
Some Aspects of the Theory of the Adelic Zeta Function
Associated to the Space of Binary Cubic Forms

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Charles A. Osborne

May, 2010



ii

c⃝
by

Charles A. Osborne

May, 2010

All Rights Reserved



iii

ABSTRACT

Some Aspects of the Theory of the Adelic Zeta Function Associated to the

Space of Binary Cubic Forms

Charles A. Osborne

DOCTOR OF PHILOSOPHY

Temple University, May, 2010

Professor Boris A. Datskovsky, Chair

This paper gives a classification of the lattices of a four dimensional vector
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CHAPTER 1

Introduction

In 2008, Ohno, Taniguchi and Wakatsuki obtained a classification of all

GL2(Z)-invariant lattices in VQ = Q4. In this paper, we aim to generalize their

result by replacing the rational field with an arbitrary algebraic number field,

K. We conclude the paper by connecting the lattices described in our main

result to a zeta function developed by Datskovsky and Wright, which yields a

functional equation for certain Dirichlet series attached to the lattices.

We begin our labors with a discussion of the space of binary cubic forms

over K. This is necessary to describe the action of GL2 on K4, and to define

the zeta function mentioed above. To simplify our exposition, we introduce

some notation.

Notation 1.1 Throughout this thesis, V denotes the four dimensional affine

space. Also, we will let G denote the general linear group of order 2. B

will represent the subgroup of G consisting of lower triangular matrices. Thus

VK = K4, GK = GL2(K), and BK = {A ∈ GK : A is lower triangular}.

The space of binary cubic forms over K is the set

{x1u
3 + x2u

2v + x3uv
2 + x4v

3 : xi ∈ K}.

We identify the cubic form x1u
3 + x2u

2v + x3uv
2 + x4v

3 with the point x =

(x1, x2, x3, x4) ∈ VK , and we will denote the form as either x or Fx(u, v). The
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group GK acts on the space of binary cubic forms by linear change of variables.

Indeed, we have:

Definition 1.1 Let g = ( a b
c d ) ∈ GK, and let x ∈ VK. We define the action of

g on x by

g · x = Fg·x(u, v) = det(g)−1Fx ((u v) ( a b
c d )) .

The twist by det(g)−1 ensures that if g = ( a 0
0 a ), then g · x = ax.

For a form x, we let P (x) denote the discriminant of the polynomial Fx(u, 1):

for x = (x1, x2, x3, x4), we have

P (x) = x2
2x

2
3 + 18x1x2x3x4 − 4x3

2x4 − 4x1x
3
3 − 27x2

1x
2
4.

Observe that for g ∈ GK , P (g ·x) = det(g)2P (x). We call a form x nonsingular

if P (x) ̸= 0.

We will refer to the roots of the polynomial Fx(u, 1) as the roots of the

form x, and K(x) will be the splitting field of Fx(u, 1) over K. This is either

a cyclic extension of K of degree 3 or less, or a degree 6 extension with Galois

group S3. In this latter case, we may think of K(x) as a conjugacy class of

noncyclic cubic extensios of K. We now recall a Proposition from Section 2 of

[11], giving the orbits in our action of GK on VK .

Proposition 1.1 The GK-orbits in VK are as follows:
S0 = {0} (the zero form)
S1,K = {x ∈ VK : x has a triple root. }
S2,K = {x ∈ VK : x has a double root, as well as a simple root. }
VK(K

′) = {x ∈ VK : P (x) ̸= 0, K(x) = K ′}
In the fourth class of orbit, K ′ runs over all conjugacy classes of extensions of

K with degree at most 3.

Indeed, the works of Datskovsky and Wright cited here rely on the fact that

the map x → K(x) induces a one to one correspondence between the orbits of

nonsingular binary cubic forms overK, and the conjugacy classes of extensions

of K of degree not exceeding 3.
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[11] also chooses standard representatives for each type of orbit, which we

will use in a future calculation. For S0, S1,K , and S2,K , these are (0, 0, 0, 0),

(1, 0, 0, 0), and (0, 1, 0, 0), respectively. For nonsingular forms x with K(x) =

K, we choose (0, 1, 1, 0) as our standard representative. For forms such that

the degree of K(x) over K is 2, we consider θ such that K(x) = K(θ), and

pick (0, 1, θ+θ
′
, θθ

′
), where θ

′
is the Galois conjugate of θ over K. When K(x)

is a conjugacy class of cubic extensions, we again choose θ which generates a

member of this class over K, and pick (1, θ+ θ
′
+ θ”, θθ

′
+ θθ” + θ

′
θ”, θθ

′
θ”) to

be our standard representative, where again, θ
′
and θ” are the conjugates of θ.

The stabilizers of our nonsingular forms are also known. The following

Proposition originally appears in [11].

Proposition 1.2 Let x ∈ VK, with P (x) ̸= 0.
(i) If [K(x) : K] = 1, then |StabGK

(x)| = 6.
(ii) If [K(x) : K] = 2, then |StabGK

(x)| = 2.
(iii) If [K(x) : K] = 3, and K(x) is cyclic over K, then |StabGK

(x)| = 3.
(iv) If K(x) is a conjugacy class of noncyclic extensions of K,

then |StabGK
(x)| = 1.

We let OK be the ring of integers in the number field K. M(K) will stand

for the set of places of K, while M∞(K) and M0(K) will refer to the sets of

infinite and finite places of K, respectively. For ν ∈ M(K), we let Kν denote

the completion of K at ν, and we let Oν stand for the ring of integers in Kν .

Moreover, AK will stand for the ring of adeles of K.

To define the zeta function, we first need to introduce invariant measures

on Kν and GKν . On Kν , we choose the additive measure dxν , normalized

so that the measure of Oν is 1, and the multiplicative measure d∗xν , which

is scaled so that the measure of O∗
ν is 1. We define our measure on GKν in

stages. First, we introduce a maximal compact subgroup, UKν of GKν . When

ν is real, we let UKν be the group of orthogonal matrices of R. If ν is complex,

UKν will be the unitary group. When ν is finite, we let UKν = GL2(Oν). By

the Iwasawa decomposition, we know that an element g ∈ GKν can be written

in the form

g = k ( t 0
0 u ) (

1 0
c 1 ) ,
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for some k ∈ UKν , t, u ∈ K∗
ν , c ∈ Kν . We define

a(t, u) = ( t 0
0 u )

and

n(c) = ( 1 0
c 1 ) .

We have chosen UKν to be compact, so we have a measure, dkν such that UKν

has measure 1. Observe that a(t, u)n(c) ∈ BKν , and every element of BKν is

of this form. We specify our measure on BKν by the formula∫
BKν

f(b)dbν =

∫
K∗

ν

∫
K∗

ν

∫
Kν

∣∣∣u
t

∣∣∣
ν
f(a(t, u)n(c))dcνd

∗tνd
∗uν ,

where the absolute value is the standard choice on Kν . This enables us to give

a measure, dgν on GKν via∫
GKν

f(g)dgν =

∫
UKν

∫
BKν

f(kb)dbνdkν .

We define an additive measure on AK via
∏

ν∈M(K)

dxν . We similarly define

a multiplicative measure on AK , and a measure on GL2(AK) as products of

local measures.

With our measures defined, we may go on to define the adelic zeta function.

Let Φ be a function on VK admitting a product Φ =
∏

ν∈M(K)

Φν such that Φν

is rapidly decreasing if ν is infinite, or locally constant with compact support

if ν is finite, and all but finitely many of the Φν are characteristic functions of

O4
Kν

. We will refer to such Φ as Schwartz-Bruhat functions. Let s ∈ C, and
let V

′
K denote the set of nonsingular forms in VK . The adelic zeta function is

then defined as

Z(s,Φ) =

∫
GAK /GK

|det(g)|sAK

∑
x∈V ′

K

Φ(g · x)dg,

which converges absolutely for Re(s) > 2. Having defined the function, we

proceed to describe some of its basic properties. One has a functional equation
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for the zeta function, obtained in [11] by means of the Poisson summation

formula. We briefly recall the Fourier transform on VK used in [11]. Let

x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) lie in VK . We introduce the bilinear

form

[x, y] = x1y4 −
1

3
x2y3 +

1

3
x3y2 − x4y1,

and let <> be a nontrivial additive character on K. We let dv be the Haar

measure on VK self-dual with respect to the character < [x, y] > on V 2
K . If Φ

is a Schwartz-Bruhat function on VK , we define its Fourier transform by

Φ̂(y) =

∫
VK

Φ(x) < [x, y] > dx.

After considerable labor, Wright arrives at the functional equation

Z(2− s, Φ̂) = Z(s,Φ).
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CHAPTER 2

Invariant Lattices

2.1 Overview

At this point, we have all the background we need to begin describing our

lattices, and hence, our main result. We begin with a definition, following Weil

[10].

Definition 2.1 Let K be an algebraic number field, and let OK be the ring of

(algebraic) integers of K. Let V be a finite-dimensional vector space over K.

A lattice of V is a finitely generated OK-module in V which contains a basis

of V over K.

If Kν is the completion of K at a finite prime ν, we define lattices in Kν-

vector spaces in the same way. Working over the completions, one finds that

the ring of integers is a local ring, which greatly simplifies this case. Moreover,

we have the following lemma, whose proof is given by Weil (Chapter 5 of

[We3]).

Lemma 2.1 Let M0(K) be the set of finite primes of K, and let L ⊆ K be

a lattice of K4. For ν ∈ M0(K), denote by Lν the closure of L in K4
ν . Then

L =
∩

ν∈M0(K)

(Lν ∩K4).
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In light of the preceeding lemma, we are able to carry out most of our work

in the local fields, and reconstruct our global classification from these results.

Observe that for Kν , our lattices are free Oν-modules of rank 4. To explain

our classification, we recall the notion of primitivity.

Definition 2.2 We say a K-lattice, L, is primitive if it is contained in O4
K,

and for every prime ideal, p, of OK, we have p−1L * O4
K.

Again, we make an analogous definition for local fields. Note that in the

local case, we may replace a prime ideal by any of its uniformizers.

We say that two lattices, L and L′ are equivalent if there is a fractional

ideal, p, of the integer ring of the base field such that pL = L′. Every lattice

(of a four dimensional vector space) is equivalent to a primitive lattice. Our

goal is to enumerate the primitive, invariant lattices in K4.

Notation 2.1 Throughout, Ei, for i = 1, 2, 3, 4, will denote the standard basis

vectors for K4. We will write u(α) in place of ( 1 α
0 1 ), and ω for ( 0 1

−1 0 ). Finally,

we let Ψ(x) = (u(1) · x)− x, for x ∈ K4. Indeed, we have Ψ(x) = (x2 + x3 +

x4, 2x3 + 3x4, 3x4, 0).

We end our overview by presenting the original result of [7]; we will adhere

to their notations for the lattices we introduce.

Theorem 2.1 The SL2(Z)-invariant lattices in Q4 are as follows:
L1 = Z4

L2 = {(a, b, c, d) ∈ Z4 : 3|b, c}
L3 = {(a, b, c, d) ∈ Z4 : 2|b+ c}
L4 = {(a, b, c, d) ∈ Z4 : 2|b+ c, a, d; 3|b, c}
L5 = {(a, b, c, d) ∈ Z4 : 2|b+ c, a, d}
L6 = {(a, b, c, d) ∈ Z4 : 2|b+ c; 3|b, c}
L7 = {(a, b, c, d) ∈ Z4 : 2|a+ b+ c, b+ c+ d}
L8 = {(a, b, c, d) ∈ Z4 : 2|a+ b+ d, a+ c+ d; 3|b, c}
L9 = {(a, b, c, d) ∈ Z4 : 2|a+ b+ d, b+ c+ d}
L10 = {(a, b, c, d) ∈ Z4 : 2|a+ b+ c, b+ c+ d; 3|b, c}.



8

2.2 Results and Proofs

Lemma 2.2 If ν - 2, 3, then (L)ν = (L1)ν = O4
ν.

Proof: Let x = (x1, x2, x3, x4) be primitive for ν. First, suppose that either x1

or x4 is a unit ofOν . By applying ω if necessary, we may assume, without loss of

generality, that x4 ∈ O∗
ν , the group of units of Oν . Let y1 = x−1

4 u(−3−1x−1
4 x3) ·

x. Then the third and fourth coordinates of y1 are 0 and 1, respectively, so

we see that 6−1Ψ(Ψ(y1)) = (1, 1, 0, 0). Now, E2 = u(−1) · (1, 1, 0, 0), and

E1 = Ψ(E2), so E1, E2 ∈ (L)ν , and one sees easily that E3, E4 ∈ (L)ν as well.

Hence (L)ν = O4
ν . Next, suppose x1, x4 /∈ O∗

ν . By primitivity, either x2 or x3

is a unit, and again, we may assume x3 ∈ O∗
ν by means of ω. Now, consider

u(1) · x + u(−1) · x − 2x This element has 2x3 as its first coordinate, and

2x3 ∈ O∗
ν . Thus, we have reduced the problem to the previous case. This

proves our lemma. �

Lemma 2.3 If ν | 3, then (L)ν = Oν

⊕
Om

ν

⊕
Om

ν

⊕
Oν for some m ∈

0, 1, 2, ..., ordν(3).

Proof: Let x be primitive for ν. We first assume x2 or x3 to be a unit.

As in the preceeding lemma, we may simply assume that x3 is a unit. Set

y1 = (2x3+3x4)
−1Ψ(x) = (x

′
1, 1, x

′
3, 0), and also y2 = (2x3+6x4)

−1Ψ(Ψ(x)) =

(1, x
′
2, 0, 0). Because, x

′
2 = 6x4(2x3+6x4)

−1 and x
′
3 = 3x4(2x3+3x4)

−1, we have

x
′
2, x

′
3 ∈ 3Oν . Let y3 = y1 − x

′
1y2 = (0, 1 − x

′
2x

′
1, x

′
3, 0). Now, 1 − x

′
2x

′
1 ∈ O∗

ν ,

and we have y4 = (1 − x
′
2x

′
1)

−1(ω · y3) = (0, x
′′
2 , 1, 0), where we note that

x
′′
2 /∈ O∗

ν , since it is divisible by x
′
3. So let y5 = u(−2−1x

′′
2) · y4 = (x

′′
1 , 0, 1, 0),

and y6 = Ψ(y5) = (1, 2, 0, 0). Then E1 = 2−1Ψ(y6), and E2 = 2−1(y6 −E1), so

E1, E2,∈ (L)ν , and as before, (L)ν = O4
ν .

Let us now suppose that x2, x3, /∈ O∗
ν . By primitivity, and possibly using

ω, we may assume, without loss of generality, that x4 ∈ O∗
ν . Let y7 = Ψ(x) =

(x2+x3+x4, 2x3+3x4, 3x4, 0). Then, we see that x2+x3+x4 ∈ O∗
ν , 3x4 ∈ 3O∗

ν ,

and 2x3 + 3x4 ∈ πνOν . For brevity, we write u = x2 + x3 + x4, a = 2x3 + 3x4,



9

and b = 3x4. Then y7 = (u, a, b, 0). We have 1
2
(y7 + ( 1 0

0 −1 ) · y7) = (0, a, 0, 0).

So y8 = (u, 0, b, 0) ∈ (L)ν . x−1
4 Ψ(y8) = 3E1 + 6E2, and 2−1Ψ(3E1 + 6E2) =

3E1. Also, 3E2 = 2−1((3E1 + 6E2) − 3E1), and E1 = u−1(y8 − x43E3), so

E1, 3E2 ∈ (L)ν . We already saw that (0, a, 0, 0) ∈ (L)ν , and it follows that

π
ordν(a)
ν E2 ∈ (L)ν . Let m be the smallest integer such that πm

ν E2 ∈ (L)ν ,

and note that m ∈ 0, 1, 2, ..., ordν(3). Suppose cE2 + dE3 lies in (L)ν , and

that either c or d has order at ν less than m. (We may disregard that E1

and E4 coordinates since we know E1, E4 ∈ (L)ν). Applying ( −1 0
0 1 ) or (

1 0
0 −1 )

and halving, we see that either (0, c, 0, 0) or (0, 0, d, 0) lies in (L)ν , violating

minimality of m. So we conclude that (L)ν = Oν

⊕
Om

ν

⊕
Om

ν

⊕
Oν .

Lemma 2.4 If (L)ν contains an element of the form (α, 1, 1, 0), then it con-

tains 2Ei, for i = 1, 2, 3, 4.

Proof: Let f = (α, 1, 1, 0) ∈ (L)ν . Then Ψ(f) = 2E1 + 2E2. Now, Ψ(2E1 +

2E2) = 2E1, and the lemma follows easily.

Lemma 2.5 If ν | 2, and [Oν/πνOν : Z2/2Z2] > 1, then (L)ν = (L1)ν.

Proof: As before, we choose x = (x1, x2, x3, x4) to be primitive for ν. First,

we suppose that either x1 ∈ O∗
ν or x4 ∈ O∗

ν . Applying ω if necessary, we

may simply assume that x4 ∈ O∗
ν . We set y1 = u(−1

3
x−1
4 x3) · x, and note

that the third and fourth entries of y1 are 0 and x4, respectively. We next set

y2 = (3x4)
−1Ψ(y1), which becomes (x

′
1, 1, 1, 0). By Lemma 2.4, 2Ei ∈ (L)ν ,

for i = 1, 2, 3, 4. Because the residue field extension is nontrivial, there exists

u ∈ O∗
ν such that 1−u ∈ O∗

ν . Then also 1−u2 ∈ O∗
ν , for 1−u2 = (1−u)(1+u),

and 1 + u = (1 − u) + 2u. Let y3 = (u)( 1 0
0 u ) · y2 = (x

′
1, u, u

2, 0), and then let

y4 = y2 − y3 = (0, 1 − u, 1 − u2, 0). Observe that (1 − u) + (1 − u2) =

(1 − u)(1 + (1 + u)) = (1 − u)(2 + u), which is a unit. So we have shown

that (L)ν contains an element (0, a, b, 0) such that a, b, and a + b are all

units. Ψ((0, a, b, 0)) = (a + b, 2b, 0, 0), and since we already know 2E2 ∈
(L)ν , we see that (a + b, 0, 0, 0) ∈ (L)ν . It follows easily that E1, E4 ∈ (L)ν .
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( 1 0
0 u ) · (0, a, b, 0) = (0, a, ub, 0), and (0, a, b, 0)− (0, a, ub, 0) = (0, 0, (1−u)b, 0).

But we have chosen u so that 1− u is a unit, so we see E2, E3 ∈ (L)ν . Hence

(L)ν = (L1)ν .

Next, assume x1 and x4 lie in πνOν . By primitivity, we have that x2 ∈ O∗
ν

or x3 ∈ O∗
ν . If x2+x3 /∈ O∗

ν , then both x2 and x3 are units. There exits v ∈ O∗
ν

such that 1 + v ∈ O∗
ν , and applying ( 1 0

0 v ) to x gives (v−1x1, x2, vx3, v
2x4).

Summing (x2 + x3) + (x2 + vx3) shows that x2 + vx3 is a unit, for we have

assumed x2 + x3 ∈ πνOν . This reasoning lets us assume, without loss of

generality, that x = (x1, x2, x3, x4) is such that x2 + x3 ∈ O∗
ν . But then we

may apply Ψ to x, and we get a form with a unit in its first coordinate, thus

reducing to the first case of this lemma.

Lemma 2.6 If ν | 2, and [Oν/πνOν : Z2/2Z2] = 1, then (L5)ν ⊆ (L)ν or

(L9)ν ⊆ (L)ν. Here, (L5)ν = {(a, b, c, d) ∈ O4
ν : πν | a, d, b + c}, and (L9)ν =

{(a, b, c, d) ∈ O4
ν : πν | a+ b+ d, a+ c+ d}.

Proof: If ν is unramified over 2, the argument in [7] applies verbatim. So

assume ν is ramified. Let x ∈ L be primitive for ν. As usual, suppose that

either x1 ∈ O∗
ν or x4 ∈ O∗

ν . As in the preceeding lemmas, this reduces to

the assumption that x4 ∈ O∗
ν . This time, we choose the same y2 as in the

previous lemma; we have y2 = (x
′
1, 1, 1, 0) ∈ (L)ν , and we saw that 2Ei ∈ (L)ν

for i = 1, 2, 3, 4. Pick u = 1 + πν ∈ O∗
ν , so that 1 − u has order 1 at πν .

Following Lemma 2.5, let y3 = (u)( 1 0
0 u ) · y2 = (x

′
1, u, u

2, 0). Now, y2 − y3 =

(0, 1− u, 1− u2, 0). Also, 1 + u = 1+ 1+ πν = 2+ πν , hence 1+ u has order 1

at ν. But (1− u) = (1+ u)− 2u, and 2 ∈ π2
νOν , so 1− u also has order 1, and

it follows that 1− u2 ∈ π2
νO

∗
ν . Applying matrices of the forms ( v 0

0 1 ) and ( 1 0
0 v ),

with (v ∈ O∗
ν), to y2−y3, we find that (0, πν , π

2
ν , 0) = πνE2+π2

νE3 ∈ (L)ν . Now,

Ψ((0, πν , π
2
ν , 0)) = (πν + π2

ν , 2π
2
ν , 0, 0). Since 2π2

νE2 ∈ (L)ν , (πν + π2
ν , 0, 0, 0),

and in turn, πνE1, πνE4 lie in (L)ν . Then also (0, πν , π
2
ν ,−1

3
π2
ν) ∈ (L)ν . Next,

u(1) · (0, πν , π
2
ν ,−1

3
π2
ν) = (z, πν + π2

ν , 0,−1
3
π2
ν). Here, z is a sum of integer

multiples of the entries of (0, πν , π
2
ν ,−1

3
π2
ν), so it lies in πνOν . Since πνE1 and

πνE4 are in (L)ν , we can show that (0, πν + π2
ν , 0, 0) ∈ (L)ν , and it follows
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easily that πνE2 and πνE3 are in (L)ν . We have thus shown that πνEi ∈ (L)ν

for i = 1, 2, 3, 4.

Now, consider the case where x1 and x4 are non-invertible, so that x2 or

x3 is a unit. If x2 + x3 ∈ O∗
ν , we can apply Ψ to x and use the above case to

see that πνEi ∈ (L)ν for i = 1, 2, 3, 4. Otherwise, we have that x2 and x3 are

both units. Choose v ∈ O∗
ν so that x2 + vx3 = 0, and replace x by ( 1 0

0 v ) · x.
The new x = (x1, x2, x3, x4) satisfies x2 + x3 = 0. We proceed as follows: let

w
′
(z) = −( 0 1

1 0 ) · z, that is, w
′
reverses the coordinates.

Ψ(x) = (x2 + x3 + x4, 2x3 + 3x4, 3x4, 0)

w
′
(Ψ(x)) = (0, 3x4, 2x3 + 3x4, x2 + x3 + x4).

By choice of x, we find that w
′
(Ψ(x)) = (0, 3x4, 2x3+3x4, x4). Subtracting

this result from x, we get (z
′
, a, b, 0), where a, b ∈ O∗

ν . Using the matrices

of the forms ( v 0
0 1 ) and ( 1 0

0 v ) (for units u, v), we may insist that a = b = 1.

Lemma 2.4 now shows that 2Ei ∈ (L)ν for i = 1, 2, 3, 4, and from here a

previous argument can be used to show that πνEi ∈ (L)ν for i = 1, 2, 3, 4.

So regardless of which coordinates of x are initially taken to be units,

we have seen that (L)ν has an element of the form (z, 1, 1, 0). (Here, we

drop the notation from earlier in our proof). Now, observe that (L5)ν =

Oν(πνE1)
⊕

Oν(πνE4)
⊕

Oν(E2+E3)
⊕

Oν(πνE2) and (L9)ν = Oν(E1+E2+

E3)
⊕

Oν(E2 + E3 + E4)
⊕

Oν(πνE2)
⊕

Oν(πνE3). In addition to (z, 1, 1, 0),

(L)ν also contains πνEi, for i = 1, 2, 3, 4. If z /∈ O∗
ν , then (z, 1, 1, 0) −

(π−1
ν z)πνE1 = E2 + E3 ∈ (L)ν , so (L5)ν ⊆ (L)ν . If z ∈ O∗

ν , then we can

write z = 1 + z
′
, where z

′ ∈ πνOν , since [Oν/πνOν : Z2/2Z2] = 1. Then

(z, 1, 1, 0)− (π−1
ν z

′
)πνE1 = E1 + E2 + E3 ∈ (L)ν , and by applying w

′
, we can

conclude that E2 + E3 + E4 ∈ (L)ν . Hence (L9)ν ⊆ (L)ν . This completes the

proof of the lemma.

Notation 2.2 Up to this, we have defined (L)ν, (L5)ν, and (L9)ν. Now, we

introduce (L3)ν = {(a, b, c, d) ∈ O4
ν : πν | b+ c} and (L7)ν = {(a, b, c, d) ∈ O4

ν :

πν | a+ b+ c, b+ c+ d}.
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In view of Lemma 2.6, we can prove the following, more precise lemma.

Lemma 2.7 If ν | 2, and [Oν/πνOν : Z2/2Z2] = 1, then

(L)ν ∈ {(L1)ν , (L3)ν , (L5)ν , (L7)ν , (L9)ν}.

Proof: By Lemma 2.6, either (L5)ν ⊆ (L)ν ⊆ (L1)ν or (L9)ν ⊆ (L)ν ⊆ (L1)ν .

Case I: Assume that (L5)ν ⊆ (L)ν ⊆ (L1)ν . If (L)ν = (L5)ν , there is

nothing to prove, so assume that (L)ν properly contains (L5)ν . We will write

(L1)ν = OνE1

⊕
OνE4

⊕
Oν(E2 + E3)

⊕
OνE2, and

(L5)ν = OνπνE1

⊕
OνπνE4

⊕
Oν(E2 + E3)

⊕
OνπνE2. Then {aE1 + bE4 +

cE2 : a, b ∈ {0, 1}} is a set of coset representatives for (L1)ν/(L5)ν . Then the

fact that (L5)ν ⊆ (L)ν ⊆ (L1)ν implies that one of our coset representatives

lies in (L)ν . 0 cannot be the only such representative, as we have assumed

(L)ν is not (L5)ν . Suppose the representative that lies in (L)ν is E1, E4, or

E1 + E4. (L)ν also contains (L5)ν , so we can show (L3)ν ⊆ (L)ν , for (L3)ν =

OνE1

⊕
OνE4

⊕
Oν(E2 + E3)

⊕
OνπνE2. Indeed, the E1 and E4 cases are

obvious. If instead, we have E1+E4 ∈ (L)ν , note that Ψ(E1+E4) = E1+3(E2+

E3), which reduces this case to that of E1. Hence (L3)ν ⊆ (L)ν , as desired.

But (L1)ν/(L3)ν ∼= Z/2Z, and so no lattices lie (properly) between (L1)ν and

(L3)ν . Hence either (L)ν = (L3)ν or (L)ν = (L1)ν . Next, suppose that the

coset representative is E2, E1+E2, or E2+E4. Recall that 2E2 ∈ (L5)ν ⊆ (L)ν .

Now, E1 = Ψ(E2) = Ψ(E1 + E2) = Ψ(ω(E2 + E4)) − 2E2, and we can easily

show that both E1 and E2 are in (L)ν . In this case, (L)ν = (L1)ν . To finish this

case, suppose the coset representative that lies in (L)ν is E1 +E2 +E4. Write

(L7)ν = Oν(E1 + E2 + E4)
⊕

Oν(E1 + E3 + E4)
⊕

OνπνE1

⊕
OνπνE4. Now,

E2+E3 ∈ (L5)ν , and clearly, (E1+E2+E4)−(E2+E3)+2E3 = (E1+E3+E4),

so (L7)ν ⊆ (L)ν . Moreover, (L1)ν/(L7)ν has {0, E1, E4, E1 + E4} as a set of

coset representatives. (L)ν must contain one of these, and if it contains any

of the nonzero members of this set, it contains them all (see the argument

above). We have seen that this forces (L)ν = (L1)ν . Otherwise, (L)ν = (L7)ν .

Case II: Assume that Assume that (L9)ν ⊆ (L)ν ⊆ (L1)ν . We have that

(L9)ν = Oν(E1 + E2 + E3)
⊕

Oν(E2 + E3 + E4)
⊕

OνπνE1

⊕
OνπνE2, and
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(L1)ν = Oν(E1+E2+E3)
⊕

Oν(E2+E3+E4)
⊕

OνE2

⊕
OνE3. A set of coset

representatives for (L1)ν/(L9)ν is given by {aE2 + bE3 : a, b ∈ {0, 1}}. Again,
(L)ν contains at least one coset representative, and if the only representative

in (L)ν is 0, then (L)ν = (L9)ν . If (L)ν contains E2 or E3, it clearly contains

both, and Ψ(E2) = E1 implies that also E1 ∈ (L)ν . Hence (L)ν = (L1)ν .

If instead the coset representative contained in (L)ν is E2 + E3, then (L)ν

contains (E1 + E2 + E3) − (E1 + E2) = E1. It follows that E4 ∈ (L)ν , and

thus (L3)ν ⊆ (L)ν . We have seen that this implies that either (L)ν = (L3)ν or

(L)ν = (L1)ν . This completes the proof.

We are now in position to state and prove our main theorem.

Theorem 2.2 Let p1, p2, ..., pr be the prime ideal divisors of 3OK, and let

pr+1, pr+2, ...., pt be the divisors of 2OK with residue field Z/2Z. Then the

primitive, GL2(OK)-invariant lattices of K
4 are of the form {(a, b, c, d) ∈ O4

K :

b, c ∈ pm1
1 · · ·pmr

r ; (b+c) ∈ p
nr+1,1

r+1 · · ·pnt,1

t ; a, d, (b+c) ∈ p
nr+1,2

r+1 · · ·pnt,2

t ; (a+b+c),

(b + c + d) ∈ p
nr+1,3

r+1 · · · pnt,3

t ; (a + b + d), (a + c + d) ∈ p
nr+1,4

r+1 · · · pnt,4

t }, where
0 ≤ mi ≤ ordpi(3), 0 ≤ ni,j ≤ 1, and ni,j = 1 implies ni,k = 0 for any k > j.

Proof: Combine Lemma 2.2 through Lemma 2.7, and use the fact that a

lattice L ⊆ K4 is given by
∩

ν∈M0(K)

((L)ν
∩

K4), where (L)ν is the closure in

K4
ν of L.
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CHAPTER 3

Dirichlet Series and Functional

Equation

In this section, we connect our invariant lattices to the adelic zeta function

for the space of binary cubic forms [11]. We fix a number field, K, and let A
denote the ring of adeles of K. We abbreviate GL2(A) simply as G, and write

GK for GL2(K), viewed as a subgroup of G. We introduce

G(∞) =
∏

ν∈M∞(K)

GL2(Kν)×
∏

ν∈M0(K)

GL2(Oν).

Observe that the number of double cosets of G(∞)

G/GK is just hK , the class number of K. We have the decomposition

G =
∪

t∈A∗/K∗A∗(∞)

G(∞) ( 1 0
0 t )GK .

Observe also that G(∞) ( 1 0
0 t )GK = {g ∈ G : det(g) ∈ K∗A∗(∞)}.

Now, we fix a (primitive) invariant lattice L ⊆ K4. We choose a Schwartz-

Bruhat function, ϕ =
∏
ν

ϕν whose finite components are the indicator maps

for the respective closures of L. For notational convenience, we also write

ϕ =
∏

ν∈M∞(K)

ϕν × 1U , where U is the product of the finite closures, and 1U is

the indicator map for U . Let H = A∗/K∗A∗(∞), and let Ĥ be the dual of H.
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We now consider the sum

1

hK

∑
χ∈Ĥ

Z(χωs, ϕ) =

∫
G/GK

1

hK

∑
χ∈Ĥ

χ(det(g))| det(g)|s
∑
x∈V ′

K

ϕ(g · x)dg.

This reduces to ∫
G(∞)GK/GK

| det(g)|s
∑
x∈V ′

K

ϕ(g · x)dg,

since
∑

χ∈Ĥ χ(det(g)) = 0 whenever g /∈ G(∞)GK/GK . By the isomorphism

theorems, this integral is just∫
G(∞)/GK

∩
G(∞)

| det(g)|s
∑
x∈V ′

K

ϕ(g · x)dg.

Note that GK

∩
G(∞) = GL2(OK). Now if g ∈ G(∞), then g = (gν)ν , where

gν ∈ GL2(Oν) for all finite primes ν. We have that gν · x ∈ GL2(Oν) iff

x ∈ g−1
ν Uν , where Uν is the local component of U . Now, by invariance of the

lattice, we see that gν · x ∈ GL2(Oν) iff x ∈ Uν . If x ∈ Uν for all finite ν, then

we have x ∈ K
∩ ∏

ν∈M0(K)

Uν = K
∩

U = L. Hence

∫
G(∞)/GK

∩
G(∞)

| det(g)|s
∑
x∈V ′

K

ϕ(g·x)dg =

∫
G(∞)/GL2(OK)

| det(g)|s
∑
x∈L′

ϕ(g·x)dg,

where L
′
= {x ∈ L : P (x) ̸= 0}. This integral can be rewritten as a sum,

namely ∑
x∈GL2(OK)L

′

1

|Gx(OK)|

∫
G(∞)

| det(g)|sϕ(g · x)dg.

The integrals under the sum are of the form∫
G(∞)

| det(g)|sϕ(g · x)dg =∏
ν∈M∞(K)

∫
GL2(Kν)

| det(gν)|sνϕν(gν · x)dgν ×
∏

ν∈M0(K)

∫
GL2(Oν)

1Uν (gν · x)dgν .

All of the finite local factors evaluate to 1. We denote the product of the

infinite local factors by Zx∞(s, ϕ∞). Our work and conventions thus show

1

hK

∑
χ∈Ĥ

Z(χωs, ϕ) =
∑

x∈GL2(OK)L
′

1

|Gx(OK)|
Zx∞(s, ϕ∞).
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Write ξL(s) for the right hand side of this equation. If we do a change of

variables in each Zx∞(s, ϕ∞) to replace x by its corresponding standard orbital

representative, which, by abuse of notation, we will also call x, we get

ξL(s) =
∑

x∈GL2(OK)L
′

|Gx(OK)|−1Zx∞(s, ϕ∞)|NK
Q (P (x))|

−s
2 ,

a ”Dirichlet series” of discriminants, analogous to those in [4]. We conclude by

deriving a functional equation for these series. Using the functional equation,

for the adelic zeta function, we have

ξL(s) =
1

hK

∑
χ∈Ĥ

Z(χωs, ϕ) =
1

hK

∑
χ∈Ĥ

Z(χω2−s, ϕ̂) = ξL̂(2− s).

Here, we have used the fact that as χ ranges over Ĥ, so does χ−1, and we have

the proviso that L̂ may not be primitive.
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