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ABSTRACT

DEFORMATION COMPLEXES FOR ALGEBRAIC OPERADS
AND THEIR APPLICATIONS

Brian Paljug
DOCTOR OF PHILOSOPHY

Temple University, May 2015

Dr. Vasily Dolgushev, Chair

Given a reduced cooperad C, we consider the 2-colored operad Cyl(C) which gov-
erns diagrams U : V' ~» W, where V, W are Cobar(C)-algebras, and U is an oo-
morphism. We then investigate the deformation complexes of Cyl(C) and Cobar(C).
Our main result is that the restriction maps between between the deformation com-
plexes Der’(Cyl(C)) and Der’(Cobar(C)) are homotopic quasi-isomorphisms of fil-
tered Lie algebras. We show how this result may be applied to modifying diagrams
of homotopy algebras by derived automorphism.

We then recall that Tamarkin’s construction gives us a map from the set of Drin-
feld associators to the homotopy classes of L.,-quasi-isomorphisms for Hochschild
cochains of a polynomial algebra. Due to results of V. Drinfeld and T. Willwacher,
both the source and the target of this map are equipped with natural actions of the
Grothendieck-Teichmueller group GRT;. We use our earlier results to prove that
this map from the set of Drinfeld associators to the set of homotopy classes of L -

quasi-isomorphisms for Hochschild cochains is GRT;-equivariant.
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CHAPTER 1

INTRODUCTION

Homotopy algebras and morphisms appear in many areas throughout mathemat-
ics; in homological algebra in the form of algebraic transfer theorems, in geometry
in the study of iterated loop spaces, in deformation quantization in Kontsevich’s for-
mality theorem, and so on. Much work has been done to find the correct framework
in which to study homotopy algebras, and the theory of operads is one such attempt.
The complicated coherence relations that define homotopy algebras are encoded in
the language of operads, which are easily manipulated with homological or combi-
natorial techniques; see [27] for an excellent overview of these methods. This is the
approach taken in this dissertation.

While there is a notion of morphisms between homotopy algebras of a specific
type, in practice and theory one is interested in the looser notions of co-morphisms,
which themselves satisfy some complicated system of coherence relations. Since
homotopy algebras can be defined as algebras over a specific operad, it seems nat-
ural to ask if oo-morphisms can be defined in the language of operads. The answer
is provided in [19] via a 2-colored “cylinder construction” operad, which we restate
and study further; similar ideas were also considered in [28]], [3] and [[16]. Specif-
ically, given a cooperad C we construct and study a 2-colored operad Cyl(C) that
governs pairs of homotopy algebras and oco-morphisms between them.

Our main goal is to answer the following question; given a pair of homotopy

algebras and an oo-morphism between them, can we change the homotopy alge-



bras and the co-morphism simultaneously to get new homotopy algebras and a new
oo-morphism (all of the same type)? More specifically, given a derivation of the
operad Cobar(C) governing the homotopy algebras V' and W, we can exponentiate
that derivation to an automorphism of Cobar(C) and use that automorphism to de-
fine new Cobar(C)-algebra structures on V' and W via pullback; can we do the same
to an co-morphism between V' and W, to create a new co-morphism that respects
the new Cobar(C)-algebra structures? We show that this is possible, and moreover
that the answer is unique up to homotopy, using the previously mentioned tech-
niques of operadic homological algebra. In particular, we have Theorem 4. 1] which
says that the natural restriction maps between between the deformation complexes
Der’(Cyl(C)) and Der’(Cobar(C)) are homotopic quasi-isomorphisms of filtered

Lie algebras.
Theorem. The maps
resq, resg :  Der(Cyl(C)) —— Der(Cobar(C))

given by restricting to a single color o or 5 are homotopic quasi-isomorphisms of

dg Lie algebras at all filtration levels.
This leads us to Theorem 4.2k
Theorem. The group homomorphisms
resy, resg 1 Aut’'(Cyl(C)) —  Aut'(Cobar(C))
induce identical isomorphisms on homotopy classes:
res: hAut/(Cyl(C)) — hAut'(Cobar(C)).
This then allows us to answer the motivating question, shown in Theorem 5.1}

Theorem. Let V' and W be Cobar(C)-algebras for a cooperad C, and let U :
V'~ W be an co-morphism between them. Given a degree 0 closed derivation
D € Der'(Cobar(C)), there exists a degree 0 cocycle D € Der'(Cyl(C)) such that

D, Do, and 55 are cohomologous in Der’(Cobar(C)). Therefore we can construct

UP VP s W



such that VDo is homotopy equivalent to V' and WDhs s homotopy equivalent to

WP, and so that the linear term of U is unchanged: U(]g) = U().

We then provide an application of the previous results to a question in deforma-
tion quantization. Let k be a field of characteristic zero, A = k[z!,2?%,..., 2¢] be
the algebra of functions on the affine space k¢, and V4 be the algebra of polyvector
fields on k?. Let us recall that Tamarkin’s construction [21]], [10] gives us a map
from the set of Drinfeld associators to the set of homotopy classes of L..-quasi-
isomorphisms from V4 to the Hochschild cochain complex C*(A) := C*(A, A) of
A.

In paper [38], among proving many other things, Thomas Willwacher con-
structed a natural action of the Grothendieck-Teichmueller group GRT; from [[17]
on the set of homotopy classes of L.,-quasi-isomorphisms from V4 to C*(A). On
the other hand, it is known [[17] that the group GRT; acts simply transitively on the
set of Drinfeld associators.

The goal of the second half of this dissertation is to prove GRT;-equivariance of
the map resulting from Tamarkin’s construction using Theorem 4.3 from [33], pro-

viding the necessary background and preliminary results. This is given in Theorem

.1t

Theorem. Let ﬂo(Geroo — Braces) be the set of homotopy classes of operad
maps (6.1) from the dg operad Ger, governing homotopy Gerstenhaber algebras
to the dg operad Braces of brace trees. Let (VA ~ C"(A)) be the set of ho-
motopy classes of A Liey.-quasi-isomorphisms from the algebra V4 of polyvector
fields to the algebra C*(A) of Hochschild cochains of a graded affine space. Then

Tamarkin’s construction of formality morphisms
T : mo( Gero — Braces ) — mo(Va ~ C*(A))
commutes with the action of the group GRT; = exp(H°(Der’(Gery,))).

We should remark that the statement about GRT';-equivariance of Tamarkin’s
construction was made in [38] (see the last sentence of Section 10.2 in [38, Ver-

sion 3]) in which the author stated that “it is easy to see”. We also prove various



statements related to Tamarkin’s construction [21], [10] which are “known to spe-
cialists” but not proved in the literature in the desired generality. In fact, even the
formulation of the problem of GRT-equivariance of Tamarkin’s construction re-
quires some additional work.

Here, Tamarkin’s construction is presented in the slightly more general setting
of graded affine space versus the particular case of the usual affine space. Thus, A is
always the free (graded) commutative algebra over k in variables z', 22, ..., 2¢ of
(not necessarily zero) degrees t1, o, ..., t4, respectively. Furthermore, V4 denotes
the Gerstenhaber algebra of polyvector fields on the corresponding graded affine
space, i.e.

Vi := Sa(s Dery(A)) ,

where Dery (A) denotes the A-module of derivations of A, s is the operator which
shifts the degree up by 1, and S 4 (M) denotes the free (graded) commutative algebra
on the A-module M.

The dissertation is organized as follows.

In Chapter [2] we review the notation and background material needed for the
remainder of the dissertation. This chapter tries to be somewhat self-contained with
regards to content, if not detail.

In Chapter[3] we construct a 2-colored dg operad Cyl(C) for any cooperad C that
governs pairs of Cobar(C)-algebras and an co-morphism between them. We also in-
vestigate the cohomology of Cyl(C), and construct homotopic quasi-isomorphisms
between Cobar(C) and the mixed-color part of Cyl(C) (Corollary [3.1).

In Chapter 4| we turn to studying the dg Lie algebra of derivations of Cyl(C),
and how it relates to derivations of Cobar(C) — these are the titular “deformation
complexes of operads.” In particular we show in Theorem [{.1] that the obvious
restriction maps between Der(Cyl(C)) and Der(Cobar(C)) are homotopic quasi-
isomorphisms. We then conclude in Theorem [4.2] that, after exponentiating, they
yield the same group isomorphism on homotopy classes of maps.

In Chapter [5|we show how the previous results may be applied to the motivating

question, that is, how to modify co-morphisms of homotopy algebra via derived



automorphism. This is the content of Theorem [5.1] We also discuss various ways
in which this procedure is unique up to homotopy.

In Chapter [6] we briefly review the main part of Tamarkin’s construction and
prove that it gives us a map T (see Eq. (6.21))) from the set of homotopy classes
of certain quasi-isomorphisms of dg operads to the set of homotopy classes of L-
quasi-isomorphisms for Hochschild cochains of A.

In Chapter [/, we introduce a (prounipotent) group which is isomorphic (due
to Willwacher’s theorem [38, Theorem 1.2]) to the prounipotent part GRT; of the
Grothendieck-Teichmiiller group GRT introduced in [17] by V. Drinfeld. We recall
from [38] the actions of the group (isomorphic to GRT;) both on the source and
the target of the map T (6.21)). Finally, we prove the main result of these chapters
(see Theorem which says that Tamarkin’s map ¥ (see Eq. (6.21)) is GRT;-
equivariant.

In Chapter[8] we recall how to use the map T (see Eq. (6.21)) from Chapter [6)), a
solution of the Deligne conjecture on the Hochschild complex, and the formality of
the operad of little discs [34] to construct a map from the set of Drinfeld associators
to the set of homotopy classes of L..-quasi-isomorphisms for Hochschild cochains
of A. Finally, we deduce, from Theorem GRT;-equivariance of the resulting
map from the set of Drinfeld associators. The latter statement (see Corollary
in Chapter [8) can be deduced from what is written in [38] and Theorem given
in Chapter [/l However, we decided to add Chapter [§| just to make the story more
complete.

Appendices, at the end of the dissertation, are devoted to proofs of various tech-
nical statements used in the body of the dissertation.

It should be noted that this dissertation combines the content of papers [33]] and
[10], rearranged, modified, and supplemented as necessary. While working on this
dissertation, the author was partionally supported by NSF grants DMS-0856196
and DMS-1161867.



CHAPTER 2

PRELIMINARIES

2.1 Notation & conventions

We begin be establishing notation and conventions, before reviewing other foun-
dational material. Throughout, the ground field k has characteristic zero. For most
algebraic structures considered here, the underlying symmetric monoidal category
is the category Chy of unbounded cochain complexes of k-vector spaces. We will
frequently use the ubiquitous combination “dg” (differential graded) to refer to alge-
braic objects in Chy, and denote their differentials by d or 0. For a cochain complex
V we denote by s V' (resp. by s~1 V) the suspension (resp. the desuspension) of V.
In other words,

(sV)'=vt o (sT'V) =Vt

Any Z-graded vector space V is tacitly considered as the cochain complex with the
zero differential. For a homogeneous vector v in a cochain complex or a graded
vector space the notation |v| is reserved for its degree.

The notation .S, is reserved for the symmetric group on n letters and Sh,,

denotes the subset of (pi, ..., px)-shuffles in S, i.e. Sh,, ., consists of elements

.....

o € Sy, n=p1 + p2+ -+ pi such that



o(l) <o(2) <--- <oa(p),
opr+1)<olpr+2) < <o(pr +p2),

on—pr+1)<on—pr+2)<---<on).

We tacitly assume the Koszul sign rule. In particular,

(_1)6(0—§U1 ----- Um)

will always denote the sign factor corresponding to the permutation o € S, of

homogeneous vectors vy, vs, . . . , Uy,. Namely,
(_1>5(0';v1 ..... Upm) — H (_1)|v1||v]| ’ (21)
(i<j)

where the product is taken over all inversions (i < j) of o € S,,,.

For a pair V', W of Z-graded vector spaces we denote by
Hom(V, W)
the corresponding inner-hom object in the category of Z-graded vector spaces, i.e.

Hom(V, W) := @ Homy'(V, W), 2.2)

where Homy' (V, W) consists of k-linear maps f : V' — W such that
fve)ycwetm,

For a commutative algebra B and a B-module M, the notation Sg(M) (resp.
Sg(M)) is reserved for the symmetric B-algebra (resp. the truncated symmetric
B-algebra) on M, i.e.

Sp(M):=Bo& Mo Si(M)o SE(M) ...,

and
Sp(M) =M@ Sg(M)® SE(M)® ... .

For an A.-algebra A, the notation C*( A) is reserved for the Hochschild cochain

complex of A with coefficients in A.



2.2 Operads

For a general introduction to the theory of operads, see [11] or [27]; we recall

the basic definitions here.

Definition 2.1. A collection O is a set of cochain complexes indexed by 7>
O ={0(n)}n=0

such that O(n) is a left S,-representation. We say that O is an operad if it is

equipped with linear composition maps

that satisfy appropriate associativity and symmetry axioms, and has a distinguished

element id € O(1) that satisfies an appropriate unit axiom.

The terms composition and multiplication are often used interchangeably. Mor-
phisms of operads must respect composition, symmetric actions, and units in the
obvious ways.

There are two equivalent ways of describing operadic multiplication. The first

is in terms of the elementary insertion maps
0,:0n)®0O(k) - OMn+k—-1), 1<i<n (2.4)

which will satisfy their own associativity axiom [[11, Definition 3.2]. It is straight-
forward to see how elementary insertions and composition determine each other.
The second way highlights the combinatorial nature of operads. Following [[11],
let Tree(n) be the category of n-labeled rooted, planted, planar trees. That is, planar
trees with a distinguished valency 1 vertex (the root), and such that the other valency
1 vertices (the leaves) carry labels 1 to n. Non-leaf, non-root vertices are called

nodal or internal. For every collection O, we have the functor

Q,, : Tree(n) — Chy (2.5)



that maps a tree t to the tensor product of components of O, according to the arity

of vertices and planar structure. Explicitly,

0,t)= X O(m(x)) (2.6)
2€Vhod(t)
where Vi) 1s the set of all nodal vertices of t, and m(z) is the number of incoming
edges at the vertex «, and the order of factors in the right side of equation[2.6agrees
with the natural order on the set of nodal vertices coming from the planar structure.
With this in mind, a collection O is an operad if it is equipped with composition
maps

e O, (t) — O(n). (2.7)

~n

To recover the first notion of operadic composition and elementary insertions, we
need two subcategories of Tree(n). Elementary insertations are obtained by focus-
ing on Treey(n), the full subcategory of Tree(n) consisting of trees with exactly 2
internal vertices. The first notion of composition is obtained by focusing on PF(n)
(“pitchforks”), the full subcategory of Tree(n) consisting of trees with exactly k + 1
internal vertices, one of which has height 1, and the other £ have height exactly 2.
Some examples of such trees can be found in figures and

Figure 2.1: An element of Treey(6). Figure 2.2: An element of PF3(8).

Example 2.1. Given a cochain complex V, the endomorphism operad Endy is
defined by
Endy (n) = Homy (V" V)
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with S, acting on Endy (n) by permutation of arguments, operadic composition

determined by function composition, and the unit the identity morphism on V.

If we have a map of operads
O — Endy (2.8)

then we say that V' is an algebra over O, or an O-algebra. Intuitively, this means
that V' possesses multi-ary operations governed by the elements of O. That is, we

have multiplication maps
tn : O(n) @VE -V (2.9

for all n > 0, satisfying appropriate associativity, equivariance, and unit axioms

[29]. With this in mind, we define the free (O-algebra to be
oV)= (omeve),
n>0

with differential coming from the differential on O and the differential on V.

Example 2.2. The operad Assoc is defined by Assoc(0) = 0 and
Assoc(n) = Kk[S,]

with S, acting on Assoc(n) by composition of permutatons, operadic composition
determined by insertion of permutations, and the unit the identity permutation on
Si.

Equivalently, we may define Assoc(n) to be spanned by associative words in
noncommuting letters x, xs, ..., T, such that each letter appears exactly once. The
monomial x;, ...x;, corresponds to the permutation (x;,...z; ).

Algebras over Assoc are exactly non-unital associative algebras.

We may similarly define the operads Com, Lie, and Ger governing non-unital

commutative, Lie, and Gerstenhaber algebras, respectively.
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Example 2.3. The initial operad * is defined by
Kk n=1
*(n) =
0 otherwise
which uniquely possesses the structure of an operad, and is indeed the initial object

is the category of operads.

With this example in mind, an operad is called augmented if there is a map of
operads

e: 0 — x.

Given any augmented operad O, we will denote the kernel of the augmentation map
by O,, which carries the structure of an operad without unit (or pseudo-operad).

If we dualize the above we obtain the notion of cooperads, which are collections

C ={C(n)}nx0

with comultiplication maps
A:Clki+ ...+ kp) > C(n)@C(k1) ® ... ® Cky) (2.10)

and counits, satisfying the appropriate dual axioms. As before, comultiplications

are determined by the elementary coinsertaions
A;:Cn+k—-1)—C(n)®C(k) (2.11)
or the more general comultiplication maps
Ay :C(n) — C,(t). (2.12)

If an operad O consists of finite dimensional vector spaces, then the collection
of linear duals naturally carries the structure of a cooperad, and will be denoted
O*. In this way we obtain the cooperad coCom = Com”™ governing cocommutative
coalgebras (without counit), for example.

Given that * is uniquely a cooperad, a cooperad is said to be coaugmented if
there is a coaugmentation map

x* — C (2.13)



12

the cokernel of which will be denoted C,, naturally a cooperad without counit (or

pseudo-cooperad). A coaugmented cooperad C is called reduced if
C(0) = {0} c) =k

and hence C,(0) = C,(1) = {0}. We will henceforth assume that all cooperads are
reduced.

We say that V' is a coalgebra over the cooperad C if we have comultiplication
maps

A,V —=Cn) Ve (2.14)

satisfying appropriate coassicativity, equivariance, and counit axioms. The cofree

C-coalgebra is then defined to be

c(v) =D (em) o ven)™ (2.15)

n>0

with differential coming from the differential on C and the differential on

Example 2.4. We denote by A the underlying collection of the endomorphism op-
erad

EIlds k
of the 1-dimensional space s k placed in degree 1. The n-th space of A is
A(n) =sgn, ®s'™",

where sgn,, denotes the sign representation of the symmetric group S,. A is natu-

rally an operad and a cooperad.

The tensor product of (co)operads is obtained by taking the level-wise tensor
product of cochain complexes, which will then naturally carry the structure of a

(co)operad. Explicitly,

(731 X 7)2)(71) == 7)1 (n) X 732(77,) (216)

LGiven that we are working over a field of characteristic 0, coinvariants and invariants are iso-
morphic. For example, we have as a result that Com(V') = coCom(V') = S(V).
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Then for a (co)operad P, we denote by AP the (co)operad which is obtained from
P by tensoring with A:
AP =A®P. (2.17)

It is clear that tensoring with
A™! = Endg1 (2.18)

gives us the inverse of the operation P — AP.

Given a collection Q, we can form the free operad OP(Q) [11, Section 3.6].
It is generally most convenient to think of elements of OP(Q) as rooted trees with
internal vertices decorated by elements of Q, subject to an appropriate symmetry
relation; with this in mind, (t;z1,...,z;) is the element of OP(Q)(n) where the
n-labeled tree t has % internal vertices decorated by the elements x4, ..., x; of M,
according to the total ordering on internal vertices. We will frequently identify an
element x € Q(n) with the standard n-corolla decorated by x in OP(Q)(n). It is
occasionally useful to remember that at each level OP(Q)(n) = colim Q  (strictly,
speaking, this only defines the free pseudo-operad, with the free operad then ob-
tained by formally adjoining a unit). Since the S,, action on OP(Q)(n) permutes
the labels, we will simplify diagrams by omitting these labels when drawing ele-

ments of OP(Q).

Definition 2.2. Given a coaugmented cooperad C, we define the cobar construction

Cobar(C) to be OP (s C,), with the differential defined on generators sz € sC, by

Ocobar(st) = —s0e(x) — Y (=D)"lt;s2, 529 (2.19)
z€Isom(Treez(n))
where the sum is taken over all isomorphism classes of Trees(n), with t, a repre-

sentative of the isomorphism class z € Isom(Treeg(n)), and A, (x) = > x1 & xo.

Note that we use Sweedler-type notation in the above equation, and will con-
tinue to do so throughout the dissertation.
Much of the above extends immediately to the colored setting, so we will only

focus on certain ideas and notation; our primary reference is [8]. We will focus
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on the 2-colored setting for now, and the 3-colored versions should be clear (and
will only be minimally needed in what follows). We will refer to our 2 colors as
a and (. Given a 2-colored collection Q, Q(a, b; &) denotes the level of Q with a
inputs of color «, b inputs of color (3, and output of color . Similarly, Q(a, b; )
indicates that the output is of color 5. As in the single-color case, we have a free
colored operad construction, governed by colored trees. The category of colored
n-labeled trees is defined similarly to Tree(n), except that the edges carry colors,
and morphisms must respect the coloring. In figures, edges with color o will be
represented by solid lines, while edges of color $ will be represented by dashed
lines.

As before, we will need two subcategories of colored n-labeled trees, but slightly
more specialized than those given above. The first is Tree},(n), the full subcategory
of Tree(n) consisting of trees with exactly 2 internal vertices, such that the root
edge carries color 3, and all other edges carry color «. The second is PF)(n), the
full subcategory of colored Tree(n) consisting of trees with exactly k£ + 1 internal
vertices, one of which has height 1, and the other £ have height exactly 2, such that
all leaf edges carry color « and all other edges carry color 3. Some examples of
such trees can be found in figures [2.3]and [2.4]

Figure 2.3: An element of Treey(6). Figure 2.4: An element of PF;(8).

Example 2.5. Given vector spaces V, W, their 2-colored endomorphism operad
Endy,yy is defined by

EndV,W(na m, Oé) = Hom[k(V®” ® W®m’ V)
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Endyw (n, m, ) = Homy (V" @ W™ W)
with the obvious operadic structure.

Just as before, algebras over colored operads are defined to be operad maps to

Endvy[/ .

2.3 Deformation complexes of operads

Definition 2.3. [/]| Section 6.1] Let O be an operad, and D a linear map on O.
We say that D is a derivation of O if

D(x 0;y) = D(x) 0; y + (—1)“lz 0; D(y) (2.20)
for all elementary insertions o;, and all x,y € O.

More generally, derivations satisfy a Leibniz rule with respect to operadic compo-
sition. The space of derivations of an operad is denoted Der(O), and is a dg Lie

algebra with the graded commutator bracket
(D1, Dy] = Dy o Dy — (—1)P11P21D, o D, (2.21)
and with differential given by the bracket with the internal differential Jp
d(D) = [0o, D]. (2.22)

Following [31}, 32], when O = Cobar(C) E]for a reduced cooperad C, we call
Der(Cobar(C)) the deformation complex of Cobar(C). [}

2.4 Homotopy algebras

We will briefly recall the definitions of homotopy algebras and co-morphisms;

see [11], [25], and [27] for more thorough introductions to the subject. Given a

20r more generally, any operad that is cofibrant in the model category structure inherited from
the standard model category structure on Chy.

3Papers [31}[32] actually introduce and study the deformation complex of morphisms of PROPs,
and therefore treat this subject in greater generality. What we call the deformation complex of an
operad O, Merkulov and Vallette call the deformation complex of the identity morphism on O.
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coaugmented cooperad C, we will use the following “pedestrian” definition of ho-

motopy algebras.

Definition 2.4. A homotopy algebra of type C is an algebra V' over Cobar(C). That

is, we have a map of operads
Cobar(C) — Endy . (2.23)

This is equivalent [[11] to a coderivation )y on C(V), the cofree coalgebra gen-

erated by V' over the cooperad C, that satisfies the Maurer-Cartan equation

IQv)+QuvoQy =0 (2.24)

(equivalently, d¢(vy + Qv is a differential on C(V')). In the case that C is the Koszul

dual of an operad O, it is common to call V' an O,-algebra.

Example 2.6. A, -algebras (or homotopy associative algebras) are algebras over
Cobar(A coAssoc). It is possible to unravel what this means in terms of opera-
tions and relations [27, Section 10.1.10]; an A..-algebra possesses n-ary higher

multiplications for n > 0, that are “associative up to homotopy” in a precise sense.

Example 2.7. L..-algebras (or homotopy Lie algebras) are algebras over
Lie,, = Cobar(A coCom).

It is possible to unravel what this means in terms of operations and relations [27/,
Section 10.1.12]; an L,-algebra possesses n-ary higher brackets for n > 0, that
are skew-symmetric and satisfy a generalized Jacobi identity “up to homotopy”
in a precise sense. For technical reasons, it is often easier to work with A Lie,-

algebras, which are algebras over Cobar(A? coCom).

Example 2.8. Ger.,-algebras (or homotopy Gerstenhaber algebras) are algebras
over

Gery, = Cobar(Ger")

where Ger’ = (A72Ger)*. Gery.-algebras possess both higher multiplications

and brackets. See the following section for a further discussion on Ger".
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While there is the natural notion of morphisms of (J-algebras for any operad
O, in this setting we have the richer notion of co-morphisms. An oo-morphism

between two homotopy algebras V', W of type C is a map of dg coalgebras
U:(C(V),deqvy + Qv) — (C(W), deewy + Qw)- (2.25)

We denote an oo-morphism by U : V' ~» W. An oco-isomorphism (resp. quasi-
isomorphism) is an oo-morphism such that the linear term Uy : V' — W is an
isomorphism (resp. quasi-isomorphism) of complexes. In the event that V' and W
are oo-quasi-isomorphic, we will say that VV and W are homotopy equivalent. It is
possible to describe oo-morphisms more directly in terms of diagrams [19]; equiv-
alently, the results of Chapters 3] and [5| show how one may describe co-morphisms

as an algebra over a certain 2-colored operad.

2.5 A basis for the operad A2 Ger

Recall that Ger,-algebras (or homotopy Gerstenhaber algebras) are governed
by the dg operad
Cobar(Ger") , (2.26)

where Ger" is the cooperad which is obtained by taking the linear dual of A=2 Ger.

For the purposes of conveniently describing elements of A2 Ger, we introduce
the free A=2 Ger-algebra A2 Ger(by, by, . . ., b,) in n auxiliary variables by, by, . . ., by,
of degree 0 and identify the n-th space A=2 Ger(n) of A= Ger with the subspace of
A2 Ger(by, ba, . .., by,) spanned by A~? Ger-monomials in which each variable b,
appears exactly once. For example, A~2 Ger(2) is spanned by the monomials b; b,
and {by, b, } of degrees 2 and 1, respectively.

Let us consider the ordered partitions of the set {1,2,...,n}

{ilh i127 s 7i1p1} L {i217?;227 s 7i2p2} U---u {itlvit27 s 7Z'tpt} (227)
satisfying the following properties:

e foreach 1 < 5 <t the index ig,, is the biggest among igy, . . ., igy,
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o iy, < gy, < -+ < iy, (in particular, iy, = n).

It is clear that the monomials

(B Ay 1y b, oo b e i iy 1y by -+ (2.28)

corresponding to all ordered partitions (2.27) satisfying the above properties form
a basis of the space A=2 Ger(n).

In this dissertation, we use the notation

({Birs - iy iyo bing, o Yoo Abiers -5 iy, o b, - ) (2:29)

for the elements of the dual basis in Ger"(n) = (A2 Ger(n))*.

2.6 The dg operad of brace trees

In this brief section, we recall the dg operad Braces from [6, Section 9] and

241
Following [6]], we introduce, for every n > 1, the auxiliary set 7 (n). An ele-

ment of 7 (n) is a planted®| planar tree 7' with the following data

e a partition of the set V(T") of vertices
V(T) = Viao(T) LU Vo(T) U Vyor(T)

into the singleton V,,.(7") consisting of the root vertex, the set V},,(7") con-
sisting of n vertices called labeled, and the set V,,(T") consisting of vertices

which we call neutral;
e a bijection between the set V},,(7") and the set {1,2,...,n}.

We also require that each element 7" of 7 (n) satisfies the condition that every
neutral vertex of 7" has at least 2 incoming edges (that is, are of valency at least 3).

Elements of 7 (n) are called brace trees.

“In paper [24]], the dg operad Braces is called the “minimal operad”.
®Recall that a planted tree is a rooted tree whose root vertex has valency 1.
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For n > 1, the vector space Braces(n) consists of all finite linear combinations
of brace trees in 7 (n). To define a structure of a graded vector space on Braces(n),

we declare that each brace tree 7' € T (n) carries degree
T = 2[V,(T)| = |E(T)] + 1, (2.30)

where |V, (T)| denotes the total number of neutral vertices of 7" and | E(7")| denotes
the total number of edges of 7.

Examples of brace trees in 7 (2) (and hence vectors in Braces(2)) are shown on

figures (3| 26 27, 28

Figure 2.5: A brace tree 7' € T (2) Figure 2.6: A brace tree Th; € T (2)

Figure 2.7: A brace tree T, € T (2) Figure 2.8: A brace tree T or»r € T (2)

According to (2.30)), the brace trees 7" and 7%; on figures [2.5] and [2.6] respec-
tively, carry degree —1 and the brace trees 1{,, 1 or» On figures respectively,
carry degree 0.

Since neutral vertices of elements of 7 have valency at least 3, this implies that

T (1) consists of exactly one brace tree 7iq shown on figure Hence we have

1

Figure 2.9: The brace tree Tq € 7 (1)

Braces(1) = k.
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Finally, we set Braces(0) = 0.

For the definition of the operadic multiplications on Braces, we refer the reader
toﬁ [6, Section 8] and, in particular, Example 8.2. For the definition of the differ-
ential on Braces, we refer the reader to [6, Section 8.1] and, in particular, Example
8.4.

Let us also recall that the dg operad Braces acts naturally on the Hochschild
cochain complex C*(.A) of any A..-algebra A. For example, if T" (resp. T5;) is the
brace tree shown on figure (resp. figure[2.6), then the expression

T(Py, Py) + Ty (P, Py), P, Pe C*(A)

coincides (up to a sign factor) with the Gerstenhaber bracket of P, and F;. Simi-

larly, if 7, is the brace tree shown on figure then the expression
TL(Py, Py), P,P,e C*(A)

coincides (up to a sign factor) with the cup product of P, and P.
For the precise construction of the action of Braces on C*(A), we refer the

reader to [6, Appendix B].

6Strictly speaking Braces is a suboperad of the dg operad defined in [[6, Section 8].
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CHAPTER 3

THE 2-COLORED CYLINDER
OPERAD

As mentioned in the introduction, the goal of this dissertation is to study dia-
grams of homotopy algebras, and give an application to Tamarkin’s construction
of formality morphisms. We begin by defining and studying the 2-colored operad
governing pairs of Cobar(C)-algebras and an co-morphism V' ~~ W (Proposition

[5.1), which will play a key role in formulating and proving our later results.

3.1 Basic definition and properties

First, given a coaugmented cooperad C, define the 2-colored collection C as

follows:

C(n,0;a) =C(0,n; 8) =sCs(n)

C(n,0;8) = C(n)

5 =0 otherwise.

Then form the free 2-colored operad OP(C). We think of elements of OP(C) as
2-colored trees with vertices decorated by elements of s C, and C, such that vertices
have incoming edges only of a single color, and vertices have input color o and

output color 3 exactly when the vertex is decorated by an element of C.
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Note that unlike Cobar(C), elements of OP(C) may have mixed-color vertices
decorated by unsuspended elements of C, and since C = k & C., in particular may

have vertices with a single input and output. We denote these “trivial vertices”

by 1%¥ € OP(C)(1,0;3). This leads us to an alternate notion of degree: given

X € OP(C) (or X € Cobar(C)), we will say that the weight of X, or wt(X), is the
number of internal vertices of X not of the form 1% (in Cobar(C), weight is just

the number of internal vertices). We will say that a map F" has weight m if it raises

weight by exactly m. Note finally that we have Cobar(C) C OP(C) by declaring
that an element X € Cobar(C) has edges only of color « or only of color 3; we will

denote these assignments by X and X7, respectively. Similarly, given z € C(n),

we will write z*# € OP(C)(n, 0; 3) to indicate the corolla with n incoming edges

of color « and outgoing edge of color (; this is consistent with our earlier notation

for 1% € OP(C)(1,0; 8). We will often mark vectors with superscripts in this way

to clearly indicate their input and output colors.

On OP(C), define a derivation O on generators as follows:

d(sz®) = Ocobar (8 T)“ sx € Q(n, 0;a) =sCs(n)
d(szf) = Ocobar (s )P sz € C(0,n; 8) =sCo(n)
o(1%%) = 0 1€C(n,0;8) =C(n)

) = Be(x)® + 8 (x°%) + 8" (x°%) 1+#x e C(n,0;5) = C(n)

where @' is defined by

J (x9) = > (=)= l(t,; 21, s 229) (3.1)
z€lsom(Treel (n,0;3))
with t, a representative of the isomorphism class z € Isom(Tree,(n)) and Ay, (x) =

1 ® x9, and where 0" is defined b
y

" (x%%) = — Z Z (t.;s o, 21, ..., k) (3.2)

k  z€lsom(PF},(n,0;8))
with t, a representative of the isomorphism class z € Isom(PF}(n,0;/3)) and
A () = > 29 ® 21 ® ... ® x), and where both comultiplications are taken by

forgetting the coloring on t,. A visual interpretation of 9(x*?) is found in Figure

B.1
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R

Isom(Treeh (n,0;3))

k- Isom(PF,(n,0:5))

Figure 3.1: The differential on Cyl(C).

0 visibly has degree 1, and so with the following proposition, we see that 0

gives OP(C) the structure of a dg operad. Following [19], we will call this operad
Cyl(C).

Proposition 3.1. 9% = 0.

Proof. The proof is a technical computation in the same spirit as showing 92, =
0. It suffices to show that > = 0 on corollas. Since & = Ocgpar ON single-color
corollas, it remains to justify that 9> = 0 on mixed-color corollas; we will give the
general ideas behind this computation. Since 9 = d¢ + @ + 9", we have that 9> = 0

from the following observations:
1. 2 = 0 because O is a differential on C;
2. 9c0d +0 00 =0 00" + 0" od: = 0 because O, is as a coderivation;

3. & o ' = 0 because of coassociativity;
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4, 00"+ 0" 00 + 0" 00" = 0 because of coassociativity and elementary

combinatorial identities.

3.2 Cohomological properties

As mentioned earlier, the significance of Cyl(C) is that it governs pairs of ho-
motopy algebras and co-morphisms between them, which we will prove in Chapter
4; for now, we proceed to study Cyl(C) in more depth. Given that Cyl(C) is essen-
tially a 2-colored modification of Cobar(C), one would expect their cohomology to
be related somehow. This is indeed the case, at least if we restrict our attention to
the weight O components of their respective differentials. The weight 0 component

of Ocobar 18 just dc; explicitly,
Oc(sx) = —s0c(x) (3.3)

for sz € sC,. On Cyl(C), the weight 0 part of 9, to be denoted 0y, is given

explicitly by
Oo(sx®) = Oc(sx)” sx € C:(n,O; a) =sCs(n)
do(szP) = e(sz)? sz € C(0,n;8) =sCo(n)
(1% = 0 1€ C(n,0;8) =C(n)
o(a) = De(w)™ + () + (2°%) 14w € C(n,0;8) = C(n)
where
O (xP) = 1%% o) s 2* (3.4)
and where
o (x°%) = —p(sa?; 198 ... 19P). (3.5)

It may seem as though we have overrused the notation dz by now, but all such uses
are really just the original Oc acting as a derivation on a free operad, respecting
suspensions and/or coloring. A visual representation of the action of Jy on mixed-

color generators is found in figure
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L

Figure 3.2: The weight 0 component of the differential on Cyl(C).

From weight considerations (or directly checking), both 93 = 0 and 97 = 0, so
we may consider Cobar(C) and Cyl(C) with respect to these simpler differentials.

Then we have:

Theorem 3.1. The inclusion maps

tartg+ (Cobar(C)(n),dc) — (Cyl(C)(n,0;5), 0o)
la : X — 198 0y X
Lz X o (X8 198 198)

are quasi-isomorphisms for all n > 0, and furthermore, are homotopic.

Proof. Given that we will show that ¢, is homotopic to ¢4, it suffices to show that ¢

is a quasi-isomorphism; we will begin with this. Introduce the following filtrations

on Cobar(C)(n) and Cyl(C)(n, 0; B):
FmCobar(C)(n) = { ( X € Cobar(C)(n) | }

the number of edges in X) — | X| < m

X € Cyl(C)(n,0;
P CC)m,0: ) = O 007 .
(the number of edges of color @ in X) — | X| <m

These filtrations are ascending, cocomplete, and compatible with ¢4 (since they are
essentially the same filtration). They also respect J¢ and 0y; in particular, note that
Oc and 0} raise internal degree without changing the number of (straight) edges, so
they lower the filtration index, while J; raises internal degree and the number of
straight edges, so it preserves the filtration index. Consequently, when we consider

the associated graded complexes, we have

Grz Cobar(C)(n) = (Cobar(C)(n),0) (3.6)
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Grz Cyl(C)(n, 0; 8) = (Cy1(C)(n, 0; B), 9) (3.7)
By Appendix A of [[11], it suffices to show that

v : (Cobar(C)(n),0) — (Cyl(C)(n,0; ), dp) (3.8)

is a quasi-isomorphism. For the remainder of this first section of the proof, when
we refer to those complexes, they will carry those differentials.
For this, we need an auxiliary construction. Define the 3-colored collection Q,

with colors «, 3, 7, by

Q(a,0,0;) = sCo(a) with 0g =0

Q(0,b,¢;8) = sCo(b+ ¢) with 0g = 0

Q(a,0,0;5) = Cola) ®sCo(a) withdg:x — sz

(9 = 0 otherwise.

Note that

H*(Q(0,b,¢;5)) = H*(Q(b+¢,0,0; ) =sCo(b+¢) (3.9
while

H*(Q(a,0,0;8)) = 0. (3.10)

When we form OP(Q), we have that
Cyl(C)(n,0;8) = @@[P )(m,0,n —m; f3) (3.11)

via the (backwards) identification OP(Q)(m,0,n — m; ) — Cyl(C)(n,0; ) de-
termined by the following rules. First, send edges of color « to the element

1%% € Cyl(C)(1,0; 3). Then perform the following identification