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ABSTRACT

Exact Relations and Links for Fiber-Reinforced Elastic Composites

Meredith Hegg

DOCTOR OF PHILOSOPHY

Temple University, 2012

Professor Yury Grabovsky, Chair

Predicting the effective elastic properties of a composite material based on the elas-

tic properties of the constituent materials is extremely difficult, even when the mi-

crostructure is known. However, there are cases where certain properties in con-

stituents always carry over to a composite, regardless of the microstructure of the

composite. We call such instances exact relations. The general theory of exact rela-

tions allows us to find all of these instances in a wide variety of contexts including

elasticity, conductivity, and piezoelectricity. We combine this theory with ideas from

representation theory to find all exact relations for fiber-reinforced polycrystalline

composites.

We further extend these ideas to the concept of links. When two composites

have the same microstructure but different constituent materials, their effective ten-

sors may be related. We use the theory of exact relations to find such relations, which

we call links. In this work we describe a special set of links between elasticity tensors
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of fiber-reinforced polycrystalline composites. These links allow us to generalize cer-

tain results from specific examples to generate new information about this widely-used

class of composites. In particular, we apply the link to obtain information about com-

posites made from two transversely isotropic materials and polycrystals made from

one orthotropic material.
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CHAPTER 1

INTRODUCTION

The greatest advantage of composite materials lies in the fact that some properties

of the constituent materials may remain present in the composite while others may

not. Here we use the term composite to describe any material whose structure is

heterogeneous on some micro-scale but behaves like a homogeneous material on a

macro-scale. Whether by layering, laminating, injecting, or encasing different con-

stituent materials, engineers have developed new composites with effective properties

that cannot be found in nature. For example, there now exist materials that are both

lightweight and strong and therefore useful in applications ranging from orthopedic

casting to aerospace technology. Modern ski construction uses composites to obtain

a unique combination of flexibility and torsional rigidity. Yet exactly when and how

a composite will retain the properties of its constituent materials and when and how

it will not remains a largely unanswered question. Certainly the microstructure of

the composite material plays a significant role. However, there are also relations that

hold regardless of microstructure.

An interesting example of such a special relation comes from elastically isotropic

materials. A material is said to be isotropic if its behavior is unaffected by its orienta-

tion in space. An elastically isotropic material can be characterized by two numbers:

the bulk modulus, κ, and the shear modulus, µ. The bulk modulus describes how
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the material responds to uniform compression while the shear modulus tells us how

it responds to shearing stresses. In general, a composite material made of two elas-

tically isotropic materials may be anisotropic. However, Hill found [17] that if the

two constituent materials are isotropic and have the same shear modulus, µ, then the

composite will be isotropic with shear modulus µ, regardless of the microstructure of

the material. Furthermore, the bulk modulus κ∗ will be given by

1

3κ∗ + 4µ
=

θ1

3κ1 + 4µ
+

θ2

3κ2 + 4µ
(1.1)

where θ1 and θ2 represent the volume fractions and κ1 and κ2 represent the bulk

moduli of the two constituents.

A specific material property that is maintained in the construction of com-

posites regardless of microstructure is called an exact relation. In this example by

Hill, the set of isotropic materials with a given shear modulus forms an exact re-

lation. Given the high cost of producing composite materials, the ability to obtain

results such as these without conducting expensive tests is valuable. Being aware of

exact relations allows us to both take advantage of them when we hope to maintain

a characteristic and avoid them when we want to change a given property.

We can find exact relations for a number of material properties including

elasticity, conductivity, and piezoelectricity. In each of these cases we have two field

quantities, say σ and ε, that are related linearly in what is called a constitutive law:

C(x)ε(x) = σ(x).

The tensor C(x) represents the material properties of the composite at each point x.

Much of the early work on exact relations was on uniform field relations. These arise
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whenever there exist constant fields σ and ε such that

C(x)ε = σ ∀x.

In this case the uniform fields σ and ε also satisfy C∗ε = σ, where C∗ is the constant

effective tensor, which describes the composite as a homogeneous material. (We

will define effective tensors rigorously in chapter 2.) Therefore the set of materials

satisfying a certain uniform field relation form an exact relation. The exact relation

in (1.1) stems from this idea.

Hill’s work in elasticity was followed by results from Lurie, Cherkaev, and Fe-

dorov [19, 20, 21] and Francfort and Tartar [9]. Cribb [6], Rosen [29], Hashin [14],

Schulgasser [31], and Dvorak [8] found exact relations in the context of thermoelas-

ticity. Dvorak also specifically applied uniform field arguments to fiber-reinforced

elastic composites [7]. Exact results for piezoelectric composites were discovered by

Benveniste and Dvorak [1, 3, 4, 5] while Milgrom and Shtrikman studied thermoelec-

tricity [23, 24, 25]. Benveniste also found exact relations specifically for polycrys-

talline composites in the context of thermopiezoelectricity [2]. An excellent summary

of exact relations can be found in [28]. Finally in [10, 12] and [13], the elegant math-

ematical theory of exact relations and links was developed, allowing us to find all

exact relations in a wide range of physical contexts, including all of the above. In

[33], To used this theory to find all exact relations for three-dimensional conductors

exhibiting the Hall effect.

In this work we use the theory of exact relations to obtain information about

fiber-reinforced elastic composites. Fiber-reinforced composites are those whose mi-

crostructure is independent of the longitudinal coordinate and can therefore be de-

scribed by a single transverse cross-section. Furthermore we focus our attention on

polycrystalline exact relations. In other words, we require that if a material with
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elastic tensor C is an admissible constituent, then so is the rotated material R · C

where R ∈ SOk(2) ⊂ SO(3). Here SOk(2) is the subgroup of SO(3) consisting of all

rotations around the fiber axis k ∈ R3. As our notation suggests, SOk(2) is isomor-

phic to the group SO(2). The image we have in mind is of a composite created by

injecting circular anisotropic fibers into an isotropic matrix and in which the fibers

may be rotated arbitrarily around their longitudinal axes. The exact relations we

seek hold regardless of fiber position and orientation.

The general theory of exact relations takes a geometric point of view, seeing

exact relations as surfaces in the space of elasticity tensors. It utilizes an explicit

diffeomorphism that maps all such surfaces to SO(2)-invariant subspaces with special

algebraic properties. Tools from representation theory then help us to identify all

subspaces that satisfy these properties, and hence all exact relations.

We extend our work further by applying the theory of exact relations to com-

pute links between tensors. When two composites have the same microstructure but

different constituent materials, their effective tensors may be related. In this case

we say that a link exists between the two composites. For example, Mendelson [22]

found that for any two-dimensional local conductivity tensor σ(x), if a second tensor

is defined by

σ′(x) =
σ(x)

det σ(x)
,

then the same relation holds between the effective tensors of the two composites:

σ′∗ =
σ∗

det σ∗
. (1.2)

We are interested in links because in general they give us more information than

exact relations. If we apply a single link to different sets of tensors with particular

properties, we may obtain multiple exact relations. By re-characterizing links as exact
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relations in a higher dimensional space, we can use the theory of exact relations to

find and describe links.

We begin in chapter 2 with a brief background on the mathematical theory

of elastic composites. Then, in chapters 3 and 4, we give an overview of the general

theory of exact relations and links. The tools from representation theory which will

help us find these exact relations are described in chapter 5 while in chapter 6 we define

notation and compute the algebraic structures needed in the case of fiber-reinforced

elastic composites. A special set of automorphisms will help us to simplify our list of

exact relations. These automorphisms are given in chapter 7. The calculations that

lead us to a complete set of exact relations in algebraic variables are described in

chapter 8 while the list itself is in appendix A. We then use the theory to compute a

special set of links that, in particular, establishes equivalence between exact relation

surfaces passing through different points. Chapter 9 shows the calculations that

derive this link. Finally, in chapter 10, we apply our link to specific cases to obtain

information about fiber-reinforced composites.
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CHAPTER 2

ELASTICITY AND COMPOSITES

Let Ω ⊂ R3 represent an elastic body undergoing an infinitesimal deformation given

by y(x) = x+ εu(x) for each x ∈ Ω, where ε > 0 is small. Let

ε = e(u) =
1

2
(∇u+∇uT ), (2.1)

which represents the linear strain, and let σ(x) be the Cauchy stress tensor. That

is, given any surface S ⊂ Ω with unit normal n(x), the force at x ∈ S is given by

σ(x)n(x). Note that, by construction,

∇c ×∇r × ε = 0 (2.2)

in Ω, where ∇c× and ∇r× denote curl taken by column and by row, respectively.

Furthermore, by the balance of forces and the divergence theorem, given any V ⊂ Ω,

0 =

∫
∂V

σ(x)n(x)dS =

∫
V

∇ · σ(x)dx

which implies

∇ · σ = 0 (2.3)

in Ω. Considering ε, which by definition is symmetric, the balance of torque tells us

0 =

∫
∂V

(σ(x)n(x)× x)dS =

∫
∂V

π(x)σ(x)n(x)dS =

∫
V

∇ · (π(x)σ(x))dx
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where π(x) is the skew-symmetric matrix such that π(x)a = a × x for all a ∈ R. So

∇ · (π(x)σ(x)) = 0 for all x ∈ Ω, from which it follows that σ is symmetric.

For any vector space U we will use Sym(U) to denote the set of symmetric

linear maps from U to itself. In particular, Sym(R3) represents the Euclidean space

of 3× 3 symmetric matrices with the inner product

〈E1, E2〉 =
1

2
Tr(E1E2) (2.4)

for all E1, E2. Note that σ(x), ε(x) ∈ Sym(R3) for all x ∈ Ω. By Hooke’s law there

exists a symmetric fourth-order tensor field C such that C(x) ∈ S := Sym(Sym(R3))

for each x ∈ Ω and σ and ε satisfy the constitutive relation

σ(x) = C(x)ε(x)

for all x ∈ Ω. Furthermore, C(x) is positive definite for all x ∈ Ω. Let T ⊂ S denote

the subset of positive definite, symmetric elasticity tensors. As is customary, we will

sometimes use the word tensor in place of tensor field and simply assume that the

context will make our meaning clear.

Now we turn our attention to composite materials. Suppose we have a com-

posite made with two constituent materials whose (constant) elasticity tensors are C1

and C2. Then we can write the local elasticity tensor of the composite as

C(x) = χ1(x)C1 + χ2(x)C2

where χ1 and χ2 are the characteristic functions of the regions occupied by the two

materials. We would like to be able to solve the elliptic boundary value problem{
∇ · (C(x)e(u(x))) = 0 for x ∈ Ω

e(u(x)) = g(x) for x ∈ ∂Ω
(2.5)

for various g ∈ H1(∂Ω). However, the complexity of χ1 and χ2 may make this

excessively computationally expensive, especially since the values of C(x) oscillate
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wildly as we move from material C1 to material C2. Furthermore, in some cases the

precise microstructure is not known.

Instead we focus on periodic composites and the homogenization problem. Let

χ1 and χ2 now be periodic charactaristic functions with period cell Q ⊂ R3. We define

Cε(x) = C(x/ε) = χ1(x/ε)C1 + χ2(x/ε)C2

so that as ε → 0, Cε(x) describes the local elasticity tensor of a composite with

increasingly fine microstructure. Suppose we have the sequence of solutions uε to the

elliptic boundary value problem{
∇ · (Cε(x)e(uε(x))) = 0 for x ∈ Ω

uε(x) = g(x) for x ∈ ∂Ω
. (2.6)

We will say the constant tensor C∗ is the homogenized tensor or effective tensor for

C(x) if the sequence uε of solutions to (2.6) converges weakly in H1(Q) to u0 which

solves {
∇ · (C∗e(u0(x))) = 0 for x ∈ Ω

u0(x) = g(x) for x ∈ ∂Ω

and Cεe(uε) converges weakly in L2(Q) to C∗e(u0).

For periodic composites we can describe C∗ in terms of the cell problem. Let

〈·〉 denote the average of a field over the period cell. Taking any ξ ∈ Sym(R3), we

can find periodic strain e(u) satisfying 〈e(u)〉 = ξ and

∇ · (C(x)e(u)) = 0.

Note that e(u) depends linearly on ξ. If we define C∗ as the constant tensor satisfying

C∗ξ = C∗〈e(u)〉 = 〈C(x)e(u)〉,
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for all pairs (ξ, e(u)), then C∗ is the effective tensor for C(x) [30, 32]. In general,

C∗ depends heavily on the microstructure of the composite. We are interested here,

however, in special cases where C∗ is microstructure-independent.
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CHAPTER 3

THEORY OF EXACT RELATIONS

LetM be a set of elasticity tensors representing a set of materials used to make com-

posites. The G-closure ofM is the set of effective tensors of periodic composites made

using any combination of materials from M in any configuration. A smooth surface

of codimension greater than zero that is G-closed is called an exact relation. Thus

exact relations tell us which properties of tensors are invariant under construction of

composites.

As discussed in the introduction, many of the first exact relations to be discov-

ered followed from uniform field relations. For example, we may consider the exact

relation identified in [16] and described in [27] regarding materials that exhibit cubic

symmetry. If C is the elasticity tensor of such a material and I represents the 3× 3

identity matrix, then there exists κ > 0 such that CI = κI. That is, we can think

of κ as representing the bulk modulus of the material even though the material is

not fully isotropic. A simple uniform field argument tells us that the effective bulk

modulus of a statistically isotropic polycrystal made with this material is the same

as the bulk modulus of the pure crystal. This result was generalized by He [15] to all

materials that respond isotropically to isotropic stress or strain.

Our approach here is based on the general theory of exact relations developed

by Milton, Grabovsky, and Sage [10, 12, 13]. While hereafter for simplicity we will use



11

the language and notation of linear elasticity, the general theory allows us to find all

exact relations in a wide range of physical contexts including conductivity, piezoelec-

tricity, and thermoelasticity. In each case we have a linear relationship between two

field quantities, taking values in a space F, that satisfy certain differential constraints.

In the case of elasticity, the fields ε(x) and σ(x) take values in F = Sym(R3).

Let D ⊂ R3 be a set of unit vectors representing some set of admissible direc-

tions in space. For each n ∈ D, we need subspaces En and Jn such that En ⊕Jn = F

and ε̂(n) ∈ En and σ̂(n) ∈ Jn for arbitrary fields ε and σ satisfying the differential

constraints. That such subspaces exist in the case of elasticity follows from the dif-

ferential constraints (2.2) and (2.3). Now fix an arbitrary reference tensor C0 ∈ T .

Let Γ(n) be the orthogonal projection onto C
1/2
0 En. A key property of Γ is the fact

that it is local in Fourier space. That is, for any f , an L2 periodic vector field taking

values in F,

Γ̂f(n) = Γ(n)f̂(n)

for all n ∈ D.

We take advantage of this, following Milton [26], and define:

Wn(C) = [I − (I − C−1/2
0 CC

−1/2
0 )Γ(n)]−1(I − C−1/2

0 CC
−1/2
0 ). (3.1)

This map has a special property in the case of laminates. These are composites

whose microstructures are essentially one-dimensional and which are constructed by

layering slabs of two or more materials in some normal direction. Laminates represent

an important subset of composites and are included in the set of all fiber-reinforced

composites. If C(x) represents a material made via lamination in the direction n,

then

Wn(C∗) = 〈Wn(C(x))〉.
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In particular, this tells us that if we laminate materials C1 and C2 with volume

fractions θ1 and θ2, then

Wn(C∗) = θ1Wn(C1) + θ2Wn(C2).

IfM is an exact relation then certainlyM is closed under lamination and so the above

implies that Wn(M) is a convex subset of an affine space, Πn, of the same dimension

as M. If we can pick C0 ∈ M, then Πn is in fact a vector space. Furthermore, from

[12] we know that Wn is a diffeomorphism on T , the subspaces Πn do not depend on

n, and Π := Πn (for any n) has an algebraic structure which we will now describe.

Fix n0 ∈ D and define

A = Span{Γ(n)− Γ(n0) : n ∈ X}.

Then A encodes the fiber-reinforced structure of the composite and does not depend

on our choice of n0. For each A ∈ A, define a product ∗A on S by:

K1 ∗A K2 =
1

2
(K1AK2 +K2AK1) (3.2)

for all K1, K2 ∈ S. Then ifM is an exact relation and Π is the vector space containing

Wn(M) as described above, from [12] we have:

K1 ∗A K2 ∈ Π ∀ A ∈ A, ∀ K1, K2 ∈ Π. (3.3)

The product ∗A is commutative and non-associative. It is called a Jordan product

[18] 1. We say Π is a Jordan multi-algebra since Π is closed with respect to a whole

family of Jordan multiplications. Note that (3.3) holds if and only if

KAK ∈ Π ∀ K ∈ Π, ∀ A ∈ A. (3.4)

Also, we will write K∗
A2 to mean K ∗A K.

1Jordan products are commutative but not associative. Instead they satisfy the Jordan identity

(xy)(xx) = x(y(xx)). Given any associative product, a Jordan product may be defined as in (3.2).



13

That Π satisfies (3.3) follows from the stability of M with respect to making

laminates and is certainly necessary for M to be an exact relation. In addition to

this necessary condition, we have a related sufficient condition. We say Π satisfies

the j-chain property if for all K1, K2, ..., Kj ∈ Π and A1, A2, ..., Aj−1 ∈ A,

K1A1K2A2...Aj−1Kj +KjAj−1...A2K2A1K1 ∈ Π.

In [12] it was shown that if Π satisfies the j-chain property for j = 2, 3, and 4, then

it represents the image of an exact relation. However, so far every subspace found to

satisfy the 2-chain property has satisfied 3 and 4-chain properties.

The general theory also provides us with a simple way to calculate volume

fraction relations, i.e., relations that depend only on the volume fractions of the two

materials. For any algebraic subspace, Π, define

Π∗
A2 = Span{KAK : K ∈ Π, A ∈ A}.

Volume fraction relations correspond to subspaces where Π∗
A2 6= Π since, if P(Π∗A2)⊥

represents the projection onto (Π∗
A2)⊥, from [11] we have that

P(Π∗A2)⊥(Wn(C∗)) = P(Π∗A2)⊥〈Wn(C(x))〉.

In our complete list of algebraic subspaces in appendix A we will make note of cases

where Π∗
A2 6= Π.

To make calculations easier, it is sometimes desirable to put A in a simpler

form. Suppose B1 is an arbitrary isotropic tensor, not necessarily symmetric. Let

Π′ = B−T1 ΠB−1
1 and let A′ = B1ABT

1 . Then

K1 ∗A K2 ∈ Π⇐⇒ K ′1 ∗A
′
K ′2 ∈ Π′ (3.5)

for all A′ = B1AB
T
1 ∈ A′ and for all K ′1 = B−T1 K1B

−1
1 , K ′2 = B−T1 K2B

−1
1 ∈ Π′. Thus,

choosing an appropriate B1, we can simplify A′.
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Finding subspaces satisfying the 2-chain condition (3.3) is not easy. This, in

part, is why we focus on polycrystalline exact relations. An exact relation, M, is

polycrystalline if for all C ∈ M, we have that R · C ∈ M for all R ∈ SO(2). In

physical terms, M contains the effective tensors of all composites that can be made

by rotating the constituent materials. If our reference tensor C0 ∈M is isotropic, i.e.

R · C = C for all rotations R, then the general theory tells us that

R ·Wn(C) = WRn(R · C)

for all C ∈ M. But since Π does not depend on n, this implies that Π is rotation-

invariant if and only if M is polycrystalline. Hereafter when we say exact relation

we will mean polycrystalline exact relation. Thanks to the representation theory of

two-dimensional rotations, we can develop a systematic strategy to find all rotation-

invariant subspaces of S. We then find which of these subspaces satisfy the algebraic

condition (3.3). Finally, we need to invert Wn to describe the polycrystalline exact

relations in physical variables.

Inverting Wn is not straightforward. While we could use matrix notation

to write elasticity tensors as 6 × 6 matrices and ask a computer algebra program

to calculate the inverse, we would then struggle mightily to interpret the formula.

Instead we solve a simpler problem. We take advantage of the following statement

proved in [12]. If Π′ is an algebraic subspace and S0 ∈ S is such that

K ′(B1Γ̄BT
1 − S0)K ′ ∈ Π′ (3.6)

for all K ′ ∈ Π′, then

M = {C = C0 − C1/2
0 BT

1 (I +K ′S0)−1K ′B1C
1/2
0 : K ′ ∈ Π′} ∩ T (3.7)
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is an exact relation. Certainly S0 = B1Γ̄BT
1 will work in every case, however simpler

choices of S0 are often possible. In our complete list of algebraic subspaces in appendix

A we will make note of simple values for S0.
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CHAPTER 4

THEORY OF LINKS

The theory of exact relations becomes even more powerful when extended to links.

Given local elasticity tensors of two composites C(x) and C ′(x), a function G on T ×T

is called a link if G(C∗, C ′∗) = 0 whenever G(C(x), C ′(x)) = 0. In the example from

Mendelson above, we have a link given by G(σ, σ′) = σ
det σ

− σ′. It is easy to see that

links are simply exact relations in the space T × T when we define

M̂ = {(C,C ′) : G(C,C ′) = 0}

and note that M̂ represents a link if (C,C ′) ∈ M̂ implies (C∗, C ′∗) ∈ M̂. We can

now use the theory described in chapter 3 to find links. If we have a pair of fixed

transversely isotropic tensors (C1, C2) ∈ M̂ we can map this link to the set

Ŵn(M̂) = {(W 1
n(C),W 2

n(C ′)) : (C,C ′) ∈ M̂}}

where W i
n is defined as in (3.1) using C0 = Ci for i = 1, 2. Then once again, Ŵn(M̂)

is a convex subset of some subspace Π̂ which has the same dimension asM and does

not depend on n. Also, Π̂ is a Jordan multi-algebra.
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Let Γi(n) be the orthogonal projection onto C
1/2
i En. For any fixed n0 ∈ D,

define

Â = Span{(Γ1(n)− Γ1(n0),Γ2(n)− Γ2(n0) : n ∈ D}.

Rewriting Â ∈ Â and K̂ ∈ Π̂ as diagonal matrices, the general theory of exact

relations tells us that if M̂ represents a link, then as in (3.4), Π̂ is a subspace satisfying K1 0

0 K2

 A1 0

0 A2

 K1 0

0 K2

 ∈ Π̂

for all [A1, A2] = Â ∈ Â and for all [K1, K2] = K̂ ∈ Π̂. Furthermore, since the sets

M1 = {C : [C,C ′] ∈ M̂ for some C ′}

M2 = {C ′ : [C,C ′] ∈ M̂ for some C}

are exact relations in T , if we define

Π1 = {K1 : [K1, K] ∈ Π̂ for some K}

Π2 = {K2 : [K,K2] ∈ Π̂ for some K}

I1 = {K ∈ Π1 : [K, 0] ∈ Π̂}

I2 = {K ∈ Π2 : [0, K] ∈ Π̂}

then Πi is a Jordan multi-algebra and Ii is an ideal in Πi for i = 1, 2. Consider the

map Ψ : Π1/I1 −→ Π2/I2 defined

Ψ(K̄1) = K̄2

where K̄i represents the equivalence class of Ki for i = 1, 2 and [K1, K2] ∈ Π̂. We

note Ψ is well defined since if [K1, K2], [K1, K3] ∈ Π̂, then [0, K2 − K3] ∈ Π̂ and

so K2 − K3 ∈ I2. That Ψ is one to one and onto is straightforward. Now we can

reformulate our search for links as a search for these bijections and ideals.
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We will focus here on a special set of links corresponding to bijections F :

T → T so that each link can be written G(C,C ′) = F(C)− C ′ or

M̂ = {(C,F(C)) : C ∈ T }.

So M1 = M2 = T , Π1 = Π2 = S, and I1 = I2 = {0}. We must now consider what

these functions F look like in the algebraic variables. Suppose Π̂ is the subspace

containing Ŵn(M̂) as above. Then, since each W i
n is a diffeomorphism and F is a

bijection, we know there exists a bijection Φ : S → S such that

Π̂ = {(K,Φ(K)) : K ∈ S}.

That is, Φ = W 2
n ◦F ◦ (W 1

n)−1. Since Π̂ is a subspace, Φ must be linear. Furthermore,

since M̂ is an exact relation, we have from (3.3) that K 0

0 Φ(K)

 A1 0

0 A2

 K̃ 0

0 Φ(K̃)

+

 K̃ 0

0 Φ(K̃)

 A1 0

0 A2

 K 0

0 Φ(K)

 ∈ Π̂

for all K, K̃ ∈ S and for all (A1, A2) ∈ Â. But then

Φ(K ∗A1 K̃) = Φ(K) ∗A2 Φ(K̃) ∀ (A1, A2) ∈ Â, ∀ K, K̃ ∈ S. (4.1)

Rather than searching for Φ that satisfy (4.1), we recall how we modified A using

(3.5), and note that we may also modify Â via

B̂ÂB̂T =

 B1 0

0 B2

 A1 0

0 A2

 BT
1 0

0 BT
2


with the hope that we can set

B1A1B
T
1 = B2A2B

T
2 = A ∈ A. (4.2)
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We then look for Φ satisfying

Φ(K ∗A K̃) = Φ(K) ∗A Φ(K̃) ∀ A ∈ A, ∀ K, K̃ ∈ S.

Because we are focusing on polycrystalline exact relations and links, we would

also like

R ·

 K 0

0 Φ(K)

 =

 R ·K 0

0 R · Φ(K)

 ∈ Π̂ (4.3)

for all R ∈ SOk(2) ⊂ SO(3), and for all K ∈ S. Of course this holds if and only if

R · Φ(K) = Φ(R ·K). (4.4)

We can find all Φ satisfying (4.3) and (4.4) using representation theory. Then our

link F = (W 2
n)−1 ◦ Φ ◦W 1

n will map an exact relation in T passing through C1 to

another exact relation of the same dimension in T passing through C2.
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CHAPTER 5

REPRESENTATION THEORY AND NOTATION

Because we are focused on fiber-reinforced composites, the set of admissible rotations

will be the group of rotations in the transverse plane, SOk(2) ∼= SO(2). Since the

transformation Wn maps exact relations in T to SO(2)-invariant subspaces of S, we

can take advantage of representation theory of SO(2). By the Peter-Weyl theorem,

since SO(2) is a compact Lie group, we can write any SO(2)-invariant subspace as an

orthogonal direct sum of finite dimensional irreducible representations or irreps. We

say that a representation is irreducible if its only invariant subspaces are the trivial

ones. Over C irreps must be one-dimensional since SO(2) is commutative. Therefore

we can parametrize each irrep by one complex or one real number. Let us also

parametrize elements of SOk(2) by θ ∈ R. Then for each irrep V = {V (z) : z ∈ C},

we know each Rθ ∈ SOK(2) acts on V (z) by complex multiplication of eimθ by z for

some integer m. This integer is called the weight of V . Note that V is a weight zero

irrep if and only if it is parameterized by a real number.

In order to describe these irreps, we will need to introduce some notation.

Without loss of generality, we will assume that the longitudinal fibers are oriented

vertically, i.e., we choose the longitudinal axis k = (0, 0, 1). Then we can represent
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each Rθ ∈ SOk(2) as a 3× 3 matrix of the form:

Rθ =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .
The action of this element on an arbitrary E ∈ Sym(R3) is then defined by

Rθ · E = RθERT
θ

while the action of Rθ on C ∈ T is given by

(Rθ · C)(E) = Rθ(C(Rθ
TERθ))RT

θ (5.1)

so that Rθ · C describes the elasticity tensor of the rotated material.

If we decompose R3 as a sum of its irreps then we have

Sym(R3) = Y ′0 ⊕ Y2 ⊕ Y1 ⊕ Y0 = Sym(R2 ⊕ R)

where

Y ′0 =


 ωI 0

0 0

 : ω ∈ R

 where I is the identity in Sym(R2) (5.2)

Y2 =


 E 0

0 0

 : E ∈ Sym(R2), trace-free

 (5.3)

Y1 =


 0 e

eT 0

 : e ∈ R2

 (5.4)

Y0 =


 0 0

0 ε

 : ε ∈ R

 (5.5)

In order to simplify our description of fourth order tensors, we would like to express

elements of Sym(R3) as vectors rather than matrices. We take advantage of the
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following complex formalism. If z ∈ C is written z = α + iβ where α, β ∈ R, let

φ(z) =

 α −β

β α

 and ψ(z) =

 α β

β −α

 .
Then every 2 × 2 matrix E can be written E = φ(w) + ψ(z) for some w, z ∈ C.

Furthermore, if E is symmetric, then w = ω ∈ R. If we slightly abuse notation and

write e for both the vector 〈e1, e2〉 ∈ R2 and the complex number e1 + ie2, then we

can parameterize each 3× 3 symmetric matrix, E as

E =

 φ(ω) + ψ(z) e

eT
√

2ε

 =



ω

z

e

ε


(5.6)

where ω ∈ R ∼= Y ′0 , z ∈ C ∼= Y2, e ∈ C ∼= Y1, and ε ∈ R ∼= Y0. The coefficient of
√

2

on ε is convenient so that the invariant inner product 1
2
Tr(EE ′) coincides with the

standard dot product ωω′ + Re(zz̄′) + Re(eē′) + εε′ on R6. We may now write the

action of Rθ on E ∈ Sym(R3) very simply as

Rθ · E =



ω

e2iθz

eiθe

ε


and verify that the subscripts on the subspaces Y ′0 , Y2, Y1, and Y0 correspond to the

weights of these irreps.

It will be useful to observe that

ψ(w)a = wā φ(z)a = za
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for any a where on each left hand side we think of a as a vector and on each right

hand side we think of it as a complex number. We should also note that

φ(z)ψ(w) = ψ(zw) ψ(w)φ(z) = ψ(wz̄)

φ(z)φ(y) = φ(zy) ψ(w)ψ(v) = φ(wv̄)

for all v, w, y, z ∈ C. Then the action of an arbitrary K ∈ S on E can be represented

as multiplication of the column vector in (5.6) by:

K =



λ uT bT α

u φ(µ) + ψ(v) φ(c) + ψ(d) g

b φ(c)T + ψ(d) φ(ρ) + ψ(f) h

α gT hT γ


(5.7)

where λ, α, µ, ρ, γ ∈ R and u, b, v, c, d, g, f, h ∈ C ∼= R2. Therefore, using (5.1), the

action of Rθ on K ∈ S is

Rθ ·K =



λ (e2iθu)T (eiθb)T α

e2iθu φ(µ) + ψ(e4iθv) φ(eiθc) + ψ(e3iθd) e2iθg

eiθb φ(eiθc)T + ψ(e3iθd) φ(ρ) + ψ(e2iθf) eiθh

α (e2iθg)T (eiθh)T γ


.

We now see that our notation in (5.7) is particularly convenient since each parameter

in R or C represents a separate irrep. That is, we can decompose K as

K = K′0(λ) + K2(u) + K0(µ) + K4(v) + L′1(b) + L1(c) + L3(d)

+ N0(ρ) + N2(f) + M0(α) + M2(g) + p1(h) + j0(γ)

where the weight of each irrep is indicated by the appropriate subscript. We will

denote each of the subspaces as, for example,

K′0 = {K′0(λ) : λ ∈ R} and K2 = {K2(u) : u ∈ C}.
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It will also be convenient to combine the irreps into the following larger blocks:

• K = K′0 ⊕ K2 ⊕ K0 ⊕ K4
∼= Sym(Sym(R2)) ∼= Sym(Y ′0 ⊕ Y2)

• L = L′1 ⊕ L1 ⊕ L3
∼= Hom(Sym(R2),R2) ∼= Hom((Y ′0 ⊕ Y2), Y1)

• M = M0 ⊕M2
∼= Hom(Sym(R2),R) ∼= Hom((Y ′0 ⊕ Y2), Y0)

• N = N0 ⊕N2
∼= Sym(R2) ∼= Sym(Y1)

• P = p1
∼= Hom(R2,R) ∼= Hom(Y1, Y0)

• J = j0
∼= Sym(R) ∼= Sym(Y0)

where Hom(V,W ) represents the set of symmetric linear maps between V and W .

With an abuse of notation wherein we identify each subspace of S with the compo-

nents that it represents, we can illustrate the block structure by writing

S =



K′0 K2 L′1 M0

K2 K0 ⊕ K4 L1 ⊕ L3 M2

L′1 L1 ⊕ L3 N0 ⊕N2 p1

M0 M2 p1 j0


=


K L M

L N P

M P J

 .
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CHAPTER 6

ALGEBRAIC STRUCTURE FOR FIBER-REINFORCED

COMPOSITES

For fiber-reinforced composites, the set of admissible directions for lamination is

D := {n ∈ R3 : ‖n‖ = 1,n = (n, 0) = (n1, n2, 0)}

which represents varying angles of rotation in the transverse plane. For each a,b ∈ R3,

define the matrix a ⊗ b component-wise as (a ⊗ b)ij = aibj. Then for each n ∈ D,

we have the subspaces

Jn = {J ∈ Sym(R3) : Jn = 0}

En = {a⊗ n + n⊗ a : a ∈ R3}.

Now let us describe the fixed tensor C0 in (3.1). We say C is transversely

isotropic if Rθ · C = C for all Rθ ∈ SOk(2). For fiber-reinforced composites, we will

require that C0 be transversely isotropic. An arbitrary transversely isotropic tensor

G0 ∈ T can be written

G0 =



λ0 0 0 α0

0 φ(µ0) 0 0

0 0 φ(ρ0) 0

α0 0 0 γ0


= K′0(λ0) + K0(µ0) + N0(ρ0) + M0(α0) + j0(γ0)
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for some λ0, µ0, ρ0 > 0 and λ0γ0 − α2
0 > 0. We will let C0 = G2

0 in order to avoid

calculating square roots.

Lemma 6.1: The projector Γ(n) onto the subspace C
1/2
0 En is of the form Γ(n) =

(Γ(n)− Γ̄(n)) + Γ̄(n) where Γ̄(n) represents the transversely isotropic part and

Γ(n)− Γ̄(n) =
1

ϑ0



0 λ0µ0v
T 0 0

λ0µ0v ψ(−1
2
(λ2

0 + α2
0)v2) 0 α0µ0v

0 0 ψ(1
2
ϑ0v) 0

0 α0µ0v
T 0 0



Γ̄(n) =
1

ϑ0



λ2
0 0 0 α0λ0

0 φ(1
2
(λ2

0 + α2
0 + 2µ2

0)) 0 0

0 0 φ(1
2
ϑ0) 0

α0λ0 0 0 α2
0


where ϑ0 = λ2

0 + α2
0 + µ2

0 and v = n2 as complex numbers.

Proof: Fix n ∈ D. Then each b = (b, β) = (b1, b2, β) ∈ R3 corresponds to an element

(b⊗n+n ⊗ b) ∈ En. Observing that the 2×2 matrix (b⊗n+n⊗b) = φ(b·n)+ψ(bn),

we can write (b⊗ n + n⊗ b) using the form in (5.6):

(b⊗ n + n⊗ b) =



(b · n)

bn

βn

0


.

Given an arbitrary E ∈ Sym(R3), we would like to find the projection of E onto

C
1/2
0 En. Let us write E as the sum of its projections onto C

−1/2
0 Jn and C

1/2
0 En, say

as

E = C
−1/2
0 J + C

1/2
0 (b⊗ n + n⊗ b)
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where Jn = 0. Then in order to find the projection Γ(n)E = C
1/2
0 (b ⊗ n + n ⊗ b),

we need to find b.

We use the fact that

(C
1/2
0 E)n = Jn + C0(b⊗ n + n⊗ b)n = C0(b⊗ n + n⊗ b)n.

Letting

E =



ω

z

e

ε


we can now see that

(C
1/2
0 E)n =

 (λ0ω + α0ε)I + µ0ψ(z) ρ0e

ρ0e
T

√
2(α0ω + γ0ε)

 n

0



=

 (λ0ω + α0ε)n+ µ0ψ(z)n

ρ0e · n

 (6.1)

while

C0(b⊗ n + n⊗ b)n

=

 (λ2
0 + α2

0 − µ2
0)(b · n)I + µ2

0(b⊗ n+ n⊗ b) ρ2
0βn

ρ2
0βn

T
√

2(λ0 + γ0)α0(b · n)

 n

0



=

 (λ2
0 + α2

0)(b · n)n+ µ2
0b

ρ2
0β

 . (6.2)

Equating (6.1) and (6.2), immediately we see that β = e·n
ρ0

. Applying the inner

product with n to both sides of

(λ2
0 + α2

0)(b · n)n+ µ2
0b = (λ0ω + α0ε)n+ µ0ψ(z)n (6.3)
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we find that

b · n =
λ0ω + α0ε+ µ0(ψ(z)n · n)

λ2
0 + α2

0 + µ2
0

. (6.4)

We then substitute (6.4) into (6.3) and solve for

b =
µ0(λ0ω + α0ε)− (λ2

0 + α2
0)(ψ(z)n · n)

µ0(λ2
0 + α2

0 + µ2
0)

n+
1

µ0

ψ(z)n. (6.5)

Now we have

Γ(n)E = C
1/2
0



b · n

bn

βn

0


=



λ0(b · n)

µ0bn

(n⊗ n)e

α0(b · n)


.

Using (6.4) and (6.5), we can write

Γ(n) =
1

2ϑ0



2λ2
0 2λ0µ0v

T 0 2α0λ0

2λ0µ0v φ(ϑ0 + µ2
0)− ψ((ϑ0 − µ2

0)v2) 0 2α0µ0v

0 0 φ(ϑ0) + ψ(ϑ0v) 0

2α0λ0 2α0µ0v
T 0 2α2

0


where ϑ0 = λ2

0 +α2
0 +µ2

0 and v = n2 as complex numbers. We can then easily separate

Γ(n) into the transversely isotropic part, Γ̄, and the rest as in the statement of the

lemma. �

Note that the transversely isotropic part, Γ̄ does not depend on n. From [12]

we know that

A = Span{Γ(n)− Γ̄ : n ∈ D}.

so we are almost ready to describe A. First we prove a short lemma.

Lemma 6.2: SpanR{(eiθ, e2iθ) : θ ∈ R} = C2.
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Proof: Let B = {(eiθ, e2iθ) : θ ∈ R}. By judicious choice of θ we see that (1, 1), (−1, 1),

(e
πi
4 , i), (−eπi4 , i), and (i,−1) ∈ B. From here we can easily see that (0, 1), (1, 0), (0, i),

and (i, 0) ∈ SpanR{B} which gives us the lemma. �

From this lemma it follows that

A =





0 2λ0µ0z
T 0 0

2λ0µ0z ψ(w) 0 2α0µ0z

0 0 ψ(ϑ0z) 0

0 2α0µ0z
T 0 0


: w, z ∈ C


.

We now simplify A by taking advantage of (3.5). If

B1 =



λ1 0 0 α1

0 φ(µ1) 0 0

0 0 φ(ρ1) 0

β1 0 0 γ1


and A =



0 2λ0µ0z
T 0 0

2λ0µ0z ψ(w) 0 2α0µ0z

0 0 ψ(ϑ0z) 0

0 2α0µ0z
T 0 0


then

B1AB
T
1 = 2µ0µ1



0 (λ0λ1 + α0α1)zT 0 0

(λ0λ1 + α0α1)z ψ(
µ21

2µ0µ1
w) 0 (λ0β1 + α0γ1)z

0 0 ψ(
ϑ0ρ21

2µ0µ1
z) 0

0 (λ0β1 + α0γ1)zT 0 0


.

Letting

β1 = −α0γ1

λ0

(6.6)

eliminates the M2 component of each A′ ∈ A′. While it is tempting to allow λ1 =

−α0α1

λ0
to get rid of the K2 component, combining this with (6.6) implies that B1 is
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singular. Instead, we let

ρ1 =

√
2µ1µ0

ϑ0

(λ1λ0 + α1α0)

so that the ratio between K2 and N2 components is simply one. Therefore, in the

case of fiber-reinforced periodic composites, we have

A′ = {K2(z) + K4(w) + N2(z) : z, w ∈ C}.

To simplify notation we will now rename our sets so that A denotes the simplified

form.

We are now able to make certain observations about S0 from (3.7). Since

B1Γ̄BT
1 =



(λ1λ0+α1α0)2

ϑ0
0 0 0

0 φ(
µ21(λ20+α2

0+2µ20)

2ϑ0
) 0 0

0 0 φ(1
2
ρ2

1) 0

0 0 0 0


(6.7)

we see that we may in general make S0 diagonal. Which of the diagonal entries we

may set equal to zero depends on the specific algebraic subspace we choose.

The free parameters in B1 also allow us simplify C
1/2
0 BT

1 and thus the inversion

formula (3.7). Observe that

C
1/2
0 BT

1 =



λ1λ0 + α1α0 0 0 0

0 φ (µ1µ0) 0 0

0 0 φ

(
ρ0

√
2µ1µ0(λ1λ0+α1α0)

ϑ0

)
0

α0λ1 + γ0α1 0 0
(
λ0γ0−α2

0

λ0

)
γ1


.
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Therefore, assuming α2
0 6= γ2

0 , by setting

α1 =
−α0λ1

γ0

we can ensure that B1 is invertible and that C
1/2
0 BT

1 will be diagonal of the form

C
1/2
0 BT

1 = K′0(δ1) + K0(δ2) + N0

(√2δ1δ2ρ2
0

ϑ0

)
+ j0(δ3)

where δ1, δ2, δ3 ∈ R are arbitrary.
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CHAPTER 7

AUTOMORPHISMS

Before we can identify the subspaces that satisfy our algebraic conditions, we must

find a way to describe this infinite list in terms of a finite number of sets. We use

equivalence classes of automorphisms of S to accomplish this goal. Suppose Φ : S → S

is a bijection such that

R · Φ(K1) = Φ(R ·K1) (7.1)

and

Φ(K1 ∗A K2) = Φ(K1) ∗A Φ(K2) (7.2)

hold for all R ∈ SO(2), A ∈ A, and K1, K2 ∈ S. Then Π is a rotationally invariant

algebraic subspace if and only if Φ(Π) is as well. Let Υ denote this set of auto-

morphisms. Then we can restrict our list of algebraic subspaces to include just one

representative of each Υ-orbit. Conveniently, this set of automorphisms is exactly

that which corresponds to the set of links we seek.

As we saw in chapter 4, in general a link corresponds to a bijection on a pair of

algebras with certain ideals. The links we discuss in this work correspond to bijections

from the entire algebraic space S to itself, i.e., where both ideals are {0}. Due to the

block structure of A, we can immediately see that M ⊕ P ⊕ J and J are also ideals

on S. However, as we see in the following theorem, computing the sets of admissible

automorphisms for the quotient groups of S corresponding to these ideals does not
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result in any additional automorphisms beyond those that are admissible for all of S.

We will give the arguments for all three groups in parallel.

Theorem 7.1: All automorphisms satisfying (7.1) and (7.2) are of the form

Φ±ν,τ (K) = X±(ν, τ)K(X±(ν, τ))T

where

X±(ν, τ) =



1 0 0 0

0 φ(1) 0 0

0 0 φ(±1) 0

ν 0 0 τ


(7.3)

for some ν, τ ∈ R. Furthermore, restricting these automorphisms to either S\J ∼= S/J

or S \ (M⊕ P⊕ J) ∼= S/(M⊕ P⊕ J) gives us precisely the groups of automorphisms

satisfying (7.1) and (7.2) on these quotient groups.

Proof: Let Φ be any automorphism satisfying (7.1) and (7.2) for all K1, K2 in some

algebraic subspace, Π. First we observe the following.

Lemma 7.2: If Φ satisfies (7.1), then Φ respects weight class. That is, for each irrep

V of weight m ∈ Z, Φ(V ) is also an irrep of weight m.

Proof: That Φ satisfies (7.1) implies that for any irrep V , the image Φ(V ) is also an

irrep. Since Φ is a bijection, Rθ ·Φ(K) = Φ(K) if and only if Rθ ·K = K. Now note

that the following are equivalent for an irrep V :

• V is of weight m

• Rθ ·K = K holds for all K ∈ V if and only if mθ ≡ 0 mod 2π

Therefore Φ(V ) is an irrep of the same weight class as V . �

The remainder of the proof will involve repeated applications of (7.2). We will

assume in general that Π = S. Note that S/(M⊕ P⊕ J) ∼= K⊕ L⊕ N and that we
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can immediately see from the block structure of A that K ⊕ L ⊕ N is an algebraic

subspace. Therefore, by simply ignoring M ⊕ P ⊕ J, we find that these arguments

carry directly over to S/(M⊕P⊕J). For the case Π = S/J, we will make amendments

where appropriate to complete the argument. For reference the entire multiplication

table for arbitrary A ∈ A is included in appendix B, though we will repeat many of

the results in the text for the reader’s convenience. First let us define two important

subspaces:

ΠA = K0 ⊕ K4 ⊕ N⊕ L1 ⊕ L3 (7.4)

and

ΠB = K′0 ⊕ K2 ⊕ L′1 ⊕M⊕ P⊕ J (7.5)

and note that ΠA ⊕ ΠB = S.

Lemma 7.3: Φ is invariant on each irrep V ∈ {K0,K4,N0,N2,L1,L3, J} as well as

on the subspaces ΠB and M⊕ P⊕ J.

Proof: That Φ is invariant on K4 and L3 follows from Lemma 7.2. That Φ is invariant

on J follows from the fact that J represents the set of annihilators in S, i. e.

J = AnnS(S) = {J ∈ S : J∗AK = 0 ∀ K ∈ S}.

Since ΠB represents the set of elements that are nilpotent for all A ∈ A, Φ is invariant

on ΠB. Defining AnnS(V ) = {S ∈ S : S∗AK = 0 ∀ K ∈ V }, since for any subspace

V ,

Φ(AnnS(V )) ⊂ AnnS(Φ(V )), (7.6)

the facts that AnnS(K4) = N ⊕ P ⊕ J and Φ(K4) = K4 tell us that Φ is invariant on

N ⊕ P ⊕ J. In particular, by the Lemma 7.2, Φ is invariant on P, which we will use



35

momentarily. In the case that Π = S/J, we must modify (7.6) to

Φ(AnnS(V ))∗AΦ(V ) ⊂ J.

However, since Φ(K4) = K4, and (K4∗AU) ∩ J = {0} for all U ⊂ S, the conclusion

that Φ is invariant on (in this case) N0,N2, and p1 holds.

Observe that (7.2) implies that Φ sends ideals to ideals. We can easily see that

M⊕P⊕J is an ideal and that since Φ(M⊕P⊕J) ⊂ (ΠB \L′1) = (K′0⊕K2⊕M⊕P⊕J)

while K′0∗AL = L′1 and K2∗AL = L for all A ∈ A, it is also the only ideal within

its potential image under Φ. Therefore Φ must also be invariant on M ⊕ P ⊕ J.

Furthermore, Φ(p1) = p1 and AnnS(p1) = K ⊕M ⊕ J imply that Φ is invariant on

K′0 ⊕ K0 ⊕M0 ⊕ J. Since N0∗AN2 = N0 for all A and J is an annihilator, we know

Φ(N0) = N0. Similarly, since K0∗AK4 = K0, K′0∗AK4 = K2, and M0∗AK4 = M2 for all

A, we see Φ(K0) = K0. Finally, since for all A, L∗A2
1 ⊂ K4 ⊕N2 while (L′1)∗

A2 = K′0,

p∗
A2

1 = J, L′1∗Ap1 = M0, L′1∗AL1 ⊂ K2 ⊕ N, and L1∗Ap1 = M2, we have that

Φ(L1) = L1. �

Before we calculate explicit values for Φ, we would like to have a better sense

of how Φ acts on each irrep. Certainly for any weight zero irrep V = {V (β) : β ∈ R}

there exists δ ∈ R and another weight zero irrep, W = {W (β) : β ∈ R}, such that

for every β ∈ R, Φ(V (β)) = W (δβ). Now suppose V = {V (z) : z ∈ C} is an irrep of

weight m where m ≥ 1 and Φ(V ) = V . Then, by Schur’s Lemma, there exists a ∈ C

such that Φ(V (z)) = V (az) for all z ∈ C. So Φ is simply scalar multiplication by a

on V . Furthermore, since all irreps of a certain weight are isomorphic, we can extend

this result to all irreps V . That is, if Φ(V ) = W and for some fixed v ∈ C, we know

Φ(V (v)) = W (w), then for any a ∈ C, Φ(V (av)) = W (aw). We will use this fact

throughout the remainder of the proof.
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Lemma 7.4: Define ΦK = πK ◦ Φ where πK represents the projection onto the sub-

space K. Then ΦK is the identity map on K. Furthermore, by lemma 7.3,

Φ(K0(µ) + K4(v)) = ΦK(K0(µ) + K4(v)) = K0(µ) + K4(v).

Proof: For all A ∈ A, K∗A2 = K, K∗AM = M, M∗A2 = J, and all elements of J

annihilate all other elements. When we combine this information with the fact that

Φ(K) ⊂ K⊕M⊕ J we can show that

ΦK(K1∗AK2) = ΦK(K1)∗AΦK(K2)

for all K1, K2 ∈ K and A ∈ A. Fix A = K2(z) + K4(w) + N2(z) ∈ A. Then since

K4(v)∗
A2 = K4(w̄v2) and Φ(K4) = K4, we have that Φ(K4(v)) = K4(v). Similarly, since

K0(µ)∗
A2 = K4(wµ2) and Φ(K0) = K0, Φ(K0(µ)) = K0(βµ) where β = ±1. But then

the fact that

K2(u)∗AK0(µ) =
1

2
[K2(µūw) + K0(µRe(uz̄)) + K4(µuz)]

implies that β = 1 and ΦK(K2(u)) = K2(u). Finally, that K∗
A2

2 ⊂ K′0⊕K2 tells us that

ΦK(K′0(λ)) = K′0(λ). �

Lemma 7.5:

Φ(L1(c) + L3(d) + N0(ρ) + N2(f)) =

L1(βc) + L3(βd) + N0(ρ) + N2(f)

where β = ±1

Proof: Let us fix an arbitrary A = K2(z) + K4(w) + N2(z) ∈ A. As in the case of K4

above, the facts that N2(f)∗
A2 = N2(z̄f 2) and Φ(N2) = N2 imply that Φ(N2(f)) =

N2(f). Also, N0(ρ)∗
A2 = N2(zρ2) implies Φ(N0(ρ)) = N0(±ρ). Next the products
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L3(d)∗
A2 = K4(z̄d2) + N2(w̄d2), L1(c)∗

A2 = K4(zc2) + N2(wc̄2), and L1(c) ∗A L3(d) =

K0(Re(z̄cd)) + N0(Re(wc̄d̄)) imply

Φ(N0(ρ) + L1(c) + L3(d)) = N0(ρ) + L1(βc) + L3(βd)

where β = ±1. �

Lemma 7.6:

Φ(K′0(λ) + K2(u)) = K′0(λ) + M0(νλ) + j0(ν2λ) + K2(u) + M2(νu)

Φ(L′1(b)) = L′1(δb) + p1(δνb)

Φ(M0(α) + M2(g)) = M0(τα) + j0(2τνα) + M2(τg)

Φ(p1(h)) = p1(δτh)

Φ(j0(γ)) = j0(τ 2γ)

for some τ, ν ∈ R and δ = ±1.

Proof: Fix an arbitrary A = K2(z) + K4(w) + N2(z) ∈ A. Observe that M2(g)∗
A2 =

j0(Re(wḡ2)) and p1(h)∗
A2 = j0(Re(zh̄2)), which imply

Φ(M2(g) + p1(h) + j0(γ)) = M2(δ1g) + p1(δ1δ2h) + j0(δ2
1γ)

where δ2
1 ∈ R and δ2 = ±1. However, when Π = S/J, this argument will not work.

Instead we may simply observe that L3(d)∗Ap1(h) = M2(1
2
dhz̄) implies the same,

where we disregard the values for j0. If we let

Φ(K′0(λ)) = K′0(λ) + M0(δ3λ) + j0(δ4λ)

Φ(M0(α)) = M0(δ5α) + j0(δ6α)
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where δ3, δ4, δ5, δ6 ∈ R, then K′0(λ)∗AM2(g) = M0(1
2
λRe(z̄g)) and M0(α)∗AM2(g) =

j0(αRe(z̄g)) imply δ1 = δ5 and 2δ1δ3 = δ6. Write

Φ(L′1(b)) = L′1(δ7b) + p1(δ8b)

for some δ7, δ8 ∈ C. Since L′1(b)∗
A2 = K′0(Re(zb̄2)) and L′1(b)∗Ap1(h) = M0(1

2
Re(zh̄b̄)),

we see that δ7 = δ2, δ2δ8 = δ3 and δ2
8 = δ2

3 = δ4. Finally, let

Φ(K2(u)) = K2(u) + M2(δ9u)

where δ9 ∈ C. Since K2(u)∗AM0(α) = M0(1
2
Re(αuz̄)), and using that M0∗AM2 = J,

we have that δ1δ9 = 1
2
δ6 = δ1δ3 and therefore that δ9 = δ3. Here, for the case of

Π = S/J, we must also use that K′0(λ)∗AK2(u) = K′0(λRe(uz̄) and K′0(λ)∗AM2(g) =

M0(1
2
λRe(z̄g)) to show that δ3 = δ9. Letting δ1 = τ , δ2 = δ, and δ3 = ν yields Φ as

described in the statement of the lemma. �

From the observation K0(µ)∗AL′1(b) = L1(1
4
µb̄z) + L3(1

4
µbz) we see that the

values β and δ in Lemma 7.5 and Lemma 7.6 are equal. Therefore Φ must be of the

form in the statement of the theorem.

Conversely, that Φ of the form Φ±ν,τ (K) = X±(ν, τ)K(X±(ν, τ))T satisfy (7.1)

follows from the fact they preserve weight class. That such Φ satisfy (7.2) follows

from the fact that for any A ∈ A

(X±(ν, τ))TAX±(ν, τ) = A. �
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CHAPTER 8

EXACT RELATIONS CALCULATIONS

We can now produce a complete list of subspaces Π ⊂ S that satisfy the algebraic

condition (3.3) and are SO(2)-invariant. Hereafter such subspaces will be called

algebraic subspaces or simply algebras. They include all images of exact relations.

As discussed in chapter 5, by the Peter-Weyl theorem, we can write any Π as a direct

sum of complex one-dimensional irreps. Let us fix an arbitrary A = K2(z) +K4(w) +

N2(z) ∈ A to use throughout this chapter. We begin in section 8.1 by considering

minimal algebraic subspaces. We describe in section 8.2 how we identify all subspaces

that correspond to uniform field relations. Then we explain in section 8.3 how we may

organize the complete list of all algebraic subspaces, while the list itself is contained

in appendix A. In section 8.4 we describe how these algebraic subspaces may be

converted back into exact relations in physical variables and in section 8.5 we give an

example of one such conversion.
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8.1 Minimal Algebraic Subspaces

Lemma 8.1: If Z is an irrep within some algebraic subspace and the minimal alge-

braic subspace containing Z is Π, then the pairing Z ⊂ Π is one of the following:

K0 ⊂ (K0 ⊕ K4) (8.1)

N0 ⊂ (N0 ⊕N2) = N (8.2)

N2 ⊂ N2 (8.3)

L1 ⊂ (L1 ⊕ K4 ⊕N2) (8.4)

L3 ⊂ (L3 ⊕ K4 ⊕N2) (8.5)

K4 ⊂ K4 (8.6)

Πλ,α,γ
0 ⊂ Πλ,α,γ

0 (8.7)

where we define

Πλ,α,γ
0 = {K′0(λδ) + M0(αδ) + j0(γδ) : δ ∈ R} (8.7a)

for any (λ, α, γ) ∈ R3;

{L′1(η1d) + p1((η2 + iη3)d) : d ∈ C} ⊂ Πη1,η2,η3
1 (8.8)

where we define

Πη1,η2,η3
1 = {L′1(η1d) + p1((η2 + iη3)d) : d ∈ C} ⊕ Π

η21 ,η1η2,η
2
2−η33

0 ⊕ Π0,η1η3,2η2η3
0 (8.8a)

for any (η1, η2, η3) ∈ R3; and

{K2(η1d) + M2(η2d) : d ∈ C} ⊂ Πη1,η2
2 (8.9)

where we define

Πη1,η2
2 = {K2(η1d) + M2(η2d) : d ∈ C} ⊕ Π

η21 ,η1η2,η
2
2

0 (8.9a)
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for any (η1, η2) ∈ R2.

Proof: First observe that for any irrep, the minimal algebraic subspace containing it

is unique since the intersection of two algebras is an algebra. We can verify that the

Π in (8.1) - (8.6) are algebraic subspaces and that for each Z the given Π is in fact

the minimal algebraic subspace containing Z by fixing the parameters appropriately

and examining the following calculation:

0 0 0 0

0 φ(µ) + ψ(v) φ(c) + ψ(d) 0

0 φ(c)T + ψ(d) φ(ρ) + ψ(f) 0

0 0 0 0



∗A2

=



0 0 0 0

0 φ(Re(2µv̄w + cd̄z)) φ(µd̄w + vcw̄ + cf̄z + ρdz̄) 0

0 φ(µd̄w + vcw̄ + cf̄z + ρdz̄)T φ(Re(2ρfz̄ + 2cdw̄)) 0

0 0 0 0



+



0 0 0 0

0 ψ(µ2w + v2w̄ + c2z + d2z̄) ψ(µc̄w + vdw̄ + ρcz + dfz̄) 0

0 ψ(µc̄w + vdw̄ + ρcz + dfz̄) ψ(ρ2z + f2z̄ + c̄2w + d2w̄) 0

0 0 0 0


.

(8.10)

Similarly, we can verify the (Z,Π) pairs in (8.7) - (8.9) with the calculation



λ uT bT α

u 0 0 g

b 0 0 h

α gT hT γ



∗A2

=



Re(2λzū+ wū2 + zb̄2) Re(zū)uT Re(zū)bT Re(αzū+ λzḡ + wḡū+ zb̄h̄)

Re(zū)u 0 0 Re(zḡ)u

Re(zū)b 0 0 Re(zḡ)b

Re(αzū+ λzḡ + wḡū+ zb̄h̄) Re(zḡ)uT Re(zḡ)bT Re(2αzḡ + wḡ2 + zh̄2)


.

(8.11)
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Now we must show that these are the only candidates for Z. Clearly for

weights three and four we can only have Z = L3 and Z = K4. We will consider

weights zero, one, and two in three separate cases.

Case 1: Weight zero. Let Z be an arbitrary an irrep of weight zero contained

within its minimal algebraic subspace Π. Then we can write

Z := {Z(δ) : δ ∈ R} := {K′0(λδ) + K0(µδ) + N0(ρδ) + M0(αδ) + j0(γδ) : δ ∈ R}

for some (λ, µ, ρ, α, γ) ∈ R5 and observe that for each δ ∈ R,

Z(δ)∗
A2 = 2K′0(λδ)∗AK0(µδ) + K0(µδ)∗

A2 + 2K0(µδ)∗AM0(αδ) + N0(ρδ)∗
A2

= K2(λµδ2z) + K4(µ2δ2w) + M2(µαδ2z) + N2(ρ2δ2z).

(8.12)

Letting z = 0, we see that if µ 6= 0, then K4 ⊂ Π. But then

K4(v)∗AZ(δ) = K4(v)∗AK′0(λδ) + K4(v)∗AK0(µδ) + K4(v)∗AM0(αδ)

= K2(
1

2
λδvz̄) + K0(µδRe(vw̄)) + M2(

1

2
αδvz̄)

which implies that K0 ⊂ Π. Since by assumption Z is irreducible, this implies Z = K0

and Π = K0 ⊕ K4. Next if µ = 0 and ρ 6= 0, then (8.12) implies that N2 ⊂ Π. Since

N2(f)∗AZ(δ) = N2(f)∗AN0(ρδ) = N0(ρδRe(f z̄))

we see that N0 ⊂ Π. Again, since Z was assumed to be irreducible, this implies Z =

N0 and Π = N. The remaining cases correspond to varying values for (λ, α, γ) ∈ R3

in (8.7).

Case 2: Weight one. Let Z be an arbitrary irrep of weight one and write

Z := {Z(a) : a ∈ C} := {L′1(ab) + L1(ac) + p1(ah) : a ∈ C}.



43

Then computing

Z(a)∗
A2 = L′1(ab)∗

A2 + L1(ac)∗
A2 + p1(ah)∗

A2

+ 2L′1(ab)∗AL1(ac) + 2L1(ac)∗Ap1(ah) + 2L′1(ab)∗Ap1(ah)

= K′0(Re(a2b2z̄)) + N2(a2c2w̄) + K4(a2c2z̄) + j0(Re(a2h2z̄))

+ K2(b̄c‖a‖2z) + N0(Re(ā2b̄c̄z)) + N2(abRe(acz̄))

+ M2(ch̄‖a‖2z) + M0(Re(a2bhz̄))

we see that if c 6= 0 then setting z = 0 shows us that N2 ⊂ Π. But since

N2(f)∗AZ(a) = L′1
(

1

2
afbz̄

)
+ L1

(
1

2
acf̄z

)
+ p1

(
1

2
afhz̄

)

we see that varying z allow us to isolate L1. Since Z is irreducible, this implies Z = L1

and Π = L1 ⊕K4 ⊕N2. If c = 0, then we are left with the irreps of the type in (8.8).

Case 3: Weight two. Let Z be an arbitrary irrep of weight two and write

Z := {Z(a) : a ∈ C} := {K2(au) + N2(af) + M2(ag) : a ∈ C}.

Then

Z(a)∗
A2 = K2(au)∗

A2 + N2(af)∗
A2 + M2(ag)∗

A2 + 2K2(au)∗AM2(ag)

= K′0(Re(a2u2w̄)) + K2(auRe(auz̄)) + N2(a2f 2z̄)

+ j0(2Re(a2g2w̄)) + M0(Re(a2guw̄)) + M2(auRe(agz̄)).

From this we see that if u/g /∈ R, then, by judicious choices of a and z, we may isolate

K2,N2, and M2. Of course if u/g ∈ R, we have an algebraic subspace of the form in

(8.9). �
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8.2 Identifying Uniform Field Relations

We would like to identify those algebraic subspaces that correspond to uniform field

relations. To that end, we repeat the following lemma from [12] for completeness.

Lemma 8.2: The set of rotationally invariant uniform field relations passing through

a fixed transversely isotropic tensor C0 are in one to one correspondence with anni-

hilators of invariant subspaces of Sym(R3).

Proof: LetM be a rotationally invariant uniform field relation. Then for some index

set N , we can write M as

M =
⋂
β∈N

{C ∈ T : Cεβ = σβ}.

Let C0 ∈M be transversely isotropic and define

V = Span({εβ : β ∈ N})

and

M′ = (C0 + Ann(V )) ∩ T (8.13)

For any C ∈ M and any β ∈ N , we have that Cεβ = C0εβ and so M ⊂ M′.

Similarly, given C ∈ M′, Cεβ = C0εβ = σβ and so M′ ⊂ M. Now we must simply

show that V is rotationally invariant. By the rotational invariance of M, given any

C ∈M, R ∈ SO(2), and ε ∈ V ,

(R−1 · C − C0)ε = 0. (8.14)

But then, applying R to (8.14) and using (5.1) and the transverse isotropy of C0, we

see

(C − C0)ε = (C − C0)(R · ε) = 0.
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Thus (R · ε) ∈ V. �

We now write the set of all nontrivial invariant subspaces, V ⊂ Sym(R3) using

the notation defined in (5.2) - (5.5). Individual elements of the subspaces Y ′0 and Y0

will be written Y ′0(η) and Y0(η), respectively.

• {Y ′0(η1η)⊕ Y0(η2η) : η ∈ R} for some η1, η2 ∈ R

• Y ′0 ⊕ Y0

• Y1

• Y2

• {Y ′0(η1η)⊕ Y0(η2η) : η ∈ R} ⊕ Y1 for some η1, η2 ∈ R

• {Y ′0(η1η)⊕ Y0(η2η) : η ∈ R} ⊕ Y2 for some η1, η2 ∈ R

• Y2 ⊕ Y1

• {Y ′0(η1η)⊕ Y0(η2η) : η ∈ R} ⊕ Y2 ⊕ Y1 for some η1, η2 ∈ R

• Y ′0 ⊕ Y2 ⊕ Y0

• Y ′0 ⊕ Y1 ⊕ Y0

The annihilators of these subspaces are labeled as such in the list in appendix A.

8.3 List of Algebraic Subspaces

The complete list of algebraic subspaces is divided into three sets on the basis of the

subspaces defined in (7.4) and (7.5): those contained in ΠA, those contained in ΠB,

and those that intersect both ΠA and ΠB. Within each set we begin with the minimal

subspaces and then build up. Equations (8.10) and (8.11) immediately tell us that

ΠA and ΠB are disjoint algebraic subspaces. In the following lemma, we see that these

subspaces provide a convenient structure for describing all algebraic subspaces of S.
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Lemma 8.3: Any algebraic subspace, Π ⊂ S can be written

Π = (Π ∩ ΠA)⊕ (Π ∩ ΠB)

where (Π ∩ ΠA) and (Π ∩ ΠB) are also algebraic subspaces.

Proof: Observe that the intersection of two algebras is also an algebra. Given Π ⊂ S,

an arbitrary algebra, we know Π∩ΠA and Π∩ΠB are algebras since (8.10) and (8.11)

tell us that ΠA and ΠB are algebras. By the Peter-Weyl theorem and Lemma 8.1, we

can decompose Π into an orthogonal direct sum of irreps from the list (8.1) - (8.9).

Since this list is divided into those contained in ΠA and those contained in ΠB, we

can then write Π as the direct sum of these two groups:

Π = πA(Π)⊕ πB(Π) (8.15)

where πA and πB are the projection maps onto ΠA and ΠB, respectively. However,

this implies

Π = πA(Π)⊕ πB(Π) ⊂ (Π ∩ ΠA)⊕ (Π ∩ ΠB) ⊂ Π

from which the lemma follows. �

Therefore after identifying algebraic subspaces contained within ΠA or within

ΠB, we may simply take direct sums of these to find all remaining algebras. The

complete list is located in appendix A.

8.4 Inversion Formula for Exact Relations

Recall from chapter 6 that the factor C
1/2
0 BT

1 in the inversion formula (3.7) may be

constructed so that it is diagonal of the form K′0(δ1) +K0(δ2) + N0

(√2δ1δ2ρ20
ϑ0

)
+ j0(δ3)

for arbitrary δ1, δ2, δ3 ∈ R. If we let C
1/2
0 BT

1 = K′0(1) + K0(1) + N0

(√2ρ20
ϑ0

)
+ j0(1),

we can quickly verify that C
1/2
0 BT

1 ΠB1C
1/2
0 = Π for all algebras Π since this holds
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for all algebras contained in ΠA as well as those in ΠB. (The only algebra that

requires more than a cursory examination is Π1,0,1
1 . The verification in this case is

also straightforward.) Thus whenever we may let S0 = 0, the inversion (3.7) has an

especially nice form:

M = {C = C0 +K : K ∈ Π} ∩ T .

In particular, this holds for every annihilator of an invariant subspace of Sym(R3),

which verifies (8.13).

For Π such that we cannot allow S0 = 0, we will still frequently be able to

choose δ1, δ2, δ3 such that

C
1/2
0 BT

1 (I +KS0)−1KB1C
1/2
0 = (I +KS0)−1K (8.16)

for all K ∈ Π. In this case

M = {C = C0 + (I +KS0)−1K : K ∈ Π} ∩ T .

8.5 Example of an Exact Relation in Physical Variables

We now focus on the algebraic subspace

Π1 = {L′1(b) + p1(ib) : b ∈ C} ⊕ K′0 ⊕M0 ⊕ J

which provides us with a nontrivial example. For this subspace, a straightforward

calculation shows us that S0 = K′0(ϑ−1
0 ) satisfies (3.6). Write an arbitrary K ∈ Π1 as

K =



λ̂ 0 b̂T α̂

0 0 0 0

b̂ 0 0 ib̂

α̂ 0 (ib̂)T γ̂


.
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Note that for this case, if we fix the parameters of B1 such that

C
1/2
0 BT

1 = K′0(1) + K0

( ϑ0

2ρ2
0

)
+ N0(1) + j0(1),

then C
1/2
0 BT

1 satisfies (8.16) for all K ∈ Π1. If the element corresponding to K in the

exact relation in physical variables passing through C0 is

C = C0 − (I +KS0)−1K (8.17)

then we can write the exact relation as consisting of tensors of the form

C =
1

ω0λ+ ζ0



λ 0 bT α

0 η0I 0 0

b 0 β0I + b⊗ b υ0b(α− iλ+ z0)

α 0 (υ0b(α− iλ+ z0))T γ


(8.18)

where

λ = λ2
0 + α2

0 − λ̂

b = −b̂

α = (λ0 + γ0)α0 − α̂

γ = γ2
0 + α2

0 − γ̂(1 + λ̂ϑ−1
0 ) + α̂2ϑ−1

0

and all values with subscript 0 are constants depending only on C0.

We obtain further information for this example by calculating the volume

fraction relation. Since Π∗
A2

1 = K′0 ⊕M0 ⊕ J, we see that

(Π∗
A2)⊥ = {L′1(b) + p1(ib) : b ∈ C}

and therefore we can augment (8.18) with the fact that b∗ = 〈b〉, where b∗ represents

the L′1 component of C∗.
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CHAPTER 9

LINK CALCULATIONS

9.1 Simplification of Â

We begin our discussion of links by computing the simplification in (4.2). Let

C
1/2
i =



λ0,i 0 0 α0,i

0 φ(µ0,i) 0 0

0 0 φ(ρ0,i) 0

β0,i 0 0 γ0,i


, Bi =



λi 0 0 αi

0 φ(µi) 0 0

0 0 φ(ρi) 0

βi 0 0 γi


,

and

Ai =
1

ϑ0,i



0 λ0,iµ0,iv 0 0

λ0,iµ0,iv ψ(−1
2
(λ2

0,i + α2
0,i)v

2) 0 α0,iµ0,iv

0 0 ψ(1
2
ϑ0,iv) 0

0 α0,iµ0,iv 0 0


for i = 1, 2. Our goal is to make the two copies of A identical. That is, we would like

to make B1A1B
T
1 = B2A2B

T
2 = A. First we let

βi = −α0,iγi
λ0,i

(9.1)

and

ρi =

√
2µiµ0,i

ϑ0,i

(λiλ0,i + αiα0,i) (9.2)
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for i = 1, 2 so that each copy of A is simplified as before. That is,

BiAiB
T
i =

(
µ0,iµi
ϑ0,i

(λ0,iλi + α0,iαi)

)
[K2(v) + N2(v)]− K4

( µ2
i

2ϑ0,i

(λ2
0,i + α2

0,i)v
2
)

for i = 1, 2. Now we will also require

µ2
2 = µ2

1

ϑ0,2(λ2
0,1 + α2

0,1)

ϑ0,1(λ2
0,2 + α2

0,2)
(9.3)

so that the K4 components in A′1 and A′2 are equal. Similarly we will need to fix α2

and λ2 such that

λ2λ0,2 + α2α0,2 =
µ0,1

√
ϑ0,2(λ2

0,2 + α2
0,2)

µ0,2

√
ϑ0,1(λ2

0,1 + α2
0,1)

(λ1λ0,1 + α1α0.1) 6= 0 (9.4)

so that the K2 and N2 components are equal. So now our new Â is simply

Â = {[A,A] : A ∈ A}.

Recall that this allows us to view the Φ described in chapter 7 as the algebraic

representations of the links we seek. Now we must convert these links to physical

variables.

9.2 Inversion of Links

What is the analog of the inversion formula for links? We need M1,M2 such that K ′ 0

0 Φ(K ′)

 B1Γ̄1B
T
1 −M1 0

0 B2Γ̄2B
T
2 −M2

 K ′ 0

0 Φ(K ′)

 ∈ Π̂

for all K ′ ∈ Π′1 = B−T1 Π1B
−1
1 , where Γ̄i is the isotropic part of Γi(n) (recall that Γ̄i

does not depend on n). That is, we need

Φ(K ′(B1Γ̄1B
T
1 −M1)K ′) = Φ(K ′)(B2Γ̄2B

′
2 −M2)Φ(K ′) (9.5)
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for all K ′ ∈ Π′1. But we can write Φ(K ′) = XK ′XT . Thus we need

XTM2X −M1 = XTB2Γ̄2B
T
2 X −B1Γ̄1B

T
1 . (9.6)

Now, using (6.7) and the fact that XTB2Γ̄2B
T
2 X = B2Γ̄2B

T
2 , we see that in general

we cannot set B1, B2 so that B1Γ̄1B
T
1 = XTB2Γ̄2B

T
2 X. Therefore we cannot set

M1 = M2 = 0 in (9.6). Furthermore, the difference B1Γ̄1B
T
1 − B2Γ̄2B

T
2 is fixed. We

will return to this fact shortly.

Using a slightly altered version of (3.7), let

C = C1 − C1/2
1 BT

1 (K−1
1 +M1)−1B1C

1/2
1 (9.7)

C ′ = C2 − C1/2
2 BT

2 (K−1
2 +M2)−1B2C

1/2
2 . (9.8)

Then solving (9.7) for K−1
1 , using K−1

2 = X−TK−1
1 X−1 and substituting this into

(9.8), we see

C ′ = C2−C1/2
2 BT

2 (X−T [B1C
1/2
1 (C1−C)−1C

1/2
1 BT

1 −M1]X−1 +M2)−1B2C
1/2
2 . (9.9)

Unlike the case of exact relations, for links we want to keep as many free parameters

from B1 and B2 as possible since they provide us with degrees of freedom to link

known results to new results. We will now use the difference B1Γ̄1B
T
1 − B2Γ̄2B

T
2 to

define the fixed tensor

H = C
−1/2
2 B−1

2 (−B1Γ̄1B
T
1 +B2Γ̄2B

T
2 )B−T2 C

−1/2
2 .

Then using (9.6), (9.9), and the fact that X−TBiΓ̄iB
T
i X

−1 = BiΓ̄iB
T
i we can write

C ′ = C2 − [I + ∆(C)H]−1∆(C) (9.10)

where

∆(C) = S −QCQT (9.11)



52

and where S and Q are transversely isotropic tensors defined

S = C
1/2
2 BT

2 XB
−T
1 B−1

1 XTB2C
1/2
2 (9.12)

and

Q = C
1/2
2 BT

2 XB
−T
1 C

−1/2
1 . (9.13)

9.2.1 New Block Construction

It will now be convenient to write elasticity tensors as 3× 3 block matrices by com-

bining the blocks that act on ω and z described in chapter 5. Then we can write the

elasticity tensor C effecting the constitutive relation Cε = σ in the form

C =


C C c

CT C c

cT cT γ


where

C : Sym(R2)→ Sym(R2), C : R2 → Sym(R2), c : R→ Sym(R2),

C : R2 → R2, c : R→ R2, and γ : R→ R.

We may think of C as having the same form as a two-dimensional elasticity tensor.

Also, we can think of C and c as symmetric 2× 2 matrices and c as a vector in R2.

This form allows us to write H quite simply. Using (9.2), (9.3), and (9.4), we

see that ρ2
1 = ρ2

2. This, together with (9.1) and (6.7), tells us that H = K′0(h1)+K0(h2)

where h1 and h2 are determined completely by C1 and C2:

h1 =
1

ϑ0,2

(
1−

µ2
0,2(λ2

0,1 + α2
0,1)

µ2
0,1(λ2

0,2 + α2
0,2)

)

h2 =
1

ϑ0,2

(
1−

µ2
0,1(λ2

0,2 + α2
0,2)

µ2
0,2(λ2

0,1 + α2
0,1)

)
.
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So we can write

H =


H 0 0

0 0 0

0 0 0

 and ∆(C) =


D D d

DT D d

dT dT δ


which implies

[I + ∆(C)H]−1 =


Λ(D) 0 0

−DTHΛ(D) φ(1) 0

−dTHΛ(D) 0 1


where Λ(D) = (I + DH)−1 and thus that

[I + ∆(C)H]−1∆(C) =


Λ(D)D Λ(D)D Λ(D)d

(Λ(D)D)T D−DTHΛ(D)D d−DTHΛ(D)d

(Λ(D)d)T (d−DTHΛ(D)d)T δ − dTHΛ(D)d

 . (9.14)

Now write the transversely isotropic tensors C2, S, and Q as

C2 =


C2 0 c2

0 C2 0

cT2 0 γ2

 S =


S 0 s

0 S 0

sT 0 ς

 and Q =


Q 0 0

0 Q 0

qT 0 ξ


where C2, S, and Q can be thought of as isotropic two-dimensional elasticity tensors

and C2, c2,S, s,Q, and q are scalar 2× 2 matrices. That the upper right block of Q

is zero follows from (9.1). Let us also write

C =


C C c

CT C c

cT cT γ

 and C ′ =


C′ C ′ c′

(C ′)T C′ c′

(c′)T (c′)T γ′

 .
We will focus first on the upper left block of C ′. From (9.11) we have

D = S− QCQ
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and so (9.10) and (9.14) lead us to

C′ = C2 − (I + (S− QCQ)H)−1(S− QCQ).

Since H, S,Q, and C2 all commute, we can rewrite this in the form

C′ = C2 − H−1 − H−1Q−1(C− Q−2(H−1 + S))−1Q−1H−1.

Letting G1 = C2 − H−1,G2 = H−1Q−1, and G3 = Q−2(H−1 + S), we have

C′ = G1 − G2(C− G3)−1G2 (9.15)

where G1,G2, and G3 are uniquely defined (up to ±1 in the case of G2).

Let us define

G0 =

 1 0

0 φ(−1)

 .
Note that the map G0 : Sym(R2)→ Sym(R2) is defined by its action on E = φ(ω) +

ψ(z) ∈ Sym(R2):

G0E = φ(ω)− ψ(z).

So G0 representss a two-dimensional isotropic elasticity tensor with bulk modulus 1
2

and shear modulus −1
2

and G2
0 = I. In other words, if we define the inner product of

two symmetric 2× 2 matrices as in (2.4) then

〈G0E,E〉 = detE.

Then, by definition,

G1 =
ϑ0,1µ

2
0,2(λ2

0,2 + α2
0,2)

µ2
0,2(λ2

0,1 + α2
0,1)− µ2

0,1(λ2
0,2 + α2

0,2)
G0 = g1G0

G2 = ±

√
ϑ0,1ϑ0,2µ2

0,1µ
2
0,2(λ2

0,1 + α2
0,1)(λ2

0,2 + α2
0,2)

µ2
0,2(λ2

0,1 + α2
0,1)− µ2

0,1(λ2
0,2 + α2

0,2)
G0 = g2G0
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G3 =
−ϑ0,2µ

2
0,1(λ2

0,1 + α2
0,1)

µ2
0,2(λ2

0,1 + α2
0,1)− µ2

0,1(λ2
0,2 + α2

0,2)
G0 = g3G0

that is, G1,G2, and G3 are scalar multiples of each other with g2
2 = −g1g3. Now we

can write the link for two-dimensional elasticity (9.15) as

C′ = g2
2(G0(g3G0 − C)−1G0 − g−1

3 G0) =
g2

2

g2
3

(C−1 − g−1
3 G0)−1

where g3 ∈ R must be chosen such that (C−1− g−1
3 G0) is positive definite. Written as

a relation between compliance tensors C−1 and (C′)−1, we see that the link is affine.

For the remaining computations it will be useful to note that

(I + DH)−1 = g2G0(g3G0 − C)−1Q−1. (9.16)

Now we compute the remaining block components of C ′ using (9.10) and (9.14).

We will begin by considering the L block. Initially we have

C ′ = −(I + DH)−1QCQ.

Using (9.16) and the fact that Q is a scalar operator with scalar value ±ρ0,2
ρ0,1

, this

simplifies to

C ′ = ±g2ρ0,2

ρ0,1

G0(g3G0 − C)−1C.

Next, we look at the M block. This block maps R ∼= Y0 to Sym(R2). It is perhaps

easiest to represent this map as the matrix to which it maps 1 ∈ R. Letting I2

represent the two by two identity matrix, we can write

c′ = c2 − (I + DH)−1d

= (α0,2(λ0,2 + γ0,2)− g2q5)I2 + g2G0(g3G0 − C)−1

[(
g3q5 −

s5

q1

)
I2 + ξc

]
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where q1 is the K′0 component of Q and q5 and s5 are the M0 components of Q and

S, respectively. Looking at the N block gives us

C′ = C2 −D +DTH(I + DH)−1D

=
ρ2

0,2

ρ2
0,1

(C + CT (g3G0 − C)−1C).

For the P block, thinking of this as the vector to which 1 ∈ R is mapped,

c′ = DTH(I + DH)−1d− d

= ±ρ0,2

ρ0,1

ξc± ρ0,2

ρ0,1

CT (g3G0 − C)−1

[(
g3q5 −

s5

q1

)
I2 + ξc

]
.

Finally, for the J block we have

γ′ = γ2 − δ + dTH(I + DH)−1d

and so

γ′ = (α2
0,2 + γ2

0,2 − ς + 2q5
s5

q1

− g3q
2
5) + ξ2γ

+
1

2
Tr

[((
g3q5 −

s5

q1

)
I2 + ξc

)
(g3G0 − C)−1

((
g3q5 −

s5

q1

)
I2 + ξc

)]
.

This completes the computations for each of the six blocks of C ′. We are now ready

to put them together in a simpler final form.

9.2.2 Final General Link Construction

Let

a0 = g−1
3 , a1 = g2, a3 = ξ, a4 = (α0,2(λ0,2 + γ0,2)− g2q5)

a5 = ξ−1

(
g3q5 −

s5

q1

)
, a6 =

(
α2

0,2 + γ2
0,2 − ς +

2q5s5

q1

− g3q
2
5

)
and define

Θ(C) = (a−1
0 G0 − C)−1 and Ξ(c) = (c + a5I2).
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Then we can write the link as

C ′ =


a21(G0Θ(C)G0 − a0G0) a1a2G0Θ(C)C a4I2 + a1a3G0Θ(C)Ξ(c)

(C ′1,2)T a22(CT Θ(C)C + C) a2a3(c+ CT Θ(C)Ξ(c))

(C ′1,3)T (C ′2,3)T a6 + a23(γ + 〈Θ(C)Ξ(c),Ξ(c)〉)

 . (9.17)

In general the values ai ∈ R are independent for i = 0, ..., 6. Hereafter they will serve

as our parameters for the general link, in place of the parameters from C1, C2, B1, B2,

and X.

9.2.3 Linear Link

We may also consider when H = 0, that is, when B1Γ̄1B
T
1 = B2Γ̄2B

T
2 . Using (9.3),

(9.4), and (6.7), we see that this holds if and only if

µ2
0,1

µ2
0,2

=
λ2

0,1 + α2
0,1

λ2
0,2 + α2

0,2

.

In this case the inversion (9.10) becomes linear and has the form

C ′ = C2 − S +QCQT

where S and Q are as defined in (9.12) and (9.13). Let us write

F = C2 − S =


0 0 f1I

0 0 0

f1I 0 f2

 and Q =


d1I 0 0

0 d2I 0

d4I 0 d3


where f1, f2, d1, d2, d3, d4 ∈ R. The link is then

C ′ =


d2

1C d1d2C f1I + d1d3c + d1d4CI

(C ′1,2)T d2
2C d2d3c+ d2d4CT I

(C ′1,3)T (C ′2,3)T f2 + d2
3γ + 2d3d4〈c, I〉+ d2

4〈CI, I〉

 . (9.18)
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This special case corresponds to the limit of the general link when certain

constants go to zero or infinity. Using the Neumann series expansion,

Θ(C) = a0G0 + a2
0G0CG0 +O(a3

0).

Fix a2 = d2 and a3 = d3 and let a0 → 0 and a1, a4, a5, a6 →∞ such that

a0a1 → d1, a0a3a5 → d4, a4 + a0a1a3a5 → f1, and a6 + a0a
2
3a

2
5 → f2.

Then limit of the general case converges to the linear link C ′ = F +QCQT .

We make one further observation to clarify the relationship between the gen-

eral case and the linear case: the essential nonlinearity in the general case (9.17) is

manifested entirely in a0. That is, we can rewrite any element of the general case as

the composition of an element of the linear case and a special element of the general

case involving only a0. More explicitly, let F represent an arbitrary element of the

general case (9.17) with parameters ai. Then fix F0 to be a special case of (9.17) with

parameters a0
i where a0

1 = a0
2 = a0

3 = 1, a0
4 = a0

5 = a0
6 = 0, and a0

0 = a0. That is,

F0(C) =


a0G0Θ(C)C G0Θ(C)C G0Θ(C)c

CTΘ(C)G0 CTΘ(C)C + C CTΘ(C)c + c

cΘ(C)G0 cΘ(C)C + cT 〈Θ(C)c, c〉+ γ

 .

If we let F1 represents the linear link (9.18) with

d1 = a1, d2 = a2, d3 = a3, d4 = a0a3a5,

f1 = a4 + a0a1a3a5, and f2 = a6 + a0a
2
3a

2
5,

then we have

F1(F0(C)) = F(C)

for all tensors C ∈ T .
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CHAPTER 10

APPLICATIONS

Now that we can describe our links using the parameters ai or fi and di, we will

reset our notation and reuse the variables λi, µi, αi, ρi, and γi to define new elasticity

tensors, not necessarily the fixed tensors C0, C1, C2, B1, or B2.

10.1 Composite Made from Two Isotropic Materials

Let us apply the link to Hill’s exact relation regarding two isotropic materials with the

same shear modulus. Suppose we make a composite with two transversely isotropic

materials, C1 and C2. We can write these as

Ci =


Ci(λi, µi) 0 αiI2

0 ρiI2 0

αiI2 0 γi

 (10.1)

where Ci(λi, µi) represents the elasticity tensor of a two-dimensional isotropic material

with shear modulus 1
2
µi and bulk modulus 1

2
λi for i = 1, 2. The parameters above

relate to the standard engineering constants in Voigt notation in the following ways:

λi = Ci
11 + Ci

12, µi = 2Ci
66, ρi = 2Ci

44, γi = Ci
33, and αi =

√
2Ci

13.
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Alternately, [7] uses the following six constants and one relation to describe

transversely isotropic materials. The Young’s moduli in the longitudinal and trans-

verse directions are given by

Ei
L =

1

λi
(γiλi − α2

i )

and

Ei
T =

2µi(λiγi − α2
i )

(λi + µi)γi − α2
i

.

The Poisson ratio for loading on the transversal axis is

νiL =
αi√
2λi

while the Poisson ratio describing the orthogonal contraction within the transversal

plane due to tension applied in the transversal plane is

νiT =
(λi − µi)γi − α2

i

(λi + µi)γi − α2
i

.

Finally, the shear moduli in the longitudinal and transverse directions are simply

Gi
L =

1

2
ρi and Gi

T =
1

2
µi.

The relation indicating the dependence between these six constants is

Gi
T =

Ei
T

2(1 + νiT )
.
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Our linear link maps these transversely isotropic materials to two new trans-

versely isotropic materials given by

C ′i =


C′i(λ

′
i, µ
′
i) 0 α′iI2

0 ρ′iI2 0

α′iI2 0 γ′i



=


d2

1Ci(λi, µi) 0 (f1 + d1d3αi + d1d4λi)I2

0 d2
2ρiI2 0

(f1 + d1d3αi + d1d4λi)I2 0 f2 + d2
3γi + 2d3d4αi + d2

4λi

 .
We can always use the free parameters to set α′i = 0 so that the C ′i are block diagonal,

which allows us to take advantage of the following lemma.

Lemma 10.1: If C represents the elasticity tensor of a fiber-reinforced composite

and is block diagonal of the form

C =


C 0 0

0 C 0

0 0 γ


then its effective tensor is of the form

C∗ =


C∗ 0 0

0 C∗ 0

0 0 〈γ〉


where C∗ and C∗ represent the effective elasticity and conductivity tensors of a two-

dimensional composite with local elasticity tensor C and local conductivity tensor C

and the same microstructure as the original fiber-reinforced composite’s transversal

cross-section.
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Proof: Let u = (u1, u2, u3) = (u′, u3) represent a deformation. Then we can write

e(u) =


∂u1
∂x1

1
2
(∂u1
∂x2

+ ∂u2
∂x1

) 1
2
(∂u1
∂x3

+ ∂u3
∂x1

)

1
2
(∂u1
∂x2

+ ∂u2
∂x1

) ∂u2
∂x2

1
2
(∂u2
∂x3

+ ∂u3
∂x2

)

1
2
(∂u1
∂x3

+ ∂u3
∂x1

) 1
2
(∂u2
∂x3

+ ∂u3
∂x2

) ∂u3
∂x3


=

 e(u′) 1
2
( ∂u

′

∂x3
+∇′u3)

1
2
( ∂u

′

∂x3
+∇′u3)T ∂u3

∂x3

 ∈ Sym(R3)

and an arbitrary fixed matrix

ζ =

 ζ ′ ζ̄

ζ̄T
√

2ζ33

 ∈ Sym(R3).

We assume for fiber-reinforced composites that C is independent of x3. Let us now

suppose that a solution u exists to

∇ · C(e(u) + ζ) = 0 (10.2)

which is independent of x3 as well. Then (10.2) becomes

∇′ · (C(e(u′) + ζ ′)) = 0 (10.3)

∇′ ·
(

C

(
1

2
∇′u3 + ζ̄

))
= 0 (10.4)

where the top line is a vector equation while the bottom is a scalar equation. But

we know solutions u′ and u3 to (10.3) and (10.4) exist and are unique. Therefore the

unique solution u = (u′, u3) to (10.2) is x3-independent.

Since the effective tensor is defined

C∗ζ = 〈C(e(u) + ζ)〉
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for all ζ ∈ Sym(R3) and C is block diagonal, we have
C∗ζ ′ + C∗ζ̄ + c∗ζ33

C∗T ζ ′ + C∗ζ̄ + c∗ζ33

c∗T ζ ′ + c∗T ζ̄ + γ∗ζ33

 =


〈C(e(u′) + ζ ′)〉

〈C(1
2
∇′u3 + ζ̄)〉

〈γζ33〉


which implies C∗, c∗, and c∗ are all zero. Furthermore, the effective tensors C∗ and

C∗ are defined by the formulas

C∗ζ ′ = 〈C(e(u′) + ζ ′)〉

and

C∗ζ̄ =

〈
C

(
1

2
∇′u3 + ζ̄

)〉

for all ζ ′ ∈ Sym(R2) and all ζ̄ ∈ R2, while γ∗ = 〈γ〉. �

If µ1 = µ2 = µ, then µ′1 = µ′2 and we can apply Hill’s exact relation to the

two-dimensional elasticity block. Since we do not need to change this block or the

two-dimensional conductivity block, we may assume d1 = d2 = 1. Let us assume C1

and C2 are ordered such that λ1 > λ2. Then we can set

d4 = −α1 − α2

λ1 − λ2

and f1 = −α1 +
α1 − α2

λ1 − λ2

λ1

to ensure α′1 = α′2 = 0 and

f2 = 2
α1 − α2

λ1 − λ2

α2

to ensure that λ′i > 0 for i = 1, 2. Note that we can rewrite (1.1) as

1

λ∗ + µ
=

〈
1

λ+ µ

〉
.
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Combining Lemma 10.1 with the link and Hill’s exact relation on the two-

dimensional elasticity block we have effective tensors

(C ′)∗ =


C(λ∗, µ) 0 0

0 C∗ 0

0 0 〈γ′〉


and

C∗ =


C(λ∗, µ) 0 α∗I2

0 C∗ 0

α∗I2 0 γ∗


where

λ∗ =

〈
1

λ+ µ

〉−1

− µ,

α∗ = 〈α〉+
α1 − α2

λ1 − λ2

(λ∗ − 〈λ〉),

γ∗ = 〈γ〉+

(
α1 − α2

λ1 − λ2

)2

(λ∗ − 〈λ〉),

and C∗ is the effective two-dimensional conductivity tensor of the composite whose

local conductivity tensor is given by C and whose microstructure is the same as

the microstructure of the transversal plane of the original composite. This result

was found by Rosen [29] in the context of two-dimensional thermoelasticity where

C(λ∗, µ) is the effective two-dimensional elasticity tensor, α∗I2 is the effective thermal

expansion tensor, and γ∗ is the coefficient of specific heat.

10.2 Polycrystal Made from an Orthotropic Monocrystal

We can also apply the link to the case of a polycrystal made from an orthotropic

material. We define an orthotropic material to be one that can be rotated into an
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orientation in which the material is invariant to 180 degree flips about each of the

three coordinate axes. The tensor of such a material (rotated into the appropriate

position) is therefore invariant with respect to rotations in the group

Q =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 −1 0

0 0 −1

 ,

−1 0 0

0 1 0

0 0 −1

 ,

−1 0 0

0 −1 0

0 0 1


 .

A straightforward calculation shows us that Q-invariant tensors can be written in the

form

C =


C 0 c

0 C 0

c 0 γ


where C sends diagonal matrices to diagonal matrices and C and c are diagonal.

We would like to set the c′-block equal to zero so that we once again map C

to a block diagonal C ′. We may let d1 = d2 = d3 = 1 and fix d4 and f1 so that

c′ = c + f1I + d4CI = 0. (10.5)

This is possible if and only if c is a scalar multiple of the identity or I is not an

eigenvector of C. Since the linked tensor C ′ is now block diagonal, we may again

apply Lemma 10.1 to see that for a polycrystal made using C ′, the effective tensor

(C ′)∗ is block diagonal. For the polycrystal made using C we may then write

C∗ =


C∗ 0 c∗

0 C∗ 0

c∗ 0 γ∗


where if

CI =

 λ0 + υ0 0

0 λ0 − υ0

 and c =

 α0 + ζ0 0

0 α0 − ζ0





66

then

c∗ = α0I +
ζ0

υ0

(C∗I− λ0I) and γ∗0 = γ0 +
ζ2

0

υ2
0

(〈C∗I, I〉 − λ0). (10.6)

This result shown was shown by Hashin [14] for the case where C is isotropic and

generalized by Schulgasser [31], both in context of two-dimensional thermoelasticity.

In particular, if C sends scalar matrices to scalar matrices, i.e. if υ0 = 0, then

[15] tells us that C∗ does as well and λ∗ = λ0. In order to establish (10.5) we will

need c = α0I. In this case, the equations in (10.6) become

c∗ = α0I and γ∗0 = γ0. (10.7)

Furthermore, if the texture of the polycrystal is statistically isotropic, then, taking

advantage of (1.2) on the C-block, we have (10.7) and

C∗ = I
√

det C.

Of course this also holds for the special case when C itself is scalar. Tensors satisfying

all of these conditions, i.e. tensors such that

υ0 = ζ0 = 0 and C = ρ0I

represent materials that are tetragonal. Such materials have a fourfold rotational

symmetry about the transverse axis. The above then tells us that the effective tensor

of a fiber-reinforced polycrystalline composite made with one tetragonal material will

itself be tetragonal with

λ∗ = λ0, α
∗ = α0, ρ

∗ = ρ0, and γ∗ = γ0.
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CHAPTER 11

CONCLUSION

The general theory of exact relations gives us necessary algebraic conditions for exact

relations in many different contexts. However, finding all subspaces that satisfy these

conditions is a highly nontrivial task. Furthermore, fiber-reinforced elasticity rep-

resents an especially challenging context since three-dimensional elasticity provides

us with a relatively large space of tensors while the restriction of fiber-reinforced

geometry further increases the anticipated number of relations.

We are able to address this challenge by focusing on polycrystalline exact re-

lations and taking advantage of representation theory of SO(2). Since polycrystalline

exact relations correspond to SO(2)-invariant algebraic subspaces, we are able to de-

scribe these subspaces in terms of their decompositions into irreps. We are then able

to systematically find all SO(2)-invariant algebraic subspaces and hence all polycrys-

talline exact relations. We also use certain automorphisms Φ to describe the infinite

list of all polycrystalline exact relations in terms of finitely many equivalence classes

mod Φ.

These same automorphisms, Φ, correspond to the algebraic representations of

links, F , that map one exact relation to another. These links are parameterized by

seven real parameters, one of which represents the nonlinear part of the link while the

remaining six comprise the linear portion. In particular we apply these links to obtain
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information about composites made from two transversely isotropic materials and

polycrystalline composites made from one orthotropic material. Finally, we observe

that we can use this link to map two general elasticity tensors to a uniform field

relation.
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APPENDIX A

COMPLETE LIST OF ALGEBRAIC SUBSPACES
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A.1 Overview of the List

As discussed in chapter 3, for each algebra we will make note of simple choices for

S0 satisfying (3.6). If we write B1Γ̄BT
1 = K′0(λ̃) + K0(µ̃) + N0(ρ̃), then each choice

of S0 can be described in terms of this block structure. We will also make note of

cases where volume fractions exist, i.e. where Π∗
A2 6= Π, and cases that correspond to

uniform field relations, i.e., when an algebra is an annihilator of an invariant subspace

of Sym(R3).

A.2 Algebraic Subspaces within ΠA

First note that for all algebras Π ⊂ ΠA, we have that Π∗
A2 = Π. Intersecting with K

(clearly an algebra) we have

K4 S0 = K0(µ̃)

K0 ⊕ K4 = Ann(Y ′0 ⊕ Y0 ⊕ Y1) S0 = 0

Intersecting with N (also an algebra) we have

N2 S0 = N0(ρ̃)

N = N0 ⊕N2 = Ann(Y ′0 ⊕ Y2 ⊕ Y0) S0 = 0

Since K∗AN = {0}, we see that given Π1 ⊂ (K0 ⊕ K4) and Π2 ⊂ (N0 ⊕N2), Π1 ⊕ Π2

is an algebra. Therefore, combining the above we have:

K4 ⊕N2 S0 = K0(µ̃) + N0(ρ̃)

K0 ⊕ K4 ⊕N2 S0 = N0(ρ̃)

K4 ⊕N0 ⊕N2 S0 = K0(µ̃)

K0 ⊕ K4 ⊕N0 ⊕N2 S0 = 0
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If we have either of the irreps from L, we know that we must add irreps from K and

N:

K4 ⊕N2 ⊕ L1 S0 = K0(µ̃) + N0(ρ̃)

K4 ⊕N2 ⊕ L3 S0 = K0(µ̃) + N0(ρ̃)

If we have L1⊕L3 or if we add K0 or N0 to either of the above, we immediately have

ΠA = Ann(Y ′0 ⊕ Y0) S0 = 0

These are the only algebraic subspaces possible within ΠA.

A.3 Algebraic Subspaces within ΠB

There are, of course, infinitely many algebraic subspaces within ΠB since we have

three infinite families of minimal irreps given in (8.7), (8.8), and (8.9). However, we

find that if we group these algebras by equivalence class with respect to the family of

automorphisms of the form Φ±ν,τ (K) = X±(ν, τ)K(X±(ν, τ))T where X±(ν, τ) is as in

(7.3), then we can represent each infinite family by a finite number of representatives

of these equivalence classes.

Lemma A.1: The equivalence classes of irreps of the form

Z = {Z(δ) : δ ∈ R} = Πλ,α,γ
0 = {K′0(λδ) + M0(αδ) + j0(γδ) : δ ∈ R}
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are

K′0 = Ann(Y2 ⊕ Y1 ⊕ Y0) S0 = 0 Π∗
A2 = 0

M0 S0 = K′0(λ̃) Π∗
A2 = 0

j0 = Ann(Y ′0 ⊕ Y2 ⊕ Y1) S0 = 0 Π∗
A2 = 0

{K′0(λ) + j0(λ) : λ ∈ R} S0 = 0 Π∗
A2 = 0

{K′0(λ) + j0(−λ) : λ ∈ R} S0 = 0 Π∗
A2 = 0

Proof: First observe that

Φ±ν,τ (Z(δ)) = K′0(λδ) + M0((λν + ατ)δ) + j0((λν2 + 2αντ + γτ 2)δ). (A.1)

Therefore if λ = α = 0, i.e., if Z = j0, then Z forms its own equivalence class.

Similarly, if λ = 0 but α 6= 0, then Z is a member of the equivalence class of M0.

Now assume λ 6= 0. Let the following two coefficients from (A.1) be named

α′ = λν + ατ

γ′ = λν2 + 2αντ + γτ 2.

Solving for τ yields

τ 2 =
(α′)2 − λγ′

α2 − λγ
.

Since we need τ 2 ≥ 0, we see we have three more equivalence classes which include

all the remaining algebras of this type:

• {Πλ,α,γ
0 : λγ = α2} = {Πλ,α,γ

0 : Πλ,α,γ
0
∼= K0}

• {Πλ,α,γ
0 : λγ > α2} = {Πλ,α,γ

0 : Πλ,α,γ
0
∼= {K′0(λ) + j0(λ) : λ ∈ R}}

• {Πλ,α,γ
0 : λγ < α2} = {Πλ,α,γ

0 : Πλ,α,γ
0
∼= {K′0(λ) + j0(−λ) : λ ∈ R}} �
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Note also that

Φ±β,τ (K
′
0) = Ann(Y2 ⊕ Y1 ⊕ {Y ′0(−βω) + Y0(ω) : ω ∈ R}

for each β ∈ R.

Since (K′0 ⊕M0 ⊕ J)∗
A2 = {0}, the remaining algebras composed entirely of

weight zero irreps are all possible two-dimensional combinations as well as the three

dimensional algebra of all three irreps:

M0 ⊕ {K′0(λ) + j0(−λ) : λ ∈ R} S0 = K′0(λ̃) Π∗
A2 = 0

M0 ⊕ {K′0(λ) + j0(λ) : λ ∈ R} S0 = K′0(λ̃) Π∗
A2 = 0

M0 ⊕ J S0 = 0 Π∗
A2 = 0

K′0 ⊕M0 S0 = K′0(λ̃) Π∗
A2 = 0

K′0 ⊕ J S0 = 0 Π∗
A2 = 0

K′0 ⊕M0 ⊕ J = Ann(Y2 ⊕ Y1) S0 = 0 Π∗
A2 = 0

Lemma A.2: Algebras of the form

Πη1,η2,η3
1 = {L′1(η1d) + p1((η2 + iη3)d) : d ∈ C} ⊕ Π

η21 ,η1η2,η
2
2−η33

0 ⊕ Π0,η1η3,2η2η3
0

for some η1, η2, η3 ∈ R where Πλ,α,γ
0 is as defined in (8.7a) are in one of the following

equivalence classes:

K′0 ⊕ L′1 S0 = K′0(λ̃) Π∗
A2 = K′0

P⊕ J S0 = 0 Π∗
A2 = J

Π1,0,1
1 S0 = K′0(λ̃) + N0(ρ̃) Π∗

A2 = Π1,0,−1
0
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Proof: Since

Φ±ν,τ (K
′
0(λ) + L′1(b)) = K′0(λ) + M0(νλ) + j0(ν2λ) + L′1(±b) + p1(±νb)

and

Φ±ν,τ (p1(h) + j0(γ)) = p1(±τh) + j0(τ 2γ)

we see that all algebras of this type that have either η1 = 0 or η3 = 0 are equivalent

to one of the above two. Now suppose η1, η3 6= 0. Then the algebra contains a two

dimensional weight zero subspace and therefore is clearly not equivalent to either of

the two above. Since η1 6= 0 we may fix η1 = 1, i.e., we are absorbing it into b ∈ C.

Then, since:

Φ±ν,τ (L′1(b) + p1(ib) + M0(α) + K′0(λ) + j0(−λ)) =

L′1(±b) + p1(±νb± τib) + K′0(λ) + M0(νλ+ τα) + j0(ν2λ+ 2ντα− τ 2γ)

we see that if ν = η2 and τ = η3, we can map this algebra to any of the remaining

algebras of this type. �

Since (L′1 + p1)∗A(K′0 + M0 + J) = 0, the remaining algebras containing only

weight zero and weight one irreps are again simply all distinct combinations of those

we have already seen:

Weight zero 2D ⊕ weight one 1D

K′0 ⊕ L′1 ⊕M0 S0 = K′0(λ̃) Π∗
A2 = K′0

K′0 ⊕ L′1 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0

P⊕M0 ⊕ J S0 = 0 Π∗
A2 = J

K′0 ⊕ P⊕ J S0 = 0 Π∗
A2 = J
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Weight zero 3D ⊕ weight one 1D

K′0 ⊕ L′1 ⊕M0 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0

K′0 ⊕M0 ⊕ P⊕ J S0 = 0 Π∗
A2 = J

K′0 ⊕ {L′1(b) + p1(ib) : b ∈ C} ⊕M0 ⊕ J S0 = K′0(λ̃) Π∗
A2 = M0 ⊕ Π1,0,−1

0

Weight zero 3D ⊕ weight one 2D

K′0 ⊕ L′1 ⊕M0 ⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕M0 ⊕ J

Lemma A.3: Algebras of the form

{K2(η1g) + M2(η2g) : g ∈ C} ⊕ {K′0(η2
1δ) + M0(η1η2δ) + j0(η2

2δ) : δ ∈ R}

for some (η1, η2) ∈ R2 are equivalent to one of the following:

K′0 ⊕ K2 S0 = K′0(λ̃)

M2 ⊕ J S0 = 0 Π∗
A2 = J

Proof: We know that

Φ±ν,τ (K
′
0(λ) + K2(u)) = K′0(λ) + M0(λν) + j0(λν2) + K2(u) + M2(νu)

which shows that the first representative, K′0⊕K2, is equivalent to all algebras of the

general type except for those where η1 = 0, while

Φ±ν,τ (M2(g) + j0(γ)) = M2(νg) + j0(ν2γ)

shows that M2 ⊕ J is clearly its own equivalence class. �
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We can now list the remaining algebras containing only weight zero and weight

two irreps. Since J is the set of annihilators in S while K2∗AM0 = M0, M2∗AK′0 = M0,

and M2∗AM0 = J, the algebras containing only weight zero and weight two irreps

are:

K′0 ⊕ K2 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2

K′0 ⊕ K2 ⊕M0 S0 = K′0(λ̃)

M⊕ J S0 = 0 Π∗
A2 = J

K′0 ⊕ K2 ⊕M0 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕M0

K′0 ⊕M⊕ J S0 = 0 Π∗
A2 = M⊕ J

K′0 ⊕ K2 ⊕M⊕ J S0 = 0

Now we combine weight one and weight two irreps. Since K2∗AL′1 = L′1,

M2∗Ap1 = {0}, M2∗AL′1 = p1, and K2∗Ap1 = {0} we have the following algebras:

Weight zero 1D ⊕ weight one 1D ⊕ weight two 1D

K′0 ⊕ K2 ⊕ L′1 S0 = K′0(λ̃)

M2 ⊕ P⊕ J S0 = 0 Π∗
A2 = J
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Weight zero 2D ⊕ weight one 1D ⊕ weight two 1D

K′0 ⊕ K2 ⊕ L′1 ⊕M0 S0 = K′0(λ̃)

K′0 ⊕ K2 ⊕ L′1 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕ L′1

K′0 ⊕ K2 ⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕ J

M⊕ P⊕ J S0 = 0 Π∗
A2 = J

Weight zero 3D ⊕ weight one 1D ⊕ weight two 1D

K′0 ⊕ K2 ⊕ L′1 ⊕M0 ⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕ L′1 ⊕M0

K′0 ⊕ K2 ⊕M0 ⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕M0 ⊕ J

K′0 ⊕M⊕ P⊕ J S0 = 0 Π∗
A2 = M0 ⊕ J

Weight zero 3D ⊕ weight one 1D ⊕ weight two 2D

K′0 ⊕ K2 ⊕M⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕ K2 ⊕M⊕ J

Weight zero 3D ⊕ weight one 2D ⊕ weight two 1D

K2 ⊕ K′0 ⊕ L′1 ⊕M0 ⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K2 ⊕ K′0 ⊕ L′1 ⊕M0 ⊕ J

K′0 ⊕ L′1 ⊕M⊕ P⊕ J S0 = K′0(λ̃) Π∗
A2 = K′0 ⊕M0 ⊕ J

Weight zero 3D ⊕ weight one 2D ⊕ weight two 2D

ΠB S0 = K′0(λ̃)
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A.4 Algebraic Subspaces Intersecting both ΠA and ΠB

In this subsection we will list all algebras, Π such that Π∩ΠA 6= {0} and Π∩ΠB 6= {0}.

This process is simplified by the fact that in many cases when we add an algebraic

subspace of ΠA to an algebraic subspace of ΠB, we find that we must include all of

ΠA to obtain a new algebraically closed subspace. Let us begin by adding K4 to ΠB.

Since K′0∗AK4 = K2 and K2∗AK4 ⊂ K0 ⊕ K2 ⊕ K4, there are no additional algebras

contained within K beyond

K = Ann(Y1 ⊕ Y0) S0 = 0

Furthermore, for each β ∈ R,

Φ±β,τ (K) = Ann(Y1 ⊕ {Y ′0(−βω) + Y0(ω) : ω ∈ R}).

Since K4∗AL′1 ⊂ L1⊕L3, there are no algebras containing K4 and L′1 that do not

contain all of ΠA. We will return to these later. Observing that (K0⊕K4)∗AM = M2,

the algebras left in K⊕M⊕ J are

K4 ⊕M2 ⊕ J S0 = K0(µ̃)

K4 ⊕M⊕ J S0 = K0(µ̃) Π∗
A2 = K4 ⊕M2 ⊕ J

K0 ⊕ K4 ⊕M2 ⊕ J = Ann(Y ′0 ⊕ Y1) S0 = 0

K0 ⊕ K4 ⊕M⊕ J S0 = 0 Π∗
A2 = K0 ⊕ K4 ⊕M2 ⊕ J

K⊕M⊕ J = Ann(Y1) S0 = 0

Because (N ⊕ P)∗A(K ⊕ M ⊕ J) = {0} while N∗AP = P and N∗AL′1 = L′1, it is

convenient to group together the remaining algebras in K ⊕ L′1 ⊕ N ⊕M ⊕ P ⊕ J as

follows.
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First, with two exceptions stated below, given Π1 ⊂ ΠB and Π2 ⊂ N, we see

that Π = Π1⊕Π2 is an algebra. For Π1 ⊂ K⊕M⊕J, the fact that (K⊕M⊕J)∗AN = 0

makes this immediate. If p1 ⊂ Π1 or L′1 ⊂ Π1, we are also fine thanks to the following

products:

N2(f)∗AL′1(b) = L′1(
1

2
bf z̄) (A.2)

N2(f)∗Ap1(h) = p1(
1

2
fhz̄) (A.3)

N0(ρ)∗AL′1(b) = L′1(
1

2
ρb̄z) (A.4)

N0(ρ)∗Ap1(h) = p1(
1

2
ρh̄z) (A.5)

Our only difficulty comes when Π1 is either Π1,0,1
1 or (Π1,0,1

1 ⊕K′0⊕M0⊕J) = (Π1,0,1
1 ⊕J)

and Π2 = N. In this case, due to (A.4) and (A.5), we find that Π1 ⊕ Π2 is not

algebraically closed and we must instead choose a larger subspace of ΠB, i.e., one

containing L′1 ⊕ p1.

Having already written the complete lists for both ΠB and N, we will not list

all possible combinations here, but we will make a few observations. Whether or

not Π∗
A2 = Π depends on whether this holds for Π1, further keeping in mind that

L′1∗AN = L′1 and p1∗AN = p1. Furthermore, the value of S0 depends independently

on Π1 and Π2. That is, S0 = K′0(λ̃) + N0(µ̃) will always work, but if S0 = 0 is

admissible for Π1, we may let the K′0 component of S0 be zero for Π. Similarly, if

S0 = 0 is admissible for Π2, then we may let the N0 component be zero. Finally, the

algebras intersecting ΠB and N that correspond to uniform field relations are

K′0 ⊕ L′1 ⊕ N⊕M0 ⊕ P⊕ J = Ann(Y2) S0 = 0

N⊕ P⊕ J = Ann(Y ′0 ⊕ Y2) S0 = 0

K′0 ⊕ L′1 ⊕ N = Ann(Y2 ⊕ Y0) S0 = 0
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and, for each β ∈ R,

Φ±β,τ (K
′
0 ⊕ L′1 ⊕ N) = Ann(Y2 ⊕ {Y ′0(−βω) + Y0(ω) : ω ∈ R}).

Second, given Π1 ⊂ (K ⊕ M ⊕ J) and Π2 ⊂ (N ⊕ P ⊕ J), Π = Π1 ⊕ Π2 is

an algebra because (K ⊕ M ⊕ J)∗A(N ⊕ P ⊕ J) = {0}. We assume that K4 ⊂ Π1

since otherwise we are covered by the previous case. The important observation here

is that not every algebra in M ⊕ J may be combined in a direct sum with K4. We

can only use the algebras identified in K ⊕M ⊕ J above. Again, we will not list all

such combinations Π = Π1 ⊕ Π2 but will make relevant comments regarding Π∗
A2

and S0. Since (K ⊕M ⊕ J)∗A(N ⊕ P ⊕ J) = {0}, whether or not Π∗
A2 = Π depends

independently on whether this holds for Π1 and Π2. Also, the value of S0 again

depends independently on the values needed for Π1 and Π2. None of these algebras

correspond to annihilators of invariant subspaces of Sym(R3).

Now let us consider separately adding L1 and L3 to algebraic subspaces of

ΠB. Since K′0∗A(L1 ⊕ L3) = L′1 and L′1∗A(L1 ⊕ L3) ⊂ K2 ⊕ N we quickly realize that

adding K′0 or L′1 to L1 or L3 leads us to include all of ΠA. So instead we consider first

M⊕ P⊕ J. Observe that M∗A(L1 ⊕L3) = P and P∗A(L1 ⊕L3) = M2. Therefore we
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are left with the following algebras:

K4 ⊕N2 ⊕ L1 ⊕ J S0 = K0(µ̃) + N0(ρ̃) Π∗
A2 = Π \ J

K4 ⊕N2 ⊕ L3 ⊕ J S0 = K0(µ̃) + N0(ρ̃) Π∗
A2 = Π \ J

K4 ⊕N2 ⊕ L1 ⊕M2 ⊕ P⊕ J S0 = K0(µ̃) + N0(ρ̃)

K4 ⊕N2 ⊕ L3 ⊕M2 ⊕ P⊕ J S0 = K0(µ̃) + N0(ρ̃)

K4 ⊕N2 ⊕ L1 ⊕M⊕ P⊕ J S0 = K0(µ̃) + N0(ρ̃) Π∗
A2 = Π \M0

K4 ⊕N2 ⊕ L3 ⊕M⊕ P⊕ J S0 = K0(µ̃) + N0(ρ̃) Π∗
A2 = Π \M0

What remains are algebras including all of ΠA and some algebraic subspace of

ΠB. Noting that K′0∗AM2 = M0 we have

ΠA ⊕ J S0 = 0 Π∗
A2 = ΠA

ΠA ⊕ K′0 ⊕ K2 ⊕ L′1 = K⊕ L⊕ N = Ann(Y0) S0 = 0

Furthermore, for each β ∈ R,

Φ±β,τ (K⊕ L⊕ N) = Ann({Y ′0(−βω) + Y0(ω) : ω ∈ R}).

Finally, we have

ΠA ⊕M2 ⊕ P⊕ J = Ann(Y ′0) S0 = 0

ΠA ⊕ K′0 ⊕ K2 ⊕ L′1 ⊕ J = K⊕ L⊕ N⊕ J S0 = 0 Π∗
A2 = Π \ J

ΠA ⊕M⊕ P⊕ J S0 = 0 Π∗
A2 = Π \M0

S S0 = 0
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APPENDIX B

MULTIPLICATION TABLE
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B.2 Complete Multiplication Table

First products within each block are given. Products between blocks follow.

J block

J∗AS = 0 (B.1)

K block

K′0(λ)∗
A2 = 0 (B.2)

K2(u)∗
A2 = K′0(Re(u2w̄)) + K2(uRe(uz̄)) (B.3)

K0(µ)∗
A2 = K4(wµ2) (B.4)

K4(v)∗
A2 = K4(w̄v2) (B.5)

K′0(λ) ∗A K2(u) = K′0(λRe(z̄u)) (B.6)

K′0(λ)∗AK0(µ) = K2(
1

2
λµz) (B.7)

K′0(λ)∗AK4(v) = K2(
1

2
λvz̄) (B.8)

K2(u)∗AK0(µ) =
1

2
[K2(µūw) + K0(µRe(uz̄)) + K4(µuz) (B.9)

K2(u)∗AK4(v) =
1

2
[K2(uvw̄) + K0(Re(uv̄z)) + K4(uvz̄)] (B.10)

K0(µ)∗AK4(v) = K0(Re(µvw̄)) (B.11)

L block

L′1(b)∗
A2 = K′0(Re(zb̄2)) (B.12)

L1(c)∗
A2 = K4(zc2) + N2(wc̄2) (B.13)

L3(d)∗
A2 = K4(z̄d2) + N2(w̄d2) (B.14)

L′1(b) ∗A L1(c) =
1

2
[K2(b̄cz) + N0(Re(b̄c̄z)) + N2(bRe(cz̄))] (B.15)

L′1(b)∗AL3(d) =
1

2
[K2(bdz̄) + N0(Re(bd̄z) + N2(bdz̄)] (B.16)

L1(c) ∗A L3(d) = K0(Re(z̄cd)) + N0(Re(wc̄d̄)) (B.17)
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M block

M0(α)∗
A2 = 0 (B.18)

M2(g)∗
A2 = j0(Re(wḡ2)) (B.19)

M0(α) ∗A M2(g) = j0(αRe(z̄g)) (B.20)

N block

N0(ρ)∗
A2 = N2(ρ2z) (B.21)

N2(f)∗
A2 = N2(f 2z̄) (B.22)

N0(ρ)∗AN2(f) = N0(Re(z̄ρf)) (B.23)

P block

p1(h)∗
A2 = j0(Re(zh̄2)) (B.24)

Products with K

K∗AN = K∗AP = 0 (B.25)

K′0(λ)∗AL′1(b) = 0 (B.26)

K′0(λ)∗AL1(c) = L′1(
1

2
λc̄z) (B.27)

K′0(λ)∗AL3(d) = L′1(
1

2
λdz̄) (B.28)

K′0(λ)∗AM0(α) = 0 (B.29)

K′0(λ) ∗A M2(g) = M0(
1

2
λRe(z̄g)) (B.30)

K2(u) ∗A L′1(b) = L′1(
1

2
bRe(z̄u)) (B.31)

K2(u)∗AL1(c) = L′1(
1

2
c̄ūw) + L1(

1

4
cuz̄) + L3(

1

4
c̄uz) (B.32)

K2(u)∗AL3(d) = L′1(
1

2
udw̄) + L1(

1

4
ud̄z) + L3(

1

4
udz̄) (B.33)

K2(u) ∗A M0(α) = M0(
1

2
Re(αuz̄)) (B.34)

K2(u)∗AM2(g) =
1

2
[M0(Re(ugw̄)) + M2(uRe(gz̄))] (B.35)
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K0(µ)∗AL′1(b) = L1(
1

4
µb̄z) + L3(

1

4
µbz) (B.36)

K0(µ)∗AL1(c) = L3(
1

2
µc̄w) (B.37)

K0(µ)∗AL3(d) = L1(
1

2
µd̄w) (B.38)

K0(µ) ∗A M0(α) = M2(
1

2
αµz) (B.39)

K0(µ)∗AM2(g) = M2(
1

2
µḡw) (B.40)

K4(v)∗AL′1(b) = L1(
1

4
b̄vz̄) + L3(

1

4
bvz̄) (B.41)

K4(v)∗AL1(c) = L1(
1

2
cvw̄) (B.42)

K4(v)∗AL3(d) = L3(
1

2
dvw̄) (B.43)

K4(v)∗AM0(α) = M2(
1

2
αvz̄) (B.44)

K4(v)∗AM2(g) = M2(
1

2
gvw̄) (B.45)

Products with L

L′1(b)∗AN0(ρ) = L′1(
1

2
ρb̄z) (B.46)

L′1(b)∗AN2(f) = L′1(
1

2
bf z̄) (B.47)

L′1(b)∗AM0(α) = 0 (B.48)

L′1(b) ∗A M2(g) = p1(
1

2
bRe(z̄g)) (B.49)

L′1(b) ∗A p1(h) = M0(
1

2
Re(bhz̄)) (B.50)

L1(c)∗AN0(ρ) = L3(
1

2
ρcz) (B.51)

L1(c)∗AN2(f) = L1(
1

2
cf̄z) (B.52)

L1(c)∗AM0(α) = p1(
1

2
αc̄z) (B.53)

L1(d)∗AM2(g) = p1(
1

2
c̄ḡw) (B.54)

L1(c)∗Ap1(h) = M2(
1

2
ch̄z) (B.55)
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L3(d)∗AN0(ρ) = L1(
1

2
ρdz̄) (B.56)

L3(d)∗AN2(f) = L3(
1

2
dfz̄) (B.57)

L3(d)∗AM0(α) = p1(
1

2
αdz̄) (B.58)

L3(d)∗AM2(g) = p1(
1

2
dgw̄) (B.59)

L3(d) ∗A p1(h) = M2(
1

2
z̄dh) (B.60)

Products with M

M∗AN = M∗AP = 0 (B.61)

Products with N

N0(ρ)∗Ap1(h) = p1(
1

2
ρh̄z) (B.62)

N2(f)∗Ap1(h) = p1(
1

2
fhz̄) (B.63)


