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ABSTRACT

TIME-INHOMOGENEOUS QUANTUM MARKOV CHAINS

Chia-Han Chou

DOCTOR OF PHILOSOPHY

Temple University, August, 2020

Professor Wei-Shih Yang, Chair

In quantum computation theory, quantum Markov chains and quantum

walks have been utilized by many quantum search algorithms which pro-

vide improved performance over their classical counterparts. More recently,

due to the importance of the quantum decoherence phenomenon, decoherent

quantum walks and their applications have been studied on a wide variety

of structures. We study time-inhomogeneous quantum Markov chains with

decoherence on finite spaces and discrete infinite spaces and their large scale

equilibrium properties. In this thesis, we prove the convergence of decoher-

ent time-inhomogeneous quantum Markov chain on finite state spaces, and

a representation theorem for time-inhomogeneous quantum walk on discrete

infinite state space. Additionally, the convergence of the distributions of the

decoherent quantum walks are numerically estimated as an application of the

representation theorem, and the convergence in distribution of the quantum
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analogues of Bernoulli, uniform, arcsine and semicircle laws are statistically

analyzed.
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CHAPTER 1

INTRODUCTION

In order to develop more efficient algorithms for tackling a wide variety of

problems in classical computer science, researchers started utilizing random-

ness techniques such as Ulam and von Nuemann’s Markov Chain Monte Carlo

(MCMC) method [14] in 1940s. This method was later refined and made well

known as the Metropolis-Hastings algorithm [9] with applications in different

areas. Even though Monte Carlos methods could sometimes return incorrect

solutions with given probability, the key idea behind the methods was that the

true solution can be approximated with high probability by repeating Monte

Carlo simulations.

More recently, the notion of quantum computation has gained popularity,

”qubit” takes a complex unit instead of ”bit” the usual binary values of zero

and one. To preserve a cohesive quantum system, the family of qubits com-
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prising the memory of the computer go through unitary evolution, rather than

the traditional system of gates in classical computation theory. The state of

the quantum system can be observed, and collapsing the system to one unique

state from a superposition of various state after the completion of each al-

gorithm. The probability of observing any given state after observation is

proportional to the absolute value squared of the amplitude of the system at

that state. So, a false solution may in fact be observed which is similar to

Monte-Carlo methods. However, if the algorithm is cleverly constructed, the

correct solution is observed with significant likelihood.

Due to the quantum mechanical nature of quantum computation, new types

of quantum algorithms have appeared. Moreover, these algorithms are more

efficient than existing classical algorithms because the run times are better.

For instance, both integer factorization and discrete logarithms undergo an

exponential speedup using Shor’s algorithm [16]. Not only an exponential im-

provement, Grover’s search algorithm provides a quadratic speedup over any

known classical search algorithm [8], and on a discrete space, Grover’s algo-

rithm is defined by discrete-time quantum walk, which is the natural extension

of a Markov chain driven classical walk to the quantum setting.

On the other hand, if a quantum system were perfectly isolated, it would

maintain coherence indefinitely, but it would be impossible to manipulate or

investigate it. If it is not perfectly isolated, for example during a measurement,
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coherence is shared with the environment and appears to be lost with time

which is called quantum decoherence. This concept was first introduced by H.

Zeh [18] in 1970, and then formulated mathematically for quantum walks by

T. Brun [3]. For both coin and position space decoherent Hadamard walk, K.

Zhang proved in [19] that with symmetric initial conditions, it has gaussian

limiting distribution. More recently, the fact that the limiting distribution of

the rescaled position discrete-time quantum random walks with general unitary

operators subject to only coin space decoherence is a convex combination of

normal distributions under certain conditions is proved by S. Fan, Z. Feng, S.

Xiong and W. Yang [7]. The decoherent quantum analogues of Markov chains

and random walks on a finite and discrete infinite space will be defined and

elaborated in Chapter 2.

In fact, classical Markov chain limit theorems for the discrete time walks

are well known and have had important applications in related areas [5] and

[13]. However, the primary goal of this body of work is to examine the limiting

behavior of the new model, discrete time-inhomogeneous quantum walk with

decoherence on finite spaces and infinite discrete spaces, and generalize the re-

sults from the classical theorems to the quantum analogues. In Chapter 3, we

obtain first-return properties of the time-inhomogeneous Markov chain with

decoherence are derived rigorously in detail, and prove the convergence to equi-

librium of the decoherent quantum Markov chains with time-inhomogeneous



4

unitary operators in general finite spaces using path integral formulas. More-

over, the equilibrium theory is illustrated by numerical simulations.

In Chapter 4, we study time-inhomogeneous quantum walk with decoher-

ence on discrete infinite spaces, and prove a representation theorem for time-

inhomogeneous quantum walk through path integral expressions. As the ap-

plications of the theorem, we introduce a new quantum algorithm with Monte

Carlo technique to numerically approximate not only the classical symmetric

Beta distributions and Bernoulli distributions, but also the limiting distribu-

tions of the decoherent time-inhomogeneous quantum walks.

Lastly, we introduce the quantum analogues of the classical distributions:

arcsine, uniform, semicircle, and Bernoulli laws by considering the quantum

walk in infinite discrete spaces without decoherence in Chapter 5. Even though

it is extremely hard to study analytically the quantized classical distributions,

we study their scaling limits and convergent rates, compare with their classical

analogues, and statistically conclude that the quantum analogues of Bernoulli

and Beta distributions under appropriate scaling exponents in this case are

Bernoulli Laws.
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CHAPTER 2

QUANTUM MARKOV

CHAINS AND RANDOM

WALKS

In classical probability, a random walk on Z is a Markov process described

by a stochastic transition matrix T. On the other hand, for a quantum walk,

instead of the transition matrix, the evolution of the system is described by

a unitary operator U acting on a Hilbert space H. Several different models

for quantum walks have been popularized. The two most commonly used

are the coined walk of Aharonov et al [1] and the quantum markov chain of

Szegedy [17]. Recently, S. Fan, Z. Feng, S. Xiong and W. Yang et al. [7]

demonstrated that under certain conditions, the limiting distribution of the
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rescaled position discrete-time decoherent quantum coined walks is a convex

combination of normal distributions. All quantum walks elaborated here in

this chapter are based on homogenuous coined Markov chains.

2.1 Decoherent quantum Markov chains

Let’s consider the states |1〉 and |2〉 which represent the head and tail

respectively when you flip a coin. Then, we suppose that they are orthonormal,

and the coined Hilbert space H is defined by

H = span{|1〉, |2〉},

which means that any element in H can be written as linear combination of |1〉

and |2〉. And, we denote the inner product of the space by 〈|i〉, |j〉〉 := 〈i|j〉,

and |i〉∗ = 〈i| for x = 1, 2. Therefore, we have for instance,

〈1|1〉 = 1, and 〈1|2〉 = 0

On the other hand, let U : H → H be a unitary operator acting on the

Hilbert space H itself. Recall that a unitary operator U satisfies the property

that UU∗ = U∗U = I (where I denotes the identity operator, and U∗ is the

adjoint of U).

Now, in order to define a decoherent quantum Markov chain over the

Hilbert space H, consider the decoherence parameter p ∈ [0, 1], and define



7

for i = 1, 2

Ai =
√
p · |i〉〈i|,

and

A0 =
√

1− p · I

Note that {A0, A1, A2} has the property that
∑

nAn
∗An = I, and is called a

measurement over the space H. This notion will be generally defined later in

Section 2.2.1.

Definition 2.1 Let |x〉 ∈ H, and ρ := |x〉〈x|, we define the time-homogeneous

decoherent operator Φ such as

Φ(ρ) =
2∑
i=0

AiUρU
∗A∗i

Now, suppose that x ∈ {1, 2} is the initial position, and ρ0 = |x〉〈x|, and

the n step time-homogeneous quantum Markov chain is defined as

ρn = Φ · · ·Φ
n times

(ρ0), (2.1)

and, the probability of getting y ∈ {1, 2} from the initial position x ∈ {1, 2}

after n steps is defined as the trace of |y〉〈y|ρn, we denote it by

Pn(x, y) := Tr
(
|y〉〈y|ρn

)
. (2.2)

Example 2.1 Let U such as,

U =

 1√
2

1√
2

1√
2
− 1√

2

 (2.3)
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Then the quantum Markov chain is called the Hadamard (fair coined) quantum

Markov chain.

2.2 Quantum random walks

Now, we want to define the decoherent quantum random walk by gener-

alizing the the idea from quantum Markov chain. First, We consider a pure

quantum random walk on the 1-dimensional integer lattices Z. The state space

is a Hilbert space H = Hp⊗Hc, where Hp denotes the position space, and Hc

denotes the coin space, and ⊗ is the tensor product. The orthonormal basis

of the position space are {|x〉, x ∈ Z} and, the orthonormal basis of the coin

space are |1〉 and |2〉. Tensor product of vector spaces and tensor operations

are detailedly explained in [4].

Definition 2.2 The standard shift operator So : H → H is a linear operator

defined as follows

So(|x〉 ⊗ |1〉) = |x+ 1〉 ⊗ |1〉

So(|x〉 ⊗ |2〉) = |x− 1〉 ⊗ |2〉

Definition 2.3 The flip-flop shift operator Sf : H → H is a linear operator

defined as follows
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Sf (|x〉 ⊗ |1〉) = |x+ 1〉 ⊗ |2〉

Sf (|x〉 ⊗ |2〉) = |x− 1〉 ⊗ |1〉

Note that we can also decompose the So and Sf as following

So = S+ ⊗ |1〉〈1|+ S− ⊗ |2〉〈2|

Sf = S+ ⊗ |2〉〈1|+ S− ⊗ |1〉〈2|

where S+, S− : Hp → Hp are linear operators defined by

S+(|x〉) := |x+ 1〉 (2.4)

S−(|x〉) := |x− 1〉. (2.5)

Let F : H → H be a unitary transformation on H defined by

F =
∑
x∈Z

|x〉〈x| ⊗ C, (2.6)

where C : Hc → Hc is a unitary operator. We can observe here that |x〉〈x| is

the projection operator over the position space Hp.

Definition 2.4 The evolution operator of quantum random walk is given by

U = SF, (2.7)

where S = So for a standard quantum random walk, and S = Sf for the

flip-flop quantum random walk.



10

Let |ψ0〉 ∈ H. Then |ψn〉 = Un|ψ0〉 = U · · ·U
n times

|ψ0〉 is called a quantum

random walk with initial state |ψ0〉. For convenience, we will use the short

notation |xi〉 = |x〉 ⊗ |i〉.

The probability that at time step n, the quantum random walk is observed

at state |xi〉 is defined by

pt(x
i) = |〈xi|ψt〉|2,

and the probability that at time t, the quantum random walk is observed at

state |x〉 is defined by

pt(x) =
2∑
i=1

pt(x
i) =

2∑
i=1

|〈xi|ψt〉|2. (2.8)

If the unitary operator does not depend on the position and time, the

quantum walk is called homogeneous quantum walk.

Example 2.2 Let S = Sf and for all x,

C =

 1√
2

1√
2

1√
2
− 1√

2


Then the quantum random walk is called the flip-flop Hadamard quantum ran-

dom walk.

Example 2.3 Let S = So and for all x,

C =

 1√
2

1√
2

1√
2
− 1√

2


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Then the quantum random walk is called the standard Hadamard quantum

random walk.

2.2.1 Decoherent walks

In physics, the quantum decoherence, in other words, lost of quantum co-

herence, is caused by environmental interactions. Mathematically, in quantum

random walks, is defined by measurements.

Definition 2.5 A set of operators {An} on H is called a measurement if it

satisfies ∑
n

An
∗An = I

Throughout this thesis, we also assume that the measurement is unital, i.e., it

satisfies ∑
n

AnA
∗
n = I

Suppose before each unitary transformation, a measurement is performed.

After the measurement, a density operator ρ on H is transformed by

ρ→ ρ′ =
∑
n

AnρA
∗
n.

Then after one step of the evolution and then under decoherence, the den-

sity operator becomes

ρ′ =
∑
n

AnUρU
∗A∗n (2.9)

Then the decoherent quantum random walk is defined as follows
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Definition 2.6 Let {An} a measurement on the Hilbert space H = Hp ⊗Hc.

Suppose we start from the state |0〉 ⊗ |Φ0〉, with Φ0 ∈ {1, 2}, then the initial

state is given by the density operator ρ0 = |0〉〈0| ⊗ |Φ0〉〈Φ0|, and the decoher-

ent quantum walk {ρt}t∈N with decoherence {An} is defined by the following

recursive relation:

ρ1 =
∑
n

AnUρ0U
∗A∗n

ρt =
∑
n

AnUρt−1U
∗A∗n

We can immediately deduce from the definition and obtain that for all

t = 1, 2, ...

ρ0 = |0〉〈0| ⊗ |Φ0〉〈Φ0| = (|0〉 ⊗ |Φ0〉)(〈0| ⊗ 〈Φ0|),

ρt =
∑

n1,...,nt

AntU · · ·An1U(|0〉 ⊗ |Φ0〉)(〈0| ⊗ 〈Φ0|)U∗A∗n1
· · ·U∗A∗nt

If we define the superoperator L to be an operator which maps L(H) to

L(H) such that

LB ≡
∑
n

AnUBU
∗A∗n, ∀B ∈ L(H), (2.10)

then

ρt = Ltρ0. (2.11)

For decoherent quantum random walk with decoherence {An}, the proba-

bility of reaching a point x at time t is defined by

pd(x, t) = Tr[(|x >< x| ⊗ Ic)ρt]

= Tr[(|x >< x| ⊗ Ic)Ltρ0], (2.12)
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where Tr(·) denotes the trace operator.

Interpreting the definitions in physics, for the measurements we defined

in section 2.1, we perform a measurement at {|i〉〈i|} with probability p and

no measurement with probability q = 1 − p at each time step n. If at the

measurement step, the outcome is |i〉, then the system is reset to |i〉. On the

other hand, we can also easily observe that if p = 1, measurement at each time

step with probability 1, ρn will represent the classical Markov chain or random

walk. Intuitively, ρn will be the pure quantum Markov chain or quantum walk

if p = 0.

The following examples show different decohorent quantum walks with dif-

ferent types of measurements {An}n∈N

Example 2.4 Let 0 ≤ p ≤ 1, A0 =
√

1− pIH , and Axi =
√
p(|x〉 ⊗ |i〉)(〈x| ⊗

〈i|). Then {A0, Axi;x ∈ Z1, i = 1, 2} is a measurement on H. When 0 < p ≤

1, ρt is called a totally (coin-space) decoherent quantum random walk.

Example 2.5 Let 0 ≤ p ≤ 1, A∅ =
√

1− pIH , and Ax =
√
p|x〉〈x|⊗ Ic. Then

{A∅, Ax;x ∈ Z1} is a measurement on H, and when 0 < p ≤ 1, ρt is called a

position space decoherent quantum random walk.

Example 2.6 Let 0 ≤ p ≤ 1, A0 =
√

1− pIH , and Ai =
√
pIp ⊗ |i〉〈i|. Then

{A0, Ai; i = 1, 2} is a measurement on H, and when 0 < p ≤ 1, ρt is called a

coin space decoherent quantum random walk.
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Considering the general measurement {An} and the homogeneous unitary

operator C, one of the recent and important achievements is that in [7], S.

Fan, Z. Feng , S. Xiong and W. Yang proved that under some conditions of

the superoperator L, the rescaled probability mass function on
Z√
t

by

p̂(x, t) ≡ pd(
√
tx, t), x ∈ Z√

t

converges in distribution to a continuous convex combination of normal dis-

tributions. Later in Chapters 3 and 4, we will mainly discuss the large

scale behavior of quantum Markov chains and quantum walks with the time-

inhomogenuous unitary operator from Example 4.3 and the coin space deco-

herence measurement from Example 2.6.
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CHAPTER 3

TIME-INHOMOGENEOUS

QUANTUM MARKOV

CHAINS

In classical probability theory, a discrete-time Markov chain on a finite

state space is a sequence of random variables {Xn}n∈N on a finite state space

with the property that the conditional probability distribution of future states

of the process depends only upon the present state, not on the sequence of

events that preceded it, in other words, the future outcomes depends only on

the present result, not the past ones. We also call this phenomenon Markov

property. With the decoherence parameter p ∈ (0, 1], classical Markov chains

on finite state spaces can naturally extend to decoherent quantum Markov
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chains as we defined in section 2.1.

In this chapter, instead of homogeneous unitary operators U , let’s first

consider Un : H → H, unitary defined by

Un =


√

1− λ
nζ

√
λ
nζ√

λ
nζ

−
√

1− λ
nζ

 ,
time inhomogeneous unitary operators, where λ and ζ are non negative real

numbers. And we can define the decoherent time-inhomogeneous quantum

Markov chain by extending the definitions from Section 2.1 with

Φn(ρ) =
2∑
i=0

AiUnρUn
∗A∗i (3.1)

with A0 =
√

1− p · I, and Ai =
√
p · |i〉〈i|, for p ∈ [0, 1], and i = 1, 2. Similarly

ρn = Φn · · ·Φ1(ρ0), (3.2)

Therefore, the probability of getting y ∈ {1, 2} from x ∈ {1, 2} at time n is

defined as

Pn(x, y) := Tr
(
|y〉〈y|ρn

)
. (3.3)

Note that we can easily obtain the homogeneous case from this setting by

letting ζ = 0. For example, if ζ = 0 and λ = 1
2
, we have the fair coined

quantum Markov chain from Example 2.1.
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3.1 Path integral formula and basic properties

Let’s start by proving some basic properties before we go to the equilibrium

convergence theorem. First, if we suppose that the quantum Markov chain we

defined is completely decoherent, p = 1, we have

Φn(ρ) =
2∑
i=1

AiUnρU
∗
nA
∗
i

and

Pn(i, j) = Tr
(
|j〉〈j|Φn|i〉〈i|

)
where ρ is any 2 by 2 density matrix, and i, j = 1, 2. Using the fact that

|k〉, k = 1, 2, ... are orthonormal basis, we obtain

Pn(i, j) =
2∑

k=1

Tr
(
|j〉〈j|k〉〈k|Un|i〉〈i|U∗n|k〉〈k|

)

=
2∑

k=1

Tr
(
〈j|k〉〈k|Un|i〉〈i|U∗n|k〉〈k|j〉)

)
= Tr

(
〈j|Un|i〉〈i|U∗n|j〉

)
= Un(j, i)U∗n(i, j) = |Un(j, i)|2

If ζ = 0 and p = 1, then it reduces to time-homogeneous Markov chain

and it is well known that ρn → ρ∞ when n → ∞ by the Ergodic Theorem

for finite-state Markov chains. Our focus now will be for the case of ζ > 0 or

0 < p < 1.

By Kolomogorov 0-1 law, for 0 < p ≤ 1, there exists an infinite sequence

of measurement when t→∞. Therefore, if X1, X2, ... are the outcome of the
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measurements, then {Xn}∞n=1 is a Markov chain (time-inhomogeneous Markov

chain).

Definition 3.1 Let {Tn}∞n=1 be i.i.d. geometric random variables with mean

1
p
, and let σ0 = 0 and σn = T1 + · · ·+ Tn, and define

Qn(i, j) := E
[∣∣〈j|Uσn−1+Tn · · ·Uσn−1+1|i〉

∣∣2] (3.4)

Proposition 3.1 Let {Tn}∞n=1 be i.i.d. geometric random variables with mean

1
p
, and let σ0 = 0 and σn = T1 + · · ·+ Tn. Then

(a) P
(
X1 = i1, X2 = i2, ..., Xn = in

)
= E

[∣∣〈in|Uσn · · ·Uσn−1+1|in−1〉
∣∣2 · · ·

· · ·
∣∣〈i1|Uσ1 · · ·U1|i〉

∣∣2]

(b) P
(
Xn = in|X1 = i1, X2 = i2, ..., Xn−1 = in−1

)
= P

(
Xn = in|Xn−1 =

in−1

)
= Q

(
in−1, in

)
Proof of 3.1: Let Φk(ρ) =

2∑
i=0

AiUkρU
∗
kAi, ρ ∈ E , where E =the set of all

density operators on H. The quantum operation of the partially decoherent

quantum process at step k is given by Φk.

Suppose that the initial state is ρ0 = |i〉〈i|. Then the state at time t is

ρt = Φt · · ·Φ1(ρ0)
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The probability at time t, the system is found at state |j〉 is given by

Tr(|j〉〈j|ρt) = Tr
(
〈j|

2∑
jt=0

· · ·
2∑

j1=0

AjtUt · · ·Aj2U2Aj1U1|i〉〈i|U∗1A∗j1 · · ·U
∗
t A
∗
jt |j〉

)

=
2∑

jt=0

· · ·
2∑

j1=0

Tr
(
〈j|AjtUt · · ·Aj2U2Aj1U1|i〉〈i|U∗1A∗j1 · · ·U

∗
t A
∗
jt |j〉

)

=
2∑

jt,...,j1=0

∣∣〈j|AjtUt · · ·Aj2U2Aj1U1|i〉
∣∣2

In each term of above sum, let 0 < σ1 < σ2 < ... < σn ≤ t be the times that

jσk = 1 or 2, and js = 0 for all s 6= σ1, ..., σn. 0 < σ1 < σ2 < ... < σn are called

decoherence time, and we put ik = jσk . So, the sum can be written as,

Tr(|j〉〈j|ρt) =
∞∑
n=0

∑
0=σ0<...<σn≤t

pnqt−n
2∑

in=1

· · ·
2∑

i1=1

∣∣〈j|Ut · · ·Uσn+1|in〉
∣∣2·

·
∣∣〈in|Uσn · · ·Uσn−1+1|in−1〉

∣∣2 · · · ∣∣〈i1|Uσ1 · · ·U1|i〉
∣∣2 (3.5)

Now, let’s proof part (a) of the proposition,

P
(
X1 = i1, ..., Xn = in

)
=
∞∑
t=1

P
(
X1 = i1, ..., Xn = in, σn = t

)
=
∞∑
t=1

∑
0<σ1<···<σn=t

Pσ1,...,σn,t
(
i1, ..., in, j

)
where t = σn and j = in

=
∑

0<σ1<···<σn<∞

pnqσn−n
∣∣〈in|Uσn · · ·Uσn−1+1|in−1〉

∣∣2 · · · ∣∣〈i1|Uσ1 · · ·U1|i〉
∣∣2

= E
[∣∣〈in|Uσn · · ·Uσn−1+1|in−1〉

∣∣2 · · · ∣∣〈i1|Uσ1 · · ·U1|i〉
∣∣2]

To prove (b), note that from (a), by independence of {Tn}∞n=1

P
(
X1 = i1, X2 = i2, ..., Xn = in

)
= Q1(i, i1) · · ·Q1(in−1, in)
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Then,

P
(
Xn = in|X1 = i1, ..., Xn−1 = in−1

)
=
P
(
X1 = i1, ..., Xn−1 = in−1, Xn = in

)
P
(
X1 = i1, ..., Xn−1 = in−1

)
= Qn(in−1, in)

We can also note that

P
(
Xn = in|Xn−1 = in−1

)
=
P
(
Xn = in, Xn−1 = in−1

)
P
(
Xn−1 = in−1

)
=

∑2
i1,...,in−2=1Q1(i, i1) · · ·Q1(in−2, in−1)Qn(in−1, in)∑2

i1,...,in−2=1Q1(i, i1) · · ·Q1(in−2, in−1)
= Qn(in−1, in)

�

Remarks:

(a) It follows from Proposition 3.1 (b) that X1, X2, ... is a time inhomoge-

neous Markov chain with transition probability

P
(
Xn = j|Xn−1 = i

)
= Qn(i, j), 1 ≤ i, j ≤ 2,

and this is illustrated in the following diagram

0 1 ... σ1

↑

X1

... σ2

↑

X2

... σn−1

↑

Xn−1

σn

↑

Xn

... t σn+1

↑

Xn+1

time

T1 T2 Tn Tn+1

(b) This proposition gives a probabilistic interpretation of decoherence time

0 < σ0 < σ1 < ... < σn < ... as a sequence of arrival times of indepen-

dence Bernoulli trials with success probability p, and {Xn}∞n=1 can be

viewed as discrete version of a compound Poisson process.
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(c) For σn ≤ t, and from Equation (3.5), we obtain an expression for the

probability that the system is found at state j with exact decoherent

time σ1, ...σn and outcomes i1, i2, ..., in.

Definition 3.2 (Path integral formula) The probability that the system is

found at state j with exact decoherent time σ1, ..., σn and outcomes i1, i2, ..., in,

in this case X1 = i1, ...Xn = in if σn ≤ t, for the decoherent quantum random

walk for 0 < p ≤ 1 can be written as the path integral formula:

Pσ1,σ2,...,σn,t
(
i1, i2, ..., in, j

)
:= pnqt−n

∣∣〈j|Ut · · ·Uσn+1|in〉
∣∣2 · · · ∣∣〈i1|Uσ1 · · ·U1|i〉

∣∣2
The path integral formula defined in Definition 3.2 is not only very intuitive

expression to understand the probability of an specific path from the initial

state, but also very useful for generating numerical simulations. We will discuss

the simulation applications in Section 3.4.

3.2 Convergence to equilibrium

Before we prove the convergence, let’s first observe that Qn defined in

Definition 3.1 is doubly stochastic which will be useful later in the proof.

Proposition 3.2 Qn is doubly stochastic for all n ∈ N.

Proof of 3.2: Note that a matrix A = (aij) is doubly stochastic if

∑
i

aij = 1 for all j
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and ∑
j

aij = 1 for all i

So, we have for all j = 1, 2,

2∑
i=1

Qn(i, j) =
2∑
i=1

E
[
〈j|Uσn−1+Tn · · ·Uσn−1+1|i〉〈i|U∗σn−1+1 · · ·U∗σn−1+Tn|j〉

]

= E
[ 2∑
i=1

Tr
[
|j〉〈j|Uσn−1+Tn · · ·Uσn−1+1|i〉〈i|U∗σn−1+1 · · ·U∗σn−1+Tn

]]
= E

[
Tr
(
|j〉〈j|

)]
= 1

And also,
2∑
j=1

Qn(i, j) = 1 for all i = 1, 2 by similar argument.

�

Finally, we have the equilibrium property

Proposition 3.3 If 0 < ζ ≤ 1, then

Q1Q2Q3 · · ·Qn → Π =

1/2 1/2

1/2 1/2

 ,
as n→∞, for all 0 < p ≤ 1.

Proof of 3.3 : Let’s consider first the homogeneous case, and let δ > 0 such

that Q ≥ δΠ. Note that for any α > 0, we can write

Q = α
(Q− δΠ

α

)
+ δΠ = αQ̃+ δΠ

where Q̃ = Q−δΠ
α

is a stochastic matrix, and then

Qn =
(
αQ̃+ δΠ

)n
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=
n∑
k=0

αn−kδk
[(n
k

)
terms of different combinations of n-k Q̃’s and k Π’s

]
Now, take α =

∑
j

(
Q − δΠ

)
(i, j) = 1 − δ and use the fact that Q is doubly

stochastic, we have the following,

1. α + δ = 1 by construction.

2. Π · Π = Π.

3. Q̃ · Π =
Q− δΠ

α
Π =

QΠ− δΠ2

α
=

Π− δΠ
α

=
1− δ
α

Π = Π

4. Similarly, we have Π · Q̃ = Π

5. Q̃ is doubly stochastic.

Now, since α < 1 we have

Qn = αnQ̃n +
n∑
k=1

αn−kδk
(
n

k

)
Π = αnQ̃n +

[
(α + δ)n − αn

]
Π

= αnQ̃n + (1− αn)Π→ Π as n→∞

For the inhomogeneous case, X1, X2, X3... is a Markov chain, we note that

by independence and properties of conditional probability

Qn(i, j) = P (Xn = j|Xn−1 = i)

=
∞∑
s=1

∞∑
t=1

P
(
Xn = j|Xn−1 = i, σn−1 = s, Tn = t

)
·P
(
σn−1 = s, Tn = t|Xn−1 = i

)
=
∞∑
s=1

∞∑
t=1

∣∣∣〈j|Us+t · · ·Us+1|i〉
∣∣∣2 · P(Tn = t|σn−1 = s

)
· P
(
σn−1 = s

)
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=
∞∑
s=1

∞∑
t=1

∣∣∣〈j|Us+t · · ·Us+1|i〉
∣∣∣2 · P(Tn = t) · P

(
σn−1 = s

)
Note that if we consider only the term t = 1, and using the fact that P

(
Tn =

t/σn−1 = s
)

= qt−1p, we have

Qn(i, j) ≥
∞∑
s=1

∣∣∣〈j|Us+1|i〉
∣∣∣2 · p · P(σn−1 = s

)

= p
∞∑
s=1

∣∣∣〈j|Us+1|i〉
∣∣∣2 · P(σn−1 = s

)
≥ p

∞∑
s=1

λ

(s+ 1)ζ
· P
(
σn−1 = s

)
= pλ · E

[ 1

(σn−1 + 1)ζ

]
≥ δn · Π

Where δn = 2pλ · E
[

1
(σn−1+1)ζ

]
.Therefore,

Qn = αn

(Qn − δnΠ

αn

)
+ δnΠ = αnQ̃n + δnΠ

Since αn = 1− δn and Q̃n is stochastic.

Q1Q2 · · ·Qn =
n∏
k=1

[
αnQ̃n + δnΠ

]
=

n∏
k=1

αkQ̃k +
(
1−

n∏
k=1

αk
)
Π

The last equality can be proved by induction, if n=2

[
α1Q̃1 + (1− α1)Π

]
·
[
α2Q̃2 + (1− α2)Π

]
= α1α2Q̃1Q̃2 + (1− α1)α2ΠQ̃2 + α1(1− α2)Q̃1Π + (1− α1)(1− α2)Π2

= α1α2Q̃1Q̃2 + Π− α1α2Π + α1Π− α1α2Π− Π + α1α2Π + Π− α1Π =

α1α2Q̃1Q̃2 + (1− α1α2)Π
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And now, let’s assume that the formula is true for n, and prove it for n+ 1,

n+1∏
k=1

[
αnQ̃n + δnΠ

]
=
[ n∏
k=1

αkQ̃k +
(
1−

n∏
k=1

αk
)
Π
][
αn+1Q̃n+1 + (1− αn+1)Π

]

=
n+1∏
k=1

αkQ̃k +
n∏
k=1

αk(1−αn+1)Π+
(
1−

n∏
k=1

αk
)
αn+1Π+

(
1−

n∏
k=1

αk
)
(1−αn+1)Π

=
n+1∏
k=1

αkQ̃k+
n∏
k=1

αkΠ−
n+1∏
k=1

αkΠ+αn+1Π−
n+1∏
k=1

αkΠ+Π−αn+1Π−
n∏
k=1

αkΠ+
n+1∏
k=1

αkΠ

=
n+1∏
k=1

αkQ̃k −
(
1−

n+1∏
k=1

αk
)
Π

We observe that if
∞∏
k=1

αk = 0, Q1Q2 · · ·Qn → Π, and we have obtained the

conclusion.

To check this, note that

n∏
k=1

αk =
n∏
k=1

(1− δk) =
n∏
k=1

[
1− 2pλE

[ 1

(σk−1 + 1)ζ
]]

= e

∑n
k=1 ln

[
1−2pλE

[
1

(σk−1+1)ζ

]]
≤ e

−
∑n
k=1 2pλE

[
1

(σk−1+1)ζ

]
since ln(1− x) ≤ −x for 0 < x < 1.

Observe that each Tk ≥ 1, so we have, T1+...Tk−1+1

k−1
≥ 1 + 1

k−1
for all k ,

and this implies

1
T1+...+Tk−1+1

k−1

≤ 1

1 + 1
k−1

≤ 1

Which means that by the Bounded Convergence Theorem,

E
[ 1

(σk−1 + 1)ζ
]
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= E
[ 1(T1+T2+···+Tk−1+1

k−1

)ζ ] 1

(k − 1)ζ
→ 1

(E(T1))ζ
1

(k − 1)ζ
=

pζ

(k − 1)ζ

as k →∞

Therefore,

n∏
k=1

αk ≤ e
−

∑n
k=1 2pλE

[
1

(σk−1+1)ζ

]
≤ exp

(
−

n∑
k=1

pζ

(k − 1)ζ

[E[ 1
(σk−1+1)ζ

]
pζ

(k−1)ζ

])

Now, since
E
[

1
(σk−1+1)ζ

]
pζ

(k−1)ζ

→ 1 as k → ∞, we have that
∏n

k=1 αk → 0 if ζ ≤ 1

And, we conclude that, Q1 · · ·Qn → Π for all 0 ≤ ζ ≤ 1 and 0 < p ≤ 1. �

Note that for the special homogeneous case ζ = 0, the result is already

known, and it was proved by M. Lagro in [12] that the quantum Markov chain

is convergent.

If we look at the proof of this theorem, we can generalize the technique to

this general theorem in classical probability.

Theorem 3.1 Let Pk be the Markov transition matrices on a finite states

space Σ, suppose ΠPk = PkΠ = Π for all k and Pk ≥ δkΠ. If
∞∏
k=0

(1− δk) = 0,

then P1 · · ·Pn → Π as n→∞.

Now, note that if our Qk satisfies the conditions of Theorem 3.1, and

therefore Proposition 3.3 holds, and this is more general than Proposition 3.3

extending the result to n by n matrices.
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3.3 General case m×m

The idea is to generalize the results to the general m × m case. Let’s

observe the following example.

Example 3.1 Let G =

1 1

1 1

 self-adjoint, and Un a 2 × 2 unitary matrix

such that Un = ei
G

nζ , Note that G has the eigenvalues λ1 = 2 and λ2 = 0 with

their eigenvectors v1 =

 1√
2

1√
2

 and v2 =

 1√
2

− 1√
2

.

So, with A =

 1√
2

1√
2

1√
2
− 1√

2

. We diagonalize

G = A

2 0

0 0

A∗ = A

2 0

0 0

A
Therefore, we have

eiG = A · exp
(
i

2 0

0 0

) · A =

ei2r2 + r2 ei2r2 − r2

ei2r2 − r2 ei2r2 + r2


where r = 1√

2
, which implies

e
i G√

nζ =

 1
2

(
e
i 2√

nζ + 1
)

1
2

(
e
i 2√

nζ − 1
)

1
2

(
e
i 2√

nζ − 1
)

1
2

(
e
i 2√

nζ + 1
)


=⇒ |Un|2 = |ei
G√
nζ |2 =

 1
4
|
(
e
i 2√

nζ + 1
)
|2 1

4
|
(
e
i 2√

nζ − 1
)
|2

1
4
|
(
e
i 2√

nζ − 1
)
|2 1

4
|
(
e
i 2√

nζ + 1
)
|2


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Note that the off-diagonal terms are close to 0 when n is large, and with θ =

2√
nζ

1

4
|
(
e
i 2√

nζ −1
)
|2 =

1

4

(
e
i 2√

nζ −1
)(
e
i 2√

nζ −1
)

=
1

4

(
2−eiθ−e−iθ

)
=

1

4

(
2−2 cos θ

)
=

1

2

[
1− cos(

2√
nζ

)
]
≈ 1

2
· 1

2

( 2√
nζ

)2
=

1

nζ

Therefore, with δn = 2
nζ

, we have obtained

|Un|2 ≥ δn ·

1
2

1
2

1
2

1
2


and

∞∏
n=1

αn =
∞∏
n=1

(1− δn) ∼ e−
∑∞
n=1 δn

Now, we generalize the idea to high dimensional space. Let’s consider

H = span{|1〉, ..., |m〉} with m ∈ N, and Un = e
i G√

nζ with G a m×m symmet-

ric matrix such that there exists ε > 0, |Gij| > ε0 for all i, j with the following

Φn(ρ) =
m∑
i=0

AiUnρU
∗
nA
∗
i

and

ρn = Φn · · ·Φ1(ρ) (3.6)

where A0 =
√

1− pI and Ai =
√
p|i〉〈i|, 1 ≤ i ≤ m, and let ρ0 = |i〉〈i|

fixed, and

Pn(j) = Tr
(
|j〉〈j|ρn

)
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And assume that T1, T2, ... are i.i.d. Geo(p), and σn = T1 + · · ·Tn, fix t, define

nt = max{n : σn ≤ t}.

So, we have

Pt(j) = Tr
(
|j〉〈j|ρt

)
= E

[
Q1(i, j1)Q2(j1, j2) · · ·Qnt(jnt−1, jnt)W (jnt , j)

]
whereQn(i, j) = E|〈j|Uσn−1+Tn · · ·Uσn−1+1|i〉|2 andW (i, j) = E

[
|〈j|Ut · · ·Uσn+1|i〉|2

]

The idea is to show

Proposition 3.4 For all probability distribution V and i, j = 1, 2, ...,m, if

0 < ζ ≤ 1 and 0 < p ≤ 1, then

∑
i

ViPt(j)→ πj =
1

m
,

as t→∞.

Proof of 3.4: Observe that we can write

V Q1 · · ·QnW − Π = V Q1 · · ·QnW − V Q1 · · ·Qn + V Q1 · · ·Qn − Π

= V Q1 · · ·Qn

(
W − I

)
+
(
V Q1 · · ·Qn − Π

)
Since 0 < ζ ≤ 1, the second term tends to 0 as n → ∞ by Theorem 3.1, and

hence, it’s enough to show that W − I → 0 since V Q1 · · ·Qn is bounded.

W (i, j) = E|〈j|Ut · · ·Uσnt+1|i〉|2 = E
∣∣〈j|e iG√

tζ · · · e
iG√

(σnt+1)ζ |i〉
∣∣2

= E
∣∣〈j|eiG∑t

k=σnt+1
1√
kζ |i〉

∣∣2
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Note that if we show that |〈j|eiG
∑t
k=σnt+1

1√
kζ |i〉

∣∣2 → 0 a.s. for i 6= j. By

Dominated Convergence Theorem, W (i, j)→ δij, and we obtain the result.

Let’s write Un = UF
n +UD

n for every n where UF
n are the off-diagonal parts and

UD
n is the diagonal parts of Un. So, for i 6= j,

|〈j|eiG
∑t
k=σnt+1

1√
kζ |i〉

∣∣2 =
∣∣∣ t∑
l=σNt+1

〈j|Ut · · ·Ul+1U
F
l U

D
l−1 · · ·UD

σNt+1|i〉
∣∣∣2

This expansion is made by U · · ·U(UF + UD) = U · · ·UUF + U · · ·U(UF +

UD)UD = · · · . By Cauchy-Schwarz,

≤ (t− σNt)
t∑

l=σNt+1

∣∣〈j|Ut · · ·Ul+1U
F
l U

D
l−1 · · ·UD

σNt+1|i〉
∣∣∣2

By definition, we have Un = e
iG√
nζ , where G is symmetric m by m matrix and

|Un| ≤ 1.

≤ (t− σNt)
t∑

l=σNt+1

∣∣〈j|Ut · · ·Ul+1U
F
l |i〉Ul−1(i, i) · · ·UσNt+1(i, i)

∣∣2

≤ (t− σNt)
t∑

l=σNt+1

∣∣∑
k 6=i

〈j|Ut · · ·Ul+1|k〉Ul(k, i)Ul−1(i, i) · · ·UσNt+1(i, i)
∣∣2

By Cauchy-Schwarz again,

≤ (t−σNt)
t∑

l=σNt+1

(m−1)
∑
k 6=i

∣∣〈j|Ut · · ·Ul+1|k〉
∣∣2∣∣Ul(k, i)∣∣2∣∣Ul−1(i, i) · · ·UσNt+1(i, i)

∣∣2
Using the fact that

∣∣〈j|Ut · · ·Ul+1|k〉
∣∣2 ≤ 1,

∣∣Ul(k, i)∣∣2 = O( 1
lζ

), and

∣∣Ul−1(i, i) · · ·UσNt+1(i, i)
∣∣2 ≤ 1,
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we conclude

(t− σNt)
t∑

l=σNt+1

(m− 1)2O
( 1

lζ
)
≤ (m− 1)2(t− σNt)2O

( 1

(σNt + 1)ζ

)

Now, it’s enough to prove that
(t− σNt)2

(σNt)
ζ
≤

T 2
Nt+1

(T1 + · · ·+ TNt)
ζ
→ 0 as. The

first inequality is trivial, and note that

∞∑
n=1

P
(∣∣∣T 2

n

nζ

∣∣∣ > ε
)

=
∞∑
n=1

P
(
T 2
n > nζε

)
=
∞∑
n=1

P
(T 2

ζ

1

ε
1
ζ

> n
)
≤ E

(T 2
ζ

1

ε
1
ζ

)
+ 1 <∞

And by Borel-Cantelli Lemma

P
(∣∣∣T 2

n

nζ

∣∣∣ > ε i.o.
)

= 0

Therefore

T 2
n

nζ
→ 0 a.s.

So, using the law of large numbers, we can conclude that

T 2
n+1

(T1 + · · ·Tn)ζ
=

T 2
n+1

nζ

(T1+···Tn
n

)ζ
→ 0

E(T1)ζ
a.s.

�

Therefore, we have the most general convergence theorem for decoherent quan-

tum Markov chains as follows,

Theorem 3.2 Suppose that |Gij| ≥ ε0 for all i, j. Let ρ0 = |i〉〈i|, if 0 < ζ ≤ 1

and 0 < p ≤ 1, then

ρt →
m∑
i=1

Πi · |i〉〈i|

where Πi = 1
m

, for i = 1, ...,m.
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Proof of 3.2: First, consider µt(j) = Tr
(
|j〉〈j|ρt

)
, and we show that µt → Π.

Note that

µt(j) =
m∑

i1,...it=0

Tr
(
〈j|AitUit · · ·Ai1Ui1|i〉〈i|A∗i1U

∗
i1
· · ·A∗itU

∗
it |j〉

)

=
m∑

i1,...it=0

∣∣∣〈j|AitUit · · ·Ai1Ui1|i〉∣∣∣2
=
∞∑
n=0

∑
0<σ1<···<σn≤t

m∑
j1,...jn=1

∣∣∣〈j|Ut · · ·Uσn+1|jn〉〈jn|Uσn · · ·Uσn−1+1|jn−1〉 · · ·

· · · 〈j1|Uσ1 · · · · · ·U1|i〉
∣∣∣2qt−npn

=
∞∑
n=0

∑
0<σ1<···<σn≤t

m∑
j1,...jn=1

∣∣∣〈j|Ut · · ·Uσn+1|jn〉
∣∣∣2qt−σn−1p×

×
∣∣∣〈jn|Uσn · · ·Uσn−1+1|jn−1〉

∣∣∣2qσn−σn−1−1p · · ·
∣∣∣〈j1|Uσ1 · · ·U1|i〉

∣∣∣2qσ1−1p

Consider T1, T2, ... iid geometric(p), σn = T1 + · · ·Tn,

Nt = max{n ≥ 0, σn ≤ t}

Qn(i, j) = E
[∣∣〈j|Uσn · · ·Uσn−1+1|i〉

∣∣2]
W (i, j) = E

[∣∣〈j|Uσt · · ·UσNt+1|i〉
∣∣2]

So, we also consider

µt(j) = E
[ m∑
j1,...,jNt=1

∣∣〈j|Ut · · ·UσNt+1|jNt〉
∣∣2∣∣〈jNt|UσNt · · ·UσNt−1+1|jNt−1〉

∣∣2 · · ·
· · ·
∣∣〈j1|Uσ1 · · ·U1|i〉

∣∣2],
and νt(j) = E

[ m∑
j1,...,jNt=1

∣∣〈jNt|UσNt · · ·UσNt−1+1|jNt−1〉
∣∣2 · · · ∣∣〈j1|Uσ1 · · ·U1|i〉

∣∣2]
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Let Qk,l(i, j) =
∣∣〈j|Ul · · ·Uk+1|i〉

∣∣2, we write

νt(j) = E
[(
Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

)
(i, j)

]
Note that the Cauchy Criterium ‖Qσm,σm+1 · · ·Qσn−1,σn − I‖ → 0 a.s. implies

lim
n→∞

Q1,σ1Qσ1,σ2 · · ·Qσn−1,σn =
∞∏
s=1

Qσs−1,σs , a.s

where σ0 = 1, now, since Nt →∞ when t→∞, we obtain

lim
t→∞

Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt
=
∞∏
s=1

Qσs−1,σs a.s.

Therefore, by BCT and independence, when t→∞

νt(j)→ E
[ ∞∏
s=1

Qσs−1,σs

]
=
∞∏
s=1

E
[
Qσs−1,σs

]
(i, j) = lim

n→∞

n∏
s=1

E
[
Qσs−1,σs

]
(i, j)

Since we have defined Qn(i, j) = E
[∣∣〈j|Uσn · · ·Uσn−1+1|i〉

∣∣2],
lim
n→∞

n∏
s=1

E
[
Qσs−1,σs

]
(i, j) = lim

n→∞
Q1Q2 · · ·Qn(i, j) = Π(i, j)

Now, ∣∣µt(j)− νt(j)∣∣ ≤
≤
∣∣∣E[(Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

)
(i, j)

]
− E

[(
Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

)
(i, j)

]∣∣∣
≤
∣∣∣E[(Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

QσNt ,t

)
(i, j)−

(
Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

)
(i, j)

]∣∣∣
≤ E

∣∣∣Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

(
QσNt ,t

− I
)
(i, j)

∣∣∣
Note that as t→∞

∥∥Q1,σ1Qσ1,σ2 · · ·QσNt−1,σNt

(
QσNt ,t

− I
)∥∥
∞
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≤ ‖Q1,σ1‖∞ ‖Qσ1,σ2‖∞ · · ·
∥∥QσNt−1,σNt

∥∥
∞

∥∥QσNt ,t
− I
∥∥
∞ ≤

∥∥QσNt ,t
− I
∥∥
∞ → 0

By Bounded Convergence Theorem,
(
QσNt ,t

− I
)
(i, j) → 0 a.s., and therefore∣∣µt(j)− νt(j)∣∣→ 0.

We have proved that if ρ0 = |i〉〈i|, then Tr
(
|j〉〈j|ρt

)
→ Πj, let’s show now

ρt →
m∑
j=1

πj · |j〉〈j|.

Enough to show that Tr
(
|k〉〈j|ρt

)
→ 0 for all k 6= j. We can see that

Tr
(
|k〉〈j|ρt

)
= 〈j|ρt|k〉 = 〈j|Φt · · ·Φ2Φ1|i〉〈i|k〉

=
m∑

i1,i2,...,it=0

〈j|AitUt · · ·Ai1U1|i〉〈i|U∗1A∗i1 · · ·U
∗
t A
∗
it |k〉

= E
[ m∑
j1,...,jNt=1

〈j|Ut · · ·UσNt+1|jNt〉〈jNt |UσNt · · ·UσNt−1+1|jNt−1〉 · · ·

· · · 〈j1|Uσ1 · · ·U2U1|i〉〈i|U∗1U∗2 · · ·U∗σ1|i〉 · · · 〈jNt−1|U∗σNt−1
· · ·U∗σNt |jNt〉×

×〈jNt |U∗σNt+1 · · ·U∗t |k〉
]

= E
[ m∑
j1,...,jNt=1

〈j|Ut · · ·UσNt+1|jNt〉(Q1σ1Qσ1σ2 · · ·QσNt−1σNt
)(i, jNt)×

×〈jNt |U∗σNt+1 · · ·U∗t |k〉
]

Now, we define

W (i, j, k) := 〈j|Ut · · ·UσNt+1|i〉〈i|U∗σNt+1 · · ·U∗t |k〉

= 〈j|Ut · · ·UσNt+1|i〉〈k|Ut · · ·UσNt+1|i〉
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So, we have that

Tr
(
|k〉〈j|ρt

)
= E

[
Q1σ1Qσ1σ2 · · ·QσNt−1σNt

W
]
(i, j, k)

We define

|QW (i, j, l)| :=
∣∣∑

l

Q(i, l)W (l, j, k)
∣∣

≤ sup
l
||w(l, j, l)|

∑
l

Q(i, l) = sup
l
|w(l, j, k)| → 0

as t→ for all j 6= k. Since either j or k 6= l, and ζ > 0, suppose that j 6= l

∣∣〈j|Ut · · ·UσNt+1
|l〉
∣∣2 → 0

and ∣∣〈k|Ut · · ·UσNt |l〉∣∣2 ≤ 1

�

3.4 Numerical simulations

Let’s go back to the path integral formula defined in Definition 3.2 and the

Equation (3.5), and this leads us to the following algorithms for 2 dimensional

case, H = span{|1〉, |2〉}, to generate the numerical simulations:

Step 1: Generate T1, T2, ..., Tn iid with geometric distribution with a given 0 <

p ≤ 1.

Step 2: Define σ0 = 0, σ1 = T1, ..., σn = T1 + · · ·+ Tn
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Step 3: For each k, calculate Qσk,σk+1
(i, j) = |〈j|Uσk+1

· · ·Uσk+1|i〉|2

Step 4: Fix t, and σNt ≤ t < σNt+1, define WσNt ,t
(i, j) = |〈j|Ut · · ·UσNt+1|i〉|2

Step 5: Compute the matrix Q0,σ1Qσ1,σ2 · · ·QσNt−1,σNt
WσNt ,t

Step 6: Run the k samples of the simulation and calculate the mean.

Step 7: Calculate the absolute value of the difference between the mean from

step 6. and the matrix

 1
2

1
2

1
2

1
2

 for each time t.

Some Python codes for basic operator calculations will be annexed in Appendix

B. We assume that λ = 1
2
, and run 1000 samples for 5000 time steps.

First, we consider the case ζ = 0.8, we can observe that the simulation

results with different values of p shown in Figures 3.1, 3.2, and 3.3 that the

absolute value of the difference between the matrix product obtained and

the equilibrium matrix

 1
2

1
2

1
2

1
2

 converges to 0 which is in accord with the

convergence theorems we proved. Moreover, quantum mechanics intuition tells

us that if p is closer to 0, less decoherent, the convergence phenomenon to the

classical result should not be clear. This can be observed in Figure 3.3, that

the convergence is slower compared with Figures 3.1 and 3.2. In other words,

if the probability of the quantum system to be measured is closer to 0, the

system will converge slowly.
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Figure 3.1: Quantum Markov chain convergence for ζ = 0.8 and p = 0.9

Figure 3.2: Quantum Markov chain convergence for ζ = 0.8 and p = 0.6

Figure 3.3: Quantum Markov chain convergence for ζ = 0.8 and p = 0.3
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Figure 3.4: Quantum Markov chain convergence for ζ = 1 and p = 0.9

Figure 3.5: Quantum Markov chain convergence for ζ = 1 and p = 0.6

Figure 3.6: Quantum Markov chain convergence for ζ = 1 and p = 0.3
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Another interesting example to analyze is when ζ = 1. We can observe

from Figures 3.4, 3.5, and 3.6 that the convergence is slower than the case

ζ = 0.8.
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CHAPTER 4

TIME-INHOMOGENEOUS

QUANTUM RANDOM

WALKS

Percolation as a mathematical theory was introduced by Broadbent and

Hammersley [2], and it is applied to model probabilities which are affected

by different environment. For instance space-inhomogeneous random walk on

Z, the probability of each step depends on the state position in Z. However,

instead of the space, the probability can only depends on the time step. Let’s

define the inhomogeneuous quantum analogue of the random walk on the in-

finite discrete space Z. Avoiding the confusion with the notations in Chapter

3, we will useˆfor the operators in this chapter. We let H = Hp ⊗Hc and for
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n = 1, 2, ...., F̂n : H → H be a inhomogeneous unitary transformation on H

defined by

F̂n =
∑
x∈Z

|x〉〈x| ⊗ Cn,x, (4.1)

where Cn,x : Hc → Hc are unitary operators which depend on the time n

and the position x.

Generalizing from Definition 2.4, the inhomogeneous evolution operator at

time n of quantum random walk is given by

Ûn = SF̂n, (4.2)

where S = So for a standard quantum random walk, and S = Sf for the

flip-flop quantum random walk.

Similarly to homogeneous quantum walk defined in Chapter 2. Let |ψ0〉 ∈

H. Then |ψt〉 = Ût...Û2Û1|ψ0〉 is called an inhomogeneous quantum random

walk with initial state |ψ0〉. The probability that at time t, the quantum

random walk is observed at state |xi〉 is defined by

p̂t(x
i) = |〈xi|ψt〉|2, (4.3)

and the probability that at time t, the quantum random walk is observed at

state |x〉 is defined by

p̂t(x) =
∑
i

|〈xi|ψt〉|2. (4.4)
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For decoherent time-inhomogeneous quantum random walks, we suppose

the quantum walk starts at the state |0〉 ⊗ |Φ0〉, then, the initial state is given

by the density operator

ρ̂0 = |0〉〈0| ⊗ |Φ0〉〈Φ0| = (|0〉 ⊗ |Φ0〉)(〈0| ⊗ 〈Φ0|). (4.5)

After t steps, with the decoherence measurement {An}n∈N, the state evolves

to

ρ̂t =
∑

n1,...,nt

AntÛt · · ·An1Û1(|0〉 ⊗ |Φ0〉)(〈0| ⊗ 〈Φ0|)Û∗1A∗n1
· · · Û∗t A∗nt (4.6)

=
∑
n

AnÛtρ̂t−1Û
∗
t A
∗
n (4.7)

The probability that at time t, the decoherent inhomogeneous quantum

random walk is observed at state |xi〉 is defined by

p̂t(x
i) = Tr([|xi〉〈xi|]ρ̂t) (4.8)

and the probability that at time t, the quantum random walk is observed at

state |x〉 is defined by

p̂t(x) =
∑
i

pt(x
i) = Tr([|x〉〈x| ⊗ Ic]ρ̂t) (4.9)

If the unitary operator depends on the position or the time, the quantum

walk is called inhomogeneous quantum walk, here we have some examples

of position-inhomogenuous quantum walk and time-inhomogenuous quantum

walks,
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Example 4.1 Let S = Sf , and Cn,x = Cx depends on the position such that

Cx =

 ( 1
1+|x|)

1/2 (1− 1
1+|x|)

1/2

(1− 1
1+|x|)

1/2 −( 1
1+|x|)

1/2


Then the quantum random walk is called the flip-flop quantum random walk

with linear drift.

Example 4.2 Let S = So, and Cn,x = Cx depends on the position such that

Cx =

 ( 1
1+|x|)

1/2 (1− 1
1+|x|)

1/2

(1− 1
1+|x|)

1/2 −( 1
1+|x|)

1/2


Then the quantum random walk is called the standard quantum random walk

with linear drift.

Example 4.3 Let S = So, and Cn,x = Cn depends on the time step such that

Cn =


√

1− λ
nζ

√
λ
nζ√

λ
nζ

−
√

1− λ
nζ


where λ and ζ are non negative real numbers.

4.1 Time-inhomogenuous quantum walk and

its path integral expression

We now concentrate on analyzing the decoherent time-inhomogeneous quan-

tum walk defined with unitary operators in Example 4.3, and the total deco-

herence measurement defined in Example 2.4. We have with the initial density
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operator ρ0 = |0〉〈0| ⊗ |Φ0〉〈Φ0|, and the decoherence measurement

{Axi;x ∈ Z1, i = 1, 2} ∪ {A0}

where for p ∈ [0, 1], x ∈ Z, and i = 1, 2

Axi =
√
p · |x〉〈x| ⊗ |i〉〈i|,

and

A0 =
√

1− p · Ip ⊗ Ic.

Then our time inhomogeneous quantum walk with total decoherence measure-

ment with decoherence parameter p is defined as

ρ̂t = A0Ûtρ̂t−1Û
∗
t A
∗
0 +

∑
x,i

Ax,iÛtρ̂t−1Û
∗
t A
∗
x,i (4.10)

with the time-inhomogeneous unitary operators

Cn =


√

1− λ
nζ

√
λ
nζ√

λ
nζ

−
√

1− λ
nζ

 (4.11)

where λ, ζ > 0.

Let T1, T2... geometric random variables with probability p with σ1 = T1,...,

σn = T1 + ...+Tn, and ρ0 = |0〉〈0| ⊗ |i0〉〈i0|, we have that the probability after

t steps at the position x

p̂t(x) =
2∑
j=1

Tr
(
|x〉〈x| ⊗ |j〉〈j|ρ̂t

)
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Let’s recall the Qn’s defined in Definition 3.1 using the time-inhomogeneous

operators above in (4.11)

Qn(i, j) := E
[∣∣〈j|Cσn−1+Tn · · ·Cσn−1+1|i〉

∣∣2], (4.12)

and, for discrete infinite space quantum walks, we generalize the idea to the

following definition,

Definition 4.1 Let Q̂σiσi+1
(x, y, i, j) the probability from x to the state y on

the position space, and i to j on the coin space during the time σi to σi+1, and

Ŵ (x, y, i, j) the probability from x to the state y on the position space, and i

to j on the coin space during the time σn to t, which is

Q̂σk,σk+1
(x, y, i, j) = |〈y, j|Ûσk+1

· · · Ûσk+1|x, i〉|2

ŴσNt ,t
(x, y, i, j) = |〈y, j|Ût · · · ÛσNt |x, i〉|

2

where x, y ∈ Z, and i, j = 1, 2

Therefore, we have the probability at x after t time steps using the path

integral expression, by coin-space decoherence

p̂t(x) =
2∑
j=1

E
[ ∑
x1,...,xσNt

∈Z

∑
i1,...iNt∈{1,2}

Q̂σ0σ1(0, i0, x1, i1) · · ·

· · · Q̂σNt−1σNt
(xσNt−1, iσNt−1, xNt , iNt)ŴσNt ,t

(xσNt , iσNt , x, j)
]

Note that using the translation invariant property

Q̂σiσi+1
(x, i, y, j) = Q̂σiσi+1

(0, i, y − x, j),
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ŴσNt ,t
(x, i, y, j) = ŴσNt ,t

(0, i, y − x, j)

Let’s just denote

Q̂σiσi+1
(x, i, j) := Q̂σiσi+1

(0, i, x, j),

and

ŴσNt ,t
(x, i, j) := ŴσNt ,t

(0, i, x, j),

and define for i, j ∈ {1, 2}

Rσkσk+1
(i, j) :=

∑
x∈Z

Q̂σkσk+1
(x, i, j)

R̃σNt ,t
(i, j) :=

∑
x∈Z

ŴσNt ,t
(x, i, j)

And, we obtain the path integral expression for p̂t(x),

p̂t(x) =
2∑
j=1

E
[ ∑
x1,...,xk

∑
i1,...ik

Q̂σ0σ1(x1, i0, i1)

Rσ0σ1(i, i1)
· · ·

Q̂σNt−1σNt
(xk − xk−1, ik−1, ik)

RσNt−1σNt
(ik−1, ik)

·

·
ŴσNt t

(x− xk, ik, j)
R̃σNt t

(ik, j)
·Rσ0σ1(i0, i1) · · ·RσNt−1,σNt

(iσNt−1, iσNt )R̃σNt t
(ik, j)

]

4.2 Representation theorem

Now, suppose that Ik is the Markov chain defined by I0 = i0 with the

property that P (Ik+1 = j|Ik = i) = Rσkσk+1
(i, j), and Ĩt such that P (It =

j|INt = i) = R̃σNt t
(i, j). Also let µσkσk+1

(·, i, j) and µ̃σNt t(·, i, j) be probability

distributions on Z for i, j = 1, 2 defined as

µσkσk+1
(x, i, j) :=

Q̂σk,σk+1
(x, i, j)∑

x∈Z Q̂σk,σk+1
(x, i, j)

,
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and

µ̃σNt t(x, i, j) =
ŴσNt ,t

(x, i, j)∑
x∈Z ŴσNt ,t

(x, i, j)
,

Let Yσk,σk+1
(i, j) independent random variables with distributions µσkσk+1

(·, i, j),

and ỸσNt ,t(i, j) random variable with distribution µ̃σNt t(·, i, j). We have

p̂t(x) =
2∑
j=1

EσEY
(
1x

[
Yσ0σ1(i0, i1) + Yσ1σ2(i1, i2) + · · ·+ YσNt−1σNt

(ik−1, ik)+

+ỸσNt t(ik, j)
]
·
[
Rσ0σ1(i0, i1) · · ·RσNt−1σNt

(ik−1, ik) · R̃σN t(ik, j)
])

= EσEIEY
(
1x

[
Yσ0σ1(i0, I1) + Yσ1σ2(I1, I2) + · · ·+ YσNt−1σNt

(INt−1, INt)+

+ỸσNt t(INt , It)
])

We have proved the following representation theorem,

Theorem 4.1 (σ-I-Y representation theorem) Let the initial state be |0〉⊗

|i0〉, then the probability of the time-inhomogeneous quantum walk defined in

(4.10) and (4.11) is found in x is

p̂t(x) = EσEIEY
(
1x

[
Yσ0σ1(i0, I1) + Yσ1σ2(I1, I2) + · · ·+ YσNt−1σNt

(INt−1, INt)+

+ỸσNt t(INt , It)
])

Remark 4.1 Theorem 4.1 not only gives us a new formula about calculating

the probability of a quantum random walk to be found in x at time t, but also

a better visualization of it using path integral expression connecting quantum
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probability and classical analytic probability. We will discuss some applications

and examples for the theorem in Section 4.3.

4.3 Applications and examples

Theorem 4.1 can directly imply the following Monte Carlo simulation algo-

rithms to estimate the probability at x and the distribution of the decoherent

quantum walk at time t.

4.3.1 Algorithms

Following the proof of Theorem 4.1, and using the same notations, we have

Step 1: Fix t, generate T1, T2, ..., Tn, Tn+1 iid with geometric distribution with

probability p, and let σ0 = 0, σ1 = T1, ..., σn+1 = T1 + · · · + Tn+1, and

suppose that σn < t < σn+1.

Step 2: Let Q̂σk,σk+1
(x, i, j) = |〈x, j|Ûσk+1

· · · Ûσk+1|0, i〉|2, and Ŵσn,t(x, i, j) =

|〈x, j|Ût · · · Ûσn|0, i〉|2 where x ∈ Z, and i, j = 1, 2.

Step 3: Using the Q̂σk,σk+1
and Ŵσn,t from the previous step to generate Yk+1,

independent random variables with distribution µσkσk+1
(·, i, j), and Ỹt

random variable with distribution µ̃σn,t(., i, j).

Step 4: Fix i, and j, generate Zt(i, j) = Y1(i, j)+Y2(i, j)+ · · ·+Yn(i, j)+ Ỹt(i, j)
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Step 5: Generate different samples of the Markov chain I0 = i0, {Ik}nk=0, and It

with the transition P (Ik+1 = j|Ik = i) = Rσkσk+1
(i, j), and P (It = j|In =

i) = R̃σn,t(i, j) for each Markov chain It generate sample for Zt(i0, It).

Step 6: Repeat the procedure with different samples of {σn}, and take the av-

erage over Y , I, and σ, then we obtain the probability for each x ∈ Z,

and the distribution of the decoherent quantum walk at time t.

We run the simulation using the algorithm with different values of λ, ζ, and

p in Python, and following examples show that the simulated scaling limits

accord with the theoretical results proven. Some basic operators codes will be

annexed in Appendix B.

4.3.2 Approximation of classical probability distribu-

tion densities

We note that if p = 1, the probability to make the measurement at each

step is 1 which means that the decoherent quantum walk becomes a classical

probability random walk with time-inhomogeneous transition matrix

Cn =

1− λ
nζ

λ
nζ

λ
nζ

1− λ
nζ

 ,
and J. Englander and S. Volkov in [6] proved that if ζ = 1, the scaling limit

p̂(x, t) ≡ pd(tx, t), x ∈
Z
t
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converges to the symmetric Beta distribution, Beta(λ,λ), in [−1, 1]. In par-

ticular, p̂(x, t) converges to arcsine law, uniform law and semicircle law when

λ = 1
2
, 1, 3

2
respectively.

Therefore in our model, with p = 1 and respective parameters above,

our algorithms can generates the approximations of these distributions. By

taking large samplings numbers and time scales, the generated approximated

distributions will converge to the theoretical distributions. With t = 500,

Figure 4.1, Figure 4.2 and Figure 4.3 show the obtained approximated arcsine,

uniform, and semicircle laws in the interval [−1, 1]

Figure 4.1: Approximated arcsine law for ζ = 1, λ = 1
2

and p = 1

Another interesting case is when
∑

λ
nζ
<∞, theory shows that

p̂(x, t) ≡ pd(tx, t), x ∈
Z
t

converges to Bernoulli(1
2
) by Borel-Cantelli Lemma [6] as we can see in Figure

4.4.
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Figure 4.2: Approximated uniform law for ζ = 1, λ = 1 and p = 1

Figure 4.3: Approximated semicircle law for ζ = 1, λ = 3
2

and p = 1

4.3.3 Approximation of decoherent Hadamard walk

We can observe that if ζ = 0, the model becomes a decoherent homogeneous

quantum walk. For instance, by taking ζ = 0 and λ = 1
2
, the unitary operators

will be
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Figure 4.4: Approximated density for ζ = 3
2
, λ = 1

2
and p = 1

Cn =


√

1
2

√
1
2√

1
2
−
√

1
2


for all n, and we have the decoherent Hadamard walk with both coin and

position spaces measurement. K. Zhang in [19] proved that the limiting dis-

tribution of the rescaled probability mass function on
Z√
t

by

p̂(x, t) ≡ pd(
√
tx, t), x ∈ Z√

t
,

is Gaussian with mean µ = 0, and variance σ2 =
p+ 2

√
1 + q2 − 2

p
where

q = 1− p.

Figure 4.5 shows the obtained approximated normal distribution with µ =

0, and σ2 = 4
√

1 + 1
4
− 3 generated by our algorithms.
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Figure 4.5: Approximated density for ζ = 0, λ = 1
2

and p = 1
2

4.3.4 Estimating limiting distributions when p < 1

Physical intuitions tell us that whenever the pure quantum system starts

being interacted by the environment, the system will become classical phe-

nomenons in long term, in other words, the measurements can make the pure

quantum system approximating the classical results. Mathematically, if the

decoherent parameter p is greater than 0, the long time scaling limits should be

similar to the pure classical case when p = 1, analogue results for decoherent

analogue quantum walk were proved in [7] and [19].

First, we consider the case ζ = 1. However, unlike the decoherent Hadamand

walk case, for ζ = 1, arcsine, uniform, and semicircle law in the interval [−1, 1]

have no parameters, which we can deduce that it will be difficult to find the

explicit limiting distribution for p < 1. Thus, finding the right scaling param-

eter will be crucial for these cases, but we observe that if the scaling limit is nα
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where α 6= 1, the densities will spread out to either infinity or accumulate to

only one point. Therefore, we estimate the decoherent densities for 0 < p < 1

with λ = 1
2
, 1, 3

2
, with the scaling exponent α = 1.

(a) p = 0.3 (b) p = 0.7

Figure 4.6: Estimated partially decoherent densities for ζ = 1 and λ = 1
2

(a) p = 0.3 (b) p = 0.7

Figure 4.7: Estimated partially decoherent densities for ζ = 1 and λ = 1

Figures 4.6, 4.7, and 4.8 illustrate the transitions of ζ = 1 and λ = 1
2
, 1, 3

2

(arcsine, uniform, semicircle cases respectively) when p increases. Since they
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(a) p = 0.3 (b) p = 0.7

Figure 4.8: Estimated partially decoherent densities for ζ = 1 and λ = 3
2

are not parameterizable, we can only observe the transitions and compare

with the classical arcsine, uniform and semicircle densities. Here, it is clear

that they all have the classical distribution shapes, and when the decoherence

parameter p increases, the estimated densities approximate to the classical

distributions.

J. Englander and S. Volkov also proved that if 0 < ζ < 1, the scaling limit

p̂(x, t) ≡ pd(t
(1+ζ)

2 x, t), x ∈ Z
t
(1+ζ)

2

converges to Normal(0, σ2) where σ =
1√

λ(1− ζ)
. Which means that the

limiting distribution is Gaussian with parameter σ2 when p = 1. Like the

homogeneous case, we expect now that the the variance of the limiting distri-

bution may also depend on the decoherence parameter p. Even though there

is no rigorous proofs about their explicit limiting distributions, we estimate

the limiting distributions through our algorithm.
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(a) p = 0.3 (b) p = 0.7

(c) p = 1

Figure 4.9: Estimated partially decoherent densities for ζ = 1
5

and λ = 1
2

Figures 4.9, 4.10, and 4.11 show the simulation results for estimated densi-

ties for ζ = 1
5
, 1

2
, 4

5
, and λ = 1

2
with different p. These figures not only illustrate

the transitions when p increases, but also demonstrate the normality of the

densities. We can observe that for all cases, the estimated limiting distribu-

tions are Gaussian, and the variances are greater when p is small. Moreover,

from Figure 4.11, we note that the convergence is slower. Therefore we can

make a conjecture that the limiting distributions are normal, and the variances

depend on the parameter p such that if p decreases, the variances increase.

Last case we consider is when λ > 1, and Figure 4.12 illustrate the esti-

mated densities for p = 0.3 and p = 0.7.
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(a) p = 0.3 (b) p = 0.7

(c) p = 1

Figure 4.10: Estimated partially decoherent densities for ζ = 1
2

and λ = 1
2

Note that the applications of Theorem 4.1 give us not only a analytic

visualization of decoherent quantum walks in general, but also an approach to

approximate classical distributions through quantum algorithms which could

be useful in the future when quantum computers are fully developed.
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(a) p = 0.3 (b) p = 0.7

(c) p = 1

Figure 4.11: Estimated partially decoherent densities for ζ = 4
5

and λ = 1
2

(a) p = 0.3 (b) p = 7

Figure 4.12: Estimated partially decoherent densities for ζ = 3
2

and λ = 1
2
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CHAPTER 5

QUANTIZING CLASSICAL

DISTRIBUTIONS

It is time to consider the time-inhomogeneous pure quantum walk. In this

case, the probability to make a measurement at each time step is p = 0, that

means that the system maintains in the pure quantum environment. On the

other hand, we know that for the complete space-time decoherent quantum

walk p = 1 from the Chapter 4, the limiting distributions with the appropriate

scaling exponents, converge to

• Beta(λ,λ) law when ζ = 1.

• Bernoulli(1
2
) law when ζ > 1.

As results, our model gives us an algorithm to determine quantum ana-
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logues of these two classical distributions by taking p = 0 with respective

parameters mentioned above. We call them quantized classical distributions.

For instance, we can obtain a quantized normal distribution by considering

the Hadamard Walk, and a quantized arcsine distribution by taking p = 0,

ζ = 1, and λ = 1
2
.

Unlike the decoherent quantum walk, the pure quantum walk calculation

can be executed easily by linear algebra and matrices operations. Therefore,

the explicit distributions can be obtained by simulation, and the quantum ana-

logue of the classical distribution can be visualized and analyzed numerically.

5.1 Quantized Beta and Bernoulli distributions

The fact that the density of Hadamard walks, with scaling exponent 1 with

symmetric initial conditions, converges to

1

π(1 + x)
√

1− 2x2
for x ∈ (− 1√

2
,

1√
2

),

proven by Konno in [11] (Quantized normal distribution) motivates us to

study numerically the convergence of

p̂(x, t) ≡ pd(t
γx, t), x ∈ Z

tγ
, (5.1)

with p = 0 and different ζ’s and λ’s, distributions of time-inhomogeneous pure

quantum random walk. We will analyze statistically the scaling limits and the
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convergence rates γ of Equation (5.1).

5.1.1 Scaling exponents for ζ ≥ 1

We first consider the case ζ ≥ 1, when the classical distributions do not

converge to normal distributions. Using symmetric initial conditions,

ρ0 =
1√
2

(
|0〉 ⊗ |1〉+ |0〉 ⊗ |2〉

)
,

Figures 5.1, 5.2, 5.3 and 5.4 illustrate the simulation results of the quantized

arcsine, uniform, semicircle , and Bernoulli law using different scaling expo-

nents tα with α = 0.7, 0.8, 0.9, 1 for t = 2000.

Figure 5.1: Explicit density for ζ = 1, λ = 1
2

using different scaling exponents
α = 0.7, 0.8, 0.9, 1
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Figure 5.2: Explicit density for ζ = 1, λ = 1 using different scaling exponents
α = 0.7, 0.8, 0.9, 1

Figure 5.3: Explicit density for ζ = 1, λ = 3
2

using different scaling exponents
α = 0.7, 0.8, 0.9, 1
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Figure 5.4: Explicit density for ζ = 3
2
, λ = 1

2
using different scaling exponents

α = 0.7, 0.8, 0.9, 1

We observe from these figures that the mass of the densities spreads rapidly

to the end points of the interval. Because of the fact that tr → ∞ for r > 0,

the mass will spread out to infinity if α < 1, we expect that the correct scaling

exponent is 1. Moreover, we also observe that even for the scaling exponent

equal to 1, the mass will concentrate at the a neighborhood of the end points

of the interval [−1, 1]. Even more, we will show numerically that the mass will

concentrate at exactly two points, −1 and 1.
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5.1.2 Convergent rates to Bernoulli distribution

Let’s statistically analyze the convergent rates, by fixing a large t, suppose

that α = 0.03 and define

εt := min{k ∈ N :
−t+k∑
i=−t

pd(i, t) ≥
1− α

2
},

Intuitively, since we are using symmetric initial conditions, for fix t, more than

97% of the density in the set

{x ∈ Z : x = −t,−t+ 1, ...,−t+ εt} ∪ {x ∈ Z : x = t− εt, ..., t− 1, t},

In other words, εt is the length of the neighborhood from the end points −t

and t such that 97% of the mass is concentrated.

And now we define αt = εt
t
. Note that in this case, with fixed t, the

probability that you can find the rescaled quantum walk in the interval in

[−1,−1 + αt] ∪ [1− αt, 1] is 1− α, which is,

∑
x∈[−1,−1+αt]

p̂(x, t) ≥ 1− α
2

where x ∈ Z
t
.

Assuming the fact that αt converges to 0 as t → ∞, we fit two nonlinear

regression: exponential decay model ce−rt and rational decay model ct−r in

Matlab. (See [15] [10] for more details about nonlinear regression and its

applications)

First, suppose that

αt ∼ ce−rt,
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taking natural logarithms both side, we obtain that

ln(αt) ∼ ln(c) + (−rt).

Therefore, the exponential decay rate r can be obtained by

r = lim
t→∞

ln(αt)

t
,

in other words, if t is large, r is approximately

r ∼ ln(αt)

t
.

Second, if we assume the rational decay model αt ∼ ct−r, we can obtain by

similar argument that the rational decay rate,

r = lim
t→∞

ln(αt)

ln(t)
,

and if t is large , r ∼ ln(αt)
ln(t)

.

Considering t = 2000, by taking initial vectors

[c0, r0] = [1,
ln(α2000)

2000
], [1,

ln(α2000)

ln(2000)
]

for exponential and rational models respectively, we fit both models in Matlab.

As results, for all three cases we considered, rational decay model has better

R-squared estimate and root mean squared error (see definitions of R-squared

estimate and root mean squared and Figure A.3 in Appendix A). For instance,

Figures A.1(a) and A.1(b) show better results for rational decay model when

ζ = 1 and λ = 1
2

. The R-squared estimate of the rational decay model is
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0.987, while the R-squared estimate is 0.915 for the exponential decay model.

The root mean error: 0.0154 for the rational decay model and 0.0389 for the

exponential decay model.

Figure 5.5: Non linear regression model comparison for ζ = 1, λ = 1
2

and p = 0

Figure 5.6: Non linear regression model comparison for ζ = 1, λ = 1 and p = 0
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Figure 5.7: Non linear regression model comparison for ζ = 3
2
, λ = 1 and p = 0

On the other hand, Figures 5.5, 5.6, and 5.7 show both fitted model and αt

and we observe that the rational decay model fits better . It is clear that the

functions graphed by rational model using estimated coefficients by nonlinear

regression behave more similarly than the functions graphed by exponential

models.

Note that how fast αt converges to 0 determines the rate of convergence

to Bernoulli distribution for each ζ and λ. In order to compare numerically

the rates for different values, we execute nonlinear regression for the rational

model by fixing ζ = 1 and varying λ. then by varying ζ and fixing λ = 1
2
.

Tables 5.1 and 5.2 present estimated values of the nonlinear regression for the

rational model αt ∼ ct−r we considered.

Figures 5.8(a) and 5.8(b) illustrate the convergent rates for thse two sit-
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λ 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
c 5.64 5.25 5.17 4.70 4.51 4.40 4.20 4.08 4.03 3.84 3.87
r 0.46 0.43 0.42 0.40 0.38 0.37 0.36 0.35 0.34 0.33 0.32

Table 5.1: Estimated coefficients by nonlinear regression for fixed ζ = 1 and
p = 0

ζ 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
c 5.64 7.23 10.67 12.11 13.86 17.48 15.47 17.46 14.28 13.96 12.06
r 0.46 0.54 0.65 0.71 0.77 0.85 0.86 0.92 0.92 0.94 0.93

Table 5.2: Estimated coefficients by nonlinear regression for fixed λ = 1
2

and
p = 0

uations, i.e. first fixing ζ = 1 and varying λ, and then, varying ζ and fixing

λ = 1
2
. Therefore, we observe from nonlinear regression results that when we

fix ζ = 1, the convergent rate r in function of ζ is increasing which means that

the time-inhomogeneous quantum walk converges faster to Bernoulli distribu-

tion while ζ increases. On the other hand, with fixed λ = 1
2

the convergent

rate r in function of λ is decreasing which means that it converges slower to

Bernoulli distribution if λ increases.

Intuitively, if λ, ζ > 0 the transition matrix

Cn =


√

1− λ
nζ

√
λ
nζ√

λ
nζ

−
√

1− λ
nζ

→
1 0

0 1

 ,
and the rate the matrix converges depends on the term λ

nζ
in the matrix.

Indeed, it’s clear that for large λ’s and small ζ’s the matrix converges slower

than small λ’s and large ζ’s which accords to our simulation results.
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(a) λ = 1
2 (b) ζ = 1

Figure 5.8: Estimated convergence rates by rational decay model for p = 0

5.2 Comparison with decoherent quantum walk

when p = 1 and ζ ≥ 1

After we study numerically the convergent rates of the quantum analogues

of the classical distributions in the previous section, it is also interesting to

compare the obtained results with the convergent rates of the decoherent walks

with p = 1, their classical analogues. In order to do this comparison, we first

fit nonlinear regression model to our model with p = 1 and ζ > 1.
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5.2.1 Convergent rates of the decoherent walk when ζ >

1 to Bernoulli

Note that for p = 1, the densities converge to Bernoulli distribution with

scaling exponent γ = 1, which says that

p̂(x, t) ≡ pd(tx, t), x ∈
Z
t
,

converges to Bernoulli distribution (See [6]). Therefore, in this section, we

study statistically the convergent rate of them.

Let’s consider αt as we defined in Section 5.1.2, we fit two nonlinear regres-

sion: exponential decay model ce−rt and rational decay model ct−r in Matlab

with the same initial value formula we considered,

[c0, r0] = [1,
ln(α2000)

2000
], [1,

ln(α2000)

ln(2000)
],

for exponential and rational models respectively.

As results, for all two cases we considered, rational decay model has better

R-squared estimate and root mean squared error again (see Figure A.4 in

Appendix A). For instance, Figures A.4(a) and A.4(b) show better results for

rational decay model when ζ = 5
4

and λ = 1
2

. The R-squared estimate of

the rational decay model is 0.997, while the R-squared estimate is 0.85 for the

exponential decay model. The root mean error: 0.00197 for the rational decay
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Figure 5.9: Non linear regression model comparison for ζ = 5
4
, λ = 1

2
and

p = 1

Figure 5.10: Non linear regression model comparison for ζ = 9
5
, λ = 1

2
and

p = 1

model and 0.0131 for the exponential decay model.

Moreover, Figures 5.9 and 5.10 show both fitted model and αt and we
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observe that the rational decay model fits better . It is also clear that the

functions graphed by rational model using estimated coefficients by nonlinear

regression behave more similarly than the functions graphed by exponential

models.

λ 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
c 3.31 2.91 2.54 2.31 2.14 1.97 1.89 1.80 1.70 1.67 1.61
r 0.30 0.26 0.22 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.11

Table 5.3: Estimated coefficients by nonlinear regression for fixed ζ = 3
2

and
p = 1

ζ 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.25
c 1.15 1.46 2.39 4.82 8.92 14.35 18.27 18.21 19.74 13.96 10.19
r 0.05 0.10 0.22 0.39 0.56 0.71 0.82 0.89 0.96 0.94 0.93

Table 5.4: Estimated coefficients by nonlinear regression for fixed λ = 1
2

and
p = 1

In order to compare the convergence rates with the pure quantum case in

the previous section, we execute nonlinear regression for the rational model by

fixing ζ = 3
2

and varying λ. then by varying ζ and fixing λ = 1
2
. Tables 5.3

and 5.4 present estimated values of the nonlinear regression for the rational

model αt ∼ ct−r we considered.

Figures 5.11(a) and 5.11(b) illustrate the convergence rates for these two

situations, i.e. first fixing λ = 1
2

and varying ζ, and then, varying λ and fixing

ζ = 3
2
. Therefore, we observe from nonlinear regression results that when we

fix ζ = 3
2
, the convergence rate r in function of ζ is decreasing which means

that the decoherent quantum walk converges faster to Bernoulli distribution
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(a) λ = 1
2 (b) ζ = 3

2

Figure 5.11: Estimated convergence rates by rational decay model for p = 1

while ζ increases. On the other hand, with fixed λ = 1
2

the convergence rate r

in function of λ is increasing which means that it converges slower to Bernoulli

distribution if λ increases.

The most interesting thing we observe here by comparing the results from

the case p = 0 in previous section is that not only both densities converges to

Bernoulli distribution, but also the estimated convergent rates are increasing

by fixing λ = 1
2

for both p = 0 and p = 1 cases. Moreover, the ranges of

estimated convergence rates for p = 0 and p = 1 are approximately [0.45, 0.95]

and [0.05, 0.9] respectively for fixed λ = 1
2

and 1 < ζ < 2, which means that

the convergence to Bernoulli distribution is faster for the quantum case (see

Figures 5.8(a) and 5.11(a)).

As results, our statistical analysis shows that though our model, not only
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the quantum analogue of Bernoulli distribution in this case is Bernoulli dis-

tributions with the same scaling exponent, but also the convergence speed is

even greater that than the decoherent walk when p = 1.

5.2.2 Densities of the decoherent walk when ζ = 1

For this critical case, it is proven that the densities don’t converge to

Bernoulli distributions. Instead, they converge to symmetric Beta law with

parameter λ, Beta(λ,λ). (see [6])

Figure 5.12: Probability densities with t = 2000, ζ = 1 and p = 1
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However, Figure 5.12 illustrates the densities simulated by taking t = 2000

with different values of λ’s. We observe that when λ = 1
2
, 1, 3

2
, the figure shows

approximated arcsine, uniform and semicircle densities respectively.

Therefore, this concludes statistically that even though the densities of

the decoherent quantum walks for p = 1 converge to different classical dis-

tributions depending the values of λ, their quantum analogues converge to

Bernoulli distributions with different rates of convergence showed in Section

5.1.2. Hence, the quantum analogue of the symmetric Beta distribution in this

case is again Bernoulli distribution in the interval [−1, 1].
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CHAPTER 6

CONCLUSION

In this thesis we first considered the time-inhomogeneous unitary operators,

and defined the time-inhomogeneous quantum analogue of the classical Markov

chain with decoherence parameter on two dimensional finite state space and

we interpreted the decoherent parameter as the probability to perform a mea-

surement, that means that at each step, we perform a measurement with a

certain probability. We proved the Markov properties at the geometric mea-

surement times using the path integral representation, and the convergence to

a equilibrium limit at large time scale when time tends to infinity.

Moreover, we generalized the result to any finite dimensional state space,

and made the conclusion that the time-inhomogeneous quantum Markov chain

with non zero probability of measurement also converges to an equilibrium

limit as time approaches to infinity.
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Second, we also defined the general time-inhomogeneous quantum walk

with decoherence on the discrete infinite state space. More specifically, we

studied the time-inhomogeneous quantum walk with space-coin decoherence

on the set of integers with the time-inhomogeneous unitary operator using the

path integral formula and its interpretation as probabilistic geometric mea-

surement time and the time-inhomogeneous Markov chain on the coin space.

As results, we proved a representation theorem which not only gives us a

better probabilistic illustration about the probability at each state, but also

gives an approach to approximate the classical distribution through quantum

algorithms and a tool to calculate probability densities of quantum walk with

decoherence in general.

Additionally, quantized arcsine, uniform, semicircle and Bernoulli distribu-

tions were introduced by considering the time-inhomogeneous quantum walk

without decoherence on the infinite discrete space. We analyzed their scaling

limits and convergence rates statistically using nonlinear regression model, and

concluded that not only they all converge to Bernoulli distribution with scal-

ing exponent 1, but also the convergence speeds are higher than their classical

analogues.
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APPENDIX A: NONLINEAR

REGRESSION

A regression analysis is called nonlinear regression when observational data

is modeled by a nonlinear predicted function of one or more independent vari-

ables (see [15] and [10] for more details). However, the following definitions of

root mean square error and coefficient of determination are useful for compar-

ing the efficiency of different fitted models.

Definition A.1 (Root mean square error) If we have a data set of n val-

ues y1, ..., yn, each associated with a fitted value f1, ...fn, predicted values, the

root mean square error is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − fi)2.

Definition A.2 (Coefficient of determination) If we have a data set of n

values y1, ..., yn, each associated with a fitted value f1, ...fn, predicted values,
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the coefficient of determination is defined as,

R2 = 1−
∑n

i=1(yi − fi)2∑n
i=1(yi − ȳ)2

,

where ȳ =
1

n

n∑
i=1

yi.

Definition A.3 (Adjusted coefficient of determination) With the pre-

vious setting, adjusted coefficient of determination is defined as,

R̄2 = 1− (1−R)2 n− 1

n− p− 1
,

where p is the total number of explanatory variables in the model.

Simulation results

Figures in this section show the nonlinear regression results for both pure

quantum walk and decoherent quantum walk cases.
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(a) Exponential model for ζ = 1 and λ = 1
2 (b) Rational model for ζ = 1 and λ = 1

2

Figure A.1: Nonlinear regression model comparison for pure quantum walk
with ζ = 1, λ = 1

2
and t = 2000

(a) Exponential model for ζ = 1 and λ = 1 (b) Rational model for ζ = 1 and λ = 1

Figure A.2: Nonlinear regression model comparison for pure quantum walk
with ζ = 1, λ = 1 and t = 2000
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(a) Exponential model for ζ = 3
2 and λ = 1 (b) Rational model for ζ = 3

2 and λ = 1

Figure A.3: Nonlinear regression model comparison for pure quantum walk
with ζ = 3

2
, λ = 1 and t = 2000

(a) Exponential model for ζ = 5
4 and λ = 1

2 (b) Rational model for ζ = 5
4 and λ = 1

2

Figure A.4: Nonlinear regression model comparison for decoherent quantum
walk with ζ = 5

4
, λ = 1

2
and t = 2000
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(a) Exponential model for ζ = 9
5 and λ = 1

2 (b) Rational model for ζ = 9
5 and λ = 1

2

Figure A.5: Nonlinear regression model comparison for decoherent quantum
walk with ζ = 9

5
, λ = 1

2
and t = 2000
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APPENDIX B: PYTHON

CODE

Geometric times

The function ”generateGeometricTimes” generates a sequence of geometric

distribution numbers, and returns the sum of those numbers, see Figure B.1.

Figure B.1: Generation of numbers with geometric distribution
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Time-inhomogeneous unitary operator

The function ”generateMatrixU” returns the unitary matrix

Un =


√

1− λ
nζ

√
λ
nζ√

λ
nζ

−
√

1− λ
nζ

 ,
see Figure B.2.

Figure B.2: Generation of the time-inhomogeneous unitary operator U

Time-inhomogeneous Markov matrix Q

The function ”generateMatrizQ” generates the matrix Q defined in Defi-

nition 3.1.

Figure B.3: Generation of the time-inhomogeneous Markov matrix Q
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Evolution operator for discrete infinite space

The function ”EvolutionOp” applies the evolution operator defined in Def-

inition 2.4 using standard shift with unitary matrix U .

Figure B.4: Evolution operator for quantum walks
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Markov chain I

The function ”generateMarkovI” generates the Markov chain I defined in

the proof of Theorem 4.1.

Figure B.5: Evolution of the Markov chain I


