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ABSTRACT

Multiplicative Invariants of Root Lattices

Jessica A. Hamm

DOCTOR OF PHILOSOPHY

Temple University, August, 2014

Dr. Martin Lorenz, Chair

Classical invariant theory is a field of study within abstract algebra that has been

around for well over a century. However, the field of multiplicative invariant theory

is rather new, having only been studied formally for the past 35 years. Multiplicative

invariants arise naturally in a variety of settings, notably as representation rings of

Lie algebras, centers of group algebras, and actions on algebraic tori.

Here we start with a group G and a G-lattice L ∼= Zn on which G acts via auto-

morphisms. We choose any (commutative) base ring k and form the group algebra

k[L] ∼= Z[x±1
1 , . . . , x±1

n ]. Our group action extends uniquely to a multiplicative

action on k[L] and we wish to describe the invariants under this action as well as

study nice properties of the invariant algebra.

Multiplicative actions have some strikingly different features than their linear

counterpart. One nice feature of multiplicative actions is the reduction to finite

groups. This fact along with a theorem of Jordan says that there are a finite number

of multiplicative invariant algebras (up to ∼=) for any rank n. It is feasible then to

create a database of multiplicative invariants in low ranks. This has been done for

n = 2 in [16]. However, the number of invariant algebras to consider grows con-

siderably with n. For example, when n = 4 there are 710 multiplicative invariant

algebras. Because creating such a database is quite a daunting task we have focused

on calculating invariants for special lattices in the thesis.

In the thesis we calculate the invariants for lattices associated to irreducible root

systems under the actions of their Weyl groups. The multiplicative invariants for an
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arbitrary root lattice under its Weyl group can be written as a tensor product of in-

variant algebras for the irreducible root lattices. Hence, by calculating the invariants

for these irreducible root lattices we have actually given a description of multiplica-

tive invariants for an arbitrary root lattice, giving a significant contribution to the

desired database and to the field of multiplicative invariant theory.
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CHAPTER 1

Introduction

1.1 For the Non-Mathematician

“The theory of invariants came into existence about the middle of the nineteenth

century somewhat like Minerva: a grown-up virgin, mailed in the shining armor of

algebra, she sprang forth from Cayley’s Jovian head.” –Hermann Weyl [27]

Invariant theory is a field of study within abstract algebra that has been around

for well over a century. To get a feel for invariant theory let’s start by discussing

symmetries. Imagine that you have an object in front of you. You close your eyes

and I transform the object in some way (i.e. by turning it around, flipping it over,

etc.). Now when you open your eyes it appears that nothing has happened. This

transformation is an example of a symmetry. There are several examples of sym-

metries that you are probably quite familiar with already. First of all, you may

remember even and odd functions from high school algebra. An even function is

symmetric about the y-axis, meaning if we reflect the graph of our function about

the line x = 0, the graph stays the same.
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You may also be aware of symmetries of geo-

metric objects, such as a square. For example, we

can rotate a square 90◦ and leave it unchanged as

a geometric figure. A square also has reflectional

symmetries. The collection of all 8 symmetries of

a square form D8, a mathematical object called a

group. More generally, for any regular n-gon we

may form the group of 2n symmetries of this ob-

ject, called the dihedral group, D2n. The collection of symmetries of a Rubik’s

cube form a group called the Rubik’s Cube Group. Within this group, we have ro-

tations of the faces of the Rubik’s cube. Now you may be thinking that when we

rotate a face of a Rubik’s cube it doesn’t look the same as before. This is somewhat

true–the geometric object is the same but the “labels” have now been rearranged.

This is where invariant theory comes into play.

Invariant theory has two major players: a group and an object on which that

group acts. In our examples above, the groups were collections of symmetries

and the objects the groups were acting on were the geometric figures–the graph,

the square, and the Rubik’s cube. If we label our geometric objects and let the

symmetries “act” on them we now have a way of noticing the changes incurred by

the symmetry. The elements left invariant under a particular symmetry are those

in which the labels are left unchanged. Though symmetries are just one type of

example, hopefully I have given you an idea of the flavor of group actions and

invariants.

A bit more abstractly, classical invariant theory deals with polynomials and

groups acting on them. For instance, consider the ring Z[x, y], polynomials in x and

y with coefficients in Z, and the group action described by switching x and y. Here

the polynomial x + y is left invariant under the group action since x + y 7→ y + x.

However, x − y 7→ y − x 6= x − y, so this element is not invariant. It turns out

that the invariants under this action can be described as a subring of Z[x, y], and

in particular the invariants are given by Z[x + y, xy]. More generally, the set of
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invariants inherits a nice structure from the original object being acted on. The field

of invariant theory is concerned with calculating and studying this structure. We

want to find a nice way of describing our invariants and to then investigate what

properties they may have.

Multiplicative invariant theory is a relatively new field within invariant theory.

Here we consider actions on Laurent polynomial rings, for example, Z[x, x−1].

Though this is similar to the setting of above, there are many stark contrasts, some

which make things easier and others that make it more difficult. Other than a few

isolated results, the study of this branch of mathematics began in the 1980s in the

work of Daniel Farkas, who also coined the name “multiplicative invariant theory”.

Being newer means there are still many things unknown which leaves a lot of ex-

citing questions open for a brave mathematician to explore.

1.2 For the Mathematician

Invariant theory is a classical algebraic/geometric theme permeating virtually

all areas of pure mathematics, some areas of applied mathematics, notably coding

theory (see, e.g., [23] and the references therein), and certain parts of theoretical

physics as well. In algebraic terms, the theory is concerned with study of the rela-

tionship between a ring S and its subring of invariants, R = SG, under the action

of a group G.

The most traditional setting of invariant theory arises from a linear action of G

on an n-dimensional vector space V over a field k. This action can be extended to

the symmetric algebra S(V ); a choice of basis for V yields an explicit isomorphism

S(V ) ∼= k[x1, . . . , xn]. This type of action is commonly called a linear action; the

resulting algebra of invariants R = S(V )G is often referred to as an algebra of

polynomial invariants. The ring theoretic properties of polynomial invariants have

been thoroughly explored, especially for finite groups G to which we will restrict

ourselves in this dissertation. Early work of Hilbert [11, 12] and of E. Noether

[18, 17] established that R is an integrally closed affine domain over k and S(V )
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is a finitely generated R-module. One of the most celebrated results on polynomial

invariants is the following.

Shephard-Todd-Chevalley Theorem ([22], [6]). Suppose that the finite group G

acts linearly on the symmetric algebra S(V ) of the k-vector space V and that the

characteristic of k does not divide the order ofG. Then the invariant algebra S(V )G

is a polynomial algebra over k precisely if G acts as a pseudoreflection group on

V .

Here, an element g ∈ G is called a pseudoreflection on V if the linear transforma-

tion of V that is afforded by 1−g has rank 1; the groupG is called a pseudoreflection

group on V if G can be generated by pseudoreflections on V .

As indicated in the title, this thesis will be focusing on a different branch of

invariant theory known as multiplicative invariant theory. This theory has emerged

relatively recently and has only been studied systematically during the past 30

years, beginning with the work of D. Farkas in the 80’s [8, 9]. Prior to Farkas,

only a few isolated results on multiplicative invariants, also known as “exponential

invariants” or “monomial invariants”, were known, notably in the work of Bour-

baki [2] and Steinberg [24]. Multiplicative invariants arise from lattices, that is,

from free abelian groups of finite rank, L ∼= Zn. An action of a finite group

G on L is given by an integral representation G → GL(L) ∼= GLn(Z). Any

such action can be uniquely extended to a G-action on the group algebra k[L] ∼=
k[x±1

1 , x±1
2 , ..., x±1

n ] over any (commutative) base ring k. Within the Laurent poly-

nomial algebra k[x±1
1 , x±1

2 , ..., x±1
n ], the lattice L becomes the multiplicative group

of units that is generated by the “variables” xi and their inverses; so L is the group

of monomials in the Laurent polynomial algebra. The action of G stabilizes L and

hence maps monomials to monomials; this explains the terms “multiplicative” or

“monomial” actions. Despite some obvious formal similarities in the basic setup,

multiplicative invariant theory and its linear counterpart exhibit many strikingly dif-

ferent features. For one, other than the theory of polynomial invariants, multiplica-

tive invariant theory is only concerned with finite group actions: when studying the
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invariants of a multiplicative action under an arbitrary group, one can gather all in-

formation by reducing to a suitable finite group. This tells us in particular that mul-

tiplicative invariant algebras k[L]G are always affine k-algebras. Another notable

feature of multiplicative actions is the fact that the degree of Laurent polynomials

is not preserved under the action. This is again in sharp contrast with the classical

case of linear actions and causes a great deal of added difficulty when investigating

multiplicative invariants. Finally, due to the fact that multiplicative actions arise

from integral representations, the subject has a strong arithmetic component. The

foregoing will be explained in more detail in Section 2.2.2.

1.2.1 My Research

As mentioned above, when dealing with multiplicative invariants one may re-

duce to finite groups. By a classical theorem of Jordan [15], for each given rank

n, there are only finitely many finite subgroups G ⊆ GLn(Z) up to conjugacy,

and hence there are only finitely many possible multiplicative invariant algebras

k[x±1
1 , x±1

2 , ..., x±1
n ]G up to isomorphism. Thus, a complete database of multiplica-

tive invariants is possible in principle, at least for small n. However, the number of

cases to consider increases rather sharply with n, and hence the envisioned database

is unrealistic for now. Instead, for my thesis I have calculated the multiplicative

invariants for certain especially important lattices of arbitrarily large rank, specifi-

cally the so-called root lattices arising in Lie theory. In this section we describe the

problems worked on in the thesis and state a sample result.

Root systems and their associated Weyl groups have their origins in in the the-

ory of semisimple Lie algebras. Without going into the details of this connection

– it will not be needed for our work – let us just remark that the root system of a

semisimple Lie algebra characterizes the Lie algebra up to isomorphism. In Sec-

tion 2.3, we will review the basics of root systems. Each root system naturally leads

to two lattices on which the Weyl group acts, the root lattice and the weight lattice.

The multiplicative invariant algebras of weight lattices under the Weyl group ac-

tion are known by a theorem of Bourbaki: they are always polynomial algebras [2,
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Théorème VI.3.1]. Root lattices, on the other hand, generally have more compli-

cated multiplicative invariants. However, since Weyl groups are reflection groups,

it is known that the invariant algebras in question are affine normal monoid algebras

[16, Theorem 6.1.1], but the structure of the monoid in question is a priori unclear.

The multiplicative invariant algebra of the root lattice L = L(Φ) of an arbitrary

root system Φ is just the tensor product of the multiplicative invariant algebras of the

root lattices of the irreducible components of Φ; see Section 2.3.2. Thus we may fo-

cus solely on finding the multiplicative invariants of these irreducible components.

All irreducible root systems have been classified and must be one of the follow-

ing types: the four classical types, An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), and Dn

(n ≥ 4) or the exceptional types, E6,E7,E8,F4, and G2 [2, Théorème VI.4.3]. The

invariants for root lattices of type An and Bn have been calculated in [16] though,

in addition, we explicitly give primary invariants and some computational methods

related to An in this thesis. For completeness, we include the earlier calculations

along with our contributions, followed by the calculations for the two remaining

classical types, Cn and Dn, and for the exceptional types, all of which is new. In

each case, we have computed a system of fundamental invariants and have deter-

mined some interesting features of the multiplicative invariant algebra Z[L]W such

as its class group and, in some cases, a presentation of the algebra.

As a sample, we state the result for the root system Φ = Cn. Explicitly, Φ is the

following subset of Euclidean space Rn:

Φ = {±2εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n}

where {εi}n1 denotes the standard basis of Rn. The Weyl group of Φ is given by

W = {±1}n o Sn

where the subgroup {±1}n acts diagonally on the basis {εi}n1 and Sn permutes this

basis in the obvious way. The root lattice L(Cn), by definition, is just the Z-linear

span of Φ in Rn. We shall denote this lattice by Cn; it is a sublattice of index 2 in

the standard lattice
⊕n

i=1 Zεi = Zn ⊆ Rn. Writing xi for the element of the group

ring Z[Zn] that corresponds to εi, we let σk denote the kth elementary symmetric
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function in the variables xi + x−1
i (i = 1, . . . , n):

σk =
∑

I⊆{1,2,...,n}
|I|=k

∏
i∈I

(xi + x−1
i )

With these notations, we can now state our result for Φ = Cn.

Theorem 1.2.1. (a) Algebra structure: Z[Cn]W is isomorphic to the monoid al-

gebra Z[Mn] with

Mn =
{

(l1, l2, . . . , ln) ∈ Zn+ |
n∑
i=1

ili ≡ 0 mod 2
}

The isomorphism is given by

Z[Mn]
∼−→ Z[Cn]W

∈ ∈
(l1, l2, . . . , ln) 7−→ σl11 σ

l2
2 · · ·σlnn

The monoid Mn decomposes as Mn
∼= Zb

n
2
c

+ ⊕ V with

V =
{

(k1, k2, . . . , kdn
2
e) ∈ Zd

n
2
e

+ |
∑
i

ki ≡ 0 mod 2
}

Thus, Z[Cn]W is a polynomial algebra in bn
2
c variables over the second

Veronese subring of a polynomial algebra in dn
2
e variables over Z.

(b) Fundamental invariants: The algebra Z[Cn]W is generated by the following

n+
(dn

2
e

2

)
invariants:

πi =

σi for i even

σ2
i for i odd

γi,j = σiσj (1 ≤ i < j ≤ n and i, j both odd)

The πi are primary invariants and the γi,j are secondary: Z[π1, . . . , πn] is a

polynomial algebra over Z and Z[Cn]W is a finite module over Z[π1, . . . , πn].
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(c) Hironaka decomposition:

Z[Cn]W =
⊕

1≤i1<j1<i2<···<it<jt≤n
all odd

γi1,j1γi2,j2 . . . γit,jt Z[π1, . . . , πn]

(Here, we allow t = 0, the corresponding summand being Z[π1, . . . , πn].)

(d) Defining relations: The
(dn

2
e

2

)
relations

πiπj = γ2
i,j (1 ≤ i < j ≤ n and i, j both odd)

are defining relations for Z[Cn]W .

In addition to the above theorem, we find similar results for the remaining clas-

sical root lattices as well as calculate the invariant algebras for the exceptional lat-

tices. With the exceptional lattices we are able to give an algebra presentation and

in all cases we calculate the class group of our resulting invariant algebra.
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CHAPTER 2

Preliminaries

2.1 Overview

This chapter serves to introduce notation to be used throughout this thesis and to

deploy the background material and technical tools necessary for our work in later

chapters. We will start by describing the general set-up and the special features of

multiplicative invariant theory in some more detail than given in the Introduction.

Then we will list some important theorems regarding invariants that we will need.

Finally, we will review some general definitions and facts concerning root systems,

class groups and Veronese algebras.

2.2 The Basics of Multiplicative Invariant Theory

2.2.1 Set-up

We start with a lattice L, that is, a free abelian group of finite rank. So L ∼=
Zn for some n. For a group G, we say that L is a G-lattice if G acts on L by

means of a homomorphismG→ GL(L) ∼= GLn(Z), i.e. an integral representation.

In the classical setting of polynomial invariants one would form the symmetric

algebra, S(L), and letG act via linear substitution of the variables. In multiplicative

invariant theory, however, we form the group algebra k[L] over a commutative base



10

ring k of our choice and extend our action in a particular way.

In detail, the group algebra is the free k-module with L as basis and with multi-

plication provided by the k-linear extension of addition in L. In order to distinguish

the addition ofL from the one in k[L], we will represent the k-basisL of k[L] by the

formal exponential expressions {xm | m ∈ L}. With this, addition in L becomes

multiplication in k[L]:

x0 = 1, xmxm
′
= xm+m′ and x−m = (xm)−1

Hence {xm | m ∈ L} is a subgroup of the (multiplicative) group of units of k[L],

and

k[L] =
⊕
m∈L

kxm

After fixing a Z-basis for L ∼= Zn, say a1, . . . , an, and writing xi = xai , we can

think of the group algebra as the Laurent polynomial algebra over k in n variables.

Explicitly, writing a given m ∈ L as m = z1a1 + · · ·+ znan for unique zi ∈ Z, we

have

k[L]
∼−→ k[x±1

1 , . . . , x±1
n ]

∈ ∈

xm 7−→ xz11 · · ·xznn
Under the above map the image of L ∼= {xm | m ∈ L} consists of all monomials

in the variables xi and their inverses.

If L is a G-lattice, then the G-action on L extends uniquely to an action of G on

k[L] by k-linearity. In detail, since each element f ∈ k[L] can be written uniquely

as a finite sum f =
∑
m∈L

kmx
m, with km ∈ k almost all zero, we may define

g(f) =
def

∑
m∈L

kmx
g(m)

for g ∈ G. This yields an action of G by k-algebra automorphisms on k[L]. Multi-

plicative invariant theory aims to calculate the subalgebra

k[L]G = {f ∈ k[L] | g(f) = f ∀ g ∈ G}
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and study its main algebraic features. The algebra k[L]G is called the multiplicative

invariant algebra that is associated to the G-lattice L.

Example 2.2.1. Let L = Za1⊕Za2 and G = S3, the symmetric group on {1, 2, 3}.
Define the group action on L by the following matrices:

g = (12) 7−→
(
−1 1
0 1

)

h = (123) 7−→
(

0 −1
1 −1

)
So g(a1) = −a1, g(a2) = a1 + a2, h(a1) = a2, and h(a2) = −a1 − a2. Now to

get a multiplicative action we form the group algebra, k[L] ∼= k[x±1
1 , x±1

2 ] and our

action becomes g(x1) = x−1
1 , g(x2) = x1x2, h(x1) = x2, and h(x2) = x−1

1 x−1
2 . So

if we let k = Z and take the Laurent polynomial f(x) = 2x2
1− 3x1x2 +x−1

1 x2 then

g(f) = 2x−2
1 − 3x2 + x2

1x2

h(f) = 2x2
2 − 3x−1

1 + x−1
1 x−2

2

As we will see later, L is actually an example of a root lattice with its corresponding

Weyl group acting. Specifically, L is the 2-dimensional root lattice associated to

root system A2, with Weyl groupW(A2) = S3.

You may notice that in the example above the multiplicative action did not pre-

serve the degree of a particular monomial. This is true of most multiplicative ac-

tions, a feature of multiplicative invariant theory that is in stark contrast with that

of polynomial invariants, which have a natural grading by “total degree in the vari-

ables”. Thus, the technique of grading, which is very useful for polynomial invari-

ants, is generally not available for multiplicative invariants. In Figure 2.1, we have

visually rendered the invariant algebras that arise from the multiplicative and linear

inversion actions of the cyclic group C2 = 〈g | g2 = 1〉 in dimension 2. In more

detail, C2 acts multiplicatively on the Laurent polynomial algebra k[x±1
1 , x±1

2 ] via

g(xi) = x−1
i . The resulting multiplicative invariant algebra has the presentation

k[x±1
1 , x±1

2 ]C2 ∼= k[x, y, z]/(xyz − x2 − y2 − z2 + 4), which results in the orange
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Figure 2.1: Multiplicative vs. linear inversion in rank 2

picture in Figure 2.1. By way of comparison, we have also included the picture

of the polynomial invariant algebra k[x1, x2]C2 that results form the linear inver-

sion action g(xi) = −xi; this invariant algebra has the much simpler presentation

k[x1, x2]C2 ∼= k[x, y, z]/(z2 − xy) resulting in the blue picture. For the detailed

verification of the above presentations, we refer to [16]. Visibly, the multiplicative

case is the more complicated one.

On the other hand, multiplicative invariants do have several desirable features

not found in the theory of polynomial invariants. We will discuss those below.

2.2.2 Some Nice Features

Let L be a G-lattice as above. Recall that {xm | m ∈ L} forms a k-basis for

the group algebra k[L] and notice that G simply permutes this basis. Thus, the

multiplicative action of G on k[L] is a permutation action. This allows us to easily

describe the k-linear structure of the multiplicative invariant algebra k[L]G. In this

section, we will describe this structure in detail, thereby revealing two very nice

features of multiplicative invariants.

To start, we need some definitions. For a given f =
∑
m∈L

kmx
m ∈ k[L], we

define Supp(f) := {m ∈ L | km 6= 0}; this is a finite subset of L called the
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support of f . Notice that if f ∈ k[L]G, then the support Supp(f) is G-stable and,

consequently, Supp(f) is contained in the following subset of L, which is actually

easily seen to be a sublattice of L:

Lfin = {m ∈ L | |G(m)| <∞} = {m ∈ L | |G : Gm| <∞}

Here G(m) denotes the G-orbit of m and Gm the stabilizer of m in G, also called

the isotropy group of m. We define the orbit sum of m by

orb(m) =
def

∑
m′∈G(m)

xm
′
=

∑
g∈G/Gm

xg(m)

It then follows that f must be a k-linear combination of the orbit sums orb(m) for

m ∈ Supp(f), and all these m belong to Lfin. Moreover, all orbit sums clearly

belong to k[L]G, and different orbit sums are k-linearly independent, since they

have disjoint supports. This shows that the different orbits sums form a k-basis of

the invariant algebra k[L]G, and hence we obtain the k-linear structure of k[L]G:

k[L]G =
⊕

m∈G\Lfin

k orb(m)

where G\Lfin denotes a transversal for the finite G-orbits in L.

Also note that each orbit sum orb(m) above has coefficients 0 or 1 in k. Since

k[L] = k⊗ZZ[L] each orbit sum can actually be thought of as an orbit sum in Z[L].

Hence, the invariant algebra k[L]G is defined over Z:

k[L]G = k⊗Z Z[L]G

This has some nice consequences. In particular, we may choose to replace a general

coefficient ring k with Z and work in this more familiar (but often more difficult!)

setting. Many of the features of Z[L]G will naturally extend to k[L]G.

Another remarkable property of multiplicative invariants is the fact that, even

though we may start with a G-lattice L for an arbitrary group G, we can quickly

reduce to a suitable finite group. To see this, consider the kernel of the action of G

on L,

KerG(L) := {g ∈ G | g(m) = m ∀m ∈ L} =
⋂
m∈L

Gm
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Note that the lattice Lfin is finitely generated, being a sublattice of L ∼= Zn. Say

Lfin has generators m1, . . . ,mr. Since each mi ∈ Lfin, we know the isotropy group

Gmi
is a finite index subgroup of G. But KerG(Lfin) =

r⋂
i=1

Gmi
and so it too has

finite index in G. Lastly, note that k[L]G = k[Lfin]
G by our analysis of the k-linear

structure of k[L]G. It follows that

k[L]G = k[Lfin]
G

where G = G/KerG(Lfin), a finite group. We summarize our observations in the

following proposition.

Proposition 2.2.2. Let L be a G-lattice for an arbitrary group G and let k be any

commutative ring. Then with notation as above:

(a) k[L]G = k[Lfin]G

(b) k[L]G = k⊗Z Z[L]G

2.2.3 Some Useful Classical Theorems

Now that we have a better understanding of multiplicative actions and the result-

ing invariant algebras, we will list some theorems that will be useful as we proceed.

As just discussed, it suffices to consider finite groups when calculating multiplica-

tive invariants. This allows us to use the following important theorem of Jordan

[15].

Theorem 2.2.3 (Jordan (1880)). For each given n, the general linear group GLn(Z)

has only finitely many finite subgroups up to conjugacy.

This implies that, for a particular n, there are only finitely many multiplicative

invariant algebras k[L]G with rankL = n, up to isomorphism. In principle, it is

conceivable, then, to create a database of all such invariant algebras. However, the

number of groups, and hence the number of invariant algebras to consider, grows

rather quickly with n as is illustrated in Table 2.1. It is for this reason that trying
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n # fin. G ≤ GLn(Z) # max’l G
(up to conj.) (up to conj.)

1 2 1

2 13 2

3 73 4

4 710 9

5 6079 17

6 85311 39

Table 2.1: Numbers of finite subgroups

to classify all multiplicative invariant algebras for a given rank n becomes quite a

daunting task. So far, this has only been carried out for n ≤ 2; see [16].

The reduction to finite groups and to Z as coefficient ring, as stated in Proposi-

tion 2.2.2, also implies that every multiplicative invariant algebra k[L]G is an affine

k-algebra, that is, k[L]G is generated by finitely many elements as a k-algebra. This

is a consequence of the following classical result.

Theorem 2.2.4 (Noether’s Finiteness Theorem). Let R be a commutative affine k-

algebra, where k is any commutative ring. If G ⊆ Autk−alg(R) is a finite group,

then R is a finitely generated RG module. If k is Noetherian, then RG is an affine

k-algebra as well.

To see how this implies that k[L]G is affine over k, recall that we may assume

that G is finite. Thus, Noether’s Finiteness Theorem implies that Z[L]G is affine

over Z. Since k[L]G ∼= k ⊗Z Z[L]G by Proposition 2.2.2, it follows that k[L]G is

affine over k as well.

Any finite generating set of the algebra k[L]G, or any other invariant algebra

RG that is known to be affine, is called a system of fundamental invariants. One

often distinguishes between primary and secondary invariants; these are defined as
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follows.

Definition. Let R be a commutative k-algebra and let G be a finite group acting

by automorphisms on R such that the invariant algebra RG is affine. Elements

f1, . . . , fn ∈ RG are called primary invariants if the fi are algebraically independent

and RG is finitely generated as a module over the subalgebra P = k[f1, . . . , fn],

say RG =
m∑
i=1

giP . In this case, the gi are called secondary invariants.

When working over a base field k, we always know that such invariants exist

for k[L]G by Noether’s Normalization Lemma.

Theorem 2.2.5 (Noether’s Normalization Lemma). LetA be an affine commutative

k-algebra, where k is a field. Then there exists elements x1, . . . , xn ∈ A which

are algebraically independent over k and such that A is a finite module over the

polynomial ring k[x1, . . . , xn].

Although we are not aware of a version of Noether’s Normalization Lemma that

holds for Z rather than a field, we will see that, for the invariant algebras consid-

ered in this thesis, we can in fact find explicit primary and secondary invariants for

Z[L]G. Though primary invariants for Z[L]G are in no way unique, the number of

such invariants is determined: it is equal to the rank of the lattice L. This follows

easily from Krull dimension considerations. If L is a root lattice and G is the asso-

ciated Weyl group, we will see that the resulting invariant algebra Z[L]G is in fact a

free module over the subalgebra P = Z[f1, . . . , fn] that is generated by the primary

invariants – this ultimately follows from the fact that G acts as a reflection group on

L in this case; see Propostion 2.3.5 below. Thus, we have a decomposition

Z[L]G =
m⊕
i=1

giP

Such a decomposition is often called a Hironaka decomposition in invariant theory;

the operative ring theoretic property behind the existence of a Hironaka decompo-

sition is the Cohen-Macaulay property, to which we will return below.
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2.3 Root Systems and Weyl Groups

In this section, we will review the basic definitions and facts concerning root

systems and their Weyl groups. We will define root lattices and discuss what is

known about multiplicative invariants of such lattices. Our background references

for root systems are Bourbaki [2] and Humphreys [13].

Let E ∼= Rn denote a Euclidean space with inner product ( . , . ). For v, w ∈ E,

w 6= 0, put

〈v, w〉 :=
2(v, w)

(w,w)

The map sw : E→ E that is defined by

sw(v) = v − 〈v, w〉w (v ∈ E)

is obviously linear; it sends w to −w; and it is the identity on the hyperplane w⊥ =

{v ∈ E | (v, w) = 0}. Moreover, it is straightforward to see that sw is an orthogonal

transformation, that is, sw preserves the inner product of E . The map sw is called

the reflection of E that is associated with w .

A subset Φ ⊆ E is called a root system if the following conditions are satisfied:

(R1) Φ is a finite subset of E \ 0 that spans the R-vector space E.

(R2) If α ∈ Φ, then Rα ∩ Φ = {±α}.

(R3) If α, β ∈ Φ, then sα(β) ∈ Φ .

(R4) If α, β ∈ Φ, then 〈β, α〉 ∈ Z .

The dimension n = dimR E is called rank of Φ. The Weyl group of Φ is the

subgroup of GL(E) ∼= GLn(R) that is generated by the reflections sα with α ∈ Φ:

W =W(Φ) := 〈sα | α ∈ Φ〉

It follows from (R3) that each sα, when restricted to Φ, yields a permutation of

Φ. Therefore, we have a well-defined restriction homomorphism W → SΦ =

{permutations of Φ}. This is in fact a monomorphism of groups by (R1). There-

fore, W is always a finite reflection group. We also note that the W-invariants

EW = {v ∈ E | s(v) = v ∀s ∈ W} are trivial:
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Lemma 2.3.1. EW = {0} .

Proof. Let v ∈ EW . Then for all α ∈ Φ, we must have sα(v) = v. Now,

sα(v) = v ⇐⇒ v − 〈v, α〉α = v ⇐⇒ (v, α) = 0

This shows that v ∈
⋂
α∈Φ α

⊥. Axiom (R1) implies that
⋂
α∈Φ α

⊥ = E⊥ = {0}
and so v = 0 as desired.

Finally, we recall the notion of a base of a root system Φ: this is a subset ∆ ⊆ Φ

satisfying the following conditions.

(B1) ∆ is an R-basis of E, and

(B2) Each β ∈ Φ has the form β =
∑

α∈∆ zαα with all zα ∈ Z+ or all zα ∈ −Z+.

For the proof that each root system does in fact have a base, we refer to the afore-

mentioned standard references.

We conclude this subsection with the picture of the root system Φ of type A2 in

E ∼= R2. The vectors α1 and α2 form a base of this root system. We will discuss

the root systems of type An (n ≥ 2) in more detail later in this thesis.

α1−α1

α2

−α2

α1 + α2

−α1 − α2

A2

(2.1)

2.3.1 Lattices Associated to a Root System

Let Φ be a root system in Euclidean space E ∼= Rn. The root lattice of Φ is

defined by

L = L(Φ) =
def

ZΦ ⊆ E
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where ZΦ =
∑

α∈Φ Zα. If ∆ = {α1, . . . , αn} is a fixed base of Φ, then

L =
n⊕
i=1

Zαi ∼= Zn

So L is indeed a lattice. By axioms (R3) and (R1), the Weyl group W = W(Φ)

acts faithfully on L. By (R4), the root lattice L is contained in the so-called weight

lattice of Φ, which is defined by

Λ = Λ(Φ) =
def
{v ∈ E | 〈v, α〉 ∈ Z for all α ∈ Φ}

= {v ∈ E | 〈v, α〉 ∈ Z for all α ∈ ∆}

For the last equality above, see [13, p. 67]. It follows from axiom (R3) and the fact

that W preserves the bracket 〈 . , . 〉 that W stabilizes Λ as well. In view of (B1),

the base ∆ yields an R-linear isomorphism

E ∼−→ Rn

∈ ∈
v 7−→ (〈v, αi〉)n1

Under this isomorphism, Λ ⊆ E corresponds to Zn ⊆ Rn; so Λ is also a lattice.

The preimages $i ∈ Λ of the standard Z-basis vectors of εi ∈ Zn are called the

fundamental weights with respect to ∆ ; they form an R-basis of E . Thus

〈$i, αj〉 = δi,j and Λ =
n⊕
i=1

Z$i
∼= Zn

The picture below shows the root lattice L and the weight lattice Λ for the root

system Φ of type A2 from (2.1). The root lattice L is indicated by black dots and

the weight lattice Λ as the intersections of the red lines.

α1

α2

$1

$2

(2.2)



20

For our calculations of class groups later in this thesis, we will need the follow-

ing fact from group cohomology; see [16].

Lemma 2.3.2. With the above notation, H1(W , L) = Λ/L .

Proof. The exact sequence ofW-modules

0 −→ L = L⊗ Z −→ L⊗Q −→ L⊗ (Q/Z) −→ 0

gives rise to a long cohomology sequence which starts as follows:

0 −→ LW −→ (L⊗Q)W −→ (L⊗ (Q/Z))W −→ H1(W , L) −→ H1(W , L⊗Q)

Since L⊗Q embeds into E, Lemma 2.3.1 implies that (L⊗Q)W = 0. Moreover, by

a standard fact about the cohomology of finite groups over fields of characteristic 0,

we also have H1(W , L ⊗ Q) = 0. Therefore, the above exact sequences yield the

isomorphisms

H1(W , L) ∼= (L⊗ (Q/Z))W ∼= ((L⊗Q)/L)W

It remains to show that

((L⊗Q)/L)W = Λ/L (2.3)

To prove this equality, recall that L ⊆ Λ and both lattices have rank n; so Λ/L is

finite. Therefore, L ⊆ Λ ⊆ L⊗Q ⊆ E and it suffices to show that Λ/L = (E/L)W .

The inclusion ⊆ states that v − sα(v) ∈ L holds for all α ∈ Φ and v ∈ Λ, because

the reflections sα generate W . But v − sα(v) = 〈v, α〉α ∈ Zα ⊆ L as desired.

Conversely, let v ∈ E be such that v − s(v) ∈ L for all s ∈ W . Specializing to

s = sα with α ∈ ∆, this says that 〈v, α〉α ∈ L, and since L =
⊕

α∈∆ Zα, we must

have 〈v, α〉 ∈ Z. Since α ∈ ∆ was arbitrary, it follows that v ∈ Λ . This proves ⊇,

thereby completing the proof of the lemma.

2.3.2 Multiplicative Invariants: Reduction to Irreducible Root

Systems

Let Φ be a root system and letW = W(Φ) be the associated Weyl group. As

was mentioned earlier, the multiplicative invariant algebra Z[Λ]W of theW-action
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on the weight lattice Λ = Λ(Φ) is a polynomial algebra over Z. A convenient set of

variables is provided by the orbit sums

orb($i) =
∑

w∈W/W$i

xw($i)

of the fundamental weights $i . See [2, Théorème VI.3.1] or [16, Theorem 3.6.1]

for a proof of this result. Thus, in the following, we will concentrate on the mul-

tiplicative invariant algebra Z[L]W of the root lattice L = L(Φ). Our goal in this

section is to justify the claim made in the Introduction that it suffices to consider

the case of an irreducible root system Φ.

A root system Φ is called irreducible if it is not possible to write Φ as a disjoint

union Φ = Φ1 t Φ2 with nonempty Φ1 and Φ2 that are elementwise orthogonal

to each other. A general root system Φ uniquely decomposes as a disjoint union

Φ =
⊔r
i=1 Φi of irreducible root systems Φi that are elementwise orthogonal to

each other; these are called the irreducible components of Φ. The Weyl groupW =

W(Φ) is then the direct product of the Weyl groupsWi = W(Φi), withWi acting

trivially on all Φj with j 6= i. See [2, Section VI.1.2] for all this. It follows that

L =
⊕r

i=1 Li with Li = L(Φi) = ZΦi and so Z[L] ∼= Z[L1]⊗ZZ[L2]⊗· · ·⊗ZZ[Lr].

This description of Z[L] and the above description ofW easily imply that

Z[L]W ∼= Z[L1]W1 ⊗Z Z[L2]W2 ⊗Z · · · ⊗Z Z[Lr]
Wr

Therefore, it suffices to describe the factors Z[Li]
Wi , and so we may assume that Φ

is irreducible.

2.3.3 Multiplicative Invariants: Monoid Algebra Structure

Again, let Φ be a root system and letW =W(Φ) be the associated Weyl group.

As was remarked in the previous section, the multiplicative invariant algebra Z[Λ]W

of the weight lattice Λ = Λ(Φ) is a polynomial algebra over Z, with the orbit sums

orb($i) =
∑

w∈W/W$i
xw($i) of the fundamental weights $i acting as variables.

Thus, putting

Λ+ =
n⊕
i=1

Z+$i
∼= Zn+
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we can view Z[Λ]W as the algebra of the monoid Λ+:

Z[Λ]W = Z[orb($1), . . . , orb($n)] ∼= Z[Λ+] (2.4)

The multiplicative invariant algebra Z[L]W of the root lattice L = L(Φ) is gen-

erally not quite as simple, but Z[L]W is at least still a monoid algebra. Specifically,

recall that L ⊆ Λ; so we may consider the submonoid L ∩ Λ+ of L . The following

result is a special case of [16, Proposition 6.2.1].

Theorem 2.3.3. Let L = L(Φ) be the root lattice of a root system Φ and letW =

W(Φ) be its Weyl group. The invariant algebra Z[L]W is isomorphic to the monoid

algebra of L ∩ Λ+ . On the basis L ∩ Λ+ of the monoid algebra Z[L ∩ Λ+], the

isomorphism is explicitly given by

Ω: Z[L ∩ Λ+]
∼−→ Z[L]W

∈ ∈
n∑
i=1

zi$i 7−→
n∏
i=1

orb($i)
zi

Proof. Let M̂ be the submonoid of (Z[Λ]W \ {0}, · ) that is generated by the orbit

sums orb($i) and put M = M̂ ∩ Z[L]; this is a submonoid of (Z[L]W \ {0}, · )
whose elements are Z-independent, because the elements of M̂ are so by (2.4).

Our goal is to show that the monoid M generates Z[L]W as a Z-module and that

M ∼= L ∩ Λ+ .

We begin with a preliminary observation. Each µ ∈ M̂ has the form µ =∏n
i=1 orb($i)

zi with unique zi ∈ Z+ , and hence µ corresponds to a unique ` =∑n
i=1 zi$i ∈ Λ+ . We will write µ = µ(`) and view µ(`) as a (nonzero) element of

the group algebra Z[Λ] . Each f ∈ Z[Λ] can be uniquely written as f =
∑

λ∈Λ fλλ

with all fλ ∈ Z and Supp f := {λ ∈ Λ | fλ 6= 0} a finite subset of Λ . Observe

that Supp(ff ′) ⊆ {λ + λ′ | λ ∈ Supp f, λ′ ∈ Supp f ′} clearly holds for any two

f, f ′ ∈ Z[Λ] . Since Supp orb($i) = W($i) = {w($i) | w ∈ W} for all i , we

obtain

∅ 6= Supp(µ(`)) ⊆
{ n∑
i=1

zi∑
j=1

wi,j($i) | wi,j ∈ W
}



23

(In fact, since each orb($i) involves only non-negative Z-coefficients, namely 0

or 1, it is easy to see that the ⊆ above is an equality, but this will not be essential

here.) Recall that Λ/L isW-trivial by (2.3). Therefore, each
∑n

i=1

∑zi
j=1wi,j($i) is

congruent to ` =
∑n

i=1 zi$i modulo L. Therefore, if Supp(µ(`)) ∩ L is nonempty,

then we must have ` ∈ L , and this in turn implies that Supp(µ(`)) ⊆ L , that is,

µ(`) ∈ Z[L] . Since µ(`) ∈ Z[L] trivially implies that Supp(µ(`))∩L is nonempty,

we obtain the following equivalences:

µ(`) ∈ Z[L] ⇐⇒ Supp(µ(`)) ∩ L 6= ∅ ⇐⇒ ` ∈ L (2.5)

Let f ∈ Z[L]W be given. Then f ∈ Z[Λ]W = Z[M̂ ] by (2.4); so f =
∑

µ∈M̂ zµµ

with unique zµ ∈ Z. Let n(f) denote the number of µwith nonzero coefficient zµ in

this expression. We show by induction on n(f) that f ∈ Z[M ]. The case n(f) = 0

(i.e., f = 0) being obvious, assume that f 6= 0. Since f =
∑

µ∈M̂ zµµ ∈ Z[L],

some µ ∈ M̂ with zµ 6= 0 must satisfy Supp(µ) ∩ L 6= ∅. By (2.5), we conclude

that µ ∈ Z[L] ∩ M̂ = M . Thus, f ′ = f − zµµ belongs to Z[L]W and satisfies

n(f ′) = n(f)− 1. By induction, f ′ ∈ Z[M ], and so f ∈ Z[M ] as well. This proves

the desired equality Z[L]W = Z[M ] . Finally, the equivalences in (2.5) also show

that the (multiplicative) monoid M is isomorphic to the (additive) monoid L ∩ Λ+

via ` 7→ µ(`). This completes the proof of the theorem.

It remains to describe the structure of the monoid L∩Λ+ for a given irreducible

root system Φ, that is, we need to describe the set of all
∑n

i=1 zi$i ∈ Λ+ that do

belong to L. A method for determining a system of fundamental invariants and

a Hironaka decomposition of the invariant algebra Z[L]W ∼= Z[L ∩ Λ+] will be

described in Section 2.3.4 below.

2.3.4 Hilbert Bases of Monoids

We first recall some general facts about commutative monoids. Throughout, M

denotes a commutative monoid, with binary operation written as + . One says that

M is cancellative if

a+ c = b+ c =⇒ a = b (a, b, c,∈M)
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and torsion-free if

na = nb =⇒ a = b (a, b ∈M ,n ∈ Z>0)

It is well-known and not hard to see that commutative monoidsM that are cancella-

tive and torsion-free are exactly the monoids that are isomorphic to submonoids of

torsion-free abelian groups. If M is also finitely generated then this abelian group

can be chosen finitely generated as well, and soM embeds into a lattice, L . Finitely

generated commutative monoids that are cancellative and torsion-free are often sim-

ply referred to as affine monoids, and we will do so as well in the following. An

affine monoid M is called positive if M has no units (that is, invertible elements)

other than 0 . In this case, an element 0 6= m ∈ M is called indecomposable if

m = a + b (a, b ∈ M) implies a = 0 or b = 0. For more on affine monoids, we

refer to Bruns and Herzog [5, 6.1].

For future use, we note the following lemma which shows that every positive

affine monoid M has a unique smallest generating set; this is called the Hilbert

basis of M .

Lemma 2.3.4. Let M be a positive affine monoid. Then M has finitely many inde-

composable elements, say m1, . . . ,ms . The mi generate M , and every generating

set for M contains the mi .

Proof. Clearly, all indecomposable elements must be contained in every generating

set of M . Thus, it suffices to show that the indecomposable elements of M do

indeed generate M . For this, we use the fact that there is a monoid homomorphism

ϕ : M → Z+ satisfying ϕ(m) > 0 for all 0 6= m ∈ M ; see, e.g., Swan [26,

Theorem 4.5]. Now consider an element 0 6= m ∈M . If m is not indecomposable,

then write m = a + b with 0 6= a, b ∈ M . Then ϕ(a), ϕ(b) < ϕ(m). By induction

we know that a and b can be written as sums of indecomposable elements of M ,

and hence so can m.

Hilbert bases of monoids are important in many contexts besides invariant the-

ory, e.g., in the study of toric varieties [25, Chapter 13] and in integer programming
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[21]. Therefore, the algorithmic aspects of Hilbert bases have been thoroughly ex-

plored and many computer algebra systems contain routines that compute Hilbert

bases. Later in this thesis, we will use the (freely available) algebra system CoCoA

to calculate the Hilbert basis for a particular monoid that arises as in Theorem 2.3.3

from the root lattice of the irreducible root system of type An.

Now let us focus more specifically on the monoid

M = L ∩ Λ+

that was considered in Theorem 2.3.3. This monoid is positive affine: M is can-

cellative and torsion-free, because M is a submonoid of the lattice Λ; positivity

follows from the fact that M ⊆ Λ+; and finite generation is clear from Noether’s

Theorem, which yields that Z[L]W ∼= Z[M ] is an affine algebra. Alternatively, a

finite Hilbert basis for M = L∩Λ+ can be constructed by the following procedure

from [16, 6.3.5], which is based on the usual proof of Gordan’s Lemma; see, e.g.,

[5, 6.1.2].

Consider the weight lattice Λ =
⊕n

i=1 Z$i as before. Since Λ/L is finite, we

may define zi ∈ Z>0 to be the order of $i modulo L and write

mi = zi$i ∈ L (i = 1, . . . , n) (2.6)

Since the $i form an R-basis of Euclidean space E, we have E =
⊕n

i=1 Rmi and

L ∩
⊕n

i=1 R+mi = L ∩
⊕n

i=1 R+$i = L ∩ Λ+ = M . Put

K =
{ n∑
i=1

timi ∈ E | 0 ≤ ti ≤ 1
}
⊃ K◦ =

{ n∑
i=1

rimi ∈ E | 0 ≤ ri < 1
}
.

Then K ∩ L ⊆ M and K ∩ L is finite, being the intersection of a compact and a

discrete subset of E. We claim that K ∩ L generates the monoid M . To see this,

note that each m ∈
⊕n

i=1 R+mi can be uniquely written as

m = m′ +m′′ (2.7)

with m′ ∈
⊕n

i=1 Z+mi ⊆ L and m′′ ∈ K◦. If m ∈ M , then the summand

m′′ belongs to K◦ ∩ L . Since m1, . . . ,mn also belong to K ∩ L, equation (2.7)
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exhibits m as an element of the monoid generated by K ∩ L, which proves our

claim. Note that m1, . . . ,mn are indecomposable elements of M = L ∩ Λ+ . The

preceding argument shows that all other indecomposable elements of M belong to

K◦∩L. Denoting these additional indecomposables ofM (if any) bymn+1, . . . ,ms

we obtain the desired Hilbert basis {m1, . . . ,ms} for M = L ∩ Λ+ .

As an illustration, we depict the situation for the root system of type A2 again.

Here, we have m1 = 3$1, m2 = 3$2 and m3 = $1 + $2 = α1 + α2. The gray

region is the zonotope K.

α1

α2

$1

$2

m2

m1

m3

(2.8)

For the record, let us summarize the foregoing in a proposition.

Proposition 2.3.5. Assume the notation of Theorem 2.3.3.

(a) The Hilbert basis of the monoid M = L ∩ Λ+ is given by the elements mi

(i = 1, . . . , n) defined in (2.6) together with the indecomposable elements of

M that belong to the finite subset K◦ ∩ L of M .

(b) The monoidM decomposes asM =
⊔
m∈K◦∩Lm+M0 withM0 =

⊕n
i=1 Z+mi .

(c) Primary invariants for the invariant algebra Z[L]W are given by the elements

µi =
def

Ω(mi) = orb($i)
zi (i = 1, . . . , n)
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where zi is the order of $i modulo L. A Hironaka decomposition of Z[L]W is

given by

Z[L]W =
⊕

m∈K◦∩L

Ω(m)Z[µ1, . . . , µn]

Proof. Part (a) was stated above, part (b) is immediate from (2.7), and (c) in turn is

clear from (b) and Theorem 2.3.3.

2.4 Class Groups

As mentioned before, in addition to finding generators of multiplicative invari-

ant algebras, we also seek to describe some characteristics of these algebras. One

important feature is the class group. In brief, the class group Cl(R) can be defined

for an arbitrary Krull domain R, and it measures the “unique factorization defect”

of R: the class group Cl(R) is trivial precisely if R is a UFD. For the detailed defi-

nition of Krull domains and class groups, which are both rather technical, we refer

to Fossum [10] or Bourbaki [3]. For our purposes, it will suffice to remark that,

for commutative noetherian domains, being a Krull domain is the same as being

integrally closed. This includes all multiplicative invariant algebras k[L]G over any

commutative noetherian domain k.

For polynomial invariant algebras S(V )G , where V is a vector space over a field

k and G is a finite group acting linearly on V , the class group is known by [1,

Theorem 3.9.2]:

Cl(S(V )G) = Hom(G/R,k×) (2.9)

whereR denotes the (normal) subgroup of G that is generated by the elements that

act as pseudoreflections on V .

The class group of multiplicative invariants has a more complicated structure; it

has been determined, for arbitrary multiplicative invariant algebras, in [16, Theorem

4.1.1]. In this section, we will describe the class group in the special case of a Weyl

group acting on a root lattice.

In order to state the result, we briefly recall some general facts about reflections

on arbitrary lattices L ∼= Zn. An automorphism s ∈ GL(L) ∼= GLn(Z) is called a
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reflection if the endomorphism 1 − s ∈ End(L) ∼= Matn(Z) has rank 1. It is not

hard to show that, in this case, s must be conjugate in GL(L) to exactly one of the

following two matrices:( −1
1

. . .
1

)
or

 0 1
1 0

1
. . .

1


In the former case, s is called a diagonalizable reflection; this case is characterized

by the isomorphism H1(〈s〉, L) ∼= Z/2Z, while in the non-diagonalizable case, we

have H1(〈s〉, L) = 0 . See [16, Section 1.7.1] for details on the foregoing as well

as for a proof of the next lemma.

Lemma 2.4.1. Let G be a finite subgroup of GL(L) for some lattice L and let D
denote the subgroup of G that is generated by the diagonalizable reflections in G .

Then D is a normal subgroup of G that is an elementary abelian 2-group of rank r,

where r is the number of diagonalizable reflections in G .

With this, we have the following description of the class group of the multi-

plicative invariant algebra of a root lattice.

Theorem 2.4.2. LetL = L(Φ) be the root lattice of a root system Φ, letW =W(Φ)

be its Weyl group, and let D denote the subgroup of W that is generated by the

diagonalizable reflections. Then:

(a) Cl(Z[L]W) ∼= H1(W/D, LD) . In particular, if D = {1} then Cl(Z[L]W) ∼=
Λ/L, where Λ is the weight lattice of Φ .

(b) If Φ is irreducible and D 6= {1} then Cl(Z[L]W) = 0 .

Proof. The first isomorphism in (a) is just a special case of [16, Theorem 4.1.1].

Now Lemma 2.3.2 gives Cl(Z[L]W) ∼= H1(W , L) ∼= Λ/L if D = {1} .

For (b), note that D 6= {1} implies LD $ L by (R1). If the root system Φ is

irreducible then this forces LD = 0, because the Q[W ]-module L⊗Q is irreducible;

see [2, Corollaire to Prop. VI.1.5]. Thus, (a) gives Cl(Z[L]W) = 0 in this case.
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2.5 Veronese Algebras

In this section, we collect some ring theoretic facts on Veronese algebras. Much

of this material is well-known or “folklore”, at least for algebras over a field. How-

ever, I am not aware of a reference for parts (c) and (d) of Proposition 2.5.1 below.

Moreover, since we are working over the integers Z in this thesis, we include proofs

for an arbitrary commutative base ring k.

Let R = R0 ⊕ R1 ⊕ R2 ⊕ . . . be an arbitrary graded k-algebra (not necessar-

ily commutative). Thus, all Ri are k-submodules of R, called the homogeneous

components of R, and RiRj ⊆ Ri+j holds for all i and j. In particular, R0 is a

k-subalgebra of R. Elements of Ri are said to be of degree i. We will mostly be

interested in the case where the algebra R is generated by R1 and satisfies R0 = k.

In this case, we will say that R is 1-generated, for short. Let T(R1) denote the

tensor algebra of the k-module R1; this is a graded k-algebra with ith homogeneous

component

(R1)⊗i = R1 ⊗R1 ⊗ · · · ⊗R1︸ ︷︷ ︸
i factors

where ⊗ = ⊗k and (R1)⊗0 = k. The algebra R is 1-generated iff the canonical

map T(R1) → R, given by the embedding R1 ↪→ R and the universal property of

the tensor algebra, is surjective. We let IR denote the kernel of this map. The ideal

IR is called the relation ideal and any collection generators of IR is called a set of

defining relations for the algebra R. Thus, we have an exact sequence

0 −→ IR −→ T(R1) −→ R −→ 0

Since the epimorphism T(R1) � R maps (R1)⊗i to Ri, we have IR =
⊕

i≥0 I
i
R

with I iR = IR ∩ Ri. Thus, we may always choose homogeneous defining relations

for R. Thus, the above short exact sequence amounts to short exact sequences

0 −→ I iR −→ (R1)⊗i −→ Ri −→ 0 (2.10)

for each i ≥ 0. It is easy to see that R has no defining relations of degree i if and

only if the following map, given by multiplication, is surjective:

(R1 ⊗ I i−1
R )⊕ (I i−1

R ⊗R1) −→ I iR (2.11)
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For a given positive integer c, the cth Veronese subalgebra of R is defined by

R(c) =
⊕
i≥0

Rci

We will view the Veronese subalgebraR(c) as a graded algebra in its own right, with

ith homogeneous component

(R(c))i = Rci

Proposition 2.5.1. Let R =
⊕

i≥0R
i be a graded k-algebra, where k is some

commutative ring, and let R(c) =
⊕

i≥0R
ci be the the cth Veronese subalgebra of

R. Then:

(a) If R is 1-generated, then R(c) is also 1-generated.

(b) Let R be 1-generated. If R has no defining relations of degree > (i−1)c+ 1,

then R(c) has no defining relations of degree > i.

(c) If R is a (commutative) Cohen-Macaulay ring, then so is R(c).

(d) IfR is a (commutative) Krull domain, then so isR(c). The embeddingR(c) ↪→
R gives rise to a homomorphism of class groups Cl(R(c))→ Cl(R).

Proof. Our proofs of (a) and (b) closely follow [19, Section 3.2]. Throughout, let

us put S = R(c) for brevity.

(a) If R is generated by R1, then all multiplication maps (R1)⊗i → Ri are

surjective. It follows that RiRj = Ri+j holds for all i and j, not just ⊆. We further

conclude that multiplication maps

(S1)⊗i = (Rc)⊗i = Rc ⊗k Rc ⊗k · · · ⊗k Rc︸ ︷︷ ︸
i factors

→ Rci = Si

are surjective, which proves (a).

(b) In view of (2.11) we need to show that

(S1 ⊗ Ij−1
S )⊕ (Ij−1

S ⊗ S1) −→ IjS is onto for j > i (2.12)

Since the multiplication map (R1)⊗c −→ S1 = Rc is onto, (2.10) yields the follow-

ing commutative diagrams with exact rows, for each j ≥ 0:
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0 IcjR (R1)⊗cj Rcj 0

0 IjS (S1)⊗j Sj 0

Therefore, in order to prove (2.12), it is enough to show that(
(R1)⊗c ⊗ Ic(j−1)

R

)
⊕
(
I
c(j−1)
R ⊗ (R1)⊗c

)
−→ IcjR is onto for j > i (2.13)

By our hypothesis onR and (2.11), we know that (R1⊗Ik−1
R )⊕(Ik−1

R ⊗R1) −→ IkR

is onto if k − 1 > c(i − 1). It follows that, for all positive integers t with k − t >
c(i− 1), the map

⊕t
l=0

(
(R1)⊗l ⊗ Ik−tR ⊗ (R1)⊗(t−l)) −→ IkR is onto. Now assume

that j > i and let k = cj and t = 2c− 1. Then k− t = c(j − 2) + 1 ≥ c(i− 1) + 1

and so the foregoing yields surjectivity of the map

2c−1⊕
l=0

(
(R1)⊗l ⊗ Ic(j−2)+1

R ⊗ (R1)⊗(2c−1−l)) −→ IcjR

Finally, the above map factors through the map in (2.13), and hence the latter map

is surjective as well, which was to be shown.

(c) From now on, we assume that R is commutative. Clearly, R is integral over

S = R(c). Also, the projection of R � S with kernel
⊕

c - iR
i is a “Reynolds

operator”, that is, the map is S-linear and the restriction to S is equal to the identity

on S. Therefore, by a result of Hochster and Eagon [5, Theorem 6.4.5], the Cohen-

Macaulay property descends from R to S.

(d) Assume that R is a Krull domain and let K denote the field of fractions

of R. Moreover, let F denote the field of fractions of S = R(c); so F ⊆ K.

In order to show that S is a Krull domain, it suffices to prove that S = R ∩ F ;

see [10, Proposition 1.2]. The inclusion ⊆ being clear, consider an element 0 6=
a ∈ R ∩ F . Then there is a nonzero b ∈ S such that ab ∈ S. We need to show

that this forces a ∈ S. Suppose otherwise. Then we may assume that a = as +

( components of higher degree ) with 0 6= as ∈ Rs and c - d. Similarly, write

b = bct + ( components of higher degree ) with 0 6= bct ∈ Rct. Then ab = asbct +
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( components of higher degree ) with 0 6= asbct ∈ Rs+ct, contradicting the fact

that ab ∈ S. This shows that S is a Krull domain. As for class groups, we have

already pointed out in the proof of (c) thatR is integral over S. The homomorphism

Cl(S)→ Cl(R) now follows from [10, Proposition 6.4(b)].

It follows from part (b) above that if R is 1-generated with no defining relations

of degree > c+ 1, then R(c) has no defining relations of degree > 2.

Corollary 2.5.2. Let R = k[t1, t2, . . . , td] denote the (commutative) polynomial

algebra in d ≥ 2 commuting variables over the commutative ring k and let S =

R(2) denote the second Veronese subring of R . Then:

(a) S has algebra generators xi = t2i with 1 ≤ i ≤ d and xi,j = titj with

1 ≤ i < j ≤ d .

(b) Defining relations for S are given by [xi, xj] = [xi, xk,l] = [xk,l, xr,s] = 0 and

xjxj = x2
i,j .

(c) If k is Cohen-Macaulay, then so is S. Indeed, we have the decomposition

S =
⊕

1≤i1<j1<i2<···<ir<jr≤d

xi1,j1xi2,j2 . . . xir,jr k[x1, x2, . . . , xd]

where we allow r = 0, the corresponding summand being k[x1, x2, . . . , xd].

(d) If k is a Krull domain, then so is S. If k has characteristic 6= 2, then Cl(S) ∼=
Cl(k)⊕ Z/2Z.

Proof. All parts follow more or less directly from the corresponding parts of Propo-

sition 2.5.1.

For (a), note that the elements xi and xi,j generate the k-module R2 = S1, and

hence they form algebra generators of S.

For (b), use the fact that [ti, tj] = 0 for i < j are defining relations for R, of

degree 2. In view of the remark just before the statement of the corollary, S has

no defining relations of degree > 2. It is easy to see that the indicated relations are

exactly the relations among the xi and xi,j of degree ≤ 2.
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For (c), recall that the polynomial algebra R is Cohen-Macaulay if (and only

if) the base ring k is Cohen-Macaulay. Therefore, S is Cohen-Macaulay as well

by Proposition 2.5.1(c). For the indicated Hironaka decomposition, note that the

generators in (a) and the relations in (b) immediately imply that

S =
∑

1≤i1<j1<i2<···<ir<jr≤d

xi1,j1xi2,j2 . . . xir,jr k[x1, x2, . . . , xd]

Since the variables ti are algebraically independent, this sum is direct.

Finally, for (d), assume that k is a Krull domain. Then the polynomial algebra

R = k[t1, t2, . . . , td] is a Krull domain as well by [10, Proposition 1.6], and hence

so is S by Proposition 2.5.1(d).

As for the structure of the class group, we use the fact that S is free over k; in

fact all homogeneous componentsRi of the polynomial algebraR = k[t1, t2, . . . , td]

are free over k. Therefore, the embedding k ↪→ S gives rise to a map Cl(k) →
Cl(S) by [10, Proposition 6.4(a)]. By Proposition 2.5.1(d) we also have a map

Cl(S)→ Cl(R) coming from the inclusion S ↪→ R. The composite map Cl(k)→
Cl(S) → Cl(R) is an isomorphism Cl(k) ∼= Cl(R) by [10, Theorem 8.1]. It fol-

lows that Cl(k) injects as a direct summand into Cl(S). The image of Cl(k) in

Cl(S) is generated by the classes of all primes of the form pS, where p is a height-1

prime of k; it is easy to see that pS is indeed a prime of S (of height 1). On the

other hand, by [10, Corollary 7.2], there is a surjection Cl(S) � Cl(SC), where C
denotes the set of nonzero elements of k, and the kernel of this map is generated

by the very same primes pS. Therefore, Cl(S)/Cl(k) ∼= Cl(SC). Finally, SC is

just the second Veronese algebra of the polynomial algebra K[t1, t2, . . . , td], where

K is the field of fractions of k. The class group of SC has been determined in [20,

Example 1 on page 58] to be isomorphic to Z/2Z. This proves part (d).

Since we will be exclusively concerned with commutative algebras in later sec-

tions, we will not list the commuting relations, such as the relations [xi, xj] =

[xi, xk,l] = [xk,l, xr,s] = 0 in Corollary 2.5.2, in our future results. Thus, in the

context of commutative algebras, the defining relations for the Veronese algebra

S = R(2) in Corollary 2.5.2 are the relations xjxj = x2
i,j .
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CHAPTER 3

Multiplicative Invariants of Classical

Root Lattices

In this chapter, we calculate the multiplicative invariant algebras for the classical

root lattices using the general facts and notation set up in the previous chapter. Our

description of the root systems and their associated data follows Bourbaki [2] as in

Chapter 2. Throughout, we work in Rn, with the usual inner product, and we let

{εi}n1 denote the standard orthonomal basis of Rn.

3.1 Type Bn

We start with the root lattice for the root system of type Bn (n ≥ 2), because it

has particularly nice invariants and will be used as an aid in calculating the invari-

ants of the other three classical root lattices. We are mainly interested in the mul-

tiplicative invariants under the Weyl groupW = W(Bn); however we also include

the invariants under the symmetric group Sn ≤ W here, since they will be useful

for finding invariants of the root lattice of type An. To find the invariants for Bn we

need not invoke the general methods described above in 2.3.3 and 2.3.4, since this

is a particularly nice lattice. Instead we use a more straightforward purely invariant

theoretic approach. In fact, all that is needed here is the fundamental theorem for

Sn-invariants; see, e.g., [4, Théorème 1 on p. A IV.58].



35

3.1.1 Root system, root lattice and Weyl group

The root system of type Bn is the following subset of E = Rn:

Φ = {±εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n} (3.1)

The root lattice L(Φ) = ZΦ will be denoted by Bn; so

Bn =
n⊕
i=1

Zεi

The Weyl group W = W(Φ) is the semidirect product of the group of all per-

mutation matrices in GL(E) = GLn(R) with the group of all diagonal matrices

Dn ≤ GLn(Z). The group of permutation matrices is isomorphic to the symmetric

group Sn, operating by permuting the basis {εi}n1 via σ(εi) = εσ(i). The diagonal

group Dn ∼= {±1}n operates via εi 7→ ±εi. Thus,

W = Dn o Sn ∼= {±1}n o Sn

3.1.2 Diagonalizable reflections

We determine the subgroup D ≤ W that is generated by the diagonalizable

reflections on Bn ; see Lemma 2.4.1 and Theorem 2.4.2. Note that Dn is generated

by the diagonalizable reflections di with di(εj) = εj for i 6= j and di(εi) = −εi.
Thus, we have Dn ≤ D. In fact, equality holds here. To see this, recall from

Lemma 2.4.1 that D is abelian; so D ∩ Sn is contained in the centralizer CSn(Dn)

of Dn in Sn . Since CSn(Dn) = {1}, we must have

D = Dn

3.1.3 MultiplicativeW-invariants

Setting xi := xεi we form the group algebra,

Z[Bn] = Z[x±1
1 , x±1

2 , . . . , x±1
n ]
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We start by determining invariants under the normal subgroup Dn. This has been

carried out in detail in [16, Example 3.5.1], but we briefly review the calculation.

Since Z[Bn] ∼= Z[x±1]⊗n and Dn ∼= {±1}n, it is easy to see that Z[Bn]Dn ∼=(
Z[x±1]{±1})⊗n. It is also straightforward to check that Z[x±1]{±1} = Z[x + x−1].

(This is also covered by Example 3.2.1 below.) . Thus, we obtain

Z[Bn]Dn = Z[ϕ1, . . . , ϕn] with ϕi := xi + x−1
i

This is a polynomial algebra over Z . The subgroup Sn ≤ W permutes the “vari-

ables” ϕi in the standard fashion: σ(ϕi) = ϕσ(i) . Now we use the fundamental

theorem for Sn-invariants to get the final result:

Z[Bn]W = Z[σ1, . . . , σn] (3.2)

where σi denotes the ith elementary symmetric function in the variables ϕ1, . . . , ϕn.

In particular, we see that Z[Bn]W is a polynomial algebra over Z, giving

Cl(Z[Bn]W) = 0

This is of course consistent with Theorem 2.4.2(b) and our determination of D
above. We also mention that the fact that Z[Bn]W is a polynomial algebra is also

a consequence of the Bourbaki’s theorem for multiplicative invariants of weight

lattices, because Bn is easily shown to be isomorphic to the weight lattice of the

root system of type Cn which will be discussed later.

3.1.4 Multiplicative Sn-invariants

Now we restrict the group action on Bn to the permutation subgroup Sn ≤ W .

First notice that

Z[Bn] = Z[x±1
1 , x±1

2 , . . . , x±1
n ] = Z[x1, x2, . . . , xn][s−1

n ]

where sn = x1x2 . . . xn is the nth elementary symmetric polynomial in the variables

xi. Just as above, the Sn action is given by σ(xi) = xσ(i) for all σ ∈ Sn. The fun-

damental theorem for Sn-invariants gives Z[x1, x2, . . . , xn]Sn ∼= Z[s1, s2, . . . , sn]
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where sj is the j th elementary symmetric function in the variables xi. Since we

clearly have

(Z[x1, x2, . . . , xn][s−1
n ])Sn = Z[x1, x2, . . . , xn]Sn [s−1

n ]

it follows that,

Z[Bn]Sn = Z[s1, s2, . . . , sn−1, s
±1
n ] ∼= Z[Zn−1

+ ⊕ Z] (3.3)

This is a mixed Laurent polynomial ring or, alternatively, the monoid Z-algebra of

the (additive) monoid Zn−1
+ ⊕ Z.

3.2 Type An

Next, we look at the root lattice of the root system of type An; this root lattice

will be denoted by An. Actually, we will consider the root lattice An−1 (n ≥ 2),

because this fits better with the notation of Section 3.1 which we will continue to

use.

3.2.1 Root system, root lattice and Weyl group

Here, we take E to be the subspace of Rn consisting of all points whose coordi-

nate sum is 0. The root system of type An−1 is given by

Φ = {εi − εj | 1 ≤ i, j ≤ n, i 6= j} (3.4)

Note that Φ is contained in the root system of type Bn as displayed in (3.1). There-

fore, the root lattice An−1 = ZΦ is contained in the root lattice Bn . The Weyl

GroupW = W(An−1) is the subgroup Sn ≤ W(Bn) permuting the basis {εi}n1 of

E = Rn as usual:

W = Sn

It is easy to see that the vectors

αi := εi − εi+1 (i = 1, . . . , n− 1)



38

form a base of the root system Φ. So the root lattice An−1 = L(Φ) is given by

An−1 =
n−1⊕
i=1

Zαi

Note that there is an exact sequence of Sn-lattices, that is, an exact sequence of free

abelian groups with Sn-equivariant maps,

0 −→ An−1 −→ Bn −→ Z −→ 0 (3.5)

Here Z has the trivial Sn-action and the map Bn → Z sends εi 7→ 1 .

3.2.2 MultiplicativeW-invariants

Using the notation for Bn above, we set yi := xαi = xi
xi+1

to get the group

algebra

Z[An−1] = Z[y±1
1 , y±1

2 , . . . , y±1
n−1]

From (3.5), we see that Z[An−1] is the degree-zero component of the Laurent poly-

nomial algebra Z[Bn] = Z[x±1
1 , x±1

2 , . . . , x±1
n ], graded by total degree in the vari-

ables xi. Since the action of W = Sn is obviously degree-preserving, it follows

that the multiplicative invariant algebra Z[An−1]Sn is the degree-zero component of

Z[Bn]Sn = Z[s1, s2, . . . , s
±1
n ]; see (3.3). Since deg si = i , it is easy to see that a

Z-basis for the degree-zero component of Z[s1, s2, . . . , s
±1
n ] is given by the elements

sl11 s
l2
2 · · · s

ln−1

n−1

slnn
where li ∈ Z+ and

n−1∑
i=1

ili = nln

Hence Z[An−1]W is isomorphic to the monoid Z-algebra Z[Mn−1], where Mn−1 is

the following submonoid of Zn−1
+ :

Mn−1 =
{

(l1, l2, . . . , ln−1) ∈ Zn−1
+ |

n−1∑
i=1

ili ∈ (n)
}

(3.6)
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The isomorphism is explicitly given by

Z[Mn−1]
∼−→ Z[An−1]W

∈ ∈

(l1, l2, . . . , ln−1) 7−→
sl11 s

l2
2 · · · s

ln−1

n−1

slnn

(3.7)

with ln = 1
n

∑n−1
i=1 ili .

While describing all the indecomposable elements of the monoid Mn−1 is a

difficult task for general n, we can easily find the n − 1 indecomposables that cor-

respond to the primary invariants for Z[An−1]W using Proposition 2.3.5(c) above.

It suffices to find zi, the order of our fundamental weights, $i, modulo An−1. Then

applying the isomorphism Ω : Z[An−1 ∩ Λ+]
∼−→ Z[An−1]W in Theorem 2.3.3 to

the indecomposable elements mi = zi$i will give us the primary invariants for

this lattice. In detail, the fundamental weights $i with respect to the above base

{αi}n−1
1 of Φ are given by (see [2])

$i = ε1 + · · ·+ εi −
i

n

n∑
j=1

εj

=
1

n
[(n− i)(α1 + 2α2 + · · ·+ (i− 1)αi−1) + i((n− i)αi + (n− i− i)αi+1 + · · ·+ αn−1)]

= α1 + 2α2 + · · ·+ (i− 1)αi−1 −
i

n
(α1 + 2α2 + · · ·+ (i− 1)αi−1 − (n− i)αi − · · · − αn−1)

To guarantee that mi = zi$i ∈ An−1, we must have integral coefficients for all αi.

So zi must be the smallest positive integer that satisfies the condition zi · in ∈ Z.

Explicitly, zi = n
in

with

in = gcd(i, n)

Now applying Ω gives primary invariants πi = orb($i)
n
in . One can easily calculate

the Sn-orbit sum of $i from the first expression for $i given above:

orb($i) = sis
− i

n
n

where si is the ith elementary symmetric function in x1, . . . , xn as before. Hence

Z[An−1]W has the following primary invariants:

πi = s
n
in
i s
− i

in
n i = 1, . . . , n− 1 (3.8)
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Example 3.2.1. For n = 2, the submonoid M1 ⊆ Z+ is generated by 2 , giving

the single generator π1 =
s21
s2

= y1 + y−1
1 + 2 of Z[A1]S2 . Omitting the obviously

unnecessary summand 2, we obtain

Z[A1]S2 = Z[y1 + y−1
1 ]

a polynomial algebra. Note that y1 + y−1
1 = orb(α1).

Example 3.2.2. For n = 3, we have three generators for our monoid M2 as was

already depicted earlier in (2.8): m1 = (3, 0), m2 = (0, 3) and m3 = (1, 1). By

(3.7), these generators correspond to the fundamental invariants π1 =
s31
s3

, π2 =
s32
s23

and µ = s1s2
s3

respectively. The monoid relation 3m3 = m1 + m2 becomes

µ3 = π1π2 in Z[A2]S3 . This yields the following presentation for the multiplicative

invariant algebra:

Z[A2]S3 = Z[π1, π2, µ] ∼= Z[x, y, z]/(z3 − xy)

Evidently, a Hironaka decomposition of Z[A2]S3 is

Z[A2]S3 = Z[π1, π2]⊕ µZ[π1, π2]⊕ µ2Z[π1, π2]

This is in fact exactly the Hironaka decomposition provided by Proposition 2.3.5(c),

because K◦ ∩ A2 = {0,m3, 2m3}; see (2.8).

When explicitly written out in terms of the standard generators yi of the Lau-

rent polynomial algebra Z[An−1] = Z[y±1
1 , y±1

2 , . . . , y±1
n−1], the above fundamental

invariants π1, π2, µ have rather unwieldy expressions. A more economical system

of fundamental invariants for Z[A2]S3 is given by

µ− 3 = y1 + y−1
1 + y2 + y−1

2 + y1y2 + y−1
1 y−1

2 = orb(α1)

π1 − 3µ+ 3 = y2
1y2 + y−1

1 y2 + y−1
1 y−2

2 = orb(2α1 + α2)

π2 − 3µ+ 3 = y1y
2
2 + y1y

−1
2 + y−2

1 y−1
2 = orb(α1 + 2α2)

3.2.3 Computations

For general n, it is difficult to write down all secondary invariants, a Hironaka

decomposition, and the defining relations for Z[An−1]Sn . However, as we already
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mentioned in Section 2.3.4, one can use the computer algebra system CoCoA to

find Hilbert bases for monoids. In this section, we will illustrate this for the monoid

Mn−1 from (3.6) in particular cases. Once we have the Hilbert basis forMn−1 avail-

able, we can then use Theorem 2.3.3 and Proposition 2.3.5 to find the fundamental

invariants and a Hironaka decomposition. We will use the following description of

the monoid Mn−1, which is clearly equivalent to (3.6):

Mn−1 =
{

(l1, l2, . . . , ln−1, x) ∈ Zn+ |
n−1∑
i=1

ili − nx = 0
}

Thus, Mn−1 is the kernel in Zn+ of the following matrix:

A = [1, 2, 3, · · · , n− 1,−n]

Here are two sample calculations with CoCoA, for n = 3 and n = 4:

n = 3:

A:=Mat([[1,2,-3]]);
HilbertBasisKer(A);
[[1, 1, 1], [3, 0, 1], [0, 3, 2]]

The first two components of the output vectors tell us the Hilbert basis of our

monoid M2: (1, 1), (3, 0) and (0, 3). This does of course agree with the Hilbert

basis exhibited in (2.8) and used again in Example 3.2.2 above. The resulting fun-

damental invariants, a Hironaka decompositon and a presentation of the invariant

algebra Z[A2]S3 has already been worked out in Example 3.2.2.

n = 4:

A:=Mat([[1,2,3,-4]]);
HilbertBasisKer(A);
[[0, 2, 0, 1], [1, 0, 1, 1], [2, 1, 0, 1],
[0, 1, 2, 2], [4, 0, 0, 1], [0, 0, 4, 3]]

Here we obtain the following Hilbert basis of M3: (0, 2, 0), (1, 0, 1), (2, 1, 0),

(0, 1, 2), (4, 0, 0) and (0, 0, 4). To obtain a presentation of the invariant algebra
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Z[A3]S4 ∼= Z[M3], we will consider the polynomial algebra Z[x, y, z, u, v, w] in six

variables and the epimorphism

Z[x, y, z, u, v, w] � S := Z[M3]

sending each variable to one of the elements in our Hilbert basis:

x 7→ (4, 0, 0) y 7→ (0, 2, 0) z 7→ (0, 0, 4)

u 7→ (2, 1, 0) v 7→ (1, 0, 1) w 7→ (0, 1, 2)

We will denote the kernel of this map by I . Our goal is to find generators of the ideal

I; these are the desired defining relations for S. To this end, we view M3 ⊆ Z3
+ and

the algebra S as contained in the polynomial algebra in three variables:

S = Z[M3] ⊆ T := Z[Z3
+] ∼= Z[a, b, c]

For example, the Hilbert basis element (4, 0, 0) of M3 becomes the monomial a4

when viewed in Z[a±1, b±1, c±1], and (0, 1, 2) becomes bc2. The Laurent polynomial

algebra Z[a±1, b±1, c±1] can be presented as the image of the polynomial algebra in

the variables a, b, c plus one extra variable, d, which serves as the inverse of the

product abc. Thus, we may consider the map

T [x, y, z, u, v, w] � T

that is the identity on T and maps the variables x, . . . , w as indicated above. Thus,

we have nine variables altogether. The ideal I arises as the so-called elimination

ideal, eliminating the variables a, b, c, d. For more details, we refer to Algorithm 4.5

in [25, page 32]. The computation is carried out with the computer algebra system

MAGMA (V2.19-10):

> Z := IntegerRing();
> S<a,b,c,x,y,z,u,v,w>:= PolynomialRing(Z,9);
> I:=ideal<S|x-aˆ4,y-bˆ2,z-cˆ4,u-aˆ2*b,v-a*c,w-b*cˆ2>;
> EliminationIdeal(I,3);
Ideal of Polynomial ring of rank 9 over Integer Ring
Order: Lexicographical
Variables: a, b, c, x, y, z, u, v, w
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Basis:
[

z*u - vˆ2*w,
y*vˆ2 - u*w,
y*z - wˆ2,
x*w - u*vˆ2,
x*y - uˆ2,
x*z - vˆ4

]

To summarize, we have obtained the following presentation of our multiplica-

tive invariant algebra:

Z[A3]
S4 ∼= Z[M3]

∼= Z[x, y, z, u, v, w]/(zu− v2w, yv2 − uw, yz − w2, xw − uv2, xy − u2, xz − v4)

The first defining relation, zu−v2w, for example, comes from the equation (0, 0, 4)+

(2, 1, 0) = 2(1, 0, 1) + (0, 1, 2) in M3.

As with the example for n = 3, we may also write down a Hironaka description

for our invariant algebra. Recall our six monoid generators are:

m1 = (4, 0, 0) m2 = (0, 2, 0) m3 = (0, 0, 4)

m4 = (2, 1, 0) m5 = (1, 0, 1) m6 = (0, 1, 2)

By (3.7), these generators correspond to the fundamental invariants π1 =
s41
s4

, π2 =
s22
s4

, π3 =
s43
s34

, µ1 =
s21s2
s4

, µ2 = s1s3
s4

and µ3 =
s2s23
s24

respectively.
With the above notation the Hironaka decomposition of Z[A3]S4 is

Z[A3]
S4 =Z[π1, π2, π3]

⊕
⊕3

i=1µiZ[π1, π2, π3]
⊕
⊕3

i=2µ
i
2Z[π1, π2, π3]⊕

µ1µ2Z[π1, π2, π3]
⊕

µ2µ3Z[π1, π2, π3]

Again, this Hironaka decomposition is provided by Proposition 2.3.5(c).

3.2.4 Class group

For A1, we know from Example 3.2.2 above that Cl(Z[A1]S2) = 0 since this

invariant algebra is a polynomial ring. To find the class group Cl(Z[An−1]Sn) for
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n ≥ 3, we use Theorem 2.4.2. First, following [16, Example 4.2.2], I will show that

D = {1}

To see this, we first notice that the only elements of Sn that act as reflections on

An−1 are transpositions. Moreover, if σ ∈ Sn is a transposition then [16, Lemma

2.8.2] gives H1(〈σ〉, An−1) = 0, because σ has fixed points in {1, 2, . . . , n} for

n ≥ 3. Therefore, σ does not act as a diagonalizable reflection on An−1 , proving

that D = {1}, as claimed. Now Theorem 2.4.2(a) gives

Cl(Z[An−1]Sn) ∼= H1(Sn, An−1) ∼= Λ/An−1

where Λ is the weight lattice of the root system of type An−1 . This group is known

to be cyclic of order n . Indeed, the factor Λ/An−1 can be found in [2, Planche I,

(VIII)], and the group H1(Sn, An−1) is also covered by [16, Lemma 2.8.2]. Here,

we derive the same result in a different way, using formula (2.3):

Λ/An−1 = (An−1 ⊗Q/Z)Sn

In order to determine the invariants on the right, note that each element z ∈ An−1⊗
Q/Z can be uniquely written as z =

∑n−1
i=1 αi ⊗ qi with qi ∈ Q/Z . We will

simply write z =
∑

i qiαi . Now suppose that z ∈ (An−1 ⊗ Q/Z)Sn . Then, in

particular, (12 . . . n)z = z . Since (12 . . . n)αi = αi+1 for 1 ≤ i ≤ n − 2 and

(12 . . . n)αn−1 = εn − ε1 = −α1 − α2 − · · · − αn−1, this condition becomes

q1α2 + q2α3 + · · ·+ qn−2αn−1 + qn−1(−α1 − α2 − · · · − αn−1) =
∑
i

qiαi

which amounts to the following system of equations in Q/Z :

q1 = −qn−1

q2 = −qn−1 + q1

...

qn−1 = −qn−1 + qn−2

Putting q = −qn−1, we obtain that qi = iq for 1 ≤ i ≤ n− 1 and so z =
∑

i iqαi .

The equation qn−1 = −q = (n−1)q shows that q ∈ annQ/Z(n) = 1
n
Z/Z ∼= Z/nZ .
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One can easily check that z is also invariant under (12) and hence under all of Sn.

In sum, we have again shown that (An−1 ⊗Q/Z)Sn ∼= Z/nZ and hence

Cl(Z[An−1]Sn) ∼= Z/nZ (n ≥ 3)

3.3 Type Cn

We continue using the notation of Sections 3.1 and 3.2.

3.3.1 Root system, root lattice and Weyl group

Here, E = Rn and

Φ = {±2εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n} (3.9)

This root system contains the root system of type An−1 from (3.4), and it is identical

to the root system of type Bn displayed in (3.1) except for the factor 2 in the first

set of roots above. The Weyl group is exactly the same as for type Bn:

W = Dn o Sn ∼= {±1}n o Sn

If n = 2 then the root systems of type Bn and Cn are isomorphic, and so we may

assume that n ≥ 3 below. By the foregoing the root lattice L = L(Φ), which will

be denoted by Cn, is sandwiched between the root lattices An−1 and Bn. Under the

exact sequence (3.5), the root lattice Cn is the preimage of 2Z in Bn; so Cn fits into

the following short exact sequence ofW-lattices:

0 −→ Cn −→ Bn −→ Z/2Z −→ 0 (3.10)

where each basis element εi of Bn is mapped to 1̄ ∈ Z/2Z . The vectors αi :=

εi−εi+1 for i = 1, . . . , n−1 together with αn = 2εn form a base of the root system

Φ, and hence these vectors are also a Z-basis of the root lattice of Cn .
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3.3.2 MultiplicativeW-invariants

Sequence (3.10) will help us calculate multiplicative invariants of the root lattice

Cn , just as (3.5) did with An−1 . As before, we let xi = xεi and yi = xαi; so

yi = xi
xi+1

for i = 1, . . . , n− 1 and yn = x2
n. Then

Z[Cn] = Z[y±1
1 , y±1

2 , . . . , y±1
n ]

We deduce from (3.10) that Z[Cn] is the subalgebra of Z[Bn] = Z[x±1
1 , x±1

2 , . . . , x±1
n ]

that is spanned by the monomials of even total degree in the xis. Using this obser-

vation, we can easily find the invariants Z[Cn]W . Indeed, note that the action of

Sn on Z[Bn] = Z[x±1
1 , x±1

2 , . . . , x±1
n ] is degree preserving and Dn preserves at least

the parity of the degree. Thus, W = Dn o Sn preserves parities of degrees as

well, which allows us to conclude that Z[Cn]W is the even-degree component of

Z[Bn]W = Z[σ1, . . . , σn] , where

σi =
∑

I⊆{1,2,...,n}
|I|=i

∏
j∈I

(xj + x−1
j )

is the ith elementary symmetric function in the variables xj + x−1
j (j = 1, 2, . . . , n)

as in (3.2). Therefore, a Z-basis for Z[Cn]W is given by σl11 σ
l2
2 · · ·σlnn with

∑n
i=1 ili ∈

2Z. These observations prove most of part (a) of the following theorem which was

already stated as Theorem 1.2.1 in the Introduction.

Theorem 3.3.1. (a) Algebra structure: Z[Cn]W is isomorphic to the monoid al-

gebra Z[Mn] with

Mn =
{

(l1, l2, . . . , ln) ∈ Zn+ |
n∑
i=1

ili ≡ 0 mod 2
}

The isomorphism is given by

Z[Mn]
∼−→ Z[Cn]W

∈ ∈

(l1, l2, . . . , ln) 7−→ σl11 σ
l2
2 · · ·σlnn
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The monoid Mn decomposes as Mn
∼= Zb

n
2
c

+ ⊕ V with

V =
{

(k1, k2, . . . , kdn
2
e) ∈ Zd

n
2
e

+ |
∑
i

ki ≡ 0 mod 2
}

Thus, Z[Cn]W is a polynomial ring in bn
2
c variables over the second Veronese

subring of a polynomial algebra in dn
2
e variables over Z.

(b) Fundamental invariants: The algebra Z[Cn]W is generated by the following

n+
(dn

2
e

2

)
invariants:

πi =

σi for i even

σ2
i for i odd

γi,j = σiσj (1 ≤ i < j ≤ n and i, j both odd)

The πi are primary invariants and the γi,j are secondary: Z[π1, . . . , πn] is a

polynomial algebra over Z and Z[Cn]W is a finite module over Z[π1, . . . , πn].

(c) Hironaka decomposition:

Z[Cn]W =
⊕

1≤i1<j1<i2<···<it<jt≤n
all odd

γi1,j1γi2,j2 . . . γit,jt Z[π1, . . . , πn]

(Here, we allow t = 0, the corresponding summand being Z[π1, . . . , πn].)

(d) Defining relations: The
(dn

2
e

2

)
relations

πiπj = γ2
i,j (1 ≤ i < j ≤ n and i, j both odd)

are defining relations for Z[Cn]W .

Proof. The isomorphism Z[Cn]W ∼= Z[Mn], with the indicated monoid Mn, has

been proved in the remarks preceding the statement of the theorem. For the decom-

position Mn
∼= Zb

n
2
c

+ ⊕ V , note that∑
i

ili ≡ 0 mod 2 ⇐⇒
∑
i odd

li ≡ 0 mod 2
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The unrestricted components in even positions form the factor Zb
n
2
c

+ , the compo-

nents in odd positions the factor V . The decomposition Mn
∼= Zb

n
2
c

+ ⊕ V leads to

an algebra isomorphism

Z[Mn] ∼= Z[Zb
n
2
c

+ ]⊗ Z[V ]

where the first factor is a polynomial algebra in bn
2
c variables over Z and Z[V ] is

the second Veronese subring of the polynomial algebra Z[Zd
n
2
e

+ ] ∼= Z[t1, . . . , tdn
2
e]

as in Corollary 2.5.2. Equivalently, Z[Mn] is a polynomial algebra in bn
2
c variables

over the Veronese subring. This proves (a).

Now for the fundamental invariants in (b). The σi with i even are the vari-

ables of the polynomial factor Z[Zb
n
2
c

+ ] above. For the fundamental invariants of

the Veronese factor Z[V ], it suffices to quote Corollary 2.5.2(a). This proves (b).

The Hironaka decomposition and the defining relations in (c) and (d) are immediate

from Corollary 2.5.2 as well.

We remark that the generators πi, γi,j of the monoid Mn exhibited in the proof

of Theorem 3.3.1 above are clearly indecomposable elements of Mn . Therefore,

they form the Hilbert basis of Mn.

Example 3.3.2. When n = 2, the monoid M2 has generators (2, 0) and (0, 1).

These generators correspond to the following algebra generators:

π1 = σ2
1 = (x1 + x−1

1 + x2 + x−1
2 )2

= y2
1y2 + y−2

1 y−1
2 + y2 + y−1

2 + 2y1y2 + 2y1 + 2y−1
1 + 2y−1

1 y−1
2 + 4

π2 = σ2 = (x1 + x−1
1 )(x2 + x−1

2 )

= y1y2 + y1 + y−1
1 + y−1

1 y−1
2

giving Z[C2]W ∼= Z[σ2
1, σ2], a polynomial algebra. Since C2 is isomorphic to B2,

this is of course in agreement with what we found for Z[B2]W earlier. Again, the

fundamental invariant π1 could be replaced by π′1 = π1 − 2π2 − 4 to obtain the

following system of fundamental invariants:

π′1 = π1 − 2π2 − 4 = y2
1y2 + y−2

1 y−1
2 + y2 + y−1

2 = orb(y2)

π2 = y1y2 + y1 + y−1
1 + y−1

1 y−1
2 = orb(y1)
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Example 3.3.3. When n = 3 we have monoid generators (2, 0, 0), (0, 1, 0), (0, 0, 2)

and (1, 0, 1). For simplicity of notation define s± := s + s−1 for a summand s.
Using this notation we may now write the algebra generators that correspond to our
monoid generators.

π1 = σ2
1 = (x1 + x−11 + x2 + x−12 + x3 + x−13 )2

= 2

2∑
1

y±i + y±3 + 2

2∑
1

(y1y
i
2y3)

± + 2
∑
i<j
|i−j|=1

(yiyj)
± + (y21y

2
2y3)

± + (y22y3)
± + 6

π2 = σ2 =
∑
i<j

(xi + x−1i )(xj + x−1j )

=

2∑
1

(y1y
i
2y3)

± + y±1 + y±2 + (y1y2)
± + (y2y3)

±

π3 = σ2
3 =

(
(x1 + x−11 )(x2 + x−12 )(x3 + x−13 )

)2
= 8 + 4

∑
i≤j

i,j∈{0,1}

(y2i1 y
2j
2 y3)

± + 2
∑
i≤j

i∈{0,1},j∈{1,2}
|i−j|≤2

(y2i1 y
2j
2 y

2
3)
± + 2

∑
i,j∈{0,1}
i+j 6=0

(y2i1 y
2j
2 )±

+
∑

i=−1,1
(y2i1 y

−1
3 )± + (y21y

4
2y

3
3)
± + (y21y

4
2y3)

±

γ1,3 = σ1σ3 = (x1 + x−11 + x2 + x−12 + x3 + x−13 )(x1 + x−11 )(x2 + x−12 )(x3 + x−13 )

= (y21y2)
± + (y1y

3
2y

2
3)
± + (y21y

3
2y

2
3)
± + (y−11 y2)

± + (y21y2y3)
± + (y1y3)

± + (y1y
2
2)
± + (y1y

2
2y

2
3)
±

+ (y−11 y2y3)
± + (y1y

3
2y3)

± + (y−11 y3)
± + (y21y

3
2y3)

± + 2((y1y2y3)
± + (y1y

2
2y3)

± + y2y3)
±)

+ 2((y1y2)
± + y±2 + y±1 )

with the obvious relation π1π3 = γ2
1,3. Setting x := π1, y := π2, z := π3 and

w := γ1,3 we have

Z[C3]W ∼= Z[x, y, z, w]/(xz − w2)

3.3.3 Class group

We have already pointed out that Z[C2]W is a polynomial algebra over Z, giving

Cl(Z[C2]W) = 0. Thus, we will assume that n ≥ 3 below. Recall that Z[Cn]W is

a polynomial ring in bn
2
c variables over the second Veronese subring of a polyno-

mial algebra in dn
2
e variables over Z by Theorem 3.3.1(a). It is a standard fact that

Cl(R[x]) ∼= Cl(R) holds for any Krull domain R; see [10, Theorem 8.1]. Thus,

it would be possible to use the structure of the class groups of Veronese algebras
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(Corollary 2.5.2(d)) in order to calculate Cl(Z[Cn]W). However, we will use Theo-

rem 2.4.2 instead.

First we must find the subgroupD consisting of all diagonalizable reflections in

W .

Lemma 3.3.4. If n ≥ 3, then D = {1}.

Proof. Recall from Lemma 2.4.1 thatD is an elementary abelian normal 2-subgroup

of the Weyl groupW = Dn o Sn . We first claim that D ⊆ Dn . Indeed, otherwise

the image of D in Sn would be a nontrivial elementary abelian normal 2-subgroup

of Sn, which forces n = 4 and the image to be contained in the Klein 4-subgroup

of S4 . However, it is easy to see that no element of the form dσ ∈ W , with d ∈ D4

and σ ∈ S4 a product of two disjoint 2-cycles, acts as a reflection on Cn (or, equiv-

alently, on Bn). Therefore, we must have D ⊆ Dn as claimed. Recall further,

from Section 3.1.2, that the only elements of Dn that act as reflections are the el-

ements di ∈ Dn with di(εj) = εj for i 6= j and di(εi) = −εi. We will show that

H1(〈di〉, Cn) = 0; so none of these elements acts as a diagonalizable reflection on

Cn (even though they do so onBn). For this, we use the short exact sequence (3.10).

The associated long exact cohomology sequence gives an exact sequence of groups

B〈di〉n −→ Z/2Z −→ H1(〈di〉, Cn) −→ H1(〈di〉, Bn) −→ H1(〈di〉,Z/2Z)

First, the map B
〈di〉
n → Z/2Z is onto, because any εj (j 6= i) belongs to B

〈di〉
n

and has nontrivial image in (Z/2Z)〈di〉 = Z/2Z . Therefore, the above sequence

becomes

0 −→ H1(〈di〉, Cn) −→ H1(〈di〉, Bn) −→ H1(〈di〉,Z/2Z)

Next, the group H1(〈di〉,Z/2Z) ∼= Hom(〈di〉,Z/2Z) ∼= Z/2Z is generated by the

map h with h(di) = 1̄ ∈ Z/2Z . We also know that H1(〈di〉, Bn) ∼= Z/2Z , since

di is a diagonalizable reflection on Bn . Explicitly,

H1(〈di〉, Bn) = Der(〈di〉, Bn)/ Inn(〈di〉, Bn)

∼= annBn(di + 1)Bn/(di − 1)Bn

= 〈εi + 2Zεi〉 ∼= Z/2Z
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with generator the class of the derivation δ ∈ Der(〈di〉, Bn) that is given by δ(di) =

εi . The mapH1(〈di〉, Bn)→ H1(〈di〉,Z/2Z) ∼= Hom(〈di〉,Z/2Z) sends δ to h; so

H1(〈di〉, Bn)
∼→ H1(〈di〉,Z/2Z) . The last exact sequence above therefore shows

that H1(〈di〉, Cn) = 0 as desired.

Now Theorem 2.4.2(a) gives Cl(Z[Cn]W) ∼= H1(W , Cn) ∼= Λ/Cn , where Λ is

the weight lattice of the root system of type Cn . The factor Λ/Cn is known to be

isomorphic to Z/2Z; see [2, Planche III, (VIII)]. Let us summarize the result in the

following proposition, for which I will give a direct proof below.

Proposition 3.3.5. Cl(Z[Cn]W) ∼= Z/2Z for n ≥ 3 .

Proof. By (2.3), we must find (Cn⊗Q/Z)W . We start by calculating (Cn⊗Q/Z)Dn

following the method of Section 3.2.4. Each element z ∈ Cn⊗Q/Z can be uniquely

written as z =
∑n

i=1 qiαi with qi ∈ Q/Z . If z ∈ (Cn ⊗ Q/Z)Dn , then diz = z for

all i. In particular,

d1z = q1(−α1 − 2α2 − · · · − 2αn−1 − αn) + q2α2 + · · ·+ qnαn = z

gives the following equations in Q/Z:

−q1 = q1

−2q1 + qj = qj for 1 < j < n

−q1 + qn = qn

So q1 = 0. For 1 < i < n, the condition diz = z becomes

q1α1 + · · ·+ qi−1(αi−1 + 2αi + · · ·+ 2αn−1 + αn)

+qi(−αi − 2αi+1 − · · · − 2αn−1 − αn) + · · ·+ qnαn = z

This gives the relations:

2qi−1 − qi = qi

2qi−1 − 2qi + qj = qj for i < j < n

qi−1 − qi + qn = qn
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So we have qi−1 = qi for 1 < i < n − 1, but q1 = 0 giving qi = 0 for 1 ≤ i < n.

Lastly consider the equation dnz = z. This will give relation qn−1 − qn = qn. But

qn−1 = 0 so we have qn = −qn, or 2qn = 0. Setting qn := q gives the invariant

qαn, with q ∈ annQ/Z(2) = 1
2
Z/Z = {0, 1

2
} ∼= Z/2Z . In sum, we have shown that

(Cn ⊗Q/Z)Dn has order 2, with generator 1
2
αn .

Finally, any σ ∈ Sn−1 fixes 1
2
αn , and if σ(n) = i < n, then

σ(1
2
αn) = 1αi + 1αi+1 + · · ·+ 1αn−1 + 1

2
αn = 1

2
αn

This shows that 1
2
αn is fixed by Sn , proving the proposition.

3.4 Type Dn

The last classical root lattice is type Dn with n ≥ 4. Continuing with the same

notation as used above, we will calculate the multiplicative invariants and their class

group for the root lattice Dn associated to this root system.

3.4.1 Root system, root lattice and Weyl group

The set of roots is the subset of E = Rn given by

Φ = {±εi ± εj | 1 ≤ i < j ≤ n} (3.11)

This root system is contained in the root system of type Cn. The Weyl group for Dn

is a proper subgroup ofW(Cn) = Dn o Sn:

W =W(Dn) = (Dn ∩ SLn(Z)) o Sn

We remark that this root system is often considered for n ≥ 3; see [2, Planche IV].

However, for n = 3, the root system is isomorphic to the root system of type A3.

The description of W above becomes the standard description of W(A3) = S4 as

the semidirect product of S3 with a Klein 4-group. Therefore, the material below is

only new for n ≥ 4.
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The vectors αi := εi − εi+1 for i = 1, . . . , n − 1 and αn = εn−1 + εn form

a base for the root system Φ, giving in particular a Z-basis for the root lattice Dn.

Note that the αi with 1 ≤ i ≤ n− 1 were also part of the Z-basis of the root lattice

Cn considered in Section 3.3.1. The last basis vectors, εn−1 + εn for Dn and 2εn

for Cn, are related by 2εn + αn−1 = εn−1 + εn . Therefore, the root lattices Cn and

Dn are identical. Thus, by (3.10) above,

Dn =
{∑

iziεi ∈
n⊕
i=1

Zεi |
∑

izi is even
}

(3.12)

3.4.2 MultiplicativeW-invariants

To calculate the multiplicative invariants for the root lattice Dn , we will use

Theorem 2.3.3 and Proposition 2.3.5. The invariant algebra Z[Dn]W could also be

calculated using a more elementary approach, similar to what we did for Cn and

An , but the algebraic structure as a monoid algebra would be difficult to obtain

in this way. Recall that Theorem 2.3.3 states that Z[Dn]W is isomorphic to the

monoid algebra of the monoid Dn ∩ Λ+ with Λ+ =
⊕n

i=1 Z+$i , the isomorphism

Ω : Z[Dn ∩ Λ+]
∼−→ Z[Dn]W being given by

Z[Dn ∩ Λ+]
∼−→ Z[Dn]W

∈ ∈

n∑
i=1

li$i 7−→
n∏
i=1

orb($i)
li

In the following theorem, we determineDn∩Λ+ explicitly and use the isomorphism

above to give the description of our invariant algebra.

As usual, we put xi = xεi and we let

σi =
∑

I⊆{1,2,...,n}
|I|=i

∏
j∈I

(xj + x−1
j )

denote the ith elementary symmetric function in the variables x1+x−1
1 , . . . , xn+x−1

n

(j = 1, 2, . . . , n); these elements are invariant under W(Bn), which contains W .
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As we will review in the proof of Theorem 3.4.1 below, the weight lattice Λ is

not contained in
⊕n

i=1 Zεi but in the larger sublattice
⊕n

i=1 Z
1
2
εi of the Euclidean

space E; so we will work in this setting as well. The Weyl groupW stabilizes both

lattices. We put yi = x
1
2
εi and

τ± =
∑

(d1,...,dn)∈{±1}n∏
i di=±1

yd11 y
d2
2 · · · ydnn

Note that τ+ is theW-orbit sum of the lattice element 1
2
(ε1 +ε2 + · · ·+εn), because

theW-orbit of this element consists of all 1
2
(d1ε1 + · · · + dnεn) with di = ±1 and∏

i di = 1 . Similarly, τ− is theW-orbit sum of 1
2
(ε1 +ε2 + · · ·+εn−1−εn) . Using

this along with the notation in 2.3.3 and 2.3.4 we give the following theorem.

Theorem 3.4.1. (a) Monoid algebra structure: Z[Dn]W is isomorphic to the

monoid algebra Z[Mn] with

Mn =
{

(li) ∈ Zn+ | ln−1 + ln ∈ 2Z and ln−1+ln
2

n+ ln−1 +
∑
i≤n−2
i odd

li ∈ 2Z
}

The isomorphism is given by

Z[Mn]
∼−→ Z[Dn]W

∈ ∈

(l1, l2, . . . , ln) 7−→ σl11 · · ·σ
ln−2

n−2 τ
ln−1

− τ ln+

The monoid Mn decomposes as Mn
∼= Zb

n−2
2
c

+ ⊕W with

W =
{

(ki) ∈ Zd
n+2
2
e

+ | k1 + k2 ∈ 2Z and k1+k2
2

n+
∑
i≥2

ki ∈ 2Z
}

(b) Fundamental invariants for n even: Put

πi =

σ2
i for i odd

σi for i even
(1 ≤ i ≤ n− 2) and πn−1 = τ 2

− , πn = τ 2
+
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Moreover, put

γi = σiτ−τ+ for 1 ≤ i ≤ n− 2, i odd

γi,j = σiσj for 1 ≤ i < j ≤ n− 2 both odd

The above 1
8
(n2 + 6n) elements generate the invariant algebra Z[Dn]W , with

the πi serving as primary invariants.

(c) Fundamental invariants for n odd: Put

πi =

σ2
i for i odd

σi for i even
(1 ≤ i ≤ n− 2) and πn−1 = τ 4

− , πn = τ 4
+

Moreover, put

γi,j = σiσj for 1 ≤ i < j ≤ n− 2 both odd

γn−1,n = τ−τ+

γi,n−1 = σiτ
2
− for 1 ≤ i ≤ n− 2 odd

γi,n = σiτ
2
+ for 1 ≤ i ≤ n− 2 odd

The above 1
8
(n2 + 12n+ 3) elements generate the invariant algebra Z[Dn]W ,

with the πi serving as primary invariants.

Proof. (a) We need to describe the submonoid Dn ∩ Λ+ of Λ+ =
⊕n

i=1 Z+$i . By

[2, Planche IV] the root system of type Dn has the following fundamental weights

with respect to the base {αi}n1 of the root system that was exhibited in Section 3.4.1:

$i = ε1 + ε2 + · · ·+ εi (1 ≤ i ≤ n− 2)

= α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αn−2) +
1
2 i(αn−1 + αn)

$n−1 = 1
2(ε1 + ε2 + · · ·+ εn−2 + εn−1 − εn)

= 1
2(α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2nαn−1 +

1
2(n− 2)αn)

$n = 1
2(ε1 + ε2 + · · ·+ εn−2 + εn−1 + εn)

= 1
2(α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1
2(n− 2)αn−1 +

1
2nαn)

In view of (3.12), an element
∑

i li$i ∈ Λ+ (li ∈ Z+) belongs to Dn if and only if

the following two conditions are satisfied:

ln−1 + ln ∈ 2Z (3.13)
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and
n−2∑
i=1

ili + 1
2
(n− 2)ln−1 + 1

2
nln ∈ 2Z (3.14)

Indeed, (3.13) is equivalent to the condition
∑

i li$i ∈
⊕n

i=1 Zεi , while (3.14)

expresses the defining condition that
∑

i zi must be even in (3.12). Observe further

that (3.14) can be rewritten as follows:

ln−1+ln
2

n+ ln−1 +
∑
i≤n−2
i odd

li ∈ 2Z (3.15)

This yields the monoid Mn as well as the isomorphism

Mn
∼−→ Dn ∩ Λ+

∈ ∈

(l1, l2, . . . , ln) 7−→
n∑
i=1

li$i

The decompositionMn
∼= Zb

n−2
2
c

+ ⊕W is clear, because (3.14) imposes no condition

on the bn−2
2
c components li for even i ≤ n − 2 . In the description of W , we have

also relabeled ln as k1, ln−1 as k2 etc.

To justify the indicated isomorphism Z[Mn]
∼−→ Z[Dn]W , we need to determine

theW-orbit sums orb($i) . TheW-orbit of$i = ε1+ε2+· · ·+εi with 1 ≤ i ≤ n−2

consists of all possible ±εj1 ± εj2 ± · · · ± εji with j1 < · · · < ji . Therefore, the

corresponding orbit sum evaluates to

orb($i) = σi

Finally, we have already pointed out before the statement of the theorem that

orb($n) = τ+ and orb($n−1) = τ−

This completes the proof of (a).

To obtain fundamental invariants for Z[Dn]W , we determine the Hilbert basis

for our monoid Mn
∼= Dn ∩ Λ+ using the procedure described in Section 2.3.4. As

in that section, we put

mi = zi$i (i = 1, 2, . . . , n)
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where zi is the order of $i modulo Dn. It is easy to find the zi for the fundamental

weights $i:

zi =

1 if i is even

2 if i is odd
(1 ≤ i ≤ n− 2) (3.16)

and

zn−1 = zn =

2 if n is even

4 if n is odd
(3.17)

This gives the elements mi = zi$i (i = 1, . . . , n) in the Hilbert basis, which by (a)

yield the fundamental invariants

πi = orb($i)
zi

in both (b) and (c).

As we have seen in Section 2.3.4, the remaining elements of the Hilbert basis

of Dn ∩ Λ+ all belong to Dn ∩K◦, where K◦ =
{∑n

i=1 timi ∈ E | 0 ≤ ti < 1
}

.

So we are looking for indecomposable elements of M having the form

(l1, . . . , ln) = (t1z1, . . . , tnzn) ∈ Zn+ with 0 ≤ ti < 1

and such that conditions (3.13) and (3.15) are satisfied. Since each li ∈ Z+ , equa-

tions (3.16) and (3.17) yield the following restrictions on what li can be:

li =

0 if i is even

0 or 1 if i is odd
(1 ≤ i ≤ n− 2) (3.18)

and

ln−1, ln ∈

{0, 1, 2, 3} if n is odd

{0, 1} if n is even
(3.19)

First, suppose that ln−1 = ln = 0. Then (3.13) certainly holds and condition

(3.15) becomes
∑
i≤n−2
i odd

li ∈ 2Z. Since the li in this sum are either 0 or 1 by (3.18),
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condition (3.15) just says that there must be an even number of li = 1 for odd i ≤
n− 2 . The corresponding indecomposable elements of Mn are obtained by taking

just two of these li = 1 . In sum, we have obtained the following indecomposable

elements of Dn ∩ Λ+:

mi,j = $i +$j (1 ≤ i < j ≤ n− 2 and i, j both odd)

The element mi,j yields the fundamental invariants γi,j = σiσj = orb($i) orb($i)

in (b) and (c). Note that

γ2
i,j = πiπj (3.20)

From now on, we assume that ln−1, ln are not both zero. For this we start with

Case 1: n is even. Since ln−1 + ln ∈ 2Z by (3.13), condition (3.19) says we

must have ln−1 = ln = 1. Now (3.15) becomes

n+ 1 +
∑
i≤n−2
i odd

li ∈ 2Z

with all li ∈ {0, 1} by (3.18). To satisfy the above condition we must have an

odd number of li = 1. Taking exactly one nonzero li = 1 gives the remaining

indecomposable elements for Mn:

bi = $i +$n−1 +$n

Indeed, any n-tuple (l1, . . . , ln−2, 1, 1) ∈ Mn with 2k + 1 of the li = 1 may be

written as a sum (l1, . . . , ln−2, 1, 1) = (l′1, . . . , l
′
n−2, 0, 0) + (l1, . . . , ln−2, 1, 1) with

2k of the l′i = 1 and exactly one lj = 1 (j 6= i). Since the second summand corre-

sponds to bj and the first one can be written in terms of the Hilbert basis elements

mr,s constructed earlier, we have found the complete Hilbert basis of Mn. By iso-

morphism in (a), the basis element bi yields the fundamental invariant γi = σiτ−τ+

giving a total of 1
8
(n2 + 6n) basis elements for our monoid, and hence fundamental

invariants, when n is even. Note that

γ2
i = πiπn−1πn (3.21)
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Together with (3.20), this relation shows that the invariant algebra Z[Dn]W is inte-

gral over the subalgebra Z[π1, . . . , πn]; so the πi form a set of primary invariants.

Case 2: n is odd. By (3.19), if either ln−1 or ln are zero, the other must be 2 to

satisfy (3.13). This leads to the possibilities (ln−1, ln) = (2, 0) or (ln−1, ln) = (0, 2).

In either case (3.15) becomes

n+ 2 +
∑
i≤n−2
i odd

li ∈ 2Z

with all li ∈ {0, 1} by (3.18). Therefore, we must have an odd number of li = 1.

As above, indecomposable monoid elements are obtained by taking one li = 1 and

all others zero. So we have indecomposable elements

mi,n−1 = $i + 2$n−1 and mi,n = $i + 2$n

giving fundamental invariants γi,n−1 = σiτ
2
− and γi,n = σiτ

2
+. Now assume that

neither ln−1 nor ln are zero; so ln−1 and ln belong to {1, 2, 3} by (3.19) and their

sum must be even by (3.13). First assume that ln−1 = ln. Then (3.15) becomes

ln(n+ 1) +
∑
i≤n−2
i odd

li ∈ 2Z

Since n + 1 is even, this amounts to the sum
∑
li being even. The only indecom-

posable element of Mn resulting from this situation is obtained by letting all li = 0

for 1 ≤ i ≤ n− 2 and ln−1 = ln = 1, which gives the Hilbert basis element

mn−1,n = $n−1 +$n

and the corresponding fundamental invariant, γn−1,n = τ−τ+.

Finally, if we allow one of ln−1, ln to be 1 and the other 3, then (3.15) gives one

of the two equations:
2n+ 1 +

∑
i≤n−2
i odd

li ∈ 2Z

2n+ 3 +
∑
i≤n−2
i odd

li ∈ 2Z
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In either case, we must have an odd number of nonzero li = 1 in the sum to satisfy

this condition. It follows that we can write this as m + m′ where m has an odd

number of li = 1 and ln−1 = 2, (or ln = 2, depending on which we took to be

3 above), and m′ is the indecomposable element (0, . . . , 0, 1, 1). This completes

our Hilbert basis when n is odd, giving a total of 1
8
(n2 + 12n+ 3) indecomposable

elements. Again, we see that the squares of the fundamental invariants γi,j, γi,n−1

and γi,n with i ≤ n− 2 as well as the fourth power of γn−1,n belong to the subalge-

bra Z[π1, . . . , πn] of Z[Dn]W ; so the πi form a system of primary invariants. This

completes the proof.

We remark that one can also use the description in Proposition 2.3.5 to write

down a Hironaka decomposition for Z[Dn]W , though it is not particularly nice or

compact so we omit it here.

Example 3.4.2. For n = 3, our fundamental weights are

$1 = ε1 = α1 + 1
2
(α2 + α3)

$2 = 1
2
(ε1 + ε2 − ε3) = 1

2
(α1 + 3

2
α2 + 1

2
α3)

$3 = 1
2
(ε1 + ε2 + ε3) = 1

2
(α1 + 1

2
α2 + 3

2
α3)

The theorem above then gives the following Hilbert basis for M3
∼= Λ+∩D3, in the

same notation that was used in the proof:

m1 = 2$1 m2 = 4$2 m3 = 4$3

m2,3 = $2 +$3 m1,2 = $1 + 2$2 m1,3 = $1 + 2$3
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Using the notation above, we obtain the following fundamental invariants for Z[D3]W :

π1 = σ2
1 = (x1 + x−1

1 + x2 + x−1
2 + x3 + x−1

3 )2

π2 = τ4− = (orb((x1x2x
−1
3 )

1
2 ))4

= ((x1x2x
−1
3 )

1
2 + (x−1

1 x2x3)
1
2 + (x1x

−1
2 x3)

1
2 + (x−1

1 x−1
2 x−1

3 )
1
2 )4

π3 = τ4+ = (orb((x1x2x3)
1
2 ))4

= ((x1x2x3)
1
2 + (x−1

1 x−1
2 x3)

1
2 + (x1x

−1
2 x−1

3 )
1
2 + (x−1

1 x2x
−1
3 )

1
2 )4

γ2,3 = τ−τ+

= [(x1x2x
−1
3 )

1
2 + (x−1

1 x2x3)
1
2 + (x1x

−1
2 x3)

1
2 + (x−1

1 x−1
2 x−1

3 )
1
2 )4]·

[(x1x2x3)
1
2 + (x−1

1 x−1
2 x3)

1
2 + (x1x

−1
2 x−1

3 )
1
2 + (x−1

1 x2x
−1
3 )

1
2 ]

γ1,2 = σ1τ
2
−

= (x1 + x−1
1 + x2 + x−1

2 + x3 + x−1
3 )((x1x2x

−1
3 )

1
2 + (x−1

1 x2x3)
1
2 + (x1x

−1
2 x3)

1
2 + (x−1

1 x−1
2 x−1

3 )
1
2 )2

γ1,3 = σ1τ
2
+

= (x1 + x−1
1 + x2 + x−1

2 + x3 + x−1
3 )((x1x2x3)

1
2 + (x−1

1 x−1
2 x3)

1
2 + (x1x

−1
2 x−1

3 )
1
2 + (x−1

1 x2x
−1
3 )

1
2 )2

As noted at the beginning of this section, Z[D3]W ∼= Z[A3]S4 . This algebra was

already discussed in detail in Section 3.2.3, with the aid of the computer algebra

systems CoCoA and MAGMA. Though it is not immediately obvious how to con-

solidate the above description with our earlier one, note that we did obtain the same

number of fundamental invariants with our new approach.

Example 3.4.3. For n = 4, our fundamental weights are

$1 = ε1 = α1 + α2 + 1
2
(α3 + α4)

$2 = ε1 + ε2 = α1 + 2α2 + α3 + α4

$3 = 1
2
(ε1 + ε2 + ε3 − ε4) = 1

2
(α1 + 2α2 + 2α3 + α4)

$4 = 1
2
(ε1 + ε2 + ε3 + ε4) = 1

2
(α1 + 2α2 + α3 + 2α4)

Following the method in the proof of Theorem 3.4.1, we find the following Hilbert

basis for M4
∼= Λ+ ∩D4:

m1 = 2$1, m2 = $2, m3 = 2$3, m4 = 2$4, b1 = $1 +$3 +$4
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Using the notation above, we obtain the following fundamental invariants for Z[D4]W :

π1 = σ2
1 = (x1 + x−11 + x2 + x−12 + x3 + x−13 + x4 + x−14 )2

π2 = σ2 =
∑
i<j

xixj +
∑
i 6=j

x−1i xj +
∑
i<j

x−1i x−1j

π3 = τ2− = (orb((x1x2x3x
−1
4 )

1
2 ))2

= ((x1x2x3x
−1
4 )

1
2 + (x−11 x2x3x4)

1
2 + (x1x

−1
2 x3x4)

1
2 + (x1x2x

−1
3 x4)

1
2 + (x−11 x−12 x3x

−1
4 )

1
2

+ (x−11 x2x
−1
3 x−14 )

1
2 + (x1x

−1
2 x−13 x−14 )

1
2 + (x−11 x−12 x−13 x4)

1
2 )2

π4 = τ2+ = (orb((x1x2x3x4)
1
2 ))2

= ((x1x2x3x4)
1
2 + (x−11 x−12 x3x4)

1
2 + (x−11 x2x

−1
3 x4)

1
2 + (x−11 x2x3x

−1
4 )

1
2 + (x1x

−1
2 x−13 x4)

1
2

+ (x1x
−1
2 x3x

−1
4 )

1
2 + (x1x2x

−1
3 x−14 )

1
2 + (x−11 x−12 x−13 x−14 )

1
2 )2

γ1 = σ1τ−τ+

= (x1 + x−11 + x2 + x−12 + x3 + x−13 + x4 + x−14 )(orb(x1x2x3x
−1
4 ))(orb(x1x2x3x4))

3.4.3 Class Group

We will use Theorem 2.4.2 to calculate Cl(Z[Dn]W) for n ≥ 4. To this end, we

must first find D, the group of diagonalizable reflections in W . But, as we noted

earlier, Dn and Cn are the same lattice andW(Dn) is a subgroup ofW(Cn). Since

there are no nonidentity elements ofW(Cn) that act as a diagonalizable reflection

on Dn = Cn by Lemma 3.3.4 , we conclude that D = {1} for Dn as well. Now

Theorem 2.4.2(a) gives

Cl(Z[Dn]W) ∼= H1(W , Cn) ∼= Λ/Dn

where Λ is the weight lattice of the root system of type Dn . The factor Λ/Dn is

known to be isomorphic to Z/2Z × Z/2Z for n even and Z/4Z for n odd; see [2,

Planche III, (VIII)]. Let us summarize the result in the following proposition, for

which we will give a direct proof using invariants below.

Proposition 3.4.4. Cl(Z[Dn]W) ∼=

{
Z/2Z× Z/2Z if n is even

Z/4Z if n is odd

Proof. As with the previous two root lattices, we will calculate (Dn ⊗ Q/Z)W to

find our class group. The calculations here will be similar to those in the proof of
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Proposition 3.3.5. As in that proof, any z ∈ Dn ⊗Q/Z has a unique expression of

the form

z =
n∑
i=1

qiαi

with αi as in Section 3.4.1 and qi ∈ Q/Z. The groupW = (Dn ∩ SLn(Z)) o Sn
is generated by the permutations σ = (1 2 . . . n), τ = (1 2) ∈ Sn together with

the diagonal matrix δ ∈ Dn having −1 in positions (1, 1) and (2, 2) with all other

diagonal entries being 1. Thus, z ∈ (Dn ⊗Q/Z)W if and only if the following

three conditions are satisfied:

δ(z) = z , σ(z) = z and τ(z) = z

Straightforward computations give the following formulas:

δ(z) = (−q1)α1 + (−q2)α2 +
n−2∑
i=3

(qi − 2q2)αi + (qn−1 − q2)αn−1 + (qn − q2)αn

σ(z) = (qn − qn−1)α1 +
n−2∑
i=2

(qi−1 + qn − qn−1)αi + (qn−2 − qn−1)αn−1 + qnαn

τ(z) = (q2 − q1)α1 +
n∑
i=2

qiαi

Thus, the condition δ(z) = z is equivalent to

2q1 = 0 and q2 = 0 (3.22)

while σ(z) = z is equivalent to

qn − qn−1 = q1 , qi−1 + q1 = qi (2 ≤ i ≤ n− 2) and qn−2 = 2qn−1 (3.23)

Finally, τ(z) = z amounts to the condition q2 − q1 = q1, which already follows

from (3.22). Conditions (3.22) and (3.23) are readily seen to be equivalent to the

following set of conditions

2q1 = 0 , qn−2 = 2qn−1 , qn = q1 + qn−1

and

qi =

0 for i ≤ n− 2, i even

q1 for i ≤ n− 2, i odd
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When n is even, then these conditions imply that 0 = qn−2 = 2qn−1. Thus, in

this case, the element z ∈ Dn ⊗Q/Z isW-invariant if and only if

z = q1

( ∑
i≤n−2
i odd

αi

)
+ qn−1αn−1 + (q1 + qn−1)αn with 2q1 = 2qn−1 = 0

Therefore, the invariant group (Dn ⊗ Q/Z)W is isomorphic to Z/2Z × Z/2Z if n

is even.

For odd n, we have q1 = qn−2 = 2qn−1 and z ∈
(
Dn ⊗Q/Z

)W if and only if

z = 2qn−1

( ∑
i≤n−2
i odd

αi

)
+ qn−1αn−1 + 3qn−1αn with 4qn−1 = 0

This shows that (Dn⊗Q/Z)W is isomorphic to Z/4Z if n is odd, thereby finishing

the proof of the proposition.
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CHAPTER 4

Multiplicative Invariants of

Exceptional Root Lattices

Of the five exceptional root systems, the root lattices of G2,F4, and E8 are all

identical to their weight lattices; see Bourbaki [2, Planches VII, VIII, IX]. Thus,

by Bourbaki’s Theorem, we know that the multiplicative invariant algebras are iso-

morphic to polynomial rings with a system of variables given by the orbit sums of

the fundamental weights. This leaves only the types E6 and E7 to consider; the mul-

tiplicative invariant algebras of the root lattices for these types are computed below.

Because the Weyl groups in question are very large, we will use Theorem 2.3.3 and

Proposition 2.3.5 to calculate the multiplicative invariant algebras. Throughout, we

follow the notations of [2, Planches V and VI].
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4.1 Type E6

4.1.1 Root system, root lattice and Weyl group

Here, E is the subspace of R8 that is orthogonal to ε6 − ε7 and to ε7 + ε8. The

set of roots is the subset of E that is given by

Φ = {±εi ± εj | 1 ≤ i < j ≤ 5}

∪ {±1
2
(ε8 − ε7 − ε6 +

5∑
i=1

(−1)ν(i)εi) |
5∑
i=1

ν(i) ∈ 2Z} (4.1)

Here ν(i) ∈ {0, 1}. Thus, there are 4 ·
(

5
2

)
+ 25 = 72 roots. A base for this root

system is given by

α1 = 1
2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7)

α2 = ε1 + ε2

αi = εi−1 − εi−2 (i = 3, . . . , 6)

The root lattice of E6 will be denoted by E6; so E6 =
⊕6

i=1 Zαi.
The Weyl group W = W(E6) has order 27 34 5 = 51 840. The group W has

a number of interesting realizations; see Bourbaki [2, Exercise 2 on page 228] and

Humphreys [14, Section 2.12]. For example, W can be described as the automor-

phism group of the famous configuration of 27 lines on a cubic surface. The rotation

subgroupW+ = {w ∈ W | detw = 1} is isomorphic to the projective symplec-

tic group PSp4(3) over F3; the latter group is the unique simple group of order

25 920. See the Atlas of Finite Groups [7]. Denoting the standard inner product of

R8 by ( . , . ) as usual, the quadratic form 1
2
(x, x) yields a non-degenerate quadratic

form on the 6-dimensional F2-vector space E6 = E6/2E6. The action ofW on E6

preserves this form, and this induces an isomorphism

W ∼= O6(2) (4.2)

in the notation of [7].
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4.1.2 MultiplicativeW-invariants

By Theorem 2.3.3 we know that

Z[E6]W ∼= Z[Λ+ ∩ E6]

where Λ+ =
⊕6

i=1 Z+$i and $i are the fundamental weights with respect to the

above base {αi}6
1 of the root system. Explicitly,

$1 = 2
3
(ε8 − ε7 − ε6) = 1

3
(4α1 + 3α2 + 5α3 + 6α4 + 4α5 + 2α6)

$2 = 1
2
(ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7 + ε8)

= α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

$3 = 5
6
(ε8 − ε7 − ε6) + 1

2
(−ε1 + ε2 + ε3 + ε4 + ε5)

= 1
3
(5α1 + 6α2 + 10α3 + 12α4 + 8α5 + 4α6)

$4 = ε3 + ε4 + ε5 − ε6 − ε7 + ε8

= 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6

$5 = 2
3
(ε8 − ε7 − ε6) + ε4 + ε5

= 1
3
(4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 5α6)

$6 = 1
3
(ε8 − ε7 − ε6) + ε5

= 1
3
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6)

In order to further describe the invariant algebra Z[E6]W , we need to analyze the

monoid

M = Λ+ ∩ E6

Hilbert basis of M . Let z ∈ M and write z = l1$1 + · · · + l6$6 with li ∈ Z+.

Then we know that the coefficients of each αi in our base must be integral. This
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gives the following conditions:

coefficient of α1 : 4
3
l1 + l2 + 5

3
l3 + 2l4 + 4

3
l5 + 2

3
l6 ∈ Z

α2 : l1 + 2l2 + 2l3 + 3l4 + 2l5 + l6 ∈ Z

α3 : 5
3
l1 + 2l2 + 10

3
l3 + 4l4 + 8

3
l5 + 4

3
l6 ∈ Z

α4 : 2l1 + 3l2 + 4l3 + 6l4 + 4l5 + 2l6 ∈ Z

α5 : 4
3
l1 + 2l2 + 8

3
l3 + 4l4 + 10

3
l5 + 5

3
l6 ∈ Z

α6 : 2
3
l1 + l2 + 4

3
l3 + 2l4 + 5

3
l5 + 4

3
l6 ∈ Z

Note that the conditions at α2 and α4 are automatically satisfied for any (l1, . . . , l6) ∈
Z6

+, and the remaining conditions do not impose any restrictions on l2 and l4. There-

fore, our system of conditions can be rewritten as follows:

4l1 + 5l3 + 4l5 + 2l6 ∈ 3Z 5l1 + 10l3 + 8l5 + 4l6 ∈ 3Z

4l1 + 8l3 + 10l5 + 5l6 ∈ 3Z 2l1 + 4l3 + 5l5 + 4l6 ∈ 3Z

Finally, reducing mod 3 we see that all four conditions are equivalent to the single

condition l1 + 2l3 + l5 + 2l6 ∈ 3Z. Thus, we are left with the following description

of our monoid:

M = Λ+ ∩ E6
∼= {(l1, . . . , l6) ∈ Z6

+ | l1 + 2l3 + l5 + 2l6 ∈ 3Z} ∼= Z2
+ ⊕W

where

W = {(k1, k2, k3, k4) ∈ Z4
+ | k1 + 2k2 + k3 + 2k4 ∈ 3Z}

A Hilbert basis for the monoid W can be obtained by using using the method de-

scribed above in Proposition 2.3.5 or by simply using CoCoA as in Section 3.2.3.

To carry out the latter approach, we will use the following description of the monoid

W :

W =
{

(k1, k2, k3, k4, x) ∈ Z5
+ | k1 + 2k2 + k3 + 2k4 − 3x = 0

}
Thus,W is the kernel in Z5

+ of the matrixA = [1, 2, 1, 2,−3], which can be obtained

with CoCoA as follows:
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A:=Mat([[1,2,1,2,-3]]);
HilbertBasisKer(A);

[[0, 0, 1, 1, 1], [1, 0, 0, 1, 1], [0, 1, 1, 0, 1],
[1, 1, 0, 0, 1], [0, 0, 3, 0, 1], [1, 0, 2, 0, 1],
[2, 0, 1, 0, 1], [3, 0, 0, 0, 1], [0, 0, 0, 3, 2],
[0, 1, 0, 2, 2], [0, 2, 0, 1, 2], [0, 3, 0, 0, 2]]

Deleting the auxiliary fifth coordinate and reordering the above CoCoA output, we

see that the Hilbert basis of W is given by the following elements:

m1 = (3, 0, 0, 0) m2 = (0, 3, 0, 0) m3 = (0, 0, 3, 0) m4 = (0, 0, 0, 3)

m5 = (1, 1, 0, 0) m6 = (1, 0, 0, 1) m7 = (0, 1, 1, 0) m8 = (0, 0, 1, 1)

m9 = (1, 0, 2, 0) m10 = (0, 1, 0, 2) m11 = (0, 2, 0, 1) m12 = (2, 0, 1, 0)

(4.3)

In order to obtain the Hilbert basis for M , we need to convert each of the above

4-tuples (k1, . . . , k4) ∈ Z4
+ into the a 6-tuple (k1, 0, k2, 0, k3, k4), and we also need

to add the 6-tuples

(0, 1, 0, 0, 0, 0) and (0, 0, 0, 1, 0, 0) (4.4)

to the list.

Fundamental invariants. By Theorem 2.3.3, the isomorphism Z[M ]
∼→ Z[E6]W

is given by (l1, . . . , l6) 7→
∏6

i=1 orb($i)
li . In view of the preceding paragraph,

Z[M ] ∼= Z[W ]⊗ Z[t1, t2]

where the variables t1 and t2 correspond to the Hilbert basis elements in (4.4). These

give the following two fundamental invariants that are algebraically independent

from each other and all other fundamental invariants:

orb($2) and orb($4)

The remaining Hilbert basis elements (k1, k2, k3, k4) from (4.3) give 12 additional

fundamental invariants

orb($1)k1 orb($3)k2 orb($5)k3 orb($6)k4
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In view of the size of the Weyl group W , it is not feasible or useful to explicitly

write out these orbit sums.

Relations. Relations between the 12 fundamental invariants coming from (4.3),

and hence a presentation of the invariant algebra Z[E6]W , can be obtained by the

method of Section 3.2.3 for n = 4. In detail, we need 12 variables, one for each of

the Hilbert basis elements mi, and 4 extra variables for the embedding M ↪→ Z4
+.

Here is the MAGMA computation:

> Z := IntegerRing();
> S<a,b,c,d,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12>:=

PolynomialRing(Z,16);
> I:=ideal<S|x1-aˆ3,x2-bˆ3,x3-cˆ3,x4-dˆ3,x5-a*b,x6-a*d,

x7-b*c,x8-c*d,x9-a*cˆ2,x10-b*dˆ2,x11-bˆ2*d,x12-aˆ2*c>;
> EliminationIdeal(I,4);
Ideal of Polynomial ring of rank 16 over Integer Ring
Order: Lexicographical
Variables: a, b, c, d, x1, x2, x3, x4, x5, x6, x7, x8, x9,

x10, x11, x12
Basis:
[

x7*x10 - x8*x11,
x6*x9 - x8*x12,
x5*x10 - x6*x11,
x5*x9 - x7*x12,
x5*x8 - x6*x7,
x6*x7*x8 - x9*x10,
x6*x7ˆ2 - x9*x11,
x6ˆ2*x7 - x10*x12,
x5*x6*x7 - x11*x12,
x4*x12 - x6ˆ2*x8,
x4*x11 - x10ˆ2,
x4*x9 - x6*x8ˆ2,
x4*x7 - x8*x10,
x4*x5 - x6*x10,
x3*x12 - x9ˆ2,
x3*x11 - x7ˆ2*x8,
x3*x10 - x7*x8ˆ2,
x3*x6 - x8*x9,
x3*x5 - x7*x9,
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x3*x4 - x8ˆ3,
x2*x12 - x5ˆ2*x7,
x2*x10 - x11ˆ2,
x2*x9 - x5*x7ˆ2,
x2*x8 - x7*x11,
x2*x6 - x5*x11,
x2*x4 - x10*x11,
x2*x3 - x7ˆ3,
x1*x11 - x5ˆ2*x6,
x1*x10 - x5*x6ˆ2,
x1*x9 - x12ˆ2,
x1*x8 - x6*x12,
x1*x7 - x5*x12,
x1*x4 - x6ˆ3,
x1*x3 - x9*x12,
x1*x2 - x5ˆ3

]

4.1.3 Class Group

Using the description above along with Theorem 2.4.2, we can find the class

group for the invariant algebra Z[E6]W . We know that the Weyl groupW ∼= O6(2)

contains a simple subgroup of index 2, which is its unique nontrivial normal sub-

group. It follows that the subgroup of diagonalizable reflections, D, is trivial.

Hence, by Theorem 2.4.2(a), the class group is isomorphic to the factor Λ/L. This

group is known [2, (VIII) in Planche V]:

Cl(Z[E6]W) ∼= Z/3Z
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4.2 Type E7

4.2.1 Root system, root lattice and Weyl group

Here, E is the subspace of R8 that is orthogonal ε7 + ε8. The set of roots is

Φ = {±εi ± εj | 1 ≤ i < j ≤ 6} ∪ {±(ε7 − ε8)}

∪ {1
2
(ε7 − ε8 +

6∑
i=1

(−1)ν(i)εi |
8∑
i=1

ν(i) odd} (4.5)

A base for this root system is given by

α1 = 1
2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7)

α2 = ε1 + ε2

αi = εi−1 − εi−2 (i = 3, . . . , 7)

So our root lattice is E7 =
⊕7

i=1 Zαi.
The Weyl group for E7 is the direct product of Z/2Z and the unique simple

group of order 1 451 520 (which can be described as PSp6(2)).

The Weyl group W = W(E7) has order 210 34 5 7 = 2 903 040. By Bourbaki

[2, Exercise 3 on page 229] (see also Humphreys [14, Section 2.12]), there is an

isomorphism of groups

W ∼= {±1} ×O7(2)

which arises similar to the earlier description of W(E6): the form 1
2
(x, x) yields

a non-degenerate quadratic form on the 7-dimensional F2-vector space E7/2E7,

and this form is preserved by the action ofW . The restriction of the action to the

rotation subgroupW+ = {w ∈ W | detw = 1} is an isomorphismW+ ∼= O7(2),

and the kernel of the action is {±1}. The latter group O7(2) is the unique simple

group of order 1 451 520.
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4.2.2 MultiplicativeW-invariants

We follow the outline of our treatment of type E6. First, we find a Hilbert basis

for the monoid

M = Λ+ ∩ E7

First we list the fundamental weights with repeat to the above base {αi}:

$1 = ε8 − ε7 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

$2 = 1
2
(ε1 + ε2 + ε3 + ε4 + ε5 + ε6 − 2ε7 + 2ε8)

= 1
2
(4α1 + 7α2 + 8α3 + 12α4 + 9α5 + 6α6 + 3α7)

$3 = 1
2
(−ε1 + ε2 + ε3 + ε4 + ε5 + ε6 − 3ε7 + 3ε8)

= 3α1 + 4α2 + 6α3 + 8α4 + 6α5 + 4α6 + 2α7

$4 = ε3 + ε4 + ε5 + ε6 + 2(ε8 − ε7)

= 4α1 + 6α2 + 8α3 + 12α4 + 9α5 + 6α6 + 3α7

$5 = ε4 + ε5 + ε6 + 3
2
(ε8 − ε7)

= 1
2
(6α1 + 9α2 + 12α3 + 18α4 + 15α5 + 10α6 + 5α7)

$6 = ε5 + ε6 − ε7 + ε8

= 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 2α7

$7 = ε6 + 1
2
(ε8 − ε7)

= 1
2
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7)

Hilbert basis of M . Note that $1, $3, $4 and $6 already belong to E7. Therefore,

M = Z+$1 ⊕ Z+$3 ⊕ Z+$4 ⊕ Z+$6 ⊕M ′ ∼= Z4
+ ⊕M ′

with

M ′ = E7 ∩
⊕
i=2,5,7

Z+$i

Now let l2$2 + l5$5 + l7$7 ∈ M ′, with li ∈ Z+. Then the coefficients of each αi
in our base must be integral. One can easily check that the coefficients of α1, α3, α4
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and α6 are automatically integral. Looking at the coefficients of the remaining

elements of our base gives

coefficient of α2 : 7
2
l2 + 9

2
l5 + 3

2
l7 ∈ Z

α5 : 9
2
l2 + 15

2
l5 + 5

2
l7 ∈ Z

α7 : 3
2
l2 + 5

2
l5 + 3

2
l7 ∈ Z

This reduces to the single condition l2 + l5 + l7 ∈ 2Z, giving

M ′ ∼= {(l2, l5, l7) ∈ Z3
+ | l2 + l5 + l7 ∈ 2Z}

As above, one easily finds the following Hilbert basis for the monoid M ′:

m1 = (2, 0, 0)

m2 = (0, 2, 0)

m3 = (0, 0, 2)

m4 = (1, 1, 0)

m5 = (1, 0, 1)

m6 = (0, 1, 1)

Structure of the invariant algebra Z[E7]W . Note that the monoid algebra Z[M ′] is

just the second Veronese subalgebra R(2) of a polynomial algebra R = Z[t2, t5, t7]

in three variables. The structure of such algebras has been explained in Corol-

lary 2.5.2. It follows that the invariant algebra Z[E7]W has the following descrip-

tion:

Z[E7]W ∼= Z[M ] ∼= Z[M ′]⊗ Z[t1, t3, t4, t6] ∼= R(2)[t1, t3, t4, t6]

a polynomial algebra in four variables over R(2). Fundamental invariants are given

by the following four that correspond to the variables t1, t3, t4, t6,

orb($1), orb($3), orb($4), orb($6)

together with the following six invariants that correspond to the above monoid gen-

erators m1, . . . ,m6,

orb($2)2, orb($5)2, orb($7)2, orb($2) orb($5), orb($2) orb($7), orb($5) orb($7)
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4.2.3 Class Group

From the structure of the Weyl group, W ∼= {±1} × O7(2), we know that

the only nontrivial normal subgroups ofW are {±1} and O7(2). Only the former

is an elementary abelian 2-group, but −1 is not a reflection. By Lemma 2.4.1 it

follows that the subgroup of diagonalizable reflections, D, is trivial. Hence, by

Theorem 2.4.2(a), the class group is isomorphic to the factor Λ/L, which is known

[2, (VIII) in Planche VI]:

Cl(Z[E7]W) ∼= Z/2Z

Alternatively, we could arrive at the same conclusion using the fact that the invariant

algebra Z[E7]W is a polynomial algebra over the second Veronese subalgebra R(2)

of R = Z[t2, t5, t7]. Indeed, by [10, Theorem 8.1], it follows that Cl(Z[E7]W) ∼=
Cl(R(2)), and the latter group was calculated in Corollary 2.5.2.
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