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ABSTRACT

TOPICS IN HARMONIC ANALYSIS ON COMBINATORIAL GRAPHS

Getnet Abebe Gidelew

DOCTOR OF PHILOSOPHY

May, 2014

Professor Isaac Pesenson, Chair

In recent years harmonic analysis on combinatorial graphs has attracted

considerable attention. The interest is stimulated in part by multiple existing

and potential applications of analysis on graphs to information theory, signal

analysis, image processing, computer sciences, learning theory, and astronomy.

My thesis is devoted to sampling, interpolation, approximation, and multi-

resolution on graphs. The results in the existing literature concern mainly with

these theories on unweighted graphs. My main objective is to extend existing

theories and obtain new results about sampling, interpolation, approximation,

and multi-resolution on general combinatorial graphs such as directed, undi-

rected and weighted.
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CHAPTER 1

INTRODUCTION

Harmonic analysis is nowadays one of the most important branches of

mathematical analysis. There are many applications of harmonic analysis

concepts and techniques ranging from the most classical Fourier transform

which has been used for decades by physicists, astronomers, engineers, etc., to

the relatively new applications of wavelets to signal processing [1, 2, 3, 4, 5, 6].

Many signal processing techniques are based on transform methods. It is well

known that wavelet transforms, Laplace transforms, and Fourier transforms

are among some of the most common types of transforms in use. Although

wavelets are a relatively recent development in mathematics, they have proved

to be extremely useful tools for signal processing. Much of the power of wavelet

methods comes from their ability to simultaneously locate signal content in

both time and frequency (time-frequency localization) [6].

Graphs and networks have been successfully used in a variety of fields

such as machine learning [20, 21], data mining [106], image analysis [80], com-

plex networks [107] and social sciences that are confronted with the analysis

and modeling of high-dimensional datasets. Harmonic analysis tools origi-

nally developed for Euclidean spaces and regular lattices are now being ex-

tended to the general settings of graphs and networks in order to analyze

geometric and topological structures, and data and signals measured on them

[1, 7, 8, 13, 19, 22, 23, 24, 25, 26, 27, 33, 44, 45, 73, 74, 79, 87, 32, 90]. The
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development of this new analysis on combinatorial graphs attracted consid-

erable attention. Many interesting scientific problems involve analyzing and

manipulating structured data such as data mining. Such data often consist of

sampled real valued functions defined on some irregular domain sets such as

graphs.

As many traditional and classical methods for signal processing are de-

signed for data defined on regular Euclidean spaces, the development of meth-

ods that are able to accommodate complicated data domains is also an im-

portant problem. Consequently, wavelets on graphs [1], the concepts of signal

processing on graphs [7], uncertainty principles on graphs [19, 73], graph Lapla-

cians [9, 10, 11, 13, 15, 16], Fourier transform on graphs, diffusion on graphs

and sampling and approximation theory on graphs [22, 23, 24, 25, 26, 27, 33]

have been developed by mathematicians and computer scientists in recent

years.

For example, motivated by their effectiveness and wide range of applica-

tions, several mathematicians extended the theory of wavelet transforms for

signals defined on graphs [1, 2, 3, 4, 5]. The approach on describing wavelets on

graphs uses only the connectivity information encoded in the edge of weighted

graphs, and does not rely on any other attributes of the vertices (such as their

positions as embedded in High dimensional Euclidean spaces). As a result, the

transform can be defined and calculated for any domain where the underlying

relations between data locations can be represented by a weighted graph. This

is important as a weighted graph provides a flexible model for approximating

the data domains of a large class of problems. Some data sets can naturally

be modeled as scalar functions defined on the vertices of graphs. For instance,

computer networks, transportation networks, or social networks can all be

described by weighted graphs, with the vertices corresponding to individual

computers, cities or people respectively. The graph wavelet transform could

be useful for analyzing data defined on the vertices, where the data is expected

to be influenced by the underlying topology of the graph.

A spectral graph uncertainty principle (an uncertainty principle for signals
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defined on graphs) which resembles the classical Heisenberg’s famous uncer-

tainty principle in time-frequency (see section 2.5) was also recently discussed

in [19]. Various forms of the uncertainty principle in other settings have also

attracted the attention of researchers in the past few years. For example, an

uncertainty principle on homogenous trees [73], on the n-dimensional motion

groups, nilpotent Lie groups, and non-compact semi-simple Lie groups, and

symmetric spaces (see the references in [73]) have been studied in the last few

years.

Recently a new approach was developed to the following topics on com-

binatorial graphs: Poincaré and Plancherel-Polya-type inequalities, sampling

theory of Paley-Wiener functions, Lagrangian splines, Lagrange interpolation

and approximation [22, 23, 24, 25, 26, 27, 33]. The results were obtained for

both finite and infinite graphs. However, most of the previous works contain

the assumption that graphs are unweighted, undirected, degrees of vertices

are uniformly bounded. Although this assumption seems to be innocent, it

imposes a strict restriction on weighted and directed graphs. The main goals

of my research is to extend these notions to weighted and directed graphs.

Spectral graph theory is a useful subject which provides a bridge between

the classical signal processing and the evolving field of graph signal processing.

It studies the relation between graph properties and the spectrum of matrices

associated to a graph, unlike algebraic graph theory which studies graphs by

using algebraic properties of associated matrices. For details about special

graph theory see [9, 10, 11, 13, 15, 16, 56] and for details about algebraic

graph theory see [14]. I will particularly focus on graph Laplacian and its

spectrum as it is the main tool in my research.

The thesis is organized in a such a way that the first sections up to section

4.2 give an overview of some relevant results from the classical Fourier analysis

and recent results of analysis on graphs and sections from 4.3 up to the end

contain my contributions to this subject. My own theoretical and experimental

results are contained in the last 5 chapters.

In chapter 2, we briefly discuss the classical harmonic analysis, with main
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emphasis on the Fourier transform and its applications, the classical Paley-

Wiener spaces, Shannon Sampling Theorem, Heisenberg’s uncertainty princi-

ple, and frame theory.

In chapter 3, we give an exposition of basic notations and concepts of

graphs. In particular, we discuss about graphs and the Laplacian operators

associated with graphs. Three most useful matrices associated with graphs,

namely, the adjacency matrix, combinatorial Laplacian and the normalized

Laplacian for both weighted and unweighted graphs will be discussed. We will

also review the spectral properties of the Laplacian operators, known Lapla-

cian eigenvalue bounds, spectral decomposition theorem, and the variational

principle. Infinite graphs and an essential self-adjointness of an infinite Lapla-

cian are also discussed here. In the case of infinite graphs, it is shown that

the Laplacian operator is not always bounded and hence its analysis is more

complicated. However, the Laplacian of a locally-finite (infinite) graph with

an appropriate domain is a positive essentially self-adjoint operator.

Directed graphs and their Laplacian matrices are also discussed in this

chapter. The Laplacian operator (matrix) on a directed graph is defined in

terms of the transition probability matrix associated to the graph. A com-

parison of the directed and undirected Laplacians on regular graphs is also

given.

In chapter 4, a graph Fourier transform which resembles in many ways

to the classical Fourier transform is defined using the graph Laplacian eigen-

functions. In this case the Laplacian eigenvalues will be considered as the

frequency and we will give an explanation and experimental results for that.

We will then discuss a sampling theory on combinatorial graphs developed in

[22] and further extend the idea to weighted and directed graphs. A graph

setting of Paley-Wiener spaces and the sampling theorem will be discussed.

It is shown that functions from some of these spaces are uniquely determined

by their values on some subsets of the vertex set called uniqueness (sampling)

sets. Uniqueness sets are described in terms of Poincaré-type inequalities. It

is shown that every finite subset of a graph admits a Poincaré inequality and
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is a uniqueness set for functions in some Paley-Wiener space.

In chapter 5, we will introduce a new method of signal approximation

using frames. Frames are defined in terms of the Laplacian eigenfunctions.

A multiresolution analysis on weighted graphs will be discussed. It is shown

further in this chapter that every finite subset of the vertex set is a sampling

set for some space of functions. Thus, the problem of signal interpolation can

be posed as the problem of first defining the set of vertices S with known

sample values as a uniqueness set for some PWω(G), and then reconstructing

the signal values on the the complement set, V \S. Given a subset S of the

vertex set V, an algorithm to effectively compute the optimal frequency ω such

that S is a uniqueness set for PWω(G) is developed. Many experimental results

will be given in this chapter.

Then, in chapter 6, we will extend the idea of pointwise sampling to average

sampling on a more general weighted graphs. The average value of a signal

will be defined as a weighted average and an approximation technique will

be introduced using average splines interpolating the signal on some disjoint

subsets of the vertex set. Average splines are defined as minimizers of Sobolev

norms which are introduced in terms of a combinatorial Laplace operator. It

is shown that such splines interpolate functions on some subsets of the graph

called sampling sets and provide optimal approximations to them.

Chapter 7 is devoted to establishing quadratures on combinatorial graphs.

We develop a set of rules (quadratures) which allow for approximation or ex-

act evaluation of ”integrals”
∑

v∈V f(v) of functions by using their values on

subsets U ⊂ V of vertices. Two types of quadratures are developed. Quadra-

tures of the first type are exact on spaces of variational splines on graphs.

Since bandlimited functions can be obtained as limits of variational splines

we obtain quadratures which are essentially exact on spaces of bandlimited

functions. Quadratures of the second type are exact on spaces of bandlimited

functions. Accuracy of quadratures is given in terms of smoothness which

is measured by means of combinatorial Laplace operator. The results have

potential applications to problems that arise in data mining.
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Finally, in chapter 8, we will further extend the application of splines in

spectral graph drawing. More specifically, we will use splines approximating

the lowest few eigenfunctions of the Laplacian to draw graphs and will explain

the idea why these splines will be important in graph drawing. We will also

discuss the high dimensional embedding and eigen-projection methods. We

then construct a new low dimensional subspace of Rn for the coordinate axes

to project graphs into low dimensions.
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CHAPTER 2

CLASSICAL HARMONIC

ANALYSIS

The Nyquist-Shannon sampling theorem, after Harry Nyquist and Claude

Shannon, in the literature more commonly referred to as Shannon’s Sampling

Theorem or simply as the sampling theorem, is a fundamental result in the field

of information theory, in particular telecommunications and signal processing.

Sampling is the process of converting a signal (for example, a function of

continuous time or space) into a numeric sequence (a function of discrete time

or space).

It has been about six decades since Shannon introduced the sampling the-

orem to the communication theory. In 1949, Shannon published a paper titled

Communication in the Presence of Noise, which set the foundation of the clas-

sical information theory [82]. This paper is considered one of the theoretical

works that have the greatest impact on modern electrical engineering [83]. In

order to formulate his rate/distortion theory, Shannon needed a general mech-

anism for converting an analog signal into a sequence of numbers. This led

him to state the classical sampling theorem at the very beginning of his paper

as follows.

Theorem 2.1 [Shannon] If a function f(x) contains no frequencies higher

than B, it is completely determined by giving its ordinates at a series of points
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spaced 1
2B

seconds apart.

A signal f is called bandlimited if it involves only frequencies smaller than

some constant, say ω, that is, if its Fourier transform f̂ vanishes outside the

finite interval [−ω, ω]. In other words, f̂ is compactly supported in [−ω, ω].

The signal f is then called ω-bandlimited. Thus, Shannon’s sampling theo-

rem states that a bandlimited function can be perfectly reconstructed from a

countable sequence of samples if the bandlimit, ω, is not greater than half the

sampling rate (samples per second). The theorem also leads to a formula for

reconstruction of the original function from its samples. When the bandlimit

is too high (or there is no bandlimit), the reconstruction exhibits imperfections

known as aliasing. Of course, in practice, infinite sequences, perfect sampling,

and perfect interpolation are all replaced by approximations, deviating from

the ideal mathematical reconstruction.

The principal impact of the Shannon sampling theorem on information

theory is that it allows the replacement of a continuous bandlimited signal

by discrete sequence of its samples without the loss of any information. Also

it specifies the lowest rate (also known as the Nyquist rate) of such sample

values that is necessary to reproduce the original continuous signal. The proof

of Shannon’s sampling theorem depends on the Fourier transform of the signal,

which we will discuss in the next section.

2.1 Fourier Transform and its applications

Fourier transform (FT) is named in honor of Joseph Fourier (1768-1830),

one of the greatest names in the history of mathematics and physics. Math-

ematically speaking, the Fourier transform is a linear operator that maps a

functional space to another functionals space and decomposes a function into

another function of its frequency components [73]. In 1807, Fourier showed

that any periodic function could be represented by a series of sinusoidal func-

tions. The formulae used to define Fourier transform vary according to dif-
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ferent authors. However, they are essentially the same but using different

scales.

If f is an integrable function on R, its Fourier transform is the function f̂

on R defined by

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξx dx, ξ ∈ R. (2.1)

It is also customary to write

F(f)(ξ) = f̂(ξ)

for the Fourier transform of f .

Since e−iξt has absolute value 1, the integral converges absolutely for all ξ

and defines a bounded function of ξ:

|f(ξ)| ≤
∫ ∞
−∞
|f(x)| dx = ||f ||L1 .

Moreover, since |e−iξxf(x) − e−iηxf(x)| ≤ 2|f(x)|, the dominated conver-

gence theorem implies that f̂(ξ)− f̂(η)→ 0 as ξ → η, that is f̂ is continuous.

In addition, If f is sufficiently smooth, then it can be reconstructed from its

Fourier transform using the inverse Fourier transform

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)eiξx dξ. (2.2)

Thus, the inverse Fourier transform is the procedure for recovering f from f̂ .

Strictly speaking, eq.(2.1) and eq.(2.2) are well defined only if f and F(f),

are absolutely integrable; for general L2-functions f, F(f) is defined via a

limiting process.

Fourier transform, which was first proposed to solve PDEs such as Laplace,

Heat and Wave equations, has enormous applications in physics, mathematics,

engineering and chemistry. For example, some of its applications include:

1. Signal analysis : Fourier transform is essential to understand how a signal

behaves when it passes through filters, amplifiers and communication
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channels.

If f(t) represents the amplitude of a signal such as a sound wave or an

electromagnetic wave at time t, then the Fourier representation

f(t) =
1

2π

∫ ∞
−∞

f̂(ξ)eiξt dξ

exhibits f as a continuous superposition of the simple periodic waves eiξt

as ξ ranges over all possible frequencies.

2. Image processing : Transformation, representation, and encoding, smooth-

ing and sharpening images. Image segmentation is one of the most widely

studied problem in image analysis.

3. Data analysis : Fourier transform can be used as a high-pass, low-pass,

and band-pass filters and it can also be applied to signal and noise es-

timation by encoding the time series. A high-pass filter is an electronic

filter that passes high-frequency but attenuates (reduces the amplitude)

signals with frequency lower than the cutoff frequency. A low-pass fil-

ter is a filter that passes low frequency signals and attenuates signals

with frequencies higher than the cutoff frequency. A low-pass filter is

the opposite of a high-pass filter. A band-pass filter is a combination of

low-pass and high-pass filters.

As mentioned before, the proof of Shannon’s sampling theorem depends

on the Fourier transform of the signal. The reconstruction formula that com-

plements Shannon’s sampling theorem is

f(t) =
∞∑

n=−∞

f
(nπ
ω

) sin(ωt− nπ)

ωt− nπ
. (2.3)

Shannon’s proof starts by letting

f(t) =
1

2π

∫ ∞
−∞

f̂(ξ)eiξt dξ =
1

2π

∫ ω

−ω
f̂(ξ)eiξt dξ, (2.4)

since f̂(ξ) is assumed to be zero outside the band (−ω, ω).
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2.2 Why bandlimited functions?

It is natural to ask why bandlimited functions can be completely recon-

structed from their uniform samples. Here, we briefly explain the reason why

that is generally true.

Suppose f represents a signal that we can measure its values at some

sequence of times t1 < t2 < . . . . How much information can we gain this way?

Clearly, for an arbitrary function f(t), knowing a discrete set of values f(t1),

f(t2), . . . tells us essentially nothing about the values of f at other points

and it is difficult or even impossible to reconstruct f from these discrete set

of values in a stable way. However, if f is known to involve only certain

(low) frequencies (i.e., f is bandlimited), a lot can be said about the signal.

The set of ω-bandlimited functions form the Paley-Wiener class PWω(R).

Such functions f are restrictions to the real line of entire functions F (z) of

exponential type ω. Since eiξt does not change much on any interval of length

∆t � ξ−1, f(t + ∆t) will not differ much from f(t), when ∆t � ω−1; hence

we should pretty well know f once we know the values f(tj) at a discrete

sequence {tj} of points with tj+1 − tj ≈ ω−1. Thus, the classical sampling

theorem says that if f is band-limited with f̂(ξ) = 0 for |ξ| ≥ ω , then f is

completely determined by its values at the points tn = nπ
ω
, n = 0,±1,±2, . . . .

It is an interesting observation that such functions are completely determined

by their values at the points x = nπ
ω

, where n ∈ Z. In particular, we have,

f(t) =
∞∑

n=−∞

f
(nπ
ω

) sin(ωt− nπ)

ωt− nπ
,

where convergence is understood in the L2-sense. It is important to note that

the functions

sn(t) =
sin(ωt− nπ)

ωt− nπ
(n = 0,±1,±2, . . . )

form an orthogonal basis for the space of ω-bandlimited functions, PWω(R)

and the sampling formula (2.3) is merely the expansion of f with respect to
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this basis. From the practical point of view, this expansion has the disadvan-

tage that it generally does not converge very rapidly, since the sinc function

sinx
x

decays slowly as x→∞. However, a more rapidly convergent expansion

for a function f can be obtained by oversampling, that is, by replacing the

sequence of points nπ
ω

at which f is sampled by a more closely spaced sequence

nπ
λω
, (λ > 1).

We know from Heisenberg’s uncertainty principle (see Heisenberg’s Inequal-

ity in sec 2.6) that it is impossible for a signal to be both bandlimited and

time limited; that is it is impossible for f and f̂ both to vanish outside a finite

interval unless f is identically zero. Indeed, if f ∈ L2 and f̂(ξ) = 0 for |ξ| > ω,

then the integral

F (z) =
1

2π

∫ ∞
−∞

eiξzf̂(ξ) dξ

makes sense for any complex number z; moreover, we can differentiate under

the integral to see that F (z) is analytic. Thus, f is the restriction to the real

axis of the entire analytic function F , and in particular, f cannot vanish except

at isolated points unless it vanishes identically. In exactly the same way, if

f 6= 0 vanishes outside a finite interval then f̂ has only isolated zeros. These

facts are aspects of the well known Heisenberg’s uncertainty principle, which

states that f and f̂ cannot both be highly localized. That is, if f vanishes

(or is very small) outside some small interval, then f̂ has to be quite ”spread

out,” and vice-versa.

2.3 Sampling non-bandlimited signals

The sampling theorem plays a crucial role in signal processing and commu-

nications: it tells us how to convert an analog signal into a sequence of num-

bers, which can then be processed digitally or coded on a computer. While

Shannon’s result is very elegant and has proven to be extremely useful, there

are several problems associated with it [83]. First it is an idealization: real-



13

world signals or images are never exactly bandlimited. Second, there is no

such device as an ideal (anti-aliasing or reconstruction) low-pass filter. Third,

Shannon’s reconstruction formula is rarely used in practice (especially with

images) because of the slow decay of the sinc function. Instead, practitioners

typically rely on much simpler techniques such as linear interpolation. De-

spite these apparent mismatches with the physical world, researchers continue

to show that a reconciliation is possible and that Shannon’s sampling the-

ory, in its modern and extended versions, can perfectly handle such non-ideal

situations.

Although Shannon’s Sampling theorem was stated primarily for bandlim-

ited functions which are uniformly sampled, it was later extended to a more

general random functions and irregular samples [84, 85]. The sampling tech-

nique discussed in Shannon’s sampling theorem and its extensions is explicit

sampling in the sense that a bandlimited function f(t) is represented in terms

of its samples f(tn) at preselected instants {tn} which are independent of f(t).

On the other hand, many researchers have tried to extend the idea of Shannon

to reconstruct bandlimited signals from irregularly sampled data and non-

bandlimited signals from regularly sampling values. In the former case, one

is asking whether and how a bandlimited signal f can be completely recon-

structed from its irregularly sampled values f(xi). This has many applications

in signal and image processing, seismology, meteorology, medical imaging, etc.

(see [88] and the references therein.)

In the latter case, the standard signal processing practice is to apply a

low-pass filter prior to sampling in order to suppress aliasing. To understand

the modern point of view, we need to consider the Hilbert space L2(R), which

consists of all functions that are square integrable (in Lebesgue’s sense). The

corresponding L2-norm is

||f || =
(∫ +∞

−∞
|f(x)|2 dx

)1/2

=
√
〈f, f〉. (2.5)
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This norm is induced by the L2 inner product

〈f, g〉 =

∫ +∞

−∞
f(x) g∗(x) dx,

where g∗(x) is the conjugate transpose of g(x), and in fact it is just g(x) if g

is real.

We now assume that the input function that we want to sample is in

L2(R), a space considerably larger than the subspace of bandlimited functions,

PWω(R). This means that we will need to make an approximation if we want

to represent a non-bandlimited signal in the bandlimited space PWω(R).

2.4 Projections and Least-Squares approxima-

tion

Definition 2.1 Let φ be an element of a normed linear space V with ||φ|| = 1.

For any f ∈ V the projection of f in the direction of φ is denoted by projφf

with the definition

projφf = 〈f, φ〉φ. (2.6)

Theorem 2.2 f is a scalar multiple of φ if and only if

projφf = f

.

Proof: If f = αφ for some scalar α, then we have

projφf = 〈αφ, φ〉φ = α〈φ, φ〉φ = α||φ||2φ = αφ = f. (since ||φ|| = 1)

Conversely, if projφf = f , then by (2.6) we have 〈f, φ〉φ = f , i.e., f is a scalar

multiple of φ. �

The next theorem is obvious.

Theorem 2.3 If ψ = f − projφf , then the inner product 〈ψ, φ〉 = 0, and ψ is

orthogonal to φ.
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Definition 2.2 Let V denote a normed linear space, and let Ωn denote a

subspace of V spanned by an orthonormal sequence φ1, φ2, . . . , φn in V. The

projection of f ∈ V into the subspace Ωn is defined by

projΩnf =
n∑
`=1

projφ`f =
n∑
`=1

λ`φ`, where λ` = 〈f, φ`〉. (2.7)

Theorem 2.4 projΩnf = f if and only if f ∈ Ωn.

Proof: If projΩnf = f , then by (2.7) f is a linear combination of φ1, φ2, . . . , φn

from the orthonormal sequence which spans Ωn, hence f ∈ Ωn. Conversely, if

f ∈ Ωn, then f can be written as

f =
n∑
k=1

αkφk,

where the αk’s are scalars, and the φk’s are from the orthonormal sequence

spanning Ωn. To obtain projΩnf according to (2.7), we compute the coefficient

λ` defined by the inner product 〈f, φ`〉, namely,

λ` = 〈f, φ`〉 =

〈
n∑
k=1

αkφk, φ`

〉
=

n∑
k=1

αk〈φk, φ`〉 = α`〈φ`, φ`〉 = α`.

Then we have

projΩnf =
n∑
`=1

λ`φ` =
n∑
`=1

α`φ` = f. �

Theorem 2.4 shows that for every f ∈ Ωn, one can express it as a linear

combination of the elements from the orthonormal basis of Ωn conveniently,

because such an expression is given by projΩnf which explicitly defines each

coefficient to be the inner product of f and an element from the orthonormal

sequence. Notice that this theorem also shows that if f /∈ Ωn, then f 6=
projΩnf .

The next theorem shows that if ψ = f − projΩnf , then ψ is orthogonal to

Ωn.
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Theorem 2.5 Let Ωn be the subspace of V spanned by the orthonormal se-

quence φ1, φ2, . . . , φn. If ψ = f − projΩnf , then ψ is orthogonal to every

element gn ∈ Ωn.

Proof: By Definition 2.2, projΩnf =
∑n

k=1 λ`φk for λk = 〈f, φk〉. To show

that ψ is orthogonal to every gn ∈ Ωn, it suffices to show that 〈ψ, φ`〉 = 0 for

each ` = 1, 2, . . . , n since every element gn ∈ Ωn can be expressed as

gn =
n∑
`=1

α`φ`

for some scalars α`. Now for ` = 1, 2, . . . , n, we have

〈ψ, φ`〉 =

〈
f −

n∑
k=1

λkφk, φ`

〉

= 〈f, φ`〉 −
n∑
k=1

λk〈φk, φ`〉

= 〈f, φ`〉 − λ`〈φ`, φ`〉

= 〈f, φ`〉 − λ` = 0.

The theorem is proved. �

As we mentioned before, Theorem 2.4 shows that if an element f /∈ Ωn,

then f 6= projΩnf . Therefore, in general, we can only approximate an arbitrary

function by a finite Fourier series. It is shown in the next theorem that if Ωn

is a subspace of V, then for every f ∈ V and every gn ∈ Ωn, the difference

||f − gn|| is minimized when gn = projΩnf . In other words, the best least-

squares approximation to f in the subspace Ωn is given by gn = projΩnf .

Theorem 2.6 If Ωn is a subspace of the normed V, and Ωn is spanned by the

orthonormal sequence φ1, φ2, . . . , φn, then for ever f ∈ V , the element gn ∈ Ωn

for which ||f − gn|| is a minimum is gn = projΩnf .

Proof: Suppose ||f − g||2 is minimum by gn =
∑n

k=1 αkφk ∈ Ωn, where the

coefficients αk to be determined. We proceed to evaluate the inner product
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defining ||f − gn||2, and we obtain

〈f − gn, f − gn〉 = 〈f, f〉 − 〈f, gn〉 − 〈gn, f〉+ 〈gn, gn〉

= ||f ||2 −
n∑
k=1

ᾱk〈f, φk〉 −
n∑
k=1

αk〈φk, f〉+
n∑
k=1

|αk|2

= ||f ||2 −
n∑
k=1

ᾱk〈f, φk〉 −
n∑
k=1

αk〈f, φk〉+
n∑
k=1

|αk|2

= ||f ||2 −
n∑
k=1

ᾱkλk −
n∑
k=1

αkλ̄k +
n∑
k=1

αkᾱk whereλk = 〈f, φk〉

= ||f ||2 +
n∑
k=1

(λ̄kλk − ᾱkλk − αkλ̄k + ᾱkαk)−
n∑
k=1

λ̄kλk

= ||f ||2 +
n∑
k=1

(λ̄k − ᾱk)(λk − αk)−
n∑
k=1

|λk|2

= ||f ||2 +
n∑
k=1

|λk − αk|2 −
n∑
k=1

|λk|2.

To minimize the right side, we focus only on the term involving the unknown

αk’s, i.e., the term
∑n

k=1 |λk − αk|
2. Since this term is non-negative, its min-

imum value is zero, which is reached when αk = λk for each k = 1, 2, . . . , n.

Therefore, ||f − gn|| is minimized by

gn =
n∑
k=1

αkφk =
n∑
k=1

λkφk =
n∑
k=1

〈f, φk〉φk = projΩnf.

Moreover, ||f − gn||2 = 〈f − gn, f − gn〉 = ||f ||2 −
∑n

k=1 |λk|
2 = ||f ||2 − ||gn||2,

where λk = 〈f, φk〉. �

Now substituting Ωn by PWω(R) and V by L2(R), this orthonormality

property greatly simplifies the implementation of the approximation process

by which a function f ∈ L2R) is projected onto PWω(R). Specifically, the

orthogonal projection operator Pω : L2(R)→ PWω(R) can be written as

Pωf =
∑
k∈N

〈f, φk〉φk,

where the inner product ck(f) = 〈f, φk〉 represents the signal contribution

along the direction specified by φk and {φk}k, k = 1, 2, . . . is an orthonor-
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mal basis for PWω(R). The projection theorem ensures that this projection

operation yields the minimum-error approximation of f into PWω(R):

f̃ = Pωf = arg min
g∈PWω(R)

||f − g||2

The projection interpretation of the sampling process has one big advan-

tage: it does not require the bandlimited hypothesis and is applicable for any

function f ∈ L2(R).

2.5 Heisenberg’s Uncertainty Principle

The classical uncertainty principle (in one-dimension), which is also known

as the Heisenberg - Pauli- Weyl inequality states that :

If f ∈ L2(R) and a, b ∈ R are arbitrary, then(∫ ∞
−∞

(x− a)2|f(x)|2 dx
)1/2(∫ ∞

−∞
(ω − b)2|f̂(ω)|2 dω

)1/2

≥ 1

4π
||f ||22, (2.8)

where f̂ is the Fourier transform of f . Intuitively, the uncertainty principle is

an inequality that involves both f and f̂ .

For f ∈ L2(R) with ||f ||2 = 1 define the standard deviations

∆fx = min
a∈R

(∫ ∞
−∞

(x− a)2|f(x)|2 dx
)1/2

,

and

∆fω = min
b∈R

(∫ ∞
−∞

(ω − b)2|f̂(ω)|2 dω
)1/2

.

∆fx is a measure for the signal duration, i.e., it measures the size of the es-

sential support of f. Similarly, ∆fω measures the essential bandwidth of the

signal centered around the average frequency ω̄ =
∫
ω|f̂(ω)|2 dω. If ∆fx is

finite, then it is minimized at its expected (average) value x̄ =
∫
x|f(x)|2 dx.

This classical Heisenberg Uncertainty Principle may be phrased in the lan-

guage of Fourier transforms by saying roughly that both f and f̂ cannot be

well localized unless f = 0.
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Now inequality (2.8) can be written in the following standard form:

if ||f ||2 = 1, then ∆fx .∆fω ≥
1

4π
(2.9)

From Inequality (2.9), we observe that the uncertainty principle limits

the degree to which a function can be simultaneously localized in time and

frequency. In other words, if a signal is highly localized in time (meaning ∆fx

is small), it must widely spread in frequency (i.e., ∆fω is large), and vice versa.

2.6 Frame Theory

The theory of frames is due to Duffin and Schaeffer [100], and it was devel-

oped to address problems in non-harmonic Fourier series. Prior to Duffin and

Schaeffer, these problems were concerned with finding criteria on real sequence

{tn} so that the closed linear span, span{etn}, of exponentials etn(x) = e2πitnx

would be equal to the space L2[−Ω,Ω] of finite energy signals defined on

[−Ω,Ω].

Definition 2.3 A sequence of vectors {hj : j ∈ J} in a (separable) Hilbert

space H with inner product 〈., .〉H is a frame for H if there exist constants

0 < A ≤ B such that

A||f ||2 ≤
∑
j

|〈f, hj〉|2 ≤ B||f ||2 for all f ∈ H. (2.10)

Any two constants A and B satisfying (2.10) are called frame bounds. If

A = B, then {hj : j ∈ J} is called a tight frame. Frame bounds are not

unique in general. The optimal lower frame bound is the supremum over all

lower frame bounds, and the optimal upper frame bound is the infimum over

all upper frame bounds. A frame is exact if it is no longer a frame whenever

any one of its elements is removed from the sequence.

A frame for a vector space equipped with an inner product allows each

vector in the space to be written as a linear combination of the elements in

the frame by relaxing the orthogonality and uniqueness of the decomposition.
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That is, orthogonality and linear independence between the frame elements is

not required. Intuitively, we may think of a frame as a basis to which we have

added some more elements. As such, frames are more flexible tools to work

with and gives us more freedom to choose from.

Examples: An orthonormal basis is a tight frame with frame bounds A =

B = 1. The union of any two orthonormal bases is a tight frame with frame

bounds A = B = 2. The union of an orthonormal basis with k arbitrary unit

vectors is a frame with bounds A = 1 and B = k+1.

To understand frames and reconstruction methods better, we study some

important associated operators.

Definition 2.4 The frame operator of the frame {hj : j ∈ J} is the function

S : H → H defined as

Sf =
∑
j

〈f, hj〉hj (2.11)

for all f ∈ H.

The synthesis operator or the reconstruction operator D is defined for a finite

sequence c = (cj)j∈J by

Dc =
∑
j∈J

cjhj ∈ H.

Notice that the frame operator S and the synthesis operator D have the rela-

tion S = DD∗.

The optimal frame bounds A, B for a frame {hj} with frame operator S

are given by A = ||S−1||−1, B = ||S||, where ||.|| is the operator norm of S.

In particular, if H is finite dimensional, the optimal lower frame bound is the

smallest eigenvalue of the associated frame operator, and the optimal upper

frame bound is the largest eigenvalue. Moreover, if H has dimension n and

{hj}mj=1 is a tight frame and ||hj|| = 1 for all j, then the frame bound is

A = m/n.
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The lower frame bound implies that frames are complete. Indeed, if f ∈ H
and 〈f, hj〉 = 0 for all j, then

A||f ||2 ≤
∑
j

|〈f, hj〉|2 = 0, so ||f || = 0, which implies f = 0.

Moreover, in the case of finite diminutional Hilbert space H, the removal of

a vector hk from a frame {hj} for H leaves either a frame or an incomplete set.

More precisely, given a frame {hj}mj=1 and a frame operators S, the following

holds true:

(a) If 〈hk, S−1hk〉 6= 1, then {hj}j 6=k is still a frame for H.

(b) If 〈hk, S−1hk〉 = 1, then {hj}j 6=k is incomplete, where S is the associated

frame operator.

Frames are not only complete, but they also provide a description of the

whole Hilbert space H. The upper bound estimate in eq.(2.10) is not usually a

problem and it is not difficult to derive a reasonable estimate for B. However,

the lower bound estimate is usually the difficult part. For in stance, we have

the following upper frame bound estimate in the case of finite dimensional

Hilbert space H.

Let {hj}mj=1 be a frame for a finite dimensional Hilbert space H. We can

use the Cauchy-Schwarz inequality to show that

m∑
j=1

|〈f, hj〉|2 ≤
m∑
j=1

||hj||2 ||f ||2 =

(
m∑
j=1

||hj||2
)
||f ||2 for all f ∈ H.

So the upper frame bound condition is automatically satisfied byB =
∑m

j=1 ||hj||2.

However, one can find a better upper frame bound than
∑m

j=1 ||hj||2. The fol-

lowing theorem gives a necessary and sufficient condition for a set of vectors

to be a frame in the case of finite dimensional Hilbert spaces.

Theorem 2.7 [65] Let H be a finite dimensional Hilbert space. A set of vec-

tors {hj}mj=1 in H is a frame for H if and only if span{hj}mj=1 = H.
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We should note here that this theorem is not true if H is infinite dimen-

sional.

Remark 2.1 : Given operators S, T : H → H we write S � T if 〈Sf, f〉 ≤
〈Tf, f〉 for all f ∈ H.

Theorem 2.8 [65] Given a sequence {hj} in a Hilbert space H, the following

two statements are equivalent:

(a) {hj} is a frame with frame bounds A, B.

(b) The frame operators S : H → H defined by Sf =
∑

j 〈f, hj〉hj is a

bounded linear operator with AI � S � BI.

Theorem 2.9 [89] Suppose {hj : j ∈ J} is a frame for H with frame operator

S and frame bounds A, B. Then S maps H onto H and is a positive invertible,

self-adjoint operator satisfying AI � S � BI and B−I � S−1 � A−1I.

To understand the convergence properties of the non-orthogonal series
∑

j cjhj

better, we exploit Theorem 2.9 further.

Corollary 2.1 Let {hj : j ∈ J} be a frame for H. If f =
∑

j∈J cjhj for some

c ∈ `2(J), then for every ε > 0 there exists a finite subset F0 = F0(ε) ⊆ J such

that

‖f −
∑
j∈F

cjhj‖ < ε for all finite subsetsF ⊇ F0.

We say that the series
∑

j∈F cjhj converges unconditionally to f ∈ H.

Proof. Choose F0 ⊆ J such that
∑

n/∈F |cj|2 <
ε√
B

for F ⊇ F0. Let cF =

c.χF ∈ `2(J) be the finite sequence with terms cF,j = cj if j ∈ F and cF,j = 0

if j /∈ F . Then
∑

j∈F cjhj = DcF and

‖f −
∑
j∈F

cjhj‖ = ‖Dc−DcF‖

= ‖D(c− cF )‖

=
√
B‖c− cF‖ < ε.
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As another consequence of Theorem 2.9 we obtain the following reconstruc-

tion formula for f from the frame coefficients 〈f, hj〉.

Corollary 2.2 If {hj : j ∈ J} is a frame with frame bounds A,B > 0, then

{S−1hj : j ∈ J} is a frame with frame bounds B−1, A−1 > 0, the so-called dual

frame. Moreover, every f ∈ H has a non-orthonormal expansion

f =
∑
j∈J

〈f, S−1hj〉hj,

and

f =
∑
j∈J

〈f,hj〉S−1hj,

where both sums converge unconditionally in H.

The series expansions in Corollary 2.2 are useful if it is possible to calculate

the dual frame explicitly. Often it is more convenient and more efficient to

employ an iterative reconstruction method, which is usually called the frame

algorithm.

Frame Algorithm: Given a relaxation parameter 0 < λ < 2
B

, set δ =

max{|1− λA|, |1− λB|} < 1. Let f0 = 0 and define recursively

fn+1 = fn + λS(f − fn). (2.12)

Then limn→∞ fn = f with a geometric rate of convergence, that is,

||f − fn|| ≤ δn||f ||. (2.13)

Observe that f1 = λSf = λ
∑

j〈f, hj〉hj contains the frame coefficients as in-

put. This suffices to compute the further approximations fn and to reconstruct

f completely.

Proof. Since AI � S � BI, we obtain

(1− λB)I � I − λS � (1− λA)I.
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Therefore

||I − λS|| ≤ max{|1− λA|, |1− λB|} = δ < 1, (2.14)

because λ < 2
B

. Assume that the error estimate (2.13) is true for k = 1, . . . , n

(there is nothing to solve for n = 0). Then

||f − fn+1|| = ||f − fn − λS(f − fn)||

= ||(I − λS)(f − fn)||

≤ ||I − λS|| ||f − fn||

≤ δ δn||f ||;

so we are done. �
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CHAPTER 3

LAPLACIANS ON GRAPHS

3.1 Undirected and unweighted graphs

Graphs are extremely useful structures to describe and understand numer-

ous problems. An undirected graph G consists of a vertex set V = V (G) and

an edge set E = E(G), where an edge is an unordered pair of distinct vertices

of G. We will usually use uv to denote an edge connecting the vertices u and

v and view the graph G as a pair (V,E). If uv is an edge, then we say that u

and v are adjacent or that v is a neighbour of u, and denote this by writing

u ∼ v. A vertex is incident with an edge if it is one of the two vertices of the

edge. Two graphs G and H are equal if and only if they have the same vertex

set and the same edge set. Two graphs G and H are isomorphic if there is

a bijection, ϕ say, from V (G) to V (H) such that u ∼ v in G if and only if

ϕ(u) ∼ ϕ(v) in H. We say ϕ is an isomorphism from G to H. It is normally

appropriate to treat isomorphic graphs as if they were equal. It is important

to note that in a graph, the positions of the vertices (also called nodes) and

edges do not really matter - the only information it conveys is which pairs

of vertices are joined by an edge. A graph is called complete if every pair

of vertices are adjacent, and the complete graph on n vertices is denoted by

Kn. The degree of a vertex v in an unweighted graph is the number of edges

incident to v, and denoted by d(v). For a finite graph, the maximum of all
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d(v), v ∈ V is called the degree of the graph and denoted by ∆(G). In the

case of infinite graphs, ∆(G) = sup{d(v) : v ∈ V (G)}, and may not be finite.

We say that a graph is regular if every vertex has the same degree, and k-

regular if that degree is k. A graph is simple if there is no loop and there is at

most one edge between two distinct vertices. Graphs that have multiple-edges

or self-loops are often called multi-graphs. If G is a connected graph, then

the distance between two vertices u and v is defined to be the length of the

shortest path joining them in G. We denote this distance by d(u, v). On any

connected undirected graph, the graph distance is a metric, so that (V, d) is a

metric space. In fact, the only thing that needs to be checked is the triangle

inequality, d(u, v) ≤ d(u, x) + d(x, v) for all vertices u, x, v. But this follows

from the fact that, if we want to go from u to v, then one possibility is to

go via vertex x. The diameter of G denoted by diam(G), is the maximum

distance over all pairs of vertices in G.

A subgraph of a graph G is a graph H such that

V (H) ⊆ V (G), E(H) ⊆ E(G).

If V (H) = V (G), we call H a spanning subgraph of G. Any spanning subgraph

of G can be obtained by deleting some of the edges from G. A subgraph H

of G is an induced subgraph if two vertices of V (H) are adjacent in H if and

only if they are adjacent in G. Any induced subgraph of G can be obtained

by deleting some of the vertices from G, along with any edges that contain

a deleted vertex. Thus an induced subgraph is determined by its vertex set:

we refer to it as the subgraph of G induced by its vertex set. The number of

induced subgraphs of G is equal to the number of subsets of V (G). A graph

with no edges (but at least one vertex) is called empty. A set of vertices that

induces an empty subgraph is called an independent set. A path of length r

from u to v in a graph is a sequence of r+1 distinct vertices starting with u and

ending with v such that consecutive vertices are adjacent. If there is a path

between any two vertices of a graph G, then G is connected. Alternatively,

G is disconnected if we can partition its vertices into two non-empty sets, X
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and Y say, such that no vertex in X is adjacent to a vertex in Y . In this case

we say G is a disjoint union of the two subgraphs induced by X and Y . An

induced subgraph of G that is maximal, subject to being connected, is called

a (connected) component of G.

A cycle is a connected graph where every vertex has exactly two neighbors;

the smallest cycle is the complete graph K3. An acyclic graph is a graph with

no cycles. A connected acyclic graph is called a tree, and an acyclic graph is

called a forest. A spanning subgraph with no cycles is called a spanning tree.

It is easy to see that a graph has a spanning tree if and only if it is connected.

A graph G = (V,E) is called k-partite if V admits a partition into k classes

such that vertices in the same partition class must not be adjacent. Instead

of 2-partite one usually says bipartite.

3.2 Undirected weighted graphs

A weighted graph is a graph in which a weight (typically a real number) has

been assigned to every edge. In other words, a graph G is weighted when there

is a function w : E(G) → R+ which associates a positive value w(u, v) with

each edge uv ∈ E(G). We denote a weighted graph by a triple (V,E,w). The

function w is called a weightfunction on G. Although it is possible to assign

complex values for weights of edges, we consider only real and non-negative

weights in this work. So we may associate to G a weight matrix (also called a

weighted adjacency matrix ), W = (wvu), where wvu = w(v, u), weight of edge

vu. For finite graphs with |V (G)| = n, W is an n×n matrix which has entries

wvu and satisfies the following:

1. wvu = wuv, i.e., W is symmetric.

2. wvu ≥ 0 and wvu > 0 if and only if v is adjacent to u in G. In particular,

wvv = 0 for each vertex v in V.
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The (weighted) degree of a vertex v ∈ V is defined by

µ(v) =
∑
u∈V

w(u, v).

If the graph is unweighted or every edge has a constant weight c, then µ(v)

is simply the constant c times the number of vertices incident to the vertex

v. Throughout the the thesis, we assume that G is connected, otherwise, the

problem can be dealt independently for each connected component. Also note

that, unweighted graphs are special cases of weighted graphs in which the

weight of each edge is one and the (weighted) degree of each vertex is the

number of edges incident to it.

Graphs are generic data representation forms which are useful for describ-

ing the geometric structure of data domains in numerous applications, includ-

ing social, energy, transportation, sensor, and neuronal networks. The weight

associated with each edge in the graph often represents the similarity (or the

strength of the relationship) between the two vertices it connects. The con-

nectivities and edge weights are either dictated by the physical nature of the

problem at hand or inferred from the data. For instance, the edge weight

may be inversely proportional to the physical distance between vertices in the

network. The notion of weighted graphs is fundamental to many applications

of graph theory. A number of natural interpretations of edge weight exist in

various contexts. For example, in optimization, cost capacity is natural, in

electrical network theory, edge may carry resistance or capacitance, in random

walks each edge carries a probability of moving from one incident vertex to

the other, and in geometric or analytical applications the use of edge length is

often most appropriate.

When the edge weights are not naturally defined by an application, one

common way to define the weight of an edge connecting vertices u and v is via

a thresholded Gaussian kernel weighting function:

w(u, v) =

exp
(
− [dist(u,v)]2

2σ2

)
if dist(u, v) ≤ κ,

0 otherwise,
(3.1)
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for some parameters σ and κ. In eq.(3.1), dist(u, v) may represent a graph

distance d(u, v), the shortest path connecting u and v, or the Euclidian dis-

tance between two feature vectors describing u and v if graph is embedded

into Euclidean space. A second common method is to connect each vertex to

its k-nearest neighbors based on the graph or Euclidean distances.

3.3 Undirected graph Laplacians

Given a graph G one can associate several matrices which record infor-

mation about the graph (the vertices and how they are interconnected). A

natural question then arises, given that we know the eigenvalues or eigenvec-

tors of these matrices associated with the graph, what can we say about the

graph? Spectral graph theory looks at answering questions of this type and

the study of the relations between eigenvalues and structures of a graph is the

heart of the subject. By studying the various spectra of matrices that can be

associated with the graph it is possible to get information about the graph

that might otherwise be difficult to obtain. For instance, a graph is connected

if and only if the smallest eigenvalue (λ1 = 0) of its Laplacian matrix has

multiplicity one, a graph is bipartite if and only if the largest eigenvalue of the

normalized Laplacian is equal to 2. If the graph is not connected, then the

multiplicity of zero as an eigenvalue of the Laplacian matrix determines the

number of connected components of the graph [9]. Graphs can be drawn by

using few eigenvectors of some matrices associated with it [46]. Graph drawing

will be discussed in chapter 8.

Among several matrices associated with graphs which capture information

about the graphs, our primary focus will be on the three most common and im-

portant matrices, namely, the Adjacency Matrix, the Combinatorial Laplacian

and the Normalized Laplacian.

Let G = (V,E) be a simple undirected finite graph and consider a real-

valued function f over V ; f : V → R. This is simply a vector indexed by the

vertices of G. Functions defined on graphs are often called graph signals. Let



30

L2(G) denote the space of all real valued functions f : V → R. The set of such

functions forms a vector space over R of dimension n and hence is isomorphic

to Rn, where n = |V (G)|. So a function f in L2(G) can be represented as a

vector in Rn, where the i-th component of the vector represents the function

value f(i) at the i-th vertex in V . Thus, the space L2(G) can be endowed with

the standard inner product in Rn as

〈f, g〉L2(G) =
∑
i∈V

f(i)g(i). (3.2)

The corresponding norm in L2(G) is

||f || =
√
〈f, f〉.

The adjacency matrix of a graph G is the 0 -1 matrix A = A(G) indexed by

the vertex set V of G, where Aij = 1 when there is an edge from i to j in G

and 0 otherwise, i.e.,

Aij =

1 if i ∼ j,

0 otherwise.

The fundamental structure of a graph G can be captured by its adjacency

matrix. The diagonal of A is always zero because no loops are allowed and

A is symmetric because the graph is undirected. A power of the adjacency

matrix has also a nice interpretation. If A is the adjacency matrix of a graph,

the (i, j)-th entry of Ak is a nonnegative integer which is the number of paths

of length k from node i to node j in the graph [72]. A generalization will

be considered for weighted graphs where each edge uv ∈ E(G) is associated

with a positive weight w(u, v) (see section 3.3.4). In this case, the nonzero

entries of the adjacency matrix are replaced by the weights of the correspond-

ing edges. While the adjacency matrix is the most natural matrix to associate

with a graph, it is also believed that it is the least useful. Daniel Spielman

[56], claims that eigenvalues and eigenfunctions are most useful when used to

understand a natural operator or natural quadratic form and the adjacency

matrix provides neither.
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3.3.1 Unnormalized graph Laplacian

In this and the next two subsections we consider only unweighted graphs.

Weighted graphs will be treated in section 3.3.4. Let D denote the diagonal

matrix (also called the degree matrix ) with the (i, i)-th entry Dii having value

d(i), and let A be the adjacency matrix of G. The unnormalized graph Lapla-

cian(also know as graph Laplacian), L is a symmetric operator on L2(G) and

defined [9] by

L = D − A. (3.3)

Hence, the graph Laplacian operator L : L2(G) → L2(G) is a linear operator

in the vector space L2(G). Moreover, for any function f ∈ L2(G) it satisfies

(Lf)(v) =
∑
u
u∼v

(f(v)− f(u)) = d(v)f(v)−
∑
u
u∼v

f(u), (3.4)

for any v ∈ V , where the sum over u ∼ v indicates summation over all vertices

u that are connected to the vertex v. The graph Laplacian operator can also

be given explicitly by the matrix

Lij =


d(i) if i = j,

−1 if i ∼ j,

0 otherwise.

Note that the diagonal elements of the Laplacian are the degree of the vertices

and are strictly greater than 0 for connected graphs. For any f ∈ L2(G), it

can be verified that the quadratic form of the Laplacian is

〈f, Lf〉 =
∑
i∼j

(f(i)− f(j))2. (3.5)

The quadratic form measures the smoothness of the function f . It will be small

if the function f does not jump too much over any edge [21, 56]. Applying

the variational principle on self-adjoint operators, eq.(3.5) also immediately

shows that the Laplacian is a nonnegative operator, and thus all eigenvalues

are non-negative.
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The Laplacian matrix of a graph and its eigenpairs can be used in several

areas of mathematical research and have a physical interpretation in vari-

ous physical and chemical theories. For example, eigenvectors of the Lapla-

cian matrix can be used in clustering [41, 42, 43], semi-supervised learning

[20, 21], non-linear dimensionality reduction, ranking, cutting, graph drawing

[46, 47, 48, 49, 50, 51, 52, 53], and more. Although the associated adjacency

matrix of a graph and its eigenvalues were much more investigated and widely

used in the past than the Laplacian matrix, it is believed that the Laplacian

spectrum is much more natural and more important than the adjacency ma-

trix spectrum [15, 56].

An Important fact from Linear Algebra: If M is an n-by-n symmetric

matrix, then there exist n mutually orthogonal unit vectors ψ1, ψ2, . . . , ψn and

numbers λ1, λ2, . . . , λn such that ψi is an eigenvector of M of eigenvalue λi,

for each i. This is a well known fact about symmetric matrices and can be

found in any standard linear algebra books (e.g. see [72]). Another important

property of symmetric matrices is if λ and µ are eigenvalues of M , with λ 6= µ,

then the eigenvectors corresponding to λ and µ are orthogonal.

Since both D and A are symmetric it is clear that the Laplacian is symmet-

ric and also by eq.(3.5), L is positive semi-definite. Thus, it has n eigenvalues

and all eigenvalues are real and nonnegative with 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

(repeated according to their multiplicities). The eigenvectors of L are also

called the eigenfunctions. Notice that L1 = 0 where 1 = (1, 1, . . . , 1). So

0 is an eigenvalue of L corresponding to the eigenfunction 1. Moreover, the

multiplicity of the value zero as an eigenvalue of L is equal to the number of

connected components of G. In addition, according to the above discussion, if

the graph is connected then every eigenfunction corresponding to the eigen-

value λi, i ≥ 2 is orthogonal to 1. It is also known that if λ2 is big, then

G is very well connected. Because the graph Laplacian L is a real symmetric

matrix, it has a complete set of orthonormal eigenvectors, which we denote by
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{φ`}`, ` = 1, 2, . . . , n with the associated eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

satisfying

Lφ` = λ`φ`

for ` = 1, . . . , n. We denote the spectrum of L by σ(L). The spectrum σ(L) ⊆
[0, 2∆(G)] (see for example [13]).

By the Spectral Decomposition (see Theorem 3.4),

for every function f : V → R we have

f =
n∑
j=1

〈f, φj〉φj.

Thus,

Lf =
n∑
j=1

λj〈f, φj〉φj. (3.6)

3.3.2 Normalized graph Laplacian

When studying spectral graph theory, it is sometimes useful to normalize

the graph Laplacian by its degrees. The normalized Laplacian of G is defined

by

L = D−1/2LD−1/2 = I −D−1/2AD−1/2,

with the convention that D−1(v, v) = 0 for d(v) = 0. In some cases it is easier

and more convenient to work with such normalized form. As in the case of the

unnormalized Laplacian, the normalized Laplacian, L can be written explicitly

(as a matrix) as:

Luv =


1 if u = v and d(u) > 0

− 1√
d(u)d(v)

if u ∼ v

0 otherwise.

(3.7)
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If the graph G is connected, then for any f ∈ L2(G) and any v ∈ V (G),

the operator L satisfies

Lf(v) =
1√
d(v)

∑
u
u∼v

(
f(v)√
d(v)

− f(u)√
d(u)

)
. (3.8)

As in the case of the unnormalized Laplacian, zero is an eigenvalue of the nor-

malized Laplacian operator. Moreover, if the vertices of the graph are labeled

by v1, v2, . . . , vn, then the eigenvector for L corresponding to the eigenvalue 0

is ψ0 = (
√
d(v1),

√
d(v2), . . . ,

√
d(vn)). In this case, the spectrum of L is con-

tained in [0, 2] and 2 is an eigenvalue of L if and only if the graph is bipartite.

3.3.3 Weighted graph Laplacian

So far we have discussed about the combinatorial Laplacian and its nor-

malized form on simple unweighted graphs. However, it is straightforward to

generalize these concepts to weighted graphs. Let G = (V,E,w) be a weighted

graph and let W be its associated (weighted) adjacency matrix. Let D denote

the diagonal matrix with the (v, v)-th entry having value µ(v) =
∑

u∈V w(v, u).

The weighted graph Laplacian Lw is an operator on L2(G) defined [10] as

Lw = D −W.

The matrix form of Lw is given by the following explicit form

Lw(u, v) =


µ(v) if u = v ,

−w(u, v) if u ∼ v,

0 otherwise.

(3.9)

where µ(v) =
∑

u∈V w(u, v), the (weighted) degree of the vertex v. In partic-

ular, for any f ∈ L2(G), we have

(Lwf)(v) =
∑
u
u∼v

w(v, u) (f(v)− f(u)) , f ∈ L2(G). (3.10)
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Note that Lw1 = 0. Conversely, any symmetric matrix M with nonpositive

off diagonal entries such that M1 = 0 is a weighted Laplacian.

Consider in L2(G) the following inner product: for any two functions f, g ∈
L2(G), set

〈f, g〉 :=
∑
v∈V

f(v)g(v)µ(v).

The corresponding norm in L2(G) is

||f || =
√
〈f, f〉.

As in the case of unweighted Laplacian, Lw is symmetric and positive definite

with respect to the above inner product.

For any f ∈ L2(G), the quadratic form of the weighted Laplacian is

〈f, Lwf〉 =
∑
v∼u

w(u, v)(f(v)− f(u))2. (3.11)

The quadratic form measures the smoothness of the function f . The weighted

graph Laplacian arises in many applications (e.g see [10] and the references

therein).

The following theorem (from [16]) lists some important facts and bound of

the eigenvalues of Lw. The eigenvalues λ1 and λn can be bounded in terms of

the minimum and maximum degrees of G.

Theorem 3.1 Let G = (V,E,w) be a weighted graph of order n and Lw be its

weighted Laplacian with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(a) 1 = (1, 1, . . . , 1) is an eigenfunction of Lw with corresponding eigenvalue

0.

(b) the multiplicity of 0 as an eigenvalue of Lw is equal to the number of

connected components of G.

(c) λ2 ≤ n
n−1

δ(G), where δ(G) = min{µ(v); v ∈ V (G)}.
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(d) n
n−1

∆(G) ≤ λn ≤ 2∆(G), where ∆(G) = max{µ(v); v ∈ V (G)}. If G is

an unweighted graph then the last inequality of theorem can be strength-

ened to λn ≤ max{d(u) + d(v); uv ∈ E(G)}. If G is connected, then the

equality holds if and only if G is bipartite.

The normalized form of the weighted graph Laplacian of G is defined to be

Lw = D−1/2LwD
−1/2.

In other words, we have

Lw(u, v) =


1 if u = v and d(v) 6= 0,

− w(u,v)√
µ(u)µ(v)

if u ∼ v,

0 otherwise.

Notation: Abusing the notation, for the sake of simplicity and uniformity,

we will use the notation L for the normalized Laplacian for both weighted

and unweighted graphs from now onwards and we will specifically mention it

if there is a need to differentiate the two.

Theorem 3.2 [16] For any finite, connected, weighted graph G = (V,E,w)

with |V | = n > 1, the following are true.

(i) Zero is a simple eigenvalue of L, with its corresponding eigenfunction

(
√
µ(v1), . . . ,

√
µ(vn), where v1, . . . , vn are vertices of the graph.

(ii) All the eigenvalues of L are contained in [0,2].

(iii) If G is not bipartite then all the eigenvalues of L are in [0,2).

Theorem 3.3 If G is a connected weighted graph with diameter d = d(G),

then L has at least d+ 1 distinct eigenvalues.

Proof: Let M be any nonnegative symmetric matrix with rows and columns

indexed by V(G) and such that for distinct vertices u, v in V(G) we have

Muv > 0 if and only if u ∼ v. Let the distinct eigenvalues of M be λ1, λ2, ...λr.
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Then M − λiI = 0 for each 1 ≤ i ≤ r, where 0 is the the zero vector.

In particular, (M − λiI)uv = 0 for any pair of vertices u, v ∈ V (G) and

1 ≤ i ≤ r. Hence (M − λ1I)...(M − λrI) = 0, which then implies M r is a

linear combination of I,M, ...,M r−1. But if there exist u, v ∈ V (G) such that

µ(u, v) = r, then (M i)uv = 0 for 0 ≤ i ≤ r−1 and (M r)uv > 0, a contradiction.

Hence r > d. Now let M = nI − L, and the desired result follows. �

3.3.4 Generalized Graph Laplacian

A symmetric matrix M = M(G) is called a generalized Laplacian (or dis-

crete Schrödinger operator) of G if it has nonpositive off-diagonal entries and

for u 6= v, Muv < 0 if and only if the vertices u and v are adjacent. On the

other hand, for every symmetric matrix with nonpositive off-diagonal entries

there exists a graph where two distinct vertices u and v are adjacent if and only

if Muv < 0. Similarly to eq.(3.4) and eq.(3.10) for any generalized Laplacian

M and any f ∈ L2(G),

(Mf)(v) =
∑
u
u∼v

(−Muv)[f(v)− f(u)] + p(v)f(v), (3.12)

where

p(v) = Mvv +
∑
u∼v

Mvu

can be viewed as some potential on vertex v.

The quadratic form of the the generalized Laplacian can then be computed

as

〈f,Mf〉 =
∑
v∼u

−Muv(f(v)− f(u))2 +
∑
v∈V

p(v)(f(v))2.
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In fact, using eq.(3.12), for any f ∈ L2(G) we have

〈f,Mf〉 =
∑
v∈V

f(v)Mf(v) =
∑
v∈V

f(v)

∑
u
u∼v

(−Muv)[f(v)− f(u)] + p(v)f(v)


=
∑
v∈V

∑
u
u∼v

(−Muv)f(v)[f(v)− f(u)] + p(v)f 2(v)


=
∑
v∈V

∑
u
u∼v

(−Muv)f(v)[f(v)− f(u)] +
∑
v∈V

p(v)f 2(v)

=
∑
v,u∈V

(−Muv)f(v)[f(v)− f(u)] +
∑
v∈V

p(v)f 2(v)

=
∑
u∼v

(−Muv)(f(v)− f(u))2 +
∑
v∈V

p(v)f 2(v)

as desired. �

Clearly, the graph Laplacians defined in eq.(3.4), (3.8), and (3.10) are

special cases of eq.(3.12). For instance, the weighted graph Laplacian is a

special case of eq.(3.12), with −Muv = w(u, v) and p(v) = 0 for all v ∈ V .

The following fundamental theorem follows from the spectral theory for

symmetric operators.

Theorem 3.4 [Spectral Decomposition] For a generalized graph Laplacian M

on a finite graph G, there exists an orthonormal basis of Rn (which is isomor-

phic to L2(G)) that consists of eigenfunctions f1, . . . , fn corresponding to the

eigenvalues λ1, . . . , λn. Moreover, for every function g : V → R we have

Mg =
n∑
i=1

λi〈g, fi〉fi,

and for the quadratic form,

〈g,Mg〉 =
n∑
i=1

λi〈g, fi〉2.

Proof. Let {f1, . . . , fm} be an orthonormal (and hence linearly independent)

set of m < n eigenfunctions of M , and let E be the subspace that they span.
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Since M has at least one eigenfunction (any symmetric matrix has at least

one eigenvector), m ≥ 1. The subspace E is M -invariant, and hence E⊥ is

M -invariant (given any real symmetric n× n matrix M , if U is a M -invariant

subspace of Rn, then U⊥ is also M -invariant), and so E⊥ contains a (normal-

ized) eigenfunction fm+1. Then {f1, . . . , fm, fm+1} is an orthonormal set of

m + 1 eigenfunctions of M . Therefore, a simple induction argument shows

that a set consisting of one normalized eigenfunction can be extended to an

orthonormal basis consisting of eigenfunctions of M . �

One of the consequences of this theorem is that the algebraic multiplicity

of any eigenvalue λ, that is, its multiplicity as a root of the characteristic

polynomial, coincides with the geometric multiplicity, that is the maximal

number of linearly independent eigenfunctions with the same eigenvalue λ(=

dimker(M − λI)). The following corollary is an immediate consequence of

the theorem.

Corollary 3.1 [The Variational Principle] Let f1, . . . , fn denote orthogonal

eigenfunctions corresponding to the eigenvalues λ1 ≤ · · · ≤ λn of a generalized

graph Laplacian M . Let Fk = {f1, . . . , fk} be the set of the first k eigenfunc-

tions and F⊥k its orthogonal complement. Then

λk = min
g∈F⊥k−1

R(g) = min
g∈F⊥k−1

〈g,Mg〉
〈g, g〉

, (3.13)

where R(g) = 〈g,Mg〉
〈g,g〉 is the Rayleigh Quotient of g with respect to the general

Laplacian M . Moreover, R(g) = λk for some g ∈ F⊥k−1 if and only if g is an

eigenfunction corresponding to λk.

Proof. Every function g ∈ F⊥k−1 can be written as

g =
n∑
i=k

cifi

for some ci. Consequently,

〈g,Mg〉 =
n∑
i=k

λic
2
i and 〈g, g〉 =

n∑
i=k

c2
i .
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Hence the the Rayleigh quotient of g satisfies the inequality

R(g) =
〈g,Mg〉
〈g, g〉

=

∑n
i=k λic

2
i∑n

i=k c
2
i

≥
∑n

i=k λkc
2
i∑n

i=k c
2
i

= λk

and the equality holds if and only if all terms with eigenvalues λi > λk vanish.

Thus the result follows. �

Corollary 3.2 [Minimax-Theorem] Let Wk denote the set of subspaces of Rn

of dimension at least k. Then

λk = min
W∈Wk

max
06=g∈W

〈g,Mg〉
〈g, g〉

. (3.14)

Proof. Every function g ∈ L2(G) can be written as

g =
n∑
i=1

cifi

for some ci, where {f, . . . , fn} is the orthonormal basis of eigenfunctions from

theorem 3.4. Hence

R(g) =
〈g, Lg〉
〈g, g〉

=

∑n
i=1 λic

2
i∑n

i=1 c
2
i

.

Then for every W ∈ Wk, we can find some g ∈ W where c1 = · · · = ck−1 = 0

and thus,

sup
g∈W
R(g) ≥ sup

g∈W, c1=···=ck−1=0

∑n
i=k λic

2
i∑n

i=k c
2
i

≥ λk.

Consequently,

inf
W∈Wk

sup
g∈W
R(g) ≥ λk.

The equality holds if W is the subspace that is spanned by the first k eigen-

functions. This completes the proof. �

Corollary 3.3 [Diagonalization of Symmetric Operators] Given a Laplacian

matrix L of a graph G, there are matrices Σ and Λ such that ΣTΣ = ΣΣT = I

and L = ΣTΛΣ, where Λ is the diagonal matrix of eigenvalues of L(i.e.,Λ =

diag(λ1, . . . , λn)) and Σ is the matrix whose columns are orthonormal basis of

eigenfunctions of L.
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Remark 3.1 The choice of unnormalized or normalized Laplacian makes no

essential difference in our subsequent analysis although we may favor the latter

because it leads to simpler expressions. We will mention it specifically whenever

it is necessary.

Laplacian matrices of graphs are closely related to the continuous Lapla-

cian operator, the second order differential operator ∆(f) = -div(grad f). In

fact, Agaskar and Lu [19] claimed that when the underlying graph is a line or a

cycle, L provides the standard stencil approximation for the second order dif-

ferential operator and the same holds for higher-dimensional lattice. In more

general settings where the graphs are formed by sampling an underlying con-

tinuous manifold, the Laplacian matrix converges at high sampling densities to

the Laplace-Beltrami operator. It approximates the Laplace-Beltrami opera-

tor on a compact manifold in the sense that if the dataset is large and samples

uniformly random on a Low-dimensional manifold then the graph Laplacian

acting on smooth functions on this manifold is a good discrete approximation

that converges pointwise and uniformly to the elliptic Laplace-Beltrami oper-

ator applied to this function as the number of points goes to infinity [93]. This

relationship yields an important bilateral link between the spectral geometry

of Riemannian manifolds and graph theory and, makes it possible to use re-

sults about graphs in the study of Laplacians on manifolds and, conversely, to

transfer results about Laplacians on manifolds to graphs.

3.4 Laplacians on infinite graphs

In the previous sections we considered only finite graphs. We now turn

our attention to infinite graphs. Here, there are two very different areas of

research: the first for locally-finite graphs in which each vertex has a finite

degree, and the second for general graphs. Infinite graphs are considered in

many domains in mathematics such as combinatorial and geometrical group

theory, number theory, general and algebraical topology, set theory, probability
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and mathematical physics. They are also considered in medical researches

(brain cells, blood veins), chemistry, informatics, electrical networks, synthetic

imagery, internet connections, telecom, social sciences and more (see [18, 74,

75] and the references therein)

Laplacians on graphs have been studied for a long time. However, much

of the research has been devoted to finite graphs and bounded Laplacians.

In contrast to the Laplacian on a finite graph, the Laplacian on an infi-

nite graph is not always a bounded operator and hence, its analysis is more

complicated. Certain properties related to unboundedness of the associated

Laplacian on infinite graphs have become a focus of attention in recent years

[18, 74, 75, 76, 77, 78, 79]. Further, it has been shown in [79] that in the

case of locally-finite infinite graphs the Laplacian with an appropriate domain

is a positive essentially self-adjoint operator. More precisely, the Laplacian

is defined on the dense subspace in the Hilbert space L2(G) and hence its

closure is self-adjoint in L2(G). This is an analogue of the well known result

that the Laplacian initially defined on the set of smooth functions with com-

pact support on a compact Riemannian manifold M extends to an unbounded

self-adjoint operator on L2(M).

We recall that an unbounded symmetric linear operator on a Hilbert space

is essentially self-adjoint if it has a unique self-adjoint extension. Keller [75]

also pointed out that the spectral properties of infinite Laplacians might be

very different from the well studied spectral properties of combinatorial Lapla-

cians on finite graphs. Next, we will further investigate infinite Laplacians.

Let G = (V, E) be an undirected countably infinite graph, and let M(G)

= M = (muv)u,v∈V be a square matrix indexed by the vertices of G. The

spectrum of M(G) depends on the choice of a suitable space on which M

acts as a linear operator. Usually, one considers the Hilbert space of square

summable functions

L2(G) = {f : V → R |
∑
v∈V

|f(v)|2 <∞}, (3.15)
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with inner product

〈f, g〉 =
∑
v∈V

f(v)g(v),

and the associated norm

||f ||2 = ||f ||L2(G) = 〈f, f〉1/2.

For u ∈ V , denote by eu the unit vector in L2(G) whose u-th entry is equal to

one, all other entries are zero (i.e., eu = δvu, the Kronecker delta supported at

vertex u). Then {eu|u ∈ V } is a complete orthonormal system for L2(G). For

a weighted graph G = (V,E,w),

L2(G) = {f : V → R |
∑
v∈V

µ2(v)|f(v)|2 <∞}, (3.16)

where

µ(v) =
∑
u
u∼v

w(u, v).

The vector space L2(G) has a Hilbert structure, when endowed with the inner

product

〈f, g〉L2(G) =
∑
v∈V

µ(v)f(v)g(v). (3.17)

L2(G) can also be replaced by any of the spaces Lp(G), consisting of all

real valued functions f on V satisfying

||f ||p =

(∑
v∈V

|f(v)|p
)1/p

<∞,

where 1 ≤ p < ∞; for p = ∞, the norm reduces to ||f ||∞ = max{|f(v)|, v ∈
V }. The action of M is matrix multiplication: the coordinates of g = Mf are

g(u) =
∑
v∈V

muvf(v), u ∈ V, (3.18)

whenever the series converges. In the next section, our primary focus will be

on locally-finite infinite graphs.
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3.5 Locally-finite infinite graphs

We say that an infinite graph G is locally-finite if each vertex is of finite

degree, i.e., d(u) <∞ for every vertex u ∈ V . The following are good examples

of locally-finite graphs.

Example 1: Consider a weighted graph G = (V,E,w) such that the cardi-

nality of the set {u : w(v, u) 6= 0; v ∈ V } is finite, i.e

|{u : w(v, u) 6= 0}| <∞ ∀v ∈ V.

G is locally-finite.

Example 2: The infinite graph with vertices at the integers Z such that each

vertex n ∈ Z is connected to vertices n − 1 and n + 1. This is a uniformly

bounded locally finite (infinite) graph. This graph has been considered by

many authors and its graph Laplacian is well studied.

Let G = (V, E) be a locally-finite countable graph with the (labeled) vertex

set V (G) = {vj : j ∈ N}, where N is the set of natural numbers. As in the

case of finite graphs, there are several ways to associate a matrix M(G) with

G. An obvious and most natural choice is the (infinite) adjacency matrix A

= A(G) = (aij). The (i, j)-th entry aij is the number of edges between vi and

vj; in particular, if G is simple, then aij is either 1 or 0 depending on whether

vi and vj are adjacent (1 if vi ∼ vj, 0 otherwise).

Let ek = (δik : i ∈ N) be the the complete orthonormal system in L2(G) as

discussed above. Then the adjacency matrix of a locally-finite graph can be

interpreted as a linear operator A over L2(G), which is defined on the basis

vectors ek as follows:

Aek = (aik)i∈N,

or equivalently

〈Aek, ei〉 = aik.

Since G is locally-finite, A is well defined, i.e., Aek is an element of L2(G),

and A can be extended by linearity to a dense subspace of L2(G), which is
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spanned by the basis vectors {ek : k ∈ N}. The next theorem gives us a

necessary and sufficient condition for the adjacency operator to be continuous

or compact.

Theorem 3.5 [18] The adjacency operator A is bounded if and only if there

exists a constant M < ∞ such that d(v) ≤ M for every vertex v ∈ V (G). In

this case

||A|| ≤M and σ(A) ⊆ [−M,M ].

Moreover, A is compact if and only if G has finitely many edges.

If d(G) = sup{d(u)|u ∈ V } < ∞, then A acts on L2(G) as a self-adjoint

operator. In fact, it is known [18] that uniform boundedness of the vertex

degrees in G is sufficient for the adjacency operator to be self-adjoint. For the

general case, since A is real, there is a self-adjoint extension of A which is not

unique in general.

Definition 3.1 Let G be a locally finite infinite graph. Let D(G) be the diag-

onal matrix diag(d(v), v ∈ V ) and A = A(G) is the adjacency matrix of G.

The Laplacian of G is a linear operator defined by

L = D(G)−A(G). (3.19)

Notice that if G is regular, then most of the results for A(G) carry over to L.

Let D be the set of complex functions on V(G) with finite support. i.e.,

D = {f : V (G)→ C : |supp(f)| <∞}. (3.20)

D ⊂ L2(G), is dense in L2(G). Furthermore, it is known [78, 79] that the

Laplacian operator with domain D is essentially self-adjoint.

For any f ∈ D we have

Lf(x) = d(x)f(x)−
∑
y:y∼x

f(y) =
∑
y:y∼x

(f(x)− f(y)) . (3.21)
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Its quadratic form

〈f,Lf〉 =
∑
x∼y

(f(x)− f(y))2 ≥ 0.

Notice that the Laplacian operator, L, is densely defined in the Hilbert

space L2(G) of all square summable functions on the vertices of G; and L

is not defined everywhere in L2(G) but rather it has a dense domain D in

L2(G). Moreover, unless the degrees of the vertices are uniformly bounded,

the Laplacian is generally an unbounded operator with dense domain.

Theorem 3.6 [78] The Laplacian operator L with domain D is essentially

self-adjoint.

Theorem 3.6 means that L has a unique self-adjoint extension. Furthermore,

if d(G) <∞ (i.e., if the vertices of G are uniformly bounded), then by theorem

(3.5), L is a bounded operator as both D(G) and A(G) are bounded operators.

The result can be stated and proved as follows.

Theorem 3.7 Let G = (V,E) denote a locally finite connected graph. Then

the Laplacian L is a bounded operator on L2(G) if and only if the degree of G

is bounded, i.e.,

d(G) = sup
v∈V

d(v) <∞.

Proof. If the degree d(G) is bounded from above, a simple calculation using

the triangle inequality and the Cauchy-Schwarz inequality leads to

||L|| ≤ 2d(G).

On the other hand, if d(G) is unbounded we choose a sequence (vj)j∈N in V

with supj∈N d(vj) = ∞ and define fj : V → C by fj(vj) = 1 and fj(v) = 0 if

v 6= vj. Then we clearly have fj ∈ D and

(Lfj)(v) =


d(vj) if v = vj ,

−1 if v ∼ vj,

0 otherwise.
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Hence, ||Lfj||2 = d(vj)
2 + d(vj) is unbounded but ||fj|| = 1. �

The essential self-adjointness of the Laplacian was also independently proved

in [79] using the maximum principle for subharmonic functions, stated as fol-

lows:

The maximum principle for subharmonic functions: Let G = (V,E)

be a connected graph and let f : V (G) → R satisfy Lf ≤ 0 and assume that

there is a vertex v ∈ V with f(v) = max{f(u) : u ∈ V }. Then f is constant.

The proof of the maximum principle is not difficult. In fact, since Lf(v) ≤ 0

and from eq.(3.21), it follows immediately that

0 ≥ Lf(v) =
∑
u∼v

(f(v)− f(u)) ≥ 0

since f attains its maximum at v. It follows that f(u) = f(v) for all u ∼ v.

Since the graph is assumed to be connected, the result follows by induction.

3.6 Directed graphs

Directed Graph: A directed graph, or digraph, G, consists of a set of vertices

V(G), a set of edges E(G), and a function which assigns each edge e an ordered

pair of vertices (u, v). We call u the tail of e, v the head of e, and u, v the

ends of e. If there is an edge with tail u and head v, then we let (u, v) denote

such an edge, and we say that this edge is directed from u to v. An edge

e = (u, v) in a digraph G is a loop if u = v. Two edges e & f are parallel if

they have the same tails and the same heads. If G has no loops or parallel

edges, then we say G is simple. As in the undirected graphs, it is helpful to

represent them with drawings so that each vertex corresponds to a distinct

point, and each edge from u to v is represented by a curve directed from the

point corresponding to u to the point corresponding to v (usually we indicate

this direction with an arrow head). If G is a directed graph, then there is an

ordinary (undirected) graph G̃ with the same vertex and edges as G which is
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obtained from G by associating edge (u, v) with ends u, v (in other words, we

just ignore the directions of the edges). We call G̃ the underlying (undirected)

graph, and we call G an orientation of G̃.

Unlike undirected graphs, a vertex of a digraph has two degrees. The

outdegree of a vertex v, denoted d+(u) is the number of edges with tail v and

the indegree of v, denoted d−(v) is the number of edges with head v. For the

sake of convenience, it is customary to denote the outdegree by d(u) instead of

d+(u). It is easy to see that the sum of the indegrees of vertices of a digraph

equals the sum of outdegrees. That is∑
v∈V (G)

d(v) = |EG| =
∑

v∈V (G)

d−(v).

A digraph is regular provided the indegree and outdegree of each vertex is the

same, say some constant k. In this case we say G is k-regular.

The notions of subgraph, spanning subgraph, and induced subgraph are

precisely analogous to those for undirected graphs. Connectivity in undirected

graphs is straightforward. In a digraph however, connectivity is more subtle.

A directed walk in a digraph G is a sequence v0, e1, v1, . . . , en, vn so that vi ∈
V (G) for every 0 ≤ i ≤ n, and so that ei is an edge from vi−1 to vi for every

1 ≤ i ≤ n. We say that this is a walk from v0 to vn. If v0 = vn we say the

walk is closed and if v0, v1, . . . , vn are distinct we call it a directed path. So a

path is an open walk with no repeated vertices or edges. Obviously, if there

is a directed walk from u to v, then there is a directed path from u to v. In

fact, every directed walk from u to v of minimum length is a directed path. A

closed path (cycle) is a closed walk with no repeated vertices or edges except

that v0 = vn. A directed acyclic graph (DAG) is a directed graph that has no

cycles of any length, i.e., for any vertex u there is no directed path that ends

with itself.

We say two vertices u and v of a digraph G = (V, E) are connected if there

is a (directed) path from u to v and one from v to u. This relation between

vertices is reflexive, symmetric, and transitive, so it is an equivalent relation on

the vertices. As such, it partitions V into disjoint sets called strongly connected
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components of the digraph. A digraph G is strongly connected provided that

for each pair of distinct vertices u and v, there is a directed path from u to v

and one from v to u. A digraph G is weakly connected if its underlying graph

is connected. An undirected graph can be viewed as a digraph with directed

edges (u, v), and (v, u) for each undirected edge (u, v).
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Figure 3.1: A weakly connected directed graph

Define u ≡ v provided there is a walk from u to v and a walk from v to u.

This is an equivalent relation and thus V is partitioned into equivalence classes

V1, V2, . . . Vk. The k subgraphs induced on the sets of vertices V1, V2, . . . , Vk are

the strong components of G. A digraph G is strongly connected if and only if

it has exactly one strong component. The following theorem summarizes some

important properties concerning these notions.

Theorem 3.8 [63] Let G = (V, E) be a digraph.

1. Then G is strongly connected if and only if there does not exist a partition

of V into two nonempty sets X and Y such that all the edges between X

and Y have their initial vertex in X and their terminal vertex in Y.

2. The strong components of G can be ordered as G1, G2, . . . , Gk so that if

(u, v) is an edge with u in Gi and v in Gj with i 6= j, then i < j ( in
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the ordering G1, G2, . . . , Gk all edges between the strong components go

from left to right).

Graphs arising from many applications such as transportation problems in

which traffic flow is restricted to one direction, one-way communication prob-

lems, asymmetric social interactions, athletic tournaments, learning theory,

scheduling, flights and even the world-wide web are directed, where direction

of links contains crucial information. In many problems, such as traffic prob-

lems with one way streets, we must restrict the direction of movement along

the edges to only one direction. Many applications in communication networks

and in approximation algorithms also involve directed graphs. Despite the fact

that there is a large amount of problems which can be naturally represented

as directed graphs, the spectral approach for directed graphs has not been as

well developed.

The graph Laplacian operator plays a significant role in developing the

theory of sampling and approximation on graphs. For undirected graphs, the

graph Laplacian operator is a well studied subject. There is a large litera-

ture on the spectrum of the Laplacian for such graphs. In addition to its

mathematical importance, the spectrum of the Laplace operator has various

applications in many fields, as we have mentioned in the previous chapters.

Contrary to their huge possible applications and natural existence of directed

graphs, very few research has been done in this particular area. The directed

version of a Laplace operator was developed recently by Fan Chung [11]. Some

properties of its spectrum were investigated. For example, it has been shown

that the directed Laplacian operator is self adjoint on the space of functions

L2(G), its eigenvalues are contained in [0,2] (see [11] for details). Despite in its

early stage of development, several papers have started to emerge applying the

directed Laplacian operator and its spectrum [12, 21, 58, 61, 64, 69, 70, 71].

The main challenge of extending the sampling theory to directed graphs

is the complex nature of directed graphs and the study of spectral theory

on directed graphs is under development and little information is available in
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current literature. Following Chung’s approach, a few other researchers have

introduced different types of directed and mixed Laplacian operators (see for

example [61, 68]). The Laplace operator of a directed graph developed by

Chung has received a considerable amount of attention and it turns out that

it is extremely useful and has gained many applications in different fields and

we will adopt this definition of directed Laplacian in this work. We will show

that the directed Laplacian is a generalization of its underlying graph (the

graph obtained by ignoring all the directions of the edges). Furthermore, in

the case of regular directed graphs, the directed Laplacian and the Laplacian

of the underlying graph happens to be the same (we will show this as well).

The directed Laplacian operator introduced in [61] is not self-adjoint, which

makes it less attractive for many researchers in the literature because working

with non-symmetric operators is a bit awkward and inconvenient though they

are also useful for many applications. In [68], Bapat, Grossman and Kulkarani

introduced a Laplacian operator for mixed graphs as follows:

Given a mixed graph G on vertices 1, . . . , n, write ij ∈ E(G) to mean the

existence of an undirected edge between the vertices i and j. Write (i, j) to

mean the existence of the directed edge from the vertex i to the vertex j. The

adjacency matrix A(G) = (aij) of G is the matrix with

aij =


1 if ij ∈ E(G) ,

−1 if (i, j) ∈ E(G) ,

0 otherwise.

(3.22)

Given a mixed graph G, the degree d(i) of a vertex i is the number of edges

(both directed and undirected) incident with i. Let D(G) be the diagonal

matrix with d(i) as the i-th diagonal entry. The Laplacian matrix L(G) is

defined as the matrix

L(G) = D(G) + A(G).

This matrix is shown to be positive semi-definite.

The Laplacian spectrum of mixed graphs have been studied since then and
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further investigated in [68, 69, 70, 71].

For example, Zhang and Li [70], and Zhang and Luo [71] gave some up-

per bounds for the spectral radius and the second smallest eigenvalue of the

Laplacian matrix of a mixed graph.

Mixed graphs are very important for the study of graph theory as they

provide a setup where one can have both directed and undirected edges in the

graph. Many real world data structures can be modeled by mixed graphs. For

example, streets in a particular city and airline routes in which some streets

and airway routes are only one way and some are both ways, can be represented

by mixed graphs. So it makes sense to consider those graphs and study their

spectral properties.

3.7 Laplacian on directed graphs

Given a digraph G, there is a natural random walk on G with the transition

probability function p : V × V → R+ defined by

p(u, v) =


1

d(u)
if(u, v) ∈ E(G);

0 otherwise.
(3.23)

Note that p(u, v) denotes the probability of moving from vertex u to vertex v.

Moreover, as in the undirected case, for each vertex u ∈ V ,∑
v∈V

p(u, v) = 1. (3.24)

However, in the case of digraphs, it is not always true that
∑

u∈V p(u, v) = 1.

The transition probability matrix associated to G is the matrix P whose

(i, j)th is p(i, j). P is not symmetric in general. The Perron-Frobenius Theorem

implies that the transition probability matrix P of a strongly connected graph

has a unique left eigenvector φ with φ(v) > 0 for all v, and φP = φ. That

is, the random walk on a strongly connected directed graph has a unique
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stationary φ satisfying the equation

φ(v) =
∑
u→v

φ(u)p(u, v), (3.25)

for all v ∈ V , and φ(v) > 0 for all v ∈ V . If G is strongly connected and ape-

riodic, the random walk converges to the stationary distribution (also known

as the Perron vector) φ, [11]. The transition probability matrix and Perron

vector will be discussed in more detail later.

A digraph is weighted when there is a function w : E → R+ which associates

a positive value w(u, v) with each (u, v) ∈ E. The function w is called a weight

function. Generally, it is always possible to equip a graph with a canonical

weight function defined by w(u, v) = 1 at each edge (u, v) ∈ E. In this case

the indegree and the outdegree of a vertex v are given by

w−(v) =
∑
u:u→v

w(u, v) =
∑
u∈V

w(u, v), (3.26)

and

w+(v) = w(v) =
∑
u: v→u

w(v, u) =
∑
u∈V

w(v, u). (3.27)

For a weighted digraph with edge weights w(u, v) ≥ 0, a transition proba-

bility function p can be defined as

p(u, v) =
w(u, v)∑
z∈V w(u, z)

=
w(u, v)

w(u)
. (3.28)

Order the vertices of G in some way: v1, v2, . . . , vn. The adjacency matrix

of a digraph G with n vertices is the n × n matrix A = (aij), where aij = 1

if there is a directed edge from i to j and 0 otherwise. A different ordering

results in the (similar) matrix BABT for some permutation matrix B. In

particular, the digraph is strongly connected if and only if the matrix A is ir-

reducible. If G is a weighted digraph, then aij is replaced by w(i, j), the weight

of edge (i, j). Notice that unlike the adjacency matrix of an undirected graph

the adjacency matrix of a digraph is no longer symmetric. We also have the

relation P = D−1A, as in the undirected case, where D = diag(d(v), v ∈ V )



54

= diag(A.1) is the degree matrix (the diagonal matrix with diagonal entries

D(v, v) = d(v), the out degree of v).

Let Φ be an n × n diagonal matrix with diagonal entries Φ(v, v) = φ(v),

i.e.,

Φ =


φ(v1) 0 · · · 0

0 φ(v2) · · · 0
...

...
. . .

...

0 0 · · · φ(vn)

 . (3.29)

Φ is invertible and non-negative since φ(v) > 0, ∀v ∈ V . The directed Lapla-

cian matrix of a digraph G is defined in terms of P and Φ as follows.

Definition 3.2 Let G = (V, E) be a digraph with |V (G)| = n. Let P be the

transition probability matrix associated to G and Φ be the n×n matrix defined

as in eq.(3.29). The normalized Laplacian of G is defined as

L = I − Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
, (3.30)

where I is the identity matrix and P ∗ denotes the transpose of P.

For undirected graph G = (V,E), it is well known [9] that the Perron

vector of the natural random walk has a closed-form expression

φ(v) =
d(v)∑
u d(u)

=
d(v)

vol(G)
, (3.31)

where vol(G) =
∑

u∈V d(u).

Using equation eq.(3.31), we will show that eq.(3.30) reduces to the well

known Laplacian matrix for undirected graphs. It is also easy to see that the

directed Laplacian satisfies L = L∗, that is L is a self-adjoint operator.

The unnormalized directed Laplacian L of a directed graph is also defined

as

L = Φ− ΦP + P ∗Φ

2
, (3.32)
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where P and Φ are as above. Now, the normalized Laplacian L can be written

in terms of the unnormalized Laplacian L as follows

L = Φ−1/2LΦ−1/2. (3.33)

Let L2(G) denote the space of all real valued functions f : V (G)→ R which

assigns a value f(v) for each vertex v. A function in L2(G) can be thought of

as a column vector in Rn, where n = |V (G)|, the number of vertices in G. The

space L2(G) then can be endowed with the standard inner product in Rn as

〈f, g〉L2(G) =
∑
v∈V

f(v)g(v) (3.34)

for all f, g ∈ L2(G) and the norm

||f ||L2(G) = ||f || =

(∑
v∈V

|f(v)|2
)1/2

. (3.35)

For any f ∈ L2(G) we have the following explicit form

(Lf)(v) = f(v)− 1

2

( ∑
u, u→v

φ(u)p(u, v)f(u)√
φ(u)φ(v)

+
∑

w, v→w

φ(v)p(v, w)f(w)√
φ(w)φ(v)

)
.

(3.36)

Now let’s show that eq.(3.36) reduces to eq.(3.4), the well known formula for

undirected graph Laplacian

(Lf)(v) =
1√
d(v)

∑
v∼u

(
f(v)√
d(v)

− f(u)√
d(u)

)
, f ∈ L2(G), (3.37)

where v ∼ u means that v is adjacent to u. To see this, we recall from eq.(3.31)
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that the Perron vector φ =
(

d(v)
vol(G)

)
v∈V

for undirected graphs. So we have

(Lf)(v) = f(v)− 1

2

(∑
u→v

φ(u) p(u, v) f(u)√
φ(u)φ(v)

+
∑
v→u

φ(v) p(v, u)f(u)√
φ(u)φ(v)

)

= f(v)− 1

2

∑
u∼v

(d(u)/vol(G)) (1/d(u)) f(u)√
(d(u)/vol(G)) (d(v)/vol(G))

− 1

2

∑
v∼u

(d(v)/vol(G)) (1/d(v)) f(u)√
d(u)/vol(G) d(v)/vol(G)

= f(v)− 1

2

(∑
u∼v

f(u)√
d(u) d(v)

+
∑
v∼u

f(u)√
d(u) d(v)

)

= f(v)−
∑
u∼v

f(u)√
d(v) d(u)

=
∑
u∼v

f(v)

d(v)
− 1√

d(v)

∑
u∼v

f(u)√
d(u)

=
1√
d(v)

∑
u∼v

(
f(v)√
d(v)

− f(u)√
d(u)

)
,

as desired. �

There is also a natural way to connect the Laplacian of a directed graph

with the Laplacian of the corresponding undirected graph. Let us first prove

the following lemma from [21].

Lemma 3.1 If G is a directed graph and φ is the Perron vector of the transi-

tion probability matrix P of G, then∑
u

u→v

φ(u)p(u, v) =
∑
w

v→w

φ(v)p(v, w). (3.38)

Proof: The proof is straightforward by recalling eq.(3.24) that
∑

w p(v, w) = 1

for each vertex v and using the fact that φ is the (left) eigenvector of P with

eigenvalue 1. So we have φP = φ and hence

φ(v) =
∑
u

u→v

φ(u)p(u, v).
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Thus, ∑
u

u→v

φ(u)p(u, v) = φ(v) = φ(v)
∑
w

v→w

p(v, w) =
∑
w

v→w

φ(v)p(v, w)

�

Theorem 3.9 Let G be an aperiodic strongly connected weighted graph and

let G̃ be the underlying graph (the graph obtained by disregarding the direction

on the edges of G) with weights defined by

w(u, v) = φ(u)p(u, v) + φ(v)p(v, u). (3.39)

Then L(G) = L(G̃).

Proof: Let wG(v) and wG̃(v) denote the weighted degrees of the vertex v in

G and G̃ respectively. Then it follows from Lemma 3.1, equations (3.24) and

(3.25) that

wG̃(v) =
∑
u

w(u, v) =
∑
u

(φ(u)p(u, v) + φ(v)p(v, u))

=
∑
u

φ(u)p(u, v) +
∑
u

φ(v)p(v, u)

= φ(v)
∑
u

p(v, u)︸ ︷︷ ︸
=1 by (3.24)

+
∑
u

φ(u)p(u, v)

= φ(v) +
∑
u

φ(u)p(u, v)︸ ︷︷ ︸
= φ(v) by (3.25)

= 2φ(v).

On the other hand, for each v ∈ V (G) we have (follows from eq.(3.30)),

L(G)(v, v) = 1− p(v, v) = 1 = L(G̃)(v, v), since p(v, v) = 0.

Thus, L(G) and L(G̃) have the same diagonal entries.
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Now for u, v ∈ V (G), u 6= v,

L(G)(u, v) = −1

2

(√
φ(u)

φ(v)
p(u, v) +

√
φ(v)

φ(u)
p(v, u)

)

= −(φ(u)p(u, v) + φ(v)p(v, u)√
(2φ(u)(2φ(v))

= − w(u, v)√
wG(u)wG(v)

= L(G̃)(u, v),

hence they have the same off-diagonal elements as well. This completes the

proof. �

One can also verify that the quadratic form of the directed Laplacian is

given by

〈f,Lf〉 =
1

2

∑
(u,v)∈E

φ(u)P (u, v)

(
f(u)√
φ(u)

− f(v)√
φ(v)

)2

≥ 0, (3.40)

which shows that the Laplacian operator L is semi-positive definite.

As in the case of undirected graphs, the eigenvalues of the direct Laplacian

are found to be useful. Below, we will show that for any strongly connected

digraph G, the spectrum of L is contained in [0,2].

Let σ(L) denote the spectrum of L, and let

Q =
Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
.

The following theorem shows that the eigenvalues of Q are bounded be-

tween -1 and 1.

Theorem 3.10 If Q is defined as above, then σ(Q) ⊆ [−1, 1] and
√
φ is an

eigenvector of Q with corresponding eigenvalue 1.

Proof: Let R be the matrix defined by R = P+Φ−1P ∗Φ
2

. R is an operator in
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L2(G). Also note that

Φ1/2RΦ−1/2 = Φ1/2

(
P + Φ−1P ∗Φ

2

)
Φ−1/2

=
Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2

= Q.

Thus, R and Q are similar and hence they have the same set of eigenvalues.

Suppose f is an eigenvector of R with eigenvalue λ. Choose v such that |f(v)|
= maxu∈V |f(u)|. Then it suffices to show that |λ| ≤ 1.

|λ||f(v)| =

∣∣∣∣∣∑
u∈V

R(v, u) f(u)

∣∣∣∣∣
≤
∑
u∈V

R(v, u)|f(v)|

=
|f(v)|

2

(∑
v→u

p(v, u) +
∑
u→v

φ(u)p(u, v)

φ(v)

)

=
|f(v)|

2

(∑
v→u

p(v, u) +
∑
v→w

φ(v)p(v, w)

φ(v)

)
, (by Lemma 3.1)

=
|f(v)|

2

(
2
∑
v→u

p(v, u)

)
= |f(v)|,

which implies |λ| ≤ 1.

Now it remains to show thatQ
√
φ =
√
φ . To see this, first note thatQ = I−L.
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Then the result follows from (3.36) since for any v ∈ V ,

(Q
√
φ)(v) = [(I − L)

√
φ](v) =

√
φ(v)− (L

√
φ)(v)

=
1

2

(∑
u→v

φ(u)p(u, v)
√
φ(u)√

φ(u)φ(v)
+
∑
v→u

φ(v)p(v, u)
√
φ(u)√

φ(u)φ(v)

)

=
1

2

(∑
u→v

φ(u)p(u, v)√
φ(v)

+
∑
v→u

φ(v)p(v, u)√
φ(v)

)

=
1

2

 1√
φ(v)

∑
u→v

φ(u)p(u, v)︸ ︷︷ ︸
= φ(v)

+
√
φ(v)

∑
v→u

p(v, u)︸ ︷︷ ︸
= 1


=
√
φ(v).

The next corollary follows from the previous theorem and noting that L =

I −Q.

Corollary 3.4 Let G be a strongly connected digraph and L is its directed

Laplacian matrix. Then σ(L) ⊆ [0, 2]. Furthermore, 0 is an eigenvalue of L
with eigenvector

√
φ.

Remark 3.2 The definition of the directed Laplacian depends on the transi-

tion probability matrix and is restricted to strongly connected and aperiodic

graphs only so that the natural random walk on the graph converges to a

unique positive stationary distribution. Obviously this is too restrictive and

most graphs in real world application are neither strongly connected nor aperi-

odic. To overcome this restriction we may invoke the so called ”teleporting

random walk ” on the graph and extend the definition of the Laplacian to

general directed graphs. But first we will review the Perron-Frobenius Theorem

and its significance on directed graphs.
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3.8 A brief review of the Perron-Frobenius The-

orem

We have seen that the transition probability matrix P of a directed graph

is not symmetric in general. However, it has the useful property that all

of its entries are non-negative. The Perron-Frobenius Theorem gives useful

information about the eigenvalues of such matrices in many cases.

Definition 3.3 A real matrix M = (mij) is called nonnegative if each of its

entries is non-negative. A nonnegative, square matrix M is irreducible if for

each pair (i, j), there is a nonnegative integer k such that the (i, j)th entry of

Mk is strictly positive.

Since the (i, j)th entry of the kth power of the adjacency matrix of a connected

undirected graph G is equal to the number of edge sequences of length k

connecting vertex i to vertex j, it is always irreducible. The following theorem

provides an important algebraic characterization of irreducible, nonnegative

matrices.

Theorem 3.11 [62] Let M be a nonnegative matrix of order n. Then M is

irreducible if and only if (I +M)n−1 is a positive matrix.

For each i, the row sum ri of a matrix M = (mij) is given by

ri =
∑
j

mij.

Theorem 3.12 ([Perron-Frobenius]) Let M be a nonnegartive, square matrix,

and suppose M is irreducible. Let rmin and rmax be the minimum and maximum

row sums of M , respectively. There is a unique eigenvector v of M all of

whose entries are positive. The eigenvalue λ corresponding to v is the largest

eigenvalue of M and satisfies

rmin ≤ λ ≤ rmax
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Theorem 3.13 [62] Let A be a matrix with nonnegative entries. Assume fur-

ther that A is irreducible, equivalently meaning that it is impossible to permute

the rows and columns of A to write it in the form

Ã =

(
X 0

Y Z

)

with the upper right block having dimension k×(n−k) for some k. Then there

is a real ρ0 > 0 such that the following hold:

1. ρ0 is an eigenvalue of A, and all other eigenvalues ρi satisfy |ρi| ≤ ρ0.

2. The eigenvector (which is unique) corresponding to the eigenvalue ρ0 has

all entries positive.

3. If there are k − 1 other eigenvalues with |ρi| = ρ0, then they are of the

form ρ0θ
j, where θ = e

2πi
k .

Now let us translate Perron-Frobenius Theorem into graphs. Notice that

in order to apply Perron-Frobenius theorem to a transition probability matrix

on a digraph, we need to make sure that the matrix we apply is irreducible.

With this in mind, we have the following theorem:

Theorem 3.14 A digraph G is strongly connected if any of the following

equivalent conditions hold:

1. For every u and v in V(G) there exist directed paths in G from u to v

and from v to u.

2. For any partition of V(G) into two disjoint nonempty sets X and Y there

is an edge from X to Y and an edge from Y to X.

3. The adjacency matrix A of G is irreducible.

4. The transition probability matrix P of G is irreducible.

Combining Theorems 3.12, 3.13 and 3.14 we have the following theorem.
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Theorem 3.15 The transition probability matrix P of a strongly connected

digraph has a unique left eigenvector φ such that φ(v) > 0 for all v ∈ V (G),

and

φP = ρφ,

where ρ is the spectral radius of P.

We will treat φ as a row vector. Since P1 = 1, we have ρ = 1 and the

Perron-Frobenius Theorem implies that all eigenvalues of P have absolute value

bounded by 1. Remember that P is not symmetric and hence its eigenvalues

may not be real. We scale (normalize) and choose φ such that

φ1 =
∑
v

φ(v) = 1. (3.41)

We call φ the Perron vector of P.

Definition 3.4 A strongly connected graph G is called periodic if any of the

following equivalent conditions (definitions) hold:

1. the transition matrix P has eigenvalue ρ 6= 1 such that |ρ| = 1.

2. There is a k > 1 such that all eigenvalues with norm 1 are of the form

e
2πij
k .

3. There is an edge preserving map from V(G) to the vertices of the cycle

Ck with k > 1 (a map such that u→ v in G implies f(u)→ f(v) in Ck).

4. The GCD of all cycle lengths in G is k > 1.

We say G is aperiodic if it is not periodic. If G is strongly connected and

aperiodic, the random walk converges to the Perron vector φ.
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3.9 Comparing Laplacians on regular graphs

Due to their symmetry, regular graphs are easy to understand and have

many interesting applications. For example, in computer graphics, the shape of

a 3D object can be approximated by regular graph, with its nodes containing

the coordinate information. In the following theorem, we will show that a

strongly connected regular digraph and its underlying graph have the same

Laplacian.

Theorem 3.16 Suppose G is a strongly connected k-regular digraph and let G̃

be its underlying graph. Let L and L̃ be the Laplacians of G and G̃ respectively.

Then L = L̃.

Proof: We know that for a strongly connected regular digraph of degree k,

φ(v) = 1
n

and p(u, v) = 1
k
, for each u, v ∈ V , where n = |V |. Since G

is k-regular every vertex v ∈ V has equal indegree and outdegree k. So G̃

is 2k-regular and the Laplacian of G̃ is given by L̃ = I − 1
2k
A, where A is

the adjacency matrix of G̃ and I is the identity matrix. Therefore, for each

v ∈ V (G) and for each f ∈ L2(G)

(L̃f)(v) = f(v)− 1

2k

∑
u:u∼v

f(u).

On the other hand, for each v ∈ V (G), we have

(Lf)(v) = f(v)− 1

2

( ∑
u:u→v

φ(u) p(u, v) f(u)√
φ(u)φ(v)

+
∑

w: v→w

φ(v) p(v, w)f(w)√
φ(w)φ(v)

)

= f(v)− 1

2

( ∑
u:u→v

1

k
f(u) +

∑
w: v→w

1

k
f(w)

)

= f(v)− 1

2k

( ∑
u:u→v

f(u) +
∑

w: v→w

f(w)

)
= f(v)− 1

2k

∑
u:u∼v

f(u)

= (L̃f)(v).

This completes the proof. �
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Figure 3.2: A strongly connected 3-regular directed graph

Example 1: Consider G, a directed cycle of length 5 and denote the vertex set

by V = {1, 2, 3, 4, 5} and directed edges E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}.
It is a regular digraph of order k = 1. Its underlying graph G is a regular

graph of order 2. The transition probability matrix of G is given by

P =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


.
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Figure 3.3: directed cycle graph

The eigenvector of P corresponding to the eigenvalue 1 is

φ = (0.4472, 0.4472, 0.4472, 0.4472, 0.4472, 0.4472).

Using eq.(3.30), we obtain the directed Laplacian L of G as follows

L =



1 −1/2 0 0 −1/2

−1/2 1 −1/2 0 0

0 −1/2 1 −1/2 0

0 0 −1/2 1 −1/2

−1/2 0 0 −1/2 1


On the other hand, using the definition of the undirected Laplacian we

have

L̃(u, v) =


1 if u = v and d(v) 6= 0 ;

− 1√
d(u)d(v)

if u ∼ v;

0 otherwise,
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and we obtain

L̃ =



1 −1/2 0 0 −1/2

−1/2 1 −1/2 0 0

0 −1/2 1 −1/2 0

0 0 −1/2 1 −1/2

−1/2 0 0 −1/2 1


,

which shows L = L̃.
In the case of undirected graphs, it is shown that any finite subset of the

vertex set admits a poincaré inequality. In the following theorem we will also

show this is generally true for directed graphs. We first construct Γ(S) for any

subset S ⊂ V (G) as follows:

Let S be a non-empty subset of the vertex set V (G) and consider the set

S̄ = S ∪ ∂S as an induced subgraph of G. Let Γ(S) be a graph constructed

in the following way: Take two copies of the induced subgraph S̄, and denote

them as S̄1 and S̄2, and identify every vertex v ∈ ∂S ⊂ S̄1 with the same

vertex v ∈ ∂S ⊂ S̄2. It is important to note that Γ(S) is not generally

strongly connected even if G is strongly connected. But for now assume both

G and Γ(S) are strongly connected and aperiodic. Later we will discuss a

remedy to disposeof this strict assumption.

Theorem 3.17 Suppose G = (V,E) is a strongly connected digraph and S is

a nonempty subset of V(G). Then S is a Λ-set with Λ =
√

2
λ1(Γ(S))

.

That is, for any ϕ ∈ L2(S), the inequality

‖ϕ‖L2(G) ≤
√

2

λ1(Γ(S))
||Lϕ||L2(G) (3.42)

holds true.

Proof: Construct an embedding of the space L2(S) into the space L2(Γ(S))

as follows: If ϕ ∈ L2(S), then its image Fϕ ∈ L2(Γ(S)) is defined by

Fϕ(v) =

{
ϕ(v) if v ∈ S̄1,

−ϕ(v) if v ∈ S̄2

(3.43)
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Then we have

(i)

||Fϕ||2L2(Γ(S)) =
∑
v∈Γ(S)

|Fϕ(v)|2 =
∑
v∈S̄1

|Fϕ(v)|2 +
∑
v∈S2

|Fϕ(v)|2

=
∑
v∈S1

|ϕ(v)|2 +
∑
v∈S2

| − ϕ(v)|2 = 2
∑
v∈S

|ϕ(v)|2

= 2
∑

v∈V (G)

|ϕ(v)|2 = 2||ϕ||2L2(G).

That is

||Fϕ||L2(Γ(S)) =
√

2||ϕ||L2(G). (3.44)

(ii) Let dΓ(S)(v), dS̄(v), dG(v) be the outdegrees of v in Γ(S), S̄ and G

respectively. It is easy to see that dΓ(S)(v) ≤ 2dG(v). As a result

||LΓ(S)Fϕ||L2(Γ(S)) ≤ 2||LGϕ||L2(G). (3.45)

(iii) From Theorem 3.10, we know that the vector√
φ =

(√
φ(v1),

√
φ(v2), ...,

√
φ(vn)

)
is an eigenfunction for the Laplacian L corresponding to the eigenvalue

zero.

Thus,

Ψ0 =
(√

φΓ(S)(v)
)
v∈Γ(S)

=
(√

φΓ(S)(v1),
√
φΓ(S)(v2), . . . ,

√
φΓ(S)(vN)

)
is the eigenfunction of LΓ(S) which corresponds to the eigenvalue 0, where φΓ(S)

is the stationary distribution of the natural random walk on Γ(S). Since every

function Fϕ is ”odd” (in the sense that ϕ(v) = −ϕ(v) when v is considered

as an element in S̄2) it is orthogonal to the subspace spanned by Ψ0. Now let

{Ψk}, k = 0, 1, . . . , N is a complete orthonormal system of eigenfunctions of
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LΓ(S). (Note: Any real self-adjoint operator has an orthonormal basis of real

eigenvectors with its associated eigenvalues). Hence we have

Fϕ =
N∑
j=1

〈Fϕ,Ψj〉Ψj ,

and

LΓ(S)Fϕ =
N∑
j=1

λj(Γ(S))〈Fϕ,Ψj〉Ψj .

Thus,

||LΓ(S)Fϕ||2L2(Γ(S))
=

N∑
j=1

λj
2(Γ(S))|〈Fϕ,Ψj〉|

2 ≥ λ1
2(Γ(S))||Fϕ||2L2(Γ(S)).

The last inequality follows from the fact that λ1 ≤ λj, j = 2, 3, . . . , N and

Parseval’s identity.

By taking the square root of both sides we obtain the inequality

λ1(Γ(S))||Fϕ||L2(Γ(S)) ≤ ||LΓ(S)Fϕ||L2
(Γ(S)). (3.46)

Now combining equations (3.44), (3.45) and (3.46) we obtain the desired result

||ϕ||L2(G) ≤
√

2

λ1(Γ(S))
||Lϕ||L2(G). �

Let hΓ(S) be the Cheeger constant of Γ(S). It is known [11] that

2hΓ(S) ≥ λ1(Γ(S)) ≥
h2

Γ(S)

2
.

Thus, we have from the above inequality

||ϕ||L2(G) ≤
2
√

2

h2
Γ(S)

||Lϕ||L2(G).

3.10 Laplacian on general directed graphs

In the previous sections, we assumed the digraph to be strongly connected

and aperiodic so that the natural random walk over the digraph converges
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to a unique and positive stationary distribution φ. However, this assumption

cannot be guaranteed for a general directed graph. To remedy this problem,

we may invoke the so-called teleporting random walk as the replacement of the

natural random walk. The idea of teleporting random walk was first intro-

duced by Brin and Page in 1998 in their PageRank Model [64] and have been

extensively studied since then.

Now consider a general directed graph G = (V,E). Given that we are

currently at a vertex u:

(a) with probability α choose an outlink uniformly at random and follow the

link to the next vertex; or

(b) with probability 1-α jump to a vertex chosen uniformly at random over

the entire vertex set excluding itself.

The constant 0 ≤ α ≤ 1 is introduced in the case where the current vertex

has outdegree zero. Such a random walk is guaranteed to converge to a unique

stationary distribution [64]. By adding in an α probability of jumping to a

uniform random vertex, we can avoid many of the problems of random walks

on directed graphs. First, it ensures that the walk graph (i.e., the random walk

and hence the transition probability matrix) is strongly connected. Second, it

ensures that the probability of reaching every vertex is at least α/n, and so is

not too small.

The choice of an appropriate α varies between 0 and 1 depending on the

problem at hand and the structure of the graph. For instance, if G is strongly

connected or nearly strongly connected (but Γ(S) is not strongly connected)

choosing α close to 1 would be a good choice to make the new transition

probability matrix close to the original one. It is also known that as α gets

close to 1, the rate of convergence of the random walk becomes slow. More

precisely, an α much less than 1 guarantees quick convergence but an α close

to 1 is better at preserving the information in P .

The transition probability matrix of teleporting random walk can be writ-
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ten explicitly as

P̃ = αP + (1− α)eeT/n, (3.47)

where P = D−1A is the the probability matrix of the natural random walk, e

is the column vector of all ones, n is the order of the matrix (which also equals

|V |), A is the adjacency matrix of G, and D is the diagonal matrix whose diag-

onal entries are the outdegrees of the vertices. In fact, the uniform vector 1
n
eT

can be replaced with a general probability vector ν > 0. A probability vector

is a vector with non-negative entries that add up to one. When calculating

P = D−1A, it may happen that a vertex in G has no outdegree, which in turn

results a row of P with all entries zero. So proper care must be given to handle

this issue. To fix the problem one remedy is to replace all zero rows with 1
n
eT

(of course any suitable probability vector ν may be used across the row). To

give a brief example on how to construct such P̃ , let us consider the following

directed graph (see figure 3.4). Notice that vertex 6 has no outneighbor and

hence it is a sink. As a result the sixth row of the transition probability matrix

P has entries all zero.

P =



0 1/2 0 0 0 1/2

0 0 0 1 0 0

1/2 0 0 0 0 1/2

0 0 0 0 1/2 1/2

0 0 1 0 0 0

0 0 0 0 0 0


.
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Figure 3.4: Directed graph with sink at vertex 6

Replacing row six of P by 1
6
eT yields the revised transition probability matrix

P̄ :

P̄ =



0 1/2 0 0 0 1/2

0 0 0 1 0 0

1/2 0 0 0 0 1/2

0 0 0 0 1/2 1/2

0 0 1 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6


.

The revised irreducible matrix is then given by

P̃ = αP̄ + (1− α)eeT/n,

for an appropriate choice of α.

Remark 3.3 Once we fix the issue of irreducibility of the transition probability

matrix of a digraph, we can define the Laplacian of a nonstrongly connected

digraph in terms of the new transition probability matrix. This is really a huge

advantage as most digraphs in practice are not strongly connected.

Conclusion: We gave an exposition of basic notations and concepts in graph

theory. In particular, we discussed about graphs and the Laplacian operators
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associated with them. Three most useful matrices associated with graphs: the

adjacency matrix, combinatorial Laplacian and the normalized Laplacian for

both weighted and unweighted graphs were discussed. We also reviewed the

spectral properties of the Laplacian operators, known Laplacian eigenvalue

bounds, spectral decomposition theorem, and the variational principle. Infi-

nite graphs and an essential self-adjointness of an infinite Laplacian are also

discussed.
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CHAPTER 4

POINTWISE SAMPLING ON

COMBINATORIAL GRAPHS

Spectral graph theory has historically focussed on constructing, analyz-

ing, and manipulating graphs as opposed to signals on graphs. It has proved

particularly useful for the construction of expander graphs [94], graph visu-

alization [95], spectral clustering [41, 42, 43], graph coloring, graph drawing

[46, 47, 48, 49] and numerous other applications. In the area of signal pro-

cessing on graphs, spectral graph theory has been leveraged as a tool to define

frequency spectral expansion bases for graph Fourier transform. In the next

section we will discuss the notion of Fourier transform in the graph setting

and extend many of the important mathematical ideas and intuitions from

the classical Fourier analysis.

Recently, a new approach to a sampling theory of Paley-Wiener functions

on combinatorial graphs was developed in [22]. A notion of Paley-Winer spaces

on combinatorial graphs was introduced. It was shown that functions from

some of these spaces can be uniquely determined by their values on some sets

of vertices called the sampling (or uniqueness) sets. Such sampling sets are

described in terms of Poincaré-Wringer type inequalities. In particular, it was

shown that every finite subset of a graph admits a Poincaré inequality. A

reconstruction algorithm of Paley-Wiener functions from sampling sets has
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been developed. The goal of this chapter is to extend the theory to a more

general weighted combinatorial graphs. We will also develop a reconstruction

algorithm to construct Paley-Wiener functions from their sampling sets. Our

experiment also shows that the eigenfunctions of the graph Laplacian corre-

sponding with the lower eigenvalues are smooth and oscillate slowly whereas

the eigenfunctions corresponding with larger eigenvalues oscillate much more

rapidly and cross zeros more often, confirming the interpretation of the graph

Laplacian eigenvalues as notions of frequency. Our sampling technique is based

on the graph Fourier transform, which will be discussed in the next section.

4.1 A graph Fourier transform and notion of

frequency

The classical Fourier transform on Rn is still an area of active research,

particularly concerning Fourier transformation on more general objects such

as tempered distributions. For instance, by imposing some requirements on a

distribution f , one can attempt to translate these requirements in terms of the

Fourier transform of f . The Paley-Wiener theorem is a good example of this.

It immediately implies that if f is a nonzero distribution of compact support

(these include functions of compact support), then its Fourier transform is

never compactly supported. This is a very elementary form of an uncertainty

principle in a harmonic analysis setting.

For a continuous functions defined on the real line, the classical Fourier

transform

f̂(ξ) := 〈f, e2πiξt〉 =

∫ ∞
−∞

f(t)e−iξt dt (4.1)

provides a way of expanding the function f on the whole real line R as su-

perpositions of the basic functions (complex exponential) eiξt, ξ ∈ R. In

other words, the complex exponential eiξt defining the Fourier transform are
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eigenfunctions of the one-dimensional Laplacian operator :

−∆(eiξt) = − ∂
2

dt2
eiξt = ξ2eiξt. (4.2)

The inverse Fourier transform can thus be seen as the expansion of f in

terms of the eigenfunctions of the Laplacian operator. In principle, the knowl-

edge of the values f(x) for all x ∈ R determines completely all the properties

of f and also all properties of f̂ , because the Fourier transform is one-to-one.

However, it is not always convenient, let alone easy, to extract properties of f̂

by looking only at f . For example, it is very difficult to decide in terms of f

alone, whether f̂ ∈ Lp when p 6= 2.

Although it is generally difficult to recognize properties of f from properties

of f̂ and vice versa, they are governed by two basic principles: the smoothness

and decay principle and the uncertainty principle. The former describes that

if f is smooth, then f̂ decays quickly; if f decays quickly, then f̂ is smooth.

The latter describes f and f̂ cannot be simultaneously localized (cannot be

simultaneously small).

The graph Fourier transform is defined in precise analogy. We can define

the graph Fourier transform f̂ of any function f ∈ L2(G) on the vertices of

G as the expansion of f in terms of the eigenfunctions of the graph Laplacian

operator. Since the Laplacian operator L is a real symmetric matrix, it has a

complete set of orthonormal eigenfunctions {φ`}`=1,2,...,n.

Definition 4.1 Let G = (V,E,w) be a connected weighted graph with |V | = n.

The graph Fourier transform of f ∈ L2(G) is defined as

f̂(λ`) = 〈f, φ`〉 =
∑
v∈V

f(v)φ∗`(v), ` = 1, 2, . . . , n (4.3)

where φ` ∈ Rn is the `th orthonormal eigenfunction corresponding to the eigen-

value λ`. The original function f (i.e, the inverse graph Fourier transform) is

then given by

f(v) =
n∑
`=1

〈f, φ`〉φ`(v) =
n∑
`=1

f̂(λ`)φ`(v), v ∈ V (G). (4.4)
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In classical Fourier analysis, the eigenvalues {ξ2}ξ∈R in eq.(4.2) carry a spe-

cific notion of frequency: for ξ close to zero (low frequencies), the associated

complex exponential eigenfunctions are smooth, slowly oscillating functions,

whereas for ξ far from zero (high frequencies), the associated complex ex-

ponential eigenfunctions oscillate much more rapidly. In the graph setting,

the graph Laplacian eigenvalues and eigenfunctions provide a similar notion

of frequency. For example, for connected unweighted graphs, the Laplacian

eigenfunction φ1 associated with the eigenvalue 0 is constant and equal to 1√
n

at each vertex, i.e., φ1 = 1√
n
.1. More generally, the graph Laplacian eigenfunc-

tions associated with low frequencies (small eigenvalues)λ` vary slowly across

the graph. If two vertices are connected by an edge with a large weight, the

values of the eigenfunction at those locations are likely to be similar. The

eigenvectors associated with larger eigenvalues oscillate more rapidly and are

more likely to have dissimilar values on vertices connected by an edge with

high weights. This is demonstrated in figures (4.1) and (4.2).

As we can see from these figures, the Laplacian eigenfunctions associated

with larger eigenvalues cross zero more often, confirming the interpretation

of the graph Laplacian eigenvalues as notions of frequency. The set of zero

crossings of a signal f on a graph G is defined as

ZG(f) := {e = uv ∈ E(G) : f(u)f(v) < 0};

that is, the set of edges connecting a vertex with a positive signal to a vertex

with a negative signal.

The graph Fourier transform and its inverse give us a way to equivalently

represent a signal in two different domains: the vertex domain and and the

graph spectral domain. Analogous to the classical case, the graph Fourier

coefficients of a smooth signal decay rapidly. Such signals are compressible as

they can be closely approximated by just a few graph Fourier coefficients.

We recall from eq.(3.11) that the quadratic form of the Laplacian at f ∈
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L2(G) is given by

〈f, Lf〉 =
∑
i∼j

(f(i)− f(j))2.

We denote the square root of the quadratic form by ||f ||G. i.e.,

||f ||G = 〈f, Lf〉1/2

and call it the 2-norm graph total variation.

The following theorem describes a bound for the Fourier transform of a

signal.

Theorem 4.1 For any f ∈ L2(G),

|f̂(λi)| ≤
||f ||G√
λi

(4.5)

Proof:

λi|f̂(λi)|
2
≤

n∑
i=1

λi|f̂(λi)|
2

= fT (
n∑
i=1

λiφiφ
T
i )f = fTLf = ||f ||2G

�
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Figure 4.1: Some eigenfunctions of the Laplacian on a path graph
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Figure 4.2: Some eigenfunctions of the Laplacian on a cycle graph
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4.2 Bandlimited signals and sampling theory

on graphs

The theory of bandlimited functions has been extensively studied for decades

in signal analysis. The term is used to mean that the frequency content of a

signal f(t) is limited by certain bounds. More precisely, if f(t) is a function

of time, its Fourier transform

f̂(ω) =

∫ ∞
−∞

f(t)eiωt dt (4.6)

is called the amplitude spectrum of f . It represents the frequency content of

the signal. A signal is ω-bandlimited if f̂ vanishes outside [−ω, ω]. The space of

all ω-bandlimited signals is known as the Paley-Wiener space or Bernstein

space. It is a subspace of L2(R) consisting of all functions whose Fourier

transform is supported on the interval [−ω, ω] and denoted by PWω(R).

The classical Shannon Sampling Theorem states that if a function f belongs

to the space of bandlimited functions PWω(R), then it can be completely

recovered from its uniform samples via the formula

f(t) =
∞∑

k=−∞

f

(
k

2ω

)
sin(2πωt− πk)

2πωt− πk
:=

∞∑
k=−∞

f

(
k

2ω

)
sinc(2πωt− πk).

(4.7)

As mentioned in the introduction, the notion of Paley-Wiener spaces was

recently extended to the space of functions defined on graphs [22]. The theory

was developed using the fact that the graph Laplacian operator is a self-adjoint

positive definite operator. A new characterization of the classical Paley-Wiener

space that connects Paley-Wiener functions to analytic functions of a Cauchy

problem involving Schrödinger equation was derived and a number of other

properties of the space were discovered. We will discuss some of the fundamen-

tal properties of Paley-Wiener functions here just for the sake of completeness

and refer the readers to [22] and [33] for details.

Definition 4.2 Given ω ≥ 0, we will say that a signal f in L2(G) belongs to

the Paley-Wiener space PWω(G) if the graph Fourier transform f̂ has support
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in [0, ω]. In this case we say the function f is bandlimitted (specifically, ω-

bandlimitted) or f is a Paley-Wiener function.

Since the Laplacian L is a bounded operator, every function from L2(G)

belongs to a certain Paley-Wiener space PWω(G) for some ω ∈ σ(L) and the

following stratification holds:

L2(G) = PWωmax(G) =
⋃
σ∈L

PWω(G), PWω1(G) ⊆ PWω2(G), ω1 < ω2,

where ωmax = supω∈σ(L) ω. The set PWω(G) is a linear closed subspace in

L2(G).

Remark 4.1 For a finite graph G, the Paley-Wiener space PWω(G) is a span

of eigenfunctions of the Laplacian of G whose eigenvalues are less than or equal

to ω and it is always nontrivial for every ω ≥ 0.

Let S ⊂ V (G). The space of all functions from L2(G) with support in S is

denoted by:

L2(S) = {f ∈ L2(G), f(v) = 0, v ∈ V (G)\S}. (4.8)

Definition 4.3 A set of vertices U ⊂ V (G) is called a uniqueness (sampling)

set for a space PWω(G), ω > 0, if for any two functions from PWω(G), the

fact that they coincide on U implies that they coincide on V(G).

Definition 4.4 A set of vertices S ⊂ V (G) is called a Λ-set if for any f ∈ L2(S)

it admits a Poincaré inequality with a constant Λ > 0 such that

||f || ≤ Λ||Lf ||, f ∈ L2(S). (4.9)

The infimum of all Λ > 0 for which S is is a Λ-set is called the Poincaré

constant of the set S and denoted by Λ(S).

Theorem 4.2 Let G = (V,E,w) be a weighted graph, ω > 0, and L is the

Laplacian of G. The following statements hold true:
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1. f ∈ PWω(G) if and only if for all t ∈ R+ the following Bernstein in-

equality is satisfied

||Ltf || ≤ ωt||f ||, f ∈ L2(G). (4.10)

2. the norm of the operator L in the space PWω(G) is exactly ω.

3. f ∈ PWω(G) if and only if the following holds true:

lim
t→∞
||Ltf || = ω, t ∈ R+, f ∈ L2(G). (4.11)

Λ-sets play an important role in sampling and approximation of graph

signals. The following result partly explains the role of Λ-set in sampling and

approximation.

Theorem 4.3 Suppose G = (V,E,w) is a connected weighted graph. If a set

S ⊂ V (G) is a Λ-set, then U = V (G) \ S is a uniqueness set for any space

PWω(G) with ω < 1
Λ

.

Proof: We must show that for any two arbitrary functions f and g in PWω(G),

f = g in U =⇒ f ≡ g in V (G).

If f, g ∈ PWω(G), then f − g ∈ PWω(G). So by Theorem 4.2, we have

||L(f − g)|| ≤ ω||f − g||. (4.12)

On the other hand, if f and g coincide in U = V (G) \ S, then f − g belongs

to L2(S). Since S is a Λ-set, it satisfies the Poincaré-inequality

||f − g|| ≤ Λ||L(f − g)||.

Thus, if f −g is not identically zero and ω < 1
Λ

, we have the following inequal-

ities:
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||f − g|| ≤ Λ||L(f − g)|| ≤ Λω||f − g|| < ||f − g||, (4.13)

which contradicts the assumption that f − g is not identically zero. It com-

pletes the proof. �

The following example provides a Poincaré-inequality on singleton sets and

the next theorem generalizes this example in a more general setting.

Example : Let G = (V,E,w) be a connected weighted graph and let v ∈ V
be any vertex and S = {v}. For any ϕ ∈ L2(S) we have

1. ||ϕ||L2(G) =
(∑

u∈U |ϕ(u)|2
) 1

2 = (|ϕ(v)2|) 1
2 = |ϕ(v)|

2. Lϕ(v) = 1√
d(v)

∑
u∼v

(
ϕ(v)√
d(v)
− ϕ(u)√

d(u)

)
= 1√

d(v)
N(v) ϕ(v)√

d(v)
= N(v)ϕ(v)

d(v)
,

where N(v) and d(v) are the number of neighbors and weighted degree

of vertex v respectively.

3. Lϕ(u) = 1√
(u)

∑
u∼v

−ϕ(v)√
d(v)

= −ϕ(v)√
d(u) d(v)

, foru ∼ v, and Lϕ(u) = 0 for all

u 6= v, u � v(u is not adjacent to v).

So we have the following:

Lϕ(u) =


N(v)ϕ(v)
d(v)

= %(v)ϕ(v) if u = v ,

− ϕ(v)√
d(v)d(u)

if u ∼ v,

0 otherwise.

(4.14)
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Thus,

||Lϕ||L2(G) =

 ∑
u∈V (G)

|Lϕ(u)|2
 1

2

=

(
N2(v)ϕ2(v)

d2(v)
+
ϕ2(v)

d(v)

∑
u∼v

1

d(u)

) 1
2

=

(
%2(v)ϕ2(v) +

ϕ2(v)

d(v)

∑
u∼v

1

d(u)

) 1
2

=

(
%2(v) +

1

d(v)

∑
u∼v

1

d(u)

) 1
2

||ϕ||L2(G)

≥ %(G)||ϕ||L2(G),

where %(v) = N(v)
d(v)

and %(G) = min %(v), v ∈ V (G). Therefore

||ϕ||L2(G) ≤
1

%(G)
||Lϕ||L2(G). (4.15)

�

Definition 4.5 Let G = (V,E,w) be a connected weighted graph and S ⊂ V .

The vertex boundary of S denoted by bS is the set of all vertices v not in S

but adjacent to some vertex in S, i.e.,

bS = {v /∈ S : (u, v) ∈ E(G), for some u ∈ S}.

Note that bS is always nonempty for a connected graph G. For a finite set

S consider the set S̄ = S ∪ bS as an induced subgraph of G. Let Γ(S) be a

graph constructed in the following way: Take two copies of the induced graph

S̄, and denote them as S̄1 and S̄2, and identify every vertex v ∈ bS ⊂ S̄1 with

the same vertex v ∈ bS ⊂ S̄2. The following theorem is a more general form

of the above example.

Theorem 4.4 Suppose G = (V,E,w) is a connected weighted graph and S ⊂
V (G) (finite or infinite) has the property that for any v ∈ S its closure v̄ =

v ∪ bv does not contain other points of S. Then S is a Λ-set with Λ = 1
%(G)

.
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Proof: Let ϕ ∈ L2(S). For each v ∈ S, v̄ ∩ S = {v}.

||ϕ||L2(G) =

 ∑
u∈V (G)

|ϕ(u)|2
 1

2

=

(∑
u∈S

|ϕ(u)|2
) 1

2

(i) For each v ∈ S,

Lϕ(v) =
1√
d(v)

∑
u∼v

(
ϕ(v)√
d(v)

− ϕ(u)√
d(u)

)
=

1√
d(v)

N(v)
ϕ(v)√
d(v)

=
N(v)

d(v)
ϕ(v).

(ii) For each v ∈ V (G)\S,

Lϕ(v) =
1√
d(v)

∑
u∼v

(
ϕ(v)√
d(v)

− ϕ(u)√
d(u)

)
= − 1√

d(v)

∑
u∼v,u∈S

ϕ(u)√
d(u)

.

Then we have,

||Lϕ||2L2(G) =

 ∑
v∈V (G)

|Lϕ(v)|2


=
∑
v∈S

|Lϕ(v)|2 +
∑

u∈V (G)\S

|Lϕ(u)|2

=
∑
v∈S

∣∣∣N(v)

d(v)
ϕ(v)

∣∣∣2 +
∑

v∈V (G)\S

1

d(v)

∣∣∣∑
u∈S

ϕ(u)√
d(u)

∣∣∣2
≥ (%(G))2||ϕ||2. �

Theorem 4.5 Suppose G = (V,E,w) is a connected weighted graph and S ⊂
V (G) (finite or infinite) is a subset of V(G) satisfying the following three

conditions:

1. every point from S is adjacent to a point from the boundary of S;

2. for every v ∈ S there exists at least one adjacent point v∗ ∈ bS whose

adjacency set intersects S only at v;

3. the number

ηS = sup
v∈S

d(v∗)

is bounded.
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Then S is a Λ-set with Λ =
√

ηS
%(G)

.

Proof: Let

S∗ = {u ∈ bS | ∃v ∈ S with v∗ = u}.

By assumption of the theorem, S is non-empty. If ϕ ∈ L2(S), v ∈ S, we have

Lϕ(v∗) =
1√
d(v∗)

∑
u∼v∗

(
ϕ(v∗)√
d(v∗)

− ϕ(u)√
d(u)

)
= − ϕ(v)√

d(v∗)d(v)
,

and

||Lϕ||2L2(G) =
∑

u∈V (G)

|Lϕ(u)|2 =
∑
u∈S

|Lϕ(u)|2 +
∑

u∈V (G)\S

|Lϕ(u)|2

≥
∑

u∈V (G)\S

|Lϕ(u)|2 ≥
∑
v∈S

|Lϕ(v∗)|2N(v)

=
∑
v∈S

|ϕ(v)|2

d(v)d(v∗)
N(v) =

∑
v∈S

|ϕ(v)|2

d(v∗)

N(v)

d(v)

≥

(∑
v∈S

|ϕ(v)|2

d(v∗)

)
%(G) ≥ %(G)

ηS

∑
v∈S

|ϕ(v)|2

=
%(G)

ηS

∑
v∈V (G)

|ϕ(v)|2

=
%(G)

ηS
||ϕ||2.

Thus,

||ϕ|| ≤
√

ηS
%(G)

||Lϕ||. �

Note that for unweighted graph, %(G) = 1 and ηS ≥ 1 and hence ||ϕ|| ≤
ηS||Lϕ||.

The following theorem allows to construct infinite Λ-sets from the finite

ones.

Theorem 4.6 Suppose that G = (V,E,w) is a weighted graph and {Sj} is a

finite or an infinite sequence of disjoint subsets of vertices Sj ⊂ V such that

the sets Sj ∪ bSj are pairwise disjoint. If each Sj is a Λj-set, then their union

S = ∪jSj is a Λ-set with Λ = supj Λj.
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Theorem 4.7 Suppose G = (V,E,w) is a connected weighted graph and S is

a nonempty finite subset of V(G). Then S is a Λ-set with Λ =
√

2
λ1(Γ(S))

.

That is, for any ϕ ∈ L2(S), the inequality

||ϕ||L2(G) ≤
√

2

λ1(Γ(S))
||Lϕ||L2(G)

holds true.

Proof: Construct an embedding of the space L2(S) into the space L2(Γ(S))

as follows: If ϕ ∈ L2(S), then its image Fϕ ∈ L2(Γ(S)) is defined by

Fϕ(v) =

{
ϕ(v) if v ∈ S̄1,

−ϕ(v) if v ∈ S̄2

(4.16)

Then we have

(i) ||Fϕ||2L2(Γ(S)) =
∑
v∈Γ(S)

|Fϕ(v)|2

=
∑
v∈S̄1

|Fϕ(v)|2 +
∑
v∈S2

|Fϕ(v)|2

=
∑
v∈S1

|ϕ(v)|2 +
∑
v∈S2

| − ϕ(v)|2

= 2
∑
v∈S

|ϕ(v)|2

= 2
∑

v∈V (G)

|ϕ(v)|2

= 2||ϕ||2.

Thus,

||Fϕ||L2(Γ(S)) =
√

2||ϕ||L2(G). (4.17)

(ii) Let NΓ(S)(v), NS̄(v), NG(v) be the combinatorial degrees (or number of

neighbors) of v in Γ(S), S̄ and G respectively. It is easy to see that NΓ(S)(v) ≤
2NG(v). As a result

||LΓ(S)Fϕ||L2(Γ(S)) ≤ 2||LGϕ||L2(G). (4.18)
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(iii) We know that the vector
(√

d(v1), . . . ,
√
d(vn)

)
is an eigenvector for

the weighted Laplacian L corresponding to the eigenvalue zero. Thus

Ψ0(v) =
√
dΓ(S)(v), v ∈ Γ(S)

is the eigenfunction of LΓ(S) which corresponds to the eigenvalue 0. Since every

function Fϕ is ”odd” (in the sense that ϕ(v) = −ϕ(v) when v is considered

as an element in S̄2) it is orthogonal to the subspace spanned by Ψ0. Now

let {Ψk}, k = 0, 1, ..., N is a complete orthonormal system of eigenfunctions

of LΓ(S). (Note: Any real symmetric matrix has an orthonormal basis of real

eigenvectors with its associated eigenvalues.) Hence we have

Fϕ =
N∑
j=1

〈Fϕ,Ψj〉Ψj ;

LΓ(S)Fϕ =
N∑
j=1

λj(Γ(S))〈Fϕ,Ψj〉Ψj .

Thus,

||LΓ(S)Fϕ||2L2
(Γ(S)) =

N∑
j=1

λj
2(Γ(S))|〈Fϕ,Ψj〉|

2 ≥ λ1
2(Γ(S))||Fϕ||2L2(Γ(S)).

That is

λ1(Γ(S))||Fϕ||L2(Γ(S)) ≤ ||LΓ(S)Fϕ||L2
(Γ(S)). (4.19)

Now combining equations (4.17) - (4.19) we obtain the desired result

||ϕ||L2(G) ≤
√

2

λ1(Γ(S))
||Lϕ||L2(G). �

Let us now see some examples of Λ-sets.

Some Examples:

Here we will give some examples of Λ sets with an explicit value of Λ for infinite

graphs. In the case of finite graphs, we will show a nice method of computing

the optimal value of Λ in chapter 5.
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Example 1. Consider a line graph G = Z whose vertices correspond to the

set of integers Z. For any finite subset S of successive vertices of the graph Z
the following inequality holds true:

||ϕ|| ≤ 1

2
sin−2 π

2|S|+ 2
||Lϕ||, ϕ ∈ L2(S).

In the following example, we will state explicit constants for the Poincaré

inequality for some specific finite sets of points on homogeneous trees. Con-

sider a homogeneous tree of order q+ 1. We will say that the roots of this tree

belongs to the level zero, the next q vertices belong to the level one, the next

q2 belong to the level two and so on. A level of order m will be denoted as lm.

Example 2. On a homogeneous tree G of order q + 1 for any level S = lm of

order m the following Poincaré inequality holds true:

||ϕ|| ≤
(

1 +
q

(q + 1)2

)− 1
2

||Lϕ||, ϕ ∈ L2(S).

4.3 Sampling on Directed Graphs

The space of Paley-Wiener functions and a corresponding sampling theory

for undirected graphs was discussed in sections 4.1 and 4.2. The notion was

defined using the fact that the graph Laplacian operator is a self-adjoint semi-

positive definite operator in the Hilbert space L2(G). In the present chapter

we will extend the idea to directed graphs. Since the Laplacian operator on

directed graphs is self-adjoint positive definite as in the case of undirected

Laplacian, most of the notions and subsequent theories developed for undi-

rected graphs carry over to directed graphs.

For instance, given an ω ≥ 0 we will say that a function f ∈ L2(G) belongs

to the Paley-Wiener Space PWω(G) if its Fourier transform f̂ has support in

[0, ω]. The notions of uniqueness sets, Λ-set, Poincaré inequalities, Plancherel-

Polya inequalities described before will be defined in the same way. Moreover,

when G is finite, σ(L) is a discrete set and the Paley-Wiener Space PWω(G)
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is a span of eigenfunctions of the Laplacian whose eigenvalues are less than or

equal to ω.

The main purpose of this section is to give some examples of Λ-sets on

directed graphs.

Example 1: Consider a strongly connected k-regular digraph G = (V,E) of

order n and let v0 be a vertex in V. Let S = {v0}. We will show that S is a

Λ-set with Λ(S) = Λ = 1√
1+ 1

2k

.

Proof: It is known that for strongly connected regular digraphs of order n

and degree k the Perron vector φ and the transition probability p are given by

φ(u) = 1
n

and p(u, v) = 1
k

for each vertex u, v ∈ V . So for each f ∈ L2(S) we

have

(i) (Lf)(v0) = f(v0)− 1

2

( ∑
u:u→v0

φ(u) p(u, v0) f(u)√
φ(u)φ(v0)

+
∑

w:v0→w

φ(v0) p(v0, w)f(w)√
φ(w)φ(v0)

)
= f(v0)

(ii). (Lf)(w) = f(w)− 1

2

( ∑
u:u→w

φ(u) p(u,w) f(u)√
φ(u)φ(w)

+
∑
t:w→t

φ(w) p(w, t)f(t)√
φ(w)φ(t)

)

= −f(v0)

2k

for each w such that w → v0.

(iii). Similarly, for each u such that v0 → u we have (Lf)(u) = −f(v0)
2k

,

(iv). Finally for each u 6= v0, u9 v0 or u8 v0, (Lf)(u) = 0.

Thus,

||Lf ||2L2(G) =
∑
u∈V

|Lf(u)|2

= |f(v0)|2 +
∑

w:w→v0

|f(v0)|2

4k2
+
∑

u:v0→u

|f(v0)|2

4k2

= |f(v0)|2 + k

(
|f(v0)|2

4k2

)
+ k

(
|f(v0)|2

4k2

)
= |f(v0)|2(1 +

1

2k
) = (1 +

1

2k
)||f ||2L2(G),
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which implies

||f || ≤ 1√
1 + 1

2k

||Lf ||. (4.20)

�

Example 2: Let v be any vertex in a strongly connected digraph G (not

necessarily regular) and let S = {v}. It is an easy calculation to show that for

any f ∈ L2(S),

Lf(u) =



f(v) if u = v ;

− f(v)
2 d(u)

√
φ(u)
φ(v)

if (u, v) ∈ E(G);

− f(v)
2 d(v)

√
φ(v)
φ(u)

if (v, u) ∈ E(G);

0 otherwise,

and

Λ(S) = Λ(v) =
1√

1 + 1
4

(∑
u: u→v

φ(u)
φ(v) d(u)2

+
∑

w: v→w
φ(v)

φ(u) d(v)2

) . (4.21)

Note that equation (4.20) can be recovered from (4.21) when G is regular.

Definition 4.6 Given a digraph G = (V,E), and any vertex v ∈ V (G),

• the set of vertices u ∈ V (G) such that (u, v) ∈ E(G) is called the in-

neighbor of v and denoted by N−(v).

• the set of vertices u ∈ V (G) such that (v, u) ∈ E(G) is called the out-

neighbor of v and denoted by N+(v).

• we call a nonempty set S ⊂ V (G) isolated if for each v ∈ S it contains

neither the in-neighbor of v nor the out-neighbor of v.

Suppose G is a digraph and S ⊂ V (G). We will define the edge and vertex

boundaries of S as follows.
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(i) The edge out-boundary of S, denoted by ∂S, consists of all edges (u, v) ∈
E(G) with u ∈ S and v /∈ S. i.e.,

∂S = {(u, v) ∈ E(G) | u ∈ S, v /∈ S}.

(ii) The edge in-boundary of S, denoted by ∂S̄, is defined similarly as

∂S̄ = {(u, v) ∈ E(G) | u ∈ V \S, v ∈ S} = {(u, v) ∈ E(G)|v ∈ S, u /∈ S}.

(iii) The vertex out-boundary of S, denoted by δS, is the set of all vertices

v ∈ V \ S such that (u, v) ∈ ∂S for some u ∈ S. i.e.,

δS = {v ∈ V \ S : (u, v) ∈ ∂S, for some u ∈ S}.

(iv) The vertex in-boundary of S, denoted by δS̄, is the set of all vertices

u ∈ V \ S such that (u, v) ∈ ∂S̄ for some v ∈ S. i.e.,

δS̄ = {u : (u, v) ∈ ∂S̄}.

For the sake of conciseness, in the following, unless otherwise stated, we re-

fer to the out-boundary or in-boundary followed by the appropriate notations

without specifying vertex or edge. Note, for directed graphs in-boundary and

out-boundary can be quite different. The following theorem shows that every

isolated set is a Λ-set. The theorem helps to construct infinite Λ-sets.

Theorem 4.8 Suppose that G = (V,E) is a strongly connected digraph and

S ⊂ V (G) is an isolated subset of V(G). Then S is a Λ-set with Λ = 1.

Proof: For each ϕ ∈ L2(S) and for each v ∈ S we have

(Lf)(v) = f(v)−1

2

(∑
u:u→v

φ(u) p(u, v) f(u)√
φ(u)φ(v)

+
∑
w:v→w

φ(v) p(v, w)f(w)√
φ(w)φ(v)

)
= f(v)

since f(u) = 0 = f(w) ∀u,w ∈ V with u→ v and v → w.

On the other hand, by the hypothesis, for each v ∈ V \ S, all its in-neighbors
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and out-neighbors of v belong to V \S. So f(v) = f(u) = f(w) = 0 ∀u,w ∈ V
with u→ v and v → w and therefore

(Lf)(v) = f(v)− 1

2

(∑
u:u→v

φ(u) p(u, v) f(u)√
φ(u)φ(v)

+
∑
w:v→w

φ(v) p(v, w)f(w)√
φ(w)φ(v)

)
= 0.

Therefore,

||Lf ||2 =
∑
u∈V

|Lf(u)|2

=
∑
u∈S

|Lf(u)|2 +
∑
u∈V \S

|Lf(u)|2

=
∑
u∈S

|Lf(u)|2

=
∑
u∈S

|f(u)|2

= ||f ||2,

which proves that ||f || ≤ ||Lf ||. �

Theorem 4.9 Suppose that for a set of vertices S ⊂ V (G) (finite or infinite)

the following conditions hold true:

1) for every point v ∈ S there is a point u ∈ δS such that (v, u) ∈ ∂S. That

is, every point in S has an out-neighbor on the boundary of S.

2) for every v ∈ S there exists at least one uv ∈ δS such that (v, uv) ∈ ∂S,

N−(uv) ∩ S = {v}, and N+(uv) ∩ S = ∅. That is, every point v ∈ S

has at least one out-neighbor uv on the boundary δS whose in-neighbor

intersects S only over v and whose out-neighbor is disjoint from S.

Then S is a Λ-set with Λ = 2 ΛS
−1, where

ΛS = inf
v∈S

φ(v)

d(v)
.

Proof: By hypothesis there exist a subset S∗ ⊂ δS such that for every vertex

v ∈ S there exists at least one point uv ∈ S∗ whose in-neighbor intersects S
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only over v and whose out-neighbor is disjoint from S. Now for each ϕ ∈ L2(S),

and uv ∈ S∗, v ∈ S, we have ϕ(uv) = 0 and

Lϕ(uv) = ϕ(uv)−
1

2


∑

w:w→uv

φ(w) p(w, uv)ϕ(w)√
φ(uv)φ(w)

+
∑

z:uv→z

φ(uv) p(uv, z)ϕ(z)√
φ(uv)φ(z)︸ ︷︷ ︸

= 0 since N+(uv) ∩ S = ∅


= −1

2

(
φ(v) p(v, uv)ϕ(v)√

φ(uv)φ(v)

)
.

Since (by the hypothesis) for every v ∈ S there exists at least one vertex uv in

S∗ such that (v, uv) ∈ ∂S and since φ(v) < 1 for all v ∈ V (G) we have

||Lϕ|| =

 ∑
v∈V (G)

|Lϕ(v)|2
1/2

≥

(∑
v∈S

|Lϕ(uv)|2
)1/2

≥

(∑
v∈S

|Lϕ(uv)|2φ(uv)φ(v)

)1/2

≥ ΛS
1

2
||ϕ||.

�

Theorem 4.10 Let G = (V,E) is a strongly connected digraph. Suppose that

{Sj} is a finite sequence of disjoint subsets of vertices Sj ⊂ V such that the

sets cl(Sj) = Sj ∪ δ(Sj) ∪ δ(S̄j) are pairwise disjoint.

Then if a set Sj has type Λj, then their union S =
⋃
j Sj is a set of type

Λ = supj Λj.

Proof. Since the sets Sj are disjoint, every ϕ ∈ L2(S), S =
⋃
j Sj, is a sum of

functions ϕj ∈ L2(Sj) which are pairwise orthogonal. Further since the sets

cl(Sj) are pairwise disjoint, one can easily verify that the functions Lϕj are

also orthogonal. Therefore, we have

||ϕ||2 =
∑
j

||ϕj||2 ≤
∑
j

Λ2
j ||Lϕj||2 ≤ Λ2||Lϕ||2, where Λ = sup

j
Λj.
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This completes the proof. �

Conclusion: A graph Fourier transform which resembles in many ways to the

classical Fourier transform is defined using the graph Laplacian eigenfunctions.

It is explained here why the Laplacian eigenvalues and eigenfunctions provide

a similar notion of frequency and we gave experimental results supporting the

theory behind it. Bandlimited graph signals are defined and a sampling theory

on combinatorial graphs (both directed and undirected) developed. It is shown

that every subset of the vertex set is a Λ-set for some appropriate Λ, and a

bound for Λ is given although we do not know if this bound is optimal at this

point.
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CHAPTER 5

MULTIRESOLUTION ON

WEIGHTED GRAPHS

Graphs are natural ways to represent data in many domains. For example,

consider a data set with N elements, for which some information about the

relationship between the data elements is known. This relational information

can be represented by a graph G = (V,E), where V = V (G) = {v0, . . . , vN−1}
is the set of vertices and E = E(G) is the set of edges or links connecting these

vertices. Each dataset element corresponds to node vn. Since data elements

can be related to each other differently, in general, G is a weighted graph.

The weight of the edge connecting two nodes u and v is denoted by w(u, v).

The degree µ(v) of the vertex v is the sum of the edge weights incident to

node v. The adjacency matrix W of the graph is an N ×N matrix such that

W (u, v) = w(u, v). The data on the graphs is often represented as a scalar

or vector valued function attached to the vertices of the graph. The set of all

complex valued functions f on V (G) is denoted by L2(G).

The space L2(G) is the Hilbert space of all complex-valued functions with

the following inner product

〈f, g〉L2(G) = 〈f, g〉 =
∑

v∈V (G)

f(v)g(v)µ(v). (5.1)
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The weighted Laplacian operator L is defined on L2(G) via

(Lf)(v) =
∑

u∈V (G)

(f(v)− f(u))w(v, u) . (5.2)

The Laplacian is a well-studied object; it is known to be a positive-semidefinite

self-adjoint bounded operator. Thus, it hasN real and nonnegative eigenvalues.

Moreover, since L1 = 0, where 1 = (1, 1, . . . , 1), is the all 1 constant function,

zero is an eigenvalue of L corresponding to the eigenfunction 1.

According to [18] if for an infinite graph there exists a C > 0 such that the

degrees are uniformly bounded

µ(u) =
∑

u∈V (G)

w(u, v) ≤ C ∀u ∈ V (G), (5.3)

then the operator which is defined by eq.(5.2) on functions with compact

supports has a unique positive-semidefinite self-adjoint bounded extension L
which is acting according to (5.2). Now let 0 = λ0 < λ1 ≤ · · · ≤ λN−1 be the

set of eigenvalues of L and let eλ0 , ...., eλN−1
be an orthonormal complete set

of eigenfunctions.

In classical signal analysis, a bandlimited function (signal) f on R may

be explicitly reconstructed from its values {f(kδ)|k ∈ Z} on an appropriately

spaced lattice (δ = 1
2B

if B is the bandlimit) in terms of the sinc function

sinc(x) = sin(πx)
πx

. This is the classical Shannon’s sampling theorem [82]. We

are interested in the discrete analog of Shannon’s theorem, where we replace

R by a graph G and the classical Laplace operator by the graph Laplacian

operator L. A signal is said to be ω-bandlimited if its Fourier transform (GFT)

has support only on [0, ω]. In other words, f is bandlimited means that the

expansion of f as an infinite series in terms of eigenfunctions {ek} of L with

Lek = λkek is actually a finite sum where the eigenvalues λk satisfy λk ≤ ω,

with ω being the bandlimit. The space of ω-bandlimited signals is called the

Paley-Wiener space and is denoted by PWω(G).
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5.1 Uniqueness (sampling) sets

We have seen in chapter 4 that a subset of vertices U ⊂ V (G) is a unique-

ness set (also known as a sampling set) for a space PWω(G), ω > 0, if for

any two signals from PWω(G), the fact that they coincide on U implies that

they coincide on V (G). This definition implies that it is sufficient to know

the values of a ω-bandlimited signal only on the uniqueness set U . However,

in practice, given a ω > 0 (or given a ω-bandlimited signal), determining a

uniqueness set for space PWω(G) (or a sampling set for f) is a difficult task.

In fact, in graph signal approximation, values of signals are usually known

on some subset of the vertex set and the real problem is to determine which

signals can be well approximated just based on the knowledge of their values

on the given subset. In other words, for what values of ω does this subset

be a uniqueness set for PWω(G)? Obviously, it is not possible to perfectly

reconstruct a random signal from its values on any proper subset of the graph.

In fact, in [22], it was shown that signals which involve only low frequencies

can be perfectly reconstructed from their values on some subsets of the ver-

tices. The next theorem shows that every subset U of the vertex set V (G) is

a uniqueness set. Thus, the problem of signal interpolation can be posed as

the problem of first defining the set of nodes with known sample values as a

uniqueness set U , then identifying the maximum ω such that U is a uniqueness

set for PWω(G), and then reconstructing the signal values on the complement

set V (G)\U .

Definition 5.1 (Λ-Set) A subset of nodes S ⊂ V (G) is a Λ-set if any ϕ ∈
L2(S) admits a Poincaré inequality with a constant Λ > 0, i.e.,

‖ϕ‖ ≤ Λ‖Lϕ‖, ϕ ∈ L2(S). (5.4)

Theorem 5.1 If ω > 0 and S ⊂ V (G) is a Λ-set with ω < 1/Λ, then U =

V (G)\S is a uniqueness set for PWω(G).

The following Lemma will be used below.
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Lemma 5.1 [23] If A is a bounded self-adjoint positive definite operator in

a Hilbert space H and for any ϕ ∈ H and a constant a > 0 the following

inequality holds true:

‖ϕ‖ ≤ a‖Aϕ‖,

then for the same ϕ ∈ H, and all k = 2l, l = 0, 1, 2, ... the following inequality

holds:

‖ϕ‖ ≤ ak‖Akϕ‖.

Theorem 5.2 Let U ⊂ V (G) and S = V (G)\U . Let M be a matrix which

is obtained from the matrix of L by replacing by zero columns and rows corre-

sponding to the set U .

Then U is a uniqueness set for all signals f ∈ PWω(G) with ω < σ where

σ is the smallest positive eigenvalue of M.

Proof.

According to Definition 5.1 and Theorem 5.1, it suffices to show that S is

a Λ-set for Λ = 1
σ
, i.e., for any ϕ ∈ L2(G) whose restriction to U is zero one

has

‖ϕ‖ ≤ 1

σ
‖Lϕ‖, ϕ|U = 0. (5.5)

Note that, since matrix of L is symmetric and since in the latter we replace

by zero columns and rows with the same set of indices the matrix M is also

symmetric. Since L is non-negative the matrix M is also non-negative. It

follows from the fact that if ϕ belongs to the subspace L2(S) of all ϕ ∈ L2(G)

such that ϕ|U = 0, then

〈Mϕ, ϕ〉 = 〈Lϕ, ϕ〉 ≥ 0.

Remark 5.1 Warning: the equality

〈Mϕ, ϕ〉 = 〈Lϕ, ϕ〉

holds for every ϕ in the subspace L2(S), but in general even for functions in

L2(S) there is no equality

Mϕ = Lϕ.
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Now we are going to show that MS = M|S is strictly positive on L2(S).

Indeed, it is clear that the subspace L2(S) of all ϕ ∈ L2(G) such that ϕ|U = 0

is invariant with respect toM. This fact allows to identifyM with an operator

MS in L2(S).

If ϕ ∈ L2(S) is not identically zero and Mϕ = 0, then

0 = 〈Mϕ, ϕ〉 = 〈Lϕ, ϕ〉 =
〈
L1/2ϕ,L1/2ϕ

〉
= ‖L1/2ϕ‖2,

which implies that L1/2ϕ = 0 and then Lϕ = 0. As the formula

Lϕ(v) =
∑
u∼v

w(u, v) (ϕ(v)− ϕ(u))

shows only functions which are constant on the entire graph belong to the

kernel of L. Since constants do not belong to L2(S) it implies strict positivity

of the operator MS on L2(S).

Let 0 < σ = σ0 ≤ σ1 ≤ ... ≤ σm−1, m = |S|, be the set of eigenvalues

ofMS counting with their multiplicities and e0, ..., em−1 be the corresponding

set of orthonormal eigenvectors that forms a basis in L2(S).

Since L is symmetric and non-negative, it has a well defined positive square

root L1/2. For ϕ ∈ L2(S) we have

‖L1/2ϕ‖2

‖ϕ‖2
=

〈
L1/2ϕ,L1/2ϕ

〉
‖ϕ‖2

=
〈Lϕ, ϕ〉
‖ϕ‖2

=
〈MSϕ, ϕ〉
‖ϕ‖2

. (5.6)

If ϕ =
∑m−1

j=0 cjej where cj = 〈ϕ, ej〉 , then

MSϕ =
m−1∑
j=0

σjcjej,

and by Parseval equality

〈MSϕ, ϕ〉 =
m−1∑
j=0

σj|cj|2 ≥ σ‖ϕ‖2,

where σ is the smallest positive eigenvalue of MS.

This inequality along with (5.6) imply that for any ϕ whose restriction to

U is zero we have
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‖L1/2ϕ‖2

‖ϕ‖2
≥ σ, ϕ ∈ L2(S),

or

‖ϕ‖ ≤ 1√
σ
‖L1/2ϕ‖, ϕ ∈ L2(S), (5.7)

and Lemma 5.1 implies the inequality

‖ϕ‖ ≤ 1

σ
‖Lϕ‖, ϕ ∈ L2(S).

In other words, S is a Λ-set with Λ = 1
σ
. Therefore, by Theorem 5.1, U =

V (G)\S is a uniqueness set for all signals f ∈ PWω(G) with ω < σ. Theorem

is proved. �

Remark 5.2 In the next Theorem we obtain a similar estimate for an ”opti-

mal” set of Paley-Wiener class. It should be noted that this estimate is different

from the previous one. It seems, that it is not easy to compare them in general

situation.

Theorem 5.3 Let U ⊂ V (G) and S = V (G)\U . Let N be a matrix which is

obtained from the matrix of L2 by replacing by zero columns and rows corre-

sponding to the set U .

Then U is a uniqueness set for all signals f ∈ PW√σ(G) where σ is the

smallest positive eigenvalue of N .

Proof. The proof is similar to the previous one but now for ϕ ∈ L2(S) we

have the following:

‖Lϕ‖2

‖ϕ‖2
=
〈Lϕ,Lϕ〉
‖ϕ‖2

=
〈L2ϕ, ϕ〉
‖ϕ‖2

=
〈Nϕ, ϕ〉
‖ϕ‖2

. (5.8)

Again, the Parseval equality implies the following inequality:

〈N f, f〉 ≥ σ‖f‖2,

where σ is the smallest positive eigenvalue of N .
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This inequality along with (5.8) imply that for any ϕ whose restriction to

U is zero we have

‖Lϕ‖2

‖ϕ‖2
≥ σ, ϕ ∈ L2(S),

or

‖ϕ‖ ≤ 1√
σ
‖Lϕ‖, ϕ ∈ L2(S).

In other words, S is a Λ-set with Λ = 1√
σ
. Therefore, by Theorem 5.1,

U = V (G)\S is a uniqueness set for all signals f ∈ PWω(G) with ω =
√
σ.

The theorem is proved. �

Algorithm to compute the cut-off frequency ω

Given a weighted finite graph G = (V,E,w) and a subset U ⊂ V (G), let

S = V (G)\S.

• Compute the Laplacian operator L.

• Compute the submatrix M of L containing only the rows and columns

corresponding to S.

• Compute σ as the smallest positive eigenvalue of M.

σ is the required cut-off frequency and U is a uniqueness set for all signals

f ∈ PWω(G) with ω < σ.

The above theorem proves not only the existence of such a Λ-set but also

effectively computes an ”optimal cut-off frequency” such that the construction

is exact if the original graph signal is bandlimited to this frequency. In section

5.3, we will develop another method of reconstruction of bandlimited signals

given a graph and the set of vertices for which the signal values are known. We

will compute an optimal cut-off frequency and reconstruct signals bandlimited

to this frequency using this method.
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Note that a more general version of Theorem 5.2 was proved in chapter

4, Theorem 4.7. The theorem shows that for any graph (finite or infinite),

any finite subset of the vertex set is a Λ-set. However, the proof requires

construction of a more complicated graph from which one needs to compute

the corresponding Λ.

Theorem 5.4 If PWω(G) is finite dimensional for an ω > 0, then a set of

vertices U ⊂ V (G) is a uniqueness set for the space PWω(G) if and only if

there exists a constant Cω such that for any f ∈ PWω(G) the following discrete

version of the Plancherel-Polya inequalities holds true:(∑
u∈U

|f(u)|2
)1/2

≤ ‖f‖L2(G) ≤ Cω

(∑
u∈U

|f(u)|2
)1/2

(5.9)

for all f ∈ PWω(G).

Proof: The closed linear subspace PWω(G) is a Hilbert space with respect to

the norm of L2(G). At the same time since U ⊂ V (G) is a uniqueness set for

PWω(G) the functional

|||f ||| =

(∑
u∈U

|f(u)|2
)1/2

defines another norm on PWω(G). Indeed, the only property which should

be verified is that the condition |||f ||| = 0, f ∈ PWω(G), implies that f is

identically zero on the entire graph but it is guaranteed by the fact that U is

a uniqueness set for PWω(G).

Since for any f ∈ PWω(G) the norm |||f ||| is not greater than the original

norm ‖f‖L2(G), the closed graph Theorem implies our Theorem. �

5.2 Frames in the spaces PWω(G)

Consider a finite graph G with |V (G)| = N . In the space L2(G), consider

the kernel

K(v, w) =
∑

0≤j≤N−1

eλj(v)eλj(w), (v, w) ∈ V (G)× V (G). (5.10)



105

If δv is the delta function supported at v, then

K(v, w) =
∑

0≤j≤N−1

eλj(v)eλj(w) = δv(w).

In the subspace PWω(G) of L2(G), consider the orthogonal projection of

K onto subspace PWω(G),

Kω(v, w) =
∑

0≤λi≤ω

eλi(v)eλi(w), (v, w) ∈ V (G)× V (G). (5.11)

For a fixed v, this function in w is bandlimited to [0, ω]. More generally, if

h(x) on R+ is supported on [0, ω], ω > 0, then

Kh
ω(v, w) =

∑
0≤λi≤ω

h(λi)eλi(v)eλi(w), (v, w) ∈ V (G)× V (G) (5.12)

is bandlimited to [0, ω]. Note that, kernel (5.11) corresponds to h which is

characteristic function of [0, ω]. Now, given the subspace PWω(G) and a finite

sampling set U ⊂ V (G), Kω will be used for reconstruction of functions in

subspaces PWω(G) and will be called sampling functions.

Given 0 ≤ ω ≤ λN−1, let U ⊂ V (G) is a sampling set for PWω(G). The

following formula will be used for reconstruction of a function f ∈ PWω(G)

through its values on U :

f̃(v) = ρ
∑
w∈U

Kω(v, w)f(w), v ∈ V (G), (5.13)

where ρ = ρ(U) = |V (G)|
|U | is a scale factor which depends only on the ratio of

the cardinalities of V and U . Moreover, the sampling formula (5.13) is exact

for bandlimited functions, but it can also be used as an approximation formula

for more general functions.

Theorem 5.5 If G is a finite graph and U = {s} ⊂ V (G) is a sampling set

for PWω(G), then the set of functions Kω(s, ·) ∈ PWω(G), s ∈ U is a frame
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in PWω(G). In other words , there exists a constant cω such that for every

f ∈ PWω(G),

cω‖f‖2 ≤
∑
s∈U

|〈f,Kω(s, ·)〉|2 ≤ ‖f‖2, (5.14)

where

〈f,Kω(s, ·)〉 =
∑

v∈V (G)

f(v)Kω(s, v), ‖f‖2 =
∑

v∈V (G)

|f(v)|2.

Proof: For f ∈ PWω(G), one has

〈f,Kω(s, ·)〉 = f(s),

and then ∑
s∈U

|〈f,Kω(s, ·)〉|2 =
∑
s∈U

|f(s)|2 ≤
∑

v∈V (G)

|f(v)|2 = ‖f‖2.

The opposite inequality follows from Theorem 5.4 and this completes the proof.

�

At this point we have several ways for reconstruction of ω-bandlimited

component of a signal:

1. Since U is the uniqueness (sampling) set then one can use variational

splines as a tool for reconstruction of ω-bandlimited component of a

signal (see Theorem 5.1 above).

2. Since functions Kω(u, ·), u ∈ U, form frame in the space PWω(G) one

can construct canonical dual frame and use it for reconstruction of the

ω-bandlimited component of a signal (see Theorem 5.5 above).

3. Since functions Kω(u, ·), u ∈ U, form frame in the space PWω(G) one

can use the frame algorithm (see section 2.6). The very first step of this

algorithm takes the form

f1(·) = λ
∑
u∈U

〈f(·), Kω(u, ·)〉Kω(u, ·) = λ
∑
u∈U

(∑
v∈U

f(v)Kω(u, v)

)
Kω(u, ·).

It was noticed that for all our examples even this first step gives a sat-

isfactory reconstruction.
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5.3 Multiresolution

Given a proper subset of vertices U ⊂ V (G), its vertex boundary bU is the

set of all vertices in V (G) which are not in U but adjacent to a vertex in U :

∂U = {v ∈ V (G)\U : ∃{u, v} ∈ E(G), u ∈ U} .

If a graph G = (V (G), E(G)) is connected and U is a proper subset of

V (G), then the vertex boundary ∂U is not empty.

For any U which is a subset of vertices of G we introduce the following

sequence of subsets of the vertex set V (G).

cl0(U) = U, cl(U) = U ∪∂U, clm(U) = cl
(
clm−1(U)

)
= V (G), m ∈ N. (5.15)

Note that

cl0(U) ⊆ cl(U) ⊆ · · · ⊆ clm(U) = V (G), m ∈ N,

where m is the smallest positive integer such that clm(U) = V (G).

By using Theorem 5.2, we compute the cut-off frequency ω for each subset

cl(U),  = 0, 1, 2, . . . ,m. Now, for each function f ∈ L2(G) and the set cl(U),

we define

f̃(v) = ρ
∑

s∈cl(U)

Kω(v, s)f(s), v ∈ V (G), (5.16)

where ρ = |V (G)|
|cl(U)| .

If f happens to be in the subspace PWω(G), then (5.13) guarantees that f̃

is the desired approximation of f . On the other hand, if f does not belong to

PWω(G), we continue the above procedure until we get a satisfactory approx-

imation. Since the operator L is bounded, every function in L2(G) belongs

to a certain Paley-Wiener space PWω(G) for some ω ∈ σ(L), where σ(L) is

the spectrum of L. Hence this process stops after a finite number of steps.
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We also notice a progress of reconstruction (get a better approximation) as 

increases.

Conclusion: We have developed new sampling techniques and a new method

of signal approximation using frames. We have shown that for every subset U

of the vertex set V(G), there exists some ω such that U is a sampling set for

PWω(G). Thus, the problem of signal interpolation can be posed as the prob-

lem of first defining the set of nodes with known sample values as a uniqueness

set U , then identifying the maximum ω such that U is a uniqueness set for

PWω(G), and then reconstructing the signal values on the complement set

V (G)\U . A multiresolution analysis on weighted graphs was also discussed.

In this case a sequence of sampling sets were constructed and corresponding

cut-off frequencies ω’s were computed and PWω(G) spaces were constructed.

Given a non-bandlimited function, it was shown that its approximation is im-

proving when the set of samples is increasing.

Algorithm to reconstruct any function using multiresolution

Given a weighted finite graph G = (V,E,w), a subset U ⊂ V (G), and any

function f ∈ L2(G)

• compute the Laplacian operator L.

• compute L2.

• construct a sequence of subsets clk(U) as in (5.15)

• compute the submatrixMk of L2 containing only the rows and columns

corresponding to the complement of clk(U).

• compute σk as the smallest positive eigenvalue ofMk. Then
√
σk is the

required cut-off frequency and clk(U) is a uniqueness set PW√σk(G).

• construct f̃k from clk(U) by using (5.16) and repeat the process (com-

puting f̃k) until a desired level of accuracy is achieved.



109

5.4 Some Examples and Plots

(1). In the following figure (fig 5.1) we plotted the 5th Laplacian eigenfunc-

tion (blue) and its approximation (red) on cycle graph. We considered a cycle

graph with 200 nodes and we took only 5% sampling set which are uniformly

distributed throughout the graph. We computed the cut-off frequency and

found ω = 0.0123. Since λ5 = 0.0020 < ω, the 5th Laplacian eigenfunction

(the eigenvector corresponding to the 5th Laplacian eigenvalue) is indeed in

the space PWω(G). We used formula (5.13) to reconstruct f and we can see

that the reconstruction is perfect.

Figure 5.1: 2D approximation (red) of the 5th Laplacian eigenfunction (blue)

on a cycle graph of 200 nodes
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(2). A linear combination of the first 9 eigenfunctions of the Laplacian matrix

(blue) and its approximation (red) are plotted below (fig 5.2). We considered

the same graph and the same sampling set (only 5%) as in the first case. The

coefficients in the linear combination are chosen randomly. This new function

is also in the subspace PWω(G), ω = 0.0123 and the reconstruction is perfect

as expected.

Figure 5.2: 2D approximation (red) of a linear combination of the first 9

eigenfunctions (blue) on a cycle graph of 200 nodes

(3). This time we considered a function which is not ω-bandlimited but nearly

ω-bandlimited for the same ω. In this case the reconstruction is not perfect

but still very good.
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Figure 5.3: 2D approximation (red) of a nearly bandlimited signal (blue) on a

cycle graph of 200 nodes
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(4). In figure 5.4, the 10th Laplacian eigenfunction of a 20 by 20 grid is plotted

in 3D. We considered a 20 by 20 grid with 400 nodes and we took only 10%

sampling set which is uniformly distributed on the graph. We computed the

cut-off frequency and found ω = 0.5066. Since λ10 = 0.0585 < ω, the 10th

Laplacian eigenfunction is in the space PWω(G) and hence ω-bandlimited. So

the reconstruction is perfect as shown on the graph.

Figure 5.4: 3D approximation (red) of the 10th Laplacian eigenfunction (blue)

on a 20 by 20 grid
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(5). Figure 5.5 is the graph of the same function in 2D. The green curve in this

figure shows the difference between the original function and its approximation.

Figure 5.5: 2D approximation (red) of the 10th Laplacian eigenfunction (blue)

on a 20 X 20 grid
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(6). Figure 5.6 and 5.7 show the graphs of kernels Kω in 3D, for ω = λ10

and ω = λ25, the 10th and 25th Laplacian eigenvalues on a cycle graph of 200

nodes and figure 5.8 is the graph of kernel K on the same graph.

Figure 5.6: Graph of the kernel K10 on a 20 by 20 grid
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Figure 5.7: Graph of the kernel K25 on a 20 by 20 grid
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Figure 5.8: Graph of the kernel K on a 20 by 20 grid
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CHAPTER 6

SIGNAL APPROXIMATION

USING AVERAGE SPLINES

In mathematical analysis, interpolation is a method of constructing new

data points from a discrete set of known data points. One often has a number

of data points, as obtained by sampling or experiments, and tries to construct

a function which closely fits those data points. In other words, interpolat-

ing data consists in constructing new values for missing data in coherence

with a set of known data. For example, many tasks in image processing and

computer vision can be formulated as an interpolation problems [74]; image

and video colorization [80], semi-supervised segmentation [81] are examples of

these problems.

A different problem which is closely related to interpolation is the approxi-

mation of a complicated function from some sample values. Suppose we know

the function but it is too complex to evaluate efficiently. Then we could pick

a few known data points (sample values) from the complicated function and

try to interpolate those data points to construct a simpler function. It is very

common to assume that a function is bandlimited, meaning that its natural

spectral expansion only lives on a bottom interval of the spectrum. Then

an explicit formula, the sampling formula, gives the function in terms of its
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sample values and certain sampling functions. Generally we may write

f(x) =
∑
y∈S

f(y)Ψy(x) for f ∈ B. (6.1)

Here S is the sampling set, B is the space of bandlimited functions, and Ψy

is a sampling frame in the space of bandlimited functions.

In the classical Shannon sampling theorem, the underlying space is the

real line, the bandlimited functions Bω are the L2 functions whose Fourier

transform is supported in an interval |λ| ≤ ω,

f(x) =

∫ ω

−ω
e−2πiλf̂(λ) dλ : (6.2)

S is the lattice ω−1Z, and Ψy(x) is a translate of the sinc function (when

ω = 1),

sincx =
sin πx

πx
.

Of course, it is obvious that when using the simple function to calculate new

data points we usually do not obtain the same result as when using the original

function, but depending on the problem domain and the interpolation method

used the gain in simplicity might offset the error.

The theory of splines grew out of the study of simple variational problems.

A spline was defined as a function that minimized some notion of energy sub-

ject to a set of interpolation constraints. A number of methods for obtaining

spline approximations to a given function, or more precisely, to data obtained

by sampling a function, have been developed.

In the last few years, the theory of splines was extended to graphs [23]. The

theory developed in [23] shows that signals with low frequencies (bandlimited

signals) can be nicely approximated by some simple function called variational

splines. These simple functions interpolate the signal point-wise on a relatively

small subset (sampling set) the vertex set of the graph. In this chapter, we will

extend the idea to sampling with average values on some subsets of the graph

on more general weighted graphs. Variational splines are defined as minimizers

of Sobolev norms which are introduced in terms of a combinatorial Laplace
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Operator. It is shown that such splines interpolate functions on some subsets

of the graph and provide an optimal approximations to them. Splines were

used as a tool for reconstruction of bandlimited signals from their sampling

sets.

6.1 Approximating signals on graphs

In the traditional realm of signal processing, one is interested in approx-

imating a certain function by a simpler one and approximation theory has

been well developed. It is well known that the Fourier transform plays an

important role in this area. Moreover, the idea that any arbitrary periodic

function can be represented as a series of harmonically related sinusoids has a

profound impact in mathematical analysis, physics and engineering. In signal

processing it has been shown that a smooth signal can be well approximated

by a small portion of its Fourier coefficients because of compressibility [44]. It

will be shown in this chapter that it is the case for smooth signal supported

on graphs.

While a lot has been done on sampling and approximating continuous func-

tions, a considerably less work has been considered on approximating signals

supported on graphs. In chapter 5, we have seen a method of approximat-

ing signals supported on graphs using the so-called kernels. In the present

chapter we will discuss another method of approximating signals using splines

and review the work of [23], which defines variational splines on graphs as

signals defined on graphs that minimizes some functional defined on the space

of functions L2(G). It is shown that signals from Paley-Wiener spaces can be

approximated by variational splines which interpolate the signal on some rela-

tively small subset of the vertices. We will also present results from numerical

experiments.
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6.1.1 Approximating signals using variational splines

Consider a simple connected weighted finite graph G = (V,E). Let L2(G)

denote the Hilbert space of all real-valued functions f : V → R. Let L be the

Laplacian operator on G and for all positive ω, let Bω = Bω(L) be a linear

span of the Laplacian eigenfunctions whose eigenvalues are not larger than ω.

So Bω is the space of ω-bandlimited functions.

Variational Problem: Given a subset of vertices U ⊂ V (G), a sequence

of real numbers y = {yu}u∈U , positive real numbers k, ε > 0, we consider the

following variational problem.

Find a signal Y from the space L2(G) which has the following properties:

1. Y (u) = yu,∀u ∈ U ,

2. Y minimizes the functional f → ||εI + L)kf ||.

It is shown in [23] that this variational problem has a unique solution. This

unique solution is called the variational spline of order k and denoted by Y U ,yk,ε .

The set of all such splines for a fixed U ⊂ V (G) and fixed k, ε > 0, will be

denoted by S(U , k, ε).

Definition 6.1 We say LU ,uk,ε is the Lagrangian spline if it is a solution of the

same variational problem with constraints LU ,uk,ε (v) = δu,v, v, u ∈ U , where δu,v

is the Kronecker delta.

Theorem 6.1 [23] For every subset of vertices U ⊂ V (G), all k > 0, ε > 0,

and any sequence of real numbers y = {yu}u∈U ,

1. the variational problem has a unique solution, Y U ,yk,ε ,

2. the solution Y U ,yk,ε has a representation

Y U ,yk,ε =
∑
u∈U

yuL
U ,u
k,ε . (6.3)
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Moreover, for any random U ⊂ V (G), the set of all Lagrangian splines

LU ,uk,ε , u ∈ U , L
U ,u
k,ε (v) = 0, if v ∈ U and v 6= u is a frame in S(U , k, ε).

Given a function f ∈ L2(G), we say that the spline Y U ,fk,ε interpolates f on

U ⊆ V (G) if Y U ,fk,ε (u) = f(u) for all u ∈ U . It is known that if f ∈ L2(G) is

bandlimited, then its interpolating spline is always an optimal approximation.

According to [23], Theorems 1.1 and 3.1, for every subspace Bmj one can find

a sampling set of points Umj ⊂ V (G) such that every f ∈ Bmj is completely

determined by its values on Umj , where Bmj is the subspace of functions

bandlimited to [0,mj]. Moreover, every f ∈ Bmj can be reconstructed from

its set of values {f(s)}s∈Umj as a limit of variational splines.

Theorem 6.2 [23]

1. Assume that L is invertible in L2(G). If S is a Λ-set , then any f ∈ Bω

with ω < 1
Λ

can be reconstructed from its values on U = V \S as the

following limit:

f = lim
k→∞

Y U ,fk , k = 2`, ` ∈ N, (6.4)

where Y U ,fk is a spline interpolating f in the set U = V \S and the error

estimate is

‖f − Y U ,fk ‖ ≤ 2γk‖f‖, γ = Λω < 1. (6.5)

2. If the operator L is not invertible in L2(G), then for any Λ-set S and

any 0 < ε < 1
Λ

, every function f ∈ Bω where 0 < ω < 1
Λ
− ε can be

reconstructed from its values on U = V \S as the following limit:

f = lim
k→∞

Y U ,fk,ε , k = 2`, ` ∈ N, (6.6)

where Y U ,fk,ε is a spline interpolating f in the set U = V \S and the error

estimate is

‖f − Y U ,fk,ε ‖ ≤ 2γk‖f‖ γ = Λ(ω + ε) < 1. (6.7)
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Algorithm to construct approximating splines

1. Pick a random subset of vertices S ⊂ V (G)

2. Construct Lagrangian splines with nodes in S using eq.(6.3)

3. Use the algorithm in chapter 5 to find an optimal frequentcy ω such that

S is a uniqueness set for Bω.

4. Use spline interpolation for reconstruction of functions in Bω from their

values on S.

Example 1. Consider a cycle graph C100 = {1, . . . , 100}. In figure 6.1 we

plot the graph of the 6th Laplacian eigenfunction(red) and its approximation

using splines (blue) on a cycle graph of 100 nodes. We took only 10% of the

vertices as our sampling set and k = 15. The green curve is the difference (in

absolute value) of the original function and its approximation.

Figure 6.1: Approximating the 6th eigenfunctions (red) by its interpolating

variational splines (blue)
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Example 2. In this example we consider the 6th Laplacian eigenfunction on

a cycle graph of 200 nodes. We took only 5% of the nodes as our sampling

set (uniformly distributed). Then we reconstruct the eigenfunction using the

method of chapter 5 and compare it with the previous example. In this case

the reconstruction is exact as opposed to the previous example even with a

smaller sampling set.

Figure 6.2: Approximating the 6th eigenfunctions (red) by kernels (blue)
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Example 3. This time we consider the Delaunay graph of 400 randomly

chosen points in the unit square. We then chose 30% of uniformly distributed

points and approximate the 10th Laplacian eigenfunctions.

Figure 6.3: the 10th Laplacian eigenfunction (red) of the Delaunay graph of

400 nodes and is approximation (blue), 30% sampling set.
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6.2 Sampling on graphs using average splines

Sampling theory is one of the most powerful results in signal analysis.

The objective of sampling is to reconstruct a signal from its samples. For

example, if f is bandlimited to [−ω, ω], then f is uniquely determined and

can be reconstructed by its sample at xk = kπ
ω

, which is the classical Shannon

sampling theorem. In a similar way, we have seen in chapter 5 and section 7.1

that if a graph signal f is bandlimited to [0, ω], then f is uniquely determined

and can be reconstructed from its values on the uniqueness set.

Although the assumption that a signal is bandlimited is eminently useful, it

is not always realistic since a bandlimited signal is of finite duration. Moreover,

in practice, measured values may not be values of a signal f precisely at times

xk, but only local averages of f near xk. Specifically, measured sampled values

are

〈f, uk〉 =

∫
f(x)uk(x) dx,

for some collection of average functions uk(x), k ∈ Z, which satisfy the follow-

ing properties:

suppuk ⊂
[
xk −

δ

2
, xk +

δ

2

]
, uk(x) ≥ 0, and

∫
uk(x) dx = 1.

It is clear that from local averages one should obtain at least a good ap-

proximation of the original signal if δ is small enough. Wiley, Butzer and Lei

studied the approximation error when local averages are used as sampled val-

ues [101, 102]. Furthermore, Feichtinger and Grochenig [88, 103] proved that

a signal is uniquely determined by its local averages under certain conditions.

In a precise analogy, in some cases sampling with average values on sub-

graphs is more natural than point-wise sampling. In this chapter, we study

the reconstruction of bandlimited graph signals from their average values in

some subsets of the graph.

Definition 6.2 Given a weighted graph G = (V,E,w) and a function f ∈
L2(G), we define its average value over a subset of vertices S ⊂ V as the
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weighted average:

FS(f) :=

∑
v∈S d(v)f(v)

vol(S)
, (6.8)

where

d(v) =
∑
u∼v

w(u, v) and vol(S) =
∑
v∈S

d(v).

In point sampling and interpolation the approximating function (inter-

polant) and the underlying function must agree at a finite number of points.

Of course, in most cases additional constraints may be imposed on the inter-

polant depending on the problem (for example, smoothness). Furthermore,

a choice must be made about which family of functions the interpolant is a

member of. For instance, if the underlying function is continuous on some

interval of the set of real numbers, we may require our interpolant to be a

polynomial (Polynomial Interpolation), or a trigonometric function (Fourier

Approximation). On the other hand, in the discrete (graph) setting, we re-

quire the interpolant to be a member of the so called ”Sobolev space”, which

can be defined as the domain of the powers of the Laplacian operator [23].

In the present chapter we introduce a new sampling and approximation

technique for signals defined on graphs using their average values on disjoint

subsets of the vertex set. This time we are generally assuming that the values

of the function are not required to be known at each vertex of the graph, but

instead its average values are known or at least can be estimated from some

observation on some disjoint subsets of the vertex set. As in the case of point

sampling, the interpolant is shown to be a linear combination of some set of

basis functions for the family of functions chosen for the interpolation (spline

spaces).

Variational Problem: Given a disjoint subsets {Vj}mj=1 of V (G), a sequence

of real numbers (r1, r2, . . . , rm), and positive real numbers t, ε > 0, find a

function s : V → R which attains the prescribed averages,

FVj(s) = rj, j = 1, . . . ,m (6.9)
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and minimizes the functional

f → ||(εI + L)tf ||, (6.10)

that is

||(εI + L)ts|| = min
f
||(εI + L)tf ||,

where min is taken over all functions f ∈ L2(G) subject to the average con-

straints of (6.9) for a prescribed set {rj}j. More generally, given a function

f ∈ L2(G), we will seek an interpolant st(f) ∈ L2(G) such that

FVj(st(f)) = FVj(f), for all 1 ≤ j ≤ m, (6.11)

and st(f) minimizes the norm ||(εI+L)tg||, where g ∈ L2(G) satisfying (6.11).

In this case, we say st(f) is an average spline interpolating f over V1, . . . , Vm.

A generalization of [23], and [40], implies that the above variational problem

has a unique solution. We call this unique solution an average interpolating

spline of order t and denote it by st(f). Furthermore, the solution of this

variational problem can be written in terms of the fundamental solutions of

the operator (εI + L)2t:

(εI + L)2tst(f) =
m∑
j=1

αjFVj(f), (6.12)

where {αj}j = {αj(st(f))}j is a sequence of constants which depend on st(f).

On L2(G) we define a scalar product by

〈f, g〉Ht(G) = 〈(εI + L)t/2f, (I + L)t/2g〉L2(G) t > 0, (6.13)

and denote the corresponding norm by ||f ||Ht(G). We then define Ht(G) to be

the space of all functions from L2(G) with the norm ||f ||Ht(G) = 〈f, f〉Ht(G).

We note that for any f ∈ Ht(G),

|f ||Ht(G) =

(
N−1∑
j=0

(ε+ λj)
t|cj(f)|2

)1/2

, (6.14)
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where cj(f) are the Fourier coefficients of f defined as follows:

cj(f) = f̂(λj) = 〈f, φj〉 =
∑
v∈V

f(v)φ∗j(v), (6.15)

and φj is the orthonormal eigenfunction corresponding to the jth Laplacian

eigenvalue λj and φ∗j its conjugate transpose.

Since the Laplace operator L is bounded, all the spaces Ht(G) coincide as

a set. The average interpolating spline is then the function that minimizes the

functional

F (f) = ||(εI + L)t/2f || (6.16)

over the function in the space Ht(G).

Remark 6.1 Equation (6.12) is satisfied in the sense of distribution, meaning

that for any ψ ∈ Ht(G),

〈(εI + L)tst(f), ψ〉L2(G) =
m∑
j=1

αj(st(f))FVj(ψ). (6.17)

From now on, if there is confusion, we will drop the subscript Vj and use the

notation Fj for FVj just for the sake of simplicity.

The class of all average splines of order t with interpolating sets V = {V1, . . . , Vm}
and a fixed ε > 0 is denoted by S(V , t, ε). Note that if each subset Vj is a

point (contains a single vertex), our optimization problem will be reduced to

the variational problem defined in [23]. Basically, our formulation of the aver-

age interpolation approach is a direct generalization of point-wise interpolation

on graphs [23].

Lemma 6.1 For each 1 ≤ j ≤ m, there is a function hj in S(V , t, ε) satis-

fying the property

Fj(hi) = δij, (6.18)

where δij is the Kronecker delta. Moreover, these functions form a basis of

S(V , t, ε).
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Proof: Let hj be a solution of the optimization problem corresponding to

β = (0, 0, . . . , 1, 0, . . . , 0), the jth row of an m × m identity matrix. Clearly

we have Fi(hj) = δij, 1 ≤ i, j ≤ m.

It is easy to show that these functionals are linearly independent. In fact,

if there are scalars α1, α2, . . . , αm for which

m∑
j=1

αjFj = 0,

then for each 1 ≤ k ≤ m

0 =
m∑
j=1

αjFj(hk) =
m∑
j=1

αjδjk = αk. �

Later we will show that for any t ≥ 0, the space of splines of order t is a

finite dimensional linear subspace of L2(G), with dimension m and basis set

{hj}mj=1.

Now observe that our variational problem can be explained as follows.

Given a sequence of real numbers (r1, r2, . . . , rm), and t ≥ 0 consider the

following minimization problem:

Find a function s from the space Ht(G) satisfying the following properties

1. Fj(s) = rj, j = 1, 2, . . . ,m

2. s minimizes the functional F (s) = ||(εI + L)t/2s||.

Let r = (r1, . . . , rm) denote any vector in Rm. We denote the set of all

functions f from Ht(G) such that Fj(f) = rj by Et(r), where 1 ≤ j ≤ m.

That is,

Et(r) = {f ∈ Ht(G) : Fj(f) = rj, r = (r1, . . . , rm), 1 ≤ j ≤ m}. (6.19)

In particular, we denote

Et(0) = {f ∈ Ht(G) : Fj(f) = 0, 1 ≤ j ≤ m} by E0
t , (6.20)

where 0 is the zero vector in Rm. Note that

E0
t =

m⋂
j=1

KerFj.
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Theorem 6.3 (Necessary and Sufficient Conditions) For any sequence of val-

ues (r1, r2, . . . , rm) = r and any t ≥ 0, a function f ∈ Et(r) is a solution of

the variational problem if and only if it is orthogonal to the subspace E0
t with

respect to the inner product in Ht(G), that is

〈f, g〉Ht(G) = 0, ∀g ∈ E0
t .

Proof: Assume f ∈ Et(r) and 〈f, g〉Ht(G) = 0,∀g ∈ E0
t . Then for any constant

α and any function g ∈ E0
t we have

||f + αg||2Ht(G) = ||(εI + L)t/2(f + αg)||2L2(G)

= ||(εI + L)t/2f ||2L2(G) + |α|2||(εI + L)t/2g||2L2(G)

= ||f ||2Ht(G) + |α|2||g||2Ht(G),

which implies f is a minimizer.

Conversely, assume that f ∈ Et(r). Let g be any element of E0
t . Then

||f + αg||2Ht(G) = ||(εI + L)t/2(f + αg)||2L2(G)

= ||(εI + L)t/2f ||2L2(G) + 2α〈f, g〉Ht(G) + |α|2||(εI + L)t/2g||2L2(G)

= ||f ||2Ht(G) + 2α〈f, g〉Ht(G) + |α|2||g||2Ht(G).

The function f can be a minimizer only if 〈f, g〉Ht(G) = 0. This completes the

proof. �

Corollary 6.1 S(V , t, ε)
⋂
E0
t = 0.

Theorem 6.4 For any sequence of values r = (r1, r2, . . . , rm) and any t ≥ 0,

the variational problem has a unique solution.

Proof: It is clear from the definition that for any sequence of values (r1, r2, . . . , rm) =

r, the linear manifold Et(r) is a shift of the closed subspace E0
t , that is,

Et(r) = E0
t + h,

where h is any function from Ht(G) such that Fj(h) = rj, j = 1, 2, . . . ,m.
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Let Ph denote the orthogonal projection of h ∈ Ht(G) onto the closed

subspace E0
t with respect to the inner product in Ht(G):

〈f, g〉Ht(G) = 〈(εI + L)t/2f, (I + L)t/2g〉L2(G) =
∑

v∈V (G)

((I + L)t/2f)(v)((I + L)t/2g)(v).

The function st(r) = h− Ph is the unique solution of the variational problem.

Observe that st(r) ∈ Et(r). So we only need to show that st(r) minimizes the

functional

F (g) = ||(εI + L)t/2g||

on the linear manifold Et(r). To see this, pick any function f ∈ Et(r). Then

f can be written in the form f = st(r) + g for some g ∈ E0
t . Then we have

||f ||2Ht(G) = ||(εI + L)t/2(st(r) + g)||2

= ||st(r)||2Ht(G) + 2〈st(r), g〉Ht(G) + ||g||2Ht(G).

But we know that st(r) = h− Ph is orthogonal to E0
t . Thus for any constant

α we have have

||st(r) + αg||2Ht(G) = ||st(r)||2Ht(G) + |α|2||g||2Ht(G),

which implies that the function st(r) is the minimizer. �

Theorem 6.5 The space of splines S(V , t, ε) of any order t ≥ 0 is a finite

dimensional linear subspace of L2(G), with dim S(V , t) = m.

Proof: To show linearity, let s and s′ be splines in S(V , t) interpolating r and

r′ respectively and let s∗ = αs + α′s′, where α, α′ are scalars. We claim that

s∗ solves the minimization problem for r∗ = αr + α′r′.

Indeed, s∗ ∈ Et(r∗), and by Theorem 6.3, if f ∈ E0
t , then we have

〈f, s∗〉 = 〈f, αs+ α′s′〉

= α〈f, s〉+ α′〈f, s′〉

= 0.

Thus (by Theorem 6.3), s∗ is a solution of the variational problem for r∗.
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Next, to show dim S(V , t, ε) = m, we will show by constructing an explicit basis

for S(V , t, ε). Let hj be solution of the optimization problem corresponding to

r = (0, 0, . . . , 1, 0, . . . , 0), the jth row of an m ×m identity matrix. We have

seen that Fi(hj) = δij, 1 ≤ i, j ≤ m, where δij is the Kronecker delta. We

claim that S(V , t, ε) = span{hj}mj=1. To see this, let f ∈ S(V , t, ε), and let

θ = f −
m∑
j=1

(Fj(f))hj.

Since both f and each hj are in S(V , t, ε), then θ ∈ S(V , t, ε). Moreover, for

each 1 ≤ i ≤ m,

Fi(θ) = Fi(f)−
m∑
j=1

(Fj(f))Fi(hj)

= Fi(f)−
m∑
j=1

(Fj(f))δij

= Fi(f)−Fi(f) = 0,

which implies θ ∈ E0
t .

Thus, θ ∈ E0
t

⋂
S(V , t, ε), and by Theorem 6.3, we have

0 = 〈θ, θ〉Ht(G) = ||θ||2Ht(G),

which then implies that θ = 0. Hence,

f =
m∑
j=1

(Fj(f))hj,

which proves that {hj}mj=1 spans S(V , t, ε).
Now, it remains to show that the set {hj} is linearly independent. Suppose

that
m∑
j=1

αjhj = 0,

for some scalars αj. Then for each 1 ≤ i ≤ m,

0 = Fi(0) =
m∑
j=1

αjFi(hj) =
n∑
j=1

αjδij = αi.
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Hence, {hj}mj=1 is linearly independent and therefore it is a basis for S(V , t, ε).
�

The following corollary is a simple consequence of the above theorem and

our definition of interpolation.

Corollary 6.2 Let f ∈ L2(G) and st(f) ∈ S(V , t, ε) is a spline interpolating

f . Then st(f) can be explicitly written as

st(f) =
m∑
j=1

(Fj(f))hj. (6.21)

Proof: For any f ∈ L2(G), we have Fj(st(f)) = Fj(f), 1 ≤ j ≤ m and by

applying Theorem 6.5, we obtain

st(f) =
m∑
j=1

(Fj(st(f)))hj =
m∑
j=1

(Fj(f))hj. �

The next theorem shows that a bandlimited signal from L2(G) can be

uniquely determined and reconstructed from its average values as a limit of

average splines.

Theorem 6.6 If f ∈ PWω(G) and st(f) is an average spline interpolating

f on some disjoint sets {Vj}j, then f is uniquely determined by its average

values on these disjoint sets and can be reconstructed as a limit of its average

interpolating splines through the formula

f = lim
t→∞

st(f). (6.22)

Conclusion: We have introduced a new sampling signal approximation tech-

nique using average interpolating splines. The average value of a signal on a

subset of the vertex set is defined as a weighted average and an approximation

technique is introduced using splines interpolating the signal on disjoint sub-

sets of the vertex set. we have shown that a bandlimited signal from L2(G)

can be uniquely determined and reconstructed from its average values as a

limit of average interpolating splines.
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CHAPTER 7

QUADRATURES ON

COMBINATORIAL GRAPHS

7.1 Introduction

The goal of this chapter is to establish quadratures on combinatorial graphs.

Two types of quadratures are developed. Quadratures of the first type are ex-

act on spaces of variational splines on graphs. Since bandlimited functions

can be obtained as limits of variational splines we obtain quadratures which

are ”essentially” exact on spaces of bandlimited functions. Quadratures of

the second type are exact on spaces of bandlimited functions. Accuracy of

quadratures is given in terms of smoothness which is measured by means of

combinatorial Laplace operator. The results have potential applications to

problems that arise in data mining.

Quadratures for approximate and exact evaluation of integrals of functions

defined on Euclidean spaces or on smooth manifolds is an important and con-

tinuously developing subject. In recent years in connection with applications

to information theory analysis of functions defined on combinatorial graphs

attracted attention of many mathematicians.

In particular, certain quadratures for functions defined on combinatorial

graphs were recently considered in the paper [104]. There, given values of a



135

function f on a small subset U of the set of all vertices V of a graph, the

authors estimate wavelet coefficients via specific quadratures.

In the present chapter we develop a set of rules (quadratures) which allow

for approximation or exact evaluation of ”integrals”
∑

v∈V f(v) of functions by

using their values on subsets U ⊂ V of vertices. We make extensive use of the

previous work on Shannon sampling of bandlimited functions and variational

splines on combinatorial graphs. Our results can find applications to problems

that arise in connection with data filtering, data denoising and data dimension

reduction.

In section 7.2 by using interpolating splines we develop a set of quadratures.

Theorem 7.1 shows that these formulas are exact on the set of variational

splines. Theorem 7.3 explains that our quadratures are optimal.

In section 7.3, using the fact that bandlimited functions are limits of vari-

ational splines, we show that quadratures developed in section 7.2 are ”essen-

tially” exact on bandlimited functions.

It can be verified, for example, that for a cycle graph of 1000 vertices a set of

about 670 ”uniformly” distributed vertices is sufficient to have asymptotically

exact quadratures for linear combinations of the first 290 eigenfunctions (out

of 1000) of the corresponding combinatorial Laplace operator.

It is worth to noting that all results of section 7.2 which provide errors of

approximation of integrals of functions on V through their values on a U ⊂ V

reflect

1) geometry of U which is inherited into the quantity
√
|V | − |U | =

√
|S|

and into the Poincaré constant Λ (see section 7.2 for definitions),

2) smoothness of functions which is measured in terms of combinatorial

Laplace operator.

In section 7.4, we develop a different set of quadratures which are exact

on appropriate sets of bandlimited functions. The results in this section are

formulated in the language of frames and only useful if it is possible to calculate

dual frames explicitly. Since in general it is not easy to compute a dual frame

we finish this section by explaining another approximate quadrature which is
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based on the so-called frame algorithm.

7.2 Quadratures which are exact on variational

splines

Let us remind ourselves the definition of variational splines.

Variational Problem

Given a subset of vertices U = {u} ⊂ V, a sequence of real numbers

y = {yu} ∈ l2, u ∈ U , a natural number k, and a positive ε > 0, we consider

the following variational problem.

Find a function Y from the space L2(G) which has the following properties:

1) Y (u) = yu, u ∈ U,
2) Y minimizes functional Y →

∥∥(εI + L)kY
∥∥.

We show that the above variational problem has a unique solution Y U,y
k,ε .

For the sake of simplicity we will also use the notation Y y
k assuming that

U and ε are fixed.

It is known that for every set of vertices U = {u}, every natural k, every

ε ≥ 0, and for any given sequence y = {yu} ∈ l2, the solution Y y
k of the

Variational Problem has a representation

Y y
k =

∑
u∈U

yuL
u
k , (7.1)

where Luk is the so-called Lagrangian spline, i.e., it is a solution of the same

Variational Problem with constraints Luk(v) = δu,v, u ∈ U, where δu,v is the

Kronecker delta.

We introduce the following scalars:

θu = θu(U, k, ε) =
∑
v∈V

LU,uk,ε (v),

and by applying this formula we obtain the following fact.
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Theorem 7.1 In the same notations as above for every subset of vertices U =

{u} and every k ∈ N, ε > 0, there exists a set of weights θu = θu(U, k, ε), u ∈ U,
such that for every spline Y U,y

k,ε that takes values Y U,y
k,ε (u) = yu, u ∈ U, the

following exact formula holds:∑
v∈V

Y U,y
k,ε (v) =

∑
u∈U

yuθu. (7.2)

For a subset S ⊂ V (finite or infinite) the notation L2(S) will denote the

space of all functions from L2(G) with support in S:

L2(S) = {ϕ ∈ L2(G), ϕ(v) = 0, v ∈ V \S}.

Recall that we say a set of vertices S ⊂ V is a Λ-set if for any ϕ ∈ L2(S) it

admits a Poincaré inequality with a constant Λ = Λ(S) > 0,

‖ϕ‖ ≤ Λ‖Lϕ‖, ϕ ∈ L2(S). (7.3)

The infimum of all Λ > 0 for which S is a Λ-set will be called the Poincaré

constant of the set S and denoted by Λ(S).

The following Theorem gives a quadrature rule that allows to compute the

integral
∑

v∈V f(v) by using only values of f on a smaller set U .

Theorem 7.2 For every set of vertices U ⊂ V for which S = V \U is a Λ-set

and for any ε > 0, k = 2l, l ∈ N, there exist weights θu = θu(U, k, ε) such that

for every function f ∈ L2(G),∣∣∣∣∣∑
v∈V

f(v)−
∑
u∈U

f(u)θu

∣∣∣∣∣ ≤ 2
√
|S|Λk

∥∥∥(εI + L)k f
∥∥∥ . (7.4)

Proof. If f ∈ L2(G) and Y U,f
k,ε is a variational spline which interpolates f on

a set U = V \ S then∣∣∣∣∣∑
v∈V

f(v)−
∑
v∈V

Y U,f
k,ε (v)

∣∣∣∣∣ ≤∑
v∈S

∣∣∣f(v)− Y U,f
k,ε (v)

∣∣∣ ≤√|S| ∥∥∥f − Y U,f
k,ε

∥∥∥ . (7.5)
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Since S is a Λ- set we have

‖f − Y U,f
k,ε

∥∥∥≤ Λ‖L
(
f − Y U,f

k,ε

)∥∥∥ . (7.6)

For any g ∈ L2(G) the following inequality holds true:

‖Lg‖ ≤ ‖(εI + L)g‖. (7.7)

Thus one obtains the inequality∥∥∥f − Y U,f
k,ε

∥∥∥ ≤ Λ
∥∥∥(εI + L)

(
f − Y U,f

k,ε

)∥∥∥ . (7.8)

We apply Lemma 5.1 with A = εI + L, a = Λ and ϕ = f − Y U,f
k,ε . It gives

the inequality ∥∥∥f − Y U,f
k,ε

∥∥∥ ≤ Λk
∥∥∥(εI + L)k

(
f − Y U,f

k,ε

)∥∥∥ (7.9)

for all k = 2l, l = 0, 1, 2, ... Using the minimization property of Y U,f
k,ε we obtain∥∥∥f − Y U,f

k,ε

∥∥∥ ≤ 2Λk
∥∥∥(εI + L)k f

∥∥∥ , k = 2l, l ∈ N.

Together with (7.5) it gives∣∣∣∣∣∑
v∈V

f(v)−
∑
v∈V

Y U,f
k,ε (v)

∣∣∣∣∣ ≤ 2
√
|S|Λk‖(εI + L)kf‖, k = 2l, l ∈ N. (7.10)

By applying the Theorem 7.1 we finish the proof. �

It is worth noting that the above formulas are optimal in the sense described

below.

Definition 7.1 For the given U ⊂ V, f ∈ L2(G), k ∈ N, ε ≥ 0, K > 0, the

notation Q(U, f, k, ε,K) will be used for a set of all functions h in L2(G) such

that

1) h(u) = f(u), u ∈ U,

and

2)
∥∥(εI + L)kh

∥∥ ≤ K.
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It is easy to verify that every set Q(U, f, k, ε,K) is convex, bounded, and

closed. It implies that the set of all integrals of functions in Q(U, f, k, ε,K) is

an interval, i. e.,

[a, b] =

{∑
v∈V

h(v) : h ∈ Q(U, f, k, ε,K)

}
. (7.11)

The optimality result is the following.

Theorem 7.3 For every set of vertices U ⊂ V and for any ε > 0, k = 2l, l ∈
N, if θu = θu(U, k, ε) are the same weights that appeared in the previous

statements, then for any g ∈ Q(U, f, k, ε,K),∑
u∈U

g(u)θu =
a+ b

2
, (7.12)

where [a, b] is defined in (7.11).

Proof. We are going to show that for a given function f the interpolating

spline Y U,f
k,ε is the center of the convex, closed and bounded set Q(U, f, k, ε,K)

for any K ≥
∥∥∥(εI + L)kY U,f

k,ε

∥∥∥ . In other words, it is sufficient to show that if

Y U,f
k,ε + h ∈ Q(U, f, k, ε,K)

for some function h, then the function Y U,f
k,ε − h also belongs to the same

intersection. Indeed, since h is zero on the set U then according to (7.1) one

has 〈
(εI + L)kY U,f

k,ε , (εI + L)kh
〉

=
〈

(εI + L)2kY U,f
k,ε , h

〉
= 0.

But then

∥∥∥(εI + L)k(Y U,f
k,ε + h)

∥∥∥ =
∥∥∥(εI + L)k

(
Y U,f
k,ε − h

)∥∥∥ .
In other words, ∥∥∥(εI + L)k

(
Y U,f
k,ε − h

)∥∥∥ ≤ K,

and because Y U,f
k,ε + h and Y U,f

k,ε − h take the same values on U the function

Y U,f
k,ε − h belongs to Q(U, f, k, ε,K). From here the Theorem follows. �
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Corollary 7.1 Fix a function f ∈ L2(G) and a set of vertices U ⊂ V for

which S = V \ U is a Λ-set. Then for any ε > 0, k = 2l, l ∈ N, for the same

set of weights θu = θu(U, k, ε) ∈ R that appeared in the previous statements

the following inequalities hold for every function g ∈ Q(U, f, k, ε,K),∣∣∣∣∣∑
v∈V

g(v)−
∑
u∈U

f(u)θu

∣∣∣∣∣ ≤√|S|ΛkdiamQ(U, f, k, ε,K). (7.13)

Proof. Since f and g coincide on U from (7.5) and (7.9) we obtain the

inequality

∣∣∣∣∣∑
v∈V

g(v)−
∑
v∈V

Y U,f
k,ε (v)

∣∣∣∣∣ ≤√|S|Λk
∥∥∥(εI + L)k

(
f − Y U,f

k,ε

)∥∥∥ . (7.14)

By Theorem 7.3 the following inequality holds∥∥∥(εI + L)k
(
Y U,f
k,ε − g

)∥∥∥ ≤ 1

2
diamQ(U, f, k, ε,K)

for any g ∈ Q(U, f, k, ε,K). The last two inequalities imply the Corollary.

�

7.3 Approximate quadratures for bandlimited

functions

We have seen that the operator (matrix) L is symmetric and positive def-

inite. Let Eω(L) be the span of eigenvectors of L whose corresponding eigen-

values are ≤ ω. The invariant subspace Eω(L) is the space of all vectors in

L2(G) on which L has norm ω. In other words, f belongs to Eω(L) if and only

if the following Bernstein-type inequality holds:

‖Lsf‖ ≤ ωs‖f‖, s ≥ 0. (7.15)

The Bernstein inequality eq.(7.15), the Lemma 5.1, and Theorem 7.2 imply

the following result.
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Corollary 7.2 For every set of vertices U ⊂ V for which S = V \U is a Λ-set

and for any ε > 0, k = 2l, l ∈ N, there exist weights θu = θu(U, k, ε) ∈ R such

that for every function f ∈ Eω(L), the following inequality holds:∣∣∣∣∣∑
v∈V

f(v)−
∑
u∈U

f(u)θu

∣∣∣∣∣ ≤ 2γk
√
|S| ‖f‖ , (7.16)

where γ = Λ(ω + ε), k = 2l, l ∈ N.

If, in addition, the following condition holds

0 < ω <
1

Λ
− ε

and f ∈ Eω(L), then this Corollary implies the following Theorem.

Theorem 7.4 If U is a subset of vertices for which S = V \U is a Λ-set then

for any 0 < ε < 1/Λ, k = 2l, l ∈ N, there exist weights θu = θu(U, k, ε) ∈ R
such that for every function f ∈ Eω(L), where

0 < ω <
1

Λ
− ε,

the following relation holds∣∣∣∣∣∑
v∈V

f(v)−
∑
u∈U

f(u)θu

∣∣∣∣∣→ 0, (7.17)

when k = 2l →∞.

Example 1.

Consider the cycle graph C1000 of 1000 vertices. The normalized Laplace

operator L has one thousand eigenvalues which are given by the formula

λk = 2− 2 cos 2πk
1000

, k = 0, 1, ..., 999.

It is easy to verify that every single vertex in C1000 is a Λ = 1√
6
-set. It is

also easy to understand that if closures of two vertices do not intersect i. e.,

(vj ∪ ∂vj) ∩ (vi ∪ ∂vi) = ∅, vj, vi ∈ C1000,
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then their union vj ∪ vi is also a Λ = 1√
6
-set. It implies, that one can remove

from C1000 every third vertex and on the remaining set of 670 the formula

(7.17) will be true for the span of about 290 first eigenfunctions of L.

Example 2.

One can show that if S = {v1, v2, ..., vN} consists of |S| successive vertices of

the graph C1000 then it is a Λ-set with

Λ =
1

2

(
sin

π

2|S|+ 2

)−2

.

It implies for example that on a set of 100 uniformly distributed vertices of

C1000 the formula (7.17) will be true for every function in the span of about

40 first eigenfunctions of L.

7.4 Another set of exact and approximate quadra-

tures for bandlimited functions

We introduce another set of quadratures which are exact on some sets of

bandlimited functions.

Theorem 7.5 If U is a subset of vertices for which S = V \ U is a Λ-set

then there exist weights σu = σu(U) ∈ R, u ∈ U, such that for every function

f ∈ Eω(L), where

0 < ω <
1

Λ
,

the following exact formula holds∑
v∈V

f(v) =
∑
u∈U

f(u)σu, U = V \ S. (7.18)

Proof. First, we show that the set U is a uniqueness set for the space Eω(L),

i. e., for any two functions from Eω(L) the fact that they coincide on U implies

that they coincide on V .
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If f, g ∈ Eω(L) then f − g ∈ Eω(L) and according to the inequality (7.15)

the following holds true:

‖L(f − g)‖ ≤ ω‖f − g‖. (7.19)

If f and g coincide on U = V \S then f − g belongs to L2(S) and since S is a

Λ-set then we will have

‖f − g‖ ≤ Λ‖L(f − g)‖, f − g ∈ L2(S).

Thus, if f − g is not zero and ω < 1/Λ, we have the following inequalities

‖f − g‖ ≤ Λ‖L(f − g)‖ ≤ Λω‖f − g‖ < ‖f − g‖, (7.20)

which contradict to the assumption that f − g is not identically zero. Thus,

the set U is a uniqueness set for the space Eω(L).

It implies that there exists a constant C = C(U, ω) for which the following

Plancherel-Polya inequalities hold true(∑
u∈U

|f(u)|2
)1/2

≤ ‖f‖ ≤ C

(∑
u∈U

|f(u)|2
)1/2

(7.21)

for all f ∈ Eω(L). Indeed, the functional

|||f ||| =

(∑
u∈U

|f(u)|2
)1/2

defines another norm on Eω(L) because the condition |||f ||| = 0, f ∈ Eω(L),

implies that f is identically zero on the entire graph. Since in finite-dimensional

situation any two norms are equivalent we obtain existence of a constant C

for which (7.21) holds true.

Let δv ∈ L2(G) be a Dirac measure supported at a vertex v ∈ V . The

notation ϑv will be used for a function which is orthogonal projection of the

function
1√
d(v)

δv
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on the subspace Eω(L). If ϕ0, ϕ1, ..., ϕj(ω) are orthonormal eigenfunctions of

L which constitute an orthonormal basis in Eω(L), then the explicit formula

for ϑv is

ϑv =

j(ω)∑
j=0

ϕj(v)ϕj. (7.22)

In these notations the Plancherel-Polya inequalities (7.21) can be written in

the form ∑
u∈U

| 〈f, ϑu〉 |2 ≤ ‖f‖2 ≤ C2
∑
u∈U

| 〈f, ϑu〉 |2, (7.23)

where f, ϑu ∈ Eω(L) and 〈f, ϑu〉 is the inner product in L2(G). These in-

equalities mean that if U is a uniqueness set for the subspace Eω(L), then the

functions {ϑu}u∈U form a frame in the subspace Eω(L) and the tightness of

this frame is 1/C2. This fact implies that there exists a frame of functions

{Θu}u∈U in the space Eω(L) such that the following reconstruction formula

holds true for all f ∈ Eω(L):

f(v) =
∑
u∈U

f(u)Θu(v), v ∈ V. (7.24)

By setting σu =
∑

v∈V Θu(v) one obtains (7.18).

Unfortunately this approach does not give any information about the con-

stant C in (7.23) and it makes realization of the Theorem 7.5 problematic. We

are going to utilize another approach to the Plancherel-Polya-type inequality

which was developed in [31] and which produces an explicit constant.

Definition 7.2 The weighted gradient of a function f on V (G) is defined by

‖∇wf‖ =

 ∑
u,v∈V (G)

1

2
|f(u)− f(v)|2w(u, v)

1/2

.

The set of all f : G → C for which the weighted gradient is finite will be

denoted as D2(∇w).

The weighted Laplace operator Lw : L2(G)→ L2(G) is introduced via

(Lwf)(v) =
∑

u∈V (G)

(f(v)− f(u))w(v, u) . (7.25)
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This graph Laplacian is a well-studied object; it is known to be a positive-

semidefinite self-adjoint bounded operator.

What is really important for us is that for the non-negative square root

L
1/2
w one has the equality

‖L1/2
w f‖2 = ‖∇wf‖2 (7.26)

for all f ∈ D2(∇w).

Lemma 7.1 For all f ∈ L2(G) contained in the domain of L
1/2
w , we have

‖L1/2
w f‖2

2 = ‖∇wf‖2
2 . (7.27)

For f ∈ PWω(G), this implies

‖∇wf‖2 = ‖L1/2
w f‖2 ≤

√
ω‖f‖2. (7.28)

Proof. Let, as above, d(u) = wV (G)(u), the weighted degree of u. Then we

obtain

〈f, Lwf〉 =
∑

u∈V (G)

f(u)

 ∑
v∈V (G)

(f(u)− f(v))w(u, v)


=

∑
u∈V (G)

|f(u)|2d(u)−
∑

v∈V (G)

f(u)f(v)w(u, v)

 .

In the same way

〈f, Lwf〉 = 〈Lwf, f〉

=
∑

u∈V (G)

|f(u)|2d(u)−
∑

v∈V (G)

f(u)f(v)w(u, v)

 .

Averaging these equations yields

〈f, Lwf〉 =
∑

u∈V (G)

|f(u)|2d(u)− Re
∑

v∈V (G)

f(u)f(v)w(u, v)


=

1

2

∑
u,v∈V (G)

|f(u)|2w(u, v) + |f(v)|2w(u, v)− 2Ref(u)f(v)w(u, v)

=
∑

u,v∈V (G)

1

2
|f(v)− f(u)|2w(u, v) = ‖∇wf‖2

2 .
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Now the first equality follows by taking the square root of Lw (note that by

spectral theory, f is also in the domain of L
1/2
w ), and (7.28) is an obvious con-

sequence. �

We recall that for any U which is a subset of vertices of G we introduced

(see section 5.3) the following operator:

cl0(U) = S, cl(U) = U ∪ ∂U, clm(U) = cl
(
clm−1(U)

)
,m ∈ N, U ⊂ V. (7.29)

We will use the following notion of the relative degree.

Definition 7.3 For a vertex v ∈ clm(U) we introduce the relative degree dm(v)

as the number of vertices in the boundary ∂ (clm(U)) which are adjacent to v:

dm(v) = card {w ∈ ∂ (clm(U)) : w ∼ v} .

For any U ⊂ V we introduce the following notation

Dm = Dm(U) = sup
v∈clm(U)

dm(v).

Definition 7.4 For a vertex v ∈ ∂ (clm(U)) we introduce the quantity km(v)

as the number of vertices in the set clm(U) which are adjacent to v:

km(v) = card {w ∈ clm(U) : w ∼ v} .

For any U ⊂ V we introduce the following notation

Km = Km(U) = inf
v∈∂(clm(U))

km(v).

For a given set U ⊂ V and a fixed n ∈ N consider a sequence of closures

U, cl(U), ..., cln(U), n ∈ N.

Let U ⊂ V (G) be such that ∂(cln−1(U)) 6= ∅, the property cln(U) = V (G) is

not needed in this context. We let Um = ∂(clm−1(U)), for m ≥ 1, and U0 = U .
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For 0 ≤ m < n and v ∈ Um, we let k̂m(v) = card({w ∈ Um+1 : w ∼ v}), and

let

K̂m = inf
v∈Um

k̂m(v) .

By definition of K̂m, there exist mappings v̂1, . . . , v̂K̂m : Um → Um+1 such that

for all u ∈ Um, the map j 7→ v̂j(u) is injective. For v ∈ Um+1, we define

d̂m(v) = card({(j, u) : v = v̂j(u)}), and let

D̂m = sup
v∈Um+1

d̂m(v) .

We stress that these quantities may depend on the choice of the v̂j.

Assume that U ⊂ V (G) is a subset with cln(U) = V (G), as well as

∂(cln−1(U)) 6= ∅, and define

δU =

(
n∑

m=1

(
m∑
k=1

1

Kk−1

(
m−1∏
i=k

Di

Ki

)))1/2

and

aU =

(
n∑

m=0

m−1∏
j=0

Dj

Kj

)1/2

.

Assume also that, for given n′ ≤ n, the constants

δ̂U =

(
n′∑
m=1

(
m−1∑
k=0

1

K̂k

(
m−1∏
i=k

K̂i

D̂i

)))1/2

and

âU =

(
n′∑
m=0

m−1∏
j=0

K̂j

D̂j

)1/2

,

are well-defined, i.e., K̂m, D̂m > 0, for 0 ≤ m < n′.

Note, that if f belongs to the space Eω(L) then the Bernstein inequality

gives

‖∇f‖ =
√

2‖L1/2f‖ ≤
√

2ω‖f‖. (7.30)

The following theorem follows from results in [32].
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Theorem 7.6 Assume that U ⊂ V (G) is a subset with

cln(U) = V (G), ∂(cln−1(U)) 6= ∅. (7.31)

Then, if the inequality

δU
√

2ω < 1, ω > 0, (7.32)

is satisfied, then the following Plancherel-Polya-type equivalence holds for all

f ∈ Eω(L):

1− δU
√

2ω

aU
‖f‖ ≤ ‖f |U‖ ≤

1 + δ̂U
√

2ω

âU
‖f‖. (7.33)

Using this result we prove existence of exact quadratures on spaces of

bandlimited functions.

Theorem 7.7 If U is a subset of vertices for which condition (7.31) is satisfied

then there exists a set of weights µu ∈ R, u ∈ U, such that for any f ∈ Eω(L),

where ω satisfies (7.32) the following exact formula holds:∑
v∈V

f(v) =
∑
u∈U

f(u)µu. (7.34)

Proof. The previous Theorem shows that U is a uniqueness set for the space

Eω(L), which means that every f in Eω(L) is uniquely determined by its values

on U .

Let us denote by θv, where v ∈ U , the orthogonal projection of the Dirac

measure δv, v ∈ U , onto the space Eω(L). Since for functions in Eω(L) one

has f(v) = 〈f, θv〉 , v ∈ U , the inequality (7.33) takes the form of a frame

inequality in the Hilbert space H = Eω(L)(
1− εδU
aU

)2

‖f‖2 ≤
∑
v∈U

| 〈f, θv〉 |2 ≤

(
1 + εδ̂U
âU

)2

‖f‖2, ε =
√

2ω, (7.35)

for all f ∈ Eω(L). According to the general theory of Hilbert frames [89]

the last inequality implies that there exists a dual frame (which is not unique

in general) {Θv}, v ∈ U, Θv ∈ Eω(L), in the space Eω(L) such that for all

f ∈ Eω(L) the following reconstruction formula holds:

f =
∑
v∈U

f(v)Θv. (7.36)
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By setting
∑

v∈V Θv(u) = µu we obtain (7.34). �

To be more specific we consider the case when

cl U = U ∪ ∂U = V (G). (7.37)

In this case

d0(v) = card {w ∈ bU : w ∼ v} , D0 = D0(U) = sup
v∈U

d0(v),

and

k0(v) = card {w ∈ U : w ∼ v} , K0 = K0(U) = inf
v∈bU

k0(v).

It is easy to see that

aU =

(
1 +

D0

K0

)1/2

, δU =
1

K
1/2
0

.

Thus, we have

‖f‖ ≤
(

1 +
D0

K0

)1/2

‖f0‖+
1

K
1/2
0

‖∇f‖.

By applying (7.15) along with the assumption

ω <
K0

2
, (7.38)

we obtain the following estimate

‖f‖ ≤
(

1−
√

2ω

K0

)(
1 +

D0

K0

)1/2

‖f0‖, f0 = f |U . (7.39)

On the other hand,

âU =

(
1 +

K̂0

D̂0

)1/2

, δ̂U =
1

D̂
1/2
0

.

This yields the norm estimate

‖f‖+
1

D̂
1/2
0

‖∇f‖ ≥

(
1 +

K̂0

D̂0

)1/2

‖f0‖, f0 = f |U .
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If (7.15) holds, then(
1 +

K̂0

D̂0

)1/2

‖f0‖ ≤ ‖f‖2 +
1

D̂
1/2
0

‖∇f‖ ≤

(
1 +

√
2ω

D̂0

)
‖f‖. (7.40)

After all, for functions f in Eω(L) with ω < K0/2, we obtain the following

frame inequality:

A‖f‖2 ≤
∑
v∈U

| < f, θv > |2 ≤ B‖f‖2, f0 = f |U , (7.41)

where

A =

(
1−

√
2ω
K0

)2

1 + D0

K0

, B =

(
1 +

√
2ω

D̂0

)2

1 + K̂0

D̂0

. (7.42)

It shows that if the condition ω < K0/2, K0 = K0(U) is satisfied, then the set

U is a sampling set for the space Eω(L) and a reconstruction formula (7.36)

holds.

However, it is not easy to find a dual frame {Θv}, v ∈ U . For this reason

we are going to adopt the frame algorithm for reconstruction of functions in

Eω(L) from the set U .

Let {ej} be a frame in a Hilbert H space with frames bounds A,B, i. e.,

A‖f‖2
H ≤

∑
j

| 〈f, ej〉 |2 ≤ B‖f‖2
H , f ∈ H.

Given a relaxation parameter 0 < ν < 2
B

, set η = max{|1−νA|, |1−νB|} < 1.

Let f0 = 0 and define recursively

fn = fn−1 + νΦ(f − fn−1), (7.43)

where Φ is the frame operator which is defined on H by the formula

Φf =
∑
j

〈f, ej〉 ej.

In particular, f1 = νΦf = ν
∑

j 〈f, ej〉 ej. Then limn→∞ fn = f with a geo-

metric rate of convergence, that is,

‖f − fn‖H ≤ ηn‖f‖H . (7.44)
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Note, that for the choice ν = 2
A+B

the convergence factor is

η =
B − A
A+B

. (7.45)

In our situation the frame operator Φ takes the following form

Φf =
∑
v∈U

〈f, θv〉 θv, f ∈ Eω(L), (7.46)

where

〈f, θv〉 = f(v), f ∈ Eω(L), v ∈ U.

Thus the recurrence sequence (7.43) takes the form f0 = 0, and

fn = fn−1 + ν
∑
v∈U

(f − fn−1)(v)θv. (7.47)

We are ready to state the following fact which provides a reconstruction

method for functions in Eω(L) from their values on U .

Theorem 7.8 Under the assumptions (7.37), (7.38) for f ∈ Eω(L) the fol-

lowing inequality holds for all natural n

‖f − fn‖ ≤ ηn‖f‖, (7.48)

where the convergence factor η is given by (7.45), (7.42).

By setting

νu =
∑
v∈V

θu(v), u ∈ U,

we obtain the recurrence sequence for corresponding integrals∑
v∈V

f0(v) = 0,

∑
v∈V

f1(v) = λ
∑
u∈U

f(u)νu,

∑
v∈V

fn(v) =
∑
v∈V

fn−1(v) + λ
∑
u∈U

(f − fn−1)(u)νu. (7.49)
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Thus, the integral
∑

v∈V fn(v) for every fn is expressed in terms of weights

{νu}, u ∈ U, and values of f on the uniqueness set U .

We are ready to state the following fact which provides an approximate

quadrature for functions in Eω(L) . It should be noted that the effectiveness

of this result depends on one’s ability to implement the frame operator Φ.

Theorem 7.9 Under the assumptions (7.37), (7.38) for f ∈ Eω(L) and∑
v∈V fn(v) defined in (7.49) we have∣∣∣∣∣∑

v∈V

f(v)−
∑
v∈V

fn(v)

∣∣∣∣∣ ≤ ηn
√
|V |‖f‖,

where the convergence factor η is given in (7.45), (7.42).

The proof is obvious:∣∣∣∣∣∑
v∈V

f(v)−
∑
v∈V

fn(v)

∣∣∣∣∣ ≤∑
v∈V

|f(v)− fn(v| ≤
√
|V |‖f − fn‖ ≤ ηn

√
|V |‖f‖.
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CHAPTER 8

SPECTRAL GRAPH

DRAWING USING SPLINE

SPACES

Graphs are abstract models of a set of objects and some kind of pairwise

relationship that exists between some pairs of the objects. The objects are

called nodes and the relationships are called edges or links. That is, graphs

are used to model connections or relations between things (data points), where

vertices represent data points and edges represent the connections or relations.

Graphs provide a flexible model for representing data in many domains such

as networks, computer vision, and high dimensional data. The data on the

graphs can be visualized as a finite collection of samples, leading to a graph

signal, which can be defined as the information attached to each node of the

graph.

The strength of the relation among the objects can be described by the

weight of edges, while the amount of information on each node can be rep-

resented by a real-valued function defined on the vertex set V = V (G).

Given a set of data points, the goal of graph drawing is to try to draw

graphs in such a way that they convey the most information possible. It

is a standard means for visualizing relational information. To visualize infor-
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mation expressed as graphs, many researchers have been working on graph

drawing and many successful approaches and methods have been developed

[46, 47, 48, 49, 50, 51, 52, 53, 57, 56]. The graph drawing problem is to

compute an aesthetically good quality layout of vertices and edges so that it

is easy to grasp visually the inherent structure of the graph. Depending on

the aesthetic criteria of interest, various approaches have been developed. A

popular approach is to define an energy function and to iteratively compute

a local minimum of the energy function [46]. The positions of the vertices at

the local minimum produce the final layout of the graph. The term spectral

graph drawing refers to an approach that produces a final layout of a graph

using the spectral decomposition of some matrix derived from the vertex and

edge sets of the graph.

As the name indicates, spectral layout denotes the use of eigenvectors of

graph related matrices such as the adjacency or Laplacian matrix as coordinate

vectors. The idea of graph drawing by using eigenvectors goes back to the work

of Kenneth Hall in 1970 [50]. Hall computed the layout of a graph using some

generalized eigenvectors of the related Laplacian matrix. Many developments

have been made since then.

8.1 Graph Representation

The idea of the graph Laplacian matrix being the discrete version of the

continuous Laplacian operator ∆ was discussed in recent literature (see for

example [99], sec 3.3). In the continuous case, it is well known that the energy

functional (defined below) is minimized over all functions whose Laplacian is

zero. To compare the energy functional defined in the discrete setting we first

give the following definition and the next theorem from [99] which will be

applicable to the continuous Laplacian operator.

Definition 8.1 Let U be an open bounded region in Rk. The energy functional
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E(u) for which a function u : U → R is

E(u) =
1

2

∫
U

‖ 5 u‖2 dx, (8.1)

where 5u is the gradient vector (ux1 , ux−2, . . . , uxm).

In the following theorem from [99] known as Dirichlet’s principle, let U

and ∂U denote the closure and boundary of the region U, respectively, and let

C2(U) denote the set of functions that are continuously twice differentiable on

U.

Theorem 8.1 Let U be an open bounded region in Rm, let u : U → R, and

let A = {w ∈ C2(U) : w|∂U = 0}. Then ∆u = 0 on U if and only if

E(u) = min
w∈A

E(w).

We now turn our attention to graphs. Our focus will be drawing graphs in Rm

where the energy function is minimized.

Definition 8.2 Let G be a graph with vertex set V. A representation of G in

Rm is a mapping ρ : V → Rm.

Intuitively, we think of a representation as the positions of the vertices in an

m-dimensional drawing of a graph. In other words, ρ represents the position

of the vertices when we draw G in Rm. It is often convenient to represent

a representation as a representation matrix X where row i of X corresponds

to ρ(i), the representation of vertex i. So we regard the vectors ρ(u) as row

vectors, and thus we may represent ρ by the |V (G)| ×m matrix X with the

images of the vertices of G as its rows.

Regarding the vertex set of a graph as a subset Rm in a similar way we

regard U as a subset of Rm, observe that ρ is a discrete function from a subset

of Rm to R as u was a continuous such function. Therefore, we can define the

discrete version of energy function with respect to a domain. However, in the

discrete version, the domain is a vertex set of a graph rather than an open

bounded set U ⊂ Rm.
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Adapting the notion of energy to graph theory, we will see that the eigen-

values and eigenvectors of the Laplacian matrix will be vital in drawing the

graph in Rm so that the energy of the graph is minimized.

Definition 8.3 Let G be a graph with vertex set V represented in Rm with

representation ρ : V → R. The energy E(ρ) of the representation ρ with

respect to the graph G is the quantity

E(ρ) =
1

2

∑
v∈V
u∼v

‖ρ(u)− ρ(v)‖2. (8.2)

Given an edge ij of a graph, observe in eq.(8.2) that each edge is being

accounted for twice, once when i = u and j = v and again when i = v and

j = u. Hence we can rewrite eq.(8.2) as

E(ρ) =
∑

uv∈E(G)

‖ρ(u)− ρ(v)‖2. (8.3)

Definition 8.4 A representation ρ of a graph G with vertex set V is balanced

if ∑
u∈V (G)

ρ(u) = 0. (8.4)

Thus if ρ is represented by X, then ρ is balanced if and only if 1TX = 0.

Given a graph G on n vertices and a positive integer m ≤ n − 1, our

goal is to find a representation ρ that minimizes the energy. To this end,

observe that if G is drawn in Rm, we can translate the graph so that it is

balanced without changing the quantities ‖ρ(u) − ρ(v)‖2 or without losing

any information. Hence from this point on, we can assume that a graph G is

drawn so that its representation ρ is balanced. If the columns of the matrix

X are not linearly independent, then the image of G is contained in a proper

subspace of Rm and ρ is just a lower dimensional representation embedded

in Rm. Any maximal linearly independent subset of the columns of X would

suffice to determine all the properties of the representation. Therefore, we will

assume that the columns of X are linearly independent.
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We can imagine building a physical model of G by placing the vertices

in the positions specified by ρ and connecting adjacent vertices by identical

springs (i.e., all edges have the same weight, or equivalently the graph is un-

weighted). It is natural to consider a representation to be better if it requires

to be less extended. This means that a good drawing of graphs correspond

to representations with low energy. Of course, the representation with least

energy is the one where each vertex is mapped to the zero vector. Thus we

need to add further constraints to exclude this.

In the case of weighted graphs, the energy E(ρ) of a representation ρ of G

is defined by

E(ρ) =
∑

uv∈E(G)

w(u, v)||ρ(u)− ρ(v)||2, (8.5)

where w(u, v) is the weight of the edge uv.

Graph representation in Rm or an m-dimensional drawing is also called

an m-dimensional layout. Describing the above discussion in another way,

an m-dimensional layout of a graph with n vertices is defined by m vectors,

x1, . . . , xm ∈ Rn, where x1(i), . . . , xm(i) are the coordinates of node i. In other

words, an m-dimensional layout of the graph is given by the n×m matrix

X = [x1 . . . xm],

where the i-th row provides the embedding coordinates of the i-th vertex.

Since we can only visualize graphs in low dimensions (usually in one, two, or

three dimensions), for information visualization and most applications, m = 2

or 3, though it can be any positive integer less than n in general.

Theorem 8.2 [99] Let G be a weighted graph with n vertices and let ρ be its

representation in Rm and given by the n×m matrix X. Then

E(ρ) = trXTLX, (8.6)

where L is the (weighted) Laplacian of G.
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Note that XTLT is an m×m symmetric matrix; hence its eigenvalues are

real. The sum of the eigenvalues is the trace of the matrix, and hence the

energy of the representation is given by the sum of the eigenvalues of XTLX.

The energy of certain representations of a graph G are determined by the

eigenvalues of the Laplacian of G. If Y is an invertible m×m matrix, then the

map that sends u to ρ(u)Y is another representation of G. This representation

is given by the matrix XY and provides as much information about G as does

ρ. From this point of view, the representation is determined by its column

space. Therefore we may assume that the columns of X are orthonormal. In

this case the matrix X satisfies XTX = Im, and the representation is called

an orthogonal representation.

Theorem 8.3 [99] Let G be a connected weighted graph on n vertices with

weighted Laplacian L and Laplacian eigenvalues λ1 ≤ · · · ≤ λn. The minimum

energy of a balanced orthogonal representation of G in Rm equals
∑m+1

i=2 λi.

This result provides a nice method for drawing a graph in any number of

dimensions. Compute an orthonormal basis of eigenvectors x1, . . . , xn for the

Laplacian L and let the columns of X be x2, . . . , xm+1. Theorem 8.2 implies

that this yields an orthogonal balanced representation of minimum energy.

However, the representation is not necessarily unique, because it may be the

case that λm+1 = λm+2, in which case there is no reason to choose between

xm+1 and xm+2.

8.2 Generalized Eigenvectors and Minimum En-

ergy

Definition 8.5 For a symmetric positive semi-definite matrix A and positive

definite matrix B, a vector ν and a scalar λ are called generalized eigenpairs

of (A,B), if

Aν = λBν. (8.7)
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In this case we say (ν, λ) is a generalized eigenpair of (A,B).

Theorem 8.4 All the generalized eigenvalues of (A,B) are real and non-

negative, and all the generalized eigenvectors are B-orthogonal.

Proof: Since B is positive definite, there exists an invertible matrix C such

that B = CTC. Therefore,

Aν = λBν =⇒ Aν = λCTCν =⇒ (C−TAC−1)Cν = λCν.

Hence the eigenvalues of Aν = λBν are those of Mv = λv, where M is the

symmetric matrix M = C−TAC−1 and v = Cν. �

The first few eigenvectors of the Laplacian and the generalized eigenvectors

of (L,D) play a significant role in graph drawing (eg. see [46]). They are

optimal solutions of some constrained minimization problem as explained in

the following theorem.

Theorem 8.5 [46] Given a symmetric matrix An×n, denote by ν1, . . . , νn, its

eigenvectors, with corresponding eigenvalues λ1, . . . , λn. Then, ν1, . . . , νp (p <

n) are optimal solutions of the constrained minimization problem

min
x1,...,xp∈Rn

p∑
k=1

(xk)TAxk,

subject to: (xk)Txl = δkl, k, l = 1, . . . , p.

(8.8)

The next theorem is a more general form of Theorem 8.5

Theorem 8.6 Given a symmetric matrix An×n and positive definite matrix

Bn×n, denote by ν1, . . . , νn, the generalized eigenvectors of (A,B), with corre-

sponding eigenvalues λ1 ≤ · · · ≤ λn. Then, ν1, . . . , νp are optimal solutions of

the constrained minimization problem,

min
x1,...,xp∈Rn

p∑
k=1

(xk)TAxk,

subject to: (xk)TBxl = δkl, k, l = 1, . . . , p.

(8.9)
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Proof: Since B is positive definite, there exists an invertible matrix C such

that B = CTC. Substitute xk = C−1yk in (8.8), and rewrite the minimization

problem as follows:

min
y1,...,yp∈Rn

p∑
k=1

(yk)TC−TAC−1yk,

subject to: (yk)Tyl = δkl, k, l = 1, . . . , p.

(8.10)

Let ŷ1, . . . , ŷp be the minimizers of (8.10) (and of course this implies

C−1ŷ1, . . . , C−1ŷp are the minimizers of (8.9).) According to Theorem 8.5,

these are the p lowest eigenvectors of the symmetric matrix C−TAC−1. Thus,

we have C−TAC−1ŷk = λkŷ
k, 1 ≤ k ≤ p. Now use this equation and substi-

tute back to x̂k = C−1ŷk to get

C−TAx̂k = λkCx̂
k.

But this implies Ax̂k = λkBx̂
k, so the minimizers of (8.10) are the lowest gen-

eralized eigenvectors of (A,B). �

An equivalent version of the above theorem and yet most suitable to use

is the following:

Theorem 8.7 Given a symmetric matrix An×n and positive definite matrix

Bn×n, denote by ν1, . . . , νn, the generalized eigenvectors of (A,B), with corre-

sponding eigenvalues λ1 ≤ · · · ≤ λn. Then, ν1, . . . , νp are optimal solutions of

the constrained minimization problem,

min
x1,...,xp∈Rn

∑p
k=1(xk)TAxk∑p
k=1(xk)TBxk

,

subject to: (x1)TBx1 = (x2)TBx2 = · · · = (xp)TBxp,

(xk)TBxl = 0, 1 ≤ k 6= l ≤ p.

(8.11)

Note that Theorem 8.7 can be reduced to Theorem 8.6 by noting that the

minimization problem in Theorem 8.7 is invariant under scaling. Indeed, for
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any constant c 6= 0,∑p
k=1(xk)TAxk∑p
k=1(xk)TBxk

=

∑p
k=1(cxk)TA(cxk)∑p
k=1(cxk)TB(cxk)

.

Hence, we can always scale the optimal solution, so that

(x1)TBx1 = (x2)TBx2 = · · · = (xp)TBxp = 1,

and reduce the problem to Theorem 8.6

The following theorem is also obtained from the last theorem by imposing

the additional restriction that the solution must be B-orthogonal to the lowest

generalized eigenvectors. In this case, we simply take the next low generalized

eigenvectors.

Theorem 8.8 Given a symmetric matrix An×n and positive definite matrix

Bn×n, denote by ν1, . . . , νn, the generalized eigenvectors of (A,B), with cor-

responding eigenvalues λ1 ≤ · · · ≤ λn. Then, νk+1, . . . , νk+p, are an optimal

solutions of the constrained minimization problem,

min
x1,...,xp∈Rn

∑p
i=1(xi)TAxi∑p
i=1(xi)TBxi

,

subject to: (x1)TBx1 = (x2)TBx2 = · · · = (xp)TBxp,

(xi)TBxj = 0, 1 ≤ i 6= j ≤ p.

(xi)TBνj = 0, i = 1, . . . , p, j = 1, . . . , k.

(8.12)

8.3 Spectral Graph Drawing: Eigenprojection

Method

Graphs are often used to express the relationship between items. Graph

drawing enables visualization of these relationships. The usefulness of the

visual representation depends upon whether the drawing is aesthetic. While

there are no strict criteria for aesthetic drawing, it is generally agreed that

such a drawing has minimal edge crossing and even spacing between vertices.
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The problem of graph drawing has been studied extensively in the literature

and many approaches have been proposed such as eigenprojection method

[46], high dimensional embedding [47], graph drawing using spectral distance

embedding [57], and force-directed algorithms [58] are a few to list.

The approach to using eigenvectors to draw graphs was suggested by Ken-

neth Hall in 1970 [50]. Hall first considered the problem of assigning a real

number x(v) to each vertex v so that (x(v) − x(u))2 is small for most edges

(v, u). This led him to consider the problem of minimizing (8.5). So as to

avoid the degenerate solutions in which every vertex is mapped to zero or any

other constant value, he introduced the restriction that x be orthogonal to 1n.

As the utility of the embedding does not really depend up on its scale, he sug-

gested the normalization of ||x|| = 1. According to Theorem 8.5, the solution

of the resulting optimization problem is precisely an eigenvector correspond-

ing to the second smallest eigenvalue of the Laplacian. Hall also considered

the problem of embedding in R2. This time he considered the minimization

problem

min
x,y∈Rn

∑
(i,j)∈E

||(x(i), y(i))− (x(j), y(j))||2

such that ∑
(i,j)∈E

(x(i), y(i)) = (0, 0),

i.e., the representation is balanced.

However, doing so typically results in the degenerate solution x = y = φ2. To

ensure the two coordinates are different, Hall introduced the restriction that

x be orthogonal to y. Again by Theorem 8.5, we see that the solution is then

given by setting x = φ2 and y = φ3 or by taking a rotation of this.

According to Koren [46], one advantage of this approach is its ability to

compute optimal layouts (according to specific requirements) and a short com-

putation time as compared to other existing graph drawing algorithms. As in
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Hall, Koren also based his drawing by solving some constrained minimization

problem of an energy function. The solution of the minimization determines

the optimal drawing layout. He also introduced the following constrained en-

ergy minimization problem for weighted graphs:

min
x1,...,xp∈Rn

E(x1, . . . , xp) =

∑
i∼j wijd

2
ij∑

i<j d
2
ij

,

subject to: Var(x1) = Var(x2) = · · · = Var(xp),

Cov(xi, xj) = 0, 1 ≤ i 6= j ≤ p,

(8.13)

where Var(x) is the variance of x, defined by

Var(x) =
1

n

n∑
i=1

(x(i)− x̄)2, (8.14)

and x̄ is the mean of x,

x̄ =
1

n

n∑
i=1

x(i). (8.15)

Cov(xk, xl) is the covariance of xk and xl defined as

Cov(xk, xl) =
1

n

n∑
i=1

(xk(i)− x̄k)(xl(i)− x̄l), (8.16)

and dij is the Euclidean distance between nodes i and j in the p-dimensional

layout

dij =

√√√√ p∑
i=1

(xk(i)− xk(j))2 . (8.17)

Also it can be shown that for any x ∈ Rn,∑
i∼j

wijd
2
ij =

p∑
k=1

(xk)TLxk.

To see this, first note that since W is symmetric and Dii =
∑

j wij, we have∑
i,j

(x(i)− x(j))2wij =
∑
i,j

(x2(i) + x2(j)− 2x(i)x(j))wij

=
∑
i

x2(i)Dii +
∑
j

x2(j)Djj − 2
∑
i,j

x(i)x(j)Dij

= 2xTLx.
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As we mentioned earlier, the energy and the constraints are invariant under

translation. This enables us to eliminate the degree of freedom by requiring

that, for each 1 ≤ k ≤ p, the mean of xk = 0, i.e.,

0 =
n∑
i=1

xk(i) = (xk)T .1n.

This requirement further simplifies the above constraints. For instance, the

constraint Cov(xk, xl) = 0 is equivalent to requiring the vectors to be pair-

wise orthogonal (xk)Txl = 0, and the variance of the vector xk is reduced to

Var(xk) = 1
n
(xk)Txk, since for each k the mean of xk = 0 implies

0 = Cov(xk, xl) =
1

n

n∑
i=1

(xk(i)− x̄k)(xl(i)− x̄l)

=
1

n

n∑
i=1

xk(i)xl(i) = (xk)Txl, k 6= l

and

V ar(xk) =
1

n

n∑
i=1

(xk(i)− x̄k)2

=
1

n

n∑
i=1

(xk(i))2

=
1

n
(xk)Txk.

Now, the uniform variance constraint can be simplified as

‖x1‖ = · · · = ‖xp‖.
Remark: Requiring the drawing to have a finite variance, V ar(x) = c > 0,

where c is a constant, guarantees that the nodes are well scattered. In addition,

the uniform variance constraint forces the nodes to be equally scattered along

each of the axes, which further makes the drawing have a balanced aspect

ratio. However, the choice of the scalar c is arbitrary and merely determines the

length of x and the scale of the energy E. Therefore, we can take c = 1, without

loss of generality. The second constraint (i.e., Cov(xi, xj) = 0, 1 ≤ i 6= j ≤ p),



165

ensures that there is no correlation between the axes, so that each additional

dimension will provide us with as much new information as possible.

Combining all these, the last minimization problem can be written in the

following simple (but equivalent) form,

min
x1,...,xp∈Rn

∑p
k=1(xk)TLxk∑p
k=1(xk)Txk

,

subject to: (xk)Txl = δkl, k, l = 1, . . . , p,

(xk)T .1n = 0, k = 1, . . . , p.

(8.18)

As we discussed before, the theorems mentioned earlier in this section are

valid for any symmetric semi-positive definite matrix A and any positive defi-

nite matrix B. Now substituting B = In, the n×n identity matrix, in Theorem

8.8, and using the fact that the lowest eigenvector of the Laplacian L is 1n,

a p-dimensional optimal layout of a graph G is given by the lowest positive

Laplacian eigenvectors φ2, . . . , φp+1 of the Laplacian matrix of G. Therefore, a

p-dimensional layout of a graph uses eigenvectors φ2, . . . , φp+1 of the Laplacian

matrix of G as coordinates of the graph. The coordinates of node i are given

by (φ2(i), . . . , φp+1(i)). For example, a 2-dimensional drawing is obtained by

taking the x-coordinates of the nodes to be given by φ2, and the y-coordinates

to be given by φ3. Further, notice that as the eigenvector of eigenvalue zero is

the constant 1n, it will not be very useful for drawing the graph. Now let us see

some examples of graph drawing demonstrating the eigenprojection method.

Example 1. One of the simplest graphs is the path graph. In figure 8.1, we

plot the path graph on 20 nodes using the second eigenvector of the graph

Laplacian. The x-axis is the number of the vertex (which corresponds to each

vertex v ∈ V (G)) and the y-axis is the value of the eigenvector at that vertex.

Example 2. Consider a cycle graph on 300 vertices. Since we cannot draw a

cycle graph in one dimension, we will need at least two eigenvectors. We plot

the graph in two dimensions by using the second and third eigenvectors of the
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Figure 8.1: Drawing a path graph using the 2nd eigenvector of the Laplacian
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Laplacian. In this case we draw each vertex i at coordinate (v2(i), v3(i)) (fig.

8.2) and (v2(i), v5(i)) (fig 8.3). Notice that in figure 8.3, we used the 2nd and

5th eigenfunctions to plot the same cycle graph and the outcome is not really

a cycle graph.

Figure 8.2: Drawing a cycle graph using the the 2nd and 3rd eigenvectors of

the Laplacian



168

Figure 8.3: Drawing a cycle graph using the 2nd and 5th eigenvectors of the

Laplacian
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Example 3. In this example we generated the Delaunay graph of 500 ran-

domly chosen points in the unit square (left) and we then plotted the same

graph by using the 2nd and 3rd eigenvectors of the Laplacian (right).

Figure 8.4: Drawing the Delaunay graph using the eigenvector of the Laplacian

It is also possible to use the largest eigenvectors (eigenvectors correspond-

ing to the largest eigenvalues) of the adjacency matrix instead of the Laplacian.

For instance, Fowler and Manolopoulos [59] used the eigenvectors of the ad-

jacency matrix to draw molecular graphs. In a recent work of Brandes and

Willhalm [60], eigenvectors of a modified Laplacian were used for the visual-

ization of bibliographic networks.

8.4 Drawing graphs using splines

In chapters 5 and 6, we have seen that eigenfunctions of the graph Lapla-

cian corresponding to the smaller eigenvalues can be approximated by the

so-called interpolating variational splines on a given subset (sampling set) of

the graph. We also have seen the eigenprojection method, which proves that
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those eigenfunctions can be used to layout graphs. So it seems plausible to

expect that splines approximating these eigenfunctions could also be used to

draw graphs. Of course, since eigenfunctions and the approximating splines

coincide only on a small subset of the graph, one should not expect a drawing

to be as good as the drawing obtained using eigenfunctions. However, one can

achieve a reasonable drawing by increasing the density of the sampling set or

by choosing an appropriate degree of the spline.

The motivation behind using splines to draw graphs is simple. First, we

needed spline approximations of eigenfunctions mostly because eigenfunctions

are not localized in the sense that it is difficult to find a proper subset U

of V (G) which is considerably smaller than V (G) such that an eigenfunction

vanishes on U or is ”very small” on the complement of U . Second, computing

eigenfunctions is either costly or difficult for large graphs. Third, the dimen-

sion of spline spaces is much more smaller than the function space L2(G) and

hence can be used in dimension reduction.

Example 4. Consider a cycle graph on 100 vertices. We take 20% of the vertex

set for the sampling set (bottom left) and only 10% (bottom right) and com-

pute the splines interpolating the second and third Laplacian eigenfunctions.

Then we plot the graph by using the splines instead of the eigenfunctions. We

get a remarkably nice plot when the density of the sample set increases as

shown in the following figures.
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Figure 8.5: Approximating the 2rd eigenfunction (red) using splines (blue),

sample 10%, k=15
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Figure 8.6: Approximating the 3rd eigenfunction (red) using splines (blue),

sample 10%, k=15
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Figure 8.7: Drawing a cycle graph using 2nd and 3rd eigenfunctions
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Figure 8.8: Drawing a cycle graph using splines
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Example 5. We plot a 20 by 20 two dimensional grid. We took only 20%

uniformly distributed vertices for the sampling set.

Figure 8.9: Drawing a 2D grid using splines, sample 20%, k=15.

We will end this section by reminding that even if eigenvectors (and splines)

are the natural choices to draw graphs, it should come with the warning that

they do not produce aesthetically nice pictures of all graphs. In fact, they

produce bad pictures of most graphs. But, it is still the first thing we might

try when we encounter a new graph that we want to understand.

8.5 Embedding graphs into high-dimensional

space

Representing a graph on n vertices in Euclidean space Rm, for m < n

has become a common strategy in graph drawing for visualization and other

purposes, as discussed in the previous section. By setting the problem as min-

imizing Hall’s energy function associated to a representation, a formulation of

the problem for which the optimal solution can be simply computed in terms
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of the lowest eigenvectors of the graph Laplacian (eigenprojection method).

On the other hand, one can visualize and understand the structure of a graph

if they are represented in low dimensions. Hence drawing graphs in low di-

mension is a convenient way for the same purpose. However, it is not always

possible to achieve certain aesthetic properties in low dimensions. Aesthetics

are attributes that define a ”good” graph. Some of the qualities which deter-

mine a good graph are minimize edge crossing, minimize sum of edge lengths,

minimize area, etc. Thus, embedding a graph in high dimensions gives us more

flexibility and room to achieve the desired properties.

For example, in figure 8.10 (left) we draw a Buckyball in two dimensions by

using the second and third eigenfunctions of the Laplacian, and we draw the

same ball in three dimensions by using the second, third, and fourth eigenfunc-

tions of the Laplacian (right). In the first picture we observe that the picture

looks like a squashed Buckyball. The reason is that there is no canonical way

to choose the eigenvectors v2 and v3. The smallest non-zero eigenvalue (λ2 =

0.2434) of the Laplacian has multiplicity three. This graph should be really

drawn in three dimensions, using any set of orthonormal vectors v2, v3, v4 of

the smallest non-zero eigenvalue of the Laplacian. In this case we obtain the

standard embedding of the ball in R3.
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Figure 8.10: Buckyball in 2D (left) and 3D (right)

Another approach of graph drawing, which is similar to an m-dimensional

layout of the graph is the High-Dimensional Embedding (HDE) [47]. The high-

dimensional embedding method involves a two-step process: It first embeds

a graph into high-dimensional space (e.g., in 50 dimensional space) and then

projects the layout back to low-dimensional space (usually two or three) using a

well-known multivariate analysis technique called principal component analysis

(PCA). In order to embed a graph in the m-dimensional space, we choose m

pivot nodes that are almost uniformly distributed on the graph and associate

each of the m axes with a unique node. The axis X i, which is associated with

pivot node pi, represents the graph from the ”viewpoint” of node pi. This is

done by assigning the j-th component of X i to the graph-theoretic distance

between nodes pi and j (i.e., X i(j) = d(pi, j)). Hence pi is located at place 0

on axis X i, its immediate neighbors are located at place 1 on this axis, and so

on.

The graph theoretic distances are computed using breadth-first-search (BFS).

Given an initial vertex v ∈ V (G), the BFS algorithm traverses all the vertices
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reachable from v and outputs those vertices in ascending order of their dis-

tances to v. The pivots p1, p2, . . . , pm are chosen as follows. The first node,

p1, is chosen at random. For j = 2, . . . ,m, node pj is a node that maximizes

the shortest distance from {p1, p2, . . . , pj−1}. Now let the pivots be the set

{p1, p2, . . . , pm} ⊂ V (G). Each node v ∈ V (G) is associated with m coordi-

nates (X1(v), X2(v), . . . , Xm(v)), such that X i(v) = d(pi, v).

Once the graph is embedded in Rm, we then project the coordinates into

lower dimensions by using principal component analysis, which involves com-

puting the first few largest eigenvalues and eigenvectors of the covariance ma-

trix of points in the higher dimension. PCA transforms a number of (possibly)

correlated variables into a (smaller) number of uncorrelated variables called

principal components (PCs). The first principal component accounts for as

much of the variability in the data as possible, and each succeeding compo-

nent accounts for as much of the remaining variability as possible. By using

only the first few principal components, PCA makes it possible to reduce the

number of significant dimensions of the data, while maintaining the maximum

possible variance thereof. See [54] for a comprehensive discussion of PCA.

The next section presents the construction of principal components using

the PCA technique to project a high dimensionally embedded graph into a

lower dimension.

8.6 Projecting a high-dimensional embedding

into low-dimension

The high-dimensional embedding method embeds a graph in high-dimensional

space and then projects it back to low-dimensional space. Once we embed the

graph into high dimension Rm, the next step is to project the graph into lower

dimension Rk, k < m (usually k=2 or 3). Now, assume that we have the

m axes X1, . . . , Xm (X i are n-dimensional, n = |V (G)| ), describing all the

vertices of the graph. We want to represent the n vertices using only the k-
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dimensions, by using k uncorrelated vectors say Y 1, . . . , Y k (remember Y i are

also n-dimensional), which are the principal components. This time the coor-

dinates of vertex v are (Y 1(v), . . . , Y k(v)). Each of the principal components

among Y 1, . . . , Y k is a linear combination of the axes X1, . . . , Xm. i.e.,

Y i =
m∑
j=1

αjX
j 1 ≤ j ≤ k

for some scalar αj’s.

Let mi denote the mean of the X i-th axis. Thus,

mi =
1

n
1Tn X

i =
1

n

n∑
j=1

X i(j). (8.19)

The first stage of the PCA is to balance the m-dimensional representation,

i.e., to center the data around 0. This is just a translation and does not

affect the drawing at all. Next denote the vectors of the centered data by

X̂1, . . . , X̂m, defined as

X̂ i = X i − 1

n
1Tn X

i, (8.20)

i.e.,

X̂ i(j) = X i(j)−mi, i = 1, . . . ,m, j = 1, . . . , n.

We then construct a new balanced representation by the m× n matrix X,

whose rows are the centered coordinates X̂ i, 1 ≤ i ≤ m :

X =


X̂1(1) · · · X̂1(n)

...
...

...

X̂m(1) · · · X̂m(n)

 . (8.21)

Notice that the graph is still embedded in the m-dimensional space but we

just relocated the vertices so that the center of gravity is at the origin (i.e.,

the representation is balanced).

Now define the covariance matrix S, of dimension m×m as

S =
1

n
XXT . (8.22)
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Next, compute the largest k eigenvectors u1, . . . , uk of S (these are the eigen-

vectors corresponding to the largest eigenvalues) and normalize them, so that

these k vectors are orthonormal. Clearly S is symmetric as

ST = (
1

n
XXT )T =

1

n
(XT )TXT =

1

n
XXT = S,

and hence all its eigenvalues are real.

The last step is to compute the new coordinate axes of the desired low-

dimensional space. The first new axis Y 1 is the projection of the data in the

direction of u1, the next axis Y 2 is the projection in the direction of u2, and

so on. Hence the new coordinates are defined by:

Y i = XTui, i = 1, . . . , k. (8.23)

Each node v ∈ V (G) is now associated with k coordinates (Y 1(v), . . . , Y k(v)).

8.7 Spectral graph drawing within spline spaces

So far we have seen some applications of splines in signal approximation

and drawing simple graphs. In this section, we will extend their application

to dimension reduction.

At this point, it is clear that graphs can be represented in high dimensional

spaces by using eigenvectors of some matrices related to the graph. In particu-

lar, the graph Laplacian operator has played a significant role in graph drawing

as discussed in the previous sections. For example, the high-dimensional em-

bedding technique uses the first few eigenvectors of the Laplacian of G as

coordinates of the graph. Today, the applications of graphs are everywhere

and almost in every discipline (e.g., psychology, social study, medical science,

biology, chemistry, mathematics, engineering, computer science, etc) and the

number of vertices of a graph is increasing drastically. For example, consider

the social network graph Facebook: vertices are people and the edges repre-

sent Facebook friendship. This social graph has already millions of vertices

and edges and still expanding. So now it becomes clear that it is not an easy



181

task to compute even the first few eigenvectors of the Laplacian L if the num-

ber of vertices of the graph is very large (e.g., if the graph has 106 vertices). As

a result, researchers are trying to find a way to avoid this difficult and costly

computation by restricting the drawing axes to lie within a ”suitable” lower

dimensional subspace of Rn.

Obviously, constraining the drawing to lie within a subspace may not pro-

vide the desired outcome. In fact, it might result in arbitrarily bad layout

unless the subspace is chosen very carefully. Strictly speaking, when we say

a drawing is constrained in a subspace we really mean the drawing axes lie

in that subspace. That means we restrict the optimization problem on the

subspace in question in stead of the whole space Rn, n = V (G). A particular

example is the work of Koren [49]. His work focuses on the construction of

an appropriate subspace with relatively low dimensionality that captures aes-

thetically nice layouts of the graph. Here, we propose spline spaces as natural

choices for suitable subspaces of Rn. Our main contribution lies in providing

a new low dimensional subspace of Rn for the construction of the new drawing

(coordinate) axes. Let us recall the construction of spline spaces.

Let G = (V,E), be a graph with |V (G)| = n. Given a subset of vertices

U ⊂ V (G), a sequence of real numbers r = {ru}, u ∈ U , a positive real

number t > 0, and a small positive ε > 0, consider the following variational

problem:

Find a function s ∈ L2(G) which satisfies

1. s(u) = ru, u ∈ U.

2. s minimizes the functional g → ||(εI + L)tg||.

It is known that for any sequence of values (r1, r2, . . . , rm) = r, and any

t > 0 the minimization problem has a unique solution, where m = |U|. This

unique solution is called a variational spline of order t, and we denote it

by st(r). We denote the set of all splines for a fixed set U ∈ V (G), and fixed

numbers t > 0, ε > 0 by S(U , t, ε).
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S(U , t, ε) is a closed subspace of L2(G) and dim S(U , t, ε) = —U—. In

fact, if hν is a solution of the variational problem such that hν(u) = δν,u, ν, u ∈
U , where δν,u is the Kronecker delta , then S(U , t, ε) = span{hν}ν∈U . More

precisely,

st(r) =
∑
ν∈U

rνh
ν , r = {ru}u∈U .

Suppose the vertices in U are chosen in such a way that they are uniformly

distributed over the graph. Let X be the n × m matrix whose columns are

hν , ν ∈ U , where m is the number of vertices in U . Then we have S(U , t, ε) =

Range(X ). Such a matrix representation is very convenient, since it allows

us to describe the vectors in the subspace as the matrix-vector product X y,

where y ∈ Rm. It is also easy to see that X is orthogonal, i.e., X TX = I.

We recall that in the eigenprojection method of graph drawing, the drawing

axes were chosen arbitrarily in Rn. But this time we would like to constrain the

drawing axes to lie within S(U , t, ε). Thus, we require X1, . . . , Xp ∈ S(U , t, ε).
Consequently, we can always denote the axes of the drawing by the vectors

y1, . . . , yp ∈ Rm, so that

X1 = X y1, . . . , Xp = X yp.

Moreover, the eigenprojection method defines the axes as the minimizers

of (8.18),

min
x1,...,xp∈Rn

∑p
k=1(xk)TLxk∑p
k=1(xk)Txk

,

subject to: (xk)Txl = δkl, k, l = 1, . . . , p,

(xk)T .1n = 0, k = 1, . . . , p.

So now we want to optimize x1, . . . , xp within the subspace S(U , t, ε), in-

stead of Rn. This can be achieved by replacing them with X y1, . . . ,X yp. Hence

(8.18) becomes,

min
y1,...,yp∈Rm

∑p
k=1(yk)TX TLX yk∑p
k=1(yk)TX TXY k

,

subject to: (yk)TX TX yl = δkl, k, l = 1, . . . , p.

(8.24)
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Remark: Since 1n /∈ Range(X ), the axes are not required to be orthogonal

to 1n this time. Also, since X TX = I, (8.24) can be further simplified as

min
y1,...,yp∈Rm

∑p
k=1(yk)TX TLX yk∑p

k=1(yk)Tyk
,

subject to: (yk)Tyl = δkl, k, l = 1, . . . , p.

(8.25)

Since the columns of X are linearly independent, the matrix X TLX is

positive-definite. So by Theorem 8.8, the minimizers of (8.25) are the lowest

eigenvectors of X TLX . Therefore, the drawing can be achieved by first com-

puting the eigenvectors corresponding to the lowest p eigenvalues of X TLX ,

denoted by v1, . . . , vp, and then taking the coordinate axes to be

X1 = X v1, . . . , Xp = X vp ∈ S(U , t, ε).

Conclusion: We extended the application of splines in spectral graph draw-

ing. More specifically, we used splines approximating the lowest few eigenfunc-

tions of the Laplacian to draw graphs and an explanation of why these splines

may be used for graph drawing was given. The high-dimensional embedding,

low-dimensional projection, and eigenprojection methods of graph drawing

were discussed in detail. The high-dimensional embedding method involves a

two-step process: It first embeds a graph into high-dimensional space (e.g., in

50 dimensional space) and then projects the layout back to low-dimensional

space (usually two or three) using a well-known multivariate analysis tech-

nique called principal component analysis (PCA). We then constructed a new

low-dimensional subspace of Rn for the coordinate axes to project a graphs

into low dimensions.
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