
SUFFICIENT CONDITIONS AND HIGHER ORDER
REGULARITY FOR LOCAL MINIMIZERS IN CALCULUS OF

VARIATIONS

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Worku T. Bitew

May, 2008



iii

c©

by

Worku T. Bitew

May, 2008

All Rights Reserved



iv

ABSTRACT

SUFFICIENT CONDITIONS AND HIGHER ORDER REGULARITY FOR

LOCAL MINIMIZERS IN CALCULUS OF VARIATIONS

Worku T. Bitew

DOCTOR OF PHILOSOPHY

Temple University, May, 2008

Professor Yury Grabovsky, Chair

We establish sufficient conditions for Lipschitz extremals of integral func-

tionals to be strong local minimizers. We also prove a regularity theorem for

those extremals that satisfy our sufficient conditions. Our sufficiency theo-

rem has to be compared with the Grabovsky and Mengesha sufficiency result

for smooth extremals, in view of the observation by Kristensen and Taheri

that their sufficient conditions do not apply to merely Lipschitz extremals.

In this thesis we replace the uniform quasiconvexity condition with a new,

much stronger condition that works for non-smooth Lipschitz extremals. We

also show that those extremals that satisfy our new condition must be more

regular than merely Lipschitz.
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CHAPTER 1

INTRODUCTION

Variational problems, where the unknown is a vector field are important

in non-linear elasticity and martensitic phase transitions in materials science.

The observed states are modeled as local or global energy minimizers. If we

want to understand whether or not a model captures the essential features

of the physical behavior of a material, we need to be able to characterize

metastable states, or local minima of the energy. If for scalar variational prob-

lem a good understanding has been reached, for vectorial variational problems

many fundamental questions are still unanswered. Recently Grabovsky and

Mengesha [9] established quasiconvexity-based sufficient conditions for smooth

extremals (i.e., solutions of the Euler-Lagrange equation). It was shown by a

series of counter-examples [11, 17, 19] that even the uniformly convex varia-

tional problems cannot be expected to have smooth solutions. For this reason,

it is interesting to try to extend the ideas of Grabovsky and Mengesha to

general Lipschitz extremals. This is the purpose of the present work.

The extention of sufficient conditions to the more general case of non-

smooth extremals is not trivial. This was shown by an example in [14, Corol-

lary 7.3] of a Lipschitz extremal that satisfies all sufficient conditions of [9], yet

fails to be a strong local minimizer. Our approach, as that of [9], is based on
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the Decomposition Theorem, [7, 13, 9] that permits us to represent an arbitrary

variation as a non-interacting superposition of a weak variation and a number

(possibly a continuum) of “Weierstrass needles.” The uniform positivity of

second variation prevents any weak variation from decreasing the functional

in the non-smooth case, as well as in the smooth case. Stability with respect

to “Weierstrass needles,” however, no longer reduces to Morrey’s quasiconvex-

ity [16]. The new condition implies quasiconvexity almost everywhere, but is

much stronger than that. In this dissertation we show that the two types of

sufficient conditions: the uniform positivity of second variation and uniform

stability with respect to “Weierstrass needles” guarantee that the Lipschitz

solutions of the Euler-Lagrange equation with Dirichlet boundary conditions

that satisfy them have to be strong local minimizers.

The new sufficient condition is local in nature and reduces to uniform qua-

siconvexity at all regular points of the extremal. At the singularities, however,

the new condition is far more difficult to understand because it strongly de-

pends on the behavior of the extremal at its singular points. In these cases, the

detailed analysis of the new condition is beyond the scope of this dissertation.

In this connection, our regularity theorem can be considered as the first step

toward understanding our new condition. It says that any extremal satisfy-

ing our sufficient conditions have to be of class W 2,2
loc (Ω;R

m), which restricts

somewhat the type of singular behavior of the extremal.

It is instructive to compare our regularity theorem to recent results on

partial regularity of strong local minimizers [4, 14]. In this dissertation we

make more stringent assumptions than the uniform quasiconvexity required

for the above mentioned results. In return we get a global W 2,2
loc regularity

with a minimal subsequent technical effort, while Evans [4]and Kristensen and

Taheri [14] get partial C1,α regularity on a dense open subset of full measure.

The dissertation is organized as follows. In Chapter 1 we introduce no-

tation and reformulate the problem as in [8, 9]. In Chapter 2 we recap the

well-known necessary conditions and derive a new necessary condition for non

smooth strong local minimizers. Then we present sufficient conditions for Lip-
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schitz strong local minimizers. In Chapter 3 we prove the sufficiency theorem.

Finally, in Chapter 4, we prove a regularity result for strong local minimizers

satisfying the conditions in the sufficiency theorem.

Throughout the thesis we will use the following standard system of nota-

tions. For a vectorA, |A| denote the Euclidean norm, and the Frobenius norm
√

Tr(AAt) if A is a matrix. For 1 ≤ p ≤ ∞, ‖f‖p denote the Lp norm of

|f(x)| . We use the inner product notation (A,B) for the dot product ifA and

B are vectors and the Frobenius inner product (A,B) = Tr(ABt) if A and

B are matrices of the same shape. We also use indexless subscript notation

for derivatives, such as WF or WFF to denote the tensors with components

∂W/∂Fij and ∂2W/∂Fij∂Fkl respectively.

1.1 Preliminaries

Here we introduce notations and recast the problem in the form introduced

in [8]. We will consider integral functionals of the form

E(y) =

∫

Ω

W (∇y(x))dx, (1.1)

where Ω is an open bounded domain in R
d and the Lagrangian W : M → R is

assumed to be a continuous function. Here M denote the space of all m × d

matrices. The functional E is defined on the set of admissible functions:

A =
{

y ∈ W 1,∞(Ω;Rm) : y(x) = g(x),x ∈ ∂Ω
}

, (1.2)

where ∂Ω is smooth (i.e., of class C1), and g ∈ W 1,∞(∂Ω;Rm).

Definition 1 A function y0 ∈ A is called a weak local minimizer of E if for

every sequence {φn} ⊂ W 1,∞
0 (Ω;Rm) such that φn,∇φn → 0 in L∞(Ω;Rm),

there exists an N such that E(φn + y0)− E(y0) ≥ 0, for all n ≥ N.

Definition 2 A function y0 ∈ A is called a strong local minimizer of E if for

every sequence {φn} ⊂ W 1,∞
0 (Ω;Rm) such that φn → 0 in L∞(Ω;Rm), there

exists an N such that E(φn + y0)− E(y0) ≥ 0, for all n ≥ N.
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In addition to the continuity of W (F ), we make the following assumption

C1 : W ∈ C2(R), where R is a compact set containing an open neighbor-

hood of the effective range R0 of ∇y0, where

R0 = {F0 ∈ M : |{x ∈ Ω : |∇y0(x)− F0| < ǫ}| > 0, for every ǫ > 0}.

Let the functional increment be defined by

△E(φn) =

∫

Ω

{W (∇y0(x) +∇φn(x))−W (∇y0(x))}dx, (1.3)

and

δE({φn}) = lim
n→∞

△E(φn)

α2
n

, αn = ‖∇φn‖2.

If y0 is a strong local minimizer, then y0 solves the Euler-Lagrange equation

in weak form
∫

Ω

(WF (∇y0(x)),∇φ(x))dx = 0, (1.4)

for all φ ∈ W 1,∞
0 (Ω;Rm).

As in [8] instead of △E(φn) we consider

△′E(φn) =

∫

Ω

W 0(∇y0(x),∇φn(x))dx, (1.5)

where

W 0(F0,H) = W (F0 +H)−W (F0)− (WF (F0),H).

Observe that if y0 solves (1.4), then △E(φn) = △′E(φn).

Let

U(F0,H) =







W 0(F0,H)− 1

2
(L(F0)H,H)

|H|2
if H 6= 0

0 if H = 0,

where L(F0) = WFF (F0). The function U(F0,H) is continuous in (F0,H)

space, vanishing at any (F0, 0). We can now rewrite the modified increment

△′E in terms of U(F0,H).

△′E(φn) =
∫

Ω

U(∇y0(x),∇φn(x))|∇φn(x)|
2dx+

1

2

∫

Ω

(L(∇y0(x))∇φn(x),∇φn(x))dx.

(1.6)
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Let

δ′E({φn}) = lim
n→∞

△′E(φn)

α2
n

,

If we define

ψn(x) =
φn(x)

αn

,

then

δ′E({φn}) =

lim
n→∞

∫

Ω

[

U(∇y0(x), αn∇ψn)|∇ψn|
2 +

1

2
(L(∇y0(x))∇ψn,∇ψn)

]

dx. (1.7)

If y0 solves the Euler-Lagrange equation, then δ′E = δE.

For our convenience we will use the following shorthand notation

F(F0, α,G) =
W 0(F0, αG)

α2
= U(F0, αG)|G|2 +

1

2
(L(F0)G,G). (1.8)

Then we can rewrite (1.7) as

δ′E({φn}) = lim
n→∞

∫

Ω

F(∇y0(x), αn,∇ψn(x))dx. (1.9)

Our goal is to prove that if y0 satisfies our sufficient conditions, then δE({φn})

will be greater than some positive number, implying that y0 is a strong local

minimizer.
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CHAPTER 2

NECESSARY AND

SUFFICIENT CONDITIONS

2.1 Necessary conditions

In this section we will recap the well-known necessary conditions and derive

a new necessary condition for strong local minimizers.

Euler-Lagrange equation

Consider weak variations of the form ϕǫ(x) = ǫφ(x), for φ ∈ W 1,∞
0 (Ω;Rm).

The function

γ(ǫ) =

∫

Ω

[W (∇y0(x) + ǫ∇φ(x))−W (∇y0(x))]dx, (2.1)

has a local minimum at ǫ = 0, since y0 is a strong local minimizer. Therefore

γ
′

(ǫ) |ǫ=0= 0.

To find γ
′

(ǫ) we can differentiate under the integral sign, and we get
∫

Ω

(WF (∇y0(x)),∇φ(x))dx = 0, (2.2)

for all φ ∈ W 1,∞
0 (Ω;Rm).
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Non-negativity of second variation

Recall that the function γ(ǫ) defined by (2.1) has a local minimum at ǫ = 0.

Therefore, γ
′′

(ǫ) |ǫ=0≥ 0.

Therefore, if y0 ∈ A is a strong local minimizer, then

δ2E(φ) =

∫

Ω

(L(∇y0(x))∇φ(x),∇φ(x))dx ≥ 0, (2.3)

for all φ ∈ W 1,∞
0 (Ω;Rm).

Quasiconvexity condition

Definition 3 A function W : M → R is called quasiconvex at F ∈ M if for

every bounded domain D with |∂D| = 0 we have

W (F )|D| ≤

∫

D

W (F +∇φ(x))dx, for all φ ∈ W 1,∞
0 (D;Rm), (2.4)

where |D|and |∂Ω| denote the Lebesgue measure of the set.

In [12] it was proved that if y0 ∈ W 1,∞, the quasiconvexity condition is satisfied

at ∇y0(a), for a.e. a ∈ Ω. If y0 ∈ C1(Ω;Rm), then W is quasiconvex at

∇y0(a), for every a ∈ Ω, [1].

2.2 Conditions at infinity

In case of strong variations φn, we have no control on the size of ∇φn. For

this reason we need to impose conditions on the behavior of W (F ) at infinity.

C2 : Assume that W (F ) ∈ C1(M) and satisfies

|W (F )| ≤ C(1 + |F |p), (2.5)

|WF (F )| ≤ C(1 + |F |p−1), (2.6)

for all F ∈ M and some constant C > 0.
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Lemma 2.1 There exists a constant C(R) > 0 such that

|U(F0,H1)|H1|
2 − U(F0,H2)|H2|

2| ≤

C(R)(|H1|+ |H2|+ |H1|
p−1 + |H2|

p−1)|H1 −H2|, (2.7)

for all F0 ∈ R, H1,H2 ∈ M.

Proof:

Step 1 : We claim that

if W (F ) satisfies (2.6), then

|W (F1)−W (F2)| ≤ C(1 + |F1|
p−1 + |F2|

p−1)|F1 − F2|, (2.8)

for all F1,F2 ∈ M and some constant C > 0. Indeed, let

ϕ(t) = W (tF1+(1− t)F2), for t ∈ [0, 1]. Then ϕ ∈ C1([0, 1]). Observe that

W (F1)−W (F2) =

∫ 1

0

ϕ′(t)dt =

∫ 1

0

(WF (tF1 + (1− t)F2),F1 − F2)dt,

and hence by (2.6)

|W (F1)−W (F2)| ≤ C|F1 − F2|

∫ 1

0

(1 + |tF1 + (1− t)F2|
p−1)dt.

The function F 7→ |F |p−1 is convex. Therefore,

|tF1 + (1− t)F2|
p−1 ≤ t|F1|

p−1 + (1− t)|F2|
p−1,

and we obtain (2.8).

Step 2 :

If |H1| and |H2| are small, the inequality (2.7) follows from Taylor’s ex-

pansion. Suppose |H1| ≥ 1 or |H2| ≥ 1. Then using (2.8), we get

|U(F0,H1)|H1|
2 − U(F0,H2)|H2|

2| ≤ |W (F0 +H1)−W (F0 +H2)|+

|(WF (F0),H1 −H2)|+
1

2
|(L(F0)H1,H1)− (L(F0)H2,H2)| ≤

C1(1 + |F0 +H1|
p−1 + |F0 +H2|

p−1)|H1 −H2|+

C2|H1 −H2|+ C3(|H1|+ |H2|)|H1 −H2| ≤

C(|H1|+ |H2|+ |H1|
p−1 + |H2|

p−1)|H1 −H2|.
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�

In addition to growth and regularity conditions, we need the following

coercivity condition.

C3 : W (F ) is bounded from below and satisfies

W (F ) ≥ c1|F |p − c2, (2.9)

for some constants c1, c2 > 0.

Lemma 2.2 If W is bounded from below and satisfies (2.9), then

W 0(F0,H) ≥ k1(R)|H|p − k2(R)|H|2, (2.10)

for all F0 ∈ R, H ∈ M, and some constants k1(R), k2(R) > 0.

Proof : In the derivation below all constants depend on R and W.

There exists C0, such that for all |H| ≤ 1,

|W 0(F0 +H)| ≤ C0|H|2, for all F0 ∈ R.

Therefore,

W 0(F0 +H) ≥ −C0|H|2 = |H|2 − (C0 + 1)|H|2 ≥ |H|p − (C0 + 1)|H|2.

For all F0 ∈ R, and for all |H| > 1, we have

W 0(F0 +H) ≥ C1|H|p − C2 − C3|H| ≥ C1|H|p − (C2 + C3)|H|2.

So

W 0(F0,H) ≥ k1|H|p − k2|H|2, (2.11)

where k1 = min{1, C1}, and k2 = max{C0+1, C2+C3}. This finishes the proof

of Lemma 2.2.

�
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2.3 Sufficient conditions for strong local min-

ima

In the following sections, let BΩ(a, r) denote B(a, r) ∩ Ω.

Theorem 2.1 Suppose

i) W satisfies C1, C2, and C3, for p ≥ 2 .

ii) y0 ∈ A solves Euler-Lagrange equation (2.2) and satisfies the conditions:

there exists β > 0 such that

a)

δ2E(φ) ≥ β‖∇φ‖22, for all φ ∈ W 1,∞
0 (Ω;Rm), (2.12)

b) For all a ∈ Ω, there exists r(a) > 0, so that for all {φn : n ≥ 1} ⊂

W 1,∞
0 (BΩ(a, r);R

m), such that φn → 0, uniformly, as n → ∞, and

φn → 0 in W 1,2
0 (BΩ(a, r);R

m), we have

lim
n→∞

1

‖∇φn‖22

∫

BΩ(a,r)

W 0(∇y0(x),∇φn(x))dx ≥ β. (2.13)

Then δE({φn}) ≥ β, for any strong variation {φn} ⊂ W 1,∞
0 (Ω;Rm). In

particular y0 is a strong local minimizer for the functional E(y).

Theorem 2.1 is a corollary of the following theorem, whose proof is given in

the next chapter.

Theorem 2.2 Assume W satisfies C1, C2, and C3, for p ≥ 2. Suppose

y0 ∈ W 1,∞(Ω;Rm) satisfies

a)’ δ2E(φ) ≥ 0, for all φ ∈ W 1,∞
0 (Ω;Rm),

b)’ For all a ∈ Ω, there exists r(a) > 0, so that for all {φn : n ≥ 1} ⊂

W 1,∞
0 (BΩ(a, r);R

m), such that φn → 0, uniformly, as n → ∞, and

φn → 0 in W 1,2
0 (BΩ(a, r);R

m), we have

lim
n→∞

1

‖∇φn‖22

∫

BΩ(a,r)

W 0(∇y0(x),∇φn(x))dx ≥ 0. (2.14)
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Then δ′E({φn}) ≥ 0, for any strong variation {φn} ⊂ W 1,∞
0 (B(0, 1);Rm).

Note that in Theorem 2.2 we do not assume that y0 solves Euler-Lagrange

equation. The uniform positivity of second variation is no longer required and

the conclusion is just the non-negativity of δ′E({φn}). The condition (2.13)

is a natural strengthening of (2.14), which is clearly necessary for y0 to be a

strong local minimizer.

Proof of Theorem 2.1

Let

Wβ(F ) = W (F )− β|F |2.

If y0 satisfies inequality (2.13), thenW 0
β (F0,H) = W 0(F0,H)−β|H|2 satisfies

2.14. In addition, δ2Eβ(φ) ≥ 0, for all φ ∈ W 1,∞
0 (Ω;Rm).

Thus, Theorem 2.2 implies that

δ′Eβ({φn}) = lim
n→∞

∫

Ω
W 0

β (∇y0(x),∇φn)dx

‖∇φn‖22
≥ 0, (2.15)

for every strong variation {φn}.

But
∫

Ω
W 0

β (∇y0(x),∇φn)dx

‖∇φn‖22
=

∫

Ω
W 0(F0)(x),∇φn)dx

‖∇φn‖22
− β.

So

δE({φn}) = δ′Eβ({φn}) + β ≥ β.

�
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CHAPTER 3

PROOF OF THEOREM 2.2

3.1 Reduction to the problem of W 1,p-local min-

ima

First, observe that (2.9) implies that a strong variation whose gradients

are unbounded in Lp, has the property that

lim
n→∞

∆E(φn) = +∞.

Hence, δ′E({φn}) ≥ 0. Thus, we may restrict our attention only to variations

{φn} for which the sequence ‖∇φn‖p is bounded. In particular, extracting a

subsequence, if necessary, we may assume, without loss of generality that φn

converges to zero in the weak topology of W 1,p. Define

αn = ‖∇φn‖2, and βn = (2|Ω|)
1

2
− 1

p‖∇φn‖p. (3.1)

Notice that βn is bounded and αn ≤ βn. Hence the sequence αn is bounded as

well. Thus, without loss of generality, αn → α0 < +∞, as n → ∞.

Let us first consider the case, α0 > 0. We have

lim
n→∞

∫

Ω

W (∇y0(x) +∇φn(x))dx ≥ lim
n→∞

∫

Ω

QW (∇y0(x) +∇φn(x))dx,
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where QW (F ) is the quasiconvexification of W (F ) defined by

QW (F ) = inf
ϕ∈W 1,∞

0
(B(0,1);Rm)

{

1

|B(0, 1)|

∫

B(0,1)

W (F +∇ϕ(x))

}

.

Then the functional

φ 7→

∫

Ω

QW (∇φ)dx

is W 1,p sequentially-weak lower semicontinuous [2], and thus,

lim
n→∞

∫

Ω

QW (∇y0(x) +∇φn(x))dx ≥

∫

Ω

QW (∇y0(x))dx.

Finally, the quasiconvexity condition QW (∇y0(x)) = W (∇y0(x)), for a.e.

x ∈ Ω (see [12]), implies that

δ′E({φn}) =
1

α2
0

lim
n→∞

∫

Ω

(W (∇y0(x) +∇φn)−W (∇y0(x))) dx ≥ 0. (3.2)

Now assume that αn → 0, as n → ∞. The coercivity condition (2.9) implies

that

δ′E({φn}) ≥ c1

(

lim
n→∞

βp
n

α2
n

− c2

)

.

Thus, we need to consider only those strong variations {φn} for which

lim
n→∞

αn = lim
n→∞

βn = 0, lim
n→∞

βp
n

α2
n

= γ < +∞ (3.3)

Remark 3.1 The coercivity condition (2.9) was only needed to reduce the

problem of strong local minima to the problem of W 1,p-local minima. If one is

interested only in W 1,p-local minima, then condition (2.9) is not needed.

3.2 Decomposition theorem and orthogonal-

ity principle

For a strong variation {φn} bounded in W 1,p we define ζn = φn/βn, and

ψn = φn/αn. We have also a relation ζn = rnψn, where rn = αn/βn ≤ 1.

One of the key tools in our analysis is a version of the Decomposition

Theorem due to Kristensen [13], and Fonseca, Müller and Pedregal [7] (see

also [9]).
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Theorem 3.1 (Decomposition theorem) Suppose that the sequence of func-

tions ψn ∈ W 1,∞
0 (Ω;Rm) is bounded in W 1,2(Ω;Rm) and the sequence rn ∈

(0, 1] is such that ζn = rnψn is bounded in W 1,p(Ω;Rm), p ≥ 2. We also as-

sume that rn = 1, if p = 2 and rn → 0, as n → ∞, if p > 2. Suppose that the

sequence αn > 0 is such that αn → 0, and αnψn → 0, as n → ∞, uniformly in

x ∈ Ω. Then there exists a subsequence, not relabeled, sequences of functions

zn and vn in W 1,∞
0 (Ω;Rm), and subsets Rn of Ω such that

(a) ψn = zn + vn.

(b) For all x ∈ Ω \Rn we have zn(x) = ψn(x) and ∇zn(x) = ∇ψn(x).

(c) The sequence {|zn|
2 + |∇zn|

2} is equiintegrable.

(d) vn ⇀ 0 weakly in W 1,2(Ω;Rm).

(e) |Rn| → 0, as n → ∞.

(f) αnzn → 0 and αnvn → 0 uniformly in x ∈ Ω, as n → ∞.

In addition, the sequences tn = rnvn and sn = rnzn satisfy

(a’) ζn = sn + tn.

(b’) For all x ∈ Ω \Rn we have sn(x) = ζn(x) and ∇sn(x) = ∇ζn(x).

(c’) The sequence {|sn|
p + |∇sn|

p} is equiintegrable.

(d’) tn ⇀ 0 weakly in W 1,p(Ω;Rm).

We will refer to αnzn as the weak part of the variation and to αnvn as the

strong part. We show that the purely weak part {αnzn} and purely strong

part {αnvn} of the variation act independently.

Suppose φn is a strong variation such that αn, βn, defined by (3.1), satisfy

(3.3). Then Theorem 3.1 is applicable to ψn = φn/αn, and rn = αn/βn. Let

vn and zn be as in Theorem 3.1.
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Theorem 3.2 (Orthogonality principle)

F(∇y0(x), αn,∇ψn)−F(∇y0(x), αn,∇vn)−F(∇y0(x), αn,∇zn) → 0,

as n → ∞, strongly in L1(Ω).

The orthogonality principle, applied to (1.9), implies that

δ′E({φn}) ≥ lim
n→∞

∫

Ω

F(∇y0(x), αn,∇zn)dx+

lim
n→∞

∫

Ω

F(∇y0(x), αn,∇vn)dx. (3.4)

Thus, in order to prove Theorem 2.2 it will be sufficient to show that each

term on the the right-hand side of (3.4) is non-negative.

Proof of Theorem 3.2

Step 1 : Let

In(x) = F(∇y0, αn,∇ψn)−F(∇y0, αn,∇vn)−F(∇y0, αn,∇zn).

Recall that∇vn(x) = 0, for all x ∈ Ω\Rn, because∇ψn(x) = ∇zn, for all x ∈

Ω \Rn. Therefore,
∫

Ω

In(x)dx =

∫

Rn

In(x)dx. (3.5)

Then

∫

Rn

|In(x)|dx ≤

∫

Rn

|F(∇y0, αn,∇ψn)−F(∇y0, αn,∇vn)|dx+

∫

Rn

|F(∇y0(x), αn,∇zn)|dx = I(1)n + I(2)n . (3.6)

Step 2 : We prove I
(2)
n → 0, as n → ∞.

Lemma 3.1 The growth conditions (2.5) and (2.6) together with smoothness

of W (F ) on R imply that

|F(F0, α,G)| ≤ C(R)Φ(α,G), (3.7)

for every F0 ∈ R, α > 0 and G ∈ M, where

Φ(α,G) = |G|2(1 + |αG|p−2). (3.8)
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Proof: Observe that

F(F0, α,G) = U(F0, αG)|G|2 +
1

2
(L(F0)G,G).

We apply Lemma 2.1 with H1 =H and H2 = 0 to get the estimate

|U(F0, αG)|G|2 ≤ C(R)Φ(α,G). (3.9)

We also have

1

2
|(L(F0)G,G)| ≤ C(R)|G|2 ≤ C(R)Φ(α,G).

Therefore

|F(F0, α,G)| ≤ C(R)Φ(α,G).

�

Lemma 3.2 The sequence {Φ(αn,∇zn(x))} is equiintegrable.

Proof :

From the relation βnsn = αnzn, for any E ⊂ Ω, we have

∫

E

Φ(αn,∇zn(x))dx =

∫

E

|∇zn(x)|
2dx+

βp
n

α2
n

∫

E

|∇sn(x)|
pdx. (3.10)

The Lemma follows from (3.10), because |∇zn(x)|
2, and |∇sn(x)|

p are equi-

integrable and the sequence of numbers βp
n/α

2
n is bounded.

�

Lemma 3.2 and the inequality (3.7) imply that the second term in the

right-hand side of (3.6) converges to 0, because |Rn| → 0.

Step 3 : We now show that I
(1)
n converges to 0. By Lemma 2.1 there exists

a constant C(R) > 0 such that

|F(F0, α,G1)−F(F0, α,G2)| ≤

C(R)(|G1|+ |G2|+ αp−2(|G1|
p−1 + |G2|

p−1))|G1 −G2| (3.11)

for every F0 ∈ R, and G1,G2 in M.
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Let

dn(x) = |F(∇y0(x), αn,∇ψn)−F(∇y0(x), αn,∇vn)|. (3.12)

Then inequality (3.11) implies that

dn(x) ≤ C(|∇ψn|+ |∇vn|+ αp−2
n (|∇ψn|

p−1 + |∇vn|
p−1))|∇zn|,

for a.e. x ∈ Ω.

Applying the Cauchy-Schwarz and Hölder inequalities and using the rela-

tions

βnζn = αnψn, and βntn = αnvn,

we get

∫

Rn

dn(x)dx ≤ C(‖∇ψn(x)‖2 + ‖∇vn(x)‖2)

(
∫

Rn

|∇zn(x)|
2dx

)1/2

+

C
βp
n

α2
n

(‖∇ζn(x)‖
p−1
p + ‖∇tn(x)‖

p−1
p )

(
∫

Rn

|∇sn(x)|
pdx

)1/p

. (3.13)

Once again, the equiintegrability of |∇zn(x)|
2 and |∇sn(x)|

p, and (3.3) imply

that dn → 0, as n → ∞ in L1(Ω).

This finishes the proof of the theorem.

�

3.3 Representation formula

Inequality (3.4) reduces our task of proving the non-negativity of δ′E({φn})

to establishing the non-negativity of each individual limit on the the right-hand

side of (3.4). In this section we will derive representation formulas for each of

the two terms on the the right-hand side of the inequality.

Let us start with the first term

Lemma 3.3 Assume αn → 0. Then there exists a subsequence, not relabeled,

such that

lim
n→∞

∫

Ω

F(∇y0(x), αn,∇zn(x))dx =
1

2

∫

Ω

∫

M

(L(∇y0(x))F ,F )dνx(F )dx,

(3.14)
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where {νx} is the Young measure generated by {∇zn(x)}.

Proof :

We claim that there exists a subsequence, not relabeled, such that

lim
n→∞

∫

Ω

U(∇y0(x), αn∇zn(x))|∇zn(x)|
2dx = 0, (3.15)

and

lim
n→∞

1

2

∫

Ω

(L(∇y0(x))∇zn(x),∇zn(x))dx =

1

2

∫

Ω

∫

M

(L(∇y0(x))F ,F )dνx(F )dx. (3.16)

Observe that {(L(∇y0(x))∇zn(x),∇zn(x))} is equiintegrable, since

|(L(∇y0(x))∇zn(x),∇zn(x))| ≤ C(R)|∇zn(x)|
2.

Thus, by the Young measure representation theorem [18, Lemma 6.2] (3.16)

holds.

To show (3.9), observe that αn∇zn → 0 in L2, because ∇zn is bounded

in L2 and αn → 0. Then we can find a subsequence, not relabeled, such

that αn∇zn(x) → 0, for a.e. x ∈ Ω. Thus, U(∇y0(x), αn∇zn(x)) →

U(∇y0(x), 0) = 0, as n → ∞, for a.e. x ∈ Ω. Also, using (3.7)

|U(∇y0(x), αn∇zn(x))||∇zn(x)|
2 ≤ CΦ(αn,∇zn(x)).

Lemma 3.2 implies that the sequence {U(∇y0(x), αn∇zn)|∇zn|
2} is equiinte-

grable. Now, (3.15) follows from the following generalized Vitali convergence

theorem [9].

Theorem 3.3 (Generalized Vitali convergence theorem) Let (X,M, µ)

be a positive measure space. If (i) µ(X) is finite, (ii) fn → 0, a.e. as n → ∞,

(iii) gn is bounded in L1(µ) and, (iv) the sequence {fngn} is equiintegrable.

Then fngn → 0 in L1(µ).
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This finishes the proof of Lemma 3.3. �

The next step is to characterize up to a subsequence

lim
n→∞

∫

Ω

F(∇y0, αn,∇vn)dx =

lim
n→∞

1

2

∫

Ω

(L(∇y0)∇vn,∇vn)dx+ lim
n→∞

∫

Ω

U(∇y0(x), αn∇vn)|∇vn|
2dx.

(3.17)

The first term in the right-hand side of (3.17) can not be written in terms of

Young measures because the sequence {∇vn} is not equiintegrable. Instead,

consider the R
m×d valued measures on Ω given by

µn = ∇vn(x)|∇vn(x)|

with polar decomposition

dµn =
∇vn(x)

|∇vn(x)|
dπn(x),

where dπn(x) = |∇vn(x)|
2dx.

Then we can define a sequence of measures on a separable space C(Ω ×

R× S), where S is a unit sphere in M space, by

Λn(f) =

∫

Ω

f(x,∇y0(x),
∇vn(x)

|∇vn(x)|
)dπn(x). (3.18)

Observe that

|Λn(f)| ≤ ‖f‖C(Ω×R×S)‖∇vn‖
2
2.

Therefore, Λn is a bounded sequence of linear continuous functionals on C(Ω×

R×S), since {∇vn} is bounded in L2(Ω;M). By the Banach-Alaoglu theorem

there exists a subsequence, not relabeled, {Λn} and a linear continuous func-

tional Λ on C(Ω×R×S) such that Λn ⇀ Λ weak−∗. By Riesz representation

theorem there exists a non-negative Radon measure M on Ω × R × S such

that for every f ∈ C(Ω×R× S)

lim
n→∞

∫

Ω

f(x,∇y0(x),
∇vn(x)

|∇vn(x)|
)dπn(x) =

∫

Ω×R×S

f(x,F0,G)dM(x,F0,G).
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Let π be the projection of M on to Ω. Then by [5, Proposition 3.1] there

exists a family of probability measures {λx}x∈Ω on S ×R such that for every

f ∈ C(Ω×R× S)

∫

Ω×R×S

f(x,F0,G)dM(x,F0,G) =

∫

Ω

[
∫

R×S

f(x,F0,G)dλx(F0,G)

]

dπ(x). (3.19)

For f(x,F0,G) = (L(F0)G,G), we have

lim
n→∞

∫

Ω

(L(∇y0(x))
∇vn(x)

|∇vn(x)|
,
∇vn(x)

|∇vn(x)|
)|∇vn(x)|

2dx =

∫

Ω

[
∫

R×S

(L(F0)G,G)dλx(F0,G)

]

dπ(x). (3.20)

Therefore,

lim
n→∞

∫

Ω

(L(∇y0(x))∇vn(x),∇vn(x))dx =

∫

Ω

[
∫

R×S

(L(F0)G,G)dλx(F0,G)

]

dπ(x). (3.21)

Remark 3.2 If f(x,F0,G) = ξ(x) ∈ C(Ω) depends only on x, then

lim
n→∞

∫

Ω

ξ(x)|∇vn(x)|
2dx =

∫

Ω

ξ(x)dπ(x).

Which implies that dπn ⇀ dπ in the sense of measures.

In order to compute the second limit in the right-hand side of (3.17) we rewrite

the integrand in terms of the bounded and continuous function B(F0,H) given

by

B(F0,H) =
U(F0,H)

1 + |H|p−2
. (3.22)

Thus, we have

lim
n→∞

∫

Ω

U(∇y0(x), αn∇vn)|∇vn|
2dx =

lim
n→∞

∫

Ω

B(∇y0(x), αn∇vn(x))Φ(αn,∇vn(x))dx. (3.23)

Following DiPerna and Majda [3, Theorem 4.1] we prove the following lemma.
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Lemma 3.4 Let CB(Ω×R×M) denote the set of all continuous and bounded

functions on Ω×R×M. There exist a subsequence, not relabeled, a nonnegative

measure σ on Ω and a continuous linear transformation T : CB(Ω×R×M) →

L∞
σ (Ω) such that for any B ∈ CB(Ω×R×M)

lim
n→∞

∫

Ω

B(x,∇y0(x), αn∇vn(x))Φ(αn,∇vn(x))dx =

∫

Ω

(TB)(x)dσ(x).

(3.24)

Proof :

For each fixed n, the functional

Λn(B) =

∫

Ω

B(x,∇y0(x), αn∇vn(x))Φ(αn,∇vn(x))dx

is a linear and continuous functional on CB(Ω×R×M). And

|Λn(B)| ≤ ‖B‖∞(‖∇vn‖
2
2 + αp−2

n ‖∇vn‖
p
p) = ‖B‖∞(‖∇vn‖

2
2 +

βp
n

α2
n

‖∇tn‖
p
p)

implies that Λn is a bounded sequence. By the Banach-Alaoglu theorem there

exists a subsequence, not relabeled, and a linear continuous functional Λ on

CB(Ω×R×M) such that Λn ⇀ Λ weak−∗.

Observe that a 7→ Λ(a) is a linear continuous functional on C(Ω). Therefore

there exists a Radon measure σ on Ω such that

Λ(a) =

∫

Ω

a(x)dσ(x). (3.25)

Therefore, σ is a weak−∗ limit of Φ(αn,∇vn)dx in the sense of measures.

Let us fix B ∈ CB(Ω×R×M) and observe that the functional a 7→ Λ(aB)

is a continuous linear functional on C(Ω). Hence, there exists a Radon measure

MB such that

Λ(aB) =

∫

Ω

a(x)dMB(x),

and we have

|Λ(aB)| ≤ ‖B‖∞

∫

Ω

|a(x)|dσ(x). (3.26)

Lemma 3.5 For each B ∈ CB(Ω × R × M), the measure MB is absolutely

continuous with respect to σ.
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Proof :

Let B ∈ CB(Ω×R×M), B ≥ 0 be fixed and a ∈ C(Ω), a ≥ 0.

Λ(aB) ≤ lim
n→∞

∫

Ω

a(x)‖B‖∞Φ(αn,∇vn(x))dx = ‖B‖∞

∫

Ω

a(x)dσ(x).

That is
∫

Ω

a(x)dMB(x) ≤ ‖B‖∞

∫

Ω

a(x)dσ(x).

Which implies that
∫

Ω

a(x)d(‖B‖∞σ −MB)(x) ≥ 0.

Therefore the measure ‖B‖∞σ − MB is non-negative. Thus, for all Borel

subsets E ⊂ Ω ‖B‖∞σ(E)−MB(E) ≥ 0.

If σ(E) = 0, then MB(E) ≤ 0. This implies that MB(E) = 0, because

MB is a non-negative measure for B ≥ 0. If B is not positive, then we can

write B = B+ − B−, where B± are both bounded and non-negative. MB is

then absolutely continuous with respect to σ, because MB± are, and MB =

MB+ −MB− . This finishes the proof of Lemma 3.5.

�

By Lemma 3.5 and the Radon-Nikodym theorem there exists a function

fB ∈ L1
σ(Ω) such that for every Borel subset E of Ω

MB(E) =

∫

E

fB(x)dσ(x).

The integrand fB linearly depends on B and inequality (3.26), together with

density of C(Ω) in L1
σ(Ω) implies that ‖fB‖L∞

σ (Ω) ≤ ‖B‖∞. Hence, the map

B 7→ fB defines a bounded linear transformation T : CB(Ω×R×M) → L∞
σ (Ω).

Therefore,

Λ(B) =

∫

Ω

(TB)(x)dσ(x).

�

Lemma 3.6 The operator T has the following properties:

(a) |TB| ≤ T|B|, for any B ∈ CB(Ω×R×M);
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(b) (Ta)(x) = a(x), for any a ∈ C(Ω).

Proof : Property (a) follows from |B| − B ≥ 0 and the non-negativity of

Φ(α,G). To prove property (b), take B(x,F0,F ) = a(x) in Lemma 3.4. Using

(3.25), we obtain
∫

Ω

a(x)dσ(x) = Λ(a) = lim
n→∞

∫

Ω

a(x)Φ(αn,∇vn(x))dx =

∫

Ω

(Ta)(x)dσ(x),

for any test function a ∈ C(Ω). Therefore, (Ta)(x) = a(x).

�

Applying Lemma 3.4 to

b0(F ) =
1

1 + |F |p−2
,

we obtain

dπn = |∇vn|
2dx = b0(αn∇vn)Φ(αn,∇vn)dx⇀ (Tb0)(x)dσ,

where the convergence is in the sense of weak-∗ topology on C(Ω)∗. Thus, π

is an absolutely continuous measure with respect to σ and

dπ = (Tb0)(x)dσ. (3.27)

Combining (3.21), (3.24), and (3.27) we have the following representation for-

mula.

lim
n→∞

∫

Ω

F(∇y0(x), αn,∇vn)dx =

∫

Ω

I(x)dσ(x), (3.28)

where

I(x) = (TB)(x) +
(Tb0)(x)

2

(
∫

R×S

(L(F0)G,G)dλx(F0,G)

)

. (3.29)

�

In order to finish the proof of the sufficiency theorem it remains to prove

that (3.14) and (3.28) are non-negative. We will show that the non-negativity

of (3.14) follows from the non-negativity of the second variation and the non-

negativity of (3.28) follows from condition (2.13). However, (3.28) has a local

character, but condition(2.13) has global character. In order to reduce one to

the other, we need the following localization principle.
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3.4 Localization principle

Theorem 3.4 Let a ∈ Ω. Let θk ∈ C∞
0 (B(0, 1)) be the cut-off functions

constructed in such a way that θk(x) = 1, if |x| < 1 − 1/k, θk(x) = 0, if

|x| ≥ 1, and θk(x) ∈ [0, 1], for all x ∈ R
d and such that ‖∇θk‖∞ ≤ Ck, and

θk(x) → χB(0,1)(x), for all x ∈ R
d.

Then

I(a) = lim
r→0

lim
k→∞

lim
n→∞

1

σ(BΩ(a, r))

∫

BΩ(a,r)

F(∇y0(x), αn,∇(θk,r(x)vn(x)))dx

(3.30)

for σ-almost every a ∈ Ω, where I(a) is given by (3.29),

BΩ(a, r) = {x ∈ Ω : |x− a| < r}

and

θk,r(x) = θk

(

x− a

r

)

,x ∈ BΩ(a, r).

Observe that θk,r ∈ C∞
0 (BΩ(a, r)) with ‖∇θk,r‖∞ ≤ Ck/r, and

lim
k→∞

θk,r(z) = χBΩ(a,r)(z).

Proof :

Lemma 3.7 For each fixed k and r

lim
n→∞

∫

BΩ(a,r)

F(∇y0(x), αn,∇(θk,r(x)vn(x)))dx =

lim
n→∞

∫

BΩ(a,r)

F(∇y0(x), αn, θk,r(x)∇vn(x))dx.

Proof : Let

Tn,k,r(x) = F(∇y0(x), αn,∇(θk,rvn(x)))−F(∇y0(x), αn, θk,r(x)∇vn(x)).

We show that
∫

BΩ(a,r)

|Tn,k,r(x)|dx→ 0, as n → ∞.
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By using inequality (3.11)

|Tn,k,r(x)| ≤ C(|∇(θk,rvn)|+ |θk,rvn|)+

C(αp−2
n (|∇(θk,rvn)|

p−1 + |θk,rvn|
p−1))|∇(θk,rvn)− θk,r∇vn|, (3.31)

for some constant C > 0. Observe that

∇(θk,rvn(x)) = vn(x)⊗∇θk,r(x) + θk,r(x)∇vn(x).

Substituting the above identity in (3.31), we get

|Tn,k,r(x)| ≤ C(|vn ⊗∇θk,r + θk,r∇vn|+ |θk,rvn|+

C(αp−2
n (|vn ⊗∇θk,r + θk,r∇vn|

p−1 + |θk,rvn|
p−1)|vn ⊗∇θk,r|). (3.32)

From the relation βntn = αnvn we have

|Tn,k,r(x)| ≤ C ′(k, r)(2|vn|
2 + 2|∇vn||vn|)+

C ′(k, r)(
βp
n

α2
n

{|tn ⊗∇θk,r + θk,r∇tn|
p−1 + |tn ⊗∇θk,r|

p−1}|tn ⊗∇θk,r|).

Therefore, since ∇θk,r and θk,r are bounded for fixed r and k,

∫

Ω

|Tn,k,r(x)|dx ≤ C(k, r) (‖vn‖2 + ‖∇vn‖2‖vn‖2)+

C(k, r)
βp
n

α2
n

{

[‖tn‖p + ‖∇tn‖p]
p−1 + ‖∇tn‖

p−1
p

}

‖tn‖p. (3.33)

The right-hand side of (3.33) converges to 0, because vn ⇀ 0 in W 1,2, tn ⇀ 0

in W 1,p and βp
n

α2
n
is a bounded sequence.

�

Therefore to prove Theorem 3.4 it is enough to show that

I(a) = lim
r→0

lim
k→∞

lim
n→∞

1

σ(BΩ(a, r))

∫

BΩ(a,r)

F(∇y0(x), αn, θk,r(x)∇vn(x))dx,

(3.34)

for σ-almost every a ∈ Ω.



26

Lemma 3.8 For each fixed k and r

lim
n→∞

∫

BΩ(a,r)

F(∇y0(x), αn, θk,r(x)∇vn(x))dx =

∫

BΩ(a,r)

[

(TBk,r)(x) +
θ2k,r(x)(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G)

]

dσ(x),

(3.35)

where

Bk,r(x,F0,H) =
θ2k,r(x)(1 + |θk,r(x)H|p−2)

1 + |H|p−2
B(F0, θk,r(x)H). (3.36)

Proof : Observe that

F(∇y0(x), αn, θk,r(x)∇vn(x)) = θ2k,r(x)U(∇y0(x), αnθk,r∇vn)|∇vn(x)|
2+

θ2k,r(x)

2
(L(∇y0(x))∇vn(x),∇vn(x)) .

And

θ2k,r(x)U(∇y0(x), αnθk,r∇vn)|∇vn(x)|
2

=
θ2k,r(x)(1 + |αnθk,r∇vn|

p−2)

1 + |αn∇vn|p−2
B(∇y0(x), αnθk,r∇vn)Φ(αn,∇vn)

Therefore

F(∇y0(x), αn, θk,r(x)∇vn(x)) =

Bk,r(x,∇y0(x), αn∇vn)Φ(αn,∇vn) +
θ2k,r(x)

2
(L(∇y0(x))∇vn,∇vn) . (3.37)

Applying the representation formula (3.28) we obtain

lim
n→∞

∫

BΩ(a,r)

F(∇y0(x), αn, θk,r(x)∇vn(x))dx =

∫

BΩ(a,r)

Ik,r(x)dσ(x), (3.38)

where

Ik,r(x) = (TBk,r)(x)+

θ2k,r(x)(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G) (3.39)



27

�

Next we show that

Lemma 3.9

lim
k→∞

∫

BΩ(a,r)

Ik,r(x)dσ(x) =

∫

BΩ(a,r)

I(x)dσ(x), (3.40)

where

I(x) = (TB)(x) +
(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G). (3.41)

Proof : For every x ∈ BΩ(a, r), we have

lim
k→∞

(

θ2k,r(x)(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G)

)

=

(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G). (3.42)

Let us show that

lim
k→∞

∫

BΩ(a,r)

(TBk,r)(x)dσ(x) =

∫

BΩ(a,r)

(TB)(x)dσ(x). (3.43)

Lemma 3.10 For each x ∈ BΩ(a, r),

lim
k→∞

Bk,r(x,F0,H) = B(F0,H),

uniformly in (F0,H) ∈ R×M.

Proof :

Claim 1 : Let q > 0, θk ≥ 0 and θk → θ0, as k → ∞. Then

θqkB(F0, θkH) → θq0B(F0, θ0H), uniformly in (F0,H) ∈ R×M.

If θ0 = 0, claim is true, because B(F0,H) is bounded. Assume θ0 > 0.

Suppose to the contrary

lim
k→∞

sup
(F0,H)∈R×M

|θqkB(F0, θkH)− θq0B(F0, θ0H)| > 0. (3.44)

Then there exists a sequence (F
(k)
0 ,Hk) ∈ R×M such that |Hk| → ∞ and

lim
k→∞

|θqkB(F
(k)
0 , θkHk)− θq0B(F

(k)
0 , θ0Hk)| > 0.
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Claim 2 :

B(F
(k)
0 , θkHk)−B(F

(k)
0 , θ0Hk) → 0, as k → ∞.

Using condition C2, we obtain

|BH(F0,H)| ≤
C(R)

1 + |H|
,

for some constant C(R) > 0. Applying Lagrange’s mean value theorem

|B(F
(k)
0 , θkHk)−B(F

(k)
0 , θ0Hk)| = |(BH(F

(k)
0 , ξ),Hk)(θk − θ0)|, (3.45)

where ξ = tkθkHk+(1− tk)θ0Hk = θ0Hk+(θk− θ0)tkHk, for some tk ∈ [0, 1].

Since |ξ| ≥ θ0|Hk| − |θk − θ0|Hk|,

|B(F
(k)
0 , θkHk)−B(F

(k)
0 , θ0Hk)| ≤

C(R)

1 + |ξ|
|Hk||θk − θ0| ≤

C(R)|θk − θ0|

1 + θ0 − |θk − θ0|
→ 0, as k → ∞.

This finishes the proof of Claim 2.

Now

|θqkB(F
(k)
0 , θkHk)− θq0B(F

(k)
0 , θ0Hk)| ≤

|θqk − θq0|‖B‖∞ + θq0|B(F
(k)
0 , θkHk)−B(F

(k)
0 , θ0Hk)| (3.46)

Taking a limit as k → ∞ in (3.46) we get a contradition to (3.44).

�

Lemma 3.9 follows from the bounded convergence theorem and the follow-

ing lemma.

Lemma 3.11

lim
k→∞

(TBk,r)(x) = (TB)(x),

for σ− a.e. x ∈ BΩ(a, r).
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Proof :

We have Bk,r(x,F0,H) are uniformly bounded.

Let

δk(x) = sup
(F0,H)∈R×M

|Bk,r(x,F0,H)− B(F0,H)|.

δk(x) are uniformly bounded functions such that δk(x) → 0. The continuity

of δk(x) follows from the uniform continuity of Bk,r(x,F0,H) in the sense of

definition 4 below.

Definition 4 We say B ∈ CB(Ω × R × M) is uniformly continuous if for

every ε > 0 there exists δ > 0 such that for every (F0,H) ∈ R×M and x′,x′′,

such that |x′ − x′′| < δ,

|B(x′,F0,H)−B(x′′,F0,H)| < ǫ.

Lemma 3.12 Bk,r(x,F0,H) are uniformly continuous in the sense of defini-

tion 4.

Proof: Recall that

Bk,r(x,F0,H) =
θ2k,r(x)(1 + |θk,r(x)H|p−2)

1 + |H|p−2
B(F0, θk,r(x)H) =

θ2k,r(x)

1 + |H|p−2
B(F0, θk,r(x)H) +

θpk,r(x)|H|p−2

1 + |H|p−2
B(F0, θk,r(x)H) (3.47)

Suppose {x′
n,x

′′
n} ⊂ Ω, such that

lim
n→∞

x′
n = lim

n→∞
x′′
n = x∗ ∈ Ω.

Let θ′n = θk,r(x
′
n), θ

′′
n = θk,r(x

′′
n), and θ0 = θk,r(x

∗). Then

|Bk,r(x
′
n,F0,H)−Bk,r(x

′′
n,F0,H)| ≤ |(θ′n)

2B(F0, θ
′
nH)−(θ′′n)

2B(F0, θ
′′
nH)|+

|(θ′n)
pB(F0, θ

′
nH)− (θ′′n)

pB(F0, θ
′′
nH)| ≤

|(θ′n)
2B(F0, θ

′
nH)−(θ0)

2B(F0, θ0H)|+ |(θ0)
2B(F0, θ0H)−(θ′′n)

2B(F0, θ
′′
nH)|+

|(θ′n)
pB(F0, θ

′
nH)−(θ0)

pB(F0, θ0H)|+|(θ0)
pB(F0, θ0H)−(θ′′n)

pB(F0, θ
′′
nH)|.

(3.48)
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Applying Lemma 3.10, we obtain uniform continuity of Bk,r(x,F0,H), and

hence continuity of δk(x).

�

Now, applying the properties of operator T from Lemma 3.6 we have

|(TBk,r)(x)− (TB)(x)| ≤ T|Bk,r(x)−B(x)| ≤ Tδk(x) = δk(x),

for σ− a.e.x ∈ BΩ(a, r). Observe that

(

θ2k,r(x)(Tb0)(x)

2

∫

R×S

(L(F0)G,G)dλx(F0,G)

)

,

and (TBk,r)(x) are bounded, and σ is a finite measure. Therefore, by bounded

convergence theorem

lim
k→∞

∫

BΩ(a,r)

Ik,r(x)dσ(x) =

∫

BΩ(a,r)

I(x)dσ(x),

This finishes the proof of Lemma 3.9.

�

By Radon measure version of the Lebesgue differentiation theorem [6, The-

orem 2.9.8],

lim
r→0

1

σ(BΩ(a, r))

∫

BΩ(a,r)

I(x)dσ(x) = I(a), (3.49)

for σ− a.e.a ∈ Ω.

This finishes the proof of Theorem 3.4.

�

3.5 Proof of Theorem 2.2

Recall that we need to consider only the case αn → 0, as n → ∞. In this

case

δ′E({φn}) =

∫

Ω

I(a)dσ(a) +
1

2

∫

Ω

∫

M

(L(∇y0(x))F ,F )dνx(F )dx, (3.50)

where I(a) is given by (3.29).
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To complete the proof we prove both terms in the right-hand side of (3.50)

are non-negative.

Step 1. By Theorem 3.1, zn ∈ W 1,∞
0 (Ω;Rm). Therefore,

1

2

∫

Ω

L(∇y0(x)∇zn,∇zn)dx ≥ 0,

for all n. Taking limit as n → ∞ in the above inequality we prove that the

second term on the right-hand side of (3.50) is non-negative. Let us show that

the first term is also non- negative.

Step 2. Fix any a ∈ Ω. Then there exists r(a) > 0, such that (2.14) is

satisfied. Let φn,k,r(x) = αnθk(
x−a
r

)vn(x). Then

I(a) =

lim
r→∞

lim
k→∞

lim
n→∞

1

α2
nσ(BΩ(a, r))

∫

BΩ(a,r)

W 0 (∇y0(x),∇φn,k,r(x)) dx. (3.51)

Observe that φn,k,r ∈ W 1,∞
0 (BΩ(a, r);R

m), because vn ∈ W 1,∞
0 (Ω;Rm), and

θk ∈ C∞
0 (B(0, 1);Rm). The estimate

‖∇φn,k,r‖
2
2 ≤ C(k, r)α2

n(‖vn‖
2
2 + ‖∇vn‖

2
2) → 0, as n → ∞

shows that (2.14) is applicable to φn,k,r. Therefore,

lim
n→∞

1

‖∇φn,k,r‖22

∫

BΩ(a,r)

W 0 (∇y0(x),∇φn,k,r(x)) dx ≥ 0. (3.52)

Observe that

‖∇φn,k,r‖
2
2

α2
n

≤ C(k, r)(‖vn‖
2
2 + ‖∇vn‖

2
2) ≤ C(k, r).

Therefore, for all k ∈ N, and all r ∈ (0, r(a))

lim
n→∞

1

α2
n

∫

BΩ(a,r)

W 0 (∇y0(x),∇φn,k,r(x)) dx ≥ 0. (3.53)

The inequality (3.53) is a consequence of (3.52) and the following simple

lemma.
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Lemma 3.13 Suppose

lim
n→∞

bn ≥ 0, and 0 ≤ |an| ≤ C.

Then

lim
n→∞

anbn ≥ 0.

Proof : If

lim
n→∞

anbn = γ < 0,

then there exists a subsequence nk such that for all k ≥ 1, ank
bnk

< γ
2
< 0.

This implies that bnk
< γ

2ank

≤ γ
2C

.

Thus,

lim
n→∞

bn ≤ lim
n→∞

bnk
≤

γ

2C
< 0.

Contradiction.

�

Applying the lemma to an =
‖∇φn,k,r‖

2
2

α2
n

, and

bn =
1

‖∇φn,k,r‖22

∫

BΩ(a,r)

W 0 (∇y0(x),∇φn,k,r(x)) dx,

we obtain (3.53). Hence, I(a) is non-negative as a limit of a sequence of

non-neative numbers. Theorem 2.2 is now proved.
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CHAPTER 4

HIGHER ORDER

REGULARITY

In this chapter we assume that y0 ∈ A, satisfies our new sufficient condi-

tions and we prove a global higher regularity result. Our idea, studied more

systematically in [10], is that inner variations should be understood as motions

of singularities.

Theorem 4.1 Suppose y0 and W satisfy all assumptions of Theorem 2.1.

Then y0 ∈ W 2,2
loc (Ω;R

m). Moreover, h|∇∇y0| ∈ L2(Ω), for all h ∈ W 1,2
0 (Ω).

Let us make an inner variation

x 7→ x+ ǫh(x), (4.1)

where h ∈ C0(Ω;R
d) ∩ C1(Ω;Rd). What we mean is that instead of y0(x)

we consider the competitor yǫ(x) = y0(xǫ(x)), where xǫ(x) is the inverse of

x 7→ x+ ǫh(x).

Observe that yǫ(x) → y0(x) in C(Ω;Rm), as ǫ → 0.

Therefore the corresponding functional increment

△Eǫ =

∫

Ω

W (∇y0(xǫ(x))∇xǫ(x))dx−

∫

Ω

W (∇y0(x))dx, (4.2)
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as a function of ǫ has a local minimum at ǫ = 0. Therefore

d(△Eǫ)

dǫ
|ǫ=0 = 0.

Notice that we can not differentiate under the integral sign in (4.2), because

∇y0(x) is not assumed to be smooth. However, differentiation under the

integral sign will be possible if we make a change of variables x′ = xǫ(x) in

the first integral of (4.2):

△Eǫ =

∫

Ω

(V (x, ǫ∇h)− V (x, 0))dx, (4.3)

where

V (x,G) = W (∇y0(x)(I +G)−1) det(I +G).

The function V (x,G) may be discontinuous in x, but it is smooth in G.

Therefore, we can differentiate under the integral sign in (4.3) to obtain

0 =
d(△Eǫ)

dǫ
|ǫ=0 =

∫

Ω

(VG(x, 0),∇h(x))dx. (4.4)

Notice that due to (4.4)

△Eǫ = △′Eǫ =

∫

Ω

[V (x, ǫ∇h)− V (x, 0)− ǫ(VG(x, 0),∇h(x))] dx.

Lemma 4.1 There exists a constant C > 0 such that for all h ∈ C0(Ω;R
d) ∩

C1(Ω;Rd)

lim
ǫ→0

|△′Eǫ|

‖ǫ∇h‖22
≤ K.

Proof :

From Taylor’s expansion of V in G around (x, 0) we have

|V (x,G)− V (x, 0)− (VG(x, 0),G)| ≤ K|G|2,

for some K > 0, when |G| ≤ 1/2.

But for each h ∈ C0(Ω;R
d) ∩ C1(Ω;Rd) there exists ǫ0 such that

‖ǫ∇h‖∞ ≤
1

2
, for all ǫ ∈ (0, ǫ0).
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Hence

|△′Eǫ| ≤ Kǫ2‖∇h‖22, for all ǫ < ǫ0(h).

�

Let

φǫ(x) = y0(xǫ(x))− y0(x)

be the outer variation corresponding to the inner variation (4.1).

Observe that φǫ(x) converges to 0 in C(Ω;Rm), since xǫ(x) → x uniformly

as ǫ → 0 and y0 is continuous.

By Theorem 2.1

lim
n→∞

△E(φn)

‖∇φn‖22
≥ β > 0. (4.5)

Applying Lemmas 4.1 and inequality (4.5) to φǫ, we obtain

lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
= lim

ǫ→0

|∆′Eǫ|

‖ǫ∇h‖2
2

|∆E(φǫ)|

‖∇φǫ‖22

≤
limǫ→0

|∆′Eǫ|

‖ǫ∇h‖2
2

limǫ→0
|∆E(φǫ)|

‖∇φǫ‖22

≤
K

β
, (4.6)

for all h ∈ C0(Ω;R
d) ∩ C1(Ω;Rd).

Lemma 4.2 There exists a constant C > 0 so that for all h ∈ C0(Ω;R
d) ∩

C1(Ω;Rd)

lim
ǫ→0

∫

Ω
|∇y0(x)−∇y0(x+ ǫh(x))|2dx

∫

Ω
|ǫ∇h|2dx

≤ C. (4.7)

Proof : Observe that

lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
= lim

ǫ→0

∫

Ω
|∇y0(xǫ(x))(I + ǫ∇h(xǫ(x)))

−1 −∇y0(x)|
2dx

∫

Ω
|ǫ∇h|2dx

(4.8)

Making change of variables x′ = xǫ(x) in (4.8), we get

lim
ǫ→0

‖∇φǫ‖
2
2

‖ǫ∇h‖22
=

lim
ǫ→0

∫

Ω
|∇y0(x

′)(I + ǫ∇h)−1 −∇y0(x
′ + ǫh(x′))|2 det(I + ǫ∇h)dx′

∫

Ω
|ǫ∇h|2dx

.

And det(I + ǫ∇h) ≥ 1
2
, when ǫ is small enough, since det(I + ǫ∇h) →

1, uniformly as ǫ → 0.
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Thus

lim
ǫ→0

∫

Ω
|∇y0(x

′)(I + ǫ∇h)−1 −∇y0(x
′ + ǫh(x′))|2dx′

∫

Ω
|ǫ∇h|2dx

≤
2K

β
.

Observe that for ǫ small enough |(I + ǫ∇h)−1| > 1/2. Therefore,

|∇y0(x)(I+ǫ∇h)−1−∇y0(x+ǫh(x))| ≥
1

2
|∇y0(x)−∇y0(x+ǫh(x))(I+ǫ∇h)|.

(4.9)

This inequality is a corollary of the following lemma.

Lemma 4.3 Let σmin and σmax be the minimal and maximal singular values

of a d× d matrix A, respectively. Then

σmin|B| ≤ |BA| ≤ σmax|B|

for all m× d matrices B.

Proof :

|BA|2 = Tr(AAtBtB). Observe that AAt ≥ σ2
minI and

|BA|2 = Tr((AAt − σ2
minI)B

tB) + σ2
min|B|2. (4.10)

By a theorem of Schur (see e.g.[15, Theorem 10.7]), the first term on the right-

hand side of (4.10) is non-negative, since the matrices AAt − σ2
minI and BtB

are symmetric and non-negative definite. Similarly,

|BA|2 = σ2
max|B|2 − Tr((σ2

maxI −AAt)BtB) ≤ σ2
max|B|2.

�

The inequality

|∇y0(x)−∇y0(x+ ǫh(x))|2 ≤

2|∇y0(x)−∇y0(x+ ǫh(x))−∇y0(x+ ǫh(x))ǫ∇h|2+

2ǫ2|∇y0(x+ ǫh(x))∇h|2

together with (4.9) implies (4.7). This completes the proof of Lemma 4.2.

�

The following Lemma applied to every component of the matrix field

∇y0(x) finishes the proof of Theorem 4.1.
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Lemma 4.4 Let Ω be an open bounded domain in R
d. Let f ∈ L∞(Ω) be such

that for all h ∈ C0(Ω;R
d) ∩ C1(Ω;Rd)

lim
ǫ→0

1

ǫ2

∫

Ω

|f(x+ ǫh(x))− f(x)|2dx ≤ C

∫

Ω

|∇h(x)|2dx. (4.11)

Then f ∈ W 1,2
loc (Ω) and h∇f ∈ L2(Ω), for all h ∈ W 1,2

0 (Ω).

Proof :

In view of (4.11) there exists a subsequence, not relabeled, and a function

g (both dependent on h) such that

f(x+ ǫh(x))− f(x)

ǫ
⇀ g

weakly in L2(Ω). In particular

lim
ǫ→0

1

ǫ

[
∫

Ω

f(x+ ǫh(x))φ(x)dx−

∫

Ω

f(x)φ(x)dx

]

=

∫

Ω

g(x)φ(x)dx, (4.12)

for all φ ∈ C∞
0 (Ω). Making change of variables x′ = x + ǫh(x) in the first

integral of (4.12), and using the fact that xǫ(x) → x in C1(Ω;Rd), we get

∫

Ω

gφdx = lim
ǫ→0

∫

Ω

f(x′)

(

φ(xǫ(x
′)) det(∇xǫ(x

′))− φ(x′)

ǫ

)

dx′

= −
∫

Ω
f∇ · (φh)dx′.

It follows that ∇ · (fh) = g + f∇ · h in the sense of distributions.

Now let h(x) = h(x)ei for some h ∈ C0(Ω) ∩ C1(Ω), where ei is the ith

standard basis vector. Then

∂

∂xi

(f(x)h(x)) = ∇ · (f(x)h(x)) = g + f
∂h

∂xi

∈ L2(Ω).

This implies that fh ∈ W 1,2(Ω), and therefore f ∈ W 1,2
loc (Ω). Thus, it follows

from (4.11) that
∫

Ω

(∇f,h)2dx ≤ C‖∇h‖22 (4.13)

for all h ∈ C0(Ω;R
d) ∩ C1(Ω;Rd).

In order to prove the last claim in the Lemma, we fix h ∈ W 1,2
0 (Ω;Rd)

and consider a sequence {hn : n ≥ 1} ⊂ C∞
0 (Ω;Rd), such that hn → h in
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W 1,2
0 (Ω;Rd). It follows that there is a subsequence (not relabeled) such that

hn → h for almost every x ∈ Ω. By Fatou’s lemma

∫

Ω

(∇f(x),h(x))2dx ≤ lim
n→∞

∫

Ω

(∇f(x),hn(x))
2dx ≤ C‖∇h‖22.

Taking h(x) = h(x)ei finishes the proof of the Lemma.

�

Theorem 4.1 is now proved. �
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