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ABSTRACT

A Hecke Correspondence for Automorphic Integrals with Infinite

Log-Polynomial Periods

Austin Daughton

DOCTOR OF PHILOSOPHY

Temple University, May, 2012

Professor Boris A. Datskovsky, Chair

Since Hecke first proved his correspondence between Dirichlet series with

functional equations and automorphic forms, there have been a great number

of generalizations (see, for example, [3] [7] [9] [10]). Of particular interest is

a generalization due to Bochner that gives a correspondence between Dirich-

let series with any finite number of poles that satisfy the classical functional

equation and automorphic integrals with (finite) log-polynomial sum period

functions.

In this dissertation, we extend Bochner’s result to Dirichlet series with

finitely many essential singularities. With some restrictions on the underlying

group and the weight, we also prove a correspondence for Dirichlet series with

infinitely many poles. For this second correspondence, we provide a technique

to approximate automorphic integrals with infinite log-polynomial sum period

functions by automorphic integrals with finite log-polynomial period functions.
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CHAPTER 1

Introduction

1.1 Motivation

Let f(z) =
∞∑
n=0

ane
2πinz/λ be an exponential series with an = O(nγ) for

some γ > 0. In 1936, Hecke proved in [4] that the transformation law

υ(T )z−kf(−1/z) = f(z) under the inversion T =
(

0 −1
1 0

)
is equivalent to the

following three conditions:

(1) The completed Dirichlet series Φ(s) =
(

2π
λ

)−s
Γ(s)

∑
n≥1

ann
−s has a mero-

morphic continuation to the entire s-plane with at most simple poles at 0 and

k,

(2) Φ(s) satisfies the functional equation Φ(k − s) = ikυ(T ) Φ(s), and

(3) Φ(s)− a0

(
ikυ(T )
s−k −

1
s

)
is bounded in every vertical strip.

Thus we have a correspondence between automorphic forms and Dirichlet

series with functional equations and certain growth conditions. Notice that in

Hecke’s correspondence, the Dirichlet series may have poles at 0 and k, and

these poles are at worst simple. Using the same proof techniques, Bochner [2]

generalized Hecke’s result to allow for Dirichlet series with any finite number

of poles. A slight reformulation of Bochner’s result can be stated as follows.

Theorem 1.1. Let f(z) =
∞∑
n=0

ane
2πinz/λ be holomorphic in the upper half-
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plane with an = O(nγ) for some γ > 0. Let q(z) =
L∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)`
be a log-polynomial sum and define the functions

ϕf (s) =
∞∑
n=1

an
ns
,

Φf (s) =

(
2π

λ

)−s
Γ(s)ϕf (s),

Q(s) =
L∑
j=1

M(j)∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
+ a0

(
ikυ(T )

s− k
− 1

s

)
.

Then the following are equivalent:

(A) f(z) satisfies the transformation law υ(T )z−kf(−1/z) = f(z) + q(z).

(B) Φf (s)−Q(s) has an analytic continuation to the entire s-plane that is

bounded in vertical strips, and Φf (k − s) = ikυ(T ) Φf (s).

This yields a correspondence between automorphic integrals with finite

log-polynomial sum period functions and Dirichlet series with the classical

functional equation and finitely many poles. The log-polynomial sum q(z)

is particularly important to this general correspondence, as the poles of the

Dirichlet series are determined exactly by the form of the log-polynomial sum

and vice-versa. More precisely, the poles of the completed Dirichlet series are

restricted to the set {0, k, αj}, and the pole at αj has order M(j) + 1 with

principal part given in terms of the coefficients δ(j, `).

Given this description of the singularities, by allowing either the sum on j

or on ` to be an infinite sum, the corresponding Dirichlet series should have

infinitely many poles or finitely many essential singularities respectively. We

prove that these generalizations of Bochner’s result hold for finitely many es-

sential singularities in Theorem 3.8 and (with some restrictions on the group

and the weight) for infinitely many poles in Theorems 4.3 and 4.4. To prove

these results, we will provide good estimates on the ‘infinite’ log-polynomial

sums as well as a new technique to estimate an automorphic integral with infi-

nite log-polynomial periods by automorphic integrals with finite log-polynomial

periods.
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Specifically, in Chapter 2, we provide a rather explicit construction of gen-

eralized Poincaré series that will be needed to create automorphic integrals.

Using the same techniques as Bochner and Hecke, we deal with the case of

finitely many essential singularities in Chapter 3. Chapter 4 is dedicated to

dealing with the case of infinitely many poles. We establish the desired corre-

spondence for the theta group and some weights in this chapter.

1.2 Background and Definitions

Denote by SL2(R) the group of real 2×2 matrices with determinant 1. We

let SL2(R) act on the upper half-plane H via linear fractional transformations:

Mz = az+b
cz+d

for M =
(
a b
c d

)
. We call a transformation M =

(
a b
c d

)
parabolic,

elliptic, or hyperbolic if | tr(M)| = |a + d| is equal to, smaller than, or larger

than 2, respectively.

Definition 1.2. Let Γ be a discrete subgroup of SL2(R). A fundamental

region R for Γ is a domain in H such that

1. No two points of R are equivalent under the action of Γ, and

2. Every point in H is equivalent with respect to Γ to some point in R.

A parabolic point (or parabolic cusp) for Γ in R is any point q ∈ R ∪ {i∞}
such that q is in the closure of R with respect to the topology of the Riemann

sphere and q is fixed by a non-identity parabolic transformation in Γ.

Definition 1.3. An automorphic form on the group Γ of weight k is a

function f(z), meromorphic in H, which satisfies certain growth conditions

and the transformation law

f(Mz) = υ(M)(cz + d)kf(z) (1.1)

for every M =
(
a b
c d

)
∈ Γ. (Here υ(M) is a complex number of modulus 1 that

is independent of z.)
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We say that a meromorphic function f is an automorphic function on

the group Γ if

f(Mz) = f(z)

for all M ∈ Γ.

We fix the branch of (cz + d)k by the convention that

−π ≤ arg(z) < π

for z 6= 0. It is easy to see that if there exists a function f(z) 6≡ 0 satisfying

(1.1), then the function υ must satisfy

υ(M3)(c3z + d3)k = υ(M1)υ(M2)(c1M2z + d1)k(c2z + d2)k (1.2)

for every z ∈ H and M1 =
( ∗ ∗
c1 d1

)
, M2 =

( ∗ ∗
c2 d2

)
, and M3 = M1M2 =

( ∗ ∗
c3 d3

)
in Γ. Condition (1.2) is called the consistency condition.

Definition 1.4. We say that a function υ : Γ→ C is a multiplier system for

Γ in weight k provided that υ is of absolute value 1 and satisfies the consistency

condition (1.2).

The consistency condition implies that υ(I) = 1 and υ(−I) = ±eπik when-
ever −I ∈ Γ. We shall assume that υ(−I) = eπik. This condition is called

the “nontriviality condition” because there are no nontrivial forms for which

υ(−I) = −eπik.
Set Sλ =

(
1 λ
0 1

)
, T =

(
0 −1
1 0

)
, and denote by G(λ) the group generated

by these two matrices. These are called the Hecke groups. Two important

examples are the full modular group SL2(Z) = G(1) and the theta group

Γϑ = G(2), a subgroup of index 3 in SL2(Z).

Because Sλ and T generate the Hecke group G(λ), a multiplier system

for G(λ) can be completely determined from its values on Sλ and T and the

consistency condition. From the consistency and nontriviality conditions, we

can easily deduce that υ(T ) = ±e−πik/2 = ±i−k.
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We define the usual “slash” operator |kυ by

(f |kυM)(z) = υ(M)(cz + d)−kf(Mz) (1.3)

for M =
( ∗ ∗
c d

)
. When k and υ are clear from context, we shall simply write

f |M .

Definition 1.5. An automorphic integral on the group Γ of weight k and

multiplier υ is a holomorphic function f satisfying certain growth conditions

and such that

(f |kυM)(z) = f(z) + qM(z) (1.4)

for every M ∈ Γ and z ∈ H. The functions qM(z) are called the period

functions (or cocycles) associated to f .

We call a collection of functions {qM(z) : M ∈ Γ} parabolic cocycles if

qM1M2(z) = (qM1|kυM2)(z) + qM2(z) (1.5)

for all M ∈ Γ. This condition is called the cocycle condition.

Note that if f is a non-zero function satisfying (1.4), then (1.5) follows

from the consistency condition (1.2). Also, given functions qSλ(z) and qT (z),

we can generate a collection of parabolic cocycles {qM(z)} on G(λ) by repeat-

edly applying the cocycle condition to a word in the generators Sλ and T .

(Note that the functions qSλ and qT cannot be completely arbitrary. There

are restrictions depending on the relations in the group.) Often, we will be

concerned only with automorphic integrals f(z) where qSλ ≡ 0; in these cases,

the collection of period functions depends only upon qT , and so we shall call

qT the period function for f(z).
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CHAPTER 2

Generalized Poincaré Series

2.1 The Space P

Throughout this chapter, let z = x + iy. We denote by P the space of

functions f holomorphic in H such that

|f(z)| ≤ K(|z|A + y−B) (2.1)

for some K,A,B > 0. While this space is defined by a growth restriction at

the boundary of H, it is quite large and well suited for our purposes. As we

shall see in the following section, the generalized Poincaré series will converge

when the period function is in P . We are therefore interested in being able to

show that certain functions are in P . Furthermore, we shall need to have an

exact formula for the constants K, A, and B. For this, we shall often use the

following lemma.

Lemma 2.1. Let Kj,Mj, Aj, Bj ≥ 0 for j = 1, 2. Then there exist K,A,B > 0

such that
2∑
j=1

(Kj|z|Aj +Mjy
−Bj) ≤ K(|z|A + y−B)

for all z ∈ H.

Proof. Let K∗ = max
1≤j≤2

(Kj,Mj, 1), A = max(A1, A2, 1), B = max(B1, B2, 1).
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Then we have
2∑
j=1

(Kj|z|Aj + Mjy
−Bj) ≤ K∗(|z|A1 + |z|A2 + y−B1 + y−B2). Let

h(z) = |z|A1+|z|A2+y−B1+y−B2

|z|A+y−B
. We will show that h is bounded in H. To that

end, write H = S1 ∪ S2 ∪ S3 where S1 = {Im(z) > 1}, S2 = {|z| ≤ 1},
S3 = {|z| > 1, 0 < Im(z) ≤ 1}.

For z ∈ S1, |z| > 1 and 0 < y−Bj , y−B < 1. Then

h(z) ≤ |z|
A1 + |z|A2 + 2

|z|A
= |z|A1−A + |z|A2−A + 2|z|−A ≤ 4.

For z ∈ S2, 0 < |z| ≤ 1 and 0 < y ≤ 1. Thus

h(z) ≤ 2 + y−B1 + y−B2

y−B
= 2yB + yB−B1 + yB−B2 ≤ 4.

For z ∈ S3, |z| > 1, 0 < y ≤ 1, A ≥ A1, A2, and B ≥ B1, B2. So

h(z) =
|z|A1 + |z|A2

|z|A + y−B
+
y−B1 + y−B2

|z|A + y−B

≤ |z|
A1 + |z|A2

|z|A
+
y−B1 + y−B2

y−B

= |z|A1−A + |z|A2−A + yB−B1 + yB−B2

≤ 4.

Hence h(z) ≤ 4 in H.

Note that if A1 > 0 or A2 > 0, then A = max(A1, A2) will work in the

lemma. The same is true for B; for K, however, we need to use 4 times the

max. Using the same proof technique, we can actually prove the following

general result.

Corollary 2.2. Let Kj,Mj, Aj, Bj ≥ 0 for j = 1, . . . , n. Then there exist

K,A,B > 0 such that
n∑
j=1

(Kj|z|Aj +Mjy
−Bj) ≤ K(|z|A + y−B)

for all z ∈ H. Furthermore, if Aj > 0 for any j, then A = max(A1, . . . , An)

works, and similarly, if Bj > 0 for any j, then B = max(B1, . . . , Bn) works.

If Kj > 0 or Mj > 0 for any j, then K = 2n max
1≤j≤n

(Mj, Kj) works.
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Another easy but rather useful consequence of the lemma is that P has a

number of nice closure properties.

Corollary 2.3. The space P is closed under the slash operator, addition, and

multiplication.

Proof. Suppose that f, g ∈ P with |f(z)| ≤ K(|z|A + y−B) and |g(z)| ≤
M(|z|C + y−D). Lemma 2.1 immediately tells us that f + g ∈ P . For multi-

plication, we combine Corollary 2.2 with the fact that ab ≤ 1
2
(a2 + b2) for any

a, b ∈ R:

|f(z)g(z)| ≤ KM(|z|A+C + y−(B+D) + |z|Ay−D + |z|Cy−B)

≤ KM

(
|z|A+C + y−(B+D) +

1

2
(|z|2A + y−2D + |z|2C + y−2B)

)
≤ 6KM

(
|z|max(A+C,2A,2C) + y−max(B+D,2B,2D)

)
= K∗

(
|z|2 max(A,C) + y−2 max(B,D)

)
.

Thus fg ∈ P .
For the slash operator, note that Im(Mz) = y

|cz+d|2 for M =
(
a b
c d

)
∈

SL2(R). Then we have that

|f |kυM(z)| = |υ(M)(cz + d)−kf(Mz)|

≤ K|cz + d|−k
(
|az+b|A
|cz+d|A + y−B|cz + d|2B

)
.

Because P is closed under multiplication and addition, it is enough to show

that (αz + β)C ∈ P for any real numbers α, β, C. If α = 0, then this is clear.

So assume α 6= 0. For C ≥ 0, we have

|αz + β|C ≤ (|αz|+ |β|)C

≤ K ′(|αz|C + |β|C)

≤ K ′′(|z|C + y−1)

for some positive constants K ′, K ′′. For C < 0, |αz + β| ≥ |αy|, and thus

|αz + β|C ≤ |αy|C = |α|CyC .
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2.2 Construction and Convergence

The construction of generalized Poincaré series for general H-groups (that

is, finitely generated discrete subgroups of SL2(R) that contain translations

and have the entire real line as their limit set) has been well studied in [6]. In

particular, this construction works for all discrete Hecke groups with λ ≤ 2.

When λ > 2, the group G(λ) is no longer an H-group and the construction

no longer works. However, Knopp and Sheingorn have provided a slightly

different construction in [8] for these groups.

We shall present here a more explicit construction in the special case of

the theta group Γϑ = G(2). Recall that the theta group is generated by

S2 =
(

1 2
0 1

)
and T =

(
0 −1
1 0

)
. This group has just one relation: T 2 = −I.

We can generate a collection of parabolic cocycles {qM(z) : M ∈ Γϑ} via the

cocycle condition (1.5) given any functions qS2 and qT , subject to the restriction

that qT |kυT + qT = 0.

In the following, we shall assume that qS2 ≡ 0 and that qT ∈ P with

|qT (z)| ≤ K(|z|A + y−B). (2.2)

Fix k ∈ R and υ a multiplier system in weight k for Γϑ. Assume that qT |kυT +

qT = 0 and construct parabolic cocycles {qM(z)}. Now suppose that w is a

multiplier system for Γϑ of weightm. Let (Γϑ)∞ = 〈S2〉 be the ‘stabilizer’ of∞
in Γϑ. (The stabilizer of infinity in Γϑ is more properly 〈S2,−I〉. However, the
‘stabilizer’ given is the one required to make the sum well-defined and have the

correct transformation laws.) Then we define the generalized Poincaré series

Ψ({qM},m,w; z) = Ψ(z) by

Ψ(z) =
∑

M∈(Γϑ)∞\
Γϑ

qM(z)

w(M)(cz + d)m
. (2.3)

First note that this sum is really over all distinct lower rows c, d of the elements

in Γϑ, and we can rewrite the equation as

Ψ(z) =
∑
c,d

(c,d)=1
c+d odd

qM(z)

w(M)(cz + d)m
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where M =
( ∗ ∗
c d

)
is any element of Γϑ with lower row c, d. The assumption

that qS2 ≡ 0 insures that the individual terms in the sum are independent of

the choice of M .

This series converges absolutely and uniformly on compact subsets of H
for m large. Specifically, we have the following result.

Proposition 2.4. Let β = max(A/2, B+k/2). Then for m > 2β+4, the gen-

eralized Poincaré series (2.3) converges absolutely and uniformly on compact

subsets of H. Furthermore, Ψ ∈ P with

|Ψ(z)| ≤ KK∗
(

1 + 4|z|2

y2

)m/2
(|z|6β+2k + y−6β−2k),

where K∗ is a positive constant depending on m.

This is essentially Proposition 7 in [6]. Assuming then that m is large, it

follows from absolute convergence that for any V =
( ∗ ∗
c d

)
∈ Γϑ,

(Ψ|kυV )(z) = w(V )(cz + d)mΨ(z)− w(V )(cz + d)mEm,w(z)qV (z) (2.4)

where Em,w(z) is the Eisenstein series

Em,w(z) =
∑
c,d

(c,d)=1
c+d odd

w(M)(cz + d)−m. (2.5)

At this point we shall assume that w ≡ 1 and m is a large even integer.

Then Em,w(z) is, in fact, an entire form on Γϑ with Em,w(i∞) = 2 (and

therefore not identically zero). Now the function

H(z) = − Ψ(z)

Em,w(z)

satisfies the transformation law

(H|kυV )(z) = H(z) + qV (z). (2.6)

However, this is not quite enough to call H(z) an automorphic integral since H

may have poles in the upper half-plane. These poles are restricted to the zeros
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of the Eisenstein series Em,w, of which there are finitely many in a fundamental

region. We shall eliminate these poles while retaining the correct transforma-

tion law by subtracting an automorphic form of weight k with multiplier system

υ whose poles have principal parts matching those of H(z) exactly. We can do

this because there is a Mittag-Leffler principle for automorphic forms on Γϑ.

Theorem 2.5. Let Rϑ = {z ∈ H : |z| > 1, |Re(z)| < 1} be a fundamental

region for Γϑ. Set

R̃ϑ = (Rϑ ∩H) \ ({z : Re(z) = 1} ∪ {z : |z| = 1, 0 ≤ Re(z) ≤ 1}) .

Assume that z1, . . . , zN , N ≥ 0 are distinct points in R̃ϑ, and let αj,t ∈ C
(1 ≤ t ≤ N , 1 ≤ j ≤ `(t)) with α`(t),t 6= 0 for all t. Suppose further that

β1, . . . , βρ, γ1, . . . , γµ, δ1, . . . , δν ∈ C for some ρ, µ, ν ≥ 0 such that βρ, γµ, δν 6= 0

(provided that ρ > 0, µ > 0, ν > 0 respectively). Then the following hold.

1. (MS υ+
k ) If k ≥ 0, there exists an automorphic form F (z) on Γϑ of

weight k and multiplier system υ+
k such that F is holomorphic in R̃ϑ \

{z1, . . . , zN} with principal part

α`(t),t
(z − zt)`(t)

+ . . .+
α1,t

(z − zt)
(2.7)

at zt for 1 ≤ t ≤ N . Furthermore, F has expansions

(z + i)−k

(
βρτ

−2ρ + βρ−1τ
−2(ρ−1) + . . .+ β1τ

−2 +
∞∑
n=0

bnτ
2n

)
(2.8)

at z = i,

γµe
−πiµz + . . .+ γ1e

−πiz +
∞∑
n=0

cne
πinz (2.9)

at i∞, and

(z + 1)−k

(
δνω

−ν+κ1 + . . .+ δ1ω
−1+κ1 +

∞∑
n=0

dnω
n+κ1

)
(2.10)

at −1. (Here τ = z−i
z+i

, ω = e−2πi/(z+1), and κ1 = k
4
− [k

4
].)
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2. (MS υ−k ) If k > 2, then there exists an automorphic form G(z) on Γϑ

of weight k and multiplier system υ−k such that G is holomorphic in

R̃ϑ \{z1, . . . , zN} with principal part (2.7) at zt. Moreover, G(z) has the

expansion (2.9) at i∞ and expansions

(z + i)−k

(
βρτ

−2ρ+1 + . . . β1τ
−1 +

∞∑
n=0

bnτ
2n+1

)
(2.11)

at z = i and

(z + 1)−k

(
δνω

−ν+κ2 + . . .+ δ1ω
−1+κ2 +

∞∑
n=0

dnω
n+κ2

)
(2.12)

at z = −1. (Here κ2 = k+2
4
− [k+2

4
].)

Remarks. 1. The multiplier systems υ±k are defined by υ±k (S2) = 1 and

υ±k (T ) = ±i−k. These are the only multiplier systems on Γϑ with υ(S2) = 1.

The value of κ1 is defined by υ+
k (S−1

2 T−1) = e2πiκ1 with 0 ≤ κ1 < 1 and can

be determined using the consistency condition. Similarly, κ2 is defined by

υ−k (S−1
2 T−1) = e2πiκ2 with 0 ≤ κ2 < 1.

2. Because i is a fixed point of order 2 for Γϑ, the expansion at z =

i is actually an expansion in the ‘local uniformizing variable’ τ 2 = ( z−i
z+i

)2.

Similarly, eπiz and ω are the local uniformizing variables at the cusps i∞ and

−1 respectively.

Before tackling the proof of Theorem 2.5, we need to show that there is a

Mittag-Leffler theorem for modular functions on Γϑ. (Recall that a meromor-

phic function f(z) is called a modular function on Γ if f(Mz) = f(z) for all

M ∈ Γ.)

Proposition 2.6. Let R̃ϑ, τ , and ω be as in Theorem 2.5. Assume that

z1, . . . , zN , N ≥ 0 are distinct points in R̃ϑ, and let αj,t ∈ C (1 ≤ t ≤ N , 1 ≤
j ≤ `(t)) with α`(t),t 6= 0 for all t. Suppose further that β1, . . . , βρ, γ1, . . . , γµ,

δ1, . . . , δν ∈ C for some ρ, µ, ν ≥ 0 such that βρ, γµ, δν 6= 0 (provided that

ρ > 0, µ > 0, ν > 0 respectively). Then there exists a modular function f(z)
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on Γϑ with principal part (2.7) at zt, and f(z) has expansions with principal

part

βρτ
−2ρ + βρ−1τ

−2(ρ−1) + . . . β1τ
−2 (2.13)

at z = i,

γµe
−πiµz + . . .+ γ1e

−πiz (2.14)

at i∞, and

δνω
−ν + . . .+ δ1ω

−1 (2.15)

at −1.

Proof. We shall construct f(z) using the so called ‘Hauptmodul’ for Γϑ:

ϕ0(z) =

(
ϑ(z)

η(z)

)12

.

Here ϑ(z) =
∞∑

n=−∞
eπin

2z is the Jacobi theta function and η(z) = eπiz/12
∞∏
n=1

(1−

e2πinz) is the Dedekind eta function. Using the well known transformation

laws for ϑ and η (see e.g. [5, pp. 39-48]), it is easily seen that ϕ0 is a modular

function for Γϑ. That is, ϕ0(Mz) = ϕ0(z) for any M ∈ Γϑ. Furthermore,

ϕ0(z) is holomorphic and nonzero in the entire upper half-plane, but it has a

zero of order 1 at the cusp −1 and a simple pole at the cusp i∞.

To deal with i∞, because ϕ0(z) has a simple pole, we take an appropriate

linear combination f(z; i∞) of ϕ0, . . . , ϕ
µ
0 to yield a modular function with

principal part (2.14). Similarly, for the cusp −1, ϕ−1
0 (z) is a modular function

with a simple pole at −1 that is holomorphic in H. So we can take an appro-

priate linear combination f(z;−1) of ϕ−1
0 , . . . , ϕ−ν0 to get a modular function

with principal part (2.15).

For a point zt, consider the function ϕ0(z) − ϕ0(zt). This function has a

simple pole at i∞, a zero of order 1 at z = zt, and is nonzero in R̃ϑ as well

as at i, −1. Then (ϕ0(z) − ϕ0(zt))
−1 has a simple pole at zt but is otherwise

holomorphic in R̃ϑ ∪ {i, i∞,−1}. Again, an appropriate linear combination

f(z; zt) of (ϕ0(z) − ϕ0(zt))
−1, . . . , (ϕ0(z) − ϕ0(zt))

−`(t) is a modular function

with principal part (2.7).
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The argument at z = i is similar. An appropriate linear combination f(z; i)

of the functions (ϕ0(z)−ϕ0(i))−1, . . . , (ϕ0(z)−ϕ0(i))−ρ is a modular function

with principal part (2.13).

Therefore f(z) = f(z; i∞) + f(z;−1) + f(z; i) +
N∑
t=1

f(z; zt) is the desired

modular function.

Proof of Theorem 2.5.

1. Note first that ϑ(z) is a modular form of weight 1
2
on Γϑ that is nonzero in

H. Thus ϑ2k(z) is holomorphic and nonzero for any real number k ≥ 0.

Furthermore, ϑ2k(z) is a modular form of weight k on Γϑ. If we let υϑ
denote the multiplier system for ϑ, then υ2k

ϑ (S2) = 1 and υ2k
ϑ (T ) = i−k.

Hence the multipliers υ2k
ϑ and υ+

k are exactly the same.

We can thus construct the desired modular function F (z) by using Propo-

sition 2.6 to choose an appropriate modular function f(z) and setting

F (z) = ϑ2k(z)f(z). Because ϑ2k is holomorphic and nonzero in H and

also at i∞, we let f(z) have principal part

α`(t),t
ϑ2k(zt)

1

(z − zt)`(t)
+ . . .+

α1,t

ϑ2k(zt)

1

(z − zt)

at zt. The expansions at i and i∞ are handled similarly. At the cusp

−1, ϑ(z) is zero. We must therefore give f(z) a pole of higher order to

cancel the zero of ϑ2k(z). Specifically, ϑ2k has an expansion

ϑ2k(z) = (z + 1)−k
∞∑

n=M

dnω
n+κ1

where M + κ1 > 0 and dM 6= 0. We then give f(z) the principal part

(z + 1)−k
(
δν
dM

ων+M + . . .+
δ1

dM
ω1+M

)
at −1.

2. For the multiplier system υ−k , we use the Eisenstein series Ek,υ−k (z) de-

fined in (2.5) instead of ϑ2k. The Eisenstein series Ek,υ−k converges ex-

actly when k > 2, and in that case Ek,υ−k is a modular form of weight k
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on Γϑ with multiplier system υ−k . Then as above, we shall construct

G(z) by choosing an appropriate modular function g(z) and setting

G(z) = Ek,υ−k
(z)g(z). However, the Eisenstein series will have zeros

in H (and possibly at −1) for k large. If these zeros coincide with any

of the points zt or with i, then we give g(z) a higher order pole (just as

we did with ϑ2k at −1) so that G(z) has the correct principal part.

With this, we finally return to H(z) = − Ψ(z)
Em,w(z)

. Assume now either that

k ≥ 0 and υ = υ+
k or that k > 2 and υ = υ−k . Let g(z) be the modular form

of weight k whose principal parts match exactly the principal parts of H(z)

given by Theorem 2.5. Then the function F (z) = H(z)− g(z) is holomorphic

in H. Because g(z) is a modular form (and therefore g|kυM = g), from (2.6),

we see that F satisfies the transformation law

(F |kυM)(z) = F (z) + qM(z).

Together with the fact that F (z) is holomorphic at i∞ and −1, this transfor-

mation law implies that we have expansions

F (z) =
∞∑
n=0

ane
πinz

at i∞ and

F (z) = ρ(z) + (z + 1)−k
∞∑
n=0

bne
2πi(n+κ)

−1
z+1

at −1, where ρ(z) ∈ P satisfies qS−1
2 T−1 = ρ|(S−1

2 T−1)− ρ and κ is defined by

υ±k (S−1
2 T−1) = e2πiκ, 0 ≤ κ < 1. These expansions together actually imply

that F (z) ∈ P (the details of this argument can be found in [6, pp. 622-3]).

Furthermore, the coefficients an satisfy the growth condition an = O(nγ) for

some γ > 0. Both γ and the implied constant can be chosen to depend upon

k, m, and the constants K, A, and B from (2.2).
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CHAPTER 3

Essential Singularities

3.1 Convergence

Consider the following "infinite" version of a log-polynomial sum:

q(z) =
M∑
j=1

(z
i

)−αj ∞∑
`=0

δ(j, `)
(

log
z

i

)`
(3.1)

where the {αj} are all distinct complex numbers, δ(j, `) ∈ C, and z ∈ H. In

this section, we would like to establish assumptions which will guarantee that

such series will converge absolutely and uniformly on compact subsets of the

upper half-plane. Furthermore, we want an infinite log-polynomial sum to be

in the space P .
For this, we need to estimate | log(z/i)|. Let ε > 0. Then it is easy to

establish that for real x

| log x| ≤


1
eε
xε if x ≥ 1

1
eε
x−ε if 0 < x < 1

Using these inequalities, we can then show that

| log x|xε

(1 + x)2ε
≤


1

eε

(
x2

(1 + x)2

)ε
if x ≥ 1

1

eε

(
1

(1 + x)2

)ε
if 0 < x < 1



17

Because x2

(1+x)2 < 1 for x ≥ 1 and 1
(1+x)2 < 1 for 0 < x < 1, we have

| log x|xε

(1 + x)2ε
≤ 1

eε

for any x > 0. That is,

| log x| ≤ 1

eε
(1 + x)2εx−ε. (3.2)

Since (1 + x)2x−1 ≥ 1, we have that∣∣∣log
z

i

∣∣∣ ≤ |log |z||+ | arg(z/i)|

≤ 1

eε
(1 + |z|)2ε|z|−ε +

π

2

≤
(

1

eε
+
π

2

)
(1 + |z|)2ε|z|−ε

=

(
2 + πeε

2eε

)
(|z|−1 + 2 + |z|)ε

≤
(

3

eε

)
(y−1 + 2 + |z|)ε

if ε ≤ 1/3 and z = x+ iy ∈ H. Choosing ε = 3
`
yields∣∣∣log

z

i

∣∣∣` ≤ ( `e)` (y−1 + 2 + |z|)3

≤ K
(
`
e

)`
(|z|4 + y−4) (3.3)

for ` ≥ 9 and every z ∈ H. Here K is a constant independent of z. If we set

α = max
1≤j≤M

(|αj|), then
∣∣∣( zi )−αj ∣∣∣ = |z|−Re(αj)e− Im(αj) arg(z/i) ≤ |z|−Re(αj)e

π
2
α. By

(i), we have that |z|−Re(αj) ≤ (|z|α + y−α). Thus∣∣(z/i)−αj ∣∣ ≤ e
π
2
α(|z|α + y−α). (3.4)

Using the Weierstrass M-Test together with the estimates (3.3) and (3.4),

we can easily prove the following proposition.

Proposition 3.1. Let q(z) =
M∑
j=1

(
z
i

)−αj ∞∑̀
=0

δ(j, `)
(
log z

i

)`. Suppose that

(i) |Re(αj)| ≤ α for all j, where α ∈ R+,
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(ii)
∞∑̀
=1

(
`
e

)` |δ(j, `)| <∞ for j = 1, . . . ,M .

Then q(z) converges absolutely for all z ∈ H, uniformly on compact subsets of

H, and q ∈ P. Furthermore, the series for q(−1/z) also converges absolutely

and uniformly on compact subsets of H.

Remark. Because there are only finitely many αj, there is always some α

for which (i) holds. However, in the next chapter (i) will be a necessary

assumption. We include (i) here to draw parallels between the two cases. The

difference in convergence will be in the assumptions made on the coefficients

δ(j, `).

Proof. From (3.3) and (3.4) we obtain the estimate∣∣∣∣∣
M∑
j=1

( z
i
)−αj

∞∑
`=9

δ(j, `)(log z
i
)`

∣∣∣∣∣ ≤
M∑
j=1

∣∣( z
i
)−αj

∣∣ ∞∑
`=9

|δ(j, `)|| log z
i
|`

≤ Ke
π
2
α(|z|α + y−α)(|z|4 + y−4)

M∑
j=1

∞∑
`=9

( `
e
)`|δ(j, `)|.

For 0 ≤ ` < 9, we have | log z
i
|` ≤ 2`(|z|+ y−1)`. Thus

|q(z)| ≤ e
π
2
α(|z|α + y−α)

(
M∑
j=1

8∑
`=0

|δ(j, `)|2`(|z|+ y−1)`

+K(|z|4 + y−4)
M∑
j=1

∞∑
`=9

( `
e
)`|δ(j, `)|

)
.

By (ii), the last sum converges. Thus, by the Weierstrass M-Test, the series

defining q(z) converges absolutely and uniformly on compact subsets of H.
Furthermore, this estimate also shows us that q ∈ P .

For q(−1/z), we can easily see that log
(−1
iz

)
= log

(
i
z

)
= − log

(
z
i

)
whenever

z ∈ H. This implies that∣∣log
(−1
iz

)∣∣` ≤ K
(
`
e

)`
(|z|4 + y−4) (3.5)

for any ` ≥ 9. Also,
∣∣∣(−1

iz

)−αj ∣∣∣ ≤ |z|Re(αj)e
π
2
α and |z|Re(αj) ≤ (|z|α+y−α). Thus∣∣(−1/iz)−αj

∣∣ ≤ e
π
2
α(|z|α + y−α). (3.6)
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Just as for q(z), the estimates (3.5) and (3.6) together imply that q(−1/z)

converges absolutely and uniformly on compact subsets ofH by the Weierstrass

M-Test.

Finally, if q(z) is a period function under the inversion, T , for some function

f(z), then q(z) satisfies q|kυT + q = 0.

Proposition 3.2. Suppose that f(z) satisfies the transformation law

z−kf(−1/z) = υ(T )f(z) + q(z) (3.7)

for some function q(z). Then q(z) satisfies the equation

z−kq(−1/z) + υ(T )q(z) = 0. (3.8)

Proof. The transformation law (3.7) for f implies that υ(T )f(−1/z) = (−1/z)−kf(z)−
q(−1/z). Plugging this back into (3.7) and rearranging slightly yields the equa-

tion

f(z)
(
1− υ(T )2(−1/z)kzk

)
= υ(T )(−1/z)kzkq(z) + (−1/z)kq(−1/z). (3.9)

Now the expression (−1/z)kzk is actually constant. For z = iy for y > 0, we see

that

(−1/z)kzk = (i/y)k(iy)k = ik 1
yk
ikyk = (ik)2.

By the identity theorem, this extends to the entire upper half-plane. Hence

equation (3.9) becomes

f(z)
(
1− (ikυ(T ))2

)
= υ(T )(−1/z)kzkq(z) + (−1/z)kq(−1/z). (3.10)

But υ is a multiplier system in weight k, so υ(T ) = ±i−k. This means that

1− (ikυ(T ))2 = 0, and (3.8) follows.

3.2 Analytic Results

Here we will state and prove (or give a reference for) the analytic results

required for the proof of Theorem 3.8. We will begin with a rather useful
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lemma about integration. It is easy to prove using induction and integration

by parts.

Lemma 3.3.
∫∞

1
yw(log y)`dy = (−1)`+1`!(w+1)−`−1 for w ∈ C with Re(w) <

−1 and ` ∈ N ∪ {0}.

We shall also require Stirling’s formula and a formulation of the Phragmén-

Lindelöf theorem for ‘lacunary’ vertical strips.

Theorem 3.4 (Stirling’s Formula I). For any δ > 0,

log Γ(s) =
(
s− 1

2

)
log s− s+ 1

2
log(2π) +O

(
1
|s|

)
in | arg s| ≤ π − δ, where the implied constant depends only upon δ.

For this formula, we refer the reader to [11]. One can use this theorem to

easily prove

Corollary 3.5 (Stirling’s Formula II). For fixed real σ,

|Γ(σ + it)| ∼
√

2π|t|σ−
1
2 e−π|t|/2, (3.11)

as |t| → ∞.

Thus for any s = σ+ it with |t| ≥ 1 in the strip S(a, b) = {σ+ it : a < σ <

b}, we have

|Γ(s)| ≤ K|t|ρe−π|t|/2, (3.12)

Here K depends only upon a and b while ρ depends only upon a.

We next include two variations on the Phragmén-Lindelöf theorem. As

these are not standard variations, we provide proofs of these theorems.

Theorem 3.6. Let S(a, b) be the vertical strip {z ∈ C : a < Re(z) < b}, and
let Ω ⊆ S(a, b) be any open subset of S(a, b). Suppose that f(z) is analytic on

Ω and continuous on ∂Ω such that

(1) |f(z)| ≤M for z ∈ ∂Ω,

(2) f(z) = OΩ,θ

(
exp(eθπ|z|/(b−a))

)
,

where θ < 1 and the implied constant is independent of z (but may depend

upon Ω and θ). Then |f(z)| ≤M for all z ∈ Ω.
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Proof. First, we claim that it is enough to prove the theorem in the special

case a = −π
2
, b = π

2
. To see this, assume the theorem in this case, and let f

be the given function on Ω ⊂ S(a, b). Then let ϕ(z) = π
b−a

(
z − a+b

2

)
be the

Möbius transformation that scales and shifts S(a, b) onto S
(
−π

2
, π

2

)
. We then

want to apply the theorem in the special case to the function f̂(z) = f (ϕ(z))

on ϕ(Ω) ⊂ S
(
−π

2
, π

2

)
. Since ϕ(∂Ω) = ∂ϕ(Ω), |f̂(z)| ≤ M for z ∈ ∂ϕ(Ω).

To apply the theorem, we also need to check that f̂ has the correct growth

condition (2) in ϕ(Ω) ⊆ S
(
−π

2
, π

2

)
. Now

eθπ|ϕ
−1(z)|/(b−a) ≤ K(Ω, θ)eθ|z|

for a constant K(Ω, θ) that depends only on Ω and θ. Thus for any z ∈ ϕ(Ω),

f̂(z) = OΩ,θ

(
exp(eθ|z|)

)
.

We can then apply the theorem to f̂ to get |f̂(z)| ≤M for all z ∈ ϕ(Ω). This

implies that |f̂(ϕ−1(z))| = |f(z)| ≤M for all z ∈ Ω.

Now assume that b = −a = π/2. Consider the function

g(z) = f(z) exp(−ρe−iκz)

where ρ > 0 and max(0, θ) < κ < 1. To study the growth of g in Ω, set

w(z) = exp(−ρe−iκz). Then

|w(z)| = exp(−ρ(cosκx)eκy) ≤ exp(−ρ(cos
κπ

2
)eκy)

because |x| = |Re(z)| ≤ π/2 and 0 < κ < 1. For g, we have

g(z) = O
(
exp

(
eθ|z| − ρeκy cos(κπ/2)

))
uniformly for z ∈ Ω. Now, for the exponent in this estimate, we can see that

eθ|z| − ρeκy cos(κπ/2) ≤ eθy
(
eπ/2 − ρ cos(κπ/2)e(κ−θ)y).

Since κ > θ, the right hand side of this inequality approaches −∞ as y → +∞.

Thus |g(z)| → 0 as y → +∞, and so there exists some yM > 0 such that

|g(z)| ≤M for all z = x+ iy with y ≥ yM and |x| ≤ π/2.
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Let z0 = x0 + y0 be any point in Ω. If y0 ≥ yM , then |g(z0)| ≤ M by the

work above. If y0 < yM , set ΩM = {z ∈ Ω : | Im(z)| ≤ yM}. Then |g(z)| ≤ M

for all z ∈ Ω∩ {| Im(z)| = yM} by our choice of yM . For the rest of the region

ΩM , note that |w(z)| ≤ 1 for all z ∈ Ω, and thus |g(z)| = |f(z)||w(z)| ≤ M

for all z ∈ ∂ΩM by our assumption on f . We can now apply the maximum

modulus principle to see that |g(z)| ≤ M for all z ∈ ΩM , and in particular,

|g(z0)| ≤M . This proves that |g(z0)| ≤M for any z0 ∈ Ω.

We now return to f and can easily see that

|f(z0)| ≤ |g(z0)||w(z0)|−1 ≤M exp
(
ρ(cos(κx0)eκy0)

)
.

Now let ρ→ 0+ to get that |f(z0)| ≤M as desired.

We can use this theorem to prove a version that allows for moderate growth

along the boundary of Ω. We shall also restrict ourselves to subsets of a

‘lacunary’ vertical strip.

Corollary 3.7. Let Ω be an open subset of the lacunary vertical strip Sη(a, b) =

{z = x + iy ∈ C : a < x < b, |y| > η} for some η > 0. Suppose that f(z) is

analytic on Ω and continuous on ∂Ω. Also suppose that

(1) f(z) = O(|y|α) on ∂Ω for some α ∈ R+,

(2) f(z) = OΩ,θ

(
exp(eθπ|z|/(b−a))

)
,

where θ < 1 and the implied constant is independent of z. Then f(z) =

O(|y|α), uniformly in Ω.

Proof. Write Ω = Ω+ ∪ Ω−, where Ω+ = {z ∈ Ω : Im(z) > η} and Ω− = {z ∈
Ω : Im(z) < −η}, and U = {z ∈ Ω : −η ≤ Im(z) ≤ η}. We shall prove the

result for Ω+ and Ω−.

For Ω−, it is sufficient to prove the result with Ω replaced by Ω+. To see

this, define f̂ : Ω+ → C by f̂(z) = f(z). The function f̂ is analytic in Ω+ and

satisfies (1) and (2) since f satisfies these conditions. Thus we can invoke the

result for Ω+ and get f̂(z) = O(|y|α) uniformly in Ω+. But this immediately

implies that f(z) = O(|y|α), uniformly in Ω− by the definition of f̂ . Thus we

only need to prove the corollary with Ω replaced by Ω+.
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In this case, let ψ(z) = (−iz)−α = e−α log(−iz) and f̃(z) = f(z)ψ(z). Then

|ψ(z)| = e−Re(α log(−iz)) = e−α log |−iz| = | − iz|−α = |y − ix|−α.

Since a ≤ x ≤ b for z ∈ Ω+, we also have that

|y − ix|−α = O(y−α)

as y → +∞. Here the implied constant is independent of z. Thus ψ(z) =

O (y−α) for all z ∈ Ω+ with the implied constant independent of z.

This allows us to estimate f̃(z) = f(z)ψ(z) on the boundary of Ω+. Using

this last estimate and the hypothesis (i), we have

f̃(z) = O (yα · y−α) = O(1)

for all z ∈ ∂Ω+. That is to say, there is a positive constant K such that

|f̃(z)| ≤ K for every z ∈ ∂Ω+ (K depends on a, b, and η, but not on z).

Finally, to apply Theorem 3.6 we also require a growth condition on f̃ inside

Ω+. But since y−α → 0 as y → +∞, we know that ψ(z) = O(1) in Ω+.

Combining this estimate with the growth condition (2) on f , we have

f̃(z) = OΩ,θ

(
exp(eθπ|z|/(b−a)) · 1

)
= OΩ,θ

(
exp(eθπ|z|/(b−a))

)
.

Then we apply Theorem 3.6 to f̃ to conclude that

|f(z)||ψ(z)| = |f̃(z)| ≤ K, for z ∈ Ω+.

Because ψ(z) 6= 0 in Ω+, this implies that |f(z)| ≤ K/|ψ(z)| for z ∈ Ω+. The

last step is to get an upper bound on |ψ(z)|.
From our earlier calculation of |ψ(z)|, we have that

|ψ(z)| = |y − ix|−α = y−α
(√

1 + x2

y2

)−α
.

But since a ≤ x ≤ b and α > 0,(√
1 + x2

y2

)−α
≥ δ > 0

uniformly in Ω+ for some δ independent of z. Thus |ψ(z)| ≥ δy−α and

1/|ψ(z)| = O(yα). In conjunction with the inequality |f(z)| ≤ K/|ψ(z)|,
this implies that f(z) = O(yα) uniformly in Ω+ as y → +∞.
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3.3 The Correspondence Theorem

In this section, we shall prove the correspondence theorem for automorphic

integrals with infinite log-polynomial period functions. Throughout we will as-

sume that condition (i) of Proposition 3.1 holds. We shall further assume that

(ii∗)
M∑
j=1

∞∑̀
=0

`!|δ(j, `)|ε` <∞ for every ε > 0.

Note that condition (ii∗) is stronger than condition (ii) from Proposition 3.1,

and so any infinite log-polynomial sum of the form (3.1) shall converge abso-

lutely and uniformly on compact subsets of H. We shall also assume that υ is

a multiplier system in weight k on G(λ) with υ(Sλ) = 1.

Theorem 3.8. Let f(z) =
∞∑
n=0

ane
2πinz/λ be holomorphic in H with an =

O(nγ) for some γ > 0. Let q(z) =
M∑
j=1

(
z
i

)−αj ∞∑̀
=0

δ(j, `)
(
log z

i

)` and define the

functions

ϕf (s) =
∞∑
n=1

an
ns
,

Φf (s) =

(
2π

λ

)−s
Γ(s)ϕf (s),

Q(s) = υ(T )
M∑
j=1

∞∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
+ a0

(
ikυ(T )

s− k
− 1

s

)
.

Then the following are equivalent:

(A) f(z) satisfies the transformation law

z−kf(−1/z) = υ(T )f(z) + q(z). (3.13)

(B) Φf (s)−Q(s) has an analytic continuation to the entire s-plane that is

bounded in vertical strips, and Φf (k − s) = ikυ(T ) Φf (s).
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Proof. (A) =⇒ (B). Consider the Mellin transform, Φf , of f(iy)− a0:

Φf (s) =

∫ ∞
0

(f(iy)− a0) ys
dy

y

=

∫ ∞
0

(
∞∑
n=1

ane
−2πny/λ

)
ys
dy

y

=
∞∑
n=1

an

∫ ∞
0

e−2πny/λys−1 dy

=

(
2π

λ

)−s
Γ(s)

∞∑
n=1

an
ns

=

(
2π

λ

)−s
Γ(s)ϕf (s),

provided that Re(s) > γ + 1. Now we can also write

Φf (s) =

∫ ∞
0

(f(iy)− a0) ys
dy

y

=

∫ ∞
1

(f(iy)− a0) ys−1 dy +

∫ 1

0

(f(iy)− a0) ys−1 dy

=

∫ ∞
1

(f(iy)− a0) ys−1 dy +

∫ ∞
1

(f(i/y)− a0) y−s−1 dy

= I + II.

Now by the transformation law (3.13),

II = ikυ(T )

∫ ∞
1

(f(iy)− a0)yk−s−1 dy + ikυ(T )

∫ ∞
1

a0y
k−s−1 dy

−
∫ ∞

1

a0y
−s−1 dy + ik

∫ ∞
1

q(iy)yk−s−1 dy.

Note that each of these integrals converges for Re(s) > max(γ+1, 4+α+|k|+1).

Using Lemma 3.3, we can explicitly evaluate the two middle integrals to get

II = ikυ(T )

∫ ∞
1

(f(iy)− a0)yk−s−1 dy

+ a0

(
ikυ(T )

s− k
− 1

s

)
+ ik

∫ ∞
1

q(iy)yk−s−1 dy.
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This gives us that Φf (s) = E(s) +R(s) + L(s), where

E(s) =

∫ ∞
1

(f(iy)− a0) ys−1 dy + ikυ(T )

∫ ∞
1

(f(iy)− a0) yk−s−1 dy

R(s) = a0

(
ikυ(T )

s− k
− 1

s

)
L(s) = ik

∫ ∞
1

q(iy)yk−s−1 dy.

The function E(s) is easily seen to be entire, and since
(
ikυ(T )

)2
= 1, we

also have that E(k − s) = ikυ(T ) E(s). Furthermore, E(s) is bounded in

vertical strips. Next, R(s) is meromorphic in the entire s-plane, and of course

R(k − s) = ikυ(T )R(s).

Next, we apply the Lebesgue Dominated Convergence Theorem to integrate

q(iy)yk−s−1 term by term so that we have an exact expression for L(s). To

justify the use of the Lebesgue Dominated Convergence Theorem, note that

since y ≥ 1, we have log y ≤ `
e
y1/` for any ` ≥ 1. Then | log y|` ≤ `!y for ` ≥ 0.

Hence

|q(iy)yk−s−1| ≤
M∑
j=1

∞∑
`=0

∣∣y−αj ∣∣ |δ(j, `)|| log y|` yk−Re(s)−1

≤
M∑
j=1

∞∑
`=0

yα|δ(j, `)| `!y yk−Re(s)−1

=
M∑
j=1

∞∑
`=0

`!|δ(j, `)| yk−Re(s)+α.

Thus the function g(y) =
M∑
j=1

∞∑̀
=0

`!|δ(j, `)| yk−Re(s)+α dominates |q(iy)yk−s−1|.

By the Monotone Convergence Theorem, we can integrate g term by term.

From Lemma 3.3, we see that the integral of any term is∫ ∞
1

yk−Re(s)+α`!|δ(j, `)| dy = −`!|δ(j, `)|(k − Re(s) + α + 1)−1

=
`!|δ(j, `)|

Re(s)− α− k − 1
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whenever Re(s) > 1 + α + k. So∫ ∞
1

g(y) dy =
M∑
j=1

∞∑
`=0

`!|δ(j, `)|
Re(s)− k − α− 1

.

This sum converges for Re(s) > |k| + α + 1 by assumption (ii∗). Thus by

the Lebesgue Dominated Convergence Theorem, we can integrate q(iy)yk−s−1

term by term. The integral of a single term is∫ ∞
1

y−αj+k−s−1δ(j, `)(log y)` dy = (−1)`+1`!δ(j, `)(k − s− αj)`+1

by Lemma 3.3. Thus

ik
∫ ∞

1

q(iy)yk−s−1 dy = ik
M∑
j=1

∞∑
`=0

(−1)`+1`!δ(j, `)

(k − s− αj)`+1
. (3.14)

This sum is actually holomorphic on C \ {k− αj}: let V be a compact subset

of C \ {k− αj}. Then there exists some ε > 0 such that |s− (k− αj)| ≥ ε for

all j and s ∈ V . This means that

M∑
j=1

∞∑
`=0

∣∣∣∣(−1)`+1`!δ(j, `)

(k − s− αj)`+1

∣∣∣∣ ≤ M∑
j=1

∞∑
`=0

`!|δ(j, `)|ε−`−1

for every s ∈ V . But this sum converges by (ii∗), so the sum converges

absolutely and uniformly on V by the Weierstrass M-Test. Thus the sum on

the right-hand side of (3.14) is holomorphic in C \ {k − αj}.
Because f(z) satisfies (3.13), we know by Proposition 3.2 that q(z) satisfies

the transformation law (3.8). That is,

q(iy) = −υ(T )(iy)−kq(i/y)

= −υ(T )i−k
M∑
j=1

∞∑
`=0

yαj−kδ(j, `)(− log y)`. (3.15)

The function h(y) =
M∑
j=1

∞∑̀
=0

y−Re(s)+α`!|δ(j, `)| = ykg(y) dominates q(iy)yk−s−1

and is integrable for Re(s) large. Applying, then, the Lebesgue Dominated
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Convergence Theorem to integrate the sum in (3.15) term by term, we arrive

at another expression for the integral:

ik
∫ ∞

1

q(iy)yk−s−1 dy = υ(T )
M∑
j=1

∞∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
. (3.16)

This sum converges absolutely and uniformly on compact subsets of C\{αj} by
(ii∗). (Note that because q(z) is a log-polynomial sum satisfying q|kυT + q = 0,

the sets {k − αj} and {αj} are actually equal. The two expressions for

ik
∫∞

1
q(iy)yk−s−1 dy are therefore holomorphic on the same domain.) Com-

paring (3.14) and (3.16), we immediately see that L(k − s) = ikυ(T )L(s).

Now by (3.16), Q(s) = R(s) +L(s). Thus Φf (s)−Q(s) = E(s), where the

function E(s) was entire and bounded in vertical strips. We also have that

each function E(s), R(s), and L(s) satisfies the correct functional equation,

so Φf (s) = E(s) +R(s) + L(s) does as well.

(B) =⇒ (A). We begin with the Cahen-Mellin integral, which expresses

e−y as the inverse Mellin transform of Γ(s):

e−y =
1

2πi

∫ d+i∞

d−i∞
Γ(s)y−sds

for any d > 0. We can use this to see that f(iy) − a0 is the inverse Mellin

transform of Φf (s). So,

f(iy)− a0 =
∞∑
n=1

ane
−2πny/λ

=
∞∑
n=1

an
1

2πi

∫ d+i∞

d−i∞
Γ(s)

(
2πny

λ

)−s
ds

=
1

2πi

∫ d+i∞

d−i∞

(
2π

λ

)−s
Γ(s)

∞∑
n=1

an
ns
y−sds

=
1

2πi

∫ d+i∞

d−i∞
Φf (s)y

−sds,

for any d > α + γ + 1 and y > 0. We will choose d > α + γ + 1 + |k|.
The next step is to move the line of integration from Re(s) = d to Re(s) =

−d. We do so by integrating around a rectangle with vertices ±d±iT , applying
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the residue theorem, and then allowing T to approach infinity. The integrals

along the horizontal edges actually approach zero as T goes to infinity. To

prove this, we will use Stirling’s formula in combination with the Phragmén-

Lindelöf theorem.

Let Ω = {s ∈ C : − d < Re(s) < d, | Im(s)| > 1 + max(|k|, α)}. Then for

s ∈ Ω,

|Q(s)| ≤
M∑
j=1

∞∑
`=0

`!|δ(j, `)|
|(s− αj)|`+1

+ |a0|
(

1

|s− k|
+

1

|s|

)

≤
M∑
j=1

∞∑
`=0

`!|δ(j, `)|+ 2|a0|.

Because Φf −Q is bounded in vertical strips by assumption, this implies that

Φf (s) is bounded in the ‘lacunary’ vertical strip Ω. Of course, (2π
λ

)s is bounded

in any vertical strip (and therefore in Ω).

Now by Stirling’s formula (3.11),

Γ−1(σ + it) ∼ (2π)−
1/2|t|1/2−σeπ|t|/2.

Thus ϕf (s) = (2π
λ

)sΓ−1(s)Φf (s) = O(|t|1/2+deπ|t|/2) in Ω. The implied constant

here is independent of s.

We also need bounds for ϕf on ∂Ω. On the line Re(s) = d, ϕf (s) is

an absolutely convergent Dirichlet series (by our choice of d) and therefore

bounded in Im(s). For Re(s) = −d, the functional equation for Φf implies

that

ϕf (s) = (ikυ(T ))−1

(
2π

λ

)2s−k

ϕf (k − s)
Γ(k − s)

Γ(s)
.

On Re(s) = −d, ϕf (k − s) is again absolutely convergent, and therefore

bounded, because d > 1 + γ + α− k. By Stirling’s formula, we have that

Γ(k − s)
Γ(s)

= O(|t|k+2d),

and so ϕf (s) = O(|t|k+2d) on the line Re(s) = −d. Thus ϕf satisfies the

conditions for Corollary 3.7 in Ω, and we can conclude that

ϕf (s) = O(|t|K) (3.17)
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as |t| → ∞ (here K > 0 and the implied constant is independent of s ∈ Ω).

Combining this with (3.12) in Stirling’s formula gives the estimate

Φf (s) = O(|t|ρ+Ke−π|t|/2) (3.18)

uniformly in the lacunary vertical strip Ω. Hence the horizontal integrals
−d±iT∫
d±iT

Φf (s)y
−sds approach zero as T →∞.

Thus we can conclude that

f(iy)− a0 =
1

2πi

∫ −d+i∞

−d−i∞
Φf (s)y

−sds+
∑

Res(Φf (s)y
−s) (3.19)

where the sum ranges over all the singularities of Φf (i.e. over the αj and,

if a0 6= 0, over 0, k). To calculate these residues, recall that Φf (s) − Q(s)

is entire. This means that Φf has a singularity at αj with principal part

υ(T )
∞∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
. Next we expand y−s about αj to get

y−s = y−αj
∞∑
m=0

(log y)m(−1)m(s− αj)m/m!.

Then the expansion of Φf (s)y
−s at αj is given by

y−αj

(
∞∑
m=0

(− log y)m

m!
(s− αj)m

)(
υ(T )

∞∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1

)
,

and thus the residue is

υ(T )y−αj
∞∑
`=0

(−1)`+1`!δ(j, `)
(− log y)`

`!
. (3.20)

We can easily calculate the residues at 0 and k: Res(Φf (s)y
−s; 0) = −a0 and

Res(Φf (s)y
−s; k) = y−ka0i

kυ(T ). With this calculation we can rewrite (3.19)

as

f(iy)− a0 =
1

2πi

∫ −d+i∞

−d−i∞
Φf (s)y

−sds+ a0

(
y−kikυ(T )− 1

)
+ υ(T )

M∑
j=1

∞∑
`=0

y−αj(−1)`+1`!δ(j, `)
(− log y)`

`!
.

(3.21)
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We now apply the functional equation for Φf to the integral on the right-hand

side of (3.21). Following this, we make the substitution s→ k − s to obtain

1

2πi

∫ −d+i∞

−d−i∞
Φf (s)y

−sds =
(ikυ(T ))−1

2πi

∫ −d+i∞

−d−i∞
Φf (k − s)y−sds

=
υ(T )

(iy)k
1

2πi

∫ k+d+i∞

k+d−i∞
Φf (s)

(
1

y

)−s
ds

=
υ(T )

(iy)k
(f(i/y)− a0)

(where the last line is justified by k+ d > α+ γ+ 1). Then by (3.21), we have

f(iy)− a0 =
υ(T )

(iy)k
(f(i/y)− a0) + a0

(
y−kikυ(T )− 1

)
+ υ(T )

M∑
j=1

∞∑
`=0

y−αj(−1)`+1`!δ(j, `)
(− log y)`

`!

for y > 0. Note that the double sum on the right-hand side is exactly −q(iy).

Next, we can extend both sides analytically to hold for all z ∈ H. Hence,

f(z)− a0 =
υ(T )

zk
(f(−1/z)− a0) + a0

((z
i

)−k
ikυ(T )− 1

)
− υ(T )q(z).

A little bit of algebraic rearranging yields the transformation law (3.13).
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CHAPTER 4

Infinitely Many Poles

4.1 Convergence of the Log-Polynomial Sum

In the case of Dirichlet series with infinitely many poles, we are interested

in log-polynomial sums of the form

q(z) =
∞∑
j=1

(z
i

)−αj M(j)∑
`=0

δ(j, `)
(

log
z

i

)`
, (4.1)

where the {αj} are all distinct complex numbers, δ(j, `) ∈ C, and z ∈ H.
In this section, we establish sufficient conditions under which these series will

converge absolutely in the upper half-plane, uniformly on compact subsets of

H, and be in P .

Proposition 4.1. Let q(z) =
∞∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)`. Suppose that

(i) |Re(αj)| ≤ α for all j ≥ 1, where α ∈ R+,

(iii)
∞∑
j=1

M(j)∑̀
=0

e| Im(αj)|π2
(
`
e

)` |δ(j, `)| <∞.

Then q(z) converges absolutely, uniformly on compact subsets of H, and q ∈ P.
Furthermore, the series for q(−1/z) also converges absolutely and uniformly on

compact subsets of H.

We should say a few words about these two assumptions. In the correspon-

dence theorem that we shall prove, the Dirichlet series will have singularities
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at αj for every j. Because we want the Dirichlet series to converge in some

right half-plane and satisfy the functional equation Φf (k − s) = ikυ(T )Φf (s),

we need to restrict the singularities to a vertical strip. Therefore there is no

loss in assuming (i) at the outset. The condition (iii) is analogous to the

assumption (ii) that was made in Proposition 3.1 for log-polynomial sums of

the form (3.1).

Proof. For z ∈ H, we know that
∣∣arg

(
z
i

)∣∣ < π
2
by our argument convention.

Thus
∣∣∣( zi )−αj ∣∣∣ =

∣∣ z
i

∣∣−Re(αj) eIm(αj) arg(z/i) ≤ |z|−Re(αj)e| Im(αj)|π2 for any z ∈ H.
From (i) we get that |z|−Re(αj) ≤ (|z|α + y−α), so that∣∣∣( zi )−αj ∣∣∣ ≤ e| Im(αj)|π2 (|z|α + y−α). (4.2)

Recall also the estimate (3.3) on | log(z/i)|`:∣∣log z
i

∣∣` ≤ K
(
`
e

)`
(|z|4 + y−4).

This holds for ` ≥ 9 and all z = x + iy ∈ H. As in the proof of Proposition

3.1, we can use separate estimates for 0 ≤ ` < 9 and for 9 ≤ ` ≤M(j) to get

|q(z)| ≤ (|z|α + y−α)
∞∑
j=1

(
8∑
`=0

e| Im(αj)|π2 |δ(j, `)|2`(|z|+ y−1)`

+K(|z|4 + y−4)

M(j)∑
`=9

e| Im(αj)|π2 ( `
e
)`|δ(j, `)|

)

≤ (|z|α + y−α)

(
28(|z|+ y−1)8

∞∑
j=1

8∑
`=0

e| Im(αj)|π2 |δ(j, `)|

+K(|z|4 + y−4)
∞∑
j=1

M(j)∑
`=9

e| Im(αj)|π2 ( `
e
)`|δ(j, `)|

)
.

By (iii), both
∞∑
j=1

8∑̀
=0

e| Im(αj)|π2 |δ(j, `)| and
∞∑
j=1

M(j)∑̀
=9

e| Im(αj)|π2 ( `
e
)`|δ(j, `)| converge.

The Weierstrass M-Test then implies that q(z) converges absolutely and uni-

formly on compact subsets of H. The estimate also shows that q ∈ P .
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Now log (−1/iz) = − log
(
z
i

)
, and so |(−1/iz)−αj | ≤ K

(
`
e

)`
(|z|4 + y−4) for

` ≥ 9. We can therefore use the exact same argument and estimates for

q(−1/z).

For the correspondence, we will actually require a stronger condition on

the coefficients. Under that more stringent assumption, we can give a rather

useful explicit estimate for |q(z)|. The precise result is

Corollary 4.2. Let q(z) =
∞∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)` and suppose that

(i) |Re(αj)| ≤ α for all j ≥ 1, where α ∈ R+,

(iii∗)
∞∑
j=1

M(j)∑̀
=0

e| Im(αj)|π2 `!|δ(j, `)|ε` <∞ for every ε > 0.

Then q ∈ P with

|q(z)| ≤ K ′′
(
|z|2 max(α,4) + y−2 max(α,4)

)
(4.3)

where K ′′ = K ′
∞∑
j=1

M(j)∑̀
=0

e| Im(αj)|π2 `!|δ(j, `)| for some positive constant K ′.

Proof. Because | log x| ≤ 1
eε

(xε +x−ε) for positive real x and ( `
e
)` ≤ `!, there is

a positive constant K such that | log z
i
|` ≤ K`!(|z|4 + y−4) for ` ≥ 0. Applying

this estimate and (4.2) (along with Corollary 2.3), we have

|q(z)| ≤ K(|z|α + y−α)(|z|4 + y−4)
∞∑
j=1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|

≤ K ′(|z|2 max(α,4) + y−2 max(α,4))
∞∑
j=1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|

for the positive constant K ′ = 6K.

4.2 The Direct Theorem

In this section, we shall prove the direct half of a correspondence theorem

for automorphic integrals with infinite log-polynomial period functions. For

the rest of the chapter, we will be working under the conditions
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(i) |Re(αj)| ≤ α for all j ≥ 1, where α ∈ R+,

(iii∗)
∞∑
j=1

M(j)∑̀
=0

e| Im(αj)|π2 `!|δ(j, `)|ε` <∞ for every ε > 0,

(iv) |αj| → ∞ as j →∞.

Because condition (iii∗) is stronger than (iii), any infinite log-polynomial sum

of the form (4.1) shall converge absolutely and uniformly on compact subsets

of H. We require (iv) so that {αj} has no limit point in C. We shall also

assume that υ is a multiplier system in weight k on G(λ) with υ(Sλ) = 1. The

direct theorem can then be stated as follows.

Theorem 4.3. Let f(z) =
∞∑
n=0

ane
2πinz/λ be holomorphic in H with an = O(nγ)

for some γ > 0. Let q(z) =
∞∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)` be a log-polynomial

sum satisfying (i), (iii∗), and (iv), and define the functions

ϕf (s) =
∞∑
n=1

an
ns
,

Φf (s) =

(
2π

λ

)−s
Γ(s)ϕf (s),

Q(s) = υ(T )
∞∑
j=1

M(j)∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
+ a0

(
ikυ(T )

s− k
− 1

s

)
.

If f(z) satisfies the transformation law

z−kf(−1/z) = υ(T )f(z) + q(z), (4.4)

then Φf (s) − Q(s) has an analytic continuation to the entire s-plane that is

bounded in vertical strips, and Φf (k − s) = ikυ(T ) Φf (s).

Proof. Just as in the direct part of Theorem 3.8, we take the Mellin transform

of f and get that Φf (s) = E(s) +R(s) + L(s), where

E(s) =

∫ ∞
1

(f(iy)− a0) ys−1 dy + ikυ(T )

∫ ∞
1

(f(iy)− a0) yk−s−1 dy,

R(s) = a0

(
ikυ(T )

s− k
− 1

s

)
,

L(s) = ik
∫ ∞

1

q(iy)yk−s−1 dy.
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The functions E(s) and R(s) are both meromorphic in the entire s-plane and

satisfy the correct functional equation.

For L(s), we can write

L(s) = ik
∫ ∞

1

 ∞∑
j=1

y−αj
M(j)∑
`=0

δ(j, `) (log y)`

 yk−s−1 dy.

By applying the Lebesgue Dominated Convergence Theorem, we will be able

to integrate this sum term by term. Since y ≥ 1, we have that | log y| ≤ 1
eε
yε

for any ε > 0. Choosing ε = 1/` yields | log y|` ≤
(
`
e

)`
y for ` ≥ 1. Then

| log y|` ≤ `! y, and∣∣∣∣∣∣
∞∑
j=1

y−αj
M(j)∑
`=0

δ(j, `) (log y)` yk−s−1

∣∣∣∣∣∣ ≤
∞∑
j=1

M(j)∑
`=0

yRe(k−s−1−αj)|δ(j, `)| |log y|`

≤
∞∑
j=1

M(j)∑
`=0

yk−Re(s)−1−Re(αj)|δ(j, `)|`! y

=
∞∑
j=1

M(j)∑
`=0

yk−Re(s)−Re(αj)`!|δ(j, `)|.

Letting g(y) =
∞∑
j=1

M(j)∑̀
=0

yk−Re(s)−Re(αj)`!|δ(j, `)|, we have that g(y) dominates

q(iy)yk−s−1. Using the Monotone Convergence Theorem and Lemma 3.3, it is

not hard to check that g is integrable for Re(s) > 1 + α + |k|. Thus we can

integrate q(iy)yk−s−1 term by term. Doing so gives us the expression

L(s) = ik
∞∑
j=1

M(j)∑
`=0

δ(j, `)(−1)`−1`! (k − s− αj)−`−1 . (4.5)

Because f(z) satisfies the transformation law (4.4), we can apply Proposi-

tion 3.2 to get that

q(iy) = −υ(T ) (iy)−k q(i/y).

Plugging this into the integral for L(s) gives

L(s) = ik
∫ ∞

1

−υ(T ) (iy)−k q(i/y)yk−s−1 dy = −υ(T )

∫ ∞
1

q(i/y)y−s−1 dy.
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Using almost the exact same calculation as before, we find that the function

h(y) =
∞∑
j=1

M(j)∑̀
=0

yRe(αj)−Re(s)
(
`
e

)` |δ(j, `)| dominates q(i/y)y−s−1. This function

is integrable, so we can apply the Lebesgue Dominated Converge Theorem to

q(i/y)y−s−1. Integrating term by term then yields the expression

L(s) = υ(T )
∞∑
j=1

M(j)∑
`=0

δ(j, `)(−1)`+1`!(s− αj)−`−1. (4.6)

Comparing the two expressions we derived for L(s) and using the fact that

(ikυ(T ))2 = 1 immediately yields the functional equation L(k−s) = ikυ(T )L(s).

Altogether, this shows that Φf (s) − Q(s) has an analytic continuation to

the entire s-plane that is bounded in vertical strips and that Φf (k − s) =

ikυ(T )Φ(s). Furthermore, we can write Φf (s) as

Φf (s) =

∫ ∞
1

(f(iy)− a0) ys−1 dy + ikυ(T )

∫ ∞
1

(f(iy)− a0) yk−s−1 dy

+ a0

(
ikυ(T )

s− k
− 1

s

)
+ υ(T )

∞∑
j=1

M(j)∑
`=0

δ(j, `)(−1)`+1`!(s− αj)−`−1.

(4.7)

4.3 Approximating Automorphic Integrals

Let f(z) =
∞∑
n=0

ane
πinz be holomorphic in H with an = O(nγ). Suppose

that f(z) satisfies the transformation law υ(T )z−kf(−1/z) = f(z) + q(z) where

q(z) =
∞∑
j=1

( z
i
)−αj

M(j)∑̀
=0

δ(j, l)
(
log z

i

)` is an infinite log-polynomial sum satisfying

(i), (iii∗), and (iv). We shall show that there exist automorphic integrals fN(z)

on Γϑ with finite log-polynomial period functions such that fN → f as N →∞
uniformly on compact subsets of H using the results of §2.2. Because we are

relying on the construction from §2.2, we must assume either that k ≥ 0 and

υ(T ) = i−k or that k > 2 and υ(T ) = −i−k. The two cases are nearly identical,

so we shall assume in this section that k ≥ 0 and υ(T ) = i−k.
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First note that q|T + q = 0 by Proposition 3.2. This means that both −αj
and k − αj appear as exponents in the log-polynomial sum. By rearranging

the sum (if necessary) so that −αj and k − αj appear consecutively, we can

assume that the function

rN(z) =
∞∑

j=2N+1

(z
i

)−αj M(j)∑
`=0

δ(j, l)
(

log
z

i

)`
satisfies rN |T + rN = 0 for all N . Because |Re(αj)| ≤ α for every j, every

function rN(z) satisfies (i) with the same α. Of course, (iv) also holds for rN .

Next, we know that

∞∑
j=2N+1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|ε` ≤
∞∑
j=1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|ε` <∞

and so (iii∗) holds for each function rN as well. Thus rN ∈ P .
Let A = B = 2 max(α, 4). From (4.3) we know that

|rN(z)| ≤ K ′′
∞∑

j=2N+1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|(|z|A + y−B) (4.8)

≤

K ′′ ∞∑
j=1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|

 (|z|A + y−B)

As the tail of a convergent sum,
∞∑

j=2N+1

M(j)∑̀
=0

e| Im(αj)|π2 `!|δ(j, `)| → 0 as N →∞.

Thus (4.8) implies that rN(z) → 0 uniformly on compact subsets of H as

N → ∞. The second estimate in (4.8) is important in that the constants

A = 2 max(α, 4), B = 2 max(α, 4), and K = K ′′
∞∑
j=1

M(j)∑̀
=0

e| Im(αj)|π2 `!|δ(j, `)| are

all independent of N .

Next we generate parabolic cocycles {(rN)M(z) : M ∈ Γϑ} using (rN)S2 ≡ 0

and (rN)T (z) = rN(z) and form the Poincaré series

ΨN(z) =
∑

M∈(Γϑ)∞\
Γϑ

(rN)M(z)

(cz + d)m
. (4.9)
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By Proposition 2.4, with β = max(A/2, B + k/2), the series for ΨN(z) con-

verges for m > 2β + 4. Note that any such m will work for every N simul-

taneously because A, B, and k are independent of N . We now fix m to be a

large even integer. Proposition 2.4 further tells us that

|ΨN(z)| ≤ K∗K ′′
∞∑

j=2N+1

M(j)∑
`=0

e| Im(αj)|π2 `!|δ(j, `)|
(

1 + 4|z|2

y2

)m/2
(|z|6β+2k+y−6β−2k)

where K∗ is a positive constant depending only on m. This immediately shows

that ΨN(z)→ 0 uniformly on compact subsets of H as N →∞.

Define HN(z) = − ΨN (z)
Em,1(z)

. Because we are using a fixed m for every N , the

poles of the HN are restricted to the same set of points, only finitely many of

which can be in the region

R̃ϑ = (Rϑ ∩H) \ ({z : Re(z) = 1} ∪ {z : |z| = 1, 0 ≤ Re(z) ≤ 1})

of Theorem 2.5. Let GN(z) be the modular form from Theorem 2.5 with

principal parts matching those of HN(z) and let z1, . . . , zL denote the zeros

of Em,1 in R̃ϑ. We need to show that GN(z) approaches zero uniformly on

compact subsets of R̃ϑ \ {z1, . . . , zL}.
Recall that we constructed GN(z) by taking a modular function gN(z)

with appropriate principal parts and defining GN(z) = ϑ2k(z)gN(z). It is thus

enough to show that gN(z) → 0 uniformly as N → ∞. But the function gN
was defined as

gN(z) = gN(z; i∞) + gN(z;−1) + gN(z; i) +
L∑
t=1

gN(z; zt),

so it is enough to show that each function above approaches zero uniformly.

Since Em,1 is nonzero at i∞, gN(z; i∞) ≡ 0. Now consider a point zt ∈ R̃ϑ

(the points i and −1 will be analogous). Then HN(z) has an expansion of the

form
αN(−ρ)

(z − zt)ρ
+ . . .+

αN(−1)

z − zt
+
∞∑
n=0

αN(n)(z − zt)n
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at zt. Here ρ is the order of the zero of Em,1 at zt and hence independent of

N . Since ΨN(zt) might be zero, α−ρ, . . . , α−1 may be zero. We shall also need

the expansion of (ϕ0(z)− ϕ0(zt))
−1:

(ϕ0(z)− ϕ0(zt))
−1 =

d−1

z − zt
+
∞∑
n=0

dn(z − zt)n,

where d−1 6= 0. Then the function gN(z; zt) is given by

gN(z; zt) =

ρ∑
j=1

βN(j)(ϕ0(z)− ϕ0(zt))
−j

for some βN(j) satisfying dρ−1

. . .∗ d−1



βN(ρ)

...

βN(1)

 =


αN(−ρ)

...

αN(−1)

 . (4.10)

Because ΨN(z) converges to zero on compact subsets of H, the principal part

of HN(z) at zt approaches zero as N goes to infinity. That is, αN(−j)→ 0 as

N →∞ for −ρ ≤ −j ≤ −1. Since the matrix on the left-hand side of (4.10) is

invertible and independent of N , this forces βN(j)→ 0 as N →∞. There are

only finitely many βN(j), so the function gN(z; zt) approaches zero uniformly

on compact subsets of R̃ϑ \ {zt}. The functions gN(z; i) and gN(z;−1) also

approach zero uniformly by an analogous argument.

Set FN(z) = HN(z)−GN(z). Then we have that FN(z) is an automorphic

integral with period function rN(z). Furthermore, FN(z) → 0 uniformly on

compact subsets of H as N → ∞. Thus, the desired automorphic integrals

with finite log-polynomial period functions are fN(z) = f(z)− FN(z).

4.4 The Converse Theorem

Theorem 4.4. Let f(z) =
∞∑
n=0

ane
πinz be holomorphic in H with an = O(nγ)

for some γ > 0. Let q(z) =
∞∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)` be a log-polynomial
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sum satisfying (i), (iii∗), and (iv). Additionally assume that

(v) There exist ε > 0 and a sequence of positive numbers Tn → ∞ such

that | Im(αj)− Tn| ≥ ε for all n and j.

Define the functions

ϕf (s) =
∞∑
n=1

an
ns

Φf (s) = π−sΓ(s)ϕf (s)

Q(s) = υ(T )
∞∑
j=1

M(j)∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
+ a0

(
ikυ(T )

s− k
− 1

s

)
.

Suppose that k ≥ 0 and υ(T ) = i−k or that k > 2 and υ(T ) = −i−k. If

Φf (s)−Q(s) has an analytic continuation to the entire s-plane that is bounded

in vertical strips and Φf (k − s) = ikυ(T )Φf (s), then f(z) satisfies the trans-

formation law

z−kf(−1/z) = υ(T )f(z) + q(z). (4.11)

Remarks. 1. In the proof of this theorem, we make essential use of the auto-

morphic integrals constructed in the last section. We therefore must restrict

ourselves to the case λ = 2 and restrict the weight k appropriately.

2. The additional assumption (v) requires that the imaginary parts of the

αj have gaps of a uniform size. That is, Im(αj) cannot continually get closer

and closer together as Im(αj)→∞.

Proof of Theorem 4.4. We essentially follow the proof of (B) implies (A) in

Theorem 3.8. Using the Cahen-Mellin integral, we have that

f(iy)− a0 =
1

2πi

d+i∞∫
d−i∞

Φf (s)y
−sds

for d > α+γ+1+ |k|. We want to move this line of integration from Re(s) = d

to Re(s) = −d. This is accomplished by integrating around a rectangle with

vertices ±d ± iT and taking the limit as T → ∞. When Φf has only finitely

many singularities, we can apply Phragmén-Lindelöf and Stirling’s formula to
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show that the integrals along the horizontal paths approach zero as T goes

to infinity. This approach fails when there are infinitely many singularities in

the strip from −d to d because we cannot get a polynomial bound on ϕf near

each singularity. Instead, we shall use the automorphic integrals discussed in

the last section to show that the integrals along the horizontal paths approach

zero.

Let fN(z) =
∞∑
n=0

bn(N)eπinz be the automorphic integral with log-polynomial

period function rN(z) =
∞∑

j=2N+1

(
z
i

)−αj M(j)∑̀
=0

δ(j, l)
(
log z

i

)` (assuming, of course,

any necessary rearranging of the αj) such that fN(z) → 0 uniformly on com-

pact subsets of H. As we saw in Theorem 4.3, we can write the Mellin trans-

form as ΦfN (s) = EN(s) +RN(s) + LN(s), where

EN(s) =

∫ ∞
1

(fN(iy)− b0(N)) ys−1 dy + ikυ(T )

∫ ∞
1

(fN(iy)− b0(N))yk−s−1 dy

RN(s) = b0(N)

(
ikυ(T )

s− k
− 1

s

)
LN(s) = υ(T )

∞∑
j=2N+1

M(j)∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
.

We next show that ΦfN (s) → 0 uniformly on V =
∞⋃
n=1

{s : −d ≤ Re(s) ≤

d, Im(s) = Tn} by showing that each function EN , RN , LN converges to zero

uniformly on V .

Starting with LN(s), note that |s−αj| ≥ ε for every s ∈ V and every j by

(v). Then

|LN(s)| ≤
∞∑

j=2N+1

M(j)∑
`=0

`!|δ(j, `)|ε−`−1

for every s ∈ V . This is the tail of the convergent series
∞∑
j=1

M(j)∑̀
=0

`!|δ(j, `)|ε−`

and therefore approaches zero.

Next, for RN(s), we know that
∣∣∣ ikυ(T )
s−k −

1
s

∣∣∣ is bounded in V . So it suffices

to show that b0(N)→ 0. This, however, follows immediately from the Cauchy
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integral formula and the fact that fN(z)→ 0 uniformly on compact subsets of

H.
Finally, for EN(s), if s ∈ V and y ≥ 1, we have that |ys−1| ≤ yd−1 and

|yk−s−1| ≤ yk+d−1. For uniform convergence on V , it then suffices to show

that the integrals
∫∞

1
|fN(iy)−b0(N)|yd−1 dy and

∫∞
1
|fN(iy)−b0(N)|yk+d−1 dy

approach zero as N → ∞. We do so by applying the Lebesgue Dominated

Convergence Theorem and the fact that |fN(iy) − b0(N)| → 0 as N → ∞.

Since each fN ∈ P and has an exponential expansion at i∞, we know that

the coefficients satisfy bn(N) = O(nγ(N)) for some γ(N) > 0. However, every

function fN satisfies the same inequality |fN(z)| ≤ K(|z|A + y−B) for K, A,

B independent of N . We therefore have bn(N) = O(nγ), and the implied

constant is also independent of N . Thus

|fN(iy)− b0(N)| ≤ e−πy
∞∑
n=1

K ′nγe−π(n−1)

= K∗e−πy

for constantsK ′, K∗. Since
∫∞

1
e−πyyd−1 dy <∞, we can apply the Dominated

Convergence Theorem as desired. Similarly, since
∫∞

1
e−πyyk+d−1 dy < ∞, we

can apply the Dominated Convergence Theorem to
∫∞

1
|fN(iy)−b0(N)|yk+d−1 dy.

This proves that EN(s)→ 0 uniformly in V .

By applying Theorem 4.3 to fN , we observe that Φf−fN (s) satisfies the con-

ditions for Theorem 3.8. In particular, in the proof of the converse direction,

we show that

lim
n→∞

∫
γ±Tn

Φf−fN (s)y−sds = 0

for any fixed N . (Here γ±Tn is the horizontal path from d± iTn to −d± iTn.)
We note that

lim
N→∞

∫
γ±Tn

Φf−fN (s)y−sds =

∫
γ±Tn

Φf (s)y
−sds

uniformly in n because ΦfN (s) → 0 uniformly on V . Thus we can take the
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limits in n and N in either order and get

lim
n→∞

∫
γ±Tn

Φf (s)y
−sds = lim

n→∞
lim
N→∞

∫
γ±Tn

Φf−fN (s)y−sds

= lim
N→∞

lim
n→∞

∫
γ±Tn

Φf−fN (s)y−sds

= 0.

By the residue theorem, we can then conclude that

f(iy)− a0 =
1

2πi

∫ −d+i∞

−d−i∞
Φf (s)y

−sds+
∑

Res(Φf (s)y
−s), (4.12)

where the sum ranges over all the poles of Φf . We can easily calculate these

residues:

Res(Φf (s)y
−s;αj) = υ(T )y−αj

M(j)∑
`=0

(−1)`+1`!δ(j, `)
(− log y)`

`!
,

Res(Φf (s)y
−s; 0) = −a0,

Res(Φf (s)y
−s; k) = y−ka0i

kυ(T ).

We can also use the functional equation for Φf (s) and then make the substi-

tution s→ k − s to obtain∫ −d+i∞

−d−i∞
Φf (s)y

−sds =
υ(T )

(iy)k
(f(i/y)− a0).

Substituting the residues and this expression into (4.12) gives us

f(iy)− a0 =
υ(T )

(iy)k
(f(i/y)− a0) + a0

(
y−kikυ(T )− 1

)
+ υ(T )

∞∑
j=1

M(j)∑
`=0

y−αj(−1)`+1`!δ(j, `)
(− log y)`

`!

for y > 0. We next extend both sides analytically to hold for all z ∈ H and

note that the double sum on the right-hand side is −q(z) to get the equation

f(z)− a0 =
υ(T )

zk
(f(−1/z)− a0) + a0

((z
i

)−k
ikυ(T )− 1

)
− υ(T )q(z).

This is, after some simplification, the transformation law (4.11).
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This proves a full correspondence in the case λ = 2 and for suitable weights

k. We record this result here.

Corollary 4.5. Let f(z) =
∞∑
n=0

ane
πinz be holomorphic in H with an = O(nγ)

for some γ > 0. Let q(z) =
∞∑
j=1

(
z
i

)−αj M(j)∑̀
=0

δ(j, `)
(
log z

i

)` be a log-polynomial

sum satisfying (i) and (iii∗). Additionally assume that

(v) There exist ε > 0 and a sequence of positive numbers Tn → ∞ such

that | Im(αj)− Tn| ≥ ε for all n and j.

Define the functions

ϕf (s) =
∞∑
n=1

an
ns

Φf (s) = π−sΓ(s)ϕf (s)

Q(s) = υ(T )
∞∑
j=1

M(j)∑
`=0

(−1)`+1`!δ(j, `)

(s− αj)`+1
+ a0

(
ikυ(T )

s− k
− 1

s

)
.

Suppose that k ≥ 0 and υ(T ) = i−k or that k > 2 and υ(T ) = −i−k. Then the

following are equivalent.

(A) f(z) satisfies the transformation law z−kf(−1/z) = υ(T )f(z) + q(z).

(B) Φf (s)−Q(s) has an analytic continuation to the entire s-plane that is

bounded in vertical strips, and Φf (k − s) = ikυ(T ) Φf (s).
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