(
x

R2

)2

sin2 θ ≤
√

1− κ2,
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which is equivalent to

x ≥ κR2

sin θ
.

Since θ < θc = arcsinκ, we have
κR2

sin θ
> R2. Therefore, we have losses at A for

every θ < θc and for each x ∈ [R1, R2].

We next analyze the trajectory of the ray ` to see where strikes next. After

being reflected at the point A, the ray ` continues traveling and strikes the inner

circle C1 at a point denoted by B. Differently from Case A (Section 4.2.1) the ray

` cannot strike C2. From the point A the angle α for which the ray ` is possibly

tangential to the smaller circle is αT with sinαT =
R1

R2
. So ` strikes the smaller

circle iff α ≤ αT and ` strikes the larger circle iff α > αT . Notice that in this case

α cannot bigger than αT

α > αT ⇐⇒
x sin θ

R2
>
R1

R2
⇐⇒ θ > arcsin

R1

x
,

this is impossible since we assume θ < arcsinκ < arcsin R1
R2

. Therefore, ` strikes C1

for every θ < θc and for each x ∈ [R1, R2].

Let us analyze what happens at B with internal reflection. Let ω be the

angle of incidence at B, as for Case A (4.2.1) we have

ω = arcsin

(
x

R1
sin θ

)
.

We have total internal reflection if cosω ≤
√

1− κ2 that is

√
1−

(
x

R1

)2

sin2 θ ≤
√

1− κ2 which is equivalent to x ≥ κR1

sin θ
. Notice that

κR1

sin θ
> R2 if sin θ < κ

R1

R2
.

Therefore, If θ < arcsin

(
κ
R1

R2

)
we have losses for each x ∈ [R1, R2].
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If arcsin

(
κ
R1

R2

)
≤ θ < arcsinκ we have losses for each x ∈

[
R1, κ

R1

sin θ

)
and total

internal reflection for x ∈
[
κ
R1

sin θ
,R2

]
.

As in Case A (Section 4.2.1), after these two striking points the ray will

keep to zig-zag between C2 and C1 and the angles of incidence will repeat, that is

if the striking point is on C2 the angle of incidence will be α, if the striking point is

on C1 the angle of incidence will be ω. Summarizing,

(L3) If x ∈
[
κR1

sin θ
,R2

]
, there are no losses at all the striking points on the inner

circle and there are losses at all the striking points on the outer circle.

(L4) If x ∈
[
R1,

κR1

sin θ

)
there are losses at both all the striking points on the inner

circle and all the striking points on the outer circle.

Notice that if θ < arcsin

(
κR1

R2

)
, then

[
κR1

sin θ
,R2

]
is empty.

4.2.4 Analysis of Case D

The analysis is similar to Case C (Section 4.2.3) and we obtain the same

results (L3) and (L4). Consider a ray ` that passes through (x, 0), R1 ≤ x ≤ R2,

making an angle θ < θc with the x-axis going to −∞. While in Case B (Section

4.2.2) there are two possibilities: the ray first strikes C1 or it first strikes C2, in this

case the ray must strikes C1. Indeed, notice that in order for the ray to strikes C2

we need sin θ ≥ sin θT (x) =
R1

x
. This is impossible since sin θ < κ by assumption

and κ <
R1

R2
<
R1

x
. Call the first striking A. As in case Case B (Section 4.2.2),

the angle of incidence at A is α = arcsin

(
x

R1
sin θ

)
. As in the section above, we
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have total internal reflection at A if cosα ≤
√

1− κ2, that is

√
1−

(
x

R1

)2

sin2 θ ≤
√

1− κ2, which is equivalent to x ≥ κR1

sin θ
. Notice that

κR1

sin θ
> R2 if sin θ < κ

R1

R2
.

Therefore, if θ < arcsin

(
κ
R1

R2

)
we have losses at A for every x ∈ [R1, R2]. If

arcsin

(
κ
R1

R2

)
≤ θ < arcsinκ we have losses at A for every x ∈

[
R1, κ

R1

sin θ

)
and

total internal reflection for x ∈
[
κ
R1

sin θ
,R2

]
.

The second striking point B has to be in C2, and as in Case B (Section

4.2.2) the angle of incidence is ω = arcsin

(
x

R2
sin θ

)
. From (4.20), total internal

reflection at A occurs if and only if cosω ≤
√

1− κ2. This means

cosω = cos

(
arcsin

(
x

R2
sin θ

))
=

√
1−

(
x

R2

)2

sin2 θ ≤
√

1− κ2,

which is equivalent to

x ≥ κR2

sin θ
.

Since θ < θc = arcsinκ, we have
κR2

sin θ
> R2. Therefore, we have losses at B for

every θ < θc and for each x ∈ [R1, R2]. As in all the cases above, after these two

striking points the ray will keep to zig-zag between C1 and C2 and the angles of

incidence will repeat, that is if the striking point is on C2 the angle of incidence will

be ω, if the striking point is on C1 the angle of incidence will be α. Summarizing,

(L3) If x ∈
[
κR1

sin θ
,R2

]
, there are no losses at all the striking points on the inner

circle and there are losses at all the striking points on the outer circle.

(L4) If x ∈
[
R1,

κR1

sin θ

)
there are losses at both all the striking points on the inner

circle and all the striking points on the outer circle.

Notice that if θ < arcsin

(
κR1

R2

)
, then

[
κR1

sin θ
,R2

]
is empty.
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4.3 Quantitative estimates of the internally reflected

energy, circular guide

From (L1),(L2),(L3)and (L4) we conclude there are three different regions

in which we have energy losses (pictured in Figure 4.8);

arcsin
kR2

R1

arcsin
kR1

R2

No losses at C
1 and C

2

Losses at C
2

Losses at C
2 and C

1

R2R1
x

θ

0

arcsin(k)

π

2

arcsin
kR2

R1

arcsin
kR1

R2

No losses at C
1 and C

2

Losses at C
2

Losses at C
2 and C

1

R2R1
x

θ

0

arcsin(k)

π

2

Figure 4.8: Losses regions

(R1) If arcsinκ ≤ θ < arcsin

(
κ
R2

R1

)
, then we have losses at C2 for each x ∈[

R1, κ
R2

sin θ

)
, and we have no losses at C1.
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(R2) If arcsin

(
κ
R1

R2

)
≤ θ < arcsinκ, then we have losses at C2 for each x ∈ [R1, R2]

and we have losses at C1 for each x ∈
[
R1, κ

R1
sin θ

)
.

(R3) If θ < arcsin

(
κ
R1

R2

)
, then we have losses at C1 and C2 for each x ∈ [R1, R2].

We now give quantitative estimates for the internally reflected energy in

each of the regions above. Without loss of generality we assume the ray ` is going

towards the circle C2. The analysis of region (R2) follows from the analysis of

regions (R1) and (R3), for this reason it will be carry out as last.

Internally reflected energy for region (R1): Fix θ. We denote by PN

the Nth-striking point on the outer circle. At each of these striking points, the ray

` internally reflects energy according to Fresnel’s formula. Let E be the energy that

the ray ` is carrying from the straight waveguide into the circular waveguide. This

ray is incident for the first time on the boundary of the circular waveguide at the

point A = P0 ∈ C2. From Fresnel formulas there is an amount E0 that is internally

reflected at P0. The amount E0 will be the incident energy at C = P1 ∈ C2 (since we

have total internal reflection at B ∈ C1) and so a percentage of this energy, denoted

by E1, will be internally reflected at P1. Next E1 will be the incident energy at

P2 ∈ C2 and then a percentage E2, will be the internally reflected energy at P2. We

can now apply formula (4.17) relating the incident energy at the first point with

the energy at the last point. With the notation of Section 4.1, we note that in the

circular case we have that the angle between the incident unit direction x at each

Pj and the normal at Pj equals α (the angle of incidence at P0 = A and so at Pj).
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We then have from (4.16) or (4.17)

EN
E

=

(
|Er

PN
|

|Ei
P0
|

)2

= [Φ1(cosα)]2(N+1)
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosα)]2(N+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2
,

where Φ1 and Φ2 are given in (4.14) and (4.15) respectively. This means that the

energy internally reflected at the point PN equals

EN =

(
[Φ1(cosα)]2(N+1)

(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosα)]2(N+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2

)
E.

From (4.22)

cosα =

√
1−

(
x

R2

)2

sin2 θ.

Recall that

φ(t) = t− κ
√

1− κ−2(1− t2),

and

1

1− κ2

 2κ
1

κ
(1− φ(cosα) cosα)

− (1 + κ2)

 = Φ1(cosα),

1

1− κ2

(
1− 2κ

(
1

κ
(1− φ(cosα) cosα)

)
+ κ2

)
= Φ2(cosα).

We have

φ(cosα) =

√
1−

(
x

R2

)2

sin2 θ −

√
κ2 −

(
x

R2

)2

sin2 θ

=
1− κ2√

1−
(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

,

1− φ(cosα) cosα
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= 1− 1− κ2√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

√
1−

(
x

R2

)2

sin2 θ

=

√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ − (1− κ2)

√
1−

(
x

R2

)2

sin2 θ√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

=

√
κ2 −

(
x

R2

)2

sin2 θ + κ2

√
1−

(
x

R2

)2

sin2 θ√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

.

Then

Φ1(cosα) =

κ2

√
1−

(
x

R2

)2

sin2 θ −

√
κ2 −

(
x

R2

)2

sin2 θ

κ2

√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

:= G1

(
x

R2
sin θ

)
,

and

Φ2(cosα) =

√
1−

(
x

R2

)2

sin2 θ −

√
κ2 −

(
x

R2

)2

sin2 θ√
1−

(
x

R2

)2

sin2 θ +

√
κ2 −

(
x

R2

)2

sin2 θ

:= G2

(
x

R2
sin θ

)
.

Let

F (x, θ,N) = [Φ1(cosα)]2(N+1)
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosα)]2(N+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2
,

(4.29)

which represents the fraction of energy internally reflected at the point PN .

We propose the following integral as an average measure of the fraction of

energy internally reflected by all rays ` having direction θ and passing through each

x satisfying (4.27):

1

κ R2
sin θ −R1

∫ κ
R2
sin θ

R1

F (x, θ,N) dx.
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Making the change of variables u =
x

R2
sin θ, the last integral equals

1
R2

sin θ −R1

R2

sin θ

∫ κ

R1
R2

sin θ
G(u,N) du (4.30)

where

G(u,N) = G1(u)2(N+1)
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+G2(u)2(N+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2
,

G1(u) =
κ2
√

1− u2 −
√
κ2 − u2

κ2
√

1− u2 +
√
κ2 − u2

,

G2(u) =

√
1− u2 −

√
κ2 − u2

√
1− u2 +

√
κ2 − u2

.

Remark 4.3.1. Consider the case R1 = R2 − ε for some ε > 0. We showed that if

θ ∈ [arcsinκ, arcsinκ
R2

R1
] and R1 ≤ x <

κR2

sin θ
,

then there are no losses at all the striking points on the inner circle and there are

losses at all the striking points on the outer circle. This implies that we have losses

if

R2 − ε ≤ x <
κR2

sin θ
.

Notice that for R2 >
ε

1− κ

sin θ

, the interval above is empty, therefore, taking R2 big

enough we will have no losses for every x and θ.

Remark 4.3.2. Consider the case R1 = aR2 for some 0 < a < 1. If a >
κ

sin θ
,

then we have no losses. If a ≤ κ

sin θ
we will have losses for aR2 ≤ x <

κ

sin θ
R2.

Recall that from (4.28) the point PN is at the end of the arc of the circle C2 starting

from (R2, 0) and so this arc has length

L = R2 (θ + 2Nω − (2N + 1)α) .
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Consider c > 0 such that L = cπR2. We obtain

cπ = θ + 2Nω − (2N + 1)α.

We can solve the above equation for N obtaining

N =
cπ − θ + α

2(ω − α)
.

Recall that α = arcsin
(
x sin(θ)
R2

)
and ω = arcsin

(
x sin(θ)
R1

)
. Making the change of

variable u = x sin(θ)
R2

and since R1 is aR2 we obtain

N =
cπ − θ + arcsin(u)

2(arcsin(u+ 1−a
a u)− arcsin(u))

.

Using the Mean value theorem we have

N =
cπ − θ + arcsin(u)

21−a
a u

√
1− ξ2

for some ξ ∈ (u, u+ 1−a
a u). Since we have losses for aR2 ≤ x <

κ

sin θ
R2, equivalently

we have losses for a sin θ ≤ u < κ. Therefore, we obtain the following estimates:

cπ − θ + arcsin(a sin θ)

2
1− a
a

κ

√
1−

(κ
a

)2
≤ N ≤ cπ − θ + arcsin(κ)

2(1− a) sin θ
.

Note that these estimates are independent from x and R2.

Internally reflected energy for region (R3): In this region we have

losses at all the striking point on C1 and C2. Let E be the energy that the ray

` is carrying from the straight waveguide into the circular waveguide. This ray is

incident for the first time on the boundary of the circular waveguide at the point

P0 ∈ C2. From Fresnel formulas there is an amount E0 that is internally reflected

at P0. The amount E0 will be the incident energy at P1 ∈ C1 and so a percentage
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of this energy, denoted by E1, will be internally reflected at P1. Next E1 will be the

incident energy at P2 ∈ C2 and then a percentage E2, will be the internally reflected

energy at P2. The angle of incidence at Pj is equals to α if Pj ∈ C2 and it is equals

to ω if Pj ∈ C1. Therefore,

E2n =

(
[Φ1(cosα)]2(n+1)

(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosα)]2(n+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2

)

×

(
[Φ1(cosω)]2n

(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosω)]2n

(IA⊥)2

(IA‖ )2 + (IA⊥)2

)
E

= Hn+1(cosα)Hn(cosω)E

E2n+1 =

(
[Φ1(cosα)]2(n+1)

(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosα)]2(n+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2

)

×

(
[Φ1(cosω)]2(n+1)

(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(cosω)]2(n+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2

)
E

= Hn+1(cosα)Hn+1(cosω)E,

where Φ1 as in (4.14), Φ2 as in (4.15) ,and

Hk(t) = [Φ1(t)]2k
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+ [Φ2(t)]2k

(IA⊥)2

(IA‖ )2 + (IA⊥)2
.

Let

H(x, θ,N) =


Hn+1(cosα)Hn(cosω) ifN = 2n

Hn+1(cosα)Hn+1(cosω) ifN = 2n+ 1,

(4.31)

which represents the fraction of energy internally reflected at the point PN . We pro-

pose the following integral as an average measure of the fraction of energy internally
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reflected by all rays ` having direction θ and passing through each x ∈ [R1, R2]:

1

R2 −R1

∫ R2

R1

H(x, θ,N) dx. (4.32)

Internally reflected energy for region (R2): In this region we have energy

losses at all the striking points on C1 and C2 if x ∈
[
R1, κ

R1
sin θ

)
but energy losses

only at the striking point on C2 if x ∈
[
κ R1

sin θ , R2

]
. Therefore, for the rays passing

through x ∈
[
R1, κ

R1
sin θ

)
the analysis is the same as for the ray in (R3), and for

the rays passing through x ∈
[
κ R1

sin θ , R2

]
the analysis is the same as for the ray in

(R1). We propose the following integral as an average measure of the fraction of

energy internally reflected by all rays ` having direction θ and passing through each

x ∈ [R1, R2]:

1

R2 −R1

(∫ κ
R1
sin θ

R1

H(x, θ,N) dx +

∫ R2

κ
R1
sin θ

F (x, θ,N) dx

)
, (4.33)

where H(x, θ,N) as in (4.31), and F (x, θ,N) as in (4.29).

4.4 Asymptotics

Suppose to have a periodic circular waveguide as in Figure 4.9. The ray

passing through (x, 0) with an angle θ, with θ ∈
[
arcsinκ, arcsin

(
κ
R2

R1

)]
and

x ∈
[
R1, κ

R2

sin θ

)
, will keep to zig-zag between C1 and C2 until it will lose all of its

energy (see Section (R1)). The problem we solve on this section is the following: fix

θ ≥ θC and assume the ray ` is going towards the circle C2, what is the asymptotics

of integral in (4.30) for N →∞?
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xO

n1n2 n2

θ C2C1

Figure 4.9: Circular waveguide

From the two theorems below (Theorem 4.4.1 and Theorem 4.4.3) will follow that

∫ κ

R1 sin θ/R2

G(u,N) du ∼ C

N2
as N →∞,

for some constant C depending only on κ, where we recall that

G(u,N) = G1(u)2(N+1)
(IA‖ )2

(IA‖ )2 + (IA⊥)2
+G2(u)2(N+1) (IA⊥)2

(IA‖ )2 + (IA⊥)2
,

G1(u) =
κ2
√

1− u2 −
√
κ2 − u2

κ2
√

1− u2 +
√
κ2 − u2

,

G2(u) =

√
1− u2 −

√
κ2 − u2

√
1− u2 +

√
κ2 − u2

.
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Theorem 4.4.1. Given 0 < κ < 1 and 0 < b < κ, we have that

lim
x→∞

x2

∫ κ

b
G2(u)xdu =

1− κ2

4κ
.

Proof. Write by integration by parts:

∫ κ

b
G2(u)xdu =

∫ κ

b
ex lnG2(u)du =

1

x

∫ κ

b

G2(u)

G′2(u)
d(ex lnG2(u))

=
1

x

G2(u)

G′2(u)
ex lnG2(u)

∣∣∣∣u=κ

u=b

− 1

x

∫ κ

b
ex lnG2(u) d

du

(
G2(u)

G′2(u)

)
du

=
1

x

G2(κ)

G′2(κ)
ex lnG2(κ) − 1

x

G2(b)

G′2(b)
ex lnG2(b) − 1

x2

∫ κ

b

G2(u)

G′2(u)

d

du

(
G2(u)

G′2(u)

)
d(ex lnG2(u))

=(∗).

Now G2(κ) = 1, and G′2(u)→ +∞ as u→ κ because

G′2(u) =
2u

1− κ2


(√

1− u2 −
√
κ2 − u2

)2

√
1− u2

√
κ2 − u2

 ,

so

(∗) = −1

x

G2(b)

G′2(b)
G2(b)x − 1

x2

G2(u)

G′2(u)

d

du

(
G2(u)

G′2(u)

)
ex lnG2(u)

∣∣∣∣u=κ

u=b

+
1

x2

∫ κ

b
ex lnG2(u) d

du

(
G2

G′2

d

du

(
G2

G′2

))
du = (∗∗).

Now

G2(u)

G′2(u)
=

√
1− u2

√
κ2 − u2

2u

d

du

(
G2(u)

G′2(u)

)
=

−κ2 + u4

2u2
√

1− u2
√
κ2 − u2

so

G2(u)

G′2(u)

d

du

(
G2(u)

G′2(u)

)
=
−κ2 + u4

4u3
.
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If u = κ then

G2

G′2

d

du

(
G2

G′2

)
=
κ2 − 1

4κ
,

so

(∗∗) = −1

x

G2(b)

G′2(b)
G2(b)x − 1

x2

κ2 − 1

4κ
+

1

x2

(
−κ2 + b4

4b3

)
G2(b)x

+
1

x2

∫ κ

b
ex lnG2(u) d

du

(
−k2 + u4

4u3

)
du

= −1

x

G2(b)

G′2(b)
G2(b)x − 1

x2

κ2 − 1

4κ
+

1

x2

(
−κ2 + b4

4b3

)
G2(b)x

+
1

x2

∫ κ

b
ex lnG2(u)

(
3k2 + u4

4u4

)
du.

Multiplying by x2, we get

x2

∫ κ

b
G2(u)xdu =

− xG2(b)

G′2(b)
G2(b)x +

1− κ2

4κ
+

(
−κ2 + b4

4b3

)
G2(b)x +

∫ κ

b
G2(u)x

(
3k2 + u4

4u4

)
du.

By Lebesgue dominated convergence, the last integral tends to zero as x→∞, and

since G2(b) < 1 we are done.

Remark 4.4.2. The integration by parts are justified because

d

du

(
G2

G′2

)
and

d

du

(
G2

G′2

d

du

(
G2

G′2

))

are both integrable functions in [b, κ].

Similarly,

Theorem 4.4.3. Given 0 < κ < 1 and 0 < b < κ, we have that

lim
x→∞

x2

∫ κ

b
G1(u)xdu =

1

4
κ3(1− κ2).
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Proof. As before,

∫ κ

b
G1(u)xdu

=
1

x

G1(κ)

G′1(κ)
ex lnG1(κ) − 1

x

G1(b)

G′2(b)
ex lnG1(b) − 1

x2

∫ κ

b

G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

)
d(ex lnG1(u))

=(∗).

Now, G1(κ) = 1 and G′1(u)→ +∞ as u→ κ because

d

du
(G1(u)) = −

2k2
(
k2 − 1

)
u

√
1− u2

√
k2 − u2

(
k2
√

1− u2 +
√
k2 − u2

)2 ,

so

(∗) = −1

x

G1(b)

G′1(b)
G1(b)x − 1

x2

G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

)
ex lnG1(u)

∣∣∣∣u=κ

u=b

+
1

x2

∫ κ

b
ex lnG1(u) d

du

(
G1

G′1

d

du

(
G1

G′1

))
du = (∗∗).

Now,

G1(u)

G′1(u)
=

√
1− u2

√
k2 − u2

(
k2
(
u2 − 1

)
+ u2

)
2k2u

d

du

(
G1(u)

G′1(u)

)
=
k4 + 3

(
k2 + 1

)
u6 + k2

(
k2 + 1

)
u2 −

(
2k4 + 5k2 + 2

)
u4

2k2u2
√

1− u2
√

(k − u)(k + u)
,

so

G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

)
=
−k6 + 3

(
k2 + 1

)2
u8 + k2

(
3k4 + 7k2 + 3

)
u4 − 2

(
k6 + 5k4 + 5k2 + 1

)
u6

4k4u3
.

If u = κ, then

G1

G′1

d

du

(
G1

G′1

)
=

1

4
k3
(
k2 − 1

)
,
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so

(∗∗)

= −1

x

G1(b)

G′1(b)
G1(b)x − 1

x2

(
1

4
k3
(
k2 − 1

))
+

1

x2

(
G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

) ∣∣∣∣
u=b

)
G1(b)x

+
1

x2

∫ κ

b
ex lnG1(u)p(u)du

where,

p(u) =
d

du

(
G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

))
=

3k6 + 15
(
k2 + 1

)2
u8 + k2

(
3k4 + 7k2 + 3

)
u4 − 6

(
k6 + 5k4 + 5k2 + 1

)
u6

4k4u4
.

Multiplying by x2, we get

x2

∫ κ

b
G1(u)xdu =

− xG1(b)

G′1(b)
G1(b)x +

1

4
k3
(
k2 − 1

)
+

(
G1(u)

G′1(u)

d

du

(
G1(u)

G′1(u)

) ∣∣∣∣
u=b

)
G1(b)x∫ κ

b
ex lnG1(u)p(u)du.

By Lebesgue dominated convergence, the last integral tends to zero as x → +∞,

and since G(b) < 1 we are done.

Remark 4.4.4. The integration by parts are justified because

d

du

(
G1

G′1

)
and

d

du

(
G1

G′1

d

du

(
G1

G′1

))

are both integrable functions in [b, κ].
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4.5 Finals remarks

The analysis carried out in this chapter is motivated by the work done by

C. Koos and collaborators in [28]. Their goal is to optimize the shape of a curved

waveguide connecting two straight guides in a photonic circuit so that the energy

losses are minimal. Guides with kinks are not a good option because they lead to

trapped modes and therefore, high losses [31]. Based on numerical experimentation

only, Koos et al. propose that the power loss or attenuation coefficient is approx-

imately χq, where χ is the curvature of the outer contour of the waveguide, and

q is a material parameter with q ∈ (2, 3). Therefore, they reduce the problem to

the minimization of the variational integral
∫
γ χ

q ds over all curves γ joining two fix

points and with prescribed initial and final tangent lines, where s is the arc length.

However, even if they propose q ∈ (2, 3), they use q = 2 in their paper and for the

calculation of the optimal shape of the waveguide. Using this optimal shape, they

numerically show that for 180◦-bends, the energy loss remains below 1% of the ini-

tial energy. While, with a 180◦ circular bend, they calculate an energy loss equals to

4.5% of the initial energy. A theoretical reason that would explain their numerical

results is not provided and is an interesting open question. Our analysis in this

thesis is based on theoretical foundations using Maxwell’s equations. However our

application is made only to the linear and circular geometries. To apply these ideas

to other more complicated geometries seems an interesting but challenging question.

The minimization of the variational integral
∫
γ χ

q ds, when q = 2, is the well-known

classical variational problem proposed by Daniel Bernoulli and Leonhard Euler in
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1744, and the curve solution is the so called elastica (see, e.g., [38]). Further very

interesting research in this direction is done by Horn [25], and Melhum [30] to apply

the notion of elastica to computer graphics and computer aided design. In addi-

tion, the elastica has applications to stress in the design of aircraft fuselages [9].

Therefore, the mathematical understanding of the variational problem for q 6= 2 is

of interest, and we plan to return to it in the future.
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