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ABSTRACT

An overarching goal for studying hyperbolic links is to relate the geometric

properties of a link’s complement to the combinatorics of its diagrams. Links which

admit an alternating diagram, alternating links, are especially useful for this study.

Alternating links have traditionally been considered with projection diagrams on the

2-sphere and with complements in the 3-sphere but there is a strong (and growing)

field of work on generalizations of hyperbolic alternating links to broader classes

of projection surfaces and complements in more general 3-manifolds. This thesis

research lies within that setting, with a focus on the right-angled structure, totally

geodesic surfaces, commensurability, and arithmeticity of a family of links in thick-

ened surfaces.

We consider the geometry of a class of hyperbolic link complements in thick-

ened surfaces built from Euclidean and hyperbolic tilings. Such a link has right-

angled structure if its complement admits a decomposition into generalized poly-

hedra with all right-angles that glue to form the complete hyperbolic structure on

the complement. Champanerkar, Kofman, and Purcell conjecture that there are no

right-angled knots in S3. We show that this conjecture does not extend to the setting

of thickened surfaces by constructing an example.

A surface S in hyperbolic 3-manifold M is totally geodesic if any geodesic

tangent to S in M is contained in S. Classifying the presence of totally geodesic

surfaces in hyperbolic 3-manifolds is a current open problem. Generalizing Gan’s
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work in the 3-sphere, we define a link to be right-angled generalized completely re-

alizable (RGCR) if it has a complement which admits a decomposition into hyper-

bolic generalized polyhedra with the combinatorics of its checkerboard polyhedra

and has right-angled structure. We employ the combinatorics of gluings of gen-

eralized hyperbolic bipyramids to prove an equivalence for generalized alternating

links in thickened surfaces being RGCR, their complements containing two totally

geodesic checkerboard surfaces, their checkerboard surfaces each containing one

type of polygon, and the links having diagrams which satisfy a set of restrictions.

We then use these diagram restrictions to find bounds on the number of RGCR

links or tilings corresponding to RGCR links, in terms of g for each genus g pro-

jection surface. Two manifolds, M and M ′, are commensurable if they share a

finite-sheeted cover. We show that RGCR links corresponding to equivalent tilings

are commensurable and consider the arithmeticity of RGCR links.
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CHAPTER 1

Introduction

Throughout this work we will consider knots, links, and their complements.

Definition 1.1. A knot is a smooth embedding of S1 into a 3-manifold Y . A link is

a smooth embedding of a disjoint union of copies of S1 into a 3-manifold Y .

Definition 1.2. The complement of a knot or link L in 3-manifold Y is Y \L, i.e.

the space that remains if the link is removed. If we instead remove a neighborhood

of the link, N(L), the result is the link exterior, Y \N(L).

We traditionally study knots and links by looking at their diagrams on either

R2 or S2, and their complements in R3 or S3. Thurston showed that knots in S3

fall into one of three types: torus knots, satellite knots, and hyperbolic knots [50].

A torus knot is a knot that can be embedded without crossings on an unknotted

torus in S3, a satellite knot is a knot that can be embedded non-trivially in a regular

neighborhood of another nontrivial knot, and a hyperbolic knot (or link) is a knot

whose complement admits a complete hyperbolic structure of finite volume. More

precisely, if link L is hyperbolic then its complement is isometric to H3/Γ where Γ

is a torsion-free Kleinian group, i.e. discrete subgroup of the orientation preserving

isometry group of H3, PSL2(C) of finite covolume.



2

Figure 1.1: Left: An alternating knot. Right: An alternating link.

We will focus on hyperbolic knots and links, which comprise the vast majority

of prime knots enumerated up to 19 crossings [10] [25]. In particular, this research

falls under the canopy of the overarching question in hyperbolic knot theory of

relating the geometric properties of a link’s complement to the combinatorics of

its diagrams. Alternating links, links which admit diagrams in which crossings

alternate between over and under as in Figure 1.1, are especially useful for this

question. Menasco showed that all prime alternating links are hyperbolic except for

(2, q)− torus links [35]. A checkerboard surface of an alternating link is a surface

formed by connecting faces of the link diagram along twisted bands at the link’s

crossings as shown (for a generalized alternating link) in Figure 1.2. Menasco and

Thurston showed that we can decompose the complements of alternating links along

these surfaces [37] [49]. A useful and interesting generalization of alternating links

are links with projections which are alternating on higher genus projection surfaces

in compact manifolds other than the 3-sphere. This thesis centers on one such

family, cellular weakly generalized alternating links. We provide the definition of

this family of links and survey results on topological and geometric decompositions

of their complements due to [26], [27], [11], and [4] in Chapter 2.
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Crossing arc

Link

Shaded 
checkerboard 
surface

Figure 1.2: A link diagram (in green) on a genus 2 surface. We can form two
checkerboard surfaces from this link diagram by connecting faces of the same color
via twisted bands at every crossing. These two surfaces (one shaded and one white)
meet in crossing arcs, running between the under and over-strands of the link.

Aitchison and Reeves introduced the term completely realizable to refer to hy-

perbolic alternating links with complements that admit a geometric decomposition

by cutting along their checkerboard surfaces [7]. In other words, links that not

only decompose into topological pieces along their checkerboard surfaces but into

pieces that admit a hyperbolic structure with geodesic boundary modeled on the

combinatorics of the original link diagram and re-glue to form the complete hy-

perbolic structure on the complement. A rich source of completely realizable links

are generalized alternating links with regular polygons in their diagrams [4] [11].

In this thesis we study a family of these links and ways to leverage the close rela-

tionship between their diagrams and decompositions of their complements to gain

geometric information about their complements.
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A surface Σ in a link complement M is totally geodesic if any geodesic tangent

to Σ at any point in M is contained in Σ. The problem of finding, and counting, to-

tally geodesic surfaces in hyperbolic 3-manifolds is a current area of research (see,

for example, [36], [8], [5], [31], [30], and [20]). In Chapter 3, we consider the

implications of a generalized alternating link complement in a thickened surface

containing two totally geodesic checkerboard surfaces, generalizing Gan’s work in

S3 [20]. In Theorem 3.7 in Chapter 3, we prove an equivalence for links in thick-

ened surfaces satisfying certain diagram restrictions, their complements containing

two totally geodesic surfaces built from the link diagram, and their complements

having right-angled structure. We call links satisfying these properties right-angled

generalized completely realizable (RGCR) links.

Champanerkar, Kofman, and Purcell associated a set of hyperbolic right-angled

polyhedra to any prime alternating link diagram in S3 and proved that we can use

these right-angled polyhedra to determine a lower bound on the volume of the com-

plements of these links [12]. They conjecture that there does not exist a right-

angled knot in S3 [12, Conjecture 5.12]. Providing evidence for this conjecture,

Gan proved that there are no right-angled completely realizable knots in S3 [20,

Theorem 3.14]. In Theorem 3.9 in Chapter 3, we show that an RGCR knot does

exists in the setting of thickened surfaces.

Gan showed that there are precisely three right-angled completely realizable

links in S3 [20]. Champanerkar, Kofman, and Purcell found that there are precisely
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two classes of links in the thickened torus with a diagrammatic restriction that have

this right-angled structure [11]. In Chapter 4, we find an upper bound on the number

of RGCR links for each projection surface with negative Euler characteristic. We

also include a table listing the tilings and fundamental domains corresponding to

these right-angled links with projection surfaces of genus 2− 7 in Chapter 6.

Two hyperbolic manifolds are commensurable if they admit a common finite-

sheeted cover. Arithmeticity is defined and discussed in Chapter 5. There has been

significant work on determining the commensurability and arithmeticity of different

families of link complements (see, for example, [53], [21], [38], [46]). Reid and

Walsh conjecture that the set of knots commensurable to a hyperbolic knot in S3

has at most 3 elements [53]. In Chapter 5, we investigate the commensurability and

arithmeticity of RGCR links. In Proposition 5.3, we show that RGCR links with

the same types of polygons in their checkerboard surfaces are commensurable. We

then provide examples of geometric triangulations of some classes of RGCR links

and use one of these triangulations to find a family of arithmetic RGCR links in

Theorem 5.9.
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CHAPTER 2

Generalized Alternating Links and their

Decompositions

This chapter surveys work on weakly generalized alternating links from [4], [11],

[26], and [27]. In the first section, we give the definition of this family of links, fol-

lowing [26] and [27]. In the second section, we outline a topological decomposition

of their complements from [27]. For the final section, we describe results about the

geometric structure on their complements from [4], [11], and [27].

2.1 Weakly Generalized Alternating Links

We are interested in generalizing the class of alternating links in S3 to links with

projections which are alternating on higher genus surfaces in broader classes of 3-

manifolds. Several authors have studied different such generalizations. Adams con-

sidered toroidally alternating links, a generalization of alternating links to projec-

tions on a Heegaard torus [6]. Hayashi [24] and Ozawa [41] independently studied

links with projections on higher genus surfaces. Howie introduced (in S3), and then

Howie and Purcell extended, the definition of weakly generalized alternating links,

which we will focus on in this work. Howie showed that in S3 weakly generalized
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alternating links are nontrivial, nonsplit, and prime [26]. Howie and Purcell found

decompositions for weakly generalized alternating link complements, gave condi-

tions that determine when they are hyperbolic, and thereby showed that weakly

generalized alternating links in thickened surfaces with diagrams in which com-

plementary regions are disks are hyperbolic [27, Theorem 4.2]. We discuss the

hyperbolicity of these complements in more detail in Section 2.3.

Kalfagianni and Purcell considered the volumes of these links. Alternating links

in S3 have volumes that are bounded above and below in terms of their twist num-

ber [29]. Kalfagianni and Purcell showed that this holds for weakly generalized

alternating links in thickened surfaces as well. However, they also found a family

of weakly generalized alternating links with projection surface a Heegaard surface

of genus 2 and complement in S3 that do not have such an upper bound on their

volumes [28].

Throughout this thesis we will assume that our projection surface, F , is a con-

nected, closed, orientable, surface with non-positive Euler characteristic. We will

assume our links to be in the thickened surface F × I with generalized projection

diagram π(L) on F ×{0} and specify the genus g of the surface as needed. We will

use the following definitions adapted from [27] for this setting.

Definition 2.1. The generalized diagram π(L) of a link L on surface F with genus

g ≥ 1 is weakly prime if for any disk D in F with ∂D that intersects the link

diagram transversely exactly twice, π(L) ∩D is an embedded arc.
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Definition 2.2. The diagram π(L) is cellular if all complementary regions, called

faces, on F are disks.

Definition 2.3. A generalized diagram is alternating if the boundary of each region

of F\π(L) can be given an orientation such that crossings alternate between under

and over.

D

Figure 2.1: Above: Links (in green) which do not satisfy the weakly prime (left)
and cellular (right) conditions. Below: A cellular weakly generalized alternating
link.

Orient each region of F\π(L) such that the induced orientation on the bound-

ary runs from under-crossings to over-crossings. Next, color the faces white or

shaded depending on whether their orientation is clockwise or counter-clockwise.

The result of this coloring will be that faces which share an edge have opposite

orientations, and therefore are different colors, while faces that are diagonal from

each other with respect to a crossing have the same color. This coloring is called a



9

checkerboard coloring of the generalized link diagram. A link with a generalized

diagram on F that is weakly prime, cellular, and alternating is also checkerboard

colorable.

Definition 2.4. Given a generalized diagram π(L) with a checkerboard coloring,

we can form two checkerboard surfaces. Insert a twisted band at each crossing of

(F × I)\L to connect all shaded faces. The result is a surface composed of shaded

faces with boundary the link. Perform the same procedure for the white faces. The

result is two surfaces that intersect in arcs in (F × I)\L at each crossing. These

crossing arcs run between the under-strand and over-strand of L as shown in Figure

1.2.

Definition 2.5. A generalized diagram π(L) is reduced alternating if it is alternat-

ing, weakly prime, and every component of L projects to at least one crossing of

π(L).

Note that if our link diagram is alternating, weakly prime, and cellular then it

is reduced alternating as well but reduced alternating diagrams need not be cellular.

Howie and Purcell call links that are reduced alternating and checkerboard colorable

weakly generalized alternating, with the additional criteria that the links satisfy a

so-called representativity condition [27]. This condition will always hold for our

setting in thickened surfaces because F has no compression disks in F × I .
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2.2 Topological Decompositions

Our main tool for studying the complements of cellular weakly generalized alternat-

ing links will be to exploit properties of their topological and geometric decompo-

sitions and the relationship they have to the links’ diagrams. In this section we will

describe the generalized polyhedral decompositions of cellular weakly generalized

alternating link complements given in [27], [11], and [4]. These decompositions

generalize Thurston and Menasco’s work on polyhedral decompositions of alter-

nating link complements in S3 (see [49, Chapter 3] and [37]) and Adams’ work

on bipyramid decompositions of link complements in S3 [3]. We begin with some

definitions.

Definition 2.6. A polyhedron P is a closed 3-ball with a finite graphG on its bound-

ary. The graph G contains a finite number of vertices and edges and the regions of

∂P\G are simply connected faces. An ideal polyhedron is a polyhedron with all

vertices removed.

In order to generalize polyhedral decompositions of link complements in S3 to link

complements in thickened surfaces, we need the notion of generalized polyhedra.

Definition 2.7. A generalized polyhedron is homeomorphic to

(F × [0, 1])/(F × {1}) with a cellular graph Γ on F × {0}. An ideal general-

ized polyhedron is a generalized polyhedron with the vertices of Γ and the vertex at
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F × {1} removed. A semi-truncated generalized polyhedron is a generalized poly-

hedron with the vertices of Γ and a neighborhood of the vertex at F ×{1} removed.

When F has genus 1, we will have ideal generalized polyhedra, also called ideal

torihedra in [11]. When F has genus greater than 1, we will have semi-truncated

generalized polyhedra.

We will decompose our link complements into topological generalized polyhe-

dra. For projections on a torus, Champanerkar, Kofman, and Purcell constructed

a decomposition of the link complement into two ideal torihedra and a decompo-

sition into ideal tetrahedra [11]. Adams, Calderon, and Mayer found a bipyramid

decomposition of generalized alternating links in thickened surfaces of genus g ≥ 0

[4]. Considering even broader classes of generalized alternating link complements,

Howie and Purcell found a chunk decomposition [27]. For ease of reading we will

usually refer to ‘generalized polyhedra’ to indicate any of the types of generalized

polyhedra and further specify when the vertex types become pertinent.

First, we define a map that will be useful throughout this work. Note that this

map matches that of alternating links on S2 in S3 (see [49]).

Definition 2.8. A gluing by gear shift rotation is a map between two generalized

polyhedra, P+ and P−, such that each pair of corresponding n-gon faces on P+

and P− are identified with a 1/n rotation either clockwise or counterclockwise.

Next, we state a restriction of Howie and Purcell’s Propositions 3.1 and 3.3 in

[27] to our setting of thickened surfaces and give their proof.
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Proposition 2.9. (Howie-Purcell [27, Propositions 3.1 and 3.3]). Let F have genus

g > 0 and L be a cellular weakly generalized alternating link in F × I with projec-

tion diagram π(L). Then (F × I)\L decomposes into two ideal torihedra or two

semi-truncated generalized polyhedra, P+ and P−, satisfying:

• P+ and P− are homeomorphic to F × [0, 1) and F × (−1, 0] with a finite set

of points removed from each F × {0} boundary.

• On each copy of F there is an embedded graph in which vertices, edges, and

regions correspond to π(L). The vertices are ideal and 4-valent.

• The faces F\π(L) on P+ and P− admit a coloring correspond to the checker-

board coloring of π(L).

• (F × I)\L is the result of gluing P+ to P− by a homeomorphism between

the copies of F\π(L) on their boundaries. This homeomorphism is the com-

position of the identity with a rotation on each face of F\π(L). One can

choose an orientation such that white faces are rotated to their neighbor-

ing edge clockwise, while shaded faces are rotated to their neighboring edge

counterclockwise.

• Edges correspond to crossing arcs and are glued in collections of four. Each

ideal vertex has pairs of opposite edges which are glued together.

Proof. Take four copies of the crossing arc at each crossing of π(L) and orient

each to run from the understrand to the overstrand of L. Next isotope the crossing



13

arcs to lie in F and identify pairs of crossing arcs which are on the same side of

the overstrand at each crossing. Note that this identification depends on whether

our perspective is from ‘above’ or ‘below’ as this changes which strand of L is

considered the overstrand at a crossing (see Figure 2.2).

Next, slice the complement along F . This decomposes the complement into two

generalized polyhedra P+ and P− which are homeomorphic to (F × I)\N(F ).

Now shrink each overstrand of L to a vertex corresponding to its crossing. Each

overstrand is now an ideal vertex and the crossing arcs are stretched to now match

the original graph of π(L). The faces of P+ and P− correspond to the diagram

graph with the edges of the graph formed by crossing arcs.

We can rebuild the full complement from this decomposition by gluing P+ to

P− with a rotation on each face, namely following the gear shift map (see Figure

2.3).

2.3 Geometric Decompositions

We are interested in not only the topological structure of link complements in thick-

ened surfaces but also in their geometry. Adams et al. proved that links in thickened

surfaces satisfying generalized prime and alternating conditions are hyperbolic [1].

Howie and Purcell showed that a broader class of generalized alternating link com-
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Figure 2.2: Above: 4 copies of a crossing arc for each crossing on a pentagonal
face of a link diagram. Below: The view of the pentagonal face from ‘above’ and
‘below’ after the overstrands of the link are shrunk down to ideal vertices.

 F x [0,1)

P+

P-  F x (-1,0]

F x {0}

Figure 2.3: Generalized polyhedra P+ and P−. A face on each of their surface
boundaries is drawn with edges colored to show their gluing identifications. If F
is a torus then the apexes are ideal. If F has negative Euler characteristic then we
truncate the ultra-ideal apexes of P+ and P− to get the surface boundary compo-
nents F × {1} and F × {−1}.
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Finite
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𝜕H3 
Ideal

𝜕H3 

Figure 2.4: Hyperbolic tetrahedra with all ultra-ideal, ideal, or finite vertices.

plements are hyperbolic in [27, Theorem 4.2]. We state a restriction of their theorem

below:

Theorem 2.10. (Howie–Purcell, [27, Theorem 4.2]). Let π(L) be a cellular weakly

generalized alternating projection of a link, L, on a closed surface, F , of genus at

least one in Y := F × [−1, 1]. Then Y \L is hyperbolic.

In this section we describe a family of cellular weakly generalized alternating

links corresponding to regular Euclidean and hyperbolic tilings and outline the work

in [4] (also independently shown in [11] for F = T 2) on directly finding geometric

decompositions of their complements. We will consider the complete hyperbolic

structure on the link complements with totally geodesic boundary.

Definition 2.11. We say that a generalized polyhedron is hyperbolic if it admits a

convex hyperbolic structure with totally geodesic faces. A hyperbolic generalized

polyhedron can have finite, ideal, or ultra-ideal vertices, when the vertices lie within

H3, on the boundary of H3, or outside of ∂H3, respectively (see Figure 2.4). In the

case when the generalized polyhedra have ultra-ideal vertices, we can truncate the
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ultra-ideal vertices to form totally geodesic boundary faces. These totally geodesic

boundary faces are the intersection of the generalized polyhedra with the unique

truncation planes perpendicular to the edges meeting at each ultra-ideal vertex.

Definition 2.12. A geometric decomposition of (F × I)\L is a topological decom-

position such that each generalized polyhedron has a hyperbolic structure and the

set of generalized hyperbolic polyhedra re-glue to form the complete hyperbolic

structure on (F × I)\L with totally geodesic boundary.

That the complements have one complete hyperbolic structure with totally geodesic

boundary follows from Mostow–Prasad Rigidity:

Theorem 2.13. (Mostow–Prasad Rigidity, see [39] and [43]). Let M and N be

complete finite volume hyperbolic n-manifolds for n ≥ 3. Then any isomorphism

between their fundamental groups, π1(M) and π1(N), is realized by a unique isom-

etry.

Theorem 2.14. (Folklore, [4, Theorem 2.5]). Let M be a finite volume anannu-

lar hyperbolic 3-manifold with boundary. Then there exists a complete hyperbolic

structure with totally geodesic boundary on M and it is unique up to isometry.

Proof. AssumeM is a finite volume anannular (i.e. not containing any essential an-

nuli) hyperbolic 3-manifold with boundary. Double M along its boundary and call

the result DM . Then DM is a finite volume hyperbolic 3-manifold by geometriza-

tion [50]. By Mostow–Prasad rigidity, this complete hyperbolic structure onDM is
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unique. DM admits an orientation-reversing homeomorphism by reflecting in ∂M .

By [52, Theorem 7.1] this homeomorphism is isotopic to an isometry. Thus, also

following from Mostow–Prasad Rigidity, ∂M is totally geodesic.

Now that we know that the complements of cellular weakly generalized alter-

nating links in thickened surfaces have a unique complete hyperbolic structure with

totally geodesic boundary, the question that naturally follows is how to explicitly

find it. We can accomplish this for links with regular faces in their diagrams by ex-

amining how the generalized polyhedra in their decompositions are glued (see [49,

Section 3.10] and [45, Chapter 4]) and considering the cusps of the complements.

Definition 2.15. A cusp of M := (F × I)\L is a neighborhood of ∂M homeomor-

phic to T 2 × [0, 1). A cusp torus is the boundary of cusp.

Theorem 2.16. (see [49, Section 3.10]). Let M := (F × I)\L. The hyperbolic

structure on M is complete if and only if for each cusp of M , the induced structure

on the toroidal boundary of the cusp is a Euclidean structure on the torus.

We define a regular polygon as in [7].

Definition 2.17. Let T be a convex, planar, ideal, polygon with n sides. Then T is

regular if it is set-wise invariant under a rotation of order n.

Definition 2.18. A regular ideal n-bipyramid is an ideal polyhedron formed by

coning a regular ideal polygon to upper and lower ideal apexes (see Figure 2.5). A

generalized regular n-bipyramid may have ideal or ultra-ideal apexes. We will refer
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to the polygon the bipyramid is built on as its horizontal face, and the faces sharing

the ideal or ultra-ideal apexes as its vertical faces.

𝛼 

𝛼 /2

𝛼 /2

-𝛼 𝜋 

Vertical face

Truncation face

B C

F E
DA

Figure 2.5: Left: A generalized bipyramid with interior angle α in its horizontal
face. Truncation faces for a neighborhood of the apexes of this bipyramid are shown
in dark blue. Half of a truncation face for one of the ideal vertices corresponding
to the strands of the link is shown in yellow. Right: A wedge of a generalized
bipyramid with edges labeled.

Links corresponding to regular tilings of E2 and H2 are especially well suited for

finding a hyperbolic generalized bipyramid decomposition.

Definition 2.19. A tiling of X = E2 or H2 is a partition of the space into polygonal

tiles or faces. The tiles have disjoint interiors. If they intersect on their boundaries,

they either share an edge and two vertices or they share one vertex. Two tilings, T

and T ′, are equivalent if there exists a homeomorphism h : X → X which sends the

vertices, edges, and faces of T to T ′.

For this work we will restrict our attention to 4-valent tilings, meaning that

precisely four tiles meet at every vertex of the tiling. Following [14] we will denote

the vertex type of a vertex v by [a, b, c, d] for a, b, c, d the numbers of sides of the
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four polygons meeting at v in clockwise order. If our tiling has only one vertex type

then we will refer to this tiling as an [a, b, c, d] tiling.

Definition 2.20. We say that link L corresponds to a tiling T of X = E2 or H2 if

there is a torsion free subgroup of the symmetry group of T , Γ, such that X/Γ is a

surface tiled by the polygons in T and L is the result of resolving the vertices of this

tiling into crossings in an alternating manner. Such a choice of crossings exists and

is well-defined when our link has a checkerboard coloring because we can choose

for strands of L to run from undercrossings to overcrossings in the clockwise or

counterclockwise orientation for the white and shaded faces, respectively.

Remark 2.21. Adams, Calderon, and Mayer call links corresponding to a regu-

lar tiling of S2,E2, or H2 with a k transitivity classes of vertices alternating k-

uniform tiling links. Champanerkar, Kofman, and Purcell call links corresponding

to biperiodic edge-to-edge Euclidean tilings with convex regular polygons semi-

regular links [11]. These links have also been referred to as textile links [9].

We state Adams, Calderon, and Mayer’s theorem below and outline their proof.

Theorem 2.22. (Adams–Calderon–Mayer, Lemma 2.10 and Theorem 4.4). Let L

be a link in F × I corresponding to a tiling T by regular polygons of S2, E2, or H2.

Let {Fi} be the collection of m non-bigon faces complementary to the projection of

L to F and let ni be the number of edges in the i-th face. Then:
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1. Topologically, (F ×I)\L decomposes intom face-centered bipyramids, each

corresponding to a unique face with ni edges.

2. The complete hyperbolic structure on (F×I)\L (with totally geodesic bound-

ary when F has negative Euler characteristic) is obtained by gluing together

symmetric hyperbolic bipyramids, each corresponding to a face of the tiling

of F .

Proof. Begin by taking the topological decomposition of the link complement into

two generalized polyhedra, P+ and P− as in Proposition 2.9.

Next, cone each face on the boundary of these generalized polyhedra (corre-

sponding to the link diagram π(L)) to subdivide P+ and P− into two collections of

pyramids with the same ideal apex if F = T 2 and ultra-ideal apex if F has higher

genus. The links of the ideal or ultra-ideal vertices are polygons with interior angles

determined by the interior angles of each face the pyramids are built upon. We can

see this by noting that if F has a hyperbolic structure, then the truncation plane is

the unique hyperbolic plane perpendicular to the collection of edges of the pyramid

with an endpoint at that apex. If F is a torus, then F ×{1} and F ×{−1} get their

Euclidean structures from the truncated faces of bipyramids with ideal apexes. For

a fixed interior angle there is only one regular hyperbolic polygon up to isometry

and one regular Euclidean polygon up to similarity. Both F × {−1} and F × {1}

are the result of gluing these regular boundary polygons. So, the boundary surfaces

have the same geometric structure as the projection surface.
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Glue the collection of pyramids in pairs along their faces corresponding to π(L).

The result is a collection of generalized bipyramids decomposing the complement.

Next, we will show that these bipyramids glue together along isometric faces, the

dihedral angles around each edge have a sum of 2π, and the links of the equatorial

vertices of the bipyramids fit together to induce a Euclidean structure on each of the

cusps of (F × I)\L.

If F = T 2 then all vertical faces are ideal triangles and thus isometric (see

[49, Section 3.9]). If F has negative Euler characteristic then the vertical faces are

hyperbolic quadrilaterals with angles 0, 0, π/2, π/2. One edge of this quadrilateral

(shared with the horizontal face of the bipyramid) is a crossing arc, two edges have

one ideal vertex (corresponding to the link) and one finite vertex (corresponding

to the truncation face of the bipyramid) and one edge is finite (shared with the

truncation face). See Figure 2.5. This finite edge of the vertical face determines

the face up to isometry and thus vertical faces corresponding to regular horizontal

faces are isometric. Now glue wedges along their vertical faces on the same side

of each overstrand at each crossing (see Figure 2.6). Under this face identification,

all vertical and horizontal edges are identified in collections of 4. (Note that the

finite edges of the truncation faces are identified in pairs.) The dihedral angle at

each vertical edge is the αi interior angle of the horizontal face it is built upon

(see Figure 2.5). Therefore the sum of the dihedral angles on the vertical edges

which are identified is the sum of the interior angles of the set of 4 horizontal faces
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Figure 2.6: Four generalized bipyramids centered on the faces surrounding a cross-
ing of link L (shown in black). The vertices in blue are either ultra-ideal or ideal
while the ideal vertices corresponding to the strands of L are pink. The face iden-
tifications for the (generalized) bipyramids are indicated by their coloring (see also
Figure 11 in [4]).

surrounding a crossing. These faces correspond to a hyperbolic or Euclidean tiling

and thus must have interior angles which sum to 2π about every crossing. The

dihedral angles for the horizontal (crossing arc) edges are all π − αi, as shown

in Figure 2.5, because every truncation face for the ideal vertices is Euclidean.

Therefore the sum of the dihedral angles on the vertical edges is also 2π.

Next, consider the truncation quadrilaterals for every ideal vertex corresponding

to the strands of the link (i.e. the vertices of the horizontal face of each bipyramid).

Each of these quadrilaterals has interior angles αi and π − αi. Using the symmetry

of the bipyramids we see that these faces have equal side lengths and are thus a

collection of rhombi. Under the identification of the faces of the bipyramids, these
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rhombi are glued into a Euclidean tiling in which vertices corresponding to vertical

edges are glued and vertices corresponding to horizontal edges are glued. The an-

gles of the rhombi about these vertices sum to 4π− (
∑
αi) = 2π about the vertices

corresponding to horizontal edges and
∑
αi = 2π for the vertices corresponding

to vertical edges. This implies that the hyperbolic structure on (F × I)\L obtained

from gluing together the hyperbolic structures on these face-centered bipyramids is

a complete hyperbolic structure (possibly with totally geodesic boundary).

Figure 2.7 gives an example of this geometric decomposition.
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Figure 2.7: A geometric truncated bipyramid decomposition of a link in F × I
with g = 2. The strands of the link (labeled in dark blue) correspond to the ideal
vertices of the horizontal faces of each truncated bipyramid (with their shading from
the checkerboard coloring). The truncation faces of each bipyramid, which glue to
form the boundary surfaces F × {1} and F × {−1}, are shown in lavender.
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CHAPTER 3

Totally Geodesic Surfaces and Right-Angled

Structure

In this chapter we consider links with totally geodesic checkerboard surfaces and

links whose complements admit a complete hyperbolic structure formed by gluing

generalized checkerboard polyhedra with π/2 dihedral angles. We show an equiv-

alence for a link having a complement with this right-angled structure, its checker-

board surfaces being totally geodesic, and it admitting a diagram satisfying a set of

restrictions. We then find an example of a right-angled knot in a thickened surface.

3.1 Totally Geodesic Checkerboard Surfaces

Definition 3.1. Let Σ be a properly embedded essential surface in hyperbolic 3-

manifold M and let ρ : π1(M) → PSL2(C) be a discrete, faithful representation.

Then Σ is totally geodesic if the image of π1(Σ) under the induced representation

is Fuchsian (i.e. conjugate to a discrete subgroup of PSL2(R)).

The existence and number of embedded or immersed totally geodesic surfaces

in hyperbolic 3-manifolds is an interesting question with useful applications. For

instance, by [8, Theorem 1.1], if a finite volume hyperbolic 3-manifold M con-



26

tains infinitely many totally geodesic surfaces then it is arithmetic. Menasco and

Reid found that the complement in S3 of a prime, connected, alternating link can-

not contain a closed embedded totally geodesic surface. Moreover, they conjecture

that the complement of a hyperbolic knot in S3 does not admit a closed, embedded,

totally geodesic surface [36]. Gan showed that if alternating links in S3 have two

totally geodesic checkerboard surfaces then they meet at right-angles [20, Theorem

3.3]. In this section we generalize Gan’s work to consider cellular weakly gen-

eralized alternating links with two totally geodesic checkerboard surfaces and the

implications this has for the geometric structure on their complements.

Definition 3.2. A link L is completely realizable if the complete hyperbolic struc-

ture on (F × I)\L is given by gluing hyperbolic generalized polyhedra by gear

shift rotation and these hyperbolic generalized polyhedra have the combinatorial

structure of the generalized checkerboard polyhedra of π(L).

Lemma 3.3. Let L be a cellular weakly generalized alternating link. If π(L) has

two totally geodesic checkerboard surfaces then L is completely realizable and the

hyperbolic generalized checkerboard polyhedra associated to π(L) are isometric.

Proof. We claim that there is a hyperbolic generalized polyhedron with the com-

binatorial structure of the generalized checkerboard polyhedra associated to π(L).

First, consider the generalized checkerboard polyhedron P+. Lift P+ to H3 and

consider a fundamental domain, P̂+. There is a fixed angle between the link di-

agram’s totally geodesic checkerboard surfaces and thus between the faces of this
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generalized polyhedron. Since both checkerboard surfaces are totally geodesic, we

find that any region S, consisting of an n-gon and its interior in one of the checker-

board surfaces, lifts to an ideal n-gon Ŝ in P̂+. The ideal vertices of this lift are

distinct, which implies that none of the boundary faces of P+ collapse in the pre-

image.

The other generalized checkerboard polyhedron associated to π(L), P−, has

the same dihedral angles between its totally geodesic faces as P+. Additionally, the

boundary components of both generalized polyhedra are incompressible because

both copies of F have no compression disks in F × I . We can therefore apply

[47, Theorem 8.15] to see that P+ and P− must have the same complete hyper-

bolic structure with totally geodesic surface boundary. This implies that there is a

hyperbolic generalized polyhedron with the combinatorial structure of P− and this

realization of P−, P̂−, is the mirror image of P̂+. Both hyperbolic generalized

polyhedra have the combinatorial structure of the topological checkerboard polyhe-

dra and therefore glue by gear shift rotation on their totally geodesic faces to give

the complete hyperbolic structure on the link complement.

Observe that if both hyperbolic generalized polyhedra are right-angled then

there is a quick way in which to show that they are isometric [47, Lemma 8.14].

Take P+ and double it along first its shaded checkerboard surface and then along

its white checkerboard surface. The result is a finite volume hyperbolic manifold,

DwDs(P
+), with totally geodesic boundary and cusps corresponding to the com-
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ponents of L. By Mostow–Prasad rigidity DwDs(P
+) has a unique hyperbolic

structure. Using that both checkerboard surfaces are totally geodesic, we see that

reflecting in either checkerboard surface in DwDs(P
+) is an isometry. Therefore

we can construct an isometry between P+ and P− by reflecting on both checker-

board surfaces.

Theorem 3.4. Let L be a cellular weakly generalized alternating link with gener-

alized checkerboard polyhedra P+ and P−. If L has two totally geodesic checker-

board surfaces then the faces of P+ and P− are regular.

Proof. By Lemma 3.3, L is completely realizable. Therefore the complete hy-

perbolic structure on (F × I)\L is given by gluing two generalized checkerboard

polyhedra, P+ and P−, by gear shift rotation. Call the totally geodesic faces of P+,

Ti, and the faces of P−, T ′
i .

We follow Gan’s proof [20, Theorem 3.14]. The gear shift rotation provides us

with a collection of gluing isometries {ψi : Ti → T ′
i}. These isometries, which

are rotations, glue the faces without shearing on any edge because L is completely

realizable.

By Lemma 3.3, the generalized checkerboard polyhedra P+ and P− are iso-

metric. Consider the restriction of the isometry, ϕ : P− → P+, to the copy of

F\π(L) on the boundary of P−. We find our isometry by reflecting across the to-

tally geodesic checkerboard surfaces whose boundaries are the link diagram, so ϕ
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will fix π(L). This implies that the two copies of F\π(L) have the same geometric

structure induced by the hyperbolic structure on P+ and P−.

Now consider the collection of maps ϕ ◦ ψi : Ti → Ti. First, ψi rotates and

glues Ti to T ′
i , then ϕ sends T ′

i back to Ti. The result is an isometry of each totally

geodesic face Ti which is an order n rotation.

The following is a slight generalization of Gan’s Lemma [20, Lemma 3.9]. We

follow the proof from [20] adjusted for this setting.

Proposition 3.5. Let L be a cellular weakly generalized alternating link with dia-

gram π(L). Suppose that the two checkerboard surfaces of π(L) are totally geodesic

in (F × I)\L. If Gn, Gm are an n-gon and m-gon in the diagram that are diagonal

from each other, then n = m. In other words, polygons in the same totally geodesic

checkerboard surface have the same number of sides.

Proof. By Theorem 3.4 the polygons in the checkerboard surfaces are regular. By

assumption Gn and Gm are diagonal from each other with respect to a vertex in

π(L) so they are part of the same totally geodesic checkerboard surface. Suppose

that this is the white checkerboard surface ΣW . Lift both faces to H3. The result

will be totally geodesic polygons which are adjacent up to translations by the lifts

of ΣW . Consider the pre-image such that the faces share an edge with vertices at 0

and ∞, as shown in Figure 3.1.

Choose the cusp sizes such that all of their boundaries have a meridian of the

same length in the Euclidean metric induced from the complete hyperbolic structure



30

A Q A’

B B’
P

z 0 -zw -w

Figure 3.1: Figure modified from [20]. Lifts of Gn and Gm in Σ̂W are shown as
a vertical plane in the upper half-space model. The intersection of Σ̂W with the
boundaries of horoball lifts of a neighborhood of L appear in blue and the polygons
appear in black.

on the link complement. The link diagram’s two totally geodesic checkerboard

surfaces give the boundary of each cusp a tiling by quadrilaterals with interior angle

the angle between the two totally geodesic checkerboard surfaces of π(L). One

such tiling is shown in Figure 3.2. Using that this angle is fixed and that the totally

geodesic surfaces are embedded, we see that the quadrilaterals have parallel sides.

Consider one cusp. One of the diagonals of all of the parallelograms on this cusp’s

boundary corresponds to a meridian on the boundary of a tubular neighborhood of

the link component corresponding to this cusp. Therefore one diagonal of each

parallelogram is the same length. So, adjacent parallelograms have sides of the

same (respective) lengths. This is shown in Figures 3.2 and 3.3.

In Figure 3.1 we see that the sides AQ and QA′ are the same length, as are

BP and PB′. We have the following consecutive vertices of Ĝn: z,∞, 0, w where

z and w are complex. Using that the segments are of equal length, we see that

−z,∞, 0, and −w are the corresponding symmetric consecutive vertices of Ĝm.
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lift o

Figure 3.2: A tiling of the boundary of a cusp by its intersection with the white
and shaded totally geodesic checkerboard surfaces. The cusp is shown in blue, the
intersection with lifts of the white checkerboard surface are shown in white, and the
intersection with lifts of the shaded checkerboard surface are shown in black. The
pre-image of the meridian, the diagonal of each parallelogram that is the same fixed
length, is shown in orange.

meridian cusp torus

Figure 3.3: Figure modified from [2] and [20]. Tiling of the boundary of cusps of
(F × I)\L by quadrilaterals. A meridian is shown in orange.
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So, Ĝn and Ĝm have consecutive vertices with the same cross ratio. Aitchison and

Reeves showed that a hyperbolic polygon with x sides is regular if and only if the

cross ratio of any four consecutive vertices of the polygon is 1+1/(2 cos(2π/x)+1)

[7, Lemma 3.2]. Our two sets of vertices have the same cross ratio so our two lifted

polygons then have the same number of sides.

3.2 Right-Angled Structure

3.2.1 RGCR Links

We begin with a few more definitions generalizing the definition of a completely

realizable link given in [7] and of Gan’s right-angled completely realizable links

[20, Definition 3.13].

Definition 3.6. If, in addition to being completely realizable, all dihedral angles in

both generalized checkerboard polyhedra of π(L) are right-angles, then we say that

the link is right-angled generalized completely realizable (RGCR).

Theorem 3.7. Let L be a cellular weakly generalized alternating link on F in F×I .

Then the following are equivalent:

1. L is RGCR.

2. L has two totally geodesic checkerboard surfaces.

3. The checkerboard surfaces of π(L) each have exactly one type of polygon.



33

Figure 3.4: Identifying faces with the same color on generalized polyhedra P+ and
P− forces the faces of the other color to meet at a π angle.

4. L has a projection diagram π(L) on F with at most two types of polygons, one

with n sides and the other with m sides, such that the polygons are arranged

in an [n,m, n,m] pattern about each vertex and are regular.

Proof. (1) =⇒ (2) By assumption the complete hyperbolic structure on the link

complement is given by gluing P+ and P− by gear shift rotation. Consider the

totally geodesic faces of these hyperbolic generalized polyhedra. If we glue just the

shaded faces of P+ and P− then we see that the white faces meet in pairs at a π

angle which is the sum of the two π/2 dihedral angles between white and shaded

faces on each hyperbolic generalized polyhedron (see Figure 3.4). This also holds

if we glue only the white faces. Therefore the checkerboard surfaces of π(L) are

both totally geodesic and the hyperbolic structure on each checkerboard surface is

determined by the hyperbolic structure of the generalized polyhedra.

(2) =⇒ (3) Follows from Proposition 3.5.

(3) =⇒ (4) The checkerboard surfaces of π(L) each contain one type of

polygon, therefore π(L) must have faces consisting of polygons of n numbers of
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sides and m numbers of sides in a pattern [n,m, n,m] about each vertex. If the

faces are regular then we are done.

Suppose that the polygons are not regular. If F has negative Euler character-

istic then the link diagram on F in F × I corresponds to a quotient of a tiling

of H2 by n-gons and m-gons arranged in the specified pattern. Call this tiling T .

This [n,m, n,m] pattern about each vertex of the tiling satisfies condition (1) in

[14]. Therefore there exists a tiling of H2, T ′, by regular polygons with vertex type

[n,m, n,m] at every vertex, which is equivalent to T [14, Lemma 2.5]. Using this

regular tiling of H2 we find the diagram of Lwith regular polygons on F . If F = T 2

we apply the same argument using [15, Theorem 1.3] to find π(L) as the quotient

of a regular tiling of E2.

(4) =⇒ (1) By assumption, we can construct L as a quotient of a regular tiling

of E2 or H2 with one vertex type. Decompose the complement into generalized

bipyramids. Adams, Calderon, and Mayer found the angles of these bipyramids

in terms of the angles of the polygons in F\π(L) by cutting each bipyramid into

a collection of wedges with angles D = π − α, B = C = E = F = α/2, and

A = 2π/n for each n-gon in the projection diagram with interior angle α (see

Figure 2.5 for labels).

We have assumed that there are two n-gons and two m-gons about each vertex.

This implies that for αn the interior angle of the n-gon and αm the interior angle of

the m-gon, 2αn + 2αm = 2π so αn + αm = π. Slice the generalized bipyramids
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along the (horizontal) checkerboard surface faces. We can then see that P+ and

P− will be the result of gluing the resulting pyramids on their (vertical) faces. This

gluing matches the corresponding D edges with dihedral angles (π − αn)/2 and

(π − αm)/2. Using that (π − αn + π − αm)/2 = π/2, we see that this gluing

forms right-angled generalized checkerboard polyhedra. Hence L is right-angled

generalized completely realizable.

Corollary 3.8. For projection surface F = T 2, L is RGCR if and only if it is the

triaxial link or the square weave.

Proof. Theorems 3.7 and 3.4 imply that any RGCR link with alternating projection

on the torus is semi-regular. We can then apply [11, Theorem 5.1].

3.2.2 Right-Angled Knots

Hyperbolic 3–manifolds with complements that admit a right-angled structure have

useful properties. For instance, as we have seen, if M admits a right-angled decom-

position, then it must contain an immersed totally geodesic surface from gluing the

faces of its (generalized) polyhedra [12]. The family of fully augmented links have

a right-angled decomposition that has been used to gain information about their

cusps (see [44]) and hidden symmetries (see [38]).

It is a challenging problem to determine in general that a class of hyperbolic 3-

manifolds is not right-angled. Gan showed that among alternating links in S3 there

are no right-angled completely realizable knots [20, Theorem 3.14]. Champanerkar,
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Kofman, and Purcell conjecture that there does not exist a right-angled knot in S3

[12, Conjecture 5.12]. However, this will not extend to links in thickened surfaces.

Theorem 3.9. There exists a right-angled knot in a thickened surface.

Proof. We construct a right-angled knot in a thickened genus 2 surface in Figure

3.5. This knot corresponds to a hyperbolic tiling by regular octagons.
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Figure 3.5: An RGCR knot.
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CHAPTER 4

Counting RGCR Links

Gan showed that there are only three right-angled completely realizable links alter-

nating on S2 in S3 [20]. See Figure 4.1. In the thickened torus, we saw in Corollary

3.8 that there are only two tilings that correspond to RGCR links. A question that

naturally follows is if there are similarly few RGCR links and tilings corresponding

to RGCR links for thickened surfaces with genus greater than one. Here, we answer

that question by finding an upper bound.

Figure 4.1: The three right-angled completely realizable links in S3. (Also see
Figure 6 in [20].)

Definition 4.1. Denote the number of times that n-gons occur in a checkerboard

surface of a link diagram by kn and the number of times that m-gons occur in the

other checkerboard surface by km.

We will use the restrictions from Theorem 3.7 on the types of polygons that

appear in each link diagram for our bound. In an RGCR link diagram each n-gon
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shares all of its edges with an m-gon and similarly each m-gon corresponds to m

n-gons. So, knn = kmm. When n = m, we have kn = km. We next use the area of

the polygons and the Euler characteristic of the projection surface F .

Proposition 4.2 (Gauss–Bonnet). Let F be the projection surface of a link L with

polygons Tn and Tm in its diagram. Then −2πχ(F ) = a(F ) = kna(Tn)+kma(Tm),

where a denotes area.

Theorem 4.3. Given a projection surface F of genus g, there are finitely many

tilings of H2 and E2 which correspond to RGCR links, L, with π(L) on F . More-

over, for each F of genus g > 1, the number of RGCR links is bounded above by(
310g2

9
− 101g

3
+ 4

)
[(84g − 83)!].

Proof. By Corollary 3.8 and [11, Theorem 5.1] when F is a torus the only Eu-

clidean tilings which correspond to RGCR links are [3, 6, 3, 6] and [4, 4, 4, 4].

Consider when g > 1. First, we will bound the number of fundamental domains

of tilings that correspond to RGCR links for a given F with fixed genus g. In

other words, we will bound the number of tuples (m,n, km, kn) which correspond

to RGCR links in terms of g.

Without loss of generality, assume that n ≤ m. Then we have that n ≥ 3 and

m ≥ 5 because the [n,m, n,m] tiling is hyperbolic and the links do not have bigons.
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Recall that αn + αn = π and that nkn = mkm. Using Gauss–Bonnet we find,

−2π(2− 2g) = −2πχ(F ) = a(F )

=
kn∑

a(Tn) +
km∑

a(Tm)

= kn(n(π − αn)− 2π) + km(m(π − αm)− 2π)

= kn(n(π − αn)− 2π) +

(
knn

m
(mαn − 2π)

)
.

Simplifying we find

4(g − 1) = kn

(
n− 2− 2n

m

)
, (4.1)

and

4(g − 1) = km

(
m− 2− 2m

n

)
. (4.2)

Equations (4.1) and (4.2) imply that kn and km are determined by n, m, and g.

Therefore it suffices for us to find an upper bound on the number of pairs (m,n).

In order to do so, we will first find upper bounds on n and on m in terms of g.

Our assumption that n ≤ m implies that there is only one option for n and m

with kn = 1. Namely, if kn = 1, then n = m = 4g by (4.1) because our assumption

that n ≤ m implies that kn ≥ km.

When kn ≥ 2,

n− 2− 2n

m
=

4(g − 1)

kn
≤ 4(g − 1)

2
= 2g − 2,
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simplifying, we find that

n

(
m− 2

m

)
≤ 2(g − 1) + 2 = 2g.

Recall that m ≥ 5, so
3

5
≤ m− 2

m
. Therefore,

n

(
3

5

)
≤ n

(
m− 2

m

)
≤ 2g,

which implies that n ≤ 10g

3
.

We bound m by starting with Equation (4.2). The same set of inequalities hold

except with n replaced with m, n ≥ 3, and km ≥ 1. Therefore,

m

(
1

3

)
≤ m

(
n− 2

n

)
≤ 4(g − 1)

1
+ 2 = 4g − 2.

Thus, m ≤ 12g − 6.

Our goal is to bound the number of possible pairs (m,n) for each fixed genus

g. Using that n ≥ 3 and that there is only the one option for (m,n) with a value

of n larger than 10g/3 (the case when n = m and kn = 1 = km), there are up to

10g

3
− 2 + 1 =

10g − 3

3
choices for n. Using that m ≥ 5, there are

12g − 6− 4 = 12g − 10 choices for m.
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For each m ≤ 10g

3
there are m − 2 choices for what n can be and for each

m ≥ (10g)/3 there are
10g − 3

3
possibilities for n. Therefore the number of pairs

(m,n) is bounded above by:[ (10g)/3∑
m=5

(m− 2)

]
+ ((10g − 3)/3)(12g − 6− ((10g)/3))

=

[ (10g)/3∑
m=5

(m− 2)

]
+ (

2

9
(10g − 3)(13g − 9))

=
310g2

9
− 101g

3
+ 4.

We show in Figure 4.2 that distinct links can have the same tuple (m,n, km, kn).

So, we also need to bound the number of RGCR links that correspond to the same

tiling T . The orientation preserving symmetry group of T is finitely generated by

two rotations preserving the checkerboard coloring. This group of symmetries is the

orientation preserving subgroup of the triangle group which is all of the symmetries

of T . The RGCR links corresponding to this tiling are then the result of taking the

quotient of H2 by surface subgroups of this symmetry group of the same index.

By the 84(g − 1) Theorem this index x satisfies, x ≤ 84(g − 1) (see [18]). The

number of subgroups of index x of a finitely generated groupG is bounded above by

x · x!d(G)−1, where d(G) is the minimal number of generators of G [32]. Therefore

the number of weakly generalized alternating links on F that correspond to T is

bounded by x · x!d(G)−1 = x · x! ≤ (x+ 1)! ≤ (84g − 83)!.

An alternative method that we could use to find a bound on the number of RGCR

links corresponding to a given tiling (with a specified number of polygons in their
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checkerboard surfaces) is to consider the number of feasible identifications of the

faces in the checkerboard surfaces along their edges. However, this method quickly

results in a larger upper bound as kn and km increase. The sets of fundamental

domains of tilings corresponding to RGCR links with projection surfaces of genus

2− 7 are listed in Table 6.1.

Remark 4.4. We cannot bound kn and km for an RGCR link on the torus with these

calculations. Using the Euler characteristic we see that

χ(F ) = 0 = v − e+ f =
2e

4
− e+ f =

2mkm
4

−mkm + (kn + km), where v, e,

and f , are the number of vertices, edges, and faces in the 4-valent graph correspond-

ing to the link diagram on F . Simplifying, we find that 2kn + (2−m)km = 0. So

the only restriction we get from m (or similarly from n) is that kn = km when

n = 4 = m and kn = 2km when m = 6 and n = 3.

Example 4.5. Figure 4.2 provides an example of two distinct links on a genus 3

surface which derive from the same tiling of H2 by octagons and contain the same

number of octagons in their projection diagrams. We can check that the links are

distinct by noting that they have different numbers of components.
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Figure 4.2: Two links from a tiling of H2 by right-angled octagons. Both links
have m = 8 = n and kn = 2 = km. We begin with a fundamental domain of
four right-angled octagons and proceed to identify edges to form the projection
diagrams of the links. Double headed arrows indicate gluing while single headed
arrows indicate the results of the gluings. Different choices of gluing form distinct
links.
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CHAPTER 5

Arithmeticity, Commensurability, and Triangulations

The commensurability classes and arithmeticity of different families of knot and

link complements have been considered by many authors including in [11], [46],

[21], [38]. In this chapter we introduce commensurability and arithmeticity fol-

lowing Neumann and Reid’s exposition in [40] and Walsh’s exposition in [53]. We

then consider the commensurability classes and arithmeticity of RGCR links. We

determine that RGCR links corresponding to all but two hyperbolic tilings are non-

arithmetic, find a family of arithmetic RGCR links, and show that RGCR links

corresponding to the same tiling are commensurable.

5.1 Commensurability of RGCR Links

We begin by defining commensurability:

Definition 5.1. Two hyperbolic manifolds (or orbifolds) are commensurable if they

admit isometric finite-sheeted covers. Restricting to finite volume hyperbolic man-

ifolds M ∼= H3/Γ and M ′ ∼= H3/Γ′ with Γ and Γ′ discrete subgroups of Isom(H3),

it follows that M and M ′ are commensurable if and only if Γ and a conjugate of Γ′

have a common finite index subgroup.
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Commensurability is an equivalence relation and therefore provides a way to

classify hyperbolic manifolds. Moreover, these classes provide information about

different properties of hyperbolic manifolds which are preserved or related under

commensurability. For example, for finite volume hyperbolic 3-manifolds, com-

mensurable manifolds have volumes which are rationally related [33].

In order to determine the commensurability classes of RGCR links with projec-

tion diagrams of genus greater than 1, we will consider the double of their comple-

ments along their totally geodesic surface boundary. Note that the doubled com-

plements then contain at least six embedded totally geodesic surfaces, in particular,

two corresponding to the surfaces that previously were part of the boundary (and

now are contained within the doubled complement), and four corresponding to the

two sets of checkerboard surfaces. First, we address the relationship between the

commensurability class of a manifold and that of its double.

Lemma 5.2. Let M and M ′ be cellular weakly generalized alternating link com-

plements with doubles DM and DM ′. If M and M ′ are commensurable then DM

and DM ′ are commensurable.

Proof. If M and M ′ are commensurable then they share a finite-sheeted cover, Y .

Double Y along its totally geodesic surface boundary components and call the result

DY . The double DY is a common finite-sheeted cover of DM and DM ′.
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Proposition 5.3. ConsiderRGCR links with projection surface F of genus greater

than 1. All RGCR links with the same n and m-gon faces in their checkerboard

surfaces are commensurable.

Proof. By Theorem 3.7 any two RGCR links, L1 and L2, with the same n and

m-sided polygons correspond to regular [n,m, n,m] tilings of H2. The group of

isometries of this tiling is the collection of hyperbolic isometries generated by re-

flecting in the three sides of a triangle with angles π/n, π/m, and π/2. We can

see this by noting that these isometries preserve the [n,m, n,m] tiling and that any

isometry of the tiling is the result of a combination of these reflections, as shown

for tilings consisting of one type of polygon in [16].

Doubling this triangle along the edge between the π/n and π/m angles gives

us a quadrilateral in the graph corresponding to π(L) which corresponds to two

bipyramid wedges sharing a horizontal edge in the hyperbolic structure of each

link’s complement (see Figure 5.1). Reflections in the faces of this pair of wedges

are then isometries of the three-dimensional tiling of H3 by the bipyramids corre-

sponding to the [n,m, n,m] tiling. The complement of L1 in F1 × I , M1, and the

complement of L2 in F2 × I , M2, both finitely cover the orbifold which is the quo-

tient of the three-dimensional tiling by these these isometries. Take the intersection

of π1(M1) and π1(M2). The result is a group G corresponding to a finite cover of

M1 and M2.
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Figure 5.1: Left: Neighboring n-sided and m-sided faces in an [n,m, n,m] tiling.
The isometries of the tiling are generated by reflecting in a π/n, π/m, π/2 trian-
gle. Double this triangle along the edge running between the center of the n-gon
and the m-gon. The result is a quadrilateral with interior angles 2π

n
, 2π

m
, and π/2.

Right: Wedges corresponding to n-gon and m-gon faces of this tiling that share a
horizontal (crossing arc) edge shown in orange.

5.2 Arithmeticity and Geometric Triangulations

We next turn to the arithmeticity and ideal triangulations of RGCR links. Through-

out this section, M ∼= H3/Γ will be a cusped finite volume hyperbolic manifold.

Definition 5.4. M is arithmetic if Γ is an arithmetic Kleinian group, namely, com-

mensurable to PSL2(Od) for Od the ring of integers of Q(
√
−d) where d is positive

and square-free.

Another characterization of arithmeticity uses the commensurator of Γ,

Comm(Γ) = {g ∈ Isom(H3) | [Γ : Γ ∩ gΓg−1] <∞}. From Margulis’ work,

Comm(Γ) is discrete in Isom(H3) if and only if Γ is non-arithmetic [34]. This im-
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plies that non-arithmetic finite volume hyperbolic 3-manifolds are commensurable

if and only if they cover a common quotient orbifold, namely O ∼= H3/Comm(Γ).

In their study of links with alternating projections on the torus, Champanerkar,

Kofman, and Purcell classified the arithmeticity and commensurability classes of

semi-regular links based on the types of polygons in their corresponding tilings.

They prove these results in part by calculating the invariant trace fields of the link

complements. The invariant trace field, kΓ := Q(tr(γ2)|γ ∈ Γ), of M is a com-

mensurability invariant which ties together number theoretic and geometric ways of

studying hyperbolic link complements [33]. The geometric viewpoint arises from

a theorem of Neumann and Reid who showed that we can use a geometric ideal

triangulation of M to generate the invariant trace field.

Definition 5.5. A geometric ideal triangulation of M is a decomposition of the

manifold into positively oriented ideal hyperbolic tetrahedra, {Ti}, glued together

by orientation-reversing isometries along their faces.

Every ideal tetrahedron is parametrized by a complex number zj . We can see

this by applying an isometry mapping our ideal tetrahedron to the ideal tetrahedron

with vertices 0, 1, ∞, and zj as shown in Figure 5.2.

Let k∆Γ := Q(zj | j = 1, ..., n) for {zi} the set of tetrahedral parameters of

a geometric triangulation of M . Neumann and Reid proved that kΓ = k∆Γ and

therefore we can calculate the invariant trace field by finding the tetrahedral param-

eters of a geometric triangulation of the manifold [40, Theorem 2.4]. For cusped
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Figure 5.2: An ideal tetrahedron in the ball model of H3 (left) sent to an ideal
tetrahedron with vertices at ∞, 0, 1, and z in the upper half-space model of H3

(right).

arithmetic hyperbolic 3-manifolds, the invariant trace field is a complete commen-

surability invariant [33].

We state Champanerkar, Kofman, and Purcell’s theorem on the invariant trace

fields, arithmeticity, and commensurability of semi-regular links below and outline

their proof.

Theorem 5.6. (Champanerkar–Kofman–Purcell [11, Theorem 4.1]). For a semi-

regular link L with no bigons, with alternating quotient link L, letM = (T 2×I)\L

and let k(M) denote its invariant trace field.

1. If the fundamental domain of the tiling corresponding to L contains only

squares, then k(M) = Q(i), and M is commensurable to the Whitehead link

complement. Hence, M is arithmetic. In this case, L is the square weave.

2. If the fundamental domain of the tiling corresponding to L contains only

triangles and hexagons, then k(M) = Q(i
√
3), and M is commensurable to
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the figure-8 knot complement. Hence, M is arithmetic. In this case, L is one

of infinitely many semi-regular links.

3. If the fundamental domain of the tiling corresponding to L contains at least

one hexagon and one square, then k(M) = Q(i,
√
3). Hence, M is not arith-

metic. Assuming vtet and voct are rationally independent, there are infinitely

many commensurability classes of semi-regular links with this invariant trace

field.

Proof. By [11, Lemma 3.3] the Euclidean tilings corresponding to semi-regular

links with no bigons have vertex types: [3, 3, 6, 6], [3, 6, 3, 6], [3, 4, 4, 6], [3, 4, 6, 4]

and [4, 4, 4, 4].

Begin by decomposing the complement of each type of semi-regular link into

ideal hyperbolic bipyramids centered on each face of the link diagram as described

in Chapter 2 and given in [11, Theorem 3.5]. The ideal bipyramids further decom-

pose into ideal tetrahedra if we insert an edge running between the apexes of each

bipyramid. The shapes of the resulting ideal tetrahedra are eiπ/2 and eiπ/3. We can

then apply [40, Theorem 2.4] to find the invariant trace fields of each of the listed

types of links.

Next, Snap (see [13]) verifies that one of the complements in the commensura-

bility class ofM where L has only square faces (i.e. a quotient of the square weave)

is arithmetic. Then M is a cusped finite volume arithmetic manifold with the same

invariant trace field as the Whitehead link. The invariant trace field is a complete
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commensurability invariant for arithmetic links (see [33, Section 8.4]) so all of the

links in this class are arithmetic and commensurable to the Whitehead link.

There are infinitely many distinct Euclidean tilings corresponding to semi-regular

links with hexagonal and triangular faces [22]. We can find them by stacking dif-

ferent configurations of parallelograms consisting of half of a regular Euclidean

hexagon and a regular Euclidean triangle (see Figure 5.3 or Figure 10 in [11]).

These parallelograms are related by reflections and π-rotations and the bipyramids

Figure 5.3: Above: Parallelograms which can be stacked to form semi-regular Eu-
clidean tilings with square and hexagonal faces. Below: An example of such a
tiling. Also see Figures 9 and 10 in [11] and Figure 4 in [22].

built on each face will be as well. So, the complements of these links are commen-

surable. Snap verifies that the quotient of the triaxial link is arithmetic. Therefore

all links in this commensurability class are arithmetic, finite volume, and have the
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same invariant trace field as the figure-8 knot complement. This implies that they

are commensurable to it.

Now consider a pair of semi-regular links L1 and L2 which both have diagrams

that contain at least one square and one hexagon. The complements of these links

decompose into ideal regular tetrahedra and ideal regular octahedra. So the volumes

of their complements are (p1vtet + q1voct) and (p2vtet + q2voct) for p1, q1, p2, and q2

integers. If vtet and voct are rationally independent, we can then show that there are

infinitely many distinct pairs L1 and L2 such that these volumes are not rationally

related, and thus the links are not commensurable.

Remark 5.7. The assumption of rational independence in this theorem stems from

Milnor’s conjecture that voct and vtet are rationally independent. This is a special

case of the last remaining open question of Thurston’s survey article [50].

We next address the arithmeticity of all RGCR links.

Proposition 5.8. RGCR links corresponding to all [n,m, n,m] tilings except for

[4, 4, 4, 4], [3, 6, 3, 6], [6, 6, 6, 6] and possibly [6, 4, 6, 4] are non-arithmetic.

Proof. First, recall that semi-regular RGCR links correspond to the tiling of E2 by

squares or by hexagons and triangles by Corollary 3.8. These classes of links are

arithmetic [11, Theorem 4.1].

Suppose thatM ∼= H3/Γ is an arithmetic doubled complement of an RGCR link

with projection surface F of genus ≥ 2. Then M has imaginary quadratic invariant
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trace field, Q(
√
−d) [33, Theorem 8.2.3]. Let G be a subgroup of Γ corresponding

to one of the closed totally geodesic surfaces in M which was part of the bound-

ary the RGCR link complement was doubled along. Then G is a non-elementary

Fuchsian subgroup of the arithmetic Kleinian group Γ, so G is arithmetic [33, The-

orem 9.5.2]. The invariant trace field of G is the intersection of the invariant trace

field of M , Q(
√
−d), with R [33, Corollary 9.5.3]. Therefore G is an arithmetic

Fuchsian group with invariant trace field Q. This subgroup G corresponds to the

projection surfaces of the original RGCR link complement and thus to a hyperbolic

tiling of the form [n,m, n,m] by Theorem 3.7. So, G is commensurable to triangle

group (2, n,m). Using Takeuchi’s classification of arithmetic triangle groups, we

see that this triangle group can only be (2, 4, 6) or (2, 6, 6) [48]. Thus G can only

correspond to a hyperbolic tiling by all hexagons or by hexagons and squares in the

RGCR tiling pattern.

Theorem 5.9. RGCR links in thickened surfaces which correspond to the [6, 6, 6, 6]

tiling are arithmetic.

Proof. Let H be the doubled complement of the RGCR link shown in Figure 5.4.

This link corresponds to the tiling of H2 by regular right-angled hexagons. In the

notation of Chapter 4, n = 6 = m and kn = 2 = km. By 5.3, the other RGCR

doubled link complements corresponding to the same hexagonal tiling are commen-

surable to H , so if H has an arithmetic doubled complement then the other doubled

link complements corresponding to the hexagonal tiling are as well.
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We will find a geometric decomposition of H and use it to show that H and the

Whitehead link are commensurable. Consider the decomposition of H shown in

Figure 5.4. Each cut-and-pasted semi-truncated generalized bipyramid (which, for

brevity, we will refer to as drums as in [49, Section 6.8]) consists of two horizontal

faces corresponding to the checkerboard surfaces of the original link diagram and 6

vertical faces. We label the horizontal faces F1, F2, F3, and F4 and label the vertical

faces Fi,j where i corresponds to the horizontal face and j corresponds to the label

on the crossing arc which makes up two of the edges of that vertical face. Under

the generalized bipyramid decomposition described in [4] and Chapter 2, we have

the following pairs of identifications for the vertical faces of the top row of drums:

(F1,1, F2,1), (F1,2, F4,2), (F1,3, F2,3), (F1,4, F4,4), (F1,5, F2,5), (F1,6, F4,6),

(F3,1, F4,1), (F3,2, F2,2), (F3,3, F4,3), (F3,4, F2,4), (F3,5, F4,5), (F3,6, F2,6)

and we have the following identifications for the bottom row of drums:

(F1,1, F4,1), (F1,2, F2,2), (F1,3, F4,3), (F1,4, F2,4), (F1,5, F4,5), (F1,6, F2,6),

(F3,1, F2,1), (F3,2, F4,2), (F3,3, F2,3), (F3,4, F4,4), (F3,5, F2,5), (F3,6, F4,6)

Our choices of diagonal edges for this decomposition (drawn in green) respect

these identifications. Observe that each drum decomposes into one ideal right-

angled octahedron surrounded by six ideal tetrahedra with dihedral angles π/2, π/4,

and π/4 (see Figures 5.5 and 5.6). We find the dihedral angles on the ideal tetrahe-

dra by noting that each horizontal hexagonal face corresponds to the right-angled

tiling of H3 by hexagons and thus we have π/2 dihedral angles on the vertical edges
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blue. The crossing arcs are labeled with roman numerals in red. The face diagonals
added to triangulate the doubled complement are shown in green.
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shared by the vertical faces of each drum (the edges sharing the same number label

within a drum). This forces each crossing arc edge between the horizontal faces

and the vertical faces to have full dihedral angle π/4 in order for the three dihedral

angles surrounding an ideal vertex to add to π. We find the dihedral angles on the

ideal octahedron by noting that the sum of the dihedral angles corresponding to the

same diagonal of the drum decomposition is π.

Next, we will follow the face gluings of the drums to show that the collection

of ideal tetrahedra are identified into ideal right-angled octahedra (see Figure 5.7).

Each of the 1-6 vertical edges is identified in groups of four (along the top row

of drums or the bottom row of drums). As previously discussed, these edges have

dihedral angle π/2, and thus the dihedral angles on the edges directly opposite

to them (which lie in the faces corresponding to the checkerboard surfaces) are

also π/2 because opposite dihedral angles in an ideal tetrahedron are equal. The

edges of the tetrahedra which are diagonals of the vertical faces of each drum then

all have angle π/4 and are identified according to the face gluing in pairs. This

glues 4 tetrahedra about each vertical edge as shown in the example in Figure 5.7,

resulting in a right-angled ideal octahedron. Under this decomposition of H , we

have 8 octahedra from the ‘center’ of each drum and 12 from the identifications on

the surrounding tetrahedra. Therefore H admits a decomposition into regular ideal

octahedra.
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Figure 5.5: The drums forming H each decompose into an ideal regular octahedron
and 6 ideal tetrahedra with dihedral angles π/2, π/4, and π/4. Also see Figure 5.6.
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Figure 5.6: A decomposition of one hexagonal drum. The dihedral angles of the
original drum are labeled in black. The interior ideal octahedron and 2 of the 6 ideal
tetrahedra are shaded.

Both H and the Whitehead link are quotients of a tilings of H3 by regular ideal

octahedra (see [49, Section 6.7]). Therefore, both π1(H) and π1(S3\W ), for W the

Whitehead link, are finite index subgroups of the symmetries of the regular octahe-

dral tiling of H3. The intersection of these fundamental groups, π1(H)∩π1(S3\W ),

has finite index in both groups. This implies that H and the Whitehead link com-

plement are commensurable. The Whitehead link complement is arithmetic, and

arithmeticity is a commensurability invariant, so H must be as well.

Remark 5.10. It is an open question whether links corresponding to the [4, 6, 4, 6]

tiling are arithmetic. In Example 5.13 we construct a geometric triangulation for a
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Figure 5.7: Building a right-angled octahedron from the ideal tetrahedra surround-
ing the octahedra in the ‘center’ of each drum.

doubled link complement in this commensurability class, S, and use this triangula-

tion to find its volume and invariants of the commensurability class.

We next investigate the cusp fields of RGCR link complements.

Definition 5.11. A cusp torus for cusp C in cusped hyperbolic 3-manifold M is

conformally equivalent to C/Λ for Λ a complex lattice. The cusp shape, p, of C is

the ratio of two generators of this Λ. The cusp field of C is generated by p and the

cusp field of M is the field generated by the cusp shapes of all of the cusps in M .

The cusp field is independent of the choice of generators for Λ because they differ

by the action of SL2(Z) by Möbius transformations.

We can compute cusp shapes from the cusp triangulation induced by an ideal tri-

angulation of M so the cusp field is contained in the invariant trace field [40]. The
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Figure 5.8: Truncating a generalized bipyramid in the decomposition of an RGCR
link complement at one of its ideal vertices. The link is shown in yellow, the pink
vertices are ideal, and the blue vertices are either ideal or ultra-ideal depending on
the genus of the projection surface for the link. The angle αn is the interior angle
of the n-gons and αm is the interior angle of the m-gons in the link’s corresponding
tiling.

cusp field is a commensurability invariant and therefore we can determine that two

RGCR links must be in different commensurability classes when they have distinct

cusp fields.

Lemma 5.12. The cusp field of an RGCR link complement is Q(i sin(αn), cos(αn))

for αn the interior angle of one of the polygons in the RGCR link’s checkerboard

surfaces.

Proof. We can find the cusp shapes of RGCR links by truncating the ideal vertices

of their generalized bipyramid decomposition (see Figure 5.8). The truncation face

at an ideal vertex is a rhombus with vertices on the edges corresponding to crossing

arcs of the link complement and the vertical edges running toward the ultra-ideal

apexes of the bipyramids. This means that the rhombus has two interior angles
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matching the interior angle of the diagram polygon it is centered upon. We calculate

the other two interior angles by using the symmetry of the bipyramid and that the

interior angles of the Euclidean rhombus must sum to 2π:

2αn + 2x = π, so x = αm.

Normalize the truncation rhombus to have side length 1. Then the cusp shapes

are: cos(αn) + i sin(αn) and

cos(αm) + i sin(αm) = cos(π − αn) + i sin(π − αn) = − cos(αn) + i sin(αn). So,

the cusp field is generated by cos(αn) and i sin(αn).

Note that Lemma 5.12 implies that the cusp field of any RGCR link with n = m

is Q(i). RGCR links with only one type of polygon in their diagrams (and therefore

αn = αm) have square fundamental domains for their cusps. More generally, for

a given n and m we can calculate the αn and αm interior angles. First, we use

the hyperbolic law of cosines: coshC =
cos(a) cos(b) + cos(c)

sin(a) sin(b)
for a hyperbolic

triangle with sidesA, B, and C, opposite interior angles a, b, and c (see [49, 2.6.8]).

Consider the quadrilateral with interior angles 2π
n
, 2π
m
, and π/2 in Figure 5.1. This

quadrilateral is composed of two hyperbolic triangles (one in an n-gon and the other

in an m-gon) sharing an edge. So,

cos2(αn

2
) + cos(2π

n
)

sin2(αn

2
)

=
cos2(αm

2
) + cos(2π

m
)

sin2(αm

2
)

,

because both quotients are equal to cosh(C) for C the length of their shared edge.
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Second, αn + αm = π.

An example of the process for calculating the cusp shapes for an RGCR link with

distinct n andm is given in Example 5.13. Values of cos(αn) and sin(αn) for RGCR

links with projection surfaces of genus 2− 7 are listed in Table 6.1.

Example 5.13. Consider the RGCR link with square and hexagonal faces shown in

Figure 5.9. We will show that links in this commensurability class (which by Propo-

sition 5.3 includes all RGCR links corresponding to the [4, 6, 4, 6] hyperbolic tiling)

have cusp field and invariant trace field Q(i
√
6). Call the doubled complement of

this link S.

First we solve for α4 and α6 using substitution and trigonometric identities:

cos2(α4

2
) + cos(2π

4
)

sin2(α4

2
)

=
cos2(α6

2
) + cos(2π

6
)

sin2(α6

2
)

and α4 + α6 = π

=⇒
cos2(α4

2
)

sin2(α4

2
)
=

cos2(π−α4

2
) + 1

2

sin2(π−α4

2
)

=⇒
cos2(α4

2
)

sin2(α4

2
)
=

sin2(α4

2
) + 1

2

cos2(α4

2
)

=⇒ cot2(α4/2) = tan2(α4/2) +
1

2
sec2(α4/2)

=⇒ csc2(α4/2)− 1− 1

2
sec2(α4/2) = tan2(α4/2)

=⇒ csc2(α4/2)−
1

2
sec2(α4/2) = sec2(α4/2)

=⇒ cot2(α4/2) = 3/2

=⇒ α4 = 2arccot(
√

3/2) and α6 = π − 2arccot(
√

3/2) because

0 < α4 < π/2.

Using double-angle and forward-inverse identities we see that
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sin(α4) = sin(2arccot(
√
3/2)) =

2(
√

3/2)

(
√
3/2)2 + 1

=
2
√
6

5
,

and

cos(α4) = cos(2arccot(
√

3/2)) = 1− 2

(
√

3/2)2 + 1
=

1

5
.

Applying Lemma 5.12, we see that the cusp field for this commensurability class is

Q(i sin(α4), cos(α4)) = Q(i(2
√
6

5
), 1

5
) = Q(i

√
6).

In the geometric decomposition of this doubled complement shown in Figure

5.10, each square and hexagonal-face drum consists of two horizontal faces cor-

responding to the checkerboard surfaces of the original link diagram and 4 or 6

vertical faces. We label the horizontal faces by F1 through F8 and once again label

the vertical faces Fi,j where i corresponds to the horizontal face and j corresponds

to the label on the crossing arc which makes up two of the edges of that vertical

face. Under the generalized bipyramid decomposition described in Chapter 2, we

once again have two sets of drums (a top set and a bottom set) as drawn in Figure

5.10. The top set has the following vertical face identifications under the general-

ized bipyramid gluing about each crossing:

(F1,1, F8,1), (F1,2, F6,2), (F1,3, F4,3), (F1,4, F2,4), (F2,3, F5,3), (F2,8, F10,8),

(F2,7, F3,7), (F2,6, F9,6), (F2,5, F7,5), (F3,12, F4,12), (F3,11, F6,11), (F3,6, F8,6),

(F4,7, F10,7), (F4,9, F5,9), (F4,2, F10,2), (F4,8, F5,8), (F5,12, F6,12), (F6,1, F9,1),

(F6,10, F7,10), (F6,9, F10,9), (F7,4, F8,4), (F7,11, F8,11), (F8,5, F9,5), (F8,10, F9,10).
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Figure 5.9: An RGCR link corresponding to the [4, 6, 4, 6] tiling. The strands of the
link are drawn in purple and green and labeled in blue. Crossing arcs are drawn in
red and labeled with roman numerals. The faces of the diagram are labeled F1-F10

in black.

The bottom set of drums have vertical faces identified according to their crossing

arcs being on opposite sides of overstrands of the link at each crossing (see Figure

2.6).

Our choices of diagonal edges for this decomposition respect these face iden-

tifications. Observe that each square-faced drum decomposes into two ‘blocks’

consisting of 3 ideal tetrahedra each and the hexagonal-faced drum decomposes

into 4 blocks which also decompose into 3 ideal tetrahedra each (see Figure 5.11).

Under the symmetry of the drums it suffices for us to consider the tetrahedra from

one block in the square-faced drum and two blocks in the hexagonal-faced drum

because all other ideal tetrahedra in this geometric ideal triangulation of the mani-

fold will have the same set of dihedral angles as one of the ideal tetrahedra in this

set.
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Figure 5.10: A geometric triangulation of the doubled complement of the link in
Figure 5.9. Crossing arcs are labeled with roman numerals. The edges in light
green triangulate each drum and respect their face identifications.
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The dihedral angles of these ideal tetrahedra are given in Figure 5.11. We cal-

culate the angle θ in Figure 5.11 by considering a finite regular hyperbolic hexagon

with interior angle α6. We find the side length, C, of the hexagon (and thus of the

squares in the tiling as well) by solving:

cosh(C) =
cos2(α6/2) + cos(2π/6)

sin2(α6/2)
=

2/5 + 1/2

3/5
= 3/2

=⇒ C = arccosh(3/2).

Then:

3/2 =
cos(θ) + cos(θ) cos(α6)

sin(θ) sin(α6)
=

cos(θ)(4/5)(5)

sin(θ)(2)(
√
6)

=

√
6

3
cot(θ)

=⇒ θ = arccot
(
3
√
6

4

)
.

The shapes of these ideal tetrahedra are: 1
4
(2 + i

√
6) for T1, 1

5
(1 + i

√
6
3
) for T2,

1
5
(2 + i

√
6) for T3, 1

6
(3 + i

√
6) for T4, 3 + i2

√
6

3
for T5, ( 1

15
)(6 + 2i

√
6) for T6,

1
5
(2 + i

√
6) for T7, (17)(6 + i

√
6) for T8, and 1

35
(32 + i4

√
6) for T9. Therefore, the

invariant trace field of this commensurability class is Q(i
√
6).

Example 5.14. We will find a geometric ideal triangulation for the RGCR knot in

Figure 3.5. Call the doubled complement K and consider Figures 5.12 and 5.13.

We can decompose K into 4 octagonal drums. Each drum then decomposes into
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Figure 5.11: The blocks and corresponding ideal tetrahedra in a triangulation of the
[4, 6, 4, 6] RGCR doubled link complement, S.
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6 blocks, 4 around the side of the drum and a square prism in the middle that

subdivides into 2 blocks.

We calculate the interior angle θ for the blocks in the decomposition of K with

the same method as in Example 5.13. We find the side length, C, of the right-angled

octagons by solving:

cosh(C) =
cos2(π/4) + cos(2π/8)

sin2(π/4)
=

1/2 +
√
2/2

1/2
= 1 +

√
2

=⇒ C = arccosh(1 +
√
2).

Then:

1 +
√
2 =

cos(θ) + cos(θ) cos(π/2)

sin(θ) sin(π/2)
= cot(θ)

=⇒ θ = arccot(1 +
√
2).

We once again use the symmetry of the blocks to reduce the number of distinct

ideal tetrahedra we consider. The dihedral angles of the ideal tetrahedra that the

blocks decompose into are shown in Figure 5.13. There are 6 distinct ideal tetra-

hedra in this triangulation, labeled T1 to T6 in Figure 5.13. The shapes of these

ideal tetrahedra are: i(−1 +
√
2) for T1, 1 for T2, 1

2
(1 +

√
2 + i) for T3, i for T4,

1
2
(−

√
2 + i

√
2) for T5, and 1

2
(
√
2 + i(2 −

√
2) for T6. So, applying [40, Theorem

2.4] again, we see that K has invariant trace field Q(i,
√
2).
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We doubled the complement of a knot to build K, so K has two cusps. A

fundamental domain for one of the cusps is in Figure 5.12. Using that the tiles are

square (n = m = 8 in this example), we see that the cusp field of K is Q(i).

Finding geometric ideal triangulations of a finite volume cusped hyperbolic 3-

manifoldM is an independently interesting problem. Families of link complements

have been found to admit geometric ideal triangulations (for example, see [23]) and

it was previously thought that any such M would admit a geometric ideal triangu-

lation as a consequence of Epstein and Penner’s work on canonical decompositions

[17]. However, the problem has turned out to be more complex. Petronio conjec-

tured that every cusped hyperbolic 3-manifold admits at least one geometric trian-

gulation [42, Conjecture 2.3]. In [19], Futer, Hamilton, and Hoffman strengthen

this statement. They conjecture that any such M admits infinitely many geometric

ideal triangulations and proved that a cusped hyperbolic 3-manifold admits a finite

cover with infinitely many geometric ideal triangulations [19, Conjecture 1.1 and

Theorem 1.2].

We can also use geometric ideal triangulations to find the volumes of the links

in our examples. Adams, Calderon, and Mayer described a method for calculating

the volume of link complements in thickened surfaces with regular faces by cal-

culating the volumes of their generalized bipyramids using Ushijima’s formula for

the volume of generalized hyperbolic tetrahedra [51]. If our doubled link comple-

ment has a geometric triangulation then we have another method for calculating
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Figure 5.12: A geometric decomposition of the doubled complement of the RGCR
knot previously shown in Figure 3.5. Below the drums of the decomposition is a
fundamental domain for the boundary torus of one of the doubled complement’s
two cusps. We construct this fundamental domain by truncating the set of ideal
vertices which correspond to the same component of the link and identifying the
truncation faces according to the face pairing in the decomposition. The crossing
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examples, red for crossing arcs and blue for strands of the link. The truncation faces
have a rainbow coloring.
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Figure 5.13: The ideal tetrahedra in a geometric ideal triangulation of K. The
square prism in the center of each drum is shaded pink while the blocks around the
‘side’ of each drum are shaded yellow or light green depending on the pattern of
their face diagonals. The view from infinity of the top F2 drum is shown on the left
with its dihedral angles labeled. The blue and gray shading indicates the faces the
ideal tetrahedra are glued along to form the blocks.
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these volumes, without requiring the generalized volume formulas. Namely, the

volume of the complement is half of the sum of the volumes of the ideal tetrahe-

dra forming the double. The volume of an ideal tetrahedron with angles α, β, γ is

Λ(α) + Λ(β) + Λ(γ) where Λ is the Lobachevsky function,

Λ(θ) = −
∫ θ

0

log |2 sin(u)|du

(see [49, Theorem 7.2.1] and [45, Theorem 9.3]). For S, in Figure 5.9, the square-

faced drums have volume:

2[3Λ(d) + 2Λ
(α4

2

)
+ Λ(π − d−

(α4

2

)
) + Λ(α4) + Λ(d−

(α4

2

)
) + Λ(π − d)]

≈ 4.6695

and the hexagonal-faced drums have volume:

2(4Λ(f) + Λ(α6) + 2Λ(θ) + Λ(π − f) + Λ(f − θ) + Λ(π − f − θ) + Λ
(α6

2

)
+2Λ(π−f−α6

2
)+Λ(α6−θ)+Λ(f+

α6

2
)+Λ(

π

2
−α6+θ)+Λ(f+θ)+Λ(

α6

2
−θ))

≈ 8.5423.

Hence the link in Figure 5.9 has volume: ≈ 62.1861. The volumes of the octagonal

drums for the RGCR knot in Figure 3.5 are ≈ 13.35078 so the volume of the RGCR

knot is ≈ 26.7015. The volume of the regular ideal octahedron is voct ≈ 3.6638.
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Therefore the link in Figure 5.4 in the thickened genus two surface has volume

10voct ≈ 36.6386.

Future directions for this work include generalizing the triangulations shown in

Figures 5.5 and 5.10 for all RGCR links and determining the arithmeticity of the

[4, 6, 4, 6] links.
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CHAPTER 6

TABLE

Table 6.1: The tilings corresponding to RGCR links on pro-

jection surfaces of genus 2 − 7. We list the possible values

of m, n, km, kn, cos(αn), and sin(αn) for each projection

surface. These values are calculated from the bounds and

Equations 4.1 and 4.2 in Chapter 4.

Genus m n km kn cos(αn) sin(αn)

2 5 4 8 10 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

2 6 4 4 6 1
5

2
√
6

5

2 7 3 12 28 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

2 8 3 6 16 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

2 8 4 2 4 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

2 9 3 4 12 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

2 10 3 3 10 1
11
(4 +

√
5)

2
√

2(5+
√
5)

7+
√
5

2 10 5 1 2 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

2 12 3 2 8
√
3
3

2
√

2+
√
3

3+
√
3

2 12 4 1 3 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

2 18 3 1 6 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

2 8 8 1 1 0 1

2 6 6 2 2 0 1

2 5 5 4 4 0 1

3 5 4 16 20 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

3 6 4 8 12 1
5

2
√
6

5

3 6 5 5 6 1
19
(8− 3

√
5)

2
√

6(3+
√
5)

9+
√
5

3 7 3 24 56 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

3 8 3 12 32 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

3 8 4 4 8 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

3 9 3 8 24 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

3 9 6 2 3 −1+2 cos(2π/9)
5+2 cos(2π/9)

2
√

6(1+cos(2π/9))

5+2 cos(2π/9)

3 10 3 6 20 1
11
(4 +

√
5)

2
√

2(5+
√
5)

7+
√
5

3 10 5 2 4 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

3 12 3 4 16
√
3
3

2
√

2+
√
3

3+
√
3

3 12 4 2 6 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3

3 14 3 3 14 1+2 cos(π/7)
3+2 cos(π/7))

2
√

2(1+cos(π/7))

3+2 cos(π/7)

3 14 7 1 2 cos(π/7)−sin(3π/14)
2+cos(π/7)+sin(3π/14)

2
√

(1+cos(π/7))(1+sin(3π/14))

2+cos(π/7)+sin(3π/14)
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

3 18 3 2 12 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

3 20 4 1 5
√

2(5+
√
5)

8+
√

2(5+
√
5)

4

√
4+
√

2(5+
√
5)

8+
√

2(5+
√
5)

3 30 3 1 10 1+2 cos(π/15)
3+2 cos(π/15)

4 cos(π/30)
3+2 cos(π/15)

3 12 12 1 1 0 1

3 8 8 2 2 0 1

3 6 6 4 4 0 1

3 5 5 8 8 0 1

4 5 4 24 30 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

4 6 4 12 18 1
5

2
√
6

5

4 7 3 36 84 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

4 7 4 8 14 sin(3π/14)
2+sin(3π/14)

2
√

1+sin(3π/14)

2+sin(3π/14)

4 8 3 18 48 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

4 8 4 6 12 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

4 9 3 12 36 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

4 10 3 9 30 1
11
(4 +

√
5)

2
√

2(5+
√
5)

7+
√
5

4 10 4 4 10 1
19
(1 + 2

√
5)

4
√

5+
√
5

9+
√
5

4 10 5 3 6 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

4 12 3 6 24
√
3
3

2
√

2+
√
3

3+
√
3
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

4 12 4 3 9 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3

4 12 6 2 4 1
11
(−4 + 3

√
3)

2
√

3(2+
√
3)

5+
√
3

4 15 3 4 20 1+2 cos(2π/15)
3+2 cos(2π/15)

4 cos(π/15)
3+2 cos(2π/15)

4 16 4 2 8 cos(π/8)
2+cos(π/8)

2
√

1+cos(π/8)

2+cos(π/8)

4 18 3 3 18 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

4 18 9 1 2 cos(π/9)−cos(2π/9)
2+cos(π/9)+cos(2π/9)

√
5+6 cos(π/9)+4 cos(2π/9)

2+cos(π/9)+cos(2π/9)

4 24 3 2 16 2+
√
2+

√
6

6+
√
2+

√
6

2
√

2(4+
√
2+

√
6)

6+
√
2+

√
6

4 28 4 1 7 cos(π/14)
2+cos(π/14)

2
√

1+cos(π/14)

2+cos(π/14)

4 42 3 1 14 (1/2)+cos(π/21)
(3/2)+cos(π/21)

4 cos(π/42)
3+2 cos(π/21)

4 16 16 1 1 0 1

4 10 10 2 2 0 1

4 8 8 3 3 0 1

4 7 7 4 4 0 1

4 6 6 6 6 0 1

4 5 5 12 12 0 1

5 5 4 32 40 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

5 6 4 16 24 1
5

2
√
6

5

5 6 5 10 12 1
19
(8− 3

√
5)

2
√

6(3+
√
5)

9+
√
5
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

5 7 3 48 112 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

5 7 6 6 7 −1+2 sin(3π/14)
5+2 sin(3π/14)

2
√

6(1+sin(3π/14))

5+2 sin(3π/14)

5 8 3 24 64 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

5 8 4 8 16 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

5 9 3 16 48 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

5 9 6 4 6 −1+2 cos(2π/9)
5+2 cos(2π/9)

2
√

6(1+cos(2π/9))

5+2 cos(2π/9)

5 10 3 12 40 1
11
(4 +

√
5)

2
√

2(5+
√
5)

7+
√
5

5 10 5 4 8 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

5 12 3 8 32
√
3
3

2
√

2+
√
3

3+
√
3

5 12 4 4 12 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3

5 14 3 6 28 1+2 cos(π/7)
3+2 cos(π/7))

2
√

2(1+cos(π/7))

3+2 cos(π/7)

5 14 7 2 4 cos(π/7)−sin(3π/14)
2+cos(π/7)+sin(3π/14)

2
√

(1+cos(π/7))(1+sin(3π/14))

2+cos(π/7)+sin(3π/14)

5 15 6 2 5 −1+2 cos(2π/15)
5+2 cos(2π/15)

2
√

6(1+cos(2π/15))

5+2 cos(2π/15)

5 18 3 4 24 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

5 20 4 2 10
√

2(5+
√
5)

8+
√

2(5+
√
5)

4

√
4+
√

2(5+
√
5)

8+
√

2(5+
√
5)

5 22 3 3 22 1+2 cos(π/11)
3+2 cos(π/11)

4 cos(π/22)
3+2 cos(π/11)

5 22 11 1 2 cos(π/11)−cos(2π/11)
2+cos(π/11)+cos(2π/11)

2
√

(1+cos(π/11))(1+cos(2π/11))

2+cos(π/11)+cos(2π/11)

5 24 8 1 3
√
2(−1+

√
3)

8+3
√
2+

√
6

4
√

5+3
√
2+

√
3+

√
6

8+3
√
2+

√
6
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

5 30 3 2 20 1+2 cos(π/15)
3+2 cos(π/15)

4 cos(π/30)
3+2 cos(π/15)

5 30 5 1 6 1−
√
5+4 cos(π/15)

7+
√
5+4 cos[π/15)]

4
√

(3+
√
5)(1+cos(π/15))

7+
√
5+4 cos(π/15)

5 36 4 1 9 cos(π/18)
2+cos(π/18)

2
√

1+cos(π/18)

2+cos(π/18)

5 54 3 1 18 1+2 cos(π/27)
3+2 cos(π/27)

4 cos(π/54)
3+2 cos(π/27)

5 20 20 1 1 0 1

5 12 12 2 2 0 1

5 8 8 4 4 0 1

5 6 6 8 8 0 1

5 5 5 16 16 0 1

6 5 4 40 50 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

6 6 4 20 30 1
5

2
√
6

5

6 7 3 60 140 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

6 8 3 30 80 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

6 8 4 10 20 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

6 8 6 6 8 1
23
(−7 + 6

√
2)

2
√

3(2+
√
2)

5+
√
2

6 9 3 20 60 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

6 9 4 8 18 cos(2π/9)
2+cos(2π/9)

2
√

1+cos(2π/9)

2+cos(2π/9)

6 10 3 15 50 1
11
(4 +

√
5)

2
√

2(5+
√
5)

7+
√
5
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

6 10 5 5 10 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

6 11 3 12 44 1+2 cos(2π/11)
3+2 cos(2π/11)

4 cos(π/11)
3+2 cos(2π/11)

6 12 3 10 40
√
3
3

2
√

2+
√
3

3+
√
3

6 12 4 5 15 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3

6 14 4 4 14 cos(π/7)
2+cos(π/7)

2
√

1+cos(π/7)

2+cos(π/7)

6 15 10 2 3 −1+
√
5−4 cos(2π/15)

9+
√
5+4 cos(2π/15)

4
√

(5+
√
5)(1+cos(2π/15))

9+
√
5+4 cos(2π/15)

6 16 3 6 32 1+2 cos(π/8)
3+2 cos(π/8)

2
√

2(1+cos(π/8))

3+2 cos(π/8)

6 16 8 2 4 −
√
2/2+cos(π/8)

2+
√
2/2+cos(π/8)

2
√

2(2+
√
2)(1+cos(π/8))

4+
√
2+2 cos(π/8)

6 18 3 5 30 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

6 18 6 2 6 −1+2 cos(π/9)
5+2 cos(π/9)

2
√

6(1+cos(π/9))

5+2 cos(π/9)

6 20 5 2 8 1−
√
5+
√

2(5+
√
5)

7+
√
5+
√

2(5+
√
5)

2

√
(3+

√
5)(4+

√
2(5+

√
5))

7+
√
5+
√

2(5+
√
5)

6 21 3 4 28 1+2 cos(2π/21)
3+2 cos(2π/21)

4 cos(π/21)
3+2 cos(2π/21)

6 24 4 2 12
√
2+

√
6

8+
√
2+

√
6

4
√

4+
√
2+

√
6

8+
√
2+

√
6

6 26 3 3 26 1+2 cos(π/13)
3+2 cos(π/13)

4 cos(π/26)
3+2 cos(π/13)

6 26 13 1 2 cos(π/13)−cos(2π/13)
2+cos(π/13)+cos(2π/13)

2
√

(1+cos(π/13))(1+cos(2π/13))

2+cos(π/13)+cos(2π/13)

6 36 3 2 24 1+2 cos(π/18)
3+2 cos(π/18)

4 cos(π/36)
3+2 cos(π/18)

6 44 4 1 11 cos(π/22)
2+cos(π/22)

2
√

1+cos(π/22)

2+cos(π/22)

6 66 3 1 22 1+2 cos(π/33)
3+2 cos(π/33)

4 cos(π/66)
3+2 cos(π/33)
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

6 24 24 1 1 0 1

6 14 14 2 2 0 1

6 9 9 4 4 0 1

6 8 8 5 5 0 1

6 6 6 10 10 0 1

6 5 5 20 20 0 1

7 5 4 48 60 1
11
(−3 + 2

√
5)

4
√

3+
√
5

7+
√
5

7 6 4 24 36 1
5

2
√
6

5

7 6 5 15 18 1
19
(8− 3

√
5)

2
√

6(3+
√
5)

9+
√
5

7 7 3 72 168 1+2 sin(3π/14)
3+2 sin(3π/14)

2
√

2(1+sin(3π/14))

3+2 sin(3π/14)

7 7 4 16 28 sin(3π/14)
2+sin(3π/14)

2
√

1+sin(3π/14)

2+sin(3π/14)

7 8 3 36 96 1
7
(1 + 2

√
2)

2
√

2+
√
2

3+
√
2

7 8 4 12 24 1
7
(−1 + 2

√
2)

2
√

10+
√
2

7

7 9 3 24 72 1+2 cos(2π/9)
3+2 cos(2π/9)

4 cos(π/9)
3+2 cos(2π/9)

7 9 6 6 9 −1+2 cos(2π/9)
5+2 cos(2π/9)

2
√

6(1+cos(2π/9))

5+2 cos(2π/9)

7 10 5 6 12 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5

7 10 4 8 20 1
19
(1 + 2

√
5)

4
√

5+
√
5

9+
√
5

7 10 5 6 12 1
11
(4−

√
5)

2
√

5+2
√
5

4+
√
5
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

7 12 3 12 48
√
3
3

2
√

2+
√
3

3+
√
3

7 12 4 6 18 1
13
(−3 + 4

√
3)

2
√

2(2+
√
3)

4+
√
3

7 12 6 4 8 1
11
(−4 + 3

√
3)

2
√

3(2+
√
3)

5+
√
3

7 14 3 9 42 1+2 cos(π/7)
3+2 cos(π/7))

2
√

2(1+cos(π/7))

3+2 cos(π/7)

7 14 7 3 6 cos(π/7)−sin(3π/14)
2+cos(π/7)+sin(3π/14)

2
√

(1+cos(π/7))(1+sin(3π/14))

2+cos(π/7)+sin(3π/14)

7 18 3 6 36 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

7 15 3 8 40 1+2 cos(2π/15)
3+2 cos(2π/15)

4 cos(π/15)
3+2 cos(2π/15)

7 16 4 4 16 cos(π/8)
2+cos(π/8)

2
√

1+cos(π/8)

2+cos(π/8)

7 18 3 6 36 1+2 cos(π/9)
3+2 cos(π/9)

2
√

2(1+cos(π/9))

3+2 cos(π/9)

7 18 9 2 4 cos(π/9)−cos(2π/9)
2+cos(π/9)+cos(2π/9)

√
5+6 cos(π/9)+4 cos(2π/9)

2+cos(π/9)+cos(2π/9)

7 20 4 3 15
√

2(5+
√
5)

8+
√

2(5+
√
5)

4

√
4+
√

2(5+
√
5)

8+
√

2(5+
√
5)

7 21 6 2 7 −1+2 cos(2π/21)
5+2 cos(2π/21)

2
√

6(1+cos(2π/21))

5+2 cos(2π/21)

7 24 3 4 32 2+
√
2+

√
6

6+
√
2+

√
6

2
√

2(4+
√
2+

√
6)

6+
√
2+

√
6

7 28 4 2 14 cos(π/14)
2+cos(π/14)

2
√

1+cos(π/14)

2+cos(π/14)

7 30 3 3 30 1+2 cos(π/15)
3+2 cos(π/15)

4 cos(π/30)
3+2 cos(π/15)

7 30 15 1 2 cos(π/15)−cos(2π/15)
2+cos(π/15)+cos(2π/15))

2
√

(1+cos(π/15))(1+cos(2π/15))

2+cos(π/15)+cos(2π/15)

7 42 3 2 28 (1/2)+cos(π/21)
(3/2)+cos(π/21)

4 cos(π/42)
3+2 cos(π/21)

7 52 4 1 13 cos(π/26)
2+cos(π/26)

2
√

1+cos(π/26)

2+cos(π/26)
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Table 6.1 – continued from previous page

Genus m n km kn cos(αn) sin(αn)

7 78 3 1 26 1+2 cos(π/39)
3+2 cos(π/39)

4 cos(π/78)
3+2 cos(π/39)

7 28 28 1 1 0 1

7 16 16 2 2 0 1

7 12 12 3 3 0 1

7 10 10 4 4 0 1

7 8 8 6 6 0 1

7 7 7 8 8 0 1

7 6 6 12 12 0 1

7 5 5 24 24 0 1
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