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ABSTRACT

QUANTIFICATION OF STABILITY OF ANALYTIC CONTINUATION

WITH APPLICATIONS TO ELECTROMAGNETIC THEORY

Narek Hovsepyan

DOCTOR OF PHILOSOPHY

Temple University, August, 2021

Yury Grabovsky, Chair

Analytic functions in a domain Ω are uniquely determined by their values

on any curve Γ ⊂ Ω. We provide sharp quantitative version of this statement.

Namely, let f be of order ε on Γ relative to its global size in Ω (measured

in some Hilbert space norm). How large can f be at a point z away from

the curve? We give a sharp upper bound on |f(z)| in terms of a solution of

a linear integral equation of Fredholm type and demonstrate that the bound

behaves like a power law: εγ(z). In special geometries, such as the upper half-

plane, annulus or ellipse the integral equation can be solved explicitly, giving

exact formulas for the optimal exponent γ(z). Our methods can be applied to

non-Hilbertian settings as well.

Further, we apply the developed theory to study the degree of reliability of

extrapolation of the complex electromagentic permittivity function based on

its analyticity properties. Given two analytic functions, representing extrap-

olants of the same experimental data, we quantify how much they can differ

at an extrapolation point outside of the experimentally accessible frequency

band.
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CHAPTER 1

INTRODUCTION

Many inverse problems reduce to analytic continuation questions when so-

lutions of direct problems are known to possess analyticity in a domain in

the complex plane, but can be measured only on a subset (often a part of

the boundary) of this domain. For example, if one wants to recover a signal

corrupted by a low-pass convolution filter, then one needs to recover an en-

tire function from its measured values on an interval [21, 3]. Another large

class of inverse problems can be termed “Dehomogenization” [16, 56], where

one wants to reconstruct some details of microgeometry from measurements

of effective properties of the composite. The idea of reconstruction is based

on the analytic properties of effective moduli [7, 54, 35] of composites. See

e.g. [55] for an extensive bibliography in this area. Another example that we

will study in detail in Chapter 5 is the question of stability of extrapolation of

complex electromagnetic permittivity of materials as a function of frequency

[46, 28]. An underlying mathematical problem here is about identifying a Her-

glotz function—a complex analytic function in the upper half-plane H+ that

has nonnegative imaginary part, given its values at specific points in the upper

half-plane or on its boundary. Such functions, and their variants, are ubiqui-

tous in physics. For example, the complex impedance of an electrical circuit

as a function of frequency has a similar property. Yet another example, is the

dependence of effective moduli of composites on the moduli of its constituents
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[5, 53]. These functions appear in areas as diverse as optimal design problems

[47, 48], nuclear physics [12, 13] and medical imaging [26].

The method of recovery via analytic continuation is a tempting proposition

in view of the uniqueness properties of analytic functions. Unfortunately, ana-

lyticity is a local property “stored” at an infinite depth within the continuum

of function values and can be represented by delicate cancellation properties

responsible for the validity of Carleman and Carleman type extrapolation for-

mulas [14, 36, 1]. Adding small errors to the exact values of analytic functions

destroys these local properties. Instead we want to accumulate the remnants

of analyticity and use global properties of analytic functions to achieve ana-

lytic continuation. This is only possible under some additional regularizing

constraints, such as global boundedness [22, 11, 67, 33, 69]. Taking this idea

to the extreme, any bounded entire function is a constant by Liouville’s the-

orem, so that the effect of boundedness depends strongly on the geometry of

the domain of analyticity.

In order to quantify the degree to which analytic continuation is possible,

consider an analytic function F in a domain Ω. Assume that F is measured

on a curve Γ b Ω with a relative error ε, with respect to some norm ‖F‖Γ.

Can one perform an analytic continuation of F from Γ to Ω in the presence

of measurement errors? Without discussing specific analytic continuation al-

gorithms we would like to examine theoretical feasibility of such a procedure.

For example, if two different algorithms are deployed matching F on Γ with

relative precision ε how much their outputs could possibly differ at a given

point z ∈ Ω \ Γ? To answer this question we consider the difference f of the

two purported analytic continuations. Such a difference will be small on Γ,

and we want to quantify how large such a function can possibly be at some

point z ∈ Ω relative to its global size on Ω.

Based on established upper and lower bounds, exact and numerical results

[19, 11, 17, 52, 61, 31, 70, 32, 20, 69] a general power law principle emerges,

whereby the relative precision of analytic continuation decays as power law

εγ(z), where the exponent γ(z) ∈ (0, 1) decreases to 0, as we move further
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away from the source of data. How fast γ(z) decays depends strongly on the

geometry of the domain and the data source. We believe that such power

law transition from well-posedness to practical ill-posedness is a general prop-

erty of analytic continuation, quantifying the tug-of-war between their rigidity

(unique continuation property) and flexibility (as in the Riesz density theorem

[59]).

The lower bounds on γ(z) can be obtained by exhibiting bounded analytic

functions that are small on a curve Γ, but not quite as small at a particular

extrapolation point. The upper bounds are harder to prove but there is ample

literature where such results are achieved [19, 11, 17, 52, 61, 31, 70, 32, 20, 69].

The most common setting considered in the literature is that of bounded

analytic functions H∞(Ω), where the size of a function on Γ is measured in

L∞-norm. The power law estimates are then derived from a maximum modulus

principle, the classical Hadamard three-circles theorem [49] being the prime

example. Taking an example from [69], the modulus of the function eζ ln εf(ζ)

does not exceed ε on the boundary of the infinite strip <eζ ∈ (0, 1), provided

|f(ζ)| ≤ 1 in the strip and |f(iy)| ≤ ε. The maximum modulus principle (or

rather its Phragmén-Lindelöf version) then implies that |f(z)| ≤ ε1−<ez. The

estimate is optimal, since f(ζ) = εe−ζ ln ε satisfies the constraints and achieves

equality in the maximum modulus principle. In fact, it was observed in [69]

that upper and lower bounds of the form εγ(z) on the extrapolation error do

hold for all geometries. However, with few exceptions the upper and lower

bounds do not match. In those examples where they do match [20, 69] the

optimality of the bounds are concluded a posteriori.

In Chapter 2 we develop the theory of the worst case behavior and re-

veal the mechanism by which the power laws εγ(z) arise. Namely, we intro-

duce a new method for characterizing analytic functions in reproducing kernel

Hilbert spaces H = H(Ω) attaining the optimal upper bound in the extrapo-

lation error in terms of a solution of an integral equation of the second kind

with compact, positive, self-adjoint operator K on H. The error maximiza-

tion problem is reformulated as maximization of a linear objective functional
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subject to quadratic constraints, permitting us to use convex duality meth-

ods. The optimality conditions take the form of a linear integral equation of

Fredholm type, where the integral operator K is expressed in terms of the

reproducing kernel of H. This operator occurs frequently in the context of

reproducing kernel Hilbert spaces (e.g. [19]) and is related to the restriction

operator R : H→ L2(Γ) (if we assume that the measurements on Γ are done

w.r.t. L2(Γ) norm). Namely, K = R∗R. The optimal exponent γ(z) in the

power law asymptotics can then be expressed in terms of the rates of exponen-

tial decay of eigenvalues of the integral operator K and its eigenfunctions at

the extrapolation point z ∈ Ω (cf. Section 2.2). For certain classes of restric-

tion operators the exponential decay of the eigenvalues of K has been known

for a long time, and their exact asymptotics has been established in [58] (see

also [72, 57, 41, 63]). Alternatively, the exponent γ(z) can be read off the ex-

plicit solution of the integral equation in cases where such an explicit solution

is available (Section 4.2). In some applications (e.g. Section 3.2) additional

C-linear constraints are imposed on the analytic functions. In Section 2.3 we

discuss such constraints and the relation of the problems with and without

them.

In Chapters 3 and 4 we present applications of the theory developed in

Chapter 2, where the integral equation can be solved; the exponential decay

of the eigenvalues and eigenfunctions of K can be seen explicitly. As a result

we obtain explicit formulas for γ(z) in a number of special cases. In Section 3.1

we consider the case when Γ is a concentric circle in an annulus. In Section 3.2

we present a somewhat unexpected 1 application of the annulus result to the

problem of analytic continuation in a Bernstein ellipse [8], studied in [20].

When the extrapolation point z lies on the real line inside the Bernstein ellipse

we recover the optimal exponent γ(z) obtained in [20]. However, our approach

also gives the formula for the exponent γ(z) for arbitrary points z inside the

ellipse. Moreover, it also shows that the exponent γ(z) is the same both in

1Since the annulus is not conformally equivalent to the ellipse one would not expect a
direct relation.
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H∞ and (weighted) H2 spaces of the ellipse, suggesting that the exponents

must be robust and not very sensitive to the choice of specific norms in the

spaces of analytic functions. This phenomenon could be related to the fact

that functions with worst extrapolation error can be analytically continued

into much larger domains, as is evident from our integral equation, and hence

satisfy the required constraints in all Lp or Hp norms. Section 4.1 deals with

the case when Γ is a circle in the upper half-plane H+. In Section 4.2 we

analyze the case when Γ = [−1, 1] lies on the boundary of H+. We show that

the error maximizer again solves an integral equation, but with a singular,

non-compact integral operator. This singular equation is then solved explicitly

and the exponent γ(z) is computed. Examining the formula for γ(z) we find a

beautiful geometric interpretation of this exponent: it is the angular size of the

interval [−1, 1] as viewed from z, measured in units of π. Conformal mappings

between domains can be used to ”transplant” the exponent estimates from

one geometry to a different one (e.g. Remark 4.3).

In Chapter 5 we study the feasibility of extrapolation of the complex elec-

tromagnetic permittivity function , which was the motivating problem of this

dissertation. Given the experimentally measured data on a band of frequen-

cies, the unavoidable random noise makes the measured values mathematically

inconsistent with the analyticity of the complex electromagnetic permittivity

function. In Section 5.4 we analyze the least squares problem: find the closest

admissible function to the experimental data. We show that the least squares

problem has a unique solution, which yields a mathematically stable extrap-

olant. It turns out that the minimizer must be a rational function and we

derive the necessary and sufficient conditions for its optimality. Surprisingly,

the class of physically admissible functions is also ”flexible” in the sense that

the data can be matched up to a given precision by two functions that are

very different away from the interval, where the data is available. In Sec-

tion 5.5 we quantify this phenomenon by giving an optimal upper bound on

the possible discrepancy between any two approximate extrapolants. This is

done by reducing this question to the stability of analytic continuation in the
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upper half-plane from the interval Γ = [−1, 1] + ih in presence of the symme-

try constraint f(−ζ) = f(ζ). This constraint is only R-linear (in f) and the

discussions of Section 2.3 do not apply. Therefore, the analysis of the optimal

bound in presence of this constraint is not straightforward. In Section 5.6 we

show that adding this symmetry constraint has no effect on the asymptotic

behavior of the error of analytic continuation (in fact, for arbitrary curves Γ

and not just the interval [−1, 1] + ih). Consequently, we ignore the symme-

try constraint and arrive at the problem of quantifying the error of analytic

continuation in H+ from the interval Γ = [−1, 1] + ih to a given point z /∈ Γ.

General theory developed in Chapter 2 demonstrates the power law behavior

εγ(z) for this error. In Section 5.7, invoking results of Chapter 2 we solve the re-

sulting integral equation numerically and produce a plot of the exponent γ(z).

Motivated by the explicit results of Section 4.1, we construct a test function

that gives an upper bound on γ(z) in terms of an analytical expression, which

is then checked numerically to be in an excellent agreement with it for h > 0.6.

It is worth mentioning that in most cases, where we obtain explicit formulas

for γ(z) it coincides with the harmonic measure of Γ relative to the region Ω.

Namely, it is the harmonic function in Ω\Γ 2 that takes value 1 on Γ and value

0 on ∂Ω. However, as Section 5.7.1 and Figure 5.5 show γ(z) in general is

different from the harmonic measure.

The content of Chapters 2 and 3 is based on [39], Chapter 4 is based on

[40] and Chapter 5 on [38].

2When Γ is part of the boundary of Ω, the harmonic measure is the harmonic function
in Ω taking value 1 on Γ and value 0 on ∂Ω\Γ
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CHAPTER 2

QUANTIFYING STABILITY

OF ANALYTIC

CONTINUATION

Notation 2.1. We will write A . B, if there exists a constant c such that

A ≤ cB and likewise the notation A & B will be used. If both A . B and

A & B are satisfied, then we will write A ' B. Throughout the paper all the

implicit constants will be independent of the parameter ε.

The main results of this chapter are Theorems 2.1 and 2.2. In the first

theorem, we reduce the quantification problem of analytic continuation to a

solution of an integral equation of Fredholm type. In the second one, we ex-

press the optimal exponent γ(z) in the power law (describing the relative error

of analytic continuation) in terms of exponential decay rates of the eigenvalues

and eigenfunctions of the integral operator.
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2.1 Problem formulation and reduction to an

integral equation

Our goal is to characterize how large a function f analytic in a domain Ω

can be at a point z ∈ Ω, provided that it is small on a finite curve Γ b Ω,

relative to its global size in Ω. If some norms ‖f‖Γ and ‖f‖H are used to

measure the magnitude of f on Γ and on Ω, respectively, then we are looking

at the problem 
|f(z)| → max

‖f‖H ≤ 1

‖f‖Γ ≤ ε

(2.1)

Assume that the global norm is induced by an inner product (·, ·) and that

the point evaluation functional f 7→ f(z) is continuous (for any point z ∈ Ω),

then by the Riesz representation theorem, there exists an element pz ∈ H such

that f(z) = (f, pz). Now inner products with the function p(ζ, z) := pz(ζ)

reproduce values of a function in H. In this case H is called a a reproducing

kernel Hilbert space (RKHS) with kernel p (cf. [60]) . Examples of such spaces

include the Hardy spaces H2 over the unit disk, annulus or upper half-plane

(cf. Chapters 3 and 4). From now on we will drop the subscript H for the

Hilbert space norm in H.

Lemma 2.1. Suppose that H is a RKHS whose elements are continuous func-

tions on a metric space Ω. Then the function Ω 3 τ 7→ ‖pτ‖ is bounded on

compact subsets of Ω.

Proof. Assume the contrary. Suppose S ⊂ Ω is compact, but there exists a

sequence {τk}∞k=1 ⊂ S, such that ‖pτk‖ → ∞ as k → ∞. Since S is compact

we can extract a convergent subsequence (without relabeling it) τk → τ∗, then

for any f ∈ H we have f(τk) = (f, pτk) → f(τ∗) = (f, pτ∗), by continuity of

f . Thus, pτk ⇀ pτ∗ in H, but this implies boundedness of ‖pτk‖, leading to a

contradiction.
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Corollary 2.1. Under the assumption of Lemma 2.1 the function p(ζ, τ) is

bounded on compact subsets of Ω× Ω, since |p(ζ, τ)| = |(pτ , pζ)| ≤ ‖pτ‖‖pζ‖.

Assume that the smallness on Γ is measured in L2 := L2(Γ, |dτ |)-norm,

where |dτ | is the arc length measure. So ‖ · ‖Γ and (·, ·)Γ denote the norm and

the inner product of L2. Then, there is a constant c > 0 such that

‖f‖Γ ≤ c‖f‖, ∀f ∈ H. (2.2)

Indeed, for all τ ∈ Γ we have |f(τ)| = |(f, pτ )| ≤ ‖pτ‖‖f‖. Since Γ lies in

a compact subset of Ω and has finite length we conclude by Lemma 2.1 that

(2.2) holds.

In order to analyze problem (2.1) we consider a Hermitian symmetric form

B : H ×H→ C, B(f, g) = (f, g)Γ.

By (2.2) B(f, g) is continuous, and thus there exists a positive, self-adjoint

and bounded operator K : H → H with B(f, g) = (K f, g). Moreover we

can write an explicit formula for K in terms of the kernel p:

(K f, g) = (f, g)Γ =

∫
Γ

f(τ)(pτ , g)|dτ | =
(∫

Γ

f(τ)pτ |dτ |, g
)
. (2.3)

Thus, for every f ∈ H

(K f)(ζ) =

∫
Γ

p(ζ, τ)f(τ)|dτ |, ζ ∈ Ω. (2.4)

This formula permits to define a new operator K : L2(Γ) → H. However,

in doing so we may lose injectivity, which underlies uniqueness of analytic

continuation1. Therefore, we restrict the domain of K to a closed subspace

of L2(Γ)

W = clL2 (H|Γ) ⊂ L2(Γ). (2.5)

1It is this property that forces us to restrict attention to reproducing kernel Hilbert
spaces of analytic functions.
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In fact, in many cases W = L2(Γ). The density in the context of Hardy

spaces is known as the Riesz theorem (see e.g. [59]). If Ω is bounded it is

usually proved using density of polynomials in L2(Γ), which always holds if all

polynomials are in H (and Γ is not a closed curve).

We note that the operator K : W → H is bounded. Indeed, by Corol-

lary 2.1 the function Γ 3 τ 7→ p(ζ, τ) is bounded for each ζ ∈ Ω and by (2.3)

we have

‖K f‖2 = (K f,K f) = (f,K f)Γ ≤ ‖K f‖Γ‖f‖Γ ≤ c‖K f‖‖f‖Γ, (2.6)

where we have used (2.2) in the last inequality. It follows that ‖K f‖ ≤ c‖f‖Γ.

The outcome of our constructions is the ability to write the two inequalities

in (2.1) as quadratic constraints for f ∈ H:

(f, f) ≤ 1, (K f, f) ≤ ε2. (2.7)

The final observation is that the objective functional |f(z)| in (2.1) can be

replaced by a (real) linear functional <e(f, pz). Indeed,

|f(z)| = sup
|λ|=1

<e(λf(z)) = sup
|λ|=1

<e(λf, pz).

It remains to notice that if f satisfies (2.7) then so does λf for every λ ∈ C,

|λ| = 1. Thus we arrive at the problem
<e(f, pz)→ max

(f, f) ≤ 1

(K f, f) ≤ ε2

(2.8)

Lemma 2.2. The operator K : H → H is compact, positive definite and

self-adjoint.

Proof. Self-adjointness and positivity of K on H are immediate consequences

of (2.3). To prove compactness, let {fk}∞k=1 ⊂ H be a bounded sequence.

Extract a weakly convergent subsequence (without relabeling it) fk ⇀ f . Then
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for every τ ∈ Ω we have fk(τ) = (fk, pτ ) → (f, pτ ) = f(τ). In addition, for

every τ ∈ Γ we have |fk(τ)| = |(fk, pτ )| ≤ ‖fk‖‖pτ‖. The sequence ‖fk‖
is bounded, since fk is weakly convergent, while ‖pτ‖ is bounded on Γ by

Lemma 2.1. Thus, fk(τ) is uniformly bounded on Γ. Then fk|Γ → f |Γ in the

L2 norm. But then by the estimate ‖K (fk − f)‖ ≤ c‖fk − f‖Γ (see (2.6)) we

conclude that K fk → K f in H.

Theorem 2.1. Let H = H(Ω) be a RKHS of functions analytic in domain Ω,

with kernel p and norm ‖ · ‖. Let Γ b Ω be a rectifiable curve of finite length

and ‖ · ‖Γ be the L2 := L2(Γ, |dτ |) norm. Fix a point z ∈ Ω\cl(Γ) and let

Az(ε) = sup {|f(z)| : f ∈ H and ‖f‖ ≤ 1, ‖f‖Γ ≤ ε}

then the following hold true:

(i) Let η∗ = η∗(ε, z) > 0 be the unique solution of ‖(K + η∗)
−1pz‖Γ =

ε‖(K + η∗)
−1pz‖, then

Az(ε) =
u∗(z)

‖u∗‖
, (2.9)

where u∗ = u∗ε,z solves the integral equation (K + η∗)u
∗ = pz. In partic-

ular, the maximizer function is f ∗ = u∗/‖u∗‖. Alternatively,

Az(ε) = C exp

{
−
∫ 1

ε

tdt

t2 + η∗(t, z)

}
, (2.10)

where C is a constant independent of ε, namely C = Az(1).

(ii) Let u = uε,z solve

(K + ε2)u = pz (2.11)

and
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Mε,z(ζ) = uε,z(ζ) min

{
1

‖uε,z‖
,

ε

‖uε,z‖Γ

}
. (2.12)

Then

Mε,z(z) ≤ Az(ε) ≤
3

2
Mε,z(z) (2.13)

The theorem is proved in Section 2.4. Let us make some remarks.

1. Finding the asymptotics of η∗(ε) as ε → 0 lies beyond the capabilities

of classical asymptotic analysis, but as our insight shows η∗(ε) ' ε2 (see

the proof of Theorem 2.1). Note that this insight is also confirmed by

(2.13), which is an optimal bound up to the constant 3/2. Its advantage

over the exact formula (2.9) is that it is accessible numerically. A deeper

insight into the asymptotic behavior of η∗ shows that ε−2η∗(ε) oscillates

as ε → 0 (hence has no limit) and can be approximated by an elliptic

function (cf. Section 2.5).

The function (2.12) is obviously in H and satisfies the constraints in

(2.1). Hence, the lower bound in (2.13) is trivial. Only the upper bound

itself requires a proof. Further, we expect the two quantities under the

minimum in (2.12) to be comparable, which is just a restatement of

η∗(ε) ' ε2.

2. An obvious thing to do is to set ε = 0 in (2.11). If pz ∈ K (W), where

W is given by (2.5), then uε,z → u0 = K −1pz, as ε → 0. In which case

the upper bound (2.13) is simply

|f(z)| ≤ Cε, C =
3u0(z)

2‖u0‖Γ

. (2.14)

In other words we have numerically stable analytic continuation. Ex-

amples where this happens are mentioned in Remarks 3.2 and 4.1 of
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Chapters 3 and 4, respectively. This case will be referred to as the triv-

ial case.

3. The upper bound in (2.13) is not an explicit function of ε and z. Its

asymptotics as ε→ 0 depends on fine properties of the operator K (e.g.

the exponential decay rates of its eigenvalues). This will be discussed

in Section 2.2. In specific examples of Chapters 3 and 4, the equation

(2.11) is solved explicitly and the power law behavior Mε,z(z) ' εγ(z) is

exhibited.

4. The precise asymptotics of the exponential decay of eigenvalues of K

is known for certain classes of spaces. For example, assume H coincides

with the Smirnov class E2(Ω) [23]. If the domain Ω is bounded and

simply connected and Γ b Ω is a closed Jordan rectifiable curve of class

C1+α for α > 0, with Ω′ denoting the domain bounded by it, then the

eigenvalues of K satisfy the asymptotic relation [58]

λn(K ) ∼ ρ2n+1, as n→ +∞, (2.15)

where ρ < 1 is the Riemann invariant , whereby the domain Ω\cl(Ω′) is

conformally equivalent to the annulus {ω ∈ C : ρ < |ω| < 1}.

5. The eigenvalues λn are also connected to Kolmogorov n-widths [62] ,

since they are squares of singular values of the restriction operator R :

H → L2(Γ), because K = R∗R. Specifically (cf. [29, Theorem 6.1]),√
λn+1 is the Kolmogorov n-width of the restriction to L2(Γ) of closed

unit ball inH. The relation of the Kolmogorov n-widths of restrictions of

various classes of analytic functions to corresponding Riemann invariants

have been know in many cases [27, 73, 30].
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2.2 Solving the integral equation

We begin by making several observations about a priori properties of the

solution u = uε (we suppress its dependence on z) of (2.11) in the non-trivial

case pz 6∈ K (W). The most immediate consequence of the non-triviality is

that ‖uε‖Γ blows up as ε → 0. If it did not, we would be able to extract

a weakly convergent subsequence uεk ⇀ u0 ∈ W and passing to the weak

limits in (2.11) obtained that (K u0)(ζ) = pz(ζ), for ζ ∈ Γ. However, since

K (W) ⊂ H we get a contradiction with the non-triviality.

The definition of u implies u(z) = (u, pz) = (u,K u + ε2u) = (u,K u) +

ε2(u, u), i.e.

u(z) = ‖u‖2
Γ + ε2‖u‖2. (2.16)

Let us show that equation (2.16) implies that Mε,z(z) � ε, as ε → 0. On the

one hand, dividing equation (2.16) by ‖uε‖Γ we obtain

uε(z)

‖uε‖Γ

≥ ‖uε‖Γ.

On the other, we have ‖uε‖2
Γ + ε2‖uε‖2 ≥ 2ε‖uε‖Γ‖uε‖ and therefore

uε(z)

ε‖uε‖
≥ 2‖uε‖Γ,

proving that ε−1Mε,z(z) ≥ ‖uε‖Γ → +∞. This means that one cannot expect

full numerical stability of analytic continuation.

Finally, we prove the “mathematical well-posedness” of analytic continua-

tion: Mε,z(z) → 0 as ε → 0. This is a consequence of the weak convergence

of uε/‖uε‖ to 0. If we divide (2.11) by ‖uε‖ and pass to weak limits, using

the fact that ‖uε‖ ≥ c−1‖uε‖Γ → +∞ we obtain that the weak limit û of

uε/‖uε‖ satisfies K û = 0. But if K û = 0, then ‖û‖2
Γ = (K û, û) = 0. It

follows that the analytic function û = 0 on Γ and hence must vanish every-

where in Ω. This shows that the operator K has a trivial null-space and that

Mε,z(z) ≤ (uε/‖uε‖, pz)→ 0, as ε→ 0.
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A consequence of the just established strict positivity of K is separability

of the Hilbert space H. This should not be surprising, since H consists of

analytic functions each of which can be completely described by a countable

set of numbers.

Lemma 2.3. The Hilbert space H is always separable.

Proof. We saw that K : H → H given by (2.4) is a self-adjoint, compact

operator. We have just seen that K has a trivial null-space. In this case the

Hilbert space H is the orthogonal sum of countable number of finite dimen-

sional eigenspaces of K with positive eigenvalues. Thus, H has a countable

complete orthonormal set and is therefore separable.

In applications of our theory in Chapters 3 and 4 we solve the equation

(2.11) exactly by finding all eigenvalues and eigenfunctions of K . Let {en}∞n=1

be an orthonormal eigenbasis of H with K en = λnen. In this basis the

equation (2.11) diagonalizes:

λn(u, en) + ε2(u, en) = (pz, en),

therefore we find

uε(ζ) =
∑
n

en(z)

λn + ε2
en(ζ). (2.17)

Using this expansion, formula ‖u‖2
Γ = (K u, u), and (2.16) we find that

uε(z) =
∑
n

|en(z)|2

λn + ε2
, ‖uε‖2 =

∑
n

|en(z)|2

(λn + ε2)2
, ‖uε‖2

Γ =
∑
n

λn|en(z)|2

(λn + ε2)2
.

(2.18)

It follows that ∑
n

|en(z)|2

λn
=∞, (2.19)

since if the series had a finite sum then formula (2.18) for ‖uε‖Γ would imply

‖uε‖2
Γ ≤

∑
n

|en(z)|2

λn
,
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contradicting to the blow up of ‖uε‖Γ.

In our examples where the eigenvalues λn and eigenfunctions en(ζ) can be

found explicitly they are seen to decay exponentially fast to 0 (see also (2.15)).

Let us show that this implies the power law principle

Mε,z(z) ' εγ(z), as ε→ 0, (2.20)

where γ(z) ∈ (0, 1) can be expressed in terms of the rates of exponential decay

of spectral data for K .

Theorem 2.2. Let {en}∞n=1 be an orthonormal eigenbasis of H with K en =

λnen. Let u = uε,z and Mε,z be given by (2.11) and (2.12) respectively. Assume

λn ' e−αn, |en(z)|2 ' e−βn, 0 < β < α, (2.21)

with implicit constants independent of n (so that (2.19) holds). Then,

‖uε,z‖Γ ' ε‖uε,z‖ ' ε
β
α
−1 and uε,z(z) ' ε2(

β
α
−1),

with implicit constants independent of ε. In particular, this implies the power

law principle (2.20) with exact exponent:

Mε,z(z) ' ε
β
α .

To prove the above theorem let us first investigate the limiting behavior of the

function

φ(η) =
∞∑
n=0

an

η + bn
, 0 < b < |a| < 1,

as η → 0+, where a ∈ C. The asymptotics of this seemingly nice series is

surprisingly irregular. Let ln be any branch of the logarithm (whose choice is

independent of a, b and η), as long as ap is always understood as ep ln a.

Lemma 2.4. Let ηj → 0, as j →∞, such that the fractional parts
{

ln ηj
ln b

}
→

t ∈ [0, 1]. Then, as j →∞
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φ(ηj) ∼ φ0η
−γ
j ,

where

φ0 =
bt

at

∑
k∈Z

ak

bt + bk
, γ = 1− ln a

ln b
.

Proof. We first notice that unlike φ(η), the function

ψ(η) =
∞∑
n=1

a−n

η + b−n

is regular at η = 0. In fact, ψ(0) = b/(a − b). We therefore define a new

function

F (η) =
∑
n∈Z

an

η + bn
= φ(η) + ψ(η),

which obviously satisfies

lim
j→∞

F (ηj)η
γ
j = lim

j→∞
φ(ηj)η

γ
j ,

whenever ηj → 0+ and the limit on the right-hand side exists. Introducing the

integer and fractional parts

N(η) =

[
ln η

ln b

]
, α(η) =

{
ln η

ln b

}
we make a change of index of summation k = n−N(η) and obtain, using

N(η) =
ln η

ln b
− α(η),

after a short calculation, that

F (η)ηγ =
∑
k∈Z

ak−α(η)

1 + bk−α(η)
=
bα(η)

aα(η)

∑
k∈Z

ak

bα(η) + bk
.

The statement of the lemma is now apparent.

Immediately from the above lemma we obtain:
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Corollary 2.2. Let {an, bn}∞n=1 be nonnegative numbers such that an ' e−αn

and bn ' e−βn with 0 < β < α, where the implicit constants do not depend on

n. Let η > 0 be a small parameter, then

∞∑
n=1

bn
an + η

' η
β
α
−1, and

∞∑
n=1

bn
(an + η)2

' η
β
α
−2, (2.22)

where the implicit constants do not depend on η.

The proof of Theorem 2.2 now follows from (2.18) and Corollary 2.2.

2.3 Linear constraints

In one of the examples of Chapter 3 we encounter a situation where ad-

ditional linear constraints are imposed on a previously solved problem. In

general all linear constraints on analytic functions will simply be incorporated

into the definition of the RKHS H. The question is whether we can use the al-

ready found solution of a problem if additional linear constraints are imposed.

Let L ⊂ H be a closed, C-linear subspace. Then L with the inner product

from H is still a RKHS with the reproducing kernel PLpz, where PL denotes

the orthogonal projection onto L. If we restrict f and g in (2.3) to elements

from L, then the operator K can be written as PLK PL. Then equation

(2.11) can be written (in the language of the original RKHS H) as

PLK PLu+ ε2u = PLpz, u ∈ H, (2.23)

whose unique solution u necessarily belongs to L. In general, one’s ability

to solve the original problem (2.11) would be of little help for solving (2.23),

except in the special case when L is an invariant subspace of K . In this case

PL commutes with K and if u solves (2.11), then PLu solves (2.23).

The requirement that L be a C-linear subspace is important, because the

linearization argument taking the objective functional |f(z)| in (2.1) to the

one in (2.8) requires all the constraints to be invariant under multiplication by
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a phase factor λ ∈ C, |λ| = 1. In some applications, like the analytic contin-

uation of the complex electromagnetic permittivity function, the constraints

may be just R-linear, in which case other techniques have to be applied (cf.

Section 5.6 and Chapter 5).

2.4 Proof of Theorem 2.1

We start by analyzing the trivial case.

Lemma 2.5. Assume the setting of Theorem 2.1, let pz ∈ K (W), then

|f(z)| ≤ cε.

Proof. Let v ∈W ⊂ L2 satisfy K v = pz, (note that v does not depend on ε),

then using (2.3) we have

f(z) = (f, pz) = (f,K v) = (f, v)Γ.

It remains to use the Cauchy-Schwartz inequality to conclude the desired in-

equality with c = ‖v‖Γ.

Let us now turn to the case pz /∈ K (W). For every f , satisfying (2.7) and for

every nonnegative numbers µ and ν (µ2 + ν2 6= 0) we have the inequality

((µ+ νK )f, f) ≤ µ+ νε2 (2.24)

obtained by multiplying (2.8)(b) by µ and (2.8)(c) by ν and adding. Also, for

any uniformly positive definite self-adjoint operator T on H we have

<e(f, g)− 1

2
(T−1g, g) ≤ 1

2
(Tf, f),

valid for all functions f, g ∈ H (expand (T (T−1g − f), (T−1g − f)) ≥ 0).

The uniform positivity of T ensures that T−1 is defined on all of H. This
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is an example of convex duality (cf. [24]) applied to the convex function

F (f) = (Tf, f)/2. Then we also have for µ > 0

<e(f, pz)−
1

2

(
(µ+ νK )−1pz, pz

)
≤ 1

2
((µ+ νK )f, f) ≤ 1

2

(
µ+ νε2

)
, (2.25)

so that

<e(f, pz) ≤
1

2

(
(µ+ νK )−1pz, pz

)
+

1

2

(
µ+ νε2

)
, (2.26)

which is valid for every f , satisfying (2.7) and all µ > 0, ν ≥ 0. In order for

the bound to be optimal we must have equality in (2.25), which holds if and

only if

pz = (µ+ νK )f,

giving the formula for optimal vector f :

f = (µ+ νK )−1pz. (2.27)

The goal is to choose the Lagrange multipliers µ and ν so that the constraints

in (2.8) are satisfied by f , given by (2.27). Let us first consider special cases.

• if ν = 0, then f = pz
µ

and optimality implies that the first inequality con-

straint of (2.8) must be attained, i.e. ‖f‖ = 1. Thus, f = pz
‖pz‖ does not

depend on the small parameter ε, which leads to a contradiction, because the

second constraint (K f, f) ≤ ε2 is violated if ε is small enough.

• if µ = 0, then K f = 1
ν
pz. But this equation has no solutions in H according

to the assumption pz /∈ K (W).

Thus we are looking for µ > 0, ν > 0, so that equalities in (2.8) hold (these

are the complementary slackness relations in Karush-Kuhn-Tucker conditions),

i.e.

((µ+ νK )−1pz, (µ+ νK )−1pz) = 1,

(K (µ+ νK )−1pz, (µ+ νK )−1pz) = ε2.
(2.28)
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Let η = µ
ν
, we can solve either the first or the second equation in (2.28) for ν

ν2 = ‖(K + η)−1pz‖2, (2.29)

or

ν2 = ε−2
(
K (η + K )−1pz, (η + K )−1pz

)
. (2.30)

The two analysis paths stemming from using one or the other representation

for ν lead to two versions of the upper bound on |f(z)|, however we cannot

prove the optimality of either of those versions. However, the minimum of the

two upper bounds is still an upper bound and its optimality is then apparent.

At first glance both expressions for ν should be equivalent and not lead to

different bounds. Indeed, their equivalence can be stated as an equation

Φ(η) :=
(K (K + η)−1pz, (K + η)−1pz)

‖(K + η)−1pz‖2
= ε2 (2.31)

for η. We will prove that this equation has a unique solution η∗ = η∗(ε), but

we will be unable to prove that η∗(ε) ' ε2, as ε→ 0, which would follow from

the purported strict exponential decay of λn and |en(z)| (cf. (2.21)). Thus,

we will take η∗(ε) = ε2 without justification, observing that any choice of η

gives a valid upper bound. But then the two expressions (2.29) and (2.30) for

ν give non-identical upper bounds, whose combination will achieve our goal.

We observe that

lim
η→∞

Φ(η) = lim
η→∞

(K (η−1K + 1)−1pz, (η
−1K + 1)−1pz)

‖(η−1K + 1)−1pz‖2
=

(K pz, pz)

‖pz‖2
< +∞.

Using the spectral representation of K in its eigenbasis, we have(
K (K + η)−1pz, (K + η)−1pz

)
=
∑
n

λn|en(z)|2

(λn + η)2
, (2.32)

and

‖(K + η)−1pz‖2 =
∑
n

|en(z)|2

(λn + η)2
. (2.33)

Note that
∑

n
|en(z)|2
λ2n

= +∞, since otherwise the function v =
∑

n
en(z)
λn

en ∈ H
would satisfy K v = pz, contradicting the assumption pz /∈ K (W). Now
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Fatou’s Lemma implies that

lim
η→0
‖(K + η)−1pz‖2 = +∞.

Let δ > 0 be arbitrary. Let K be such that λn < δ for all n > K. Then

Φ(η) = ΦK(η) + ΨK(η),

where

ΦK(η) =

∑
n≤K

λn|en(z)|2
(λn+η)2

‖(K + η)−1pz‖2
, ΨK(η) =

∑
n>K

λn|en(z)|2
(λn+η)2

‖(K + η)−1pz‖2
.

Then

lim
η→0

ΦK(η) = 0.

We also have

ΨK(η) ≤
∑

n>K
λn|en(z)|2
(λn+η)2∑

n>K
|en(z)|2
(λn+η)2

≤ λK+1 < δ.

Thus,

lim
η→0

Φ(η) ≤ lim
η→0

ΦK(η) + lim
η→0

ΨK(η) ≤ δ.

Since δ > 0 was arbitrary we conclude that Φ(0+) = 0. Thus, for every

ε <
√

(K pz, pz)/‖pz‖ equation (2.31) has at least one solution η > 0.

Let us prove that this solution is unique by showing that Φ(η) is a monotone

increasing function. To prove this we only need to write the numerator N(η)

of Φ′(η), obtained by the quotient rule. Using the formula

d

dη
(K + η)−1 = −(K + η)−2

and denoting u = (K + η)−1pz we obtain

N(η) = 2((K + η)−1u, u)(K u, u)− 2(K (K + η)−1u, u)‖u‖2.

Using the formula K (K + η)−1 = 1− η(K + η)−1 we also have

N(η) = 2((K + η)−1u, u)((K + η)u, u)− 2(u, u)2.
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Since the operator K + η is positive definite we can use the inequality

(Ax, y)2 ≤ (Ax, x)(Ay, y)

for A = K + η, x = (K + η)−1u and y = u, showing that N(η) ≥ 0. The

equality occurs if and only if x = λy. In our case this would correspond

to pz being an eigenfunction of K , which is never true, due to the fact that

pz /∈ K (W). Thus, N(η) > 0 and (2.31) has a unique solution η∗ > 0.

Finding the asymptotics of η∗(ε), as ε→ 0 lies beyond capabilities of classical

asymptotic methods because Φ(η) has an essential singularity at η = 0. Indeed,

it is not hard to show2 that Φ′(−λn) = 0 for all n ≥ 1. Thus η = 0 is neither

a pole nor a removable singularity of Φ(η).

We can avoid the difficulty by observing that since the bound (2.26) is valid

for any choice of µ and ν, we can choose η = µ/ν based on a non-rigorous

analysis of what η∗ should be, and then choose ν according to (2.29) or (2.30),

while still obtaining an upper bound.

In accordance with (2.21) we postulate that

|en(z)|2 ' e−βn, λn ' e−αn

for some 0 < β < α and implicit constants independent of n. Hence using

equations (2.32) and (2.33) in (2.31) we obtain that for small η

ε2 = Φ(η) =

∞∑
n=1

λn|en(z)|2

(λn + η)2

∞∑
n=1

|en(z)|2

(λn + η)2

' η
α+β
α
−2

η
β
α
−2

= η, (2.34)

where the implicit constants are independent of η and we used Corollary 2.2

to estimate the sums. Thus, we see that

η∗ ' ε2. (2.35)

2Specifically η = −λn is a pole of order 4 of ‖u‖4, while it is a pole of order 3 of N(η).
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With this motivation let us choose η = ε2. With this and formulas (2.29)

and (2.30) for ν we obtain the two forms of the upper bound (2.26) conveniently

written in terms of u = (K + ε2)−1pz:

<e(f, pz) ≤
(u, pz)

2‖u‖
+ ε2‖u‖, <e(f, pz) ≤

ε(u, pz)

2‖u‖Γ

+ ε‖u‖Γ.

The formula (2.16) implies the inequalities

ε2‖u‖ ≤ u(z)

‖u‖
, ‖u‖Γ ≤

u(z)

‖u‖Γ

.

Therefore, we have both

|f(z)| = <e(f, pz) ≤
3

2

u(z)

‖u‖
, |f(z)| ≤ 3ε

2

u(z)

‖u‖Γ

.

This concludes the proof of part (ii) of the theorem.

Note that the equation (2.31) for the optimal choice η∗(ε) can be written

as ‖u∗‖Γ = ε‖u∗‖, where u∗ = (K + η∗)
−1pz. In this case we get

εu∗

‖u∗‖Γ

=
u∗

‖u∗‖
= Az(ε),

which proves (2.9).

Thus it remains to establish (2.10). The definition of u∗ implies u∗(z) =

(u∗, pz) = (u∗,K u∗ + η∗u
∗) = (u∗,K u∗) + η∗(u

∗, u∗), i.e.

u∗(z) = ‖u∗‖2
Γ + η∗‖u∗‖2 = (ε2 + η∗)‖u∗‖2, (2.36)

where the last step follows from the definition of η∗. In particular we find

that Az(ε) = (ε2 + η∗)‖u∗‖, therefore it is enough to derive a formula for ‖u∗‖
in terms of η∗. Let us write u∗ε instead of u∗ to show its dependence on ε.

The key observation is the relation between ∂εu
∗
ε(z) and ‖u∗ε‖ which we are

going to use in (2.36) to deduce the desired formula. The integral equation

for u∗ε diagonalizes in the eigenbasis and we find (en, u
∗
ε) = en(z)/(λn + η∗(ε)).

Therefore,
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u∗ε(z) =
∞∑
n=1

|en(z)|2

λn + η∗(ε)
, ‖u∗ε‖2 =

∞∑
n=1

|en(z)|2

(λn + η∗(ε))
2 .

These formulas readily imply

∂εu
∗
ε(z) = −η′∗(ε)‖u∗ε‖2. (2.37)

Differentiating (2.16) with respect to ε and using the relation (2.37) we find

(2ε+ η′∗(ε)) ‖u∗ε‖2 + 2‖u∗ε‖
(
ε2 + η∗(ε)

)
∂ε‖u∗ε‖ = −η′∗(ε)‖u∗ε‖2,

which then gives

∂ε‖u∗ε‖
‖u∗ε‖

= − ε+ η′∗(ε)

ε2 + η∗(ε)
= −2ε+ η′∗(ε)

ε2 + η∗(ε)
+

ε

ε2 + η∗(ε)
. (2.38)

Integrating (2.38) we find

‖u∗ε‖ =
C

ε2 + η∗(ε)
exp

{
−
∫ 1

ε

tdt

t2 + η∗(t)

}
,

which concludes the proof.

2.5 Insight into the asymptotics of η∗(ε)

The discussions in preceding sections show that we expect Az(ε) ' εγ,

therefore let us consider the quantity

γ(z) := lim
ε→0

lnAz(ε)

ln ε
.

Combining (2.9) with (2.36) on one hand and using (2.10) on the other hand

(where we change the variables in the integral), we obtain two different repre-

sentations for the power law exponent:

γ(z) = lim
ε→0

ln
(
(ε+ η∗

ε
)‖u∗‖Γ

)
ln ε

= lim
t→+∞

1

t

∫ t

0

dx

1 + e2xη∗(e−x)
. (2.39)
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Thus, understanding the asymptotic behavior of η∗(ε) as ε → 0 is crucial for

unraveling the above formulas. Recall that η = η∗ > 0 is the unique solution

of the following equation (cf. (2.34))

Φ(η) =

∞∑
n=1

λn|en(z)|2

(λn + η)2

∞∑
n=1

|en(z)|2

(λn + η)2

= ε2. (2.40)

Under the purported exponential decay (2.21) of eigenvalues and eigenfunc-

tions (at the point z) of K we proved in Section 2.4 that Φ(η) ' η with implicit

constants independent of η, leading to η∗(ε) ' ε2 with implicit constants in-

dependent of ε. Moreover, in Theorem 2.2 we also showed that ‖u∗‖Γ ' ε
β
α
−1,

which then implies that the ratio inside the first liminf in (2.39) converges as

ε→ 0 and gives the formula γ = β/α.

On the other hand, substituting λn, |en(z)| in (2.40) with their correspond-

ing exponentials from (2.21), and applying (a version) of Lemma 2.4 we can

approximate

Φ(η) ≈ ηL

(
ln

(
1

η

))
, L(τ) =

eτ
∑
k∈Z

e(α+β)k

(eαk+e−τ )2∑
k∈Z

eβk

(eαk+e−τ )2

. (2.41)

Note that L(τ) is an elliptic function with periods α and 2πi, further it has

symmetries L(τ) = L(τ) and L(β − τ) = L(τ). Figure 2.1 shows the plot of

L. Therefore, we expect ε−2η∗(ε) to be oscillatory and periodic as ε→ 0, more

precisely

ε−2η∗(ε) ∼
1

L(−2 ln ε)
.

So the integral averages of the function r(x) = (1+e2xη∗(e
−x))−1 in the second

formula of (2.39) converge to the integral (over one period) of its periodic

approximation, namely
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β

α
= γ = lim

t→+∞

1

t

∫ t

0

r(x)dx = lim
t→+∞

∫ 1

0

r(tx)dx =

∫ 1

0

L(2x)

1 + L(2x)
dx.

Figure 2.1: The graph of L(t) for α = 4 and β = 3.5.
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CHAPTER 3

THE ANNULUS AND THE

BERNSTEIN ELLIPSE

Let us use the Notation 2.1 defined in the beginning of Chapter 2. In this

chapter we consider applications of Theorems 2.1 and 2.2 to the settings when

Ω is an annulus and Γ is a concentric circle; and Ω is the Bernstein ellipse and

Γ = [−1, 1] is the interval between its foci. We obtain explicit formulas for the

exponent γ(z) and the maximizer function M = Mε,z attaining the optimal

bound in both cases (cf. Theorems 3.1 and 3.2).

Surprisingly, the result in ellipse follows from the one in annulus. The trick

we use, inspired by [20], is to map the Bernstein ellipse cut along [−1, 1] onto

the annulus using the inverse of the Joukowski function . Then, functions an-

alytic in the ellipse are distinguished from functions analytic in the cut ellipse

by their continuity across the cut. After the conformal transformation the

image of functions analytic in the entire ellipse would consist of functions ana-

lytic in the annulus with a reflection symmetry on the unit circle. Our Hilbert

space-based approach can easily incorporate linear constraints by making an

appropriate choice of the underlying Hilbert space. However, the question is

about the relation between the problems with and without such constraints.

In the case of the Bernstein ellipse and the annulus, we discover that the sub-

space of functions analytic in the annulus corresponding to functions analytic
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in the Bernstein ellipse is invariant with respect to the integral operator K .

It is this invariance that permits us to solve the problem with additional linear

constraints using the known solution of the original problem as explained in

Section 2.3.

3.1 The annulus

For 0 < ρ < 1 and r > 0 let

Aρ = {ζ ∈ C : ρ < |ζ| < 1}, Γr = {ζ ∈ C : |ζ| = r}. (3.1)

Consider the Hardy space (e.g. [23])

H2(Aρ) = {f is analytic in Aρ : ‖f‖H2(Aρ) = sup
ρ<r<1

‖f‖L2(Γr) <∞}, (3.2)

where for a curve Γ ⊂ C the space L2(Γ) denotes the space of square-integrable

functions on Γ with respect to the arc length measure |dτ | on Γ.

Theorem 3.1 (Annulus). Let Γ = Γr with r ∈ (ρ, 1) fixed and z ∈ Aρ\Γ.

Then there exists C > 0, such that for any ε > 0 and any f ∈ H2(Aρ) with

‖f‖H2(Aρ) ≤ 1 and ‖f‖L2(Γ) ≤ ε, we have

|f(z)| ≤ Cεγ(z), (3.3)

where

γ(z) =


ln |z|
ln r

, if r < |z| < 1

ln(|z|/ρ)

ln(r/ρ)
, if ρ < |z| < r

(3.4)

Moreover, (3.3) is asymptotically optimal in ε and the function attaining the

bound is

M(ζ) = ε2−γ(z)
∑
n∈Z

(zζ)n

r2n + ε2(1 + ρ2n)
, ζ ∈ Aρ. (3.5)

In addition M is analytic in the closure of Aρ and ‖M‖H∞(Aρ) is bounded

uniformly in ε.
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Remark 3.1. The statement that M attains the bound in (3.3) means that

‖M‖H2(Aρ) . 1, ‖M‖L2(Γ) . ε and |M(z)| ' εγ(z), with all implicit constants

independent of ε.

It is somewhat surprising that the worst case function, which was required

to be analytic only in Aρ is in fact analytic in a larger annulus {|z∗ρ| < |ζ| <
|z∗1 |}, where z∗1 = 1/z is the point symmetric to z w.r.t the circle Γ1 and

z∗ρ = ρ2/z is the point symmetric to z w.r.t the circle Γρ. In particular,

M ∈ H∞(Aρ) the space of analytic and bounded functions in Aρ. Hence,

M(ζ) also maximizes |M(z)|, asymptotically, as ε→ 0, if the constraints were

given in H∞(Aρ) and L∞(Γ), instead of H2(Aρ) and L2(Γ), respectively.

Remark 3.2. The limiting case as ρ → 0+ corresponds to the analytic con-

tinuation from the circle Γr into the unit disk D. The limiting value of the

exponent is γ(z) = ln |z|
ln r

for |z| > r, and γ(z) = 1, for |z| < r. The numerical

stability of extrapolation inside Γr can be seen directly from Cauchy’s integral

formula. The same formula for γ(z) has been obtained in [69] for H∞(D).

Proof of Theorem 3.1. Note that if we replace the H2-norm in Theorem 3.1 by

another equivalent norm, this will only change the constant C in the inequality

(3.3). In order to apply our theory we need a norm, induced by an inner

product, with respect to which the reproducing kernel of the space H2 is

as simple as possible. To define such an inner product we use the Laurent

expansion

f(ζ) =
∑
n≥0

fnζ
n +

∑
n<0

fnζ
n =: f+(ζ) + f−(ζ), (3.6)

then f ∈ H2(Aρ) if and only if f+ ∈ H2({|ζ| < 1}) and f− ∈ H2({|ζ| > ρ})
(cf. [66]). So we define

(f, g) = 1
2π

(f+, g+)L2(Γ1) + 1
2πρ

(f−, g−)L2(Γρ). (3.7)

The norm in H2(Aρ) induced by (3.7) is equivalent to the norm (3.2) (e.g.

[66, 42]). Now the functions {ζn}n∈Z form a basis in H2(Aρ), let us normalize

them:
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en(ζ) =

ζn, n ≥ 0

(ζ/ρ)n, n < 0,
(3.8)

then {en}n∈Z is an orthonormal basis of H2(Aρ). Definition of the reproducing

kernel implies that p(ζ, τ) =
∑

n en(τ)en(ζ). Computing this sum, or by adding

kernels of the spaces H2({|ζ| < 1}) and H2({|ζ| > ρ}), we find the reproducing

kernel of H2(Aρ) :

p(ζ, τ) =
1

1− ζτ
+

ρ2

ζτ − ρ2
. (3.9)

Note that pz /∈ K (W) (cf. (2.5)). Indeed, the function pz has simple poles

at z−1, ρ2z−1. At the same time, for any f ∈ W ⊂ L2(Γ) the function K f

may have singularities only in the set S = ∪τ∈Γ{τ−1, ρ2τ−1}. If z−1 ∈ S, then

z ∈ Γ ∪ ρ−2Γ. If ρ2z−1 ∈ S, then z ∈ Γ ∪ ρ2Γ. But since z /∈ Γ and curves

ρ±2Γ are outside of the annulus Aρ, the equation K f(ζ) = p(ζ, z) for ζ ∈ Aρ
cannot have any solutions in W .

We observe that for any orthonormal basis {en : n ∈ Z} of H we have,

using (2.3),

K f =
∑
n∈Z

(K f, en)en =
∑
n∈Z

(f, en)L2(Γ) en. (3.10)

It is easy to verify that when Γ is a circle centered at the origin, the functions

{en}, given by (3.8) are also orthogonal in L2(Γ) and hence, taking f = em in

(3.10) we conclude that K em = ‖em‖2
L2(Γ)em. So we have proved

Lemma 3.1. Let {en}n∈Z be given by (3.8) and K given by (3.10), then

K en = λnen, n ∈ Z,

where

λn = 2πr

r2n, n ≥ 0

(r/ρ)2n, n < 0
(3.11)
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We see that λn and |en(z)| approach to zero along two different sequences

and have two different asymptotic behaviors, which are distinguished by the

location of z relative to Γ. Therefore, to apply Theorem 2.2 we need to consider

two cases. Assume that z lies outside of Γ, i.e. |z| ∈ (r, 1). The function u

from (2.11) is given by

u(ζ) =
∑
n∈Z

en(z)en(ζ)

λn + ε2
. (3.12)

Note that, for any n ∈ Z

|en(z)|2

λn
=

1

2πr

(
|z|
r

)2n

.

By assumption the above quantity is summable over n < 0, this implies that

in analyzing u(z) the sum over negative indices is O(1), as ε → 0, and hence

can be ignored. The dominant part is the sum over n ≥ 0. Analogously,

in quantities ‖u‖H2(Aρ), ‖u‖L2(Γ) as well, the sum can be restricted to n ≥
0. This determines the behaviors λn ' r2n and |en(z)| ' |z|n, therefore

Theorem 2.2 implies that the exponent is γ(z) = ln |z|
ln r

. The case |z| ∈ (ρ, r) is

done analogously and (3.4) now follows.

Next, we can rewrite (3.12) as

u(ζ) =
∑
n≥0

znζn

2πrr2n + ε2
+
∑
n<0

znζn

2πrr2n + ε2ρ2n
. (3.13)

Let us consider the function

ũ(ζ) =
∑
n∈Z

znζn

r2n + ε2(1 + ρ2n)
, (3.14)

clearly for negative indices ρ2n � 1 and hence can be ignored, and for positive

indices 1 can be ignored from the denominator in the definition of ũ. Therefore,

values of ũ, u at z and their H2 and L2-norms have the same behavior in ε.

Thus, we may consider ũ instead, which then gives rise to the maximizer

function M in (3.5). Finally, the fact that ‖M‖H∞(Aρ) is bounded uniformly

in ε follows from the application of Corollary 2.2.
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3.2 The Bernstein ellipse

Let ER be the open ellipse with foci at ±1 and the sum of semi-minor

and semi-major axes equal to R > 1. The axes lengths of such an ellipse are

therefore (R±R−1)/2. ER is called the Bernstein ellipse [8, 68]. Its boundary

is an image of a circle of radius R centered at the origin under the Joukowski

map J(ω) = (ω + ω−1)/2. Let H∞(ER) be the space of bounded analytic

functions in ER, with the usual supremum norm.

Theorem 3.2 (Ellipse). Let z ∈ ER\[−1, 1]. Then there exists C > 0, such

that for every ε > 0 and F ∈ H∞(ER) with ‖F‖H∞(ER) ≤ 1 and ‖F‖L∞(−1,1) ≤
ε, we have

|F (z)| ≤ Cεα(z), (3.15)

where

α(z) = 1− ln |J−1(z)|
lnR

∈ (0, 1), J−1(z) = z + (z − 1)

√
z + 1

z − 1
. (3.16)

Moreover, (3.15) is asymptotically optimal in ε and function attaining the

bound is

M(ζ) = ε2−α(z)

∞∑
n=1

(J−1(z))nTn(ζ)

1 + ε2R2n
, (3.17)

where Tn is the Chebyshev polynomial of degree n: Tn(x) = cos(n cos−1 x) for

x ∈ [−1, 1].

Several remarks are now in order.

(i) J−1(ζ) is the branch of an inverse of the Joukowski map J , that is an-

alytic in the slit ellipse ER\[−1, 1] and satisfies the inequalities 1 <

|J−1(ζ)| < R.
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(ii) Chebyshev polynomials Tn play the same role in the ellipse as monomials

ζn play in the annulus, i.e. they are the building blocks of analytic

functions. In fact J−1 ◦ Tn ◦ J = ζn.

(iii) The same bound (3.15) was obtained in [20] when z ∈ ER ∩ R, where it

was shown that the bound (up to logarithmic factors) could be attained

by a polynomial

g(ζ) = εTK(ε)(ζ), K = K(ε) = bln(1/ε)/ lnRc. (3.18)

We observe that the terms in (3.17) increase exponentially fast from

n = 1 to n = K(ε) and then decrease exponentially fast for n > K(ε).

Hence, asymptotically (up to logarithmic factors) we can say that

|M(ζ)| ≈ ε2−α(z) |J−1(z)|K(ε) |TK(ε)(ζ)|
1 + ε2R2K(ε)

≈ ε|TK(ε)(ζ)|,

in agreement with (3.18).

The proof of Theorem 3.2 is given in the three subsections below.

3.2.1 From the ellipse to the annulus

The ellipse ER is conformally equivalent to a disk or the upper half-plane.

The conformal mapping effecting the equivalence can be written explicitly in

terms of the Weierstrass ζ-function, but the image of the interval [−1, 1] will

then be a curve that would not permit any kind of explicit solution of the

resulting integral equation. Instead we use a much simpler Joukowski function

J(ω) = ω+ω−1

2
that will convert the problem in the ellipse to the problem in

an annulus with Γ being a concentric circle inside the annulus. We observe

that J(ω) maps the annulus {R−1 < |ω| < R} onto the Bernstein ellipse ER

in 2-1 fashion, meaning that each point in ER has exactly two (if we count the

multiplicity) preimages in the annulus (note that J(ω) = J(ω−1)). Moreover,

the unit circle gets mapped onto [−1, 1] ⊂ ER under J . So given a function
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F ∈ H∞(ER), the function f(ζ) := F (J(Rζ)) is analytic in Aρ defined in (3.1),

with ρ = R−2, has the same H∞ norm, and satisfies the symmetry property

f(ζ) = f(ζ) ∀|ζ| = r =
1

R
. (3.19)

Conversely, any function f ∈ H∞(Aρ), satisfying (3.19) defines an analytic

function in a Bernstein ellipse (with the same H∞ norm). This is so because

(3.19) can also be written as

f

(
1

R2ζ

)
= f(ζ) ∀|ζ| = r. (3.20)

The Schwarz reflection principle then guarantees that (3.20) holds for all ζ ∈
Aρ. This implies that F (t) = f(R−1J−1(t)) gives the same value for each of

the two branches of J−1 and hence defines an analytic function in ER. Thus,

the analytic continuation problem in ellipse reduces to the one in the annulus,

but with an additional symmetry constraint (3.19).

3.2.2 The annulus with symmetry

Let us now define

H = {f ∈ H2(Aρ) : f(ζ) = f(ζ) ∀|ζ| = √ρ} (3.21)

and let the curve Γ be the circle Γr centered at the origin of radius r =
√
ρ.

Lemma 3.2 (Annulus with symmetry). Let 0 < ρ < 1 and let z ∈ C be such

that r < |z| < 1. Then there exists C > 0, such that for every ε > 0 and every

f ∈ H with ‖f‖H2(Aρ) ≤ 1 and ‖f‖L2(Γr) ≤ ε we have the bound

|f(z)| ≤ Cεγ(z), (3.22)

where the exponent γ(z) is the same as in Theorem 3.1, i.e.

γ(z) =
ln |z|
ln r

. (3.23)

Moreover, (3.22) is asymptotically optimal as ε→ 0 and the function attaining

the bound is

M(ζ) = ε2−γ(z)

∞∑
n=1

zn + (ρ/z)n

ρn + ε2
[ζn + (ρ/ζ)n], ζ ∈ Aρ. (3.24)
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Proof of Lemma 3.2. We note that the maximization problem in Lemma 3.2

differs from the one in Theorem 3.1 by the requirement of symmetry (3.19).

Hence, following the theory in Section 2.3 we define the subspace

L = {f ∈ H2(Aρ) : f(ζ) = f(ζ) ∀ζ ∈ Γr}, r =
√
ρ.

Then, the orthogonal projection onto L will be given by

PLf(ζ) =
f(ζ) + f(ρ/ζ)

2
. (3.25)

Lemma 3.3. The integral operator K given by (2.4) with kernel (3.9) and

Γ = Γr commutes with PL.

Proof. It is straightforward to show that the commutation PLK = K PL is

equivalent to

∫
Γr

p(ζ, τ)u(r2/τ)|dτ | =
∫

Γr

p(r2/ζ, τ)u(τ)|dτ |,

which, after change of variables on the left-hand side reduces to

p(ζ, ρ/τ) = p(ρ/ζ, τ) ∀ζ ∈ Aρ, ∀τ ∈ Γr.

Substituting the definition of p from (3.9) into this formula we easily verify

it.

According to the theory in Section 2.3 the solution of (2.23) is uL = PLu,

where u is given by (3.12). We observe that in the case r2 = ρ we have

λn = λ−n and en(ρ/ζ) = e−n(ζ), so that

uL = PLu(ζ) =
1

1 + ε2
+

1

2

∞∑
n=1

en(z) + e−n(z)

λn + ε2
[en(ζ) + e−n(ζ)].

Substituting the expressions for λn, en from (3.11), (3.8), respectively, and

ignoring the first O(1) term and some constants, which affect the asymptotics

of uL by constant factors, we arrive at the function

uL(ζ) =
∞∑
n=1

zn + (ρ/z)n

ρn + ε2
[ζn + (ρ/ζ)n].
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We note that

eLn =
1

2
(ζn + (ρ/ζ)n) , n ≥ 0,

is the orthonormal eigenbasis of L with respect to PLK PL. The corresponding

eigenvalues are λn = 2π
√
ρρn, and for |z| ∈ (r, 1) we have |eLn(z)| ' |zn +

(ρ/z)n| ' |z|n. Then, Theorem 2.2 gives the formula (3.23) as well as the

maximizer function (3.24).

3.2.3 From the annulus to the ellipse

In this section we will show that Theorem 3.2 follows from Lemma 3.2. Let

F ∈ H∞(ER) be such that ‖F‖H∞ ≤ 1 and |F (x)| ≤ ε for all x ∈ [−1, 1]. As

discussed in Section 3.2.1, the function f(ζ) := F (J(Rζ)) is analytic in Aρ,

with ρ = R−2 and has the symmetry f(ζ) = f(ζ) ∀|ζ| = r, where r = R−1.

It also satisfies

‖f‖H2(Aρ) . ‖F‖H∞(ER) ≤ 1

as well as

‖f‖2
L2(Γr)

=
1

R

∫ 2π

0

|F (J(eit))|2dt ≤ 2πε2

R
.

Let z ∈ ER \ [−1, 1]. Let za ∈ Aρ be the unique solution of J(Rza) = z,

satisfying |za| > r. Then by Lemma 3.2 (with ρ = R−2 and r = R−1) we have

|F (z)| = |f(za)| ≤ Cε−
ln |za|
lnR = Cε1−

ln|J−1(z)|
lnR = Cεα(z),

where α(z) is given by (3.16). This proves (3.15).

In order to prove the optimality of the bound (3.15) we use Corollary 2.2

to show that M(ζ) given by (3.24) satisfies|M(ζ)| . ε, |ζ| = r,

|M(ζ)| . 1, r < |ζ| < 1.

Using the Joukowski function to map this to a function on the Bernstein ellipse

we obtain
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Mellipse(t) = M
(
R−1J−1(t)

)
= ε2−α(z)

∞∑
n=1

Tn(z)Tn(t)

1 + ε2R2n
, (3.26)

where Tn is the Chebyshev polynomial of degree n. Chebyshev polynomials

are just monomials ζn in the annulus after the Joukowski transformation:

J−1 ◦ Tn ◦ J = ζ 7→ ζn, ∀ζ 6= 0.

We note that due to the choice of the branch of J−1 to correspond to a point

in the exterior of the unit disk we can neglect 1/(J−1(z))n in

Tn(z) =
1

2

(
(J−1(z))n +

1

(J−1(z))n

)
.

Thus, the function in (3.17) is asymptotically equivalent to (3.26). Theo-

rem 3.2 is now proved.
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CHAPTER 4

THE UPPER HALF-PLANE

Let us use the Notation 2.1 defined in the beginning of Chapter 2. In this

chapter we consider further applications of Theorems 2.1 and 2.2 in the setting

of Hardy functions over the upper half-plane. So let H+ = {ζ ∈ C : Im(ζ) > 0}
denote the complex upper half-plane and consider the Hardy space

H2 := H2(H+) = {f is analytic in H+ : sup
y>0
‖f(·+ iy)‖L2(R) <∞}. (4.1)

It is well known [42] that these functions have L2-boundary data, and that

‖f‖ := ‖f‖H2 = ‖f‖L2(R) defines a norm in H2(H+). Moreover, H2 is a RKHS

with the inner product (f, g) = (f, g)L2(R) and by Cauchy’s integral formula

f(z) =
1

2πi

∫
R

f(x)dx

x− z
= (f, pz),

where pz, the reproducing kernel of H2, is given by

pτ (ζ) = p(ζ, τ) =
i

2π(ζ − τ)
. (4.2)

Now the operator K (2.4) takes the form

K u(ζ) =
1

2π

∫
Γ

iu(τ)|dτ |
ζ − τ

. (4.3)
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Note that pz /∈ K (W) (cf. (2.5)) for z /∈ Γ. Indeed, the function pz is analytic

everywhere in C, except at z, where it has a pole. At the same time for any

f ∈ W ⊂ L2(Γ) the function K f is analytic everywhere in C outside of Γ.

But z /∈ Γ, since z lies outside of Γ. Therefore, the equation K f = pz has no

solutions in W .

According to Theorem 2.1, the maximizer function in

sup
{
|f(z)| : f ∈ H2 with ‖f‖ ≤ 1, ‖f‖L2(Γ) ≤ ε

}
(4.4)

is given by

Mε,z(ζ) = uε,z(ζ) min

{
1

‖uε,z‖
,

ε

‖uε,z‖L2(Γ)

}
, (4.5)

where u = uε,z solves the integral equation K u + ε2u = pz. Our goal is to

establish the estimate

Mε,z(z) ' εγ(z) (4.6)

and describe the exponent γ(z).

In Section 4.1 we consider the case when Γ is a circle in H+. In this case the

eigenvalues and eigenfunctions of K are computed explicitly and are seen to

decay exponentially, so that the assumption (2.21) of Theorem 2.2 is satisfied.

As a result, (4.6) follows with explicit formulas for γ(z) and the maximizer

function Mε,z.

In Section 4.2 we consider the case Γ = [−1, 1], which lies on the bound-

ary of H+. We first show that the error maximizer again solves an integral

equation, but with a singular, non-compact integral operator. This singular

equation is then solved explicitly and the exponent γ(z) is computed. Exam-

ining the formula for γ(z) we find a beautiful geometric interpretation of this

exponent.
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4.1 The circle

Notation: Let D(c, r) and C(c, r) denote respectively the closed disk and the

circle centered at c and of radius r in the complex plane.

Assume that the data curve Γ b H+ is a circle. By considering affine

automorphisms ζ 7→ aζ + b, a > 0, b ∈ R, of H+ we may ”translate” Γ to be

centered at i.

Theorem 4.1. Let Γ = C(i, r) with r < 1 and let z ∈ H+ be a point outside

of Γ. Then there exists C > 0, such that for any ε > 0 and any f ∈ H2 with

‖f‖H2 ≤ 1 and ‖f‖L2(Γ) ≤ ε, we have

|f(z)| ≤ Cεγ(z), (4.7)

where

γ(z) =
ln |m(z)|

ln ρ
, ρ =

1−
√

1− r2

r
, (4.8)

and

m(ζ) =
ζ − z0

ζ + z0

, z0 = i
√

1− r2

is the Möbius map transforming the upper half-plane into the unit disc and the

circle Γ into a concentric circle, whose radius has to be ρ. Moreover, (4.7) is

asymptotically optimal in ε and the function attaining the bound can be written

as a convergent in the upper half-plane ”power” series

M(ζ) =
ε2−γ(z)

ζ + z0

∞∑
n=1

(
m(z)m(ζ)

)n
ε2 + ρ2n

, ζ ∈ H+. (4.9)

Remark 4.1. When z is inside Γ we have complete stability, indeed Cauchy’s

integral formula implies that

|f(z)| ≤ cε

for a constant c independent of ε.
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Lemma 4.1. Let Γ = C(i, r) with r ∈ (0, 1) and let {en}∞n=1 be an orthonormal

eigenbasis of K in H2, with eigenvalues {λn}∞n=1. Then

λn =
rρ2n

1 +
√

1− r2
, en(ζ) =

4
√

1− r2

√
π

m(ζ)n

ζ + z0

, (4.10)

where ρ, z0,m(ζ) are as in Theorem 4.1.

Before proving this lemma, let us see that it concludes the proof of Theo-

rem 4.1 upon the application of Theorems 2.1 and 2.2. Indeed, λn ' ρ2n and

|en(z)| ' |m(z)|n, then the formula (4.8) for the exponent γ(z) follows. From

(2.17), the function u = uε,z is then given by

u(ζ) =
π−1
√

1− r2

(z + z0)(ζ + z0)

∞∑
n=1

m(z)
n
m(ζ)n

ρ2n+1 + ε2
. (4.11)

As in the case of the annulus (cf. Section 3.1), ignoring the constants that do

not affect the asymptotics of the function as ε → 0 we obtain the maximizer

(4.9).

Proof of Lemma 4.1. Let K w(ζ) = λw(ζ), then w must be analytic in the

extended complex plane with the closed disk D(−i, r) removed. In particular,

it is analytic in D(i, r). Thus, we can evaluate the operator K explicitly in

terms of values of w.

K w(ζ) =
1

2π

∫ 2π

0

irw(i+ reit)dt

ζ + i− re−it
=

1

2π

∫
C(0,r)

rw(i+ τ)dτ

(ζ + i)τ − r2
.

We note that r2/|ζ + i| < r precisely when ζ is outside of the closed disk

D(−i, r). In addition w(i+ τ) is analytic in D(0, r), hence

K w(ζ) =
ir

ζ + i
w

(
i+

r2

ζ + i

)
.

Next we note that the Möbius transformation

σ(ζ) = i+
r2

ζ + i

maps D(−i, r) onto the exterior of D(i, r). In particular there is a disk D1 ⊂
D(−i, r) such that σ(D1) = D(−i, r). Then K w is analytic in the exterior of
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D1, since w is analytic outside of D(−i, r). But w is an eigenfunction of K ,

hence it must also be analytic outside of D1. Repeating the argument using

the fact that w is analytic in the larger domain C \ D1 we conclude that it

must also be analytic outside of D2 ⊂ D1, such that σ(D2) = D1. We can

continue like this indefinitely, showing that the only possible singularity of w

must be at the fixed point ζ0 ∈ D(−i, r) of σ(ζ). We find

ζ0 = −i
√

1− r2.

Since w is analytic at infinity the transformation η = 1/(ζ − ζ0) will map the

extended complex plane with ζ0 removed to the entire complex plane (without

the infinity). The eigenfunction w will then be an entire function in the η-

plane. Let v(η) = w(η−1 + ζ0). Then

w(ζ) = v

(
1

ζ − ζ0

)
.

The relation K w = λw now reads

λv(η) =
irη

η(ζ0 + i) + 1
v

(
η(ζ0 + i) + 1

i− ζ0

)
.

One corollary of this equation is that v(0) = 0. Hence, φ(η) = η−1v(η) is also

an entire function, satisfying

λφ(η) =
ir

i− ζ0

φ

(
η(ζ0 + i) + 1

i− ζ0

)
.

We see that φ(η) is an entire function with the property that φ(aη + b) is a

constant multiple of φ(η), with b = 1
i−ζ0 and a = ρ2, where ρ is given by (4.8).

It remains to observe that such a property holds for functions φn(η) = (η−η0)n,

provided
η0 − b
a

= η0 ⇐⇒ η0 =
b

1− a
.

Indeed,

(aη + b− η0)n = an
(
η − η0 − b

a

)n
= an(η − η0)n.
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In our case we get η0 = − 1
2ζ0

and conclude that φn(η) =
(
η + 1

2ζ0

)n
and λn

is given by (4.10). Converting the formula back to wn(ζ) we obtain (up to a

constant multiple)

wn(ζ) =
1

ζ − ζ0

(
ζ + ζ0

ζ − ζ0

)n
=
m(ζ)n

ζ − ζ0

.

It remains to normalize the eigenfunctions wn. For that we compute

‖wn‖2
H2 =

∫
R
|wn|2dx =

∫
R

dx

|x− ζ0|2
=

π√
1− r2

.

4.2 The interval on the boundary

We recall that functions in the Hardy space H2 (4.1) are determined uniquely

not only by their values on any curve Γ ⊂ H+, but also on Γ ⊂ R. Indeed, if

f = 0 on Γ ⊂ R, the Cauchy integral representation formula implies

f(ζ) =
1

2πi

∫
Γc

f(x)dx

t− ζ
, ζ ∈ H+,

where Γc = R \ Γ. Then f(ζ) has analytic extension to C \ Γc, which vanishes

on a curve Γ inside its domain of analyticity and therefore f ≡ 0. This rigidity

property suggests that we should expect the same power law behavior of the

analytic continuation error as for the curves in the interior of H+.

We will consider the most basic case when Γ ⊂ R is an interval. By

rescaling and translation we may assume, without loss of generality, that Γ =

[−1, 1]. We proceed by representing Γ as a limit of interior curves Γh =

[−1, 1] + ih as h ↓ 0. For curves Γh, Theorem 2.1 can be applied and in the

resulting upper bound and the integral equation, limits, as h ↓ 0, can be taken.

As a result we obtain

Theorem 4.2 (Boundary). Let z = zr + izi ∈ H+ and ε ∈ (0, 1). Assume

f ∈ H2 is such that ‖f‖ ≤ 1 and ‖f‖L2(−1,1) ≤ ε, then
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|f(z)| ≤ Cεγ(z) (4.12)

where C−2 = zi
9

(
arctan zr+1

zi
− arctan zr−1

zi

)
and

γ(z) = − 1

π
arg

z + 1

z − 1
∈ (0, 1) (4.13)

is the angular size of [−1, 1] as seen from z, measured in units of π radians.

Moreover, the upper bound (4.12) is asymptotically (in ε) optimal and the

maximizer that attains the bound up to a multiplicative constant independent

of ε is

M(ζ) = ε
pz(ζ)

‖pz‖L2(−1,1)

e
i
π

ln ε ln 1+ζ
1−ζ , ζ ∈ H+ (4.14)

where pz(ζ) = i/2π(ζ − z) and ln denotes the principal branch of logarithm.

Remark 4.2.

1. Our explicit formulas show that the problem of predicting the value of a

function at z = z0 ∈ R\ [−1, 1] is ill-posed in every sense. Indeed, in the

optimal bound (4.12) C → +∞ and γ(z)→ 0 as z → z0.

2. The set of points z ∈ H+ for which γ(z) is the same is an arc of a circle

passing through −1 and 1 that lies in the upper half-plane.

Remark 4.3. Conformal mappings between domains can be used to ”trans-

plant” the exponent estimates from one geometry to a different one. For ex-

ample, we can transplant the exponent γ(z) in (4.13) for the half-plane to the

half-strip <eω > 0, |Imω| < 1, considered in [69]. The analytic function

f(ω) is assumed to be bounded in the half-strip and also of order ε on the

interval [−i, i] on the imaginary axis. Then any such function must satisfy

|f(x)| ≤ Cεγ(x), x > 0, where γ(x) = (2/π)arccot(sinh(πx/2)). Moreover,

the estimate is sharp, since it is attained by the function M(−i sinh(πω/2)),

where M(ζ) is given by (4.14). This result follows from the observation that
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ζ = −i sinh(πω/2) is a conformal map from the half-strip to the upper half-

plane, mapping interval [−i, i] to the interval [−1, 1].

The proof of Theorem 4.2 is given in the two subsections below.

4.2.1 The integral equation

Let us first establish an analogous result to Theorem 2.1, i.e. below we

formulate the upper bound in the case Γ = [−1, 1] via the solution to an

integral equation.

Theorem 4.3. Let z ∈ H+ and ε > 0. Assume f ∈ H2 is such that ‖f‖ ≤ 1

and ‖f‖L2(−1,1) ≤ ε, then

|f(z)| ≤ 3

2
ε

uε,z(z)

‖uε,z‖L2(−1,1)

, (4.15)

where u = uε,z solves the integral equation

1

2
(Ku+ u) + ε2u = pz, on (−1, 1) (4.16)

with pz as in Theorem 4.2 and

Ku(x) =
i

π

∫ 1

−1

u(y)

x− y
dy, (4.17)

where the integral is understood in the principal value sense.

Proof. It is enough to prove the inequality (4.15) for ‖f‖ ≤ 1 and ‖f‖L2(−1,1) <

ε, because when ‖f‖L2(−1,1) = ε we can consider the sequence fn := (1 − 1
n
)f

and take limits in the inequality for fn as n→∞.

Since f(· + ih) → f as h ↓ 0 in L2(−1, 1) (a well-known property of

H2 functions, see [42]), the assumption ‖f‖L2(−1,1) < ε implies that ‖f(· +
ih)‖L2(−1,1) ≤ ε for h small enough. In other words ‖f‖L2(Γh) ≤ ε, where

Γh = [−1, 1] + ih, so we can apply Theorem 2.1 and conclude

|f(z)| ≤ 3

2
ε

uh(z)

‖uh‖L2(Γh)

, ∀h small enough
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where uh solves the integral equation K u+ ε2u = pz, which reads

1

2π

∫
Γh

iu(τ)

ζ − τ
|dτ |+ ε2u(ζ) =

i

2π(ζ − z)
, ζ ∈ H+.

Let us set v(ω) = u(ω+ ih), then the above integral equation can be rewritten

as

Khv(ω) + ε2v(ω) = qh(ω), Imω > −h (4.18)

with

Khv(ω) =
1

2π

∫ 1

−1

iv(y)dy

ω − y + 2ih
, qh(ω) =

i

2π(ω + ih− z)
. (4.19)

Let us denote this solution by vh to indicate its dependence on the small pa-

rameter h, namely vh = (Kh + ε2)
−1
qh. Then the upper bound on f becomes

|f(z)| ≤ 3

2
ε
vh(z − ih)

‖vh‖L2(−1,1)

, ∀h small enough (4.20)

Our goal is to take limits in this upper bound as h ↓ 0.

Lemma 4.2. Let Kh and K be defined by (4.19) and (4.17), respectively.

Then for any g ∈ L2(−1, 1)

Khg → 1
2
(K + 1)g, as h ↓ 0, in L2(−1, 1). (4.21)

Proof.

• {Kh}h>0 is uniformly bounded in the operator norm on L2(−1, 1). To prove

this we observe that Khg = k ∗ χ1g, where χ1 := χ(−1,1) and

k(t) =
i

2π(t+ 2ih)
.

With the definition f̂(ξ) =
∫
R f(x)e−iξxdx we can compute k̂(ξ) = e−2hξχ>0(ξ),

where χ>0(ξ) = χ(0,+∞)(ξ). In particular |k̂| ≤ 1, but then
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‖Khg‖L2(−1,1) ≤ ‖Khg‖L2(R) = 1√
2π
‖k̂ · χ̂1g‖L2(R) ≤ 1√

2π
‖χ̂1g‖L2(R) =

= ‖χ1g‖L2(R) = ‖g‖L2(−1,1)

which immediately implies ‖Kh‖ ≤ 1 for any h > 0.

• By uniform boundedness of ‖Kh‖, it is enough to show convergence Khg →
1
2
(K + 1)g in L2(−1, 1) for a dense set of functions g. We will now show

convergence for all g ∈ C∞0 (−1, 1). Since by Sokhotski-Plemelj formula this

convergence holds a.e. in (−1, 1), to achieve the desired conclusion it is enough

to show that the family of functions |Khg|2 is equiintegrable in (−1, 1). Vitali

convergence theorem [65, p. 133, exercise 10(b)] then implies convergence of

Khg in L2(−1, 1). We recall the definition of equiintegrability:

sup
|A|≤δ

sup
h>0

∫
A

|Khg(x)|2dx→ 0, as δ → 0, (4.22)

where the first supremum is taken over measurable subsets A ⊂ (−1, 1). We

compute

∫
A

|Khg(x)|2dx = ‖χAKhg‖2
L2(R) = ‖χ̂A ∗ K̂hg‖2

L2(R) ≤ ‖χ̂A‖2
L2(R)‖K̂hg‖2

L1(R),

where we have used Young’s inequality. Now (4.22) follows from uniform

boundedness of ‖K̂hg‖L1(R). We compute

K̂hg(ξ) = e−2hξχ>0(ξ)χ̂1g(ξ)

hence

‖K̂hg‖L1(R) ≤ ‖χ̂1g‖L1(R) = ‖ĝ‖L1(R) <∞,

since for g ∈ C∞0 (−1, 1) we have χ̂1g = ĝ ∈ L1(R). Thus,

∫
A

|Khg(x)|2dx ≤ ‖χ̂A‖2
L2(R)‖ĝ‖2

L1(R) = |A|‖ĝ‖2
L1(R) → 0, as δ → 0
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Since Kh is a positive operator for any h, we see that so is K+1 and hence

the inverse of 1
2
(K + 1) + ε2 is well-defined on L2(−1, 1). We now see that, as

h ↓ 0

vh =
(
Kh + ε2

)−1
qh −→

(
1
2
(K + 1) + ε2

)−1
pz =: w, in L2(−1, 1)

(4.23)

Indeed, using the resolvent identity(
Kh + ε2

)−1 −
(
K0 + ε2

)−1
=
(
Kh + ε2

)−1
(K0 −Kh)

(
K0 + ε2

)−1
,

where K0 = 1
2
(K + 1), we conclude that(

Kh + ε2
)−1

g →
(
K0 + ε2

)−1
g

for any g ∈ L2(−1, 1), since all operators above are uniformly bounded as

h→ 0. Relation (4.23) then easily follows.

We now observe that because of the convergence (4.21) w ∈ L2(−1, 1)

represents boundary values of an analytic function in the upper half-plane (in

fact an H2 function), hence we can extend w to H+, more specifically

ε2w(ζ) := pz(ζ)− i

2π

∫ 1

−1

w(y)

ζ − y
dy, ζ ∈ H+

defines the extension. But then, from the integral equation for vh we see that

ε2vh(z − ih) =
i

2π(z − z)
− i

2π

∫ 1

−1

vh(y)

z − y + ih
dy −→ ε2w(z)

and thus we conclude

|f(z)| ≤ 3

2
ε

w(z)

‖w‖L2(−1,1)

It remains to relabel w by uε,z and conclude the proof.
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4.2.2 Solution of the integral equation

The goal of this section is to find the function u appearing in the upper

bound (4.15). Recall that u solves the integral equation

Ku+ λu = 2p, on (−1, 1)

where λ = 1 + 2ε2, K is the truncated Hilbert transform given by (4.17), and

we dropped the subscript from pz to simplify the notation.

The reason that makes it possible to solve this integral equation, is the

spectral representation of K obtained in [43]. Below we state the results of

[43]. For x, ζ ∈ (−1, 1) let

σ(x, ζ) =
exp

{
i

2π
L(x)L(ζ)

}
π
√

(1− x2)(1− ζ2)
, L(x) = ln

(
1 + x

1− x

)
(4.24)

Theorem 4.4. The formulae

f(x) =

∫ 1

−1

g(ζ)σ(x, ζ)dζ, g(ζ) =

∫ 1

−1

f(x)σ(x, ζ)dx

are inversion formulae which represent isometries from the space L2(−1, 1) to

itself.

Theorem 4.5. If f(x) corresponds to g(ζ), then Kf(x) corresponds to ζg(ζ)

(w.r.t. the above transformation).

Remark 4.4. Integrals are understood in a limiting sense as the Fourier trans-

form of an L2 function, namely as the limit of
∫ 1−δ
−1+δ

when δ ↓ 0 in the sense

of L2(−1, 1).

Let (·, ·) denote the inner product of L2(−1, 1), using the stated result we can

write

u(x) =

∫ 1

−1

(u, σ(·, ζ))σ(x, ζ)dζ, p(x) =

∫ 1

−1

(p, σ(·, ζ))σ(x, ζ)dζ
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Ku(x) =

∫ 1

−1

ζ (u, σ(·, ζ))σ(x, ζ)dζ

then the integral equation gives

(λ+ ζ) (u, σ(·, ζ)) = 2 (p, σ(·, ζ))

and therefore

u(x) =

∫ 1

−1

2 (p, σ(·, ζ))σ(x, ζ)

λ+ ζ
dζ (4.25)

Let us compute (p, σ(·, ζ)) explicitly by changing variables y = tanh(t), in

which case L(y) = 2t. We obtain

(p, σ(·, ζ)) =
i

2π2
√

1− ζ2

∫
R

e−itL(ζ)/π

sinh t− z cosh t
dt

let α ∈ C be such that cothα = z, then

(p, σ(·, ζ)) = − i sinhα

2π2
√

1− ζ2

∫
R

e−itL(ζ)/π

cosh(t− α)
dt

We observe that

cothα =
e2α + 1

e2α − 1
=
w + 1

w − 1
, w = e2α.

The fractional linear map w 7→ w+1
w−1

maps lower half-plane into the upper

half-plane and therefore, w = w(z) is in the upper half-plane. Hence, Imα ∈
(0, π/2). It follows that there are no zeros of cosh(t− α) in the strip bounded

by R and Imt = Imα. Taking into account that

lim
R→∞

∫ Imα

0

e−i(iτ±R)L(ζ)/π

cosh(iτ ±R− α)
idτ = 0

we conclude that

(p, σ(·, ζ)) = −ie
−iαL(ζ)/π sinhα

2π2
√

1− ζ2

∫
R

e−itL(ζ)/π

cosh(t)
dt = − ie−iαL(ζ)/π sinhα

2π
√

1− ζ2 cosh(L(ζ)/2)
.
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Simplifying we obtain

(p, σ(·, ζ)) = − i

2π
e−iαL(ζ)/π sinhα.

We now use this formula in (4.25)

u(x) = − i sinhα

π2
√

1− x2

∫ 1

−1

eiL(ζ)[L(x)−2α]/2π

(λ+ ζ)
√

1− ζ2
dζ,

once again changing the variables ζ = tanh s we obtain

u(x) = − i sinhα

π2
√

1− x2

∫
R

eis[L(x)−2α]/π

sinh s+ λ cosh s
ds.

Let β = β(λ) be such that coth β = λ, then β(λ) > 0 and β(λ) → +∞, as

λ→ 1. Now

u(x) = −i sinhα sinh β

π2
√

1− x2

∫
R

eis[L(x)−2α]/π

cosh(s+ β)
ds = −i sinhα sinh β

π
√

1− x2

e−iβ[L(x)−2α]/π

cosh(L(x)/2− α)
.

Next we simplify

cosh
(
L(x)

2
− α

)
= cosh

(
L(x)

2

)
coshα− sinh

(
L(x)

2

)
sinhα =

coshα− x sinhα√
1− x2

.

Thus we obtain the final answer

u(x) =
i sinh β

π(x− z)
e−i

β
π

[L(x)−2α] = 2p(x) sinh(β)e−i
β
π

[L(x)−2α], (4.26)

where (with ln denoting the principal branch of logarithm)

β = 1
2

ln
(
1 + ε−2

)
, α = 1

2
ln
z + 1

z − 1
.

We see that

‖u‖L2(−1,1) = 2‖p‖L2(−1,1) sinh(β)e−2β
π
Imα.

Because <eL(z) = 2<eα and eβ ∼ ε−1 as ε→ 0, we find that
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ε
u(z)

‖u‖L2(−1,1)

= ε
p(z)e

β
π
ImL(z)

‖p‖L2(−1,1)

∼ p(z)ε
1
π

[π−ImL(z)]

‖p‖L2(−1,1)

=: B, as ε→ 0

(4.27)

Since 1+z
1−z ∈ H+ we see that π − arg 1+z

1−z = − arg z+1
z−1

and with z = zr + izi we

obtain

B =
ε−

1
π

arg z+1
z−1

2
√
zi
√

arctan zr+1
zi
− arctan zr−1

zi

(4.28)

when ε < 1 we can replace the asymptotic equivalence to B in (4.27) by≤
√

2B

and conclude the proof of (4.12). To prove the optimality of this upper bound

we consider the function

M(ζ) = ε
p(ζ)

‖p‖L2(−1,1)

e
i
π

ln ε ln 1+ζ
1−ζ , ζ ∈ H+

clearly this is an analytic function in the upper half-plane and belongs to H2,

‖M‖L2(−1,1) = ε and

‖M‖2
H2 = ε2 +

‖p‖2
L2((−1,1)C)

‖p‖2
L2(−1,1)

= ε2 − 1 +
π

arctan zr+1
zi
− arctan zr−1

zi

≤ c,

where c > 0 is independent of ε, thereforeW is an admissible function. Further,

|M(z)| = B

that is, M(ζ) attains the bound (4.12) up to a constant independent of ε.
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CHAPTER 5

EXTRAPOLATION OF THE

COMPLEX

ELECTROMAGNETIC

PERMITTIVITY FUNCTION

5.1 Introduction

Properties of linear, time-invariant, causal systems are characterized by

functions analytic in a complex half-plane. Examples include transfer func-

tions of digital filters [34], complex impedance and admittance functions of

electrical circuits [9], complex magnetic permeability and complex dielectric

permittivity functions [46, 28]. Arising from the world of real-valued fields,

these functions also possess specific symmetries. The underlying mathematical

structure is the Fourier (or Laplace) transforms of real-valued functions that

vanish on negative semi-axis. More generally, the analyticity arises from the

analyticity of resolvents of linear operators, while their symmetries reflect that

these operators are very often real and self-adjoint.

In a typical situation we can measure the values of such analytic functions

on a compact subset of the boundary of their half-plane of analyticity. The
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real and imaginary parts of such a function are not independent, but are

Hilbert transforms of one another. In the context of the complex dielectric

permittivity this fact is expressed by the Kramers-Kronig relations [45]. It is

therefore tempting to use these relations in order to reconstruct the analytic

functions from their measured values. Unfortunately, such a reconstruction

problem is ill-posed (e.g. [52]), and one needs to place additional constraints

on the set of admissible analytic functions for the extrapolation problem to be

mathematically well-posed.

In this work we propose a physically natural regularization that implies

that the underlying analytic functions can be analytically continued into a

larger complex half-plane. In that case, the idea is to exploit the fact that

complex analytic functions possess a large degree of rigidity, being uniquely

determined by values at any infinite set of points in any finite interval. This

rigidity also implies that even very small measurement errors will produce data

mathematically inconsistent with values of an analytic function. In such cases

the least squares approach [18, 17, 12, 13] that treats all data points equally is

the most natural one. In the first part of this chapter we prove that the least

squares problem has a unique solution, that yields a mathematically stable

extrapolant. We show that the minimizer must be a rational function and

derive the necessary and sufficient conditions for its optimality.

Previous chapters show that surprisingly, the space of analytic functions is

also ”flexible” in the sense that the data can often be matched up to a given

precision by two physically admissible functions that are very different away

from the interval, where the data is available. The second part of this chapter

quantifies this phenomenon by giving an optimal upper bound on the possible

discrepancy between any two approximate extrapolants. We show that this

discrepancy behaves like a power law: ∆z(ε) ≈ εγ for some γ ∈ (0, 1), where γ

can be computed numerically from an integral equation. We also give an upper

bound on γ in terms of an analytical expression, which is checked numerically

to be in excellent agreement with γ.
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5.2 Preliminaries

When the electromagnetic wave passes through the material the incident

electric field E(x, t) interacts with charge carriers inside the matter. We as-

sume that the induced polarization field P (x, t) depends on the incident elec-

tric field linearly and locally. This is expressed by the constitutive relation

P (x, t) =

∫ +∞

0

E(x, t− s)a(s)ds, (5.1)

indicating that the polarization field depends only on the past values of E(x, t).

The function a(t) is called the impulse response or a memory kernel, which

is assumed to decay exponentially. Its decay rate, a(t) ∼ e−t/τ0 , t → ∞,

indicates how fast the system “forgets” the past values of the incident field.

The parameter τ0 > 0 is called the relaxation time, which can be measured for

many materials.

Let

a0(t) =

a(t), t ≥ 0,

0, t < 0.

Then we can extend the integral in (5.1) to the entire real line and apply the

Fourier transform to convert the convolution into a product:

P̂ (x, ζ) = â0(ζ)Ê(x, ζ),

where

f̂(ζ) =

∫
R
f(x)eiζxdx

is the Fourier transform. In physics, the function ε(ζ) = ε0 + â0(ζ) is called

the complex dielectric permittivity of the material, where ε0 is the dielectric

permittivity of the vacuum. Mathematically, it is more convenient to study

â0(ζ), rather than ε(ζ). From now on, we will denote

f(ζ) = â0(ζ),

and refer to it as the complex electromagnetic permittivity , in a convenient

abuse of terminology. Let us recall the well-known analytic properties of
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isotropic complex electromagnetic permittivity as a function of frequency ζ

of the incident electromagnetic wave [46, 28]:

(a) f(ζ) = f(−ζ);

(b) f(ζ) is analytic in the complex upper half-plane H+;

(c) Im f(ζ) > 0 for ζ in the first quadrant <e(ζ) > 0, Im(ζ) > 0;

(d) f(ζ) = −Aζ−2 +O(ζ−3), A > 0 as ζ →∞.

Property (a) expresses the fact that physical fields are real. Property (b) is

the consequence of the causality principle i.e. independence of P (x, t) of the

future values of E(x, τ), τ > t. Property (c) comes from the fact that the

electromagnetic energy gets absorbed by the material as the electromagnetic

wave passes through. Property (d) is called the plasma limit, where at very

high frequencies the electrons in the medium may be regarded as free. Complex

analytic functions with properties (a)–(d) and their variants, are ubiquitous in

physics. The complex impedance of electrical circuits as a function of frequency

has similar properties. Yet another example is the dependence of effective

moduli of composites on the moduli of its constituents [6, 53]. These functions

appear in areas as diverse as optimal design problems [47, 48] and nuclear

physics [51, 50, 10]. Typically1 only the values of such a function on a real

line can be measured. In the case of complex electromagnetic permittivity the

measurements are usually made either on a finite interval or at a discrete set

of frequencies. However, the requirements (a)–(d) do not place any regularity

requirements on f(ζ), when ζ is real. For example, the function

f(ζ) =
1

z2 − ζ2
, z > 0

satisfies properties (a)–(d), but blows up at the frequency z > 0. We exclude

such examples by assuming that the memory kernel a(t) decays exponentially

1In the context of viscoelastic composites measurements corresponding to values of f(ζ)
in the upper half-plane are also possible.
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with relaxation time τ0 > 0. In this case f(ζ) will have an analytic extension

into the larger half-plane

Hh = {ζ ∈ C : Im ζ > −h}, (5.2)

where h = 1/τ0 > 0. In general, the analytic continuation of f(ζ) need not

have positive imaginary part when Im(ζ) > −h and <e(ζ) > 0. For example,

f(ζ) = − ζ+i
(ζ+3i)3

satisfies conditions (a)–(d), is analytic in H3, but Im f(x− iε)
takes negative values for any ε ∈ (0, 3) for some x > 0. We therefore make

an additional regularizing assumption that positivity property (c) continues to

hold in the larger half-plane Hh. In fact, under the additional assumption that

f ′(0) 6= 0, the positivity condition can be guaranteed in some possibly smaller

half-plane Hh′ , 0 < h′ ≤ h (see Proposition A.1). The quantity −if ′(0) > 0

is the analog of the Elmore delay (at zero frequency) in electronic circuits

[25]. Thus, the class of physically admissible complex dielectric permittivity

functions is narrowed in a natural way to one of the classes Kh defined as

follows.

Definition 5.1. A complex analytic function f : Hh → C belongs to the class

Kh if it has the following list of physically justified properties.

(S) Symmetry: f(ζ) = f(−ζ);

(P) Passivity: Im(f(ζ)) > 0, when Im(ζ) > −h, <e(ζ) > 0;

(L) Plasma limit: f(ζ) = −Aζ−2 +O(ζ−3), A > 0 as ζ →∞.

Functions in the set Kh are closely related to an important class of functions

called Stieltjes functions .

Definition 5.2. A non-constant function analytic in the complex upper half-

plane is said to be of Stieltjes class S if its imaginary part is positive, and

it is analytic on the negative real axis, where it takes real and nonnegative

values. Such functions together with all nonnegative constant functions form

the Stieltjes class S.
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It is well-known that a Stieltjes function F (ω) is uniquely determined by a

constant ρ ≥ 0 and a Borel-regular positive measure σ by the representation

F (ω) = ρ+

∫ ∞
0

dσ(λ)

λ− ω
,

∫ ∞
0

dσ(λ)

λ+ 1
< +∞. (5.3)

The measure σ is often referred to as spectral measure [45, 46]. Let us show

that every function f ∈ Kh can be represented by

f(ζ) = F ((ζ + ih)2), F ∈ S, ρ = 0,

∫ ∞
0

dσ(λ) = A < +∞, (5.4)

where σ is the spectral measure for F (ω).

For any f ∈ Kh consider the function g(z) = f(z − ih) which is analytic

in H+, g(z) = g(−z), Img > 0 in the first quadrant and g(z) ∼ −Az−2 as

z →∞ for some A > 0.

Unfolding the first quadrant in the z-plane into the upper half-plane in the

ω-plane via ω = z2 we obtain a function F (ω) = g(
√
ω), which is analytic in H+

and has a positive imaginary part there. The symmetry of g implies that it is

real on iR>0, but then F is real on R<0. Clearly, analyticity of g on iR>0 implies

that of F on R<0. The plasma limit assumption implies that F (−x) ≥ 0 for x

large enough, which is enough to conclude that F is a Stieltjes function (see

the proof of [44, Theorem A.4]). Thus, F admits the representation (5.3). But

then, the asymptotic relation F (ω) ∼ −Aω−1 as ω → ∞ implies that ρ = 0

and
∫∞

0
dσ(λ) = A <∞. Thus, f(ζ) = g(ζ + ih) = F ((ζ + ih)2). Conversely,

if f is given by (5.4) then it is straightforward to check that it satisfies all the

required properties of class Kh.

5.3 Main results

Let us assume that the experimentally measured data fexp(ζ) is known

on a band of frequencies Γ = [0, B]. The unavoidable random noise makes

the measured values mathematically inconsistent with the analyticity of the

complex dielectric permittivity function. The standard way to deal with the



60

noise is to use the “least squares” approach by looking for a function f ∈ Kh
that is closest to the experimental data fexp(ζ) in the L2 norm on Γ. Thus,

after rescaling the frequency interval Γ to the interval [0, 1] we arrive at the

following least squares problem

inf
f∈Kh

‖f − fexp‖L2(0,1). (5.5)

One approach [15, 16] is to ignore the positivity requirement, while retaining

the spectral representation (5.4). The resulting problem constrains f to a

vector space, but becomes ill-posed. It is then solved by Tikhonov regulariza-

tion techniques. Unfortunately, such an approach cannot guarantee that the

solution possesses the required positivity.

We will see in Section 5.4 that the positivity property of functions in Kh
plays a regularizing role, making the least squares problem (5.5) well-posed.

So the solution to (5.5) exists, is unique and lies in the closure Sh = Kh with

respect to the topology of the space H(Hh) of analytic functions on Hh. We

then characterize the set Sh and obtain stability of analytic continuation: if

{fn}, f ⊂ Sh are such that fn → f in L2(0, 1), then fn → f as n → ∞ in

H(Hh). In Section 5.4.2 we study the properties of the minimizer of (5.5).

Even though we have established well-posedness and stability of the ex-

trapolation problem, the above-mentioned results are not quantitative, since

they do not give rates of convergence of the extrapolation errors. The Fig-

ure 5.1 below (corresponding to a small value of the natural regularization

parameter) shows two perfectly admissible functions in Kh that are extremely

close on [0, 1], but diverge almost immediately beyond the data window. It

suggests that in practice the degree of mathematical well-posedness needs to

be quantified. While there is no shortage of proposed algorithms for extrap-

olation of experimental data in the vast literature on the subject, there is no

mathematically rigorous quantitative analysis of uncertainty inherent in any

such extrapolation procedure.

We therefore consider two different extrapolants f and g in Kh, constructed

by some algorithms, that match the same experimental data on the frequency
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Figure 5.1: Apparent ill-posedness of the extrapolation process.

band [0, 1] with relative precision ε. As Figure 5.1 shows there is uncertainty

inherent in such extrapolation algorithms. Without discussing specific algo-

rithms we would like to examine theoretical feasibility of such a procedure:

how much f and g can differ at a given point z > 1?

Remark 5.1. All the results of this chapter hold for z ∈ H+\[−1, 1], however

we concentrate on the case of practical interest and assume z > 1.

Recall that to a function f ∈ Kh corresponds a measure σf via (5.4), such

that

‖σf‖∗ :=

∫ ∞
0

dσf (λ)

λ+ 1

is finite and can be interpreted as the ”total norm” of f . The relative extrap-

olation error at the point z is then given by

∆z,h(ε) = sup

{
|f(z)− g(z)|

max(‖σf‖∗, ‖σg‖∗)
: (f, g) ∈ Kh and

‖f − g‖L2(0,1)

max(‖σf‖∗, ‖σg‖∗)
≤ ε

}
.

(5.6)

Observe that the admissible functions in ∆ are those pairs that are close to

each other on (0, 1) in L2 sense, relative2 to their ”total norms”. The two

fundamental questions regarding the extrapolation procedure are

2Note that it is important to consider relative errors, because otherwise the condition
‖f − g‖L2(0,1) ≤ ε allows pairs (f, g) that have small L2-norms and are not at all relatively
close to each other on (0, 1).



62

1. The well-posedness: Is it true that ∆z,h(ε)→ 0 as ε→ 0?

2. What is the exact convergence rate of ∆z,h(ε) to 0?

The first insight is the realization that, in fact, these questions are about the

difference φ = f−g, rather than the pair (f, g). The difference φ has the same

spectral representation (5.3), (5.4) as f and g, except the spectral measure is

no longer positive. Our next observation is that the asymptotic behavior of

∆z,h(ε), as ε→ 0 is insensitive to certain restrictions on the spectral measures

σ, as long as the set of admissible measures is dense (in the weak-* topology) in

the space of measures (5.3). For example, we may work only with absolutely

continuous measures with densities in L2(0,+∞), permitting us to use the

theory of Hardy functions H2(Hh) and Hilbert space methods to obtain exact

asymptotic behavior of ∆z,h(ε). Namely let

Az,h(ε) = sup
{
|f(z)| : f ∈ H2(Hh) and ‖f‖H2(Hh) ≤ 1, ‖f‖L2(−1,1) ≤ ε

}
(5.7)

We will prove that (cf. Corollary 5.2) Ah(ε) . ∆h(ε) . Ah′(ε) for any h′ ∈
(0, h) with implicit constants depending only on h and h′ (where we suppressed

the dependence on z from the notation). We prove εr1 . Ah(ε) . εr0 , with

explicit r0, r1 ∈ (0, 1) depending on z, h (see Appendix A.2). In particular this

answers positively to the first question, with an explicit power law estimate

∆z,h(ε) . εr0 . To answer the second question, let

γ(z, h) = lim
ε→0

lnAz,h(ε)

ln ε
. (5.8)

From the above bounds we in particular obtain

γ(z, h′) ≤ lim
ε→0

ln ∆z,h(ε)

ln ε
≤ γ(z, h), ∀h′ ∈ (0, h) (5.9)

It is clear that continuity of γ(z, h) in h will imply that ∆z,h(ε) also has power

law exponent γ(z, h). In fact, the same conclusion follows under continuity of

γ(z, h) in z, because
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Figure 5.2: Power law exponent γ as a function of z for several values of h.

γ(z, h′) ≥ γ
(
h
h′
z, h
)
. (5.10)

To prove inequality (5.10), let f ∗ε,z,h′(ζ) be the maximizer function for Az,h′(ε)

and consider the function g(ζ) =
√

h′

h
f ∗
(
h′

h
ζ
)
. Note that ‖g‖H2(Hh) = ‖f ∗‖H2(Hh′ ) =

1 and ‖g‖L2(−1,1) ≤ ‖f ∗‖L2(−1,1) = ε. Therefore, g is an admissible function for

Ahz
h′ ,h

′(ε), hence

Ahz
h′
,h′

(ε) ≥ g(hz
h′

) =
√

h′

h
f ∗(z) =

√
h′

h
Az,h′(ε),

which concludes the proof. In particular, inequalities (5.9) and (5.10) imply

that γ(z, h) is a non-increasing function of z.

Numerical computations of γ(z, h) shown in Figure 5.2 indicate that it is

indeed a continuous function of z. In Appendix A.2 we prove that γ(z, h) is

also a non-decreasing function of h, satisfying γ(z, h) ∈ (0, 1) for any h > 0

and that limh→0+ γ(z, h) = 0. Figure 5.2 also shows how rapidly γ(z, h) decays

to 0, as z moves further away from Γ for several values of h. The larger the

regularization parameter h is, the better behaved is the extrapolation problem.

Further, Theorem 2.1 shows that γ can be computed from a linear integral

equation of Fredholm type. Namely, let

(K u)(ζ) =

∫ 1

−1

px(ζ)u(x)dx, pz(ζ) =
i

2π(ζ − z + 2ih)
, (5.11)
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and let u = uε,z,h be the unique solution of the integral equation

K u+ ε2u = pz, (5.12)

then (cf. Section 5.7)

γ(z, h) = 1− lim
ε→0+

ln ‖u‖L2(−1,1)

ln(1/ε)
. (5.13)

Finally, in Section 5.7.1 we give an upper bound on γ in terms of an

analytical expression γ1 (cf. (5.48)), which is checked numerically to be in

excellent agreement with γ, when h > 0.6 (see Figure 5.5).

5.4 The least squares problem

5.4.1 Existence and uniqueness

Let us begin by examining the existence and uniqueness questions before

identifying the necessary and sufficient conditions that the minimizer has to

satisfy. Let fn ∈ Kh be a minimizing sequence in (5.5). Then it has to be

bounded in the L2(0, 1) norm. We will show that this implies existence of a

subsequence converging uniformly on compact subsets of Hh to an analytic

function. In general, this limit does not need to be in Kh. We will, therefore,

need to characterize the closure Kh of Kh.
We recall that for an open subset G ⊂ C convergence in the space H(G) of

analytic functions on G is uniform convergence on compact subsets. We also

recall that a family of functions in H(G) is called normal, if every sequence

has a convergent in H(G) subsequence. In other words, normal families of

functions are exactly the precompact subsets in H(G).

Theorem 5.1.

(i) The closure of Kh in H(Hh) is Sh = {f(ζ) = F ((ζ + ih)2) : F ∈ S}.

(ii) For any M > 0 the family of functions SM
h = {f ∈ Sh : ‖f‖L2(0,1) ≤M}

is normal.
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Proof. The proof is based on the representation (5.3), where we interpret the

measure σ as an element of the Banach space B∗ dual to

B =
{
φ ∈ C([0,+∞)) : lim

λ→∞
λφ(λ) = 0

}
,

with the norm

‖φ‖B = max
λ≥0

(λ+ 1)|φ(λ)|.

If we define the action of the measure σ on φ ∈ B by

〈φ, σ〉 =

∫ ∞
0

φ(λ)dσ(λ),

then

‖σ‖∗ =

∫ ∞
0

dσ(λ)

λ+ 1
, (5.14)

when the measure σ is nonnegative.

The conclusion of the theorem then follows easily from the fundamental

estimate in the lemma below.

Lemma 5.1. There exists ch > 0 and Ch > 0 depending only on h, such that

for every f ∈ Sh

ch‖f‖L2(0,1) ≤ ρ+ ‖σ‖∗ ≤ Ch‖f‖L2(0,1)

Proof. Let us start by proving the second inequality. Hölder’s inequality im-

plies

‖f‖L2(0,1) ≥
(∫ 1

0

|<e(f)|2dζ
) 1

2

≥
∣∣∣∣∫ 1

0

<e(f)dζ

∣∣∣∣ .
Applying Fubini’s theorem we then compute

∫ 1

0

<e(f)dζ = ρ+

∫ 1

0

∫ ∞
0

<e
(

1

λ− (ζ + ih)2

)
dσ(λ)dζ = ρ+

∫ ∞
0

ϕ(
√
λ)
dσ(λ)

λ+ 1
,

where

ϕ(x) =
x2 + 1

4x
ln

(
1 +

4x

(x− 1)2 + h2

)
.
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Note that ϕ(x) > 0 for x > 0, and because ln(1 + x) ∼ x as x→ 0 we get

lim
x→0

ϕ(x) =
1

1 + h2
> 0, lim

x→∞
ϕ(x) = 1 > 0.

Thus inf [0,∞) ϕ(x) = ch > 0, which implies the desired estimate.

Let us now turn to the first inequality. Again, by Hölder’s inequality

1

2
‖f‖2

L2(0,1) − ρ2 ≤
∫ 1

0

(∫ ∞
0

dσ(λ)

|λ− (ζ + ih)2|

)2

dζ ≤

≤
∫ ∞

0

dσ(λ)

λ+ 1
·
∫ 1

0

∫ ∞
0

λ+ 1

|λ− (ζ + ih)2|2
dσ(λ)dζ =

=‖σ‖∗ ·
∫ ∞

0

ψ(λ)dσ(λ),

where

ψ(λ) =

∫ 1

0

λ+ 1

|λ− (ζ + ih)2|2
dζ =

ϕ(
√
λ)

λ+ h2
+

λ+ 1

4h(λ+ h2)

(
arctan

√
λ+1
h
− arctan

√
λ−1
h

)
.

Note that (λ+ 1)ψ(λ) is bounded in [0,∞), because ϕ is a bounded function

and the difference of arctangents can be bounded by 2h
λ−1

for λ > 1, by the

mean value theorem. But then the desired inequality follows from the estimate

∫ ∞
0

ψ(λ)dσ(λ) ≤ Ch

∫ ∞
0

dσ(λ)

λ+ 1
= Ch‖σ‖∗.

Obviously Kh ⊂ Sh and Theorem 5.1 follows from the next lemma.

Lemma 5.2.

(i) Sh is closed in H(Hh).

(ii) Sh ⊂ Kh
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Proof. (i) Let {fn} ⊂ Sh be a sequence such that fn → f in H(Hh). Then

according to Lemma 5.1 the sequences {ρn} ⊂ R and {σn} ⊂ B∗ are bounded.

By the Banach-Alaoglu theorem the closed unit ball in B∗ is compact in the

weak-* topology. Note that the space B is separable. Indeed, it is well known

that the space C0[0,∞) of continuous functions on [0,∞) that vanish at infin-

ity, equipped with the sup norm, is separable (e.g. by the Stone–Weierstrass

theorem for locally compact spaces). If {φn(λ)} is a dense subset of C0[0,∞),

then {φn(λ)
λ+1
} is dense in B. Separability of B then implies that the weak-*

topology on the closed unit ball of B∗ is metrizable (cf. [64]) and hence we

can extract a convergent subsequence from {σn}.
Thus, there exist subsequences (which we do not relabel) ρn → ρ and

σn
∗
⇀ σ weakly-* in B∗. Let us write

fn(ζ) = ρn + ‖σn‖∗ +

∫ ∞
0

G(ζ, λ)dσn(λ),

where

G(ζ, λ) =
1

λ− (ζ + ih)2
− 1

λ+ 1
=

1 + (ζ + ih)2

(λ− (ζ + ih)2) (λ+ 1)
.

It is now evident that G(ζ, ·) ∈ B for each fixed ζ ∈ Hh. Upon extracting

convergent subsequence of the bounded sequence {‖σn‖∗}, with limit denoted

by a, we obtain that

f(ζ) = lim
n→∞

fn(ζ) = ρ+ a+

∫ ∞
0

G(ζ, λ)dσ(λ) = ρ+ a− ‖σ‖∗ +

∫ ∞
0

dσ(λ)

λ− (ζ + ih)2
.

By lower semicontinuity of the norm a ≥ ‖σ‖∗, hence we conclude that f ∈ Sh.

(ii) 1. Let us start by showing that for any constant ρ ≥ 0, there exists

{gn} ⊂ Kh such that gn → ρ in H(Hh) as n→∞. Indeed, define

gn(ζ) = ρ

∫ n+1

n

λdλ

λ− (ζ + ih)2
.

Clearly, gn ∈ Kh and
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gn(ζ)− ρ = ρ(ζ + ih)2

∫ n+1

n

dλ

λ− (ζ + ih)2
,

which approaches to zero, as n→∞, uniformly on compact subsets of Hh.

2. Let now f ∈ Sh and let ρ and σ be as in its definition. Consider the

functions

hn(ζ) =

∫ n

0

dσ(λ)

λ− (ζ + ih)2
.

Note that hn ∈ Kh, since its corresponding measure is dσn = χ(0,n)dσ and

∫ ∞
0

dσn(λ) =

∫ n

0

dσ(λ) ≤ (n+ 1)

∫ n

0

dσ(λ)

λ+ 1
<∞.

Now

f(ζ)− hn(ζ) = ρ+

∫ ∞
n

dσ(λ)

λ− (ζ + ih)2

and by dominated convergence the above difference tends to ρ uniformly on

compact subsets of Hh. It remains to use the sequence {gn} from part 1 to get

that gn + hn is the desired sequence in Kh converging to f in H(Hh).

A corollary of Theorem 5.1 is stability of analytic continuation.

Corollary 5.1. Let {fn}, f ⊂ Sh be such that fn → f in L2(0, 1), then fn → f

as n→∞ in H(Hh).

Indeed, if fn → f in L2(0, 1), then ‖fn‖L2(0,1) is bounded. Then any con-

verging subsequence fnk → g in H(Hh) must also converge to g in L2(0, 1).

But then f = g on (0, 1). Since both f and g are analytic in Hh, then f = g

everywhere. Since the set of limits of converging subsequences of fn consists

of a single element {f}, we conclude that fn → f in H(Hh).

Let us now return to the least squares problem (5.5) .



69

Theorem 5.2. For a given fexp ∈ L2(0, 1), the least squares problem

E = E(fexp) = min
f∈Sh

‖f − fexp‖L2(0,1) (5.15)

has a unique solution. Moreover,

inf
f∈Kh

‖f − fexp‖L2(0,1) = E(fexp).

Proof. To prove existence, let {fn}∞n=1 ∈ Sh be a minimizing sequence, then

it is bounded in L2(0, 1). Let us extract a weakly convergent subsequence, not

relabeled, fn ⇀ f0 in L2(0, 1), as n → ∞. The limiting function f0 is in Sh.

By the convexity of the L2-norm we have

E = lim
n→∞

‖fn − fexp‖L2(0,1) ≥ ‖f0 − fexp‖L2(0,1).

Hence, f0 is a minimizer . To prove that the infimum in (5.15) stays the same

if we replace Sh by Kh we note that if f0 ∈ Sh is a minimizer, then there

exists a sequence {gn} ⊂ Kh converging to f0 strongly in L2(0, 1).

To prove uniqueness, let f1 and f2 be two different solutions. Then ‖fj −
fexp‖L2(0,1) = E for j = 1, 2. Observe that the function ft = tf1 + (1− t)f2 is

also admissible and therefore

E ≤ ‖ft − fexp‖L2(0,1) ≤ t‖f1 − fexp‖L2(0,1) + (1− t)‖f2 − fexp‖L2(0,1) = E,

therefore ‖ft − fexp‖L2(0,1) = E for all t ∈ [0, 1]. However,

‖ft−fexp‖2
L2(0,1) = t2‖f1−f2‖2

L2(0,1) +2t<(f1−f2, f2−fexp)+‖f2−fexp‖2
L2(0,1),

which cannot be constant, since the coefficient at t2 is non-zero by our as-

sumption f1 6= f2. The obtained contradiction, concludes the theorem.

5.4.2 Properties of the minimizer

In this section we will prove that if the minimum in (5.15) is nonzero, then

the minimizer must be a rational function in C with poles (and zeros) on the

line Im(ζ) = h. We use the method of Caprini [12] to prove the statement.
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The method for finding the necessary and sufficient conditions for a minimizer

in (5.15) is based on our ability to compute the effect of the change of ρ and

spectral measure σ in representation (5.3) on the value of the functional we

want to minimize. Suppose that

f∗(ζ) = ρ+

∫ ∞
0

dσ(λ)

λ− (ζ + ih)2

is the minimizer and

f(ζ) = ρ̃+

∫ ∞
0

dσ̃(λ)

λ− (ζ + ih)2
(5.16)

is a competitor. The variation φ = f − f∗ can then be written as

φ(ζ) = ∆ρ+

∫ ∞
0

dν(λ)

λ− (ζ + ih)2
, ν = σ̃ − σ, ∆ρ = ρ̃− ρ.

We then compute

‖f∗+φ−fexp‖2
L2−‖f∗−fexp‖2

L2 = ∆ρ lim
t→∞

tC(t)+

∫ ∞
0

C(t)dν(t)+‖φ‖2
L2 , (5.17)

where

C(t) = 2<e
∫ 1

0

f∗(ζ)− fexp(ζ)

t− (ζ − ih)2
dζ, t ≥ 0 (5.18)

is the Caprini function of f∗(ζ).

Theorem 5.3. Suppose the infimum in (5.5) is nonzero, then the minimizer

f∗ ∈ Sh in (5.15) is given by

f∗(ζ) = ρ+
N∑
j=1

σj
tj − (ζ + ih)2

(5.19)

for some σj > 0, tj ≥ 0 and ρ ≥ 0. Moreover, f∗, given by (5.19) is the

minimizer if and only if its Caprini function C(t) is nonnegative and vanishes

at t = tj, j = 1, . . . , N , and “at infinity”, in the sense that

2<e
∫ 1

0

(fexp(ζ)− f∗(ζ))dζ = lim
t→∞

tC(t) = 0, (5.20)

provided ρ > 0.
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Proof. If ρ > 0, then we can consider the competitor (5.16) with σ̃ = σ.

Formula (5.17) then implies that

∆ρ lim
t→∞

tC(t) + (∆ρ)2 > 0,

where ∆ρ can be either positive or negative and can be chosen as small in

absolute value as we want. This implies (5.20).

Next, suppose t0 ∈ [0,+∞) is in the support of σ. For every ε > 0 we

define Iε(t0) = {t ≥ 0 : |t − t0| < ε}. Saying that t0 is in the support of σ

is equivalent to m(t0, ε) = σ(Iε(t0)) > 0 for all ε > 0. Then, there are two

possibilities. Either

(i) lim
ε→0

m(t0, ε) = 0, or

(ii) lim
ε→0

m(t0, ε) = σ0 > 0

Let us first consider case (i). Then we construct a competitor measure

σε(λ) = σ(λ)− σ|Iε(t0) + θm(t0, ε)δt0(λ),

where θ > 0 is an arbitrary constant. We then define

fε(ζ) = ρ+

∫ ∞
0

dσε(λ)

λ− (ζ + ih)2
. (5.21)

Formula (5.17) then implies

lim
ε→0

‖fexp − fε‖2
L2(0,1) − ‖fexp − f∗‖2

L2(0,1)

m(t0, ε)
= (1− θ)C(t0).

If f∗ is a minimizer, then we must have (1− θ)C(t0) ≥ 0 for all θ > 0, which

implies that C(t0) = 0.

In the case (ii) we have σ({t0}) = σ0 > 0. Then, for every |ε| < σ0 we

construct a competitor measure

σε(λ) = σ(λ)− εδt0(λ),

as well as the corresponding fε, given by (5.21). We then compute

lim
ε→0

‖fexp − fε‖2
L2(0,1) − ‖fexp − f∗‖2

L2(0,1)

ε
= C(t0). (5.22)



72

Since in this case ε can be both positive and negative we conclude that C(t0) =

0.

Hence, we have shown that C(t0) = 0 whenever t0 ∈ [0,+∞) is in the

support of the spectral measure σ of the minimizer f∗. It remains to observe

that for any t ∈ R

C(t) =

∫ 1

0

fexp(ζ)− f∗(ζ)

t− (ζ − ih)2
dζ +

∫ 1

0

fexp(ζ)− f∗(ζ)

t− (ζ + ih)2
dζ

Thus, C(t) is a restriction to the real line of a complex analytic function on

the neighborhood of the real line in the complex t-plane. By assumption,

fexp 6= f∗, and therefore C(t) is not identically zero. In particular, the zeros of

C(t) cannot have an accumulation point on the real line. We can see that the

sequence of zeros of C(t) cannot go to infinity by considering

B(s) = C

(
1

s

)
= s

∫ 1

0

fexp(ζ)− f∗(ζ)

1− s(ζ + ih)2
dζ + s

∫ 1

0

fexp(ζ)− f∗(ζ)

1− s(ζ − ih)2
dζ,

which is analytic in a neighborhood of 0, and hence cannot have a sequence

of zeros sn → 0, as n → ∞. We conclude that the support of the spectral

measure of the minimzer f∗ must be finite:

σ(λ) =
N∑
j=1

σjδtj(λ),

and the minimizer must be a rational function.

Now let us consider the competitor (5.16) defined by ρ̃ = ρ and ν(λ) =

εδt0(λ), where ε > 0 and t0 6∈ {t1, . . . , tN}. Formula (5.17) then implies that

εC(t0) + Cε2 ≥ 0

for all sufficiently small ε, which implies that C(t) ≥ 0 for all t ≥ 0. The ne-

cessity of the stated properties of the Caprini function C(t) is now established.

Sufficiency is a direct consequence of formula (5.17), since we can write

ν(λ) = σ̃(λ)− σ(λ) =
N∑
j=1

∆σjδtj(λ) + ν̃(λ),
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where ν̃(λ) is a positive Radon measure without any point masses at λ = tj,

j = 1, . . . , N . We then compute, via formula (5.17), taking into account that

C(tj) = 0

‖f∗+φ− fexp‖2
L2 −‖f∗− fexp‖2

L2 = ∆ρ lim
t→∞

tC(t) +

∫ ∞
0

C(t)dν̃(t) + ‖φ‖2
L2 ≥ 0,

since the first term on the right-hand side is either nonnegative, if ρ = 0 or

zero, if ρ > 0.

We observe that if tj > 0, then we must also have C ′(tj) = 0, since t = tj

is a local minimizer of C(t). If we write formula (5.19) in the form

f∗(ζ) = ρ− σ0

(ζ + ih)2
+

N∑
j=1

σj
tj − (ζ + ih)2

,

ρ ≥ 0, σ0 ≥ 0, tj > 0, σj > 0, j = 1, . . . , N,

(5.23)

then we have exactly 2(N + 1) equations for 2(N + 1) unknowns ρ, σ0, tj, σj,

j = 1, . . . , N :

ρ lim
t→∞

tC(t) = 0, σ0C(0) = 0, C(tj) = 0, C ′(tj) = 0, j = 1, . . . , N.

Obviously, these equations do not enforce the nonnegativity of C(t) and may

very well be satisfied when C(t) is not nonnegative. Taken together with their

highly nonlinear nature and unknown value of N , their practical utility for

finding f∗ is dubious. Instead, Theorem 5.3 could be used to verify that a

particular f∗(ζ) is the minimizer.

5.5 Worst case error analysis: Reduction to

the error of analytic continuation with a

symmetry constraint

Let us assume the Notation 2.1 from the beginning of Chapter 2 and let
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Sf(ζ) := f(−ζ). (5.24)

In this section we analyze the quantity ∆z,h(ε), given by (5.6) and show that

the two questions posed in Section 5.3 can be entirely restated in terms of the

difference f − g. The main result of this section is Theorem 5.4.

To analyze ∆z,h(ε) we examine the difference φ = f−g. First observe that φ

also has an integral representation (5.4) with a signed measure σ = σf−σg. Let

now σ = σ+−σ− be the unique Hahn decomposition of σ as a difference of two

mutually orthogonal positive measures σ±. Then we may write φ = φ+ − φ−,

where φ± ∈ Kh are given by

φ±(ζ) :=

∫ ∞
0

dσ±(λ)

λ− (ζ + ih)2
. (5.25)

So we arrive at the quantity

sup

{
|φ(z)|

max ‖σ±‖∗
: φ ∈ Kh −Kh and

‖φ‖L2(0,1)

max ‖σ±‖∗
≤ ε

}
, (5.26)

where we have abbreviated max ‖σ±‖∗ := max(‖σ+‖∗, ‖σ−‖∗). The next idea

comes from the realization that the asymptotics of the worst possible error is

not very sensitive to specific norms and spaces. The reason, as we have seen

in Chapter 4 for a similar problem, is that the analytic function delivering

the largest error at z is analytic in a larger half-space H2h and is therefore

bounded in a wide variety of norms. Our idea is therefore to prove asymptotic

equivalence of ∆z,h(ε) to a quadratic optimization problem in a Hilbert space,

permitting us to express the asymptotics of ∆z,h(ε) in terms of the solution of

the integral equation (5.12). So let us first recall the definition of the Hardy

class

H2(Hh) =

{
f is analytic in Hh : sup

y>−h
‖f‖L2(R+iy) <∞

}
.

It is well known [42] that functions in H2 have L2 boundary data and that

‖f‖H2(Hh) = ‖f‖L2(R−ih) defines a norm in H2. We describe the relation be-
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tween the Hardy space H2(Hh) and Kh − Kh more precisely in the following

lemma.

Lemma 5.3. Let f ∈ H2(Hh) with Sf = f and
∫∞

0
x|Imf(x− ih)| <∞, then

f ∈ Kh −Kh with

dσ(λ) =
1

π
Imf(

√
λ− ih)dλ. (5.27)

Moreover, f± ∈ Kh and

max ‖σf±‖∗ ≤
1

2
√
π
‖f‖H2(Hh). (5.28)

Proof. We observe that it is enough to prove the lemma for h = 0 and then

apply it to functions f(ω − ih) ∈ H2(H+), where f ∈ H2(Hh) and ω ∈ H+.

For Hardy functions the following representation formula holds (cf. [42] p.

128)

f(ω) =
1

π

∫
R

Imf(x)

x− ω
dx, ω ∈ H+. (5.29)

Passing to limits in the symmetry relation Sf(ω) = f(ω) as Imω ↓ 0, and

taking imaginary parts we see that −Imf(x) = Imf(−x). The formula (5.29)

now gives

πf(ω) =

∫ ∞
0

Imf(x)

x− ω
dx+

∫ ∞
0

Imf(−x)

−x− ω
dx =

∫ ∞
0

2xImf(x)dx

x2 − ω2
=

∫ ∞
0

Imf(
√
λ)dλ

λ− ω2
,

which implies (5.27).

Next, consider the functions

f±(ω) =

∫ ∞
0

dσ±(λ)

λ− ω2
, dσ±(λ) =

1

π
(Imf)± (

√
λ)dλ,

where (Imf)± denote the positive and negative parts of the real valued func-

tion Imf . Then f = f+ − f− and since
∫∞

0
x|Imf(x)|dx < ∞, the measures

σ± are finite and so f± ∈ K0.

Finally, we prove the inequality (5.28). We compute

‖σ±‖∗ =
2

π

∫ ∞
0

x(Imf)±(x)

1 + x2
dx.
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Applying the Cauchy-Schwarz inequality we obtain

‖σ±‖∗ ≤
1√
π
‖(Imf)±‖L2(0,+∞) ≤

1√
π
‖Imf‖L2(0,+∞) =

1

2
√
π
‖f‖H2(H+),

where we have used the symmetry and the fact that the real part of a Hardy

function is the Hilbert transform of its imaginary part [42], and therefore,

‖f‖2
H2(H+) = 2‖Imf‖2

L2(R) = 4‖Imf‖2
L2(0,+∞).

In order to complete the transition from Kh to Hardy spaces we need to

replace the norm ‖σ‖∗ in (5.26) with an equivalent Hilbert space norm. This

is accomplished in our next Lemma.

Lemma 5.4. Let h′ ∈ (0, h), then for any f ∈ Kh

‖f‖h′ :=

∥∥∥∥ f

ζ + ih

∥∥∥∥
H2(Hh′ )

' ‖σ‖∗, (5.30)

where the implicit constants depend only on h− h′.

Proof. Since Hh′ ⊂ Hh, it is clear that the function f(ζ)/(ζ + ih) is analytic

in Hh′ . Next letting δ = h − h′, using the integral representation (5.4) for f

and Fubini’s theorem we compute

‖f‖2
h′ =

∫
R

1

x2 + δ2

∫ ∞
0

∫ ∞
0

dσ(λ)dσ(t)

[λ− (x+ iδ)2][t− (x− iδ)2]
dx =

=

∫ ∞
0

∫ ∞
0

I(λ, t)
dσ(λ)

λ+ 1

dσ(t)

t+ 1
,

where

I(λ, t) =
π(λ+ 1)(t+ 1)

δ(λ+ 4δ2)(t+ 4δ2)
· (λ− t)2 + 12δ2(λ+ t) + 96δ4

(λ− t)2 + 8δ2(λ+ t) + 16δ4
.

This concludes the proof, since it is clear that the function I(λ, t) is bounded

above and below by two positive constants depending only on δ.
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Now we are ready to give the desired Hilbert space reformulation of our

problem. For any h > 0 we define

ASh(ε) = sup
{
|f(z)| : f ∈ H2(Hh) and Sf = f, ‖f‖H2(Hh) ≤ 1, ‖f‖L2(−1,1) ≤ ε

}
.

(5.31)

Notice that for convenience we suppressed the dependence on z and also re-

placed interval from [0, 1] by a symmetric interval [−1, 1], resulting in an equiv-

alent formulation due to the symmetry Sf = f of the functions in Kh.

Theorem 5.4 (Equivalence of AS and ∆). For any h′ ∈ (0, h)

ASh(ε) . ∆h(ε) . ASh′(ε), (5.32)

as ε→ 0, where the implicit constants depend only on h and h′.

Proof. We first observe that

∆h(ε) = sup{|f(z)−g(z)| : {f, g} ⊂ Kh, max{‖σf‖∗, ‖σg‖∗} = 1, ‖f−g‖L2(−1,1) ≤ ε}.

To prove the first inequality in (5.32), let {f, g} ⊂ Kh be such that

max{‖σf‖∗, ‖σg‖∗} = 1, ‖f − g‖L2(−1,1) ≤ ε.

Let

φ(ζ) =
i(f(ζ)− g(ζ))

ζ + ih
.

Then, Sφ = φ. Moreover, by Lemma 5.4, for any h′ ∈ (0, h) we estimate

‖φ‖H2(Hh′ ) = ‖f − g‖h′ ≤ ‖f‖h′ + ‖g‖h′ . ‖σf‖∗ + ‖σg‖∗ ≤ 2.

We conclude that there exists a constant c > 0, depending only on h and h′,

such that cφ is admissible for ASh′(ε). Therefore,

ASh′(ε) ≥ c|φ(z)| = c|f(z)− g(z)|
|z + ih|

.

Taking supremum over all such pairs (f, g) we conclude that

∆h(ε) ≤ CASh′(ε)
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for some constant C > 0, that depends on h and h′, but not on ε.

To prove the other inequality, let φ ∈ H2(Hh) be admissible for ASh(ε).

The idea is to construct a pair of functions {f, g} ⊂ Kh that are admissible for

∆h(ε). Since φ might not decay sufficiently fast at infinity to be in Kh − Kh
we modify it and define

ψ(ζ) =
φ(ζ)

(ζ + ih)2
.

This modification preserves the symmetry (Sψ = ψ) and ensures the required

decay, so that Lemma 5.3 is applicable. So that ψ± ∈ Kh and ‖σψ±‖∗ . 1.

Now, let ψ0(ζ) ∈ Kh be such that ‖σψ0‖∗ = 1. We define

F (ζ) = ψ+(ζ) + ψ0(ζ), G(ζ) = ψ−(ζ) + ψ0(ζ).

We observe that there exists a constant C > 0, such that

1 = ‖σψ0‖∗ ≤ ‖σF‖∗ ≤ C, 1 = ‖σψ0‖∗ ≤ ‖σG‖∗ ≤ C.

Thus, the pair (f, g) given by

f(ζ) =
F (ζ)

M
, g(ζ) =

G(ζ)

M
, M = max{‖σF‖∗, ‖σG‖∗} ≥ 1

is admissible for ∆h(ε). Thus,

∆h(ε) ≥ |f(z)− g(z)| = |φ(z)|
(z2 + h2)M

≥ |φ(z)|
C

.

Taking supremum over all admissible φ we obtain the remaining inequality in

(5.32).

5.6 The effect of the symmetry constraint

Let H2 = H2(H+) with ‖ · ‖ denoting its norm. Theorem 5.4 implies

that for the asymptotic behavior of ∆(ε) it is enough to analyze the following

quantity (after shifting the function space up by ih in (5.31))



79

ASz (ε) := sup
{
|f(z)| : f ∈ H2 and Sf = f, ‖f‖ ≤ 1, ‖f‖L2(Γ) ≤ ε

}
,

for Γ = [−1, 1] + ih, where recall that Sf(ζ) = f(−ζ). Let us in fact consider

the more general situation and assume that Γ b H+ is a rectifiable curve

of finite length symmetric with respect to the imaginary axis (i.e. τ ∈ Γ iff

−τ ∈ Γ) and let z ∈ H+\cl(Γ). Let us introduce the analogous quantity

without the symmetry constraint:

Az(ε) := sup
{
|f(z)| : f ∈ H2 and ‖f‖ ≤ 1, ‖f‖L2(Γ) ≤ ε

}
. (5.33)

Theorem 5.5. With the notation introduced above for any ε > 0

1
2
Az(ε) ≤ ASz (ε) ≤ Az(ε). (5.34)

Remark 5.2. Note that the above theorem shows that the symmetry constraint

Sf = f has no effect on the asymptotic behavior of ASz (ε) as ε → 0. In

particular, if Az(ε) ' εγ(z), then (5.34) implies that also ASz (ε) ' εγ(z) with the

same exponent γ(z).

Immediately from the above theorem and Theorem 5.4 we obtain

Corollary 5.2. Let Ah be defined by (5.7), then for any h′ ∈ (0, h)

Ah(ε) . ∆h(ε) . Ah′(ε),

as ε→ 0, where the implicit constants depend only on h and h′.

Proof of Theorem 5.5. In analyzing the problem without the symmetry con-

straint we reduced it to a maximization of a linear target functional, under

convex quadratic constraints. Indeed, this was possible since the two con-

straints ‖f‖ ≤ 1 and ‖f‖L2(Γ) ≤ ε are invariant under multiplying f by a

constant phase factor, therefore equivalently we can maximize <ef(z) instead
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of |f(z)|. This reduction does not work in presence of the symmetry con-

straint Sf = f , since multiplication by nonreal factors breaks the symmetry.

Nevertheless, linearization can still be achieved by observing that

|f(z)| = max
|λ|=1
<e(λf(z))

and interchanging the order of maximums with respect to λ and f . That is,

for a fixed λ we first maximize the linear functional <e(λf(z)) subject to the

three constraints of ASz and then maximize the result in λ.

Let us next show that we can completely eliminate the symmetry con-

straint. Recall that (·, ·) denotes the inner product of H2, or equivalently of

L2(R). It is easy to check that for f ∈ H2, satisfying the symmetry constraint

we have

<e(λf(z)) = <e(f, λpz) = <e(f, qz,λ), qz,λ =
λpz + S(λpz)

2
.

We can now discard the symmetry constraint. We claim that the maximizer

function of the problem

Aλ,z(ε) = sup
{
<e(f, qz,λ) : f ∈ H2 with ‖f‖ ≤ 1, ‖f‖L2(Γ) ≤ ε

}
(5.35)

automatically has the required symmetry. Indeed, if f ∈ H2 solves (5.35), we

can decompose it into its symmetric and antisymmetric parts f = fs + fa,

which are mutually orthogonal both in H2 and L2(Γ). Thus,

‖f‖2 = ‖fs‖2 + ‖fa‖2 ≥ ‖fs‖2, ‖f‖2
L2(Γ) = ‖fs‖2

L2(Γ) + ‖fa‖2
L2(Γ) ≥ ‖fs‖2

L2(Γ),

which implies that

κ = max

{
‖fs‖,

‖fs‖L2(Γ)

ε

}
≤ 1.

Also, by the symmetry of qz,λ we find that

<e(f, qz,λ) = <e(fs, qz,λ).
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But then the function fs/κ satisfies the constraints of (5.35) and strictly in-

creases the value of target functional unless fa = 0. Thus, if f is the maximizer,

then it has to be symmetric.

According to Theorem 2.1 part (i), the maximizer function f ∗ε (ζ) for (5.33)

has the property that f ∗ε (z) = Az(ε) > 0. Since removing the symmetry con-

straint increases the set of admissible functions we have an obvious inequality

ASz (ε) ≤ f ∗ε (z) = Az(ε).

Our foregoing discussion suggests that the function vλ,ε = λf ∗ε must be a good

candidate for the maximizer in Aλ,z(ε). Using it as a test function we get the

inequality

Aλ,z(ε) ≥ <e(λf ∗ε , qz,λ) =
f ∗ε (z)

2
+

1

2
<e(λ2(f ∗ε , Spz)).

We conclude that

ASz (ε) = max
|λ|=1

Aλ,z(ε) ≥
f ∗ε (z)

2
+

1

2
|(f ∗ε , Spz)| ≥

f ∗ε (z)

2
=

1

2
Az(ε).

5.6.1 Applications

• Let Γ = C(i, r) be the circle centered at i with radius r < 1, Theorem 5.5

implies that adding the symmetry constraint Sf = f does not affect the power

law (4.7).

• Let Γ = [−1, 1], we can show that adding the symmetry constraint

Sf = f does not affect the power law (4.15) directly, without referring to

Theorem 5.5. Indeed, consider the slight modification of the maximizer func-

tion (4.14)

MS(ζ) :=
iε

ζ + i
e
i
π

ln ε ln 1+ζ
1−ζ , ζ ∈ H+.

Note that MS ∈ H2(H+) satisfies the symmetry constraint, and
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|MS(ζ)| = εγ(ζ)

|ζ + i|
,

where γ is given by (4.13). In particular ‖MS‖H2 . 1, ‖MS‖L2(−1,1) . ε, i.e.

MS satisfies all the constraints and attains the optimal bound |MS(z)| ' εγ(z).

• Let Γ = [−1, 1] + ih with h > 0 and consider extrapolation points z + ih

with z > 1. The equality of the exponents for problems with and without

symmetry shown in Figure 5.3b can be explained by the ”quantitative asym-

metry” of the solution uε of the integral equation K u+ε2u = pz (where K , pz

are given in (4.3), (4.2) respectively):

lim
ε→0

|uε(z)|
|uε(−z)|

< 1. (5.36)

Indeed, the symmetrized solution vε(ζ) = uε(ζ) + uε(−ζ) has the same order

of magnitude at ζ = z as uε(z), as ε → 0. While numerically (5.36) is seen

to hold, we do not have a mathematical proof of this inequality. Nonetheless,

the equality of the exponents for problems with and without symmetry follows

from Theorem 5.5. Figure 5.3a (corresponding to h = 1) verifies (5.36) and

shows that the ratio in (5.36) does not converge to a limit as ε → 0, but

exhibits an oscillatory behavior instead. We show below (cf. (5.38)) that this

oscillatory pattern is a consequence of the exponential decay of eigenvalues

λn of K . Specifically, if λn ' e−αn, then, as ε → 0 the ratio (5.36) is well-

approximated by a smooth function of {2α−1 ln ε−1}, where {·} denotes the

fractional part of a number. In particular, this means that the ratio (5.36)

must look like a α/2-periodic function of ln(1/ε), when ε is sufficiently small.

This explains the periodic pattern in Figure 5.3a.

Let {en}∞n=1 be an orthonormal basis of H2 with K en = λnen. The eigen-

functions en can be chosen to satisfy the symmetry constraint Sen = en.

Indeed, since S commutes with K , then en and Sen belong to the same

eigenspace, which is one dimensional (cf. Section 5.7). Therefore, one is a

complex multiple of the other, but since both have the same norms the mul-

tiplicative constant must be on the unit circle, i.e. ∃θn ∈ [0, 2π] such that
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(a) (b)

Figure 5.3: Adding symmetry has no effect on γ(z)

Sen = eiθnen. Now eiθn/2en has the required symmetry.

Using the eigenbasis expansion of u in (2.17) and the symmetry of en we

can write

u(−z) =
∑
n

en(z)2

ε2 + λn
, u(z) =

∑
n

|en(z)|2

ε2 + λn
. (5.37)

Now, following Conjecture 5.1 assume

λn ' e−αn, en(z)2 ' e(−β+iθ)n, 0 < β < α.

Replacing these in (5.37) we obtain, that as j →∞

|uεj(−z)|
uεj(z)

∼

∣∣∣∣∣∑
n

e(−β+iθ)n

ε2j + e−αn

∣∣∣∣∣∑
n

e−βn

ε2j + e−αn

∼ L0(t), (5.38)

where, using Lemma 2.4, t = lim
j→∞

{
2α−1 ln ε−1

j

}
depends on how εj approaches

to zero and

L0(t) =

∣∣∣∣∣∑
k∈Z

e(−β+iθ)k

e−αt + e−αk

∣∣∣∣∣/∑
k∈Z

e−βk

e−αt + e−αk
.
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Clearly L0(t) < 1 and depending on how εj approaches to zero, several limiting

values t are possible, creating the oscillatory behavior of the ratio.

5.7 Analytic continuation in H+ from [−1, 1]+ih

Assume that Γ = [−1, 1] + ih with h > 0. Corollary 5.2 shows that the

analysis of ∆(ε) is reduced to that of

Az(ε) = sup
{
|f(z)| : f ∈ H2(H+) and ‖f‖H2(H+) ≤ 1, ‖f‖L2(Γ) ≤ ε

}
,

to which Theorems 2.1 and 2.2 apply. In particular, Az(ε) ' Mε,z(z), where

Mε,z is given by (4.5). One of the key ingredients in the asymptotic behavior of

Mε,z(z), as shown by Theorem 2.2, is the exponential decay rate of eigenvalues

λn of the operator K given by (4.3). The exponential upper bound on λn is

a consequence of the displacement rank 1 structure:

(LK −K L∗)u =
i

2π

∫
Γ

u(τ)|dτ | =: Ru, (5.39)

where L : L2(Γ)→ L2(Γ) is the operator of multiplication by τ ∈ Γ: (Lu)(τ) =

τu(τ). The operator R on the right-hand side of (5.39) is a rank-one operator,

since its range consists of constant functions.

Then, according to [4],

λn+1 ≤ ρ1λn, ρ1 = inf
r∈M

maxτ∈Γ |r(τ)|
minτ∈Γ |r(τ)|

, (5.40)

for all n ≥ 1, where M is the set of all Möbius transformations

r(τ) =
aτ + b

cτ + d
.

It is easy to see that ρ1 < 1 by considering Möbius transformations that map

upper half-plane into the unit disk. Then Γ will be mapped to a curve inside

the unit disk, so that m = maxτ∈Γ |r(τ)| < 1. By the symmetry property of

Möbius transformations the image of Γ will be symmetric to the image of Γ
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with respect to the inversion in the unit circle. Thus, minτ∈Γ |r(τ)| = 1/m,

so that ρ1 ≤ m2 < 1. In particular this implies that all eigenvalues have

multiplicity 1.

The implied exponential upper bound λn+1 ≤ ρn1λ1 is not the best that

one can derive from the rank-1 displacement structure (5.39). According to a

theorem of Beckermann and Townsend [4], λn ≤ Zn(Γ,Γ)λ1, where Zn is the

nth Zolotarev number [74]. When n is large, the Zolotarev numbers decay

exponentially lnZn(Γ,Γ) ∼ −n ln ρΓ, where ρΓ is the Riemann invariant ,

whereby the annulus {1 < |ω| < ρΓ} is conformally equivalent to the Riemann

sphere with Γ and Γ removed [37]. Hence,

λn . ρ−nΓ . (5.41)

Conjecture 5.1. The eigenvalues λn of K and the magnitudes of eigenfunc-

tions |en(z)| have exponential decay asymptotics (2.21). Moreover, we also

conjecture that the asymptotic upper bound (5.41) captures the rate of expo-

nential decay of λn, i.e. α = ln ρΓ.

There is substantial evidence supporting this conjecture, including the ex-

plicit formula for γ(z) in the limiting case when Γ ⊂ ∂H+, given in The-

orem 4.2. Also, if the L2 norm of f ∈ H2 were of order ε on a compact

subdomain G ⊂ H+, instead of the curve Γ, then the conjectured asymptotics

of λn would hold, as shown in [58], provided the boundary of G is sufficiently

smooth. The curve Γ could also be regarded as a limiting case of a domain.

However, its boundary would not be smooth and the analysis in [58] would

not apply.

The operator K +ε2 in the integral equation (K +ε2)u = pz is almost sin-

gular when ε is small, since K is compact and has no bounded inverse. It was

the idea of Leslie Greengard to solve the integral equation directly numerically

using quadruple precision floating point arithmetic available in FORTRAN. He

has written the code and shared the FORTRAN libraries for Gauss quadrature,

linear systems solver and eigenvalues and eigenvectors routines for Hermitian
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matrices. For the numerical computations we took extrapolation points z+ ih,

z ≥ 1. Quadruple precision allowed us to compute all eigenvalues of K that

are larger than 10−33 and solve the integral equation for values of ε as low as

10−16. Note that for the particular choice Γ = [−1, 1] + ih the operator K

is a finite convolution type operator with kernel k(t) = i(2π)−1

t+2ih
. Asymptotics

of eigenvalues of positive self-adjoint finite convolution operators with real-

valued kernels (i.e. even real functions k(t)) were obtained by Widom in [71].

To apply these results we note that k̂(ξ) = e−2hξχ(0,+∞)(ξ), which has exact

exponential decay when ξ → +∞. The operator K0 with the even real kernel

k0(t) = 2<ek(t) has symbol k̂0(ξ) = e−2h|ξ| to which Widom’s theory applies.

Widom’s formula gives

lnλn(K0) ∼ −Wn, as n→∞, W = −π
K
(
sech

(
π
2h

))
K
(
tanh

(
π
2h

)) ,
where K(k) is the complete elliptic integral of the first kind. We therefore

obtain an upper bound for λn = λn(K )

lnλn(K ) ≤ lnλn(K0) ∼ −Wn. (5.42)

The lower bound can be obtained from the same formula using an inequality

λn(K0) ≤ λn/2(K ) + λn/2(K ) = 2λn/2(K ),

so that

lnλn(K ) ≥ ln 1
2

+ lnλ2n(K0) ∼ −2Wn. (5.43)

Figure 5.4a, where h = 1 supports the exponential decay conjecture of λn

in Conjecture 5.1 and shows that estimates (5.42), (5.43) are not asymptoti-

cally sharp. By contrast, Figure 5.4a shows that the Beckermann-Townsend

upper bound (5.41) matches the asymptotics of λn very well. The explicit

transformation Ψ of the extended complex plane with [−1, 1] ± ih removed
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onto the annulus {ω ∈ C : ρ
−1/2
Γ < |ω| < ρ

1/2
Γ } has been derived in [2] in terms

of the elliptic functions and integrals

Ψ−1(ω) =
h

π

(
ζ

(
lnω

2πi

∣∣∣∣ τ)− ζ ( 1

2

∣∣∣∣ τ) lnω

πi

)
, τ =

K(1−m)

K(m)
, (5.44)

where ζ(z|τ) is the Weierstrass zeta function with quasi-periods 1 and iτ . The

Riemann invariant ρΓ = e2πτ is computed after finding the unique solution

m ∈ (0, 1) of

K(m)E(x(m)|m)− E(m)F (x(m)|m) =
π

2h
, x(m) =

√
K(m)− E(m)

mK(m)
.

Figure 5.4b shows the logarithmic plot of values of Mε,z(z) as a function of

ε, supporting the power law principle

Mε,z(z) ' εγ(z). (5.45)

We remark that under the exponential decay assumptions of Conjecture 5.1, by

Theorem 2.2 the two quantities inside minimum in the definition of Mε,z (4.5)

are comparable and hence the maximizerMε,z can be taken to be εuε,z/‖uε,z‖L2(Γ).

Further, again by Theorem 2.2 uε,z ' ‖uε,z‖2
L2(Γ) and so Mε,z(z) ' ε‖uε,z‖L2(Γ),

which then implies

γ(z) = 1− lim
ε→0+

ln ‖uε,z‖L2(Γ)

ln(1/ε)
. (5.46)

5.7.1 Upper bound on the power law exponent

A lower bound on Mε,z(z) (or equivalently, an upper bound on the exponent

γ(z)) can be obtained by constructing a test function that is small on the data

curve, but is not as small at the point z.

The explicit formula (4.9) of the maximizer function when the data curve

is a circle, suggests such a construction. Recall that in (4.9) m maps H+\Γ
onto the annulus {ρ < |ω| < 1}, in our case Ψ maps H+\Γ onto the annulus
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(a) (b)

Figure 5.4: Numerical support for the power law transition principle.

{ρ−1/2
Γ < |ω| < 1}. So, let us replace m with Ψ, and ρ with ρ

−1/2
Γ and consider

the function

M1(ζ) =
ε2−γ1(z)

ζ + ih

∞∑
n=1

(
Ψ(z)Ψ(ζ)

)n
ε2 + ρ−nΓ

, (5.47)

where z ∈ H+\Γ is the extrapolation point and (in analogy to γ in (4.8))

γ1(z) =
ln |Ψ(z)|
ln ρ

−1/2
Γ

∈ (0, 1). (5.48)

Then, in view of Corollary 2.2 and the facts that Ψ maps Γ onto the circle

{|ω| = ρ
−1/2
Γ } and R onto the unit circle, we have

M1(z) ' εγ1(z), ‖M1‖L2(Γ) . ε, ‖M1‖H2(H+) . 1.

Thus, M1 is an admissible function for (5.7) and we have proved the following

bound:

Corollary 5.3. Mε,z(z) & εγ1(z) with the implicit constant independent of ε.

In view of (5.45), the above corollary implies the following upper bound

on the optimal exponent γ:
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γ(z) ≤ γ1(z).

We compare the computed exponents γ(z) with the estimate (5.48) for

Γ = [−1, 1] + ih and extrapolation points z+ ih, z > 1. Figure 5.5 shows γ(z)

(obtained by least squares linear fit of the data for various values of z, four of

which are shown in Figure 5.4b) and the upper bound γ1(z) given by (5.48).

We remark that by virtue of transplanting the actual maximizer of |f(z)| from

one geometry to the other, the structure of the test function (5.47) resembles

the optimal one. In fact, for values of h > 0.6 the bound γ1(z) is virtually

indistinguishable from γ(z).

Figure 5.5: Comparison of γ and γ1
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APPENDIX

Here we present some auxiliary results used in Chapter 5.

A.1 Extension of positivity

Proposition A.1. Let f be analytic in Hh with Sf = f (cf. (5.24)) and

f(ζ) ∼ −Aζ−2 as ζ →∞ for some A > 0. In addition assume f ′(0) 6= 0, then

the following are equivalent:

(i) Im f(x) > 0 for all x > 0;

(ii) ∃h′ ∈ (0, h) s.t. Im f(x− ih′) > 0 for all x > 0.

Proof. The second item immediately implies the first one. Indeed, the sym-

metry Sf = f implies that Imf = 0 on the imaginary axis. Let Ω = {ζ :

Imζ > −h′, <eζ > 0}, note that Imf ≥ 0 on ∂Ω and in fact min∂Ω Imf = 0,

since Imf approaches to zero at infinity (because of f(ζ) ∼ −Aζ−2) applying

the strong maximum principle we conclude that Imf > 0 in Ω. (Note that

the assumption f ′(0) 6= 0 was not used here).

Let us now turn to the converse implication. Let h0 ∈ (0, h), then f is

analytic in the closure Hh0 and in particular is bounded inside the semidisc

D = {ζ : |ζ + ih0| ≤ M}, where M > 0 is a large number that can be

chosen such that |f(ζ)| ≤ 2A/|ζ|2 for all ζ /∈ D. With these two inequalities,

it is straightforward to show that
∫
R |f(x + iy)|2dx is bounded uniformly for

y > −h0. Thus, f ∈ H2(Hh0) and following the proof of Lemma 5.3 we obtain

the representation
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f(ζ) =

∫ ∞
0

dσ(λ)

λ− (ζ + ih0)2
, ζ ∈ Hh0 ,

where dσ(λ) = 1
π
Imf(

√
λ− ih0)dλ. Using this, it is easy to find that f must

have the more precise asymptotics, as ζ →∞ in Hh0 :

f(ζ) ∼ A

(
− 1

ζ2
+

2ih0

ζ3

)
, A =

∫ ∞
0

dσ(λ).

But then for any t ∈ (0, h0)

Im f(x− it) ∼ 2A(h0 − t)
x3

> 0, x→ +∞. (A.1)

Assume, for the sake of contradiction that for each t ∈ (0, h0) there exists

xt > 0, such that Imf(xt − it) ≤ 0. Clearly, (A.1) implies that xt remains

bounded as t → 0+. Let us now extract convergent subsequence (without

relabeling it) xt → x0 ≥ 0 as t → 0+, but then Im f(x0) ≤ 0. Assumption

(i) implies that x0 = 0. Let us show that this leads to a contradiction. Since

Im f(xt) > 0 and Imf(xt − it) ≤ 0, by continuity we conclude that ∃θt ∈
(0, 1] such that Imf(xt − iθtt) = 0. The symmetry Sf = f implies that

Imf(−iθtt) = 0, therefore by the mean value theorem Imf ′(x̃t − iθtt) = 0

for some x̃t ∈ (0, xt). Taking limits as t → 0+ we obtain Imf ′(0) = 0, but

f ′(0) ∈ iR, hence this contradicts to the assumption f ′(0) 6= 0.

A.2 Power law bounds

Let Az,h(ε) and γ(z, h) be defined by (5.7) and (5.8) respectively, i.e.

Az,h(ε) = sup
{
|f(z)| : f ∈ H2(Hh) and ‖f‖H2(Hh) ≤ 1, ‖f‖L2(−1,1) ≤ ε

}
and

γ(z, h) = lim
ε→0

lnAz,h(ε)

ln ε
.
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Note that Az,h(ε) is non-increasing in h. Indeed, Hh1 ⊂ Hh2 for h1 ≤ h2 and

so admissible functions for Az,h2(ε) are also admissible for Az,h1(ε), showing

that Az,h2(ε) ≤ Az,h1(ε). Now dividing by ln ε < 0 and taking liminf in ε we

conclude that γ(z, h) is non-decreasing in h.

Let us turn to deriving power law upper and lower bounds on Az,h(ε). We

are going to use the following two results. The first one is analytic continuation

from a boundary interval (cf. Section 4.2): for any s ∈ H+

sup{|f(s)| : f ∈ H2(H+) and ‖f‖H2(H+) ≤ 1, ‖f‖L2(−1,1) ≤ δ} ≤ C(s)δα(s),

(A.2)

where C(s)−2 = si
9

(
arctan sr+1

si
− arctan sr−1

si

)
with s = sr + isi and α(s) =

− 1
π

arg s+1
s−1
∈ (0, 1) is the angular size of [−1, 1] as seen from s, measured in

the units of π radians. Moreover, the bound is optimal in δ and maximizer

function attaining the bound (up to a constant independent of δ) in (A.2) is

given by

G(ω) =
δ

ω − s
e
i
π

ln δ ln 1+ω
1−ω , ω ∈ H+ (A.3)

where ln denotes the principal branch of logarithm.

The second one is analytic continuation from a circle (cf. Section 4.1).

Namely let Γ ⊂ H+ be a circle and s ∈ H+ a point lying outside of Γ, then

sup{|f(s)| : f ∈ H2(H+) and ‖f‖H2(H+) ≤ 1, ‖f‖L2(Γ) ≤ ε} ' εβ(s), (A.4)

with implicit constants independent of ε and β(s) = ln |m(s)|
ln ρ

, where m is the

Möbius map transforming the upper half-plane into the unit disc and the circle

Γ into a concentric circle of radius ρ < 1.

Lemma A.1. There exist r0, r1 ∈ (0, 1) (depending on z, h) such that

εr1 . Az,h(ε) . εr0 , (A.5)
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Figure A.1: Comparison of angles.

where the implicit constants depend only on h and z. Moreover, r1(h)→ 0 as

h→ 0+.

Proof. The lower bound is obtained by introducing an ansatz function admis-

sible for Az,h(ε). Consider the function G in (A.3) with s = ih, then the ansatz

function is going to be f(ζ) = G(ζ + ih). Note that we can rewrite

G(ω) =
δα(ω)eiθδ(ω)

ω + ih
, θδ(ω) =

1

π
ln δ ln

∣∣∣∣1 + ω

1− ω

∣∣∣∣ .
It is now clear that

‖G‖L2((−1,1)+ih) . δα0 , α0 = min
x∈[−1,1]

α(x+ ih) =
1

π
arctan

2

h
∈ (0, 1)

and |G(z + ih)| & δα, where α = α(z + ih) < α0 (see Figure A.1). Thus,

‖f‖H2(Hh) . 1, ‖f‖L2(−1,1) . δα0 , |f(ω0)| & δα. (A.6)

Letting ε = δα0 we see that cf is an admissible function for Az,h(ε), for some

constant c > 0 independent of δ, hence

Az,h(ε) ≥ c|f(z)| & δα = εr1 ,

where r1 = r1(z, h) = α/α0 ∈ (0, 1). It remains to notice that r1(z, h)→ 0 as

h→ 0+.
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Let us now turn to the upper bound. Let f be an admissible function for

Az,h(ε), it is clear that f is also admissible for (A.2) with δ = ε. However,

applying the estimate in (A.2) at the point z > 1 doesn’t give a useful bound,

since α(z) = 0. Instead let us apply (A.2) at the points s lying on the circle

C = {s ∈ H+ : |s − i| = 1
2
}. It is clear that the angle α(s) is the smallest at

the top point of the circle, i.e. at s0 = 3
2
i. Moreover, obviously the constant

C(s) in (A.2) is uniformly bounded for all s ∈ C. Thus,

|f(s)| . εβ0 , ∀s ∈ C, where β0 = α(s0) =
1

π
arctan

12

5

and the implicit constant is independent of s and ε. In particular, ‖f‖L2(C) .

εβ0 . Now we can apply (A.4) to the function f(· − ih) at the point s = z + ih

and obtain

|f(z)| . εr0 , r0 = β0 · β(z + ih) = β0
ln |m(z + ih)|

ln ρ
, (A.7)

where m(z) = z−z0
z+z0

with z0 = i
2

√
4h2 + 8h+ 3 and ρ = 2h+2−

√
4h2 + 8h+ 3.

Taking supremum over f in (A.7) we conclude the proof of the upper bound.

As an immediate corollary from Lemma A.1 we see that for any h > 0

γ(z, h) ∈ [r0(z, h), r1(z, h)] ⊂ (0, 1)

and also γ(z, h)→ 0 as h→ 0+.
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