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ABSTRACT

ON SOME DEGENERATE BOUNDARY VALUE PROBLEMS

Cristian G. Guriţă

DOCTOR OF PHILOSOPHY

Temple University, August, 2002

Professor Gerardo Mendoza, Chair

This thesis studies a boundary value problem for an operator which is elliptic inside

the domain but fails to be elliptic on the boundary. The classical (elliptic) boundary

value problems, posed for elliptic operators, are by now well understood. In solving

such an elliptic problem it is essential that the operators involved are elliptic on a

domain that is larger than the original one. Failure of ellipticity on the boundary

causes the degeneracy of the boundary value problem.

The operator studied here is constructed as a sum of squares of vector fields. It

fails to be elliptic on the boundary in a relatively mild way, in just one direction of the

cotangent bundle and the characteristic set is symplectic. As a result the existence

of parametrices for this operator can be studied using some classes of symbols that

make a distinction between this direction of vanishing and the transversal directions.

The next step is to rewrite the classical compatibility conditions between the

equation inside the domain and the equations on the boundary in terms of these new

classes of operators used.

Since the operator used here is just a model for a larger class of operators (the

immediate generalization being an operator constructed with the same vector fields

but using a positive definite matrix instead of the identity matrix), the method pre-

sented in this thesis promises to be applicable, after further development, to a larger

class of boundary value problems.
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CHAPTER 1

INTRODUCTION. STATEMENT

OF THE PROBLEM

1.1 The Problem

Suppose that in R2n+2, with the variables denoted by x = (x0, . . . , x2n+1) we are

given the family D of 2n + 2 vector fields:

L0 = x2n+1∂x0

Lj = ∂xj
+

1

2
xn+j∂x0

Ln+j = ∂xn+j
− 1

2
xj∂x0

L2n+1 = ∂x2n+1

(1.1)

for j = 1, . . . , n. Let

L =
2n+1∑
j=0

L2
j . (1.2)

The main purpose of this thesis is to examine a degenerate Boundary Value Problem

of the type: Lu = f in R2n+2
+ = {x ∈ R2n+2 : x2n+1 > 0}

Bγu = g on R2n+1 = {x2n+1 = 0})
(1.3)
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namely to find out which boundary conditions allow us to find parametrices for

the problem near the boundary. Here γu = (γ0u, γ1u) where γ0u(x0, . . . , x2n) =

u(x0, . . . , x2n, 0) and γ1u(x0, . . . , x2n) = −i∂x2n+1u(x0, . . . , x2n, 0). B is a 1× 2 matrix

of pseudodifferential operators on which we want to state conditions that will make

the boundary value problem solvable.

This problem is well understood when instead of the operator L we use an elliptic

operator P on a bounded domain with smooth boundary. In this elliptic case the

conditions that insure that a boundary value problem is Fredholm are known as the

Shapiro-Lopatinski conditions. We aim at studying similar conditions for our non-

elliptic operator.

The span Sx of the vector fields in (1.1) at any x with x2n+1 6= 0 is the full tangent

space at x, Tx(R2n+2). Since the coefficient of ∂x0 in L0 vanishes on {x2n+1} = 0, the

vector field ∂x0 is missing over the set {x2n+1} = 0. However, if we compute the

brackets, we get that all of them are zero, except

[L0, L2n+1] = −∂x0

[Lj, Ln+j] = −∂x0

(1.4)

so one can obtain ∂x0 , including over {x2n+1 = 0}, by using first order brackets instead

of linear combinations of the given vector fields. Hence on the whole space R2n+2 these

vector fields satisfy Hörmander’s step two bracket condition.

If x ∈ ∂R2n+2
+ = {x2n+1 = 0}, then the part of Sx tangent to {x2n+1 = 0} is

spanned by the family D′, consisting of L1, . . . , L2n:

Lj = ∂xj
+

1

2
xn+j∂x0

Ln+j = ∂xn+j
− 1

2
xj∂x0

(1.5)

for j = 1, . . . , n. Note again that these vector fields satisfy the step 2 condition.
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1.2 The Operator L

Using the given 2n + 2 vector fields (1.1) we construct, in R2n+2 the operator

L =
2n+1∑
j=0

L2
j (1.6)

while using the 2n vector fields defined over the boundary we define a second operator,

acting only on the boundary:

L′ =
2n∑

j=1

L2
j . (1.7)

Our purpose will be to use these operators in a similar way the Laplacian operator

∆ is used in the classical theory, like defining Sobolev spaces (non-isotropic in this

case) in our domain and also over the boundary, obtaining trace theorems, inverting

operators, with the final purpose of “solving” our degenerate boundary value problem.

As opposed to the regular Laplacian ∆, our operators L and L′ are not elliptic.

We will investigate the failure of these operators to being elliptic. Due to the nature

of the vector fields, in the given coordinates, the total symbol of L is its principal

symbol, namely

σ(L) = −(x2n+1ξ0)
2 −

n∑
j=1

(ξj +
1

2
xn+jξ0)

2 −
n∑

j=1

(ξn+j −
1

2
xjξ0)

2 − ξ2
2n+1. (1.8)

The characteristic set of this operator is obtained by solving the equations:

x2n+1ξ0 = 0

ξj +
1

2
xn+jξ0 = 0, j = 1, . . . , n

ξn+j −
1

2
xjξ0 = 0, j = 1, . . . , n

ξ2n+1 = 0

(1.9)

We see that over the points outside the boundary, i.e. over x2n+1 6= 0, L has no

characteristic set. Over the set x2n+1 = 0, though, we obtain as characteristic set the

one-dimensional sub-bundle of the cotangent bundle

{(x0, . . . , x2n, 0; ξ0,−
1

2
xn+1ξ0, . . . ,−

1

2
x2nξ0,

1

2
x1ξ0, . . . ,

1

2
xnξ0, 0)} (1.10)
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over each point (x0, . . . , x2n, 0), where ξ0 is an arbitrary real parameter, i.e. the

characteristic set is spanned by the 1-form

Θ = dx0 +
1

2

n∑
j=1

(xjdxn+j − xn+jdxj). (1.11)

By using the embedding given by

R2n+1 i−→ R2n+2

(x0, . . . , x2n)
i−→ (x0, . . . , x2n, 0)

(1.12)

we get the map

i∗ : T ∗(R2n+2) → T ∗(R2n+1) (1.13)

which restricted to Σ is bijective onto Σ′, the characteristic set of L′.
The natural setup (see Folland and Stein [10] or Beals and Greiner [1]) for problems

involving these vector fields, due to their behavior on the boundary, is the Heisenberg

group. We will then consider our R2n+1 to be in fact Hn, the Heisenberg group and

R2n+2 to be Hn × R. In this situation we have powerful instruments, given by the

non-isotropic version of the Fourier transform.

But before getting there we will first see the symplectic character of the setup.

Recall that a symplectic manifold is a manifold with a symplectic form on it, i.e. a

closed nondegenerate 2-form (traditionally denoted by ω). The prime example of

a symplectic manifold is the cotangent bundle of an arbitrary manifold M with the

canonical symplectic form ω =
∑

dxj∧dξj. The characteristic set Σ of L considered as

a 2n+2 dimensional submanifold of T ∗(R2n+2) is a symplectic manifold, the symplectic

form being the pullback to Σ of the canonical symplectic form on T ∗(R2n+2). Its

expression is:

i∗ω = Θ ∧ dξ0 − ξ0

n∑
j=1

dxj ∧ dxn+j. (1.14)

It is easy to see that i∗ω is closed and nondegenerate, hence that it is a symplectic

form on Σ.

Similarly, the characteristic set Σ′ of L′ considered as a submanifold of T ∗(R2n+1)

is a symplectic manifold. The symplectic form in this case has the same expression,
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this being explained by the identification of the two characteristic sets mentioned in

the previous paragraphs.
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CHAPTER 2

THE CLASSICAL ELLIPTIC

PROBLEM

2.1 The Classical Elliptic Problem

We will start with a description of a classical elliptic boundary value problem,

pointing out the differences in our degenerate case and the ideas we use in order to

overcome these supplementary difficulties.

The classical boundary value problem is:P (x, Dx)u = f in Ω

B(x, Dx′)γu = g in ∂Ω.
(2.1)

In this classical problem, P is a globally defined elliptic differential operator, B

is a µ × m matrix of pseudo-differential operators (Bj,k)j,k, with j = 0, . . . , µ − 1

and k = 0, . . . ,m − 1, defined only over the boundary. γ is the operator of taking

traces to the boundary of functions or distributions defined in Ω along a vector field ν

transversal to the boundary, defined in a neighborhood of the boundary. It is written

as a column matrix γ = (γju)j, j = 0, . . . ,m − 1 and its components are defined by

γju =
[(

1
i
ν
)j

u
]
|∂Ω. The orders of the operators Bj,k are dj − k.

The difficulty in solving a boundary value problem resides in the fact that the

equation in Ω and the equation on ∂Ω are of essentially different natures (the sets on
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which they reside are Ω and ∂Ω, respectively) and cannot be paired together naturally,

in order to find compatibility conditions between them. One of the methods typically

used (see [8]) is to “sweep” the interior equation to the boundary, and pair this new

equation with the existing boundary conditions; this pairing now becomes a pairing

between equations of the same nature, so it is much more natural.

First, one should construct a (global) parametrix Q of P . This is long but not

technically difficult if P is elliptic, and the parametrix thus obtained is a classi-

cal pseudo-differential operator. We will be able to construct parametrices in our

non-elliptic case by using a special kind of pseudo-differential operators in the class

Ψm,k(R2n+2, Σ), so defined that they take into account the non-ellipticity along the

characteristic set Σ ⊂ T ∗(R2n+2).

Next, one constructs P̃ , the “trace to the boundary” of the operator P . For a

function u ∈ C∞(Ω) we define u0 to be its extension by 0 outside the set Ω. P being

defined in a neighborhood of Ω̄ one can define an operator P̃ acting over the boundary

by:

P̃ γu = P (u0)− (Pu)0. (2.2)

where γu is the trace of u to the boundary of Ω along a vector field ν transversal to

the boundary.

Now, if we apply Q (a globally defined classical pseudo-differential operator, the

parametrix of P ) on the left and restrict to Ω we obtain:

u = (QP̃γu)|Ω + (Q(f 0))|Ω + smooth. (2.3)

We can apply the same technique in our degenerate case; only the class of operators

we will be working with will be different.

By taking traces in this equation, one obtains (disregarding the smoothing part):

γu = γ[(QP̃γu)|Ω] + γ[(Q(f 0))|Ω]. (2.4)

In the classical case one would consider now the Calderón projector C, a pseudo-

differential operator (defined on the boundary, acting on m-tuples of functions on

the boundary, these being essentially the traces to the boundary of functions in Ω),
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defined by

Cv = γ[(QP̃v)|Ω]. (2.5)

The initial equation in Ω, (Pu = f) is readily transformed into the equation on the

boundary involving v, the trace of u:

v = Cv + γ[Q(f 0)|Ω] (2.6)

(modulo smooth functions). In fact, this equation on ∂Ω is equivalent to the initial

equation on u in Ω; if v satisfies it, by putting

u = Q(f 0)|Ω + QP̃v|Ω (2.7)

then v is the trace of u and u satisfies the equation Pu = f in Ω.

The advantage now is that since the equation in v resides on the boundary, it is

much easier to be paired with the boundary conditions: Bγu = g (on ∂Ω) than the

initial equation in Ω. One proves in the classical case and using a similar proof one

can prove in our degenerate case that the Calderón projector is indeed a projector; the

conditions for the compatibility of the two equations on the boundary are absolutely

natural conditions to pose. The new system of equations being(I − C)v = γ((Qf 0)|Ω)

Bv = g
(2.8)

and C being a projector, by taking the symbols b of B and c of C, the compatibility

condition becomes: b restricted to the range of c is surjective. This condition is

known as the Shapiro-Lopatinski condition and we will provide a similar condition in

the class of operators we use.
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CHAPTER 3

TRACES IN SOBOLEV SPACES

3.1 Classical and Non Isotropic Sobolev Spaces

Classical (isotropic) Sobolev spaces are defined in the literature in essentially two

ways; the first one is very transparent, but it only allows us to work with spaces Hm,

for m positive integer while the second one is more abstract, but it is suited to deal

with any real s instead of the positive integer m.

The definitions are the following:

Definition 3.1. For Ω open subset of Rn and m ∈ N we define the Sobolev spaces

Hm(Ω) by:

Hm(Ω) =
{
u ∈ L2(Ω) | (∂/∂x)αu ∈ L2(Ω)

}
(3.1)

for all α = (α1, . . . , αn) ∈ Nn, |α| = α1 + · · ·+ αn ≤ m.

Hm(Ω) is a Hilbert space with the inner product:

〈u, v〉m =
∑
|α|≤m

∫
(∂/∂x)αu(x)(∂/∂x)αv(x) dx (3.2)

which also gives the norm:

‖u‖2
m =

∑
|α|≤m

‖(∂/∂x)αu‖2
L2(Ω). (3.3)
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In other words, these functions are differentiable up to m times in the L2 sense.

Note that this first definition depends intimately on the naturally existing vector

fields on Rn, ∂/∂x1 , . . . , ∂/∂xn .

Definition 3.2. For s ∈ R we define the Sobolev spaces Hs(Rn) by:

Hs(Rn) =

{
u ∈ S ′(Rn) :

∫
|û(ξ)|2(1 + |ξ|2)s dξ < ∞

}
(3.4)

which says that û ∈ L2(Rn, µ), with µ being (1 + |ξ|2)s times the Lebesgue measure.

Hs(Rn) is a Hilbert space with the inner product:

〈u, v〉s =

∫
û(ξ)v̂(ξ)(1 + |ξ|2)s dξ (3.5)

which also gives the norm:

‖u‖2
s =

∫
|û(ξ)|2(1 + |ξ|2)s dξ. (3.6)

Due to the global character of the Fourier transform this second definition cannot

be applied to open subsets Ω $ Rn, except after truncation with functions in C∞
0 (Ω)

(this being the way to obtain the spaces Hs
loc(Ω)) so we will have to define the Sobolev

spaces in an open subset Ω of Rn differently.

The main feature of Definition 3.2 is that if we use it we can apply the powerful

methods of Fourier analysis.

Remark 3.3. Note that when s = m ∈ N and Ω = Rn the two definitions coincide.

Definition 3.1, as well as all other definitions which only deal with integer indices for

the Sobolev spaces can be extended to arbitrary real indices by complex interpolation

[6]. The spaces obtained this way are the same as the spaces defined by using Defini-

tion 3.2 directly (as well as other definitions that deal from the start with arbitrary

real indices).

In fact, for our purposes, since we will have to work with traces on hyperplanes,

it will pay off to become more abstract and assign a special direction, given by the

last variable xn (this privileged direction will be later the direction of the vector field

ν used to define traces at the boundary), so we will reinterpret (redefine) Hm(Rn)
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(resp. Hm(Rn
+)) as a space of functions on the real line R (resp. on the positive

half-line R+) in the variable xn, with values in a space of functions of the first n− 1

variables, x′ = (x1, . . . , xn−1):

Definition 3.4. We say that u ∈ Hm(Rn) if u ∈ L2(R, Hm(Rn−1)) such that

Dj
nu ∈ L2(R, Hm−j(Rn−1)) for all j = 0, 1, . . . ,m. (3.7)

We give this space the norm:

‖u‖2
Hm(Rn) =

m∑
j=0

‖Dj
nu‖2

L2(R,Hm−j(Rn−1)). (3.8)

This definition is easily seen to be equivalent to Definition 3.1, since what it says

is that every time we have to take several derivatives, in order to verify the definition,

we should take the ones in the privileged direction (the xn direction) first.

We define Hm(Rn
+) similarly. The important thing is that although defined in

different setups and with various methods, all these three definitions mean the same

thing: regularity of a certain order of the functions belonging to these spaces; we will

feel free to use any of them, according to the needs.

It is natural to try to generalize Definition 3.1 by using an arbitrary family D of

vector fields in place of the coordinate vector fields ∂/∂xj:

Definition 3.5. Let D be a family of smooth vector fields on an open subset Ω of Rn.

Denote by Hm
D (Ω) the space of functions u ∈ L2(Ω) such that Lj1 . . . Ljk

u ∈ L2(Ω)

for all Lj1 , . . . , Ljk
∈ D, k ≤ m. The norm in this space is given by:

‖u‖2
Hm
D (Ω) =

∑
|j|≤m

‖Lj1 . . . Ljk
u‖2

L2(Ω). (3.9)

(See, for example, Berhanu-Pesenson [2].)

First, note that we did not require that the subspace spanned by these vector

fields have constant dimension in T (Ω). Second, it is clear that if the family D spans

the whole tangent space at each point of a compact set Ω̄ and the vector fields are

smooth up to the boundary, this definition is equivalent to Definition 3.1. On the

other hand suppose that the family D does not span the whole tangent space but it is
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involutive, (i.e. the bracket of each two vector fields in D lays in the span of D, which

implies by the Frobenius theorem that locally there is an integral manifold Σ for the

family D). In this case, we obtain some information about the regularity along Σ,

but we have no information at all about the transversal directions. The interesting

cases will lie in between these two extremes.

It is also known that if the vector fields in D satisfy a step k Hörmander condition,

meaning that together with their brackets up to order k − 1 they span the whole

tangent space at each point then besides the trivial inclusion Hm
loc(Ω) ⊂ Hm

D,loc(Ω)

we also have Hm
D,loc(Ω) ⊂ H

[m/k]
loc (Ω), where [m/k] is the integer part of m/k. This is

essentially in [11].

Remark 3.6. When one of the vector fields in D is ∂/∂xn and the other vector fields

are tangent to the (n − 1)-dimensional planes {xn = constant }, another definition

can be given, analogous to Definition 3.4, by using (3.9) for the Sobolev norm in the

lower-dimensional planes.

We can use these equivalent definitions to construct the nonisotropic Sobolev

spaces Hm
D (R2n+2) and Hm

D′(R2n+1) for m a positive integer, where D and D′ are the

families of vector fields given in (1.1) and (1.5).

Recall that the vector fields in (1.1) (respectively (1.5)) satisfy a step 2 Hörmander

condition, meaning that together with their brackets span the whole space Tx(R2n+2)

(respectively Tx(R2n+1)) at every x (since [Lj, Lj+n] = ∂x0 , the only missing direction).

A simple relation between these spaces and the classical Sobolev spaces is given

by Hm
loc(R2n+1) ⊂ Hm

D′,loc(R2n+1) (since the linear span of {∂x0 , . . . , ∂x2n} includes the

span of {L1, . . . , L2n}) while in the other direction we obtain that Hm
D′,loc(R2n+1) ⊂

H
[m/2]
loc (R2n+1), where [m/2] is the integer part of k/2.

3.2 Trace Theorems on Regular and Nonisotropic

Sobolev Spaces

We will first show a known proof, taken from Treves [20], page 242, of the fact

that the trace operator, taking the trace of a function u ∈ Hm(Rn
+) on the hyperplane
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xn = 0 is a continuous operator between Hm(Rn
+) and Hm−1/2(Rn−1). Using the

density of C∞
0 in Hm it is enough to prove that the operator is continuous when

applied to functions u ∈ C∞
0 . The remarkable fact about this proof is that it can be

extended ad literam to the nonisotropic case.

3.2.1 Classical Case

Let u be the restriction to Rn
+ of a function in C∞

0 (Rn) and denote by û(ξ′, t) its

Fourier transform in the first n−1 variables. As a function of t ≥ 0 it is differentiable

and we have:

∂

∂t

(
|û(ξ′, t)|2

)
=

∂

∂t

(
û(ξ′, t)û(ξ′, t)

)
=

∂û

∂t
(ξ′, t)û(ξ′, t) + û(ξ′, t)

∂û

∂t
(ξ′, t)

= 2<
(

∂û

∂t
(ξ′, t)û(ξ′, t)

)
.

(3.10)

Integrating in t over [0,∞) we get:

|û(ξ′, 0)|2 = −2<
∫ ∞

0

∂û

∂t
(ξ′, t)û(ξ′, t) dt. (3.11)

Multiply on both sides by (1 + |ξ′|2)m−1/2 and integrate in ξ′ over Rn−1:∫
Rn−1

|û(ξ′, 0)|2(1 + |ξ′|2)|m−1/2 dξ′

= −2<
∫∫

Rn−1×[0,∞)

∂û

∂t
(ξ′, t)û(ξ′, t)(1 + |ξ′|2)m−1/2 dξ′ dt.

(3.12)

Now use the inequality <(z) ≤ |z| and the Cauchy-Schwartz inequality in the

integral on the right hand side after splitting m− 1/2 = (m/2− 1/2) + (m/2):∫
Rn−1

|û(ξ′, 0)|2(1 + |ξ′|2)|m−1/2 dξ′

≤ C

∣∣∣∣∫∫
Rn−1×[0,∞)

∂û

∂t
(ξ′, t)û(ξ′, t)(1 + |ξ′|2)|m−1/2 dξ′ dt

∣∣∣∣
≤ C

(∫∫
Rn−1×[0,∞)

∣∣∣∣∂û

∂t
(ξ′, t)

∣∣∣∣2 (1 + |ξ′|2)|m−1 dξ′ dt

)1/2

×

×
(∫∫

Rn−1×[0,∞)

|û(ξ′, t)|2 (1 + |ξ′|2)|m dξ′ dt

)1/2

(3.13)
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Now the left hand side is ‖γu‖2
Hm−1/2(Rn−1)

while each of the factors on the right

is bounded by ‖u‖Hm(Rn
+). This gives the desired continuity.

3.2.2 Nonisotropic Case

A similar proof, using the Heisenberg group Fourier transform instead of the

regular Fourier transform and the corresponding Plancherel theorem for passing from

the L2(R2n+1) norm to the Hilbert-Schmidt norm in the Fourier transform space (as

in [22]) will show that by taking traces in the class of nonisotropic Sobolev spaces we

have the same expected loss of 1/2 class of regularity.

Take ϕ ∈ C∞
0 (R2n+2). We have first:

‖ϕ(·, 0)‖2

H
m−1/2

D′ (R2n+1)

= Cn‖L
m−1/2

2
0 ϕ(·, 0)‖2

L2(R2n+1)

= Cn

∫ ∞

−∞
‖πλ(L

m−1/2
2

0 ϕ(·, 0))‖2
HS |λn| dλ

≤ Cn

∫ ∞

−∞

[∫ ∞

0

∣∣∣∣〈 ∂

∂t
πλ(L

m−1/2
2

0 ϕ(·, t)), πλ(L
m−1/2

2
0 ϕ(·, t))〉HS

∣∣∣∣ dt

]
|λn| dλ

(3.14)

≤ C

∫ ∞

−∞

[∫ ∞

0

∣∣∣∣〈πλ(
∂ϕ

∂t
(·, t)) ◦ (−∆ + |x|2)

m−1/2
2 ,

(−∆ + |x|2)
m−1/2

2 ◦ πλϕ(·, t)〉HS

∣∣∣ dt
]
|λn| dλ.

(3.15)

We split the two exponents each equal to (m−1/2)/2 into an (m−1)/2 and an m/2.

Then by Cauchy-Schwartz we have:

≤ C

∫ ∞

−∞

[∫ ∞

0

‖πλ(
∂ϕ

∂t
(·, t)) ◦ (−∆ + |x|2)

m−1
2 ‖HS×

‖(−∆ + |x|2)
m
2 ◦ πλ(ϕ(·, t))‖HS dt

]1/2 |λn| dλ

(3.16)

≤ C

{∫ ∞

−∞

[∫ ∞

0

‖πλ(
∂ϕ

∂t
(·, t)) ◦ (−∆ + |x|2)

m−1
2 ‖HS dt

]2

|λn| dλ

}1/2

× (3.17)

{∫ ∞

−∞

[∫ ∞

0

‖(−∆ + |x|2)
m
2 ◦ πλ(ϕ(·, t))‖HS dt

]2

|λn| dλ

}1/2
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But as in the classical case, these are

≤ C

(∫ ∞

0

‖∂ϕ

∂t
(·, t)‖2

Hm−1
D′ (R2n+1)

dt

)1/2

×
(∫ ∞

0

‖ϕ(·, t)‖2
Hm
D′ (R

2n+1) dt

)1/2

(3.18)

and now each of the two is ≤ C‖ϕ‖Hm
D (R2n+2), giving the desired continuity in the

non-isotropic case.
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CHAPTER 4

PARAMETRIX OF L IN THE

CLASS Ψm,k

4.1 The Nonisotropic Setup

We saw that the first obstacle in solving our degenerate boundary value problem

was that, as opposed to the classical elliptic case when it was easy to find a (global)

parametrix of the operator P , we cannot find a parametrix (in the usual sense) of the

operator L ∈ Ψ2(R2n+2) since it has a (conic) characteristic set Σ over the boundary

{x2n+1 = 0}. The solution is to consider more general classes of operators (see

Sjöstrand [19], Boutet de Monvel [4], Beals and Greiner [1] and Cancelier, Chemin,

Xu [7]). This section describes the approach we use, taken from Mendoza [18]. The

classes of operators defined there, denoted Ψm,k(R2n+2, Σ), take into account the

behavior of the symbol in different directions of the cotangent space (along Σ and

transversal to it) and allow us to find a parametrix of an operator in Ψm,k(R2n+2, Σ)

as an operator in Ψ−m,−k(R2n+2, Σ).

Definition 4.1. Let U be an open subset of Rn, Γ ⊂ U × RN an open cone. For

m, k ∈ R, Sm,k
1,0 (Γ, Rd) is the space of smooth maps a : Γ×Rd → C such that for any

K ⊂⊂ U and any α, β, γ multiindices there exists C such that∣∣∣∂α
x ∂β

θ ∂γ
v a(x, θ; v)

∣∣∣ ≤ C(1 + |θ|)m−|β|(1 + |v|)k−|γ|.
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A symbol a ∈ Sm,k
1,0 (Γ, Rd) is said to be semiclassical if there are functions am−i/2 :

Γ×Rd → C such that am−i/2(x, θ; v) is homogeneous of order m− i/2 in θ for θ large

and a ∼
∑

i am−i/2 in the sense that for any M

a−
M∑
i=0

am−i/2 ∈ S
m−(M+1)/2,k
1,0 (Γ, Rd)

and furthermore, for each i there are smooth functions am−i/2,k−j : Γ × Rd \ 0 → C,

homogeneous of order k − j in the last variable, such that am−i/2 ∼
∑

j am−i/2,k−j in

the sense that for any M

am−i/2 − χ
M∑

j=0

am−i/2,k−j ∈ S
m−i/2,k−M−1
1,0 (Γ, Rd)

if χ ∈ C∞(Rd) vanishes near 0 and equals 1 outside some neighborhood of 0. We

denote the space of semiclassical symbols in Sm,k
1,0 by Sm,k.

Following the typical procedure of the theory of classical pseudodifferential op-

erators (where after defining symbols a(x, ξ) ∈ Sm(U × Rn), symbols a(x, y, ξ) ∈
Sm(U ×U ×Rn) are used instead in defining the class of pseudodifferential operators

Ψm(U)), for U open subset of Rn we will consider an open cone Γ = U ×U ×Rn. We

will also consider a set of functions λ = (λ1, . . . , λ2l) : U × Rn → R2l, smooth and

homogeneous of order 1/2 in the second variable, θ ∈ Rn. We assume these functions

λj to be defining functions of a symplectic submanifold Σ of U × Rn \ 0.

Then, we define the operators of class Ψm,k(U, Σ) to be operators written in the

form:

Au(x) =

{
1

(2π)n

∫
ei(x−x′)·ξa(x, x′, ξ; λ(

x + x′

2
, ξ))u0(x

′) dx′ dξ

}
|dx|1/2 (4.1)

when they act on half-densities u = u0|dx′|1/2, with the symbol a ∈ Sm,k(U × U ×
Rn, R2l). The λj are introduced in combination with the special behavior of a in v to

allow for a different behavior of the symbol in the directions normal to Σ. The Weyl

convention is used to simplify the calculus.

By relaxing the condition on the symbols to a ∈ Sm,k
1,0 (U × U × Rn, R2l), we will

also define the less restrictive class of operators Ψm,k
1,0 (U, Σ). The symbols of these
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operators will only have to satisfy the bounds in Definition 4.1, but will not be

required to have the double expansion in ξ and v.

Proposition 4.2. The sequence

0 → Ψm−1/2,k(M, Σ)
ı→ Ψm,k(M, Σ)

σ→ Sm,k
h (M, Σ) → 0

is exact.

Sm,k
h (M, Σ) is the space of principal symbols of operators in Ψm,k(M, Σ). Such a

principal symbol of an operator A consists of two parts: a classical (standard) part,

σs(A), which is the regular symbol at points outside Σ, and the Σ part, a function

defined on TΣ⊥ which is a classical symbol of order k on every fiber of TΣ⊥ and

homogeneous of order m with respect to a nonisotropic action of R+ on T ∗M , which

separates the directions along Σ and the directions transversal to Σ. In addition,

the classical and the Σ symbols have to satisfy a compatibility condition in order to

define an operator in Ψm,k(M, Σ).

The algebra structure of Sm,k
h (M, Σ) is the following: If (as, aΣ) ∈ Sm,k

h and

(bs, bΣ) ∈ Sm′,k′

h , then (as, aΣ)(bs, bΣ) = (cs, cΣ) where cs = as · bs (product of classical

symbols) and cΣ = aΣ]bΣ (composition of symbols in Weyl calculus), meaning: pick

a symplectic basis e1, . . . , el, f1, . . . , fl for TρΣ
⊥, define an operator on the span of the

ej by

op(aΣ)(ϕ)(
l∑

j=1

ujej) =
1

(2π)l

∫
ei(u−u′)·wa(ρ;

u + u′

2
· e + w · f)ϕ(u′)du′dw. (4.2)

This is a pseudodifferential operator of order k. Let

C = op(aΣ) ◦ op(bΣ), (4.3)

let kC = k(u, u′) the Schwartz kernel of C. We then define

(aΣ]bΣ)(u · e + v · f) =

∫
k(u +

1

2
v, u− 1

2
v)e−iθ·v dθ. (4.4)

Working in this setup, it turns out that our operator L ∈ Ψ2(R2n+2) can be

considered an operator in the space Ψ1,2(R2n+2, Σ) and as such we can construct a

parametrix Q, which will be in Ψ−1,−2(R2n+2, Σ).
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4.2 The Symbol of L◦op(b)

In order to study the existence of a parametrix Q ∈ Ψ−1,−2(R2n+2, Σ) of L we will

compute the symbol of the composition of L with op (b), with b ∈ Sm,k(R2n+2, Σ).

For this, we will compute first the way a single operator Lj acts on a symbol

b ∈ Sm,k(R2n+2, Σ)

according to the rules of formal calculus in this space.

Let b
(

x+y
2

, ξ, λ(x+y
2

, ξ)
)

be such a symbol. The corresponding Schwartz kernel will

then be ∫
ei(x−y)·ξb

(
x + y

2
, ξ, λ(

x + y

2
, ξ)

)
dξ. (4.5)

For j = 1, . . . , n the action of Lj on this kernel is:

Lj(x)

(∫
ei(x−y)·ξb

(
x + y

2
, ξ, λ(

x + y

2
, ξ)

)
dξ

)
=

∫
ei(x−y)·ξiσj(x, ξ)b

(
x + y

2
, ξ, λ(

x + y

2
, ξ)

)
dξ

+

∫
ei(x−y)·ξLj(x)

(
b

(
x + y

2
, ξ, λ(

x + y

2
, ξ)

))
dξ

= I + II.

(4.6)

In order to simplify the computations, we will introduce a notation for the indices.

Suppose j ∈ {0, 1, . . . , 2n + 1}. We denote by 6 j its “conjugate”, i. e. that index to

which j is naturally paired:

6 j =



2n + 1, if j = 0

j + n, if j ∈ {1, . . . , n}

j − n, if j ∈ {n + 1, . . . , 2n}

0, if j = 2n + 1.

(4.7)

Using this notation, since iσj(x, ξ) = iσj

(
x+y

2
, ξ
)

+ i
4
(x 6j − y 6j)ξ0, we have to inte-

grate by parts in I, in order to eliminate (x 6j − y 6j), conforming hence to the formal



22

calculus of the Sm,k spaces (the Weyl convention). We obtain:

I =

∫
ei(x−y)·ξiσj(

x + y

2
, ξ)b(

x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ−

− 1

4

∫
ei(x−y)·ξξ0∂ξ6j

(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

=

∫
ei(x−y)·ξiσj(

x + y

2
, ξ)b(

x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ−

− 1

4

∫
ei(x−y)·ξξ0

∂b

∂ξ6j
(
x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ

− 1

4

∫
ei(x−y)·ξξ0

2n+1∑
l=0

∂b

∂vl

(
x + y

2
, ξ, λ(

x + y

2
, ξ))

∂λl

∂ξ6j
(
x + y

2
, ξ) dξ

(4.8)

The first of these three symbols in I is of order (m + 1/2, k + 1), the second one is of

order (m, k) and the third one is of order (m + 1/2, k − 1).

Remark 4.3. We note that the first symbol in I, iσj(
x+y

2
, ξ)b(x+y

2
, ξ, λ(x+y

2
, ξ)) can

also be considered a symbol of order (m + 1, k), but since σj = ξ
1/2
0 λj we will prefer

to look at it as of class (m + 1/2, k + 1) since this puts more weight on the behavior

in the special vj directions over the behavior in the ξ directions.

Since Lj(x) = Lj(
x+y

2
) + 1

4
(x 6j − y 6j)∂x0 , we have to also integrate by parts in II,
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in order to eliminate (x 6j − y 6j) (and thus bring it to Weyl form). II becomes:

II =

∫
ei(x−y)·ξ

(
Lj(

x + y

2
)

)(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

+
1

4

∫
ei(x−y)·ξ(x 6j − y 6j)∂x0

(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

=
1

2

∫
ei(x−y)·ξ(Ljb)(

x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ

+
1

2

∫
ei(x−y)·ξ

2n+1∑
l=0

∂b

∂vl

(
x + y

2
, ξ, λ(

x + y

2
, ξ))(Ljλl)(

x + y

2
, ξ) dξ

+
1

4

∫
ei(x−y)·ξ(x 6j − y 6j)∂x0

(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

=
1

2

∫
ei(x−y)·ξ(Ljb)(

x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ

+
1

2

∫
ei(x−y)·ξ

2n+1∑
l=0

∂b

∂vl

(
x + y

2
, ξ, λ(

x + y

2
, ξ))(Ljλl)(

x + y

2
, ξ) dξ

− 1

4i

∫
ei(x−y)·ξ∂ξ6j∂x0

(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

(4.9)

In II, then, the first symbol is of order (m, k) and the second one is of order (m +

1/2, k − 1). The third term, taken separately, gives:

− 1

4i

∫
ei(x−y)·ξ∂ξ 6j∂x0

(
b(

x + y

2
, ξ, λ(

x + y

2
, ξ))

)
dξ

= − 1

8i

∫
ei(x−y)·ξ∂ξ 6j

[
∂b

∂x0

(
x + y

2
, ξ, λ(

x + y

2
, ξ))

]
dξ

= − 1

8i

∫
ei(x−y)·ξ ∂2b

∂x0∂ξ6j
(
x + y

2
, ξ, λ(

x + y

2
, ξ)) dξ

− 1

8i

∫
ei(x−y)·ξ

2n+1∑
l=0

∂2b

∂x0∂vl

(
x + y

2
, ξ, λ(

x + y

2
, ξ))

∂λl

∂ξ6j
(
x + y

2
, ξ) dξ

(4.10)

(all the terms containing ∂λl/∂ξ0 are zero), hence it gives a part of order (m− 1, k)

and a part of order (m− 1/2, k − 1).

By putting now all these computations together and observing that Lj − 1
2
ξ0∂ξ 6j =

Hσj
(the Hamiltonian vector field of σj) we finally obtain that when Lj (for j =

1, . . . , n) is composed to the left with an operator with symbol b ∈ Sm,k, the com-

position is an operator whose “principal part” in ξ, of order m + 1/2 in ξ, has two
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terms,

|ξ0|1/2(ivjb +
1

2
{λj, λ6j}

∂b

∂v 6j
), (4.11)

of orders (m+1/2, k+1) and (m+1/2, k−1) respectively. In fact similar computations

will show that the same formula gives the principal part for all j = 0, . . . , 2n+1. For

j = 1, . . . , 2n the “lower order parts” are

1

2
Hσj

b− |ξ0|−1/2εj

8i

∂2b

∂x0∂v 6j
− εj

8i

∂2b

∂x0∂ξ6j
(4.12)

of orders (m, k), (m − 1/2, k − 1) and (m − 1, k) respectively. For j = 0 we have

4i instead of the 8i in the last two denominators, while for j = 2n + 1 the lower

order part is only the first term: 1
2
Hσj

b. In order to have a single formula for all

j = 0, . . . , 2n + 1 we consider εj to be 1 if j is “small”, i.e. j = 0, . . . , n, and -1 if j is

“large”, i.e. j = n + 1, . . . , 2n + 1.

We conclude that when considering b to be an element in Sm,k and applying Lj

twice, the highest order part obtained (of order m + 1 in ξ) will be

b →
[
|ξ0|1/2(ivj +

1

2
{λj, λ6j}

∂

∂v 6j
)

]2

b =

=

[
|ξ0|1/2(ivj − εjsgn(ξ0)

1

2

∂

∂v 6j
)

]2

b

= |ξ0|

[
−v2

j − εji sgn(ξ0)vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
b

(4.13)

(since {λj, λ6j} is −sgn(ξ0) for j “small” and sgn(ξ0) for j “large”). The full L2
jb will

have terms whose orders in ξ range from m + 1 to m − 2. We sum over j and we

separate the operator L = L1 + L1/2 + · · ·+ L−2 according to the effect on the order

of ξ.

In order to find a parametrix for L =
∑2n+1

j=0 L2
j (that is, solve Lb ≡ 1 for b modulo

a smoothing operator) we need to consider L1 and invert it (in some reasonable sense),

since in that case we will be able to find an asymptotic expansion of the symbol b of

the parametrix iteratively in the order of ξ, the usual technique of pseudodifferential

operators. We do that next.
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4.3 Inverting L1

Let’s consider the equation

L1b = |ξ0|
2n+1∑
j=0

[
−v2

j − εji sgn(ξ0)vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
b = 1. (4.14)

where b is a symbol of class Sm,k. Noting that the equation only depends on ξ0 and

the v-s and that (with the exception of sgn (ξ0), which we will disregard since the

computations are the same no matter if ξ0 > 0 or ξ0 < 0) they occur in separate

factors, we will look for a solution of the form:

b(ξ0, v) = α(ξ0)β(v). (4.15)

We remark here that in the case of the full operator L we are looking for an approx-

imate solution in ξ (a parametrix), but for the equation L1β = 1 we need an exact

solution β(v), since otherwise for the equation Lb = 1 we obtain a sum of errors in

the spaces Sj,−∞, which are of order j in ξ, so that will not be a parametrix in ξ of

L. Hence the “reasonable” sense mentioned earlier, in which L1 has to be inverted,

means here that we have to invert it exactly.

For the ξ0 part the solution is simple: just take α(ξ0) = 1/ξ0, defined outside the

hyperplane {ξ0 = 0} which only intersects any cone around Σ only at the origin of

the fibers.

In order to show existence for the v part of the equation, which is a PDE, we will

use an unorthodox method, of showing existence for a more complicated object: an

operator equation. Consider the equation in β(v)

2n+1∑
j=0

[
−v2

j − εji vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β = 1 (4.16)

(as mentioned, we will consider only the case ξ0 > 0 hence sgn(ξ0) = +1, since if

ξ0 < 0 the computations are similar). The remaining equation only depends on v-s:

2n+1∑
j=0

[
−v2

j − εji vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β = 1 (4.17)
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and the behavior of β when taking derivatives in the “small” vj-s (for j = 0, . . . n) and

the “large” vj-s (for j = n+1, . . . , 2n+1) is similar (i.e. we cannot make a distinction

between what variables should be considered the space variables and what variables

should be considered the phase variables for β, viewed as a symbol). We arrive hence

naturally to considering a new type of symbols, for which the behavior in the space

variables and the phase variables is similar.

This is consistent with a remark of Chazarain and Piriou in [8], stating that there

is not just one single type of symbols but rather we can say that there are almost as

many of them as there are problems, and we need to be able to adapt one to another.

To solve this equation in β let us then consider a new type of symbols, a class

S̃k(R2N) of symbols with symmetric behavior in x and ξ:

S̃k(R2N) = {β(v) ∈ C∞(R2N) : |∂α
v β(v)| ≤ Cα(1 + |v|)k−|α|}. (4.18)

We will write uj for the the “small” vj-s, (i.e. uj = vj for j = 0, . . . , n) and wj for the

“large” vj-s (i.e. wj = vn+j for j = 1, . . . , n, while w0 = v2n+1. We treat v2n+1 this way

since v2n+1 is the conjugate of v0 and we want to reestablish a “natural”numbering

of the variables. We will consider the u-s to be the space variables in this new setup

while the w-s will be the phase variables.

If β is a symbol in S̃k(R2N) acting on functions defined in RN , its action on a

function φ is (we also use the Weyl convention in this space of symbols):

op(β)φ(u) =

∫
ei(u−eu)·wβ(

u + ũ

2
, w)φ(ũ) dũ dw (4.19)

which means that the kernel of such an operator is

ker (op(β))(u, ũ) =

∫
ei(u−eu)·wβ(

u + ũ

2
, w) dw. (4.20)

If in this space, S̃k(R2N), we compute the kernel of the composition of multiplication

by iuj, j = 0, . . . , n with op(β) we obtain:

(ivj −
1

2
∂vN+j

)β (4.21)

while for the kernel of the composition of ∂uj, j = 0, . . . , n with op(β) we get:

(ivN+j +
1

2
∂vj

)β. (4.22)
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In simple words, principal parts of Lj-s with “small” j-s correspond to the oper-

ators iuj in S̃k while principal parts of Lj-s with “large” j-s correspond to ∂uj. Our

equation in β:

2n+1∑
j=0

[
−v2

j − εji vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β

=
n∑

j=0

[
−v2

j − i vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β +

2n+1∑
j=n+1

[
−v2

j + i vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β

=
n∑

j=0

(ivj −
1

2

∂

∂v 6j
)2β +

2n+1∑
j=n+1

(ivj +
1

2

∂

∂v 6j
)2β = 1

(4.23)

is equivalent to the operator equation in op(β)

H ◦ op(β) =
n∑

j=0

[
(∂uj

)2 + (iuj)
2
]
op(β) = Id. (4.24)

But H is a representation of the Heisenberg Laplacian on the Heisenberg group,

called the harmonic oscillator Hamiltonian (see e.g. [22]). It arises in the Schrödinger

equation and is studied in detail in quantum mechanics texts. There is a lot of

information known about it.

The most important piece of information at this point is that H is invertible, but

we also know about it that it is a positive, self adjoint, unbounded operator; H in Rn

splits very nicely into analogous H-s in one-dimensional R; in this case (for n = 1)

its domain is:

D(H) = {u ∈ L2(R) u′′ ∈ L2(R), x2u ∈ L2(R)} (4.25)

and L2(R) has an orthonormal basis consisting of eigenfunctions forH; each eigenspace

is one-dimensional, the eigenvalues are {1, 3, 5, 7, . . . }, the corresponding eigenfunc-

tions are Hermite polynomials times e−x2/2, appropriately normalized and moreover,

there are simple ways to put back together all this information about H in R to obtain

information about the corresponding H in Rn.

Hence working within the frame of the calculus on the Heisenberg group, solving

the initial equation for the symbol β, (which instead of being regarded as a symbol in

Sm,k(R2n+2, Σ) independent of x and ξ can be thought of as a symbol β ∈ S̃k(R2n+2))
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is equivalent to solving

H · op (β) = (−∆ + |u|2) · op (β) = Id. (4.26)

for op(β). But the known theory states H is invertible so a solution op(β) exists,

hence we can also solve the initial equation in β, i.e. invert L1.

We have obtained:

Theorem 4.4. L1, the principal part of L, is invertible.

We will now examine the full parametrix of L.

4.4 A Parametrix of L

Once we know that this “principal part” L1 of L =
∑2n+1

j=0 L2
j is invertible, we can

apply the standard recursive construction to find an asymptotic expansion in ξ of the

symbol b of a parametrix of L. Recall that L is split into terms L = L1+L1/2+· · ·+L−2

according to their effect on the order in ξ of the symbol b. Writing this way the

equation Lb = 1 we obtain:

L1b−1 + (L1b−3/2 + L1/2b−1) + (L1b−2 + L1/2b−3/2 + L0b−1) + · · · = 1 (4.27)

which means, again separating according to the order in ξ and then taking the term

of order zero:

L1b−1 = 1 (4.28)

which gives

b−1 = L−1
1 (1). (4.29)

By taking the terms of order 1/2 on both sides we obtain

L1b−3/2 + L1/2b−1 = 0 (4.30)

which gives

b−3/2 = −L−1
1 (L1/2b−1). (4.31)
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Similarly, from

L1b−2 + L1/2b−3/2 + L0b−1 = 0 (4.32)

we obtain

b−2 = −L−1
1 (L1/2b−1/2 + L0b−1) (4.33)

so from the obvious recursion formula (we have a recursion of order seven) the result

is transparent: in order to find b−l we apply L−1
1 to a symbol of order −l+1 previously

obtained by acting on the terms already solved for with the parts of the appropriate

orders in the expansion of L. Moreover, by induction, all the terms b−l will have

expansions in the v variables, making the symbol of the parametrix a symbol in

S−1,−2(R2n+2, Σ).

We have obtained:

Theorem 4.5. For L =
∑2n+1

j=0 L2
j , considered as an operator of class Ψ1,2(R2n+2, Σ)

there exists a parametrix Q ∈ Ψ−1,−2(R2n+2, Σ).

Remark 4.6. It will be also important for our work to notice that the solution we

obtain for the equation L1b(x, ξ, v) = 1 only depends on ξ0 and on v0, . . . , v2n+1, and

not on x or the other ξ-s.

Remark 4.7. We only proved existence of an exact solution of the equation (4.17).

So let us now solve equation (4.17) asymptotically in enough detail to get more

information about the actual solution. At the same time, this will also give us the

second expansion (in the v variables) of the terms in the ξ expansion, proving that

the symbol of the parametrix is semiclassical.

4.5 Expansion in v of b−1

We showed that b−1, the first term in the ξ expansion of the symbol b of the

desired parametrix is obtained by solving the equation

L1b−1 = 1 (4.34)
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and that the solution is the product

b−1(ξ0, v) = α(ξ0)β(v) (4.35)

with β(v) solution of the equation (4.17)

2n+1∑
j=0

[
−v2

j − εji vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]
β = 1.

This β(v) can be considered both an element in Sm,k(R2n+2, Σ), independent of x

and ξ and as an element in S̃k(R2n+2). Symbols in both these classes have the same

behavior; the difference is that the same equation in β will arise from different operator

equations in op(β) depending on where we consider β to live. This is though of no

relevance at this point, where we are simply solving the given equation in β.

Consider then β ∈ S̃k(R2n+2), β(v) ∼
∑∞

j=0 βk−j(v), with βk−j(v) eventually

homogeneous of order k − j in v. Call A the operator acting on β and split it

according to the effect on the order in v:

A =
2n+1∑
j=0

[
−v2

j − εji vj
∂

∂v 6j
+

1

4

∂2

∂v2
6j

]

=
2n+1∑
j=0

(−v2
j ) +

2n+1∑
j=0

(−εji vj
∂

∂v 6j
) +

2n+1∑
j=0

(
1

4

∂2

∂v2
6j
)

= A2 + A0 + A−2.

(4.36)

In order to have Aβ = 1 (asymptotically), k should be −2 and we obtain:

A2β−2 =
2n+1∑
j=0

(−v2
j )β−2 = 1, (4.37)

hence

β−2(v) = A−1
2 (1) =

−1∑2n+1
j=0 (v2

j )
(4.38)

outside the origin. We also obtain that β−3 = 0, as well as all other terms with odd

indices. From the equation:

A0β−2 + A2β−4 = 0 (4.39)
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we obtain the next possibly nonzero term which is:

β−4(v) = −(A2)
−1(A0β−2)

=
1∑2n+1

j=0 (v2
j )

[
2n+1∑
j=0

−iεjvj
∂

∂v 6j

]
(β−2(v)) = 0.

(4.40)

We obtain that in fact β−4 = 0; we will retain the computation for reuse in case of

lower order terms. The third nonzero term, β−6 is obtained from the equation:

A2β−6 + A0β−4 + A−2β−2 = 0 (4.41)

and it is:

β−6(v) = −(A2)
−1 (A0β−4 + A−2β−2)

=
1∑2n+1

j=0 (v2
j )

[
2n+1∑
j=0

−iεjvj
∂

∂v 6j
(β−4(v)) +

1

4

2n+1∑
j=0

∂2

∂v2
6j
(β−2(v))

]
.

(4.42)

By doing these computations we see that

β−6(v) =
n− 1

(
∑2n+1

j=0 v2
j )

3
. (4.43)

From this point on, the general equation (for l ≥ 3) is

A2β−2l + A0β−2l+2 + A−2β−2l+4 = 0 (4.44)

which gives us the general formula for the expansion in v:

β−2l(v) =
1∑2n+1

j=0 (v2
j )

[
2n+1∑
j=0

(−iεjvj
∂

∂v 6j
)(β−2l+2) +

1

4

2n+1∑
j=0

(
∂2

∂v2
j

)
(β−2l+4)

]
. (4.45)

For later use, we will explore what happens if we assume that in equations

(4.37),(4.39), (4.41), (4.44), instead of having 1 or 0 on the right hand side we have

more general terms. Namely, we will assume that equation (4.17) becomes

Aβ = β′. (4.46)

The authors of [8] assume in a similar situation a condition on an operator A ∈ Ψµ
c (Rn)

that they simply call condition (2.1); this condition is:
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A is proper and each term of the complete symbol
∑

j≥0 aj(x, ξ) of A is a rational

fraction in ξ.

Their condition (2.1) is slightly stronger than the transmission property in [15]

and their results can be extended to operators satisfying the transmission property.

In our case condition (2.1) proved not to be sufficient for results regarding symbols

of class Ψm,k(R2n+2, Σ), so we will assume here that β′ satisfies a similar but stronger

condition, which we will call condition (2.1’):

The expansion β′(v) =
∑

k≥0 β′l−2k in v consists of terms which are rational frac-

tions in v, of the form:

β′l−2k(v) =
Pl(v)

(
∑2n+1

j=0 (v2
j ))

k
(4.47)

where Pl(v) is a homogeneous polynomial in v of order l.

Note that the initial right hand side terms of our equations, the constants 1 and

0 are of this form. The actions of A0 and A−2 on a term satisfying condition (2.1’)

are:

A0

 Pl(v)(∑2n+1
j=0 (v2

j )
)k

 =
1(∑2n+1

j=0 (v2
j )
)k

2n+1∑
j=0

−iεjvj
∂Pl

∂v 6j
(4.48)

and

A−2

(
Pl(v)

(
∑2n+1

j=0 (v2
j ))

k

)
=

1

4

∆Pl(∑2n+1
j=0 (v2

j )
)k

+

+
1(∑2n+1

j=0 (v2
j )
)k+1

[
k

2n+1∑
j=0

v 6j
∂Pl

∂v 6j
+ k(k − n)Pl

]
.

(4.49)

We can then state:

Remark 4.8. The expansion in v of the symbol β that we obtain by solving iteratively

the equation Aβ = β′, where β′ satisfies condition (2.1’) will also satisfy condition

(2.1’). The orders of the fractions β−2l as symbols are decreasing by 2 at each step of

iteration.

In fact, in the special case we have here (β′ = 1) the derivatives make all the

terms in the recursion formula vanish, except the last one, and the remark becomes:
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Theorem 4.9. If the initial term is β′ = 1, the symbol β has an expansion β ∼∑∞
l=0 β−2−4l where :

β−2−4l(v) =
C−2−4l[∑2n+1

j=0 (v2
j )
]2l+1

(4.50)

and C−2−4l are coefficients obtained by recursion from the formula:

C−2−4l = C−2−4(l−1)(4l − 2)(4l − 2− n). (4.51)

Remark 4.10. Note that in this expansion only the terms whose indices are odd

multiples of 2 are nonzero; moreover, if n is an odd multiple of 2 this expansion is

finite.

4.6 Expansion in v of a General b−l

Similarly to the way b−1 is obtained from the equation L1b−1 = 1, the following

terms of the ξ expansion of b are obtained from equations of the form:

L1b−1−j/2 + L1/2b−1−j/2+1/2 + · · ·+ L−2b−1−j/2+3 = 0 (4.52)

where the terms of a higher order than −1 − j/2 have already been obtained (for

values of j smaller than 7 only part of these terms are necessary). This equation

gives

b−1−j/2 = −L−1
1 [L1/2b−1−j/2+1/2 + · · ·+ L−2b−1−j/2+3]. (4.53)

But we saw that b−1 satisfies condition (2.1’). By applying the operators L1/2, . . .L−2

and L−1
1 this condition is preserved, so using Remark 4.8 we obtain by iteration:

Theorem 4.11. The symbol of the parametrix of L, b(x, ξ, v) is a symbol of class

S−1,−2(R2n+2, Σ) and has an asymptotic expansion in ξ and v, as in the definition of

the classes Sm,k. Moreover, the symbols b−1−j/2 are of the form: the appropriate power

of ξ0 times an asymptotic expansion in v, whose terms are rational functions in v,

the denominators being powers of (
∑2n+1

j=0 (v2
j )) and the numerators being homogeneous

polynomials in v, of appropriate degree.
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CHAPTER 5

TRACES AND THE CALDERÓN

PROJECTOR

5.1 Traces to the Boundary

In solving an elliptic Boundary Value Problem, one of the methods, used e.g. by

Chazarain and Piriou [8] is to construct the Calderón projector associated to the

operator P , the domain Ω and the vector field ν transversal to the boundary which is

used to define the traces on the boundary. This Calderón projector acts on traces to

the boundary of functions in C∞(Ω̄). Compatibility between the Calderón projector

and the operators giving the boundary conditions is the key in solving a boundary

value problem.

The Calderón projector is an operator acting on the boundary, defined by (2.5):

Cv = γ[(QP̃v)|Ω].

We will generically call these operators acting on the boundary, obtained from an

operator P acting inside the domain, traces to the boundary of P . The Calderón

projector is the prime example; the operator P̃ obtained from P is a simpler example.

Within the frame of classical pseudodifferential operators it is known that the trace to

the boundary of a classical pseudodifferential operator is a classical pseudodifferential

operator; moreover, if P ∈ Ψm(Rn) and v is a function or distribution on Rn−1,
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v → γ0(P (v ⊗ δ(xn)) is an operator in Ψm+1(Rn−1). [18] does not provide details in

this direction, so our next task is to analyze traces to the boundary of operators in

Ψm,k(R2n+2, Σ).

After a short computation of the jump formula for the operator L, the first im-

portant step in this direction is to show that if Q is an operator in Ψm,k
1,0 (R2n+2, Σ),

(i.e. its symbol q(x, ξ, v) satisfies the bounds in Definition 4.1), then the symbol of

its trace to the boundary satisfies similar bounds.

The next step is to show that if the symbol of Q has the double asymptotic

expansion in ξ and v, the symbol of its trace to the boundary has a similar expansion.

In both these cases the microlocal behavior in directions far away from Σ is similar

to the classical theory; we are hence interested only in what happens microlocally in

an open cone around Σ.

Finally, we will see how these conclusions apply to our special operator L.

5.2 The Operator L̃

In this section we will compute L̃, the trace to the boundary of the operator

L =
∑2n+1

j=0 L2
j .

For a function u ∈ C∞(Ω̄) we define u0 to be its extension by zero outside Ω̄.

Then for a globally defined operator P we define:

P̃ γu = P (u0)− (Pu)0 (5.1)

which is a distribution supported on ∂Ω, depending only on P and γu.

Since in our case Ω is R2n+2
+ , taking u0 for a function u is equivalent to multiplying

it by the Heaviside function H in the last variable:

u0(x) = H(x2n+1)u(x) (5.2)

while constructing P̃ for an operator P means in fact computing the commutator

[P, MH ] of P and MH , the operator of multiplication by the Heaviside function in the

last variable.
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This is essentially the general case, since for a general Ω (bounded, hence with

compact boundary) all we have to do is to localize u with a partition of unity sup-

ported around ∂Ω and then use a chart to transport ∂Ω into {x2n+1 = 0} and Ω into

{x2n+1 > 0}.
In our case, computing first L̃j for j = 0, . . . , 2n we obtain zero in all cases, which

is easy to explain by the fact that the first 2n+1 vector fields only contain derivatives

in the tangential directions to the boundary of Ω, {x2n+1 = 0} hence they commute

with MH . Obviously, L̃2
j = 0 also, for these j.

Computation of L̃2n+1 gives:

L̃2n+1γu = γ0u⊗ δ(x2n+1) (5.3)

using the notation from [8]; the authors call this the jump formula. Similarly,

L̃2
2n+1γu = i(γ0u)⊗Dx2n+1δ(x2n+1) + i(γ1u)⊗ δ(x2n+1). (5.4)

The same formula applies if instead of being a smooth function, u is a distribution

which is regular in the last variable, i.e. u ∈ C∞(R,D′(R2n+1)). Note that, following

[8], we use D, not ∂ when we take traces to the boundary.

Now, L̃ = L̃2
2n+1 is an operator from C∞

0 (R2n+1, C2) to the set of distributions in

D′(R2n+2) which are supported in {x2n+1 = 0} and it can be written as the sum of

the two operators above. Putting (γ0u) = v0 and (γ1u) = v1 we can write:

Proposition 5.1. The jump formula giving L̃ for the operator L can be written as:

L̃((v0, v1)) = (iv0 ⊗Dx2n+1δ(x2n+1)) + (iv1 ⊗ δ(x2n+1)) (5.5)

where v0 and v1 are functions (or distributions) on {x2n+1 = 0}, (arising in a bound-

ary value problem as traces of orders 0 and 1 of u on {x2n+1 = 0}).

We will analyze next the way an operator Q ∈ Ψm,k(R2n+2, Σ) acts on functions

(or distributions) on R2n+2 of this form.
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5.3 Traces to the Boundary of Operators of Class

Ψm,k
1,0

Suppose we have a symbol q ∈ Sm,k
1,0 (R2n+2, Σ) giving the operator Q (by substi-

tuting the λ-s, i.e. the defining functions of Σ for the v-s). We will show here that

if we take the trace of this operator to the boundary, (i.e., in terms of the symbol,

we set x2n+1 = 0, we substitute the λ2n+1 for v2n+1 and we integrate in ξ2n+1 on

the intersection with a cone around Σ), then we get a decent symbol which once we

substitute the λ-s for the remaining 2n + 1 v-s will give an operator of the same type

on the boundary, i.e. an operator of some class Ψm′,k′

1,0 (∂Ω, Σ).

We take a function q(x, θ, v) satisfying the estimate

|q(x, θ, v)| ≤ C(1 + |θ|2)m/2(1 + |v|2)k/2 (5.6)

and analyze what estimates we can get for the integral of

q(x′, 0; ξ′, ξ2n+1; v
′, λ2n+1(ξ0, ξ2n+1)) (5.7)

in ξ2n+1 over the intersection with a cone around Σ, defined by |ξ2n+1|2 ≤ ε|ξ′|2. Note

that λ2n+1 only depends on ξ0, ξ2n+1 and that we only integrate inside a small cone

around Σ. We will separate ξ′ and ξ2n+1 in the bound above. On one hand if m ≥ 0

we have
(1 + |ξ|2)m/2 = (1 + |ξ′|2 + |ξ2n+1|2)m/2

≤ (1 + |ξ′|2 + ε|ξ′|2)m/2 ≤ (1 + (1 + ε)|ξ′|2)m/2
(5.8)

while if m < 0 we have:

(1 + |ξ|2)m/2 = (1 + |ξ′|2 + |ξ2n+1|2)m/2

≤ (1 + |ξ′|2)m/2
(5.9)

so in both cases above we get for the first factor the estimate

(1 + |ξ|2)m/2 ≤ C(1 + |ξ′|2)m/2 (5.10)

if ξ is inside the cone.
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In order to bound the second factor inside the cone, we substitute λ2n+1 = ξ2n+1

|ξ0|1/2 =
ξ2n+1|ξ0|1/2

|ξ0| for v2n+1. If k ≥ 0 we obtain

(1 + |v|2)k/2 = (1 + |v′|2 + |λ2n+1|2)k/2

≤ (1 + |v′|2)k/2(1 + |λ2n+1|2)k/2

= (1 + |v′|2)k/2(1 +
ξ2
n|ξ0|
|ξ0|2

)k/2

≤ (1 + |v′|2)k/2(1 + ε|ξ0|)k/2

≤ (1 + |v′|2)k/2(1 + ε|ξ|′)k/2

(5.11)

while for k < 0 we obtain

(1 + |v|2)k/2 = (1 + |v′|2 + |v2n+1|2)k/2

≤ (1 + |v′|2)k/2
(5.12)

so we have, no matter what k is,

(1 + |v|2)k/2 ≤ (1 + |v′|2)k/2(1 + ε|ξ′|)max(0,k/2). (5.13)

Summing up, if we have a function q(x, θ, v) satisfying

|q(x, θ, v)| ≤ C(1 + |θ|2)m/2(1 + |v|2)k/2 (5.14)

then inside a cone |ξ2n+1|2 ≤ ε|ξ′|2 we have the estimate:

|q(x, ξ′, ξ2n+1; v
′, λ2n+1(ξ0, ξ2n+1))| ≤ C(1 + |ξ′|2)m/2+max(0,k/4)(1 + |v′|2)k/2. (5.15)

Integrating now in ξ2n+1 between −ε1/2|ξ|′ and ε1/2|ξ|′, the integral will be bounded

by:

C(1 + |ξ′|2)(m+1)/2+max(0,k/4)(1 + |v′|2)k/2. (5.16)

Let’s suppose now that we have a symbol q of class (m, k), meaning that it satisfies

the estimates:

|∂α
x ∂β

θ ∂γ
v q(x, θ, v)| ≤ C(1 + |θ|)m−|β|(1 + |v|)k−|γ|. (5.17)
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According to the bound proved above,∣∣∣∣∫ χ(x, ξ)∂α
x ∂β

θ ∂γ
v q(x′, 0; ξ′, ξ2n+1; v

′, λ2n+1(ξ0, ξ2n+1)) dξ2n+1

∣∣∣∣
≤ C(1 + |ξ′|2)(m+1−|β|)/2+max(0,(k−|γ|)/4)(1 + |v′|2)(k−|γ|)/2

(5.18)

We obtained:

Theorem 5.2. If the initial symbol q(x, ξ, v) is in a class Sm,k
1,0 (R2n+2, Σ), with k < 0

(in our case k = −2) then the symbol we obtained by integrating in the cone is of

class Sm+1,k
1,0 (R2n+1, Σ) over the boundary {x2n+1 = 0}.

5.4 Computation of the Calderón Projector

for b−1,−2

We will first compute the Calderón projector corresponding to L̃ and b−1,−2; One

reason is that we will need to know exactly what it is; the other reason is that

these computations will be a model for the computation of the Calderón projector

corresponding to more general operators. Recall the formula (5.5) we obtained:

L̃((v0, v1)) = (iv0 ⊗Dy2n+1δ(y2n+1)) + (iv1 ⊗ δ(y2n+1))

The Calderón projector will be a 2 by 2 matrix of pseudo-differential operators, γ ◦
op(b−1,−2) ◦ L̃. Its matrix of principal symbols will be:(

c0,0 c0,1

c1,0 c1,1

)
. (5.19)

We will only consider the case ξ0 > 0, the case ξ0 < 0 being similar; ~v will be a short

notation for (v1, . . . , v2n). In order to compute the second column of this matrix (the
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part depending on v1) we start with:

op(b−1,−2)(iv1 ⊗ δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+2

∫
ei(x−y)·ξ−1

ξ0

iv1(y
′)⊗ δ(y2n+1)(

x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2 dy dξ

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′

 −i

2πξ0

∫
eix2n+1ξ2n+1dξ2n+1(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2

 v1(y
′) dy′ dξ′.

(5.20)

The bracket above, taken separately, will give us the symbols of the pseudo-differential

operators on the boundary that we are looking for. Let β2 =
(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2,
β > 0; change the variable ξ2n+1

ξ
1/2
0

= η; split the fraction 1
η2+β2 = 1

2iβ
( 1

η−iβ
− 1

η+iβ
) and

obtain, by shifting to a contour in the half-space =η > 0 and using residues:

−i

2πξ0

∫
eix2n+1ξ2n+1(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2 dξ2n+1

=
−i

2πξ
1/2
0

2πiResη=iβ
eix2n+1ξ

1/2
0 η

η − iβ

=
e−x2n+1ξ

1/2
0 β

2iβξ
1/2
0

.

(5.21)

If in this expression we take the zero-th order trace (that is, we make x2n+1 = 0) we

obtain

c0,1 =
1

2i|~v|ξ1/2
0

. (5.22)

If we take the first order trace (we take Dx2n+1 and then we make x2n+1 = 0) we

obtain

c1,1 =
1

2
|~v|. (5.23)

To compute the entries of the first column of the matrix (the part depending on
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v0) we start with:

op(b−1,−2)(iv0 ⊗Dy2n+1δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+2

∫
ei(x−y)·ξ−1

ξ0

iv0(y
′)⊗Dy2n+1δ(y2n+1)(

x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2 dy dξ. (5.24)

We compute first the effect of Dy2n+1δ(y2n+1):

∫
e−iy2n+1ξ2n+1

∂y2n+1δ(y2n+1)(
x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2 dy2n+1

=

∫
∂y2n+1

− e−iy2n+1ξ2n+1(
x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2

 δ(y2n+1) dy2n+1.

(5.25)

Computing the derivative of the bracket and setting y2n+1 = 0 gives that we should

be looking for:

op(b−1,−2)(iv0 ⊗Dy2n+1δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′v0(y

′)×

×


1

2π

∫  iξ2n+1e
ix2n+1ξ2n+1 −1

ξ0(
1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2

+
−1
2

x2n+1e
ix2n+1ξ2n+1[(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]2

 dξ2n+1


dy′ dξ′

(5.26)

with the zeroth and the first order traces of the integral inside the braces giving us

the symbols which are the entries we need for the first column.

By doing the same kind of computations, shifting contours to the upper complex

half-plane and using residues, the first term in this integral gives a zeroth order trace
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of 1
2

and a first order trace of i
2
ξ

1/2
0 |~v|. The second term’s zero-th order trace vanishes,

while its first order trace is
ξ
1/2
0

16π|~v|3 , a term of lower order. We can write this result as:

Proposition 5.3. The Calderón projector corresponding to the top order term b−1,−2

of the parametrix Q, and L̃ has as matrix of principal symbols: 1
2

−i

2ξ
1/2
0 |~v|

i
2
ξ

1/2
0 |~v| 1

2

 (5.27)

and has a matrix of lower order terms: 0 0
ξ
1/2
0

16π|~v|3 0

 . (5.28)

5.5 Computation of the Calderón Projector for the

Terms b−1,−2−4l

We start from the same formula (5.5) we obtained:

L̃((v0, v1)) = (iv0 ⊗Dy2n+1δ(y2n+1)) + (iv1 ⊗ δ(y2n+1))

and from the formula for the symbol we obtained in (4.50):

b−1,−2−4l(ξ, v) =
1

ξ0

C−2−4l[∑2n+1
j=0 (v2

j )
]2l+1

.

Just to ease the notation burden in the lengthy computations that follow we will use

instead a symbol of the form

b−1,−2l =
1

ξ0

C−2l[∑2n+1
j=0 (v2

j )
]l . (5.29)
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Similarly to the way we proceeded when we computed the Calderón projector for

b−1,−2, we will compute first the second column of the Calderón projector:

op(b−1,−2l)(iv1 ⊗ δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+2

∫
ei(x−y)·ξ 1

ξ0

iC−2lv1(y
′)⊗ δ(y2n+1)[(

x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l

dy dξ

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′


iC−2l

2πξ0

∫
eix2n+1ξ2n+1dξ2n+1[(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l

 v1(y
′) dy′ dξ′

(5.30)

after computing the effect of δ(y2n+1). The zeroth and the first trace of the bracket

above will give us the entries of the second column the Calderón projector. We use

the same technique we used for b−1,−2: let β2 =
(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2, β > 0; change

the variable of integration, ξ2n+1

ξ
1/2
0

= η, dξ2n+1 = ξ
1/2
0 dη; shift the contour of integration

in the upper complex ξ2n+1 plane; use residues. After computing the residues we will

just have to multiply by iC−2l

2πξ0
2πiξ

1/2
0 = −C−2l

ξ
1/2
0

. We have one pole of order l for the

integrand:

F (z) =
eix2n+1ξ

1/2
0 z

(β2 + η2)l
(5.31)

at z = iβ. We use the formula for such a residue:

Resz=z0F (z) =
1

(l − 1)!

∂l−1

∂zl−1

[
(z − z0)

lF (z)
]∣∣

z=z0
. (5.32)

If we differentiate l − 1 times in z in:

1

(l − 1)!
(z − z0)

lF (z) =
1

(l − 1)!
eix2n+1ξ

1/2
0 z(z + iβ)−l (5.33)

we obtain

1

(l − 1)!

l−1∑
k=0

(
l − 1

k

)
(ix2n+1ξ

1/2
0 )keix2n+1ξ

1/2
0 z ∂l−1−k

∂zl−1−k

[
(z + iβ)−l

]
(5.34)



44

For the (0, 1) entry of the Calderón projector we have to set first z = iβ and then

x2n+1 = 0 in (5.34). Only the term with k = 0 will survive:{
1

(l − 1)!

(
l − 1

0

)
e−x2n+1ξ

1/2
0 β(−1)l−1 (2l − 2)!

(l − 1)!
(2iβ)−2l+1

}∣∣∣∣
x2n+1=0

(5.35)

so the (0,1) entry is:

c0,1 =
−C−2l

ξ
1/2
0

1

(l − 1)!
(−1)l−1 (2l − 2)!

(l − 1)!
(2i|~v|)−2l+1. (5.36)

For the (1,1) entry of the Calderón projector we have to set z = iβ, differentiate in

x2n+1 (using D, not ∂) and then set x2n+1 = 0 in (5.34). The only terms that might

not vanish when setting x2n+1 = 0 are those with k = 0 and k = 1. We analyze them

next; their coefficient will be −C−2l

ξ
1/2
0

.

In the term obtained for k = 0 in (5.34) we set z = iβ and we take Dx2n+1 . We

obtain:

1

(l − 1)!

(
l − 1

0

)
e−x2n+1ξ

1/2
0 β

{
Dx2n+1(−x2n+1ξ

1/2
0 β)(−1)l−1 (2l − 2)!

(l − 1)!
(2iβ)−2l+1+

(−1)l−1 (2l − 2)!

(l − 1)!
Dx2n+1 [(2iβ)−2l+1]

}
.

(5.37)

Since ∂x2n+1β|x2n+1=0 = 0, the second term in the braces vanishes and we obtain for

this term coming from k = 0:

c0
1,1 = −C−2l

1

(l − 1)!
i|~v|(−1)l−1 (2l − 2)!

(l − 1)!
(2i|~v|)−2l+1. (5.38)

In the term obtained for k = 1 in (5.34) we also set z = iβ, we apply Dx2n+1 and

then we set x2n+1 = 0 to obtain:

c1
1,1 = −C−2l

1

(l − 1)!

(
l − 1

1

)
(−1)l−2 (2l − 3)!

(l − 1)!
(2i|~v|)−2l+2. (5.39)

The sum of these two terms, c0
1,1 + c1

1,1 is the c1,1 entry of the Calderón projector

associated to b−1,−2l. It vanishes.

In order to compute now the first column of the Calderón projector associated to
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b−1,−2l we write:

op(b−1,−2l)(iv0 ⊗Dy2n+1δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+2

∫
ei(x−y)·ξ 1

ξ0

iC−2lv0(y
′)⊗Dy2n+1δ(y2n+1)[(

x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l

dy dξ. (5.40)

We compute first the action of Dy2n+1δ(y2n+1):∫
e−iy2n+1ξ2n+1

Dy2n+1δ(y2n+1)[(
x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l

dy2n+1

=
−1

i

∫
∂y2n+1


e−iy2n+1ξ2n+1[(

x2n+1+y2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l


δ(y2n+1) dy2n+1

=
−1

i

−iξ2n+1

(x2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
−l

− l

(x2n+1

2
ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
−l−1

x2n+1

2
ξ0

 .

(5.41)

Similarly to (5.30) we can write this part of the Calderón projector (the part
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acting on v0(y
′)) as:

op(b−1,−2l)(iv0 ⊗Dy2n+1δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′


iC−2l

2πξ0

∫
eix2n+1ξ2n+1ξ2n+1[(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l

dξ2n+1

+
lC−2l

4π

∫
eix2n+1ξ2n+1x2n+1[(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l+1

dξ2n+1


v0(y

′) dy′ dξ′.

(5.42)

We will compute now the zeroth and the first order trace of each of the two terms

inside the braces.

The first term is:
iC−2l

2π

∫
eix2n+1ξ

1/2
0 η η

(β2 + η2)l
dη (5.43)

after introducing the variables β and η and shifting the contour; iβ is again a pole of

order l and we use the same formula for residues:

1

(l − 1)!

∂l−1

∂zl−1

[
eix2n+1ξ

1/2
0 z z

(z + iβ)l

]∣∣∣∣
z=iβ

. (5.44)

We have a first splitting in order to apply the general Leibniz formula and obtain:

1

(l − 1)!

l−1∑
k=0

(
l − 1

k

)
(ix2n+1ξ

1/2
0 )keix2n+1ξ

1/2
0 z ∂l−1−k

∂zl−1−k

[
z

(z + iβ)l

]
(5.45)

and for the zeroth trace we will only needed to compute the term with k = 0, while

for the first trace we will only need to compute the terms with k = 0 and k = 1, the

only ones that don’t obviously vanish when setting x2n+1 = 0.

We compute first the zeroth trace of the integral, so k = 0. We use the general

Leibniz formula for the l − 1 derivative of the fraction (the last factor in (5.45) with

k = 0) and we have:

1

(l − 1)!
eix2n+1ξ

1/2
0 z

l−1∑
j=0

(
l − 1

j

)
∂j

∂zj
(z)

∂l−1−j

∂zl−1−j

[
(z + iβ)−l

]
. (5.46)
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The only derivatives of z which won’t make it vanish are the ones for j = 0 and j = 1.

For j = 0 we obtain after setting z = iβ

c′0,0 =
1

(l − 1)!
e−x2n+1ξ

1/2
0 β(iβ)(−1)l−1 (2l − 2)!

(l − 1)!
(2iβ)−2l+1

∣∣∣∣
x2n+1=0

=
1

(l − 1)!
(i|~v|)(−1)l−1 (2l − 2)!

(l − 1)!
(2i|~v|)−2l+1.

(5.47)

For j = 1 we obtain after setting z = iβ

c′′0,0 =
1

(l − 1)!
e−x2n+1ξ

1/2
0 β

(
l − 1

1

)
(−1)l−2 (2l − 3)!

(l − 1)!
(2iβ)−2l+2

∣∣∣∣
x2n+1=0

=
1

(l − 1)!

(
l − 1

1

)
(−1)l−2 (2l − 3)!

(l − 1)!
(2i|~v|)−2l+2.

(5.48)

The sum of these two last results, c′0,0 + c′′0,0 = c0
0,0 = 0 is the zeroth trace of the

first of two integrals that we had to compute. We will see later that the zeroth trace

of the second integral is zero, so we can state that c0,0 = 0.

For the first trace of the first integral, as noted above, at the first splitting we

need to take into account the terms with k = 0 and k = 1 in (5.45). For k = 0 we

have again (5.46), and we are only interested in the terms with j = 0 and j = 1 of

the second splitting. For j = 0 we obtain the first line in (5.47) but instead of setting

x2n+1 = 0 we compute Dx2n+1 of that and then set x2n+1 = 0. We obtain:

1

(l − 1)!
(−1

i
ξ

1/2
0 |~v|)(i|~v|)(−1)l−1 (2l − 2)!

(l − 1)!
((2i|~v|)−2l+1 (5.49)

while for j = 1 by doing the same we obtain

1

(l − 1)!
(−1

i
ξ

1/2
0 |~v|)

(
l − 1

1

)
(−1)l−2 (2l − 3)!

(l − 1)!
((2i|~v|)−2l+2. (5.50)

These two terms also cancel each other. So for k = 0 there is no contribution from

the first integral to the first order trace.

Going back to (5.45), splitting and analyzing the case k = 1 we obtain:

1

(l − 1)!

(
l − 1

1

)
(ix2n+1ξ

1/2
0 )eix2n+1ξ

1/2
0 z

l−2∑
j=0

(
l − 2

j

)
∂j

∂zj
(z)

∂l−2−j

∂zl−2−j

[
(z + iβ)−l

]
.

(5.51)
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We are again interested in the terms obtained for j = 0 and j = 1, the only ones that

could give us nonzero first traces. If j = 0 after computing the derivatives in z and

setting z = iβ we obtain:

1

(l − 1)!

(
l − 1

1

)
(ix2n+1ξ

1/2
0 )e−x2n+1ξ

1/2
0 β

(
l − 2

0

)
(iβ)(−1)l−2 (2l − 3)!

(l − 1)!
(2iβ)−2l+2.

(5.52)

Taking Dx2n+1 of this and setting x2n+1 = 0 we obtain

1

(l − 1)!

(
l − 1

1

)
ξ

1/2
0 (i|~v|)(−1)l−2 (2l − 3)!

(l − 1)!
(2i|~v|)−2l+2. (5.53)

If j = 1 we obtain similarly:

1

(l − 1)!

(
l − 1

1

)
ξ

1/2
0

(
l − 2

1

)
(−1)l−3 (2l − 4)!

(l − 1)!
(2i|~v|)−2l+3. (5.54)

Summing these two terms we obtain that the part of the (1, 0) entry of the Calderón

projector arising from the first integral is:

cI
1,0 = −1

2
C−2l

1

(l − 1)!

(
l − 1

1

)
ξ

1/2
0 (−1)l−2 (2l − 4)!

(l − 1)!
(2i|v|)−2l+3 (5.55)

The second integral was, in (5.42),

lC−2l

4π

∫
eix2n+1ξ2n+1x2n+1[(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2 +

(
ξ2n+1

ξ
1/2
0

)2
]l+1

dξ2n+1.

We call again β2 =
(

1
2
x2n+1ξ

1/2
0

)2

+ |~v|2, β > 0; change the variable of integration,

ξ2n+1

ξ
1/2
0

= η, dξ2n+1 = ξ
1/2
0 dη; shift the contour of integration in the upper complex ξ2n+1

plane; use residues. This time we have an integrand:

F (z) =
eix2n+1ξ

1/2
0 zx2n+1

(β2 + z2)l+1
. (5.56)

A factor of ξ
1/2
0 2πi will arise as a result of the change of variables and using residues.

The residue itself will be:

x2n+1

l!

∂l

∂zl

[
eix2n+1ξ

1/2
0 z

(z + iβ)l+1

]∣∣∣∣∣
z=iβ

(5.57)
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It is clear that the x2n+1 factor will make the zeroth trace vanish; for the first trace,

the only nonzero term will be:

1

i

1

l!

∂l

∂zl

[
eix2n+1ξ

1/2
0 z

(z + iβ)l+1

]∣∣∣∣∣
z=iβ

(5.58)

This is in fact something we computed before (for l instead of l+1) when we computed

the (0, 1) entry of the Calderón projector; using that result we obtain

cII
1,0 =

lC−2lξ
1/2
0

2

1

l!
(−1)l (2l)!

l!
(2i|~v|)−2l−1. (5.59)

After all these computations, we reverse from the temporary notation we intro-

duced in (5.29) and we state:

Proposition 5.4. The Calderón projector associated to the term b−1,−2−4l of the form

(4.50) in the expansion of b−1 is a 2× 2 matrix with entries:

c0,0 = 0

c0,1 =
−C−2−4l

ξ
1/2
0

1

(2l)!

(4l)!

(2l)!
(2i|~v|)−1−4l

c1,0 =
C−2−4l

2

ξ
1/2
0

(2l − 1)!

(4l − 2)!

(2l)!
(2i|~v|)1−4l

− C−2−4l

2

ξ
1/2
0

(2l)!

(4l + 4)!

(2l + 1)!
(2i|~v|)−3−4l

c1,1 = 0

(5.60)

As we saw in the previous section, there is a lower order entry c1.0 being carried

over from the top order term of the expansion; for all the other terms of the expansion

there also is a c1.0 being carried over to the next term of the expansion in the formula

above, and there is one coming in from the previous term. Taking this into account,

we can state:

Theorem 5.5. The Calderón projector associated to the term of top order −1 in ξ

of the parametrix of L has an expansion in v with top order term (5.27): 1
2

−i

2ξ
1/2
0 |~v|

i
2
ξ

1/2
0 |~v| 1

2


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with the following terms of the expansion (for l ≥ 1) being:

c−1,−2−4l =

(
0 C ′

−2−4lξ
−1/2
0 |~v|−1−4l

C ′′
−2−4lξ

1/2
0 |~v|1−4l 0

)
(5.61)

5.6 Traces to the Boundary of Operators of Class

Ψm,k

When we computed, in the last two chapters, the symbol of the parametrix Q

of L and then we showed that its trace to the boundary is an operator of the same

type Ψm,k(R2n+1, Σ), we explicitly used the form of L. However, we emphasized that

the symbol of Q satisfies condition (2.1’) and that the computations of the Calderón

projector corresponding to L and Q depend essentially on property (2.1’), and not

on the specific expressions of the operators.

By using similar computations it is easy to prove a more general theorem:

Theorem 5.6. If Q ∈ Ψm,k(R2n+2, Σ) satisfies condition (2.1’) then the operator

v → γ0

(
(QP̃v)|Ω

)
is in Ψm+1,k

cl (R2n+1, Σ) on the boundary.

5.7 The Calderón Projector for the Classical Part

of the Parametrix Q

We have concentrated so far on the microlocal behavior of the symbol of Q and

its trace to the boundary in a conic neighborhood around Σ. However, we also need

to know the behavior of the simpler, classical part of the symbol of Q outside such a

cone. We do this now.

When analyzing the classical part of the symbol of our parametrix we are situating

ourselves outside a cone containing Σ, the characteristic set of L. In such a region

σ(L) is nonzero, and we can write:

σ(Q)(x, ξ) = q(x, ξ) = 1/σ(L)(x, ξ). (5.62)
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In order to find the Calderón projector of this classical part we have to do com-

putations similar to those in Section 5.4 in this simpler case. The method and the

pseudodifferential operators used here are all classical. Recall again formula (5.5) we

obtained:

L̃((v0, v1)) = (iv0 ⊗Dy2n+1δ(y2n+1)) + (iv1 ⊗ δ(y2n+1))

This Calderón projector will be a 2 × 2 matrix of classical pseudo-differential

operators. In order to compute the second column of this matrix (the part depending

on v1) we need:

op(q)(iv1 ⊗ δ(y2n+1))(x
′, x2n+1)

=
1

(2π)2n+2

∫
ei(x−y)·ξ −1∑2n+1

j=0 σ2
j (x, ξ)

iv1(y
′)δ(y2n+1) dy dξ

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′

[
−i

2π

∫
eix2n+1ξ2n+1∑2n+1
j=0 σ2

j (x, ξ)
dξ2n+1

]
v1(y

′) dy′ dξ′.

(5.63)

The zeroth and the first order traces of the bracket above will give us c0,1 and c1,1

respectively. Call
∑2n

j=0 σ2
j (x, ξ) = β2, β > 0, split

1

β2 + ξ2
2n+1

=
1

2iβ

(
1

ξ2n+1 − iβ
− 1

ξ2n+1 + iβ

)
, (5.64)

shift the contour to =ξ2n+1 > 0 and compute (with residues) the integral given by

the first partial fraction (the second fraction has no poles in =ξ2n+1 > 0).

We obtain that the bracket above is

−1

4πβ

∫
eix2n+1

ξ2n+1 − iβ
dξ2n+1

=
−i

2β
e−x2n+1β.

(5.65)

By taking the zero-th trace of this we obtain:

c0,1 =
−i

2
(∑2n

j=0 σ2
j (x, ξ)

)1/2
(5.66)

and by taking the first trace:

c1,1 =
1

2
. (5.67)
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Similarly, for the first column of this matrix (the part depending on v0), we start

from:

op(q)(iv0 ⊗Dy2n+1δ(y2n+1))(x
′, x2n+1) =

=
1

(2π)2n+2

∫
ei(x−y)·ξ −1∑2n+1

j=0 σ2
j (x, ξ)

iv0(y
′)⊗ 1

i
∂y2n+1δ(y2n+1) dy dξ

=
1

(2π)2n+1

∫
ei(x′−y′)·ξ′[

−1

2π

∫
ei(x2n+1−y2n+1)ξ2n+1∂y2n+1δ(y2n+1)∑2n+1

j=0 σ2
j (x, ξ)

dy2n+1 dξ2n+1

]
v0(y

′) dy′ dξ′.

(5.68)

The zeroth and the first order traces of the bracket above will give us c0,0 and c1,0,

respectively. First we eliminate the derivative acting on δ(y2n+1):∫
e−iy2n+1ξ2n+1∂y2n+1δ(y2n+1) dy2n+1

= −
∫

∂y2n+1

(
e−iy2n+1ξ2n+1

)
δ(y2n+1) dy2n+1

= iξ2n+1.

(5.69)

Calling again
∑2n

j=0 σ2
j (x, ξ) = β2, with β > 0, splitting

ξ

β2 + ξ2
2n+1

=
1

2

(
1

ξ2n+1 + iβ
+

1

ξ2n+1 − iβ

)
, (5.70)

shifting the contour to =ξ2n+1 > 0 and computing (with residues) the integral given

by the second partial fraction (the first fraction has no poles in =ξ2n+1 > 0), we

obtain the value of the bracket:
1

2
e−x2n+1β (5.71)

and we have to take now the zeroth and the first order traces of this. The zeroth

order trace gives

c0,0 =
1

2
(5.72)

while the first order trace gives

c1.0 =
i

2

(
2n∑

j=0

σ2
j (x, ξ)

)1/2

. (5.73)

We have obtained:
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Proposition 5.7. The Calderón projector of the classical part of the parametrix Q

of L has principal symbol:

c =

 1
2

−i

2(
P2n

j=0 σ2
j (x,ξ))

1/2

i
2

(∑2n
j=0 σ2

j (x, ξ)
)1/2

1
2

 . (5.74)
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CHAPTER 6

THE CALDERÓN PROJECTOR

OF THE Σ SYMBOL

6.1 The Σ Symbol

After studying the Calderón projector for the classical part of the symbol of L we

will now do the same for its Σ symbol. We saw that for a fixed point ρ0 = (x0, ξ0) ∈ Σ,

the Σ symbol is a symbol defined on the fiber at ρ0 of Tρ0Σ⊥ which can also be

interpreted as an operator, namely H, the harmonic oscillator Hamiltonian. We

restrict ourselves to a given fiber of TΣ⊥ at ρ0 and we study the Calderón projector

of this operator. We will use for this another type of Sobolev spaces, which we proceed

to define in the next section.

6.2 Sobolev Spaces Hs
H(Rn)

Consider, in Rn, the harmonic oscillator Hamiltonian

H = −∆ + |x|2 = −
n∑

j=1

∂2
xj

+
n∑

j=1

x2
j . (6.1)

Similarly to the way classical Sobolev spaces are defined using the operator 1 + ∆,

we define H-Sobolev spaces using this H, for any s ∈ R by
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Definition 6.1.

Hs
H(Rn) = {u ∈ S ′ | (−∆ + |x|2)s/2u ∈ L2(Rn)}. (6.2)

The norm in this space is:

‖u‖s = ‖(−∆ + |x|2)s/2u‖L2(Rn). (6.3)

We have seen in Section 4.3 that the operator H is very well known. Taking

advantage of the spectral theorem forH we can write expansions in the eigenfunctions

of H for u ∈ S ′:
u =

∑
k

〈u, ϕk〉ϕk (6.4)

and give equivalent definitions for the space and the norm.

Definition 6.2. The spaces Hs
H(Rn) can also be written as:

{u ∈ S ′ |
∑

k

λ
s/2
k 〈u, ϕk〉ϕk ∈ L2(Rn). (6.5)

or

{u ∈ S ′ |
∑

k

λs
k|〈u, ϕk〉|2 < ∞}. (6.6)

The norm in this space can also be written as:

‖u‖2
s =

∑
k

λs
k|〈u, ϕk〉|2. (6.7)

Defining these spaces by using the same operator H whose Calderón projector we

want to study is natural at this point since we are in the Heisenberg group setup and

the analog of the classical Laplacian ∆ is H; the spectral theorem applied to H will

also prove to be very useful. Otherwise, these spaces are very similar to the classical

Sobolev spaces. We can prove, for example, a similar trace theorem as in the classical

Sobolev spaces.

Theorem 6.3. Let s ∈ R, s > 1
2
. The trace operator γ : C∞

0 (Rn+1) → C∞
0 (Rn)

defined by γu(x′) = u(x′, 0) extends into a continuous linear operator (again denoted

by γ) from Hs
H(Rn+1) into H

s−1/2
H (Rn).
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Proof. Take u ∈ C∞
0 (Rn+1); using the expansion of u in the basis ϕk we can write

u(x′, 0) =
∑

k′,kn+1

〈u, ϕk′ ⊗ ϕkn+1〉ϕk′(x
′)⊗ ϕkn+1(0) (6.8)

which means, as in the case of the classical Fourier transform, from which we borrow

the notation:

(γ̂u)(k′) =
∑
kn+1

〈u, ϕk′ ⊗ ϕkn+1〉ϕkn+1(0). (6.9)

The present proof depends essentially on the following relation between the weights

used in defining the norms in Hs
H(Rn+1) and H

s−1/2
H (Rn) respectively:∑

kn+1

λ−s
(k′,kn+1)|ϕkn+1(0)|2 ≤ Csλ

−s+1/2
k′ if s > 1/2. (6.10)

(Note that this inequality is very similar to∫
(1 + |ξ′|2 + |ξn+1|2)−s dξn+1 = Cs(1 + |ξ′|2)−s+1/2 if s > 1/2 (6.11)

which is used for a very natural and meaningful proof of the similar trace theorem in

classical Sobolev spaces, as in [8], page 113.) Assuming

(6.10), we write

(γ̂u)(k′) =
∑
kn+1

λ
−s/2
(k′,kn+1)ϕkn+1(0)λ

s/2
(k′,kn+1)〈u, ϕk′ ⊗ ϕkn+1〉 (6.12)

and by using the Cauchy-Schwartz inequality:

|(γ̂u)(k′)|2 ≤

∑
kn+1

λ−s
(k′,kn+1)|ϕkn+1(0)|2

∑
kn+1

λs
(k′,kn+1)|〈u, ϕk′ ⊗ ϕkn+1〉|2


≤ Csλ

−s+1/2
k′

∑
kn+1

λs
(k′,kn+1)|〈u, ϕk′ ⊗ ϕkn+1〉|2

 (6.13)

hence

|(γ̂u)(k′)|2λs−1/2
k′ ≤ Cs

∑
kn+1

λs
(k′,kn+1)û(k′, kn+1)

 (6.14)

and now, by summing in k′ we obtain

‖γu‖2
s−1/2 ≤ Cs‖u‖2

s (6.15)
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which proves the theorem, modulo the assumption.

Now, in order to prove the important relation (6.10), considering that λ(k′,kn+1) =

λk′ + λkn+1 , that ϕkn+1(0) 6= 0 only if kn+1 = 2m and in that case ϕ2
k2m

(0) =

((2m)!)/(22m(m!)2) ∼ (πm)−1/2, by using the Stirling approximation, and knowing

that λ2m = 4m + 1, it is enough to show:

λ
−1/2
k′

∑
m

(
λk′

λk′ + 4m + 1

)s
1

m1/2
≤ Cs (6.16)

with Cs independent of λk′ . For this, using the inequality between a lower Darboux

sum and the integral and making a change of variable m = Ax in the integral, we

obtain ∑
m

(
A

A + 4m + 1

)s
1

m1/2
≤
∫ ∞

0

(
A

A + 4m + 1

)s
1

m1/2
dm

= A1/2

∫ ∞

0

1

(1 + 4x + 1/A)s

1

x1/2
dx

≤ A1/2

∫ ∞

0

1

(1 + 4x)sx1/2
dx

(6.17)

where the last integral is convergent and its value, Cs, is independent of A. Hence

λ
−1/2
k′

∑
m

(
λk′

λk′ + 4m + 1

)s
1

m1/2
≤ λ

−1/2
k′ λ

1/2
k′

∫ ∞

0

1

(1 + 4x)sx1/2
dx = Cs (6.18)

which ends the proof of the theorem.

Remark 6.4. The present proof shows that traces are continuous from the H-Sobolev

space of the whole Rn+1 to the H-Sobolev space of Rn, with loss of half an order of

regularity. Its idea is different from the idea in the proofs in Section 3.2. Using the idea

of those proofs one can prove that traces are continuous from the H-Sobolev spaces

of a half space, Hs
H(Rn+1

+ ) (defined as restrictions to Rn+1
+ of elements of Hs

H(Rn+1))

to the H-Sobolev spaces of the boundary, H
s−1/2
H (Rn), with the same 1/2 loss of

regularity.
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CHAPTER 7

APPLICATION TO THE

BOUNDARY VALUE PROBLEM

7.1 The Boundary Value Problem

Let Ω be R2n+2
+ , an open subset of R2n+2 and Σ the closed embedded symplectic

submanifold of T ∗(∂Ω) of codimension 2n already defined. The projection Σ → ∂Ω

is a submersion. Suppose we have

P : C∞(Ω̄) → C∞(Ω̄)× C∞(∂Ω, C)

u → (Lu, Bγu).
(7.1)

where L is defined as in (1.2) and B is a 2 dimensional row vector of operators of

type Ψ·,·(∂Ω, Σ), therefore suited for analyzing a Dirichlet problem. Remember that

the Calderón projector associated to the problem is a 2 × 2 matrix of operators of

type Ψ·,· whose matrix of orders is(
(0, 0) (−1

2
,−1)

(1
2
, 1) (0, 0)

)
. (7.2)

We will denote by b the principal symbol of B, i.e. (bj)j=1,2 is the matrix of

principal symbols of Bj, of orders (mj, kj), each of them being a pair (σs
j , σ

Σ
j ) whose

first entry is the classical part of the principal symbol of Bj and the second entry is
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the Σ symbol of Bj. The orders mj are equal to d/2, d/2 − 1/2 and the orders kj

are d′, d′ − 1. For every (x′, ξ′) ∈ T ∗(∂Ω) \ Σ, the matrix (σs
j )j given by the classical

parts of the principal symbols defines a linear mapping of C2 into C. The classical

Shapiro-Lopatinski conditions require σs(B) · σs(C) be surjective.

For every ρ ∈ Σ, the entries of the row vector (σΣ
j )j given by the Σ part of

the principal symbol of (Bj)j are operators in Ψd′(Rn) and Ψd′−1(Rn), respectively.

Considering the Σ part of the matrix of the Calderón projector to be an operator(
Hr
H(Rn)

Hr−1
H (Rn)

)
→

(
Hr
H(Rn)

Hr−1
H (Rn)

)
(7.3)

for some r ∈ R, the Σ symbols of b will give an operator(
Hr
H(Rn)

Hr−1
H (Rn)

)
−→ Hr−d′

H (Rn). (7.4)

To the classical Shapiro-Lopatinski conditions we will add the condition that

σΣ(b) · σΣ(C) be also surjective.

Theorem 7.1. Assume that BC is surjective at the symbol level. Then P admits

a right parametrix Q. The orthogonal of ImP in E ′(Ω̄) × E ′(∂Ω, C) is contained in

C∞(Ω̄)× C∞(∂Ω, C).

Proof. The hypothesis implies that BC is right-elliptic in the sense of Agmon-Douglis-

Nirenberg, in a sense adapted to the symbols of type S·,·.

An adaptation of the Agmon-Douglis-Nirenberg theorem is straightforward. The

difference is that we have to take into account the two parts of the principal symbols

of the entries separately and also consider separately the different meanings of sur-

jectivity of the classical part and of the Σ part. This adjusted theorem shows then

that there exists A, a 2× 1 matrix of operators with entries(
A1

A2

)
∈

(
Ψ−d/2,−d′(∂Ω)

Ψ1/2−d/2,1−d′(∂Ω)

)
(7.5)

such that BC · A = I + r, r ∈ Ψ−∞(∂Ω, C). We define Q by

Q(f, g) = {Q(f 0) + QL̃A(g −Bγ[Q(f 0)]|Ω}|Ω. (7.6)
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The operator Q is continuous from C∞(Ω̄) × C∞(∂Ω, C) into C∞(Ω̄). Clearly

PQ = I +R, where R has two components, one in Ω̄ and one in ∂Ω:

R(f, g) =
(
{RL̃A(g −Bγ[Q(f 0)]|Ω + R(f 0)}|Ω, r(g −Bγ[Q(f 0)]|Ω)

)
. (7.7)

This is shown as in the classical case; the only difference is that the operators are

now of type Ψ·,· instead of Ψ·. The operator R is regularizing since R and r are

regularizing.

In order to prove the second part of the theorem, notice that the orthogonal of

ImP is the kernel of tP and since tQ tP = I + tR, with tR also regularizing, if (f, g)

is in ImP⊥ then (f, g) = − tR(f, g) are in C∞(Ω̄)× C∞(∂Ω, C).



61

REFERENCES

[1] Beals, R. and Greiner, P. “Calculus on Heisenberg manifolds.” Princeton:

Princeton University Press, 1988

[2] Berhanu, S. and Pesenson, I. “The Trace Problem for Vector Fields satis-
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