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ABSTRACT

DEFORMATION COMPLEXES FOR ALGEBRAIC OPERADS

AND THEIR APPLICATIONS

Brian Paljug

DOCTOR OF PHILOSOPHY

Temple University, May 2015

Dr. Vasily Dolgushev, Chair

Given a reduced cooperad C, we consider the 2-colored operad Cyl(C) which gov-

erns diagrams U : V  W , where V,W are Cobar(C)-algebras, and U is an ∞-

morphism. We then investigate the deformation complexes of Cyl(C) and Cobar(C).

Our main result is that the restriction maps between between the deformation com-

plexes Der′(Cyl(C)) and Der′(Cobar(C)) are homotopic quasi-isomorphisms of fil-

tered Lie algebras. We show how this result may be applied to modifying diagrams

of homotopy algebras by derived automorphism.

We then recall that Tamarkin’s construction gives us a map from the set of Drin-

feld associators to the homotopy classes of L∞-quasi-isomorphisms for Hochschild

cochains of a polynomial algebra. Due to results of V. Drinfeld and T. Willwacher,

both the source and the target of this map are equipped with natural actions of the

Grothendieck-Teichmueller group GRT1. We use our earlier results to prove that

this map from the set of Drinfeld associators to the set of homotopy classes of L∞-

quasi-isomorphisms for Hochschild cochains is GRT1-equivariant.
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CHAPTER 1

INTRODUCTION

Homotopy algebras and morphisms appear in many areas throughout mathemat-

ics; in homological algebra in the form of algebraic transfer theorems, in geometry

in the study of iterated loop spaces, in deformation quantization in Kontsevich’s for-

mality theorem, and so on. Much work has been done to find the correct framework

in which to study homotopy algebras, and the theory of operads is one such attempt.

The complicated coherence relations that define homotopy algebras are encoded in

the language of operads, which are easily manipulated with homological or combi-

natorial techniques; see [27] for an excellent overview of these methods. This is the

approach taken in this dissertation.

While there is a notion of morphisms between homotopy algebras of a specific

type, in practice and theory one is interested in the looser notions of∞-morphisms,

which themselves satisfy some complicated system of coherence relations. Since

homotopy algebras can be defined as algebras over a specific operad, it seems nat-

ural to ask if∞-morphisms can be defined in the language of operads. The answer

is provided in [19] via a 2-colored “cylinder construction” operad, which we restate

and study further; similar ideas were also considered in [28], [5] and [16]. Specif-

ically, given a cooperad C we construct and study a 2-colored operad Cyl(C) that

governs pairs of homotopy algebras and∞-morphisms between them.

Our main goal is to answer the following question; given a pair of homotopy

algebras and an ∞-morphism between them, can we change the homotopy alge-
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bras and the∞-morphism simultaneously to get new homotopy algebras and a new

∞-morphism (all of the same type)? More specifically, given a derivation of the

operad Cobar(C) governing the homotopy algebras V and W , we can exponentiate

that derivation to an automorphism of Cobar(C) and use that automorphism to de-

fine new Cobar(C)-algebra structures on V andW via pullback; can we do the same

to an∞-morphism between V and W , to create a new∞-morphism that respects

the new Cobar(C)-algebra structures? We show that this is possible, and moreover

that the answer is unique up to homotopy, using the previously mentioned tech-

niques of operadic homological algebra. In particular, we have Theorem 4.1, which

says that the natural restriction maps between between the deformation complexes

Der′(Cyl(C)) and Der′(Cobar(C)) are homotopic quasi-isomorphisms of filtered

Lie algebras.

Theorem. The maps

resα, resβ : Der(Cyl(C)) −→ Der(Cobar(C))

given by restricting to a single color α or β are homotopic quasi-isomorphisms of

dg Lie algebras at all filtration levels.

This leads us to Theorem 4.2:

Theorem. The group homomorphisms

resα, resβ : Aut′(Cyl(C)) −→ Aut′(Cobar(C))

induce identical isomorphisms on homotopy classes:

res : hAut′(Cyl(C)) −→ hAut′(Cobar(C)).

This then allows us to answer the motivating question, shown in Theorem 5.1:

Theorem. Let V and W be Cobar(C)-algebras for a cooperad C, and let U :

V  W be an ∞-morphism between them. Given a degree 0 closed derivation

D ∈ Der′(Cobar(C)), there exists a degree 0 cocycle D̃ ∈ Der′(Cyl(C)) such that

D, D̃α, and D̃β are cohomologous in Der′(Cobar(C)). Therefore we can construct

U D̃ : V D̃α  W D̃β
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such that V D̃α is homotopy equivalent to V D and W D̃β is homotopy equivalent to

WD, and so that the linear term of U is unchanged: U D̃
(0) = U(0).

We then provide an application of the previous results to a question in deforma-

tion quantization. Let k be a field of characteristic zero, A = k[x1, x2, . . . , xd] be

the algebra of functions on the affine space kd, and VA be the algebra of polyvector

fields on kd. Let us recall that Tamarkin’s construction [21], [10] gives us a map

from the set of Drinfeld associators to the set of homotopy classes of L∞-quasi-

isomorphisms from VA to the Hochschild cochain complex C•(A) := C•(A,A) of

A.

In paper [38], among proving many other things, Thomas Willwacher con-

structed a natural action of the Grothendieck-Teichmueller group GRT1 from [17]

on the set of homotopy classes of L∞-quasi-isomorphisms from VA to C•(A). On

the other hand, it is known [17] that the group GRT1 acts simply transitively on the

set of Drinfeld associators.

The goal of the second half of this dissertation is to prove GRT1-equivariance of

the map resulting from Tamarkin’s construction using Theorem 4.3 from [33], pro-

viding the necessary background and preliminary results. This is given in Theorem

7.1:

Theorem. Let π0

(
Ger∞ → Braces

)
be the set of homotopy classes of operad

maps (6.1) from the dg operad Ger∞ governing homotopy Gerstenhaber algebras

to the dg operad Braces of brace trees. Let π0

(
VA  C•(A)

)
be the set of ho-

motopy classes of Λ Lie∞-quasi-isomorphisms from the algebra VA of polyvector

fields to the algebra C•(A) of Hochschild cochains of a graded affine space. Then

Tamarkin’s construction of formality morphisms

T : π0

(
Ger∞ → Braces

)
→ π0

(
VA  C•(A)

)
commutes with the action of the group GRT1 = exp(H0(Der′(Ger∞))).

We should remark that the statement about GRT1-equivariance of Tamarkin’s

construction was made in [38] (see the last sentence of Section 10.2 in [38, Ver-

sion 3]) in which the author stated that “it is easy to see”. We also prove various
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statements related to Tamarkin’s construction [21], [10] which are “known to spe-

cialists” but not proved in the literature in the desired generality. In fact, even the

formulation of the problem of GRT1-equivariance of Tamarkin’s construction re-

quires some additional work.

Here, Tamarkin’s construction is presented in the slightly more general setting

of graded affine space versus the particular case of the usual affine space. Thus,A is

always the free (graded) commutative algebra over k in variables x1, x2, . . . , xd of

(not necessarily zero) degrees t1, t2, . . . , td, respectively. Furthermore, VA denotes

the Gerstenhaber algebra of polyvector fields on the corresponding graded affine

space, i.e.

VA := SA
(
s Derk(A)

)
,

where Derk(A) denotes the A-module of derivations of A, s is the operator which

shifts the degree up by 1, and SA(M) denotes the free (graded) commutative algebra

on the A-module M .

The dissertation is organized as follows.

In Chapter 2, we review the notation and background material needed for the

remainder of the dissertation. This chapter tries to be somewhat self-contained with

regards to content, if not detail.

In Chapter 3, we construct a 2-colored dg operad Cyl(C) for any cooperad C that

governs pairs of Cobar(C)-algebras and an∞-morphism between them. We also in-

vestigate the cohomology of Cyl(C), and construct homotopic quasi-isomorphisms

between Cobar(C) and the mixed-color part of Cyl(C) (Corollary 3.1).

In Chapter 4 we turn to studying the dg Lie algebra of derivations of Cyl(C),

and how it relates to derivations of Cobar(C) – these are the titular “deformation

complexes of operads.” In particular we show in Theorem 4.1 that the obvious

restriction maps between Der(Cyl(C)) and Der(Cobar(C)) are homotopic quasi-

isomorphisms. We then conclude in Theorem 4.2 that, after exponentiating, they

yield the same group isomorphism on homotopy classes of maps.

In Chapter 5 we show how the previous results may be applied to the motivating

question, that is, how to modify ∞-morphisms of homotopy algebra via derived



5

automorphism. This is the content of Theorem 5.1. We also discuss various ways

in which this procedure is unique up to homotopy.

In Chapter 6, we briefly review the main part of Tamarkin’s construction and

prove that it gives us a map T (see Eq. (6.21)) from the set of homotopy classes

of certain quasi-isomorphisms of dg operads to the set of homotopy classes of L∞-

quasi-isomorphisms for Hochschild cochains of A.

In Chapter 7, we introduce a (prounipotent) group which is isomorphic (due

to Willwacher’s theorem [38, Theorem 1.2]) to the prounipotent part GRT1 of the

Grothendieck-Teichmüller group GRT introduced in [17] by V. Drinfeld. We recall

from [38] the actions of the group (isomorphic to GRT1) both on the source and

the target of the map T (6.21). Finally, we prove the main result of these chapters

(see Theorem 7.1) which says that Tamarkin’s map T (see Eq. (6.21)) is GRT1-

equivariant.

In Chapter 8, we recall how to use the map T (see Eq. (6.21) from Chapter 6), a

solution of the Deligne conjecture on the Hochschild complex, and the formality of

the operad of little discs [34] to construct a map from the set of Drinfeld associators

to the set of homotopy classes of L∞-quasi-isomorphisms for Hochschild cochains

of A. Finally, we deduce, from Theorem 7.1, GRT1-equivariance of the resulting

map from the set of Drinfeld associators. The latter statement (see Corollary 8.1

in Chapter 8) can be deduced from what is written in [38] and Theorem 7.1 given

in Chapter 7. However, we decided to add Chapter 8 just to make the story more

complete.

Appendices, at the end of the dissertation, are devoted to proofs of various tech-

nical statements used in the body of the dissertation.

It should be noted that this dissertation combines the content of papers [33] and

[10], rearranged, modified, and supplemented as necessary. While working on this

dissertation, the author was partionally supported by NSF grants DMS-0856196

and DMS-1161867.
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CHAPTER 2

PRELIMINARIES

2.1 Notation & conventions

We begin be establishing notation and conventions, before reviewing other foun-

dational material. Throughout, the ground field k has characteristic zero. For most

algebraic structures considered here, the underlying symmetric monoidal category

is the category Chk of unbounded cochain complexes of k-vector spaces. We will

frequently use the ubiquitous combination “dg” (differential graded) to refer to alge-

braic objects in Chk, and denote their differentials by d or ∂. For a cochain complex

V we denote by sV (resp. by s−1 V ) the suspension (resp. the desuspension) of V .

In other words, (
sV
)•

= V •−1 ,
(
s−1 V

)•
= V •+1 .

Any Z-graded vector space V is tacitly considered as the cochain complex with the

zero differential. For a homogeneous vector v in a cochain complex or a graded

vector space the notation |v| is reserved for its degree.

The notation Sn is reserved for the symmetric group on n letters and Shp1,...,pk

denotes the subset of (p1, . . . , pk)-shuffles in Sn, i.e. Shp1,...,pk consists of elements

σ ∈ Sn, n = p1 + p2 + · · ·+ pk such that



7

σ(1) < σ(2) < · · · < σ(p1),

σ(p1 + 1) < σ(p1 + 2) < · · · < σ(p1 + p2),

. . .

σ(n− pk + 1) < σ(n− pk + 2) < · · · < σ(n) .

We tacitly assume the Koszul sign rule. In particular,

(−1)ε(σ;v1,...,vm)

will always denote the sign factor corresponding to the permutation σ ∈ Sm of

homogeneous vectors v1, v2, . . . , vm. Namely,

(−1)ε(σ;v1,...,vm) :=
∏
(i<j)

(−1)|vi||vj | , (2.1)

where the product is taken over all inversions (i < j) of σ ∈ Sm.

For a pair V , W of Z-graded vector spaces we denote by

Hom(V,W )

the corresponding inner-hom object in the category of Z-graded vector spaces, i.e.

Hom(V,W ) :=
⊕
m

Homm
k

(V,W ) , (2.2)

where Homm
k

(V,W ) consists of k-linear maps f : V → W such that

f(V •) ⊂ W •+m .

For a commutative algebra B and a B-module M , the notation SB(M) (resp.

SB(M)) is reserved for the symmetric B-algebra (resp. the truncated symmetric

B-algebra) on M , i.e.

SB(M) := B ⊕M ⊕ S2
B(M)⊕ S3

B(M)⊕ . . . ,

and

SB(M) := M ⊕ S2
B(M)⊕ S3

B(M)⊕ . . . .

For anA∞-algebraA, the notationC•(A) is reserved for the Hochschild cochain

complex of A with coefficients in A.
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2.2 Operads

For a general introduction to the theory of operads, see [11] or [27]; we recall

the basic definitions here.

Definition 2.1. A collection O is a set of cochain complexes indexed by Z≥0

O = {O(n)}n≥0

such that O(n) is a left Sn-representation. We say that O is an operad if it is

equipped with linear composition maps

µ : O(n)⊗O(k1)⊗ ...⊗O(kn)→ O(k1 + ...+ kn) (2.3)

that satisfy appropriate associativity and symmetry axioms, and has a distinguished

element id ∈ O(1) that satisfies an appropriate unit axiom.

The terms composition and multiplication are often used interchangeably. Mor-

phisms of operads must respect composition, symmetric actions, and units in the

obvious ways.

There are two equivalent ways of describing operadic multiplication. The first

is in terms of the elementary insertion maps

◦i : O(n)⊗O(k)→ O(n+ k − 1), 1 ≤ i ≤ n (2.4)

which will satisfy their own associativity axiom [11, Definition 3.2]. It is straight-

forward to see how elementary insertions and composition determine each other.

The second way highlights the combinatorial nature of operads. Following [11],

let Tree(n) be the category of n-labeled rooted, planted, planar trees. That is, planar

trees with a distinguished valency 1 vertex (the root), and such that the other valency

1 vertices (the leaves) carry labels 1 to n. Non-leaf, non-root vertices are called

nodal or internal. For every collection O, we have the functor

On : Tree(n) −→ Chk (2.5)
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that maps a tree t to the tensor product of components of O, according to the arity

of vertices and planar structure. Explicitly,

On(t) =
⊗

x∈Vnod(t)

O(m(x)) (2.6)

where Vnod(t) is the set of all nodal vertices of t, andm(x) is the number of incoming

edges at the vertex x, and the order of factors in the right side of equation 2.6 agrees

with the natural order on the set of nodal vertices coming from the planar structure.

With this in mind, a collectionO is an operad if it is equipped with composition

maps

µt : On(t) −→ O(n). (2.7)

To recover the first notion of operadic composition and elementary insertions, we

need two subcategories of Tree(n). Elementary insertations are obtained by focus-

ing on Tree2(n), the full subcategory of Tree(n) consisting of trees with exactly 2

internal vertices. The first notion of composition is obtained by focusing on PFk(n)

(“pitchforks”), the full subcategory of Tree(n) consisting of trees with exactly k+1

internal vertices, one of which has height 1, and the other k have height exactly 2.

Some examples of such trees can be found in figures 2.1 and 2.2.

1 2 3

4 5 6

Figure 2.1: An element of Tree2(6).

1 2 3 4 5 6 7 8

Figure 2.2: An element of PF3(8).

Example 2.1. Given a cochain complex V , the endomorphism operad EndV is

defined by

EndV (n) = Homk(V
⊗n, V )
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with Sn acting on EndV (n) by permutation of arguments, operadic composition

determined by function composition, and the unit the identity morphism on V .

If we have a map of operads

O −→ EndV (2.8)

then we say that V is an algebra over O, or an O-algebra. Intuitively, this means

that V possesses multi-ary operations governed by the elements of O. That is, we

have multiplication maps

µn : O(n)⊗ V ⊗n → V (2.9)

for all n ≥ 0, satisfying appropriate associativity, equivariance, and unit axioms

[29]. With this in mind, we define the free O-algebra to be

O(V ) =
⊕
n≥0

(
O(n)⊗ V ⊗n

)
Sn

with differential coming from the differential on O and the differential on V .

Example 2.2. The operad Assoc is defined by Assoc(0) = 0 and

Assoc(n) = k[Sn]

with Sn acting on Assoc(n) by composition of permutatons, operadic composition

determined by insertion of permutations, and the unit the identity permutation on

S1.

Equivalently, we may define Assoc(n) to be spanned by associative words in

noncommuting letters x1, x2, ..., xn such that each letter appears exactly once. The

monomial xi1 ...xin corresponds to the permutation (xi1 ...xin).

Algebras over Assoc are exactly non-unital associative algebras.

We may similarly define the operads Com, Lie, and Ger governing non-unital

commutative, Lie, and Gerstenhaber algebras, respectively.
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Example 2.3. The initial operad ∗ is defined by

∗(n) =

{
k n = 1

0 otherwise

which uniquely possesses the structure of an operad, and is indeed the initial object

is the category of operads.

With this example in mind, an operad is called augmented if there is a map of

operads

ε : O −→ ∗.

Given any augmented operadO, we will denote the kernel of the augmentation map

by O◦, which carries the structure of an operad without unit (or pseudo-operad).

If we dualize the above we obtain the notion of cooperads, which are collections

C = {C(n)}n≥0

with comultiplication maps

∆ : C(k1 + ...+ kn)→ C(n)⊗ C(k1)⊗ ...⊗ C(kn) (2.10)

and counits, satisfying the appropriate dual axioms. As before, comultiplications

are determined by the elementary coinsertaions

∆i : C(n+ k − 1)→ C(n)⊗ C(k) (2.11)

or the more general comultiplication maps

∆t : C(n) −→ Cn(t). (2.12)

If an operad O consists of finite dimensional vector spaces, then the collection

of linear duals naturally carries the structure of a cooperad, and will be denoted

O∗. In this way we obtain the cooperad coCom = Com∗ governing cocommutative

coalgebras (without counit), for example.

Given that ∗ is uniquely a cooperad, a cooperad is said to be coaugmented if

there is a coaugmentation map

∗ −→ C (2.13)
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the cokernel of which will be denoted C◦, naturally a cooperad without counit (or

pseudo-cooperad). A coaugmented cooperad C is called reduced if

C(0) = {0} C(1) = k

and hence C◦(0) = C◦(1) = {0}. We will henceforth assume that all cooperads are

reduced.

We say that V is a coalgebra over the cooperad C if we have comultiplication

maps

∆n : V → C(n)⊗ V ⊗n (2.14)

satisfying appropriate coassicativity, equivariance, and counit axioms. The cofree

C-coalgebra is then defined to be

C(V ) =
⊕
n≥0

(
C(n)⊗ V ⊗n

)Sn (2.15)

with differential coming from the differential on C and the differential on V 1.

Example 2.4. We denote by Λ the underlying collection of the endomorphism op-

erad

Ends k

of the 1-dimensional space s k placed in degree 1. The n-th space of Λ is

Λ(n) = sgnn⊗ s1−n ,

where sgnn denotes the sign representation of the symmetric group Sn. Λ is natu-

rally an operad and a cooperad.

The tensor product of (co)operads is obtained by taking the level-wise tensor

product of cochain complexes, which will then naturally carry the structure of a

(co)operad. Explicitly,

(P1 ⊗ P2)(n) = P1(n)⊗ P2(n). (2.16)

1Given that we are working over a field of characteristic 0, coinvariants and invariants are iso-
morphic. For example, we have as a result that Com(V ) = coCom(V ) = S(V ).
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Then for a (co)operad P , we denote by ΛP the (co)operad which is obtained from

P by tensoring with Λ:

ΛP := Λ⊗ P . (2.17)

It is clear that tensoring with

Λ−1 := Ends−1 k (2.18)

gives us the inverse of the operation P 7→ ΛP .

Given a collection Q, we can form the free operad OP(Q) [11, Section 3.6].

It is generally most convenient to think of elements of OP(Q) as rooted trees with

internal vertices decorated by elements of Q, subject to an appropriate symmetry

relation; with this in mind, (t;x1, ..., xk) is the element of OP(Q)(n) where the

n-labeled tree t has k internal vertices decorated by the elements x1, ..., xk ofM,

according to the total ordering on internal vertices. We will frequently identify an

element x ∈ Q(n) with the standard n-corolla decorated by x in OP(Q)(n). It is

occasionally useful to remember that at each level OP(Q)(n) = colimQ
n

(strictly,

speaking, this only defines the free pseudo-operad, with the free operad then ob-

tained by formally adjoining a unit). Since the Sn action on OP(Q)(n) permutes

the labels, we will simplify diagrams by omitting these labels when drawing ele-

ments of OP(Q).

Definition 2.2. Given a coaugmented cooperad C, we define the cobar construction

Cobar(C) to be OP(s C◦), with the differential defined on generators sx ∈ s C◦ by

∂Cobar(sx) = − s ∂C(x)−
∑

z∈Isom(Tree2(n))

(−1)|x1|(tz; sx1, sx2) (2.19)

where the sum is taken over all isomorphism classes of Tree2(n), with tz a repre-

sentative of the isomorphism class z ∈ Isom(Tree2(n)), and ∆tz(x) =
∑
x1 ⊗ x2.

Note that we use Sweedler-type notation in the above equation, and will con-

tinue to do so throughout the dissertation.

Much of the above extends immediately to the colored setting, so we will only

focus on certain ideas and notation; our primary reference is [8]. We will focus
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on the 2-colored setting for now, and the 3-colored versions should be clear (and

will only be minimally needed in what follows). We will refer to our 2 colors as

α and β. Given a 2-colored collection Q, Q(a, b;α) denotes the level of Q with a

inputs of color α, b inputs of color β, and output of color α. Similarly, Q(a, b; β)

indicates that the output is of color β. As in the single-color case, we have a free

colored operad construction, governed by colored trees. The category of colored

n-labeled trees is defined similarly to Tree(n), except that the edges carry colors,

and morphisms must respect the coloring. In figures, edges with color α will be

represented by solid lines, while edges of color β will be represented by dashed

lines.

As before, we will need two subcategories of colored n-labeled trees, but slightly

more specialized than those given above. The first is Tree′2(n), the full subcategory

of Tree(n) consisting of trees with exactly 2 internal vertices, such that the root

edge carries color β, and all other edges carry color α. The second is PF′k(n), the

full subcategory of colored Tree(n) consisting of trees with exactly k + 1 internal

vertices, one of which has height 1, and the other k have height exactly 2, such that

all leaf edges carry color α and all other edges carry color β. Some examples of

such trees can be found in figures 2.3 and 2.4.

1 2 3

4 5 6

Figure 2.3: An element of Tree′2(6).

1 2 3 4 5 6 7 8

Figure 2.4: An element of PF′3(8).

Example 2.5. Given vector spaces V,W , their 2-colored endomorphism operad

EndV,W is defined by

EndV,W (n,m, α) = Homk(V
⊗n ⊗W⊗m, V )
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EndV,W (n,m, β) = Homk(V
⊗n ⊗W⊗m,W )

with the obvious operadic structure.

Just as before, algebras over colored operads are defined to be operad maps to

EndV,W .

2.3 Deformation complexes of operads

Definition 2.3. [11, Section 6.1] Let O be an operad, and D a linear map on O.

We say that D is a derivation of O if

D(x ◦i y) = D(x) ◦i y + (−1)|x|x ◦i D(y) (2.20)

for all elementary insertions ◦i, and all x, y ∈ O.

More generally, derivations satisfy a Leibniz rule with respect to operadic compo-

sition. The space of derivations of an operad is denoted Der(O), and is a dg Lie

algebra with the graded commutator bracket

[D1, D2] = D1 ◦D2 − (−1)|D1||D2|D2 ◦D1 (2.21)

and with differential given by the bracket with the internal differential ∂O

∂(D) = [∂O, D]. (2.22)

Following [31, 32], when O = Cobar(C) 2 for a reduced cooperad C, we call

Der(Cobar(C)) the deformation complex of Cobar(C). 3

2.4 Homotopy algebras

We will briefly recall the definitions of homotopy algebras and∞-morphisms;

see [11], [25], and [27] for more thorough introductions to the subject. Given a
2Or more generally, any operad that is cofibrant in the model category structure inherited from

the standard model category structure on Chk.
3Papers [31, 32] actually introduce and study the deformation complex of morphisms of PROPs,

and therefore treat this subject in greater generality. What we call the deformation complex of an
operad O, Merkulov and Vallette call the deformation complex of the identity morphism on O.
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coaugmented cooperad C, we will use the following “pedestrian” definition of ho-

motopy algebras.

Definition 2.4. A homotopy algebra of type C is an algebra V over Cobar(C). That

is, we have a map of operads

Cobar(C) −→ EndV . (2.23)

This is equivalent [11] to a coderivation QV on C(V ), the cofree coalgebra gen-

erated by V over the cooperad C, that satisfies the Maurer-Cartan equation

∂(QV ) +QV ◦QV = 0 (2.24)

(equivalently, dC(V ) +QV is a differential on C(V )). In the case that C is the Koszul

dual of an operad O, it is common to call V an O∞-algebra.

Example 2.6. A∞-algebras (or homotopy associative algebras) are algebras over

Cobar(Λ coAssoc). It is possible to unravel what this means in terms of opera-

tions and relations [27, Section 10.1.10]; an A∞-algebra possesses n-ary higher

multiplications for n ≥ 0, that are “associative up to homotopy” in a precise sense.

Example 2.7. L∞-algebras (or homotopy Lie algebras) are algebras over

Lie∞ = Cobar(Λ coCom).

It is possible to unravel what this means in terms of operations and relations [27,

Section 10.1.12]; an L∞-algebra possesses n-ary higher brackets for n ≥ 0, that

are skew-symmetric and satisfy a generalized Jacobi identity “up to homotopy”

in a precise sense. For technical reasons, it is often easier to work with Λ Lie∞-

algebras, which are algebras over Cobar(Λ2 coCom).

Example 2.8. Ger∞-algebras (or homotopy Gerstenhaber algebras) are algebras

over

Ger∞ = Cobar(Ger∨)

where Ger∨ = (Λ−2 Ger)∗. Ger∞-algebras possess both higher multiplications

and brackets. See the following section for a further discussion on Ger∨.
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While there is the natural notion of morphisms of O-algebras for any operad

O, in this setting we have the richer notion of ∞-morphisms. An ∞-morphism

between two homotopy algebras V , W of type C is a map of dg coalgebras

U : (C(V ), dC(V ) +QV ) −→ (C(W ), dC(W ) +QW ). (2.25)

We denote an ∞-morphism by U : V  W . An ∞-isomorphism (resp. quasi-

isomorphism) is an ∞-morphism such that the linear term U(0) : V → W is an

isomorphism (resp. quasi-isomorphism) of complexes. In the event that V and W

are∞-quasi-isomorphic, we will say that V and W are homotopy equivalent. It is

possible to describe∞-morphisms more directly in terms of diagrams [19]; equiv-

alently, the results of Chapters 3 and 5 show how one may describe∞-morphisms

as an algebra over a certain 2-colored operad.

2.5 A basis for the operad Λ−2 Ger

Recall that Ger∞-algebras (or homotopy Gerstenhaber algebras) are governed

by the dg operad

Cobar(Ger∨) , (2.26)

where Ger∨ is the cooperad which is obtained by taking the linear dual of Λ−2 Ger.

For the purposes of conveniently describing elements of Λ−2 Ger, we introduce

the free Λ−2 Ger-algebra Λ−2 Ger(b1, b2, . . . , bn) in n auxiliary variables b1, b2, . . . , bn

of degree 0 and identify the n-th space Λ−2 Ger(n) of Λ−2 Ger with the subspace of

Λ−2 Ger(b1, b2, . . . , bn) spanned by Λ−2 Ger-monomials in which each variable bj
appears exactly once. For example, Λ−2 Ger(2) is spanned by the monomials b1b2

and {b1, b2} of degrees 2 and 1, respectively.

Let us consider the ordered partitions of the set {1, 2, . . . , n}

{i11, i12, . . . , i1p1} t {i21, i22, . . . , i2p2} t · · · t {it1, it2, . . . , itpt} (2.27)

satisfying the following properties:

• for each 1 ≤ β ≤ t the index iβpβ is the biggest among iβ1, . . . , iβpβ
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• i1p1 < i2p2 < · · · < itpt (in particular, itpt = n).

It is clear that the monomials

{bi11 , . . . , {bi1(p1−1)
, bi1p1} . . . } . . . {bit1 , . . . , {bit(pt−1)

, bitpt} . . . } (2.28)

corresponding to all ordered partitions (2.27) satisfying the above properties form

a basis of the space Λ−2 Ger(n) .

In this dissertation, we use the notation(
{bi11 , . . . , {bi1(p1−1)

, bi1p1} . . . } . . . {bit1 , . . . , {bit(pt−1)
, bitpt} . . . }

)∗ (2.29)

for the elements of the dual basis in Ger∨(n) =
(
Λ−2 Ger(n)

)∗.
2.6 The dg operad of brace trees

In this brief section, we recall the dg operad Braces from [6, Section 9] and

[24]4.

Following [6], we introduce, for every n ≥ 1, the auxiliary set T (n). An ele-

ment of T (n) is a planted5 planar tree T with the following data

• a partition of the set V (T ) of vertices

V (T ) = Vlab(T ) t Vν(T ) t Vroot(T )

into the singleton Vroot(T ) consisting of the root vertex, the set Vlab(T ) con-

sisting of n vertices called labeled, and the set Vν(T ) consisting of vertices

which we call neutral;

• a bijection between the set Vlab(T ) and the set {1, 2, . . . , n}.

We also require that each element T of T (n) satisfies the condition that every

neutral vertex of T has at least 2 incoming edges (that is, are of valency at least 3).

Elements of T (n) are called brace trees.

4In paper [24], the dg operad Braces is called the “minimal operad”.
5Recall that a planted tree is a rooted tree whose root vertex has valency 1 .
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For n ≥ 1, the vector space Braces(n) consists of all finite linear combinations

of brace trees in T (n). To define a structure of a graded vector space on Braces(n),

we declare that each brace tree T ∈ T (n) carries degree

|T | = 2|Vν(T )| − |E(T )|+ 1 , (2.30)

where |Vν(T )| denotes the total number of neutral vertices of T and |E(T )| denotes

the total number of edges of T .

Examples of brace trees in T (2) (and hence vectors in Braces(2)) are shown on

figures 2.5, 2.6, 2.7, 2.8.

1

2

Figure 2.5: A brace tree T ∈ T (2)

2

1

Figure 2.6: A brace tree T21 ∈ T (2)

1 2

Figure 2.7: A brace tree T∪ ∈ T (2)

2 1

Figure 2.8: A brace tree T∪opp ∈ T (2)

According to (2.30), the brace trees T and T21 on figures 2.5 and 2.6, respec-

tively, carry degree−1 and the brace trees T∪, T∪opp on figures 2.7, 2.8, respectively,

carry degree 0.

Since neutral vertices of elements of T have valency at least 3, this implies that

T (1) consists of exactly one brace tree Tid shown on figure 2.9. Hence we have

1

Figure 2.9: The brace tree Tid ∈ T (1)

Braces(1) = k.
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Finally, we set Braces(0) = 0.

For the definition of the operadic multiplications on Braces, we refer the reader

to6 [6, Section 8] and, in particular, Example 8.2. For the definition of the differ-

ential on Braces, we refer the reader to [6, Section 8.1] and, in particular, Example

8.4.

Let us also recall that the dg operad Braces acts naturally on the Hochschild

cochain complex C•(A) of any A∞-algebra A. For example, if T (resp. T21) is the

brace tree shown on figure 2.5 (resp. figure 2.6), then the expression

T (P1, P2) + T21(P1, P2) , P1, P2 ∈ C•(A)

coincides (up to a sign factor) with the Gerstenhaber bracket of P1 and P2. Simi-

larly, if T∪ is the brace tree shown on figure 2.7, then the expression

T∪(P1, P2) , P1, P2 ∈ C•(A)

coincides (up to a sign factor) with the cup product of P1 and P2.

For the precise construction of the action of Braces on C•(A), we refer the

reader to [6, Appendix B].

6Strictly speaking Braces is a suboperad of the dg operad defined in [6, Section 8].
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CHAPTER 3

THE 2-COLORED CYLINDER

OPERAD

As mentioned in the introduction, the goal of this dissertation is to study dia-

grams of homotopy algebras, and give an application to Tamarkin’s construction

of formality morphisms. We begin by defining and studying the 2-colored operad

governing pairs of Cobar(C)-algebras and an∞-morphism V  W (Proposition

5.1), which will play a key role in formulating and proving our later results.

3.1 Basic definition and properties

First, given a coaugmented cooperad C, define the 2-colored collection C̃ as

follows:

C̃(n, 0;α) = C̃(0, n; β) = s C◦(n)

C̃(n, 0; β) = C(n)

C̃ = 0 otherwise.

Then form the free 2-colored operad OP(C̃). We think of elements of OP(C̃) as

2-colored trees with vertices decorated by elements of s C◦ and C, such that vertices

have incoming edges only of a single color, and vertices have input color α and

output color β exactly when the vertex is decorated by an element of C.
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Note that unlike Cobar(C), elements of OP(C̃) may have mixed-color vertices

decorated by unsuspended elements of C, and since C = k ⊕ C◦, in particular may

have vertices with a single input and output. We denote these “trivial vertices”

by 1αβ ∈ OP(C̃)(1, 0; β). This leads us to an alternate notion of degree: given

X ∈ OP(C̃) (or X ∈ Cobar(C)), we will say that the weight of X , or wt(X), is the

number of internal vertices of X not of the form 1αβ (in Cobar(C), weight is just

the number of internal vertices). We will say that a map F has weight m if it raises

weight by exactly m. Note finally that we have Cobar(C) ⊆ OP(C̃) by declaring

that an elementX ∈ Cobar(C) has edges only of color α or only of color β; we will

denote these assignments by Xα and Xβ , respectively. Similarly, given x ∈ C(n),

we will write xαβ ∈ OP(C̃)(n, 0; β) to indicate the corolla with n incoming edges

of color α and outgoing edge of color β; this is consistent with our earlier notation

for 1αβ ∈ OP(C̃)(1, 0; β). We will often mark vectors with superscripts in this way

to clearly indicate their input and output colors.

On OP(C̃), define a derivation ∂ on generators as follows:

∂(sxα) = ∂Cobar(sx)α sx ∈ C̃(n, 0;α) = s C◦(n)

∂(sxβ) = ∂Cobar(sx)β sx ∈ C̃(0, n; β) = s C◦(n)

∂(1αβ) = 0 1 ∈ C̃(n, 0; β) = C(n)

∂(xαβ) = ∂C(x)αβ + ∂′(xαβ) + ∂′′(xαβ) 1 6= x ∈ C̃(n, 0; β) = C(n)

where ∂′ is defined by

∂′(xαβ) =
∑

z∈Isom(Tree′2(n,0;β))

(−1)|x1|(tz;x1, sx2) (3.1)

with tz a representative of the isomorphism class z ∈ Isom(Tree′2(n)) and ∆tz(x) =∑
x1 ⊗ x2, and where ∂′′ is defined by

∂′′(xαβ) = −
∑
k

∑
z∈Isom(PF′k(n,0;β))

(tz; sx0, x1, ..., xk) (3.2)

with tz a representative of the isomorphism class z ∈ Isom(PF′k(n, 0; β)) and

∆tz(x) =
∑
x0 ⊗ x1 ⊗ ... ⊗ xk, and where both comultiplications are taken by

forgetting the coloring on tz. A visual interpretation of ∂(xαβ) is found in Figure

3.1.
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∂(xαβ) = ∂C(x)

...

+

∑
Isom(Tree′2(n,0;β))

(−1)|x1|

x1

sx2

...

...

−
∑
k

∑
Isom(PF′k(n,0;β))

sx0

x1

...

... xk

...

Figure 3.1: The differential on Cyl(C).

∂ visibly has degree 1, and so with the following proposition, we see that ∂

gives OP(C̃) the structure of a dg operad. Following [19], we will call this operad

Cyl(C).

Proposition 3.1. ∂2 = 0.

Proof. The proof is a technical computation in the same spirit as showing ∂2
Cobar =

0. It suffices to show that ∂2 = 0 on corollas. Since ∂ = ∂Cobar on single-color

corollas, it remains to justify that ∂2 = 0 on mixed-color corollas; we will give the

general ideas behind this computation. Since ∂ = ∂C+∂′+∂′′, we have that ∂2 = 0

from the following observations:

1. ∂2
C = 0 because ∂C is a differential on C;

2. ∂C ◦ ∂′ + ∂′ ◦ ∂C = ∂C ◦ ∂′′ + ∂′′ ◦ ∂C = 0 because ∂C is as a coderivation;

3. ∂′ ◦ ∂′ = 0 because of coassociativity;
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4. ∂′ ◦ ∂′′ + ∂′′ ◦ ∂′ + ∂′′ ◦ ∂′′ = 0 because of coassociativity and elementary

combinatorial identities.

3.2 Cohomological properties

As mentioned earlier, the significance of Cyl(C) is that it governs pairs of ho-

motopy algebras and∞-morphisms between them, which we will prove in Chapter

4; for now, we proceed to study Cyl(C) in more depth. Given that Cyl(C) is essen-

tially a 2-colored modification of Cobar(C), one would expect their cohomology to

be related somehow. This is indeed the case, at least if we restrict our attention to

the weight 0 components of their respective differentials. The weight 0 component

of ∂Cobar is just ∂C; explicitly,

∂C(sx) = − s ∂C(x) (3.3)

for sx ∈ s C◦. On Cyl(C), the weight 0 part of ∂, to be denoted ∂0, is given

explicitly by

∂0(sxα) = ∂C(sx)α sx ∈ C̃(n, 0;α) = s C◦(n)

∂0(sxβ) = ∂C(sx)β sx ∈ C̃(0, n; β) = s C◦(n)

∂(1αβ) = 0 1 ∈ C̃(n, 0; β) = C(n)

∂0(xαβ) = ∂C(x)αβ + ∂′0(xαβ) + ∂′′0 (xαβ) 1 6= x ∈ C̃(n, 0; β) = C(n)

where

∂′0(xαβ) = 1αβ ◦1 sx
α (3.4)

and where

∂′′0 (xαβ) = −µ(sxβ; 1αβ, ..., 1αβ). (3.5)

It may seem as though we have overrused the notation ∂C by now, but all such uses

are really just the original ∂C acting as a derivation on a free operad, respecting

suspensions and/or coloring. A visual representation of the action of ∂0 on mixed-

color generators is found in figure 3.2.
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∂0(xαβ) = ∂C(x)

...

+

1

sx

...

−

sx

1 1 ... 1

Figure 3.2: The weight 0 component of the differential on Cyl(C).

From weight considerations (or directly checking), both ∂2
C = 0 and ∂2

0 = 0, so

we may consider Cobar(C) and Cyl(C) with respect to these simpler differentials.

Then we have:

Theorem 3.1. The inclusion maps

ια, ιβ : (Cobar(C)(n), ∂C) −→ (Cyl(C)(n, 0; β), ∂0)
ια : X 7→ 1αβ ◦1 X

α

ιβ : X 7→ µ(Xβ; 1αβ, ..., 1αβ)

are quasi-isomorphisms for all n ≥ 0, and furthermore, are homotopic.

Proof. Given that we will show that ια is homotopic to ιβ , it suffices to show that ιβ
is a quasi-isomorphism; we will begin with this. Introduce the following filtrations

on Cobar(C)(n) and Cyl(C)(n, 0; β):

FmCobar(C)(n) =

{
X ∈ Cobar(C)(n) |

(the number of edges in X)− |X| ≤ m

}

Fm Cyl(C)(n, 0; β) =

{
X ∈ Cyl(C)(n, 0; β) |

(the number of edges of color α in X)− |X| ≤ m

}
.

These filtrations are ascending, cocomplete, and compatible with ιβ (since they are

essentially the same filtration). They also respect ∂C and ∂0; in particular, note that

∂C and ∂′′0 raise internal degree without changing the number of (straight) edges, so

they lower the filtration index, while ∂′0 raises internal degree and the number of

straight edges, so it preserves the filtration index. Consequently, when we consider

the associated graded complexes, we have

GrF Cobar(C)(n) = (Cobar(C)(n), 0) (3.6)
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GrF Cyl(C)(n, 0; β) = (Cyl(C)(n, 0; β), ∂′0) (3.7)

By Appendix A of [11], it suffices to show that

ιβ : (Cobar(C)(n), 0)→ (Cyl(C)(n, 0; β), ∂′0) (3.8)

is a quasi-isomorphism. For the remainder of this first section of the proof, when

we refer to those complexes, they will carry those differentials.

For this, we need an auxiliary construction. Define the 3-colored collection Q,

with colors α, β, γ, by

Q(a, 0, 0;α) = s C◦(a) with ∂Q = 0
Q(0, b, c; β) = s C◦(b+ c) with ∂Q = 0
Q(a, 0, 0; β) = C◦(a)⊕ s C◦(a) with ∂Q : x→ sx

Q = 0 otherwise.

Note that

H•(Q(0, b, c; β)) = H•(Q(b+ c, 0, 0;α)) = s C◦(b+ c) (3.9)

while

H•(Q(a, 0, 0; β)) = 0. (3.10)

When we form OP(Q), we have that

Cyl(C)(n, 0; β) ∼=
n⊕

m=0

OP(Q)(m, 0, n−m; β) (3.11)

via the (backwards) identification OP(Q)(m, 0, n − m; β) → Cyl(C)(n, 0; β) de-

termined by the following rules. First, send edges of color γ to the element

1αβ ∈ Cyl(C)(1, 0; β). Then perform the following identifications:

sxα ∈ Q(a, 0, 0;α) 7→ sxα ∈ C̃(a, 0;α)

sxβ ∈ Q(0, b, 0; β) 7→ sxβ ∈ C̃(0, b; β)

xαβ ∈ C◦ ⊆ Q(a, 0, 0; β) 7→ xαβ ∈ C̃(a, 0; β)
sxαβ ∈ s C◦ ⊆ Q(a, 0, 0; β) 7→ 1αβ ◦1 sx

α ∈ Cyl(C)(a, 0; β)

An example of this identification is shown in Figure 3.3.

It is not hard to check that this identification is an isomorphism of cochain com-

plexes, and consequently

H•(Cyl(C)(n, 0; β)) ∼=
n⊕

m=0

H•(OP(Q)(m, 0, n−m; β)) (3.12)
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sx1

sx2

x3 1

1

sx4

1 ←→

sx1

sx2

x3

sx4

Figure 3.3: An element of Cyl(C) (on the left) identified with an element of OP(Q)
(on the right). The dotted lines indicate edges of color γ.

Since OP(Q)(m, 0, n − m; β) is colim from a finite, disjoint union of con-

nected groupoids (specifically, the groupoids consisting of members of isomor-

phism classes of 3-colored n-labeled planar trees), and carries only the differential

structure coming from Q, Lemma A.1 applies. In particular, since taking coinvari-

ants is exact when working over a field of characteristic 0, we have from Lemma

A.1 that

H•(OP(Q)(m, 0, n−m; β)) = OP(H•(Q))(m, 0, n−m; β). (3.13)

But if m > 0, any element of OP(Q)(m, 0, n − m; β) must contain at least one

vertex decorated by an element of Q(a, 0, 0; β). Since H•(Q(a, 0, 0; β)) = 0, we

have in this case that OP(H•(Q))(m, 0, n−m; β) = 0 also. On the other hand, if

m = 0, all vertices are decorated by elements of Q(0, b, c; β), and in this case we

have

H•(Q(0, b, c; β)) = Q(0, b, c; β). (3.14)

Consequently,

H•(Cyl(C)(n, 0; β)) ∼= H•(OP(Q)(0, 0, n; β)) (3.15)

= OP(H•(Q))(0, 0, n; β) (3.16)

= OP(Q)(0, 0, n; β). (3.17)
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Passing back to Cyl(C)(n, 0; β) via the earlier isomorphism, we see that

OP(Q)(0, 0, n; β) ∼= ιβ(Cobar(C)(n)) ⊆ Cyl(C)(n, 0; β) (3.18)

which shows that ιβ is a quasi-isomorphism; therefore ιβ is a quasi-isomorphism

for the original complexes, as desired.

It remains to show that ια is homotopic to ιβ in Cyl(C) with the original differ-

ential ∂0. Observe that in Cyl(C), the presence of vertices of type 1αβ is determined

completely by the coloring of adjacent vertices, and whether they are decorated

by suspended vectors or not. Therefore, given X ∈ Cobar(C), we may define

Xi ∈ Cyl(C) by declaring that Xi has the same underlying tree as X , it has the

same internal vectors asX but that the ith (nontrivial) vertex is no longer suspended

(using the total order on vertices), that the edges before (nontrivial) vertex i are of

color β and the edges after are of color α (using the total order on edges), and then

finally adding trivial vertices 1αβ and edges of color β as necessary to make Xi a

valid element of Cyl(C). Figure 3.4 provides an example of this construction.

X =

sx1

sx2

sx3

sx4 7−→ X2 =

sx1

x2

sx3

1 1

sx4

Figure 3.4: The construction of X2 ∈ Cyl(C) given X ∈ Cobar(C).

We may now construct the necessary homotopy between the maps ια and ιβ .

Given X = (t; sx1, ..., sxk) an element of Cobar(C), define h : Cobar(C) →
Cyl(C) by
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h(X) =
k∑
i=1

(−1)| sx1|+...+| sxi−1| Xi. (3.19)

We may think of the sign in the above term coming from the suspension decorating

the ith nodal vertex xi “jumping over” the vertices sx1, ..., sxi−1 to leave the tree.

Since ∂C(sx) = − s ∂C(x) for x ∈ C, we have that

∂C ◦ h+ h ◦ ∂C = 0. (3.20)

It is also easy to check that

ια − ιβ = (∂′0 + ∂′′0 ) ◦ h; (3.21)

∂′0 applied to the the first term of h(X) yields ια(X), ∂′′0 applied to the last term

of h(X) yields −ιβ(X) (the sign from h will cancel with the sign coming from ∂′′0

“jumping over” the nontrivial vertices before the final vertex xk), and all middle

terms cancel from similar sign considerations. We therefore have in general that

ια − ιβ = ∂0 ◦ h+ h ◦ ∂C, (3.22)

which shows that ια and ιβ are homotopic, which completes the proof.

In fact, Theorem 3.1 is true with respect to the full differentials on Cobar(C)
and Cyl(C), not simply the weight 0 parts.

Corollary 3.1. The inclusion maps

ια, ιβ : (Cobar(C)(n), ∂Cobar) −→ (Cyl(C)(n, 0; β), ∂)
ια : X 7→ 1αβ ◦1 X

α

ιβ : X 7→ µ(Xβ; 1αβ, ..., 1αβ)

are quasi-isomorphisms for all n ≥ 0, and furthermore, are homotopic.

Proof. The argument that ιβ is a quasi-isomorphism is very similar, but requires an

initial modification. First filter Cyl(C)(n, 0; β) and Cobar(C)(n) by weight and

form the associated graded complexes; this then gives us the exact situation of

Theorem 3.1, and the result holds.
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A different argument is needed to show that ια and ιβ are homotopic. For this

we introduce the map

Π : Cyl(C)(n, 0; β) −→ Cobar(C)(n) (3.23)

defined as follows. If X ∈ Cyl(C)(n, 0; β) contains any nontrivial mixed-color

vertices (that is, vertices decorated by elements of C◦), Π(X) = 0. Otherwise,

define Π(X) by changing all edges to color α and delete all trivial mixed vertices

1αβ , merging the adjacent edges; the result is an element of Cobar(C) because X

contained no nontrivial mixed vertices. Figure 3.5 gives an example of this. It is

easy to check that Π is a map of cochain complexes and that Π is a one-sided inverse

to both ια and ιβ:

Π ◦ ια = 1Cobar(C) = Π ◦ ιβ. (3.24)

Π :

sx1

1

sx2

sx3

1 1 1

7−→

sx1

sx2 sx3

Figure 3.5: A nontrivial example of the map Π : Cyl(C)(n, 0; β)→ Cobar(C)(n).

Since we already know that ιβ is a quasi-isomorphism, it follows that ια and ιβ

induce the same map on cohomology, and therefore are homotopic.
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CHAPTER 4

DERIVATIONS AND DERIVED

AUTOMORPHISMS OF THE

CYLINDER OPERAD

We turn our attention to the dg Lie algebras Der(Cobar(C)) and Der(Cyl(C)),

and investigate how they relate to each other. Our ultimate goal is to show that given

any derivation of Cobar(C), we can extend it to a derivation of Cyl(C); the ramifi-

cations of this in terms of∞-morphisms will be discussed in the next chapter. We

will also discuss derivations that can be exponentiated to operad automorphisms,

which will be of particular importance in applications.

4.1 Derivations of Cyl(C)

We begin with a technical lemma, to be used several times in the remainder of

the dissertation.

Lemma 4.1. Let Hom(C̃,Cyl(C)) be the cochain complex of maps of colored col-

lections, with differential

∂(F ) = ∂0 ◦ F − (−1)|F |F ◦ ∂0 (4.1)
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for F ∈ Hom(C̃,Cyl(C)). Define the cochain complex Hom(s C◦,Cobar(C)) simi-

larly, with differential

∂(F ) = ∂C ◦ F − (−1)|F |F ◦ ∂C (4.2)

Then the maps

resα, resβ : Hom(C̃,Cyl(C)) −→ Hom(s C◦,Cobar(C))

given by restricting to a single color α or β are quasi-isomorphisms of complexes.

Remark 4.1. By F ◦ ∂0, we mean that F ∈ Hom(C̃,Cyl(C)) acts on the nontrivial

vertices that are present after applying ∂0. Explicitly, for a mixed-color generator

xαβ ∈ C,

(F ◦ ∂0)(xαβ) = F (∂C(x)αβ) + 1αβ ◦1 F (sxα)− µ(F (sxβ); 1αβ, ..., 1αβ) (4.3)

Proof. We restrict our attention to level n, and decompose Hom(C̃,Cyl(C)) into

subspaces (not subcomplexes) based on how a derivation acts on different color

generators:

Hom(s C◦(n),Cobar(C)(n))α ⊕ Hom(C(n),Cyl(C)(n, 0; β))αβ

⊕Hom(s C◦(n),Cobar(C)(n))β.

Here, the first summand gives the action of a derivation on corollas purely of color

α, the second summand on mixed-color corollas, and the third summand on corol-

las of color β; the superscripts make this explicit. Before we can state how the

differential structure respects this decomposition, we need to recall the earlier maps

ια, ιβ : Cobar(C)(n) −→ Cyl(C)(n, 0; β)
ια : X 7→ 1αβ ◦1 X

α

ιβ : X 7→ µ(Xβ; 1αβ, ..., 1αβ)

and use them to define new, degree 1 maps:

inclα, inclβ : Hom(s C◦(n),Cobar(C)(n)) −→ Hom(C(n),Cyl(C)(n, 0; β))

inclα(F )(x) = (−1)|F |ια(F (sx))

inclβ(F )(x) = (−1)|F |ιβ(F (sx))
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for F ∈ Hom(s C◦(n),Cobar(C)(n)) and x ∈ C(n). It is then straightforward to

check that with respect to the above decomposition of Hom(C̃,Cyl(C)), ∂ acts as

follows:

∂(F + F ′ + F ′′) = ∂(F )− inclα(F ) + ∂(F ′) + inclβ(F ′′) + ∂(F ′′) (4.4)

where

F ∈ Hom(s C◦(n),Cobar(C)(n))α

F ′ ∈ Hom(C(n),Cyl(C)(n, 0; β))αβ

F ′′ ∈ Hom(s C◦(n),Cobar(C)(n))β

and where
∂(F ) = ∂C ◦ F − (−1)|F |F ◦ ∂C
∂(F ′) = ∂0 ◦ F ′ − (−1)|F

′|F ′ ◦ ∂0

∂(F ′′) = ∂C ◦ F ′′ − (−1)|F
′′|F ′′ ◦ ∂C .

As a cochain complex, Hom(C̃,Cyl(C)) is therefore a “cylinder-type construction”

as described in [14, Appendix A], and the maps resα and resβ are the natural pro-

jections onto the first and third summands. By the same reference, it is enough to

show that the maps

s−1 inclα, s
−1 inclβ : Hom(s C◦(n),Cobar(C)(n))→ s−1 Hom(C(n),Cyl(C)(n, 0; β))

are quasi-isomorphisms. But this is precisely the situation obtained by applying the

functor Hom(s C◦,−) to the maps

ια, ιβ : Cobar(C)(n)→ Cyl(C)(n, 0; β) (4.5)

and we know those maps are quasi-isomorphisms from Theorem 3.1. Since HomSn

is exact when working over a field of characteristic 0, inclα and inclβ are also quasi-

isomorphisms. From the results of [14, Appendix A], we conclude that the maps

resα, resβ are quasi-isomorphisms.
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Proposition 4.1. Introduce the following descending filtration on Hom(C̃,Cyl(C)):

Fm Hom(C̃,Cyl(C)) = {F ∈ Hom(C̃,Cyl(C)) | wt(F ) ≥ m}.

Introduce the same filtration on Hom(s C◦,Cobar(C)). These filtrations are com-

plete and compatible with the appropriate differentials and the restriction maps

resα, resβ . Then

resα, resβ : Fm Hom(C̃,Cyl(C)) −→ Fm Hom(s C◦,Cobar(C))

remain quasi-isomorphisms.

Proof. The proof is exactly the same as that of Lemma 4.1, restricting to the appro-

priate filtration levels.

With the above results, we can now show our first main result, that restrict-

ing derivations of Cyl(C) to derivations of Cobar(C) yields quasi-isomorphisms of

Lie algebras. This is the key statement needed for later results concerning derived

automorphisms and their action on∞-morphisms.

Theorem 4.1. The maps

resα, resβ : Der(Cyl(C)) −→ Der(Cobar(C))

given by restricting to a single color α or β are homotopic quasi-isomorphisms of

dg Lie algebras at all filtration levels.

Proof. We will show the result for the entire derivation algebras; the argument for

a specific filtration level is almost identical, the only difference being restricting to

the appropriate filtration level and using Proposition 4.1.

It is clear that the above restriction maps are morphisms of dg Lie algebras.

Since derivations are uniquely determined by their action on generators, we may

equivalently consider the maps

resα, resβ : Hom(C̃,Cyl(C)) −→ Hom(s C◦,Cobar(C))



35

still determined by restricting to a single color α or β. Here, the differentials on

Hom(C̃,Cyl(C)) and Hom(s C◦,Cobar(C)) take the following form:

∂(F ) = ∂ ◦ F − (−1)|F |F̂ ◦ ∂ (4.6)

where the map F defined on generators extends uniquely to the derivation F̂ . This

way, the identification from derivations to morphisms respects the differential struc-

ture.

Filter Hom(C̃,Cyl(C)) and Hom(s C◦,Cobar(C)) by weight, and note that we

could have equivalently defined these filtrations on Der(Cyl(C)) and Der(Cobar(C)).

These filtrations are complete and compatible with the appropriate differentials and

the restriction maps resα, resβ . As before, we will move to the associated graded

complexes which carry simpler differentials; from Lemma E.1 of [6], it suffices to

show that the restriction maps are quasi-isomorphisms in this simpler setting. When

we move to the associated graded complexes for this filtration, only the part of the

differentials coming from the weight 0 part of the internal differentials survives.

Explicitly, Hom(C̃,Cyl(C)) carries the reduced differential

∂(F ) = ∂0 ◦ F − (−1)|F |F̂ ◦ ∂0 (4.7)

for F ∈ Hom(C̃,Cyl(C)), and Hom(s C◦,Cobar(C)) carries the differential

∂(F ) = ∂C ◦ F − (−1)|F |F̂ ◦ ∂C (4.8)

for F ∈ Hom(s C◦,Cobar(C)). This is exactly the same situation as in Lemma

4.1; and so resα, resβ are quasi-isomorphisms on the associated graded level, and

therefore in general as well.

To show that resα and resβ are homotopic, we will show that they induce the

same map on cohomology. Recall the map

Π : Cyl(C)(n, 0; β)→ Cobar(C)(n) (4.9)

from the proof of Corollary 3.1. Given a closed derivationD ∈ Der(Cyl(C)), define

T ∈ Der(Cobar(C)) on generators by

T (sx) = (−1)|D|(Π ◦D)(xαβ). (4.10)
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D is closed, so in particular

0 = [∂,D](xαβ) = (∂ ◦D)(xαβ)− (−1)|D|(D ◦ ∂)(xαβ). (4.11)

If we rearrange the above terms and apply Π we obtain the equation

(Π ◦D ◦ ∂)(xαβ) = (−1)|D|(Π ◦ ∂ ◦D)(xαβ) (4.12)

= (−1)|D|(∂ ◦ Π ◦D)(xαβ) (4.13)

= (∂ ◦ T )(sx) (4.14)

recalling that Π is a cochain map. It is straightforward to check that

(Π ◦D ◦ ∂)(xαβ) = (resαD − resβD − (−1)|D|(T ◦ ∂))(sx) (4.15)

and so we substitute this into the previous equation and rearrange terms to see that

(resαD − resβD)(sx) = (∂ ◦ T + (−1)|D|T ◦ ∂)(sx) = ∂(T )(sx). (4.16)

Thus resα and resβ induce the same map on cohomology, and hence are homotopic.

4.2 Derived automorphisms of Cyl(C)

We now turn our attention to derivations that may be exponentiated to operad

automorphisms. Define

Der′(Cobar(C)) = F1 Der(Cobar(C)) (4.17)

to be the dg Lie algebra of derivations that raise the number of internal vertices by at

least one. Equivalently, Der′(Cobar(C)) may be defined as consisting of derivations

D that satisfy

ps C◦ ◦D = 0 (4.18)

where ps C◦ is the canonical projection Cobar(C) → s C◦. This definition, in addi-

tion to our standing assumption of working with reduced cooperads C, ensures that

the dg Lie algebra Der′(C) is pronilpotent.
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Proposition 4.2. Given a degree 0 derivation D ∈ Der′(Cobar(C)) for a cooperad

C, D is locally nilpotent: for all X ∈ Cobar(C), Dm(X) = 0 for some m ≥ 0.

Consequently, assuming D is a cocycle, we may exponentiate D to an automor-

phism of Cobar(C),

exp(D) =
∞∑
m=0

1

m!
Dm.

Here, we use the same filtration as in the proof of Theorem 4.1.

Proof. It is a standard result that a locally nilpotent derivation exponentiates to

an automorphism, so it is enough to show that, under our assumptions, all deriva-

tions D ∈ Der′(Cobar(C)) are locally nilpotent. This follows from straightforward

weight considerations, since D raises weight by at least 1, and since all nodal ver-

tices of Cobar(C) have at least 2 incoming edges for reduced C.

We have an identical result for derivations of Cyl(C).

Proposition 4.3. Given a degree 0 cocycle D̃ ∈ Der′(Cyl(C)) for a cooperad C,

D̃ is locally nilpotent, and therefore may be exponentiated to an automorphism of

Cyl(C).

Proof. The same weight argument works here as for Cobar(C), with the obser-

vation that for a vertex to have only a single incoming edge, it must be of type

1αβ ∈ Cyl(C)(1, 0; β).

See Appendix B for a discussion of these notions for the more general case of

quasi-free operads. Following this Appendix, define

Aut′(Cobar(C)) = {ϕ ∈ Aut(Cobar(C)) | π ◦ ϕ|s C = ids C} (4.19)

and

Aut′(Cyl(C)) = {ϕ ∈ Aut(Cyl(C)) | π ◦ ϕ|C̃ = idC̃}, (4.20)

which are the groups obtained by exponentiating the Lie algebrasZ0 Der′(Cobar(C))
and Z0 Der′(Cyl(C)), respectively. The earlier restriction maps induce obvious

group homomorphisms, and the results from Appendix B show that these group

homomorphisms are isomorphisms on homotopy classes of automorphisms.
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Theorem 4.2. The group homomorphisms

resα, resβ : Aut′(Cyl(C)) −→ Aut′(Cobar(C))

induce identical isomorphisms on homotopy classes:

res : hAut′(Cyl(C)) −→ hAut′(Cobar(C)).

Proof. Since resα and resβ are homotopic dg Lie algebra quasi-isomorphisms from

Theorem 4.1, they induce a single group homomorphism

res : H0(Der′(Cyl(C))) −→ H0(Der′(Cobar(C))) (4.21)

(where the group structure is given my the Campbell-Hausdorff formula, as ex-

plained in Appendix B). Using the isomorphisms of Proposition B.2, we immedi-

ately get the induced isomorphism

res : hAut(Cyl(C)) −→ hAut(Cobar(C)). (4.22)
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CHAPTER 5

ACTING ON INFINITY

MORPHISMS

We will now turn our attention to homotopy algebras, and show how the op-

eradic techniques and results developed earlier may be applied to their study. In

particular, we will use Cyl(C) to study∞-morphisms.

5.1 Cyl(C) and diagrams of Cobar(C)-algebras

Proposition 5.1. A Cyl(C)-algebra structure on a pair of dg vector spaces (V,W )

is equivalent to the following triple of data:

1. a map Cobar(C)→ EndV ;

2. a map Cobar(C)→ EndW ;

3. an∞-morphism V  W .

We will often call this triple a diagram of Cobar(C)-algebras.

Proof. Following [8], given cochain complexes V and W , let EndV,W be the 2-

colored endomorphism operad. The pair V , W , being algebras over Cyl(C) means

that there is a map of colored operads

F : Cyl(C) −→ EndV,W . (5.1)
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By construction, the single-color portions of the above map correspond exactly to

maps

Fα : Cobar(C) −→ EndV (5.2)

Fβ : Cobar(C) −→ EndW . (5.3)

Observe next that the mixed-color portion of F can be expressed in terms of its

components

Fαβ(n) : Cyl(C)(n, 0; β) −→ EndV,W (n, 0; β). (5.4)

Equivalently,

Fαβ(n) : C(n) −→ Homk(V
⊗n,W ). (5.5)

This is, in turn, equivalent to a map

Un : (C(n)⊗ V ⊗n)Sn −→ W. (5.6)

which extends uniquely to (and is uniquely determined by) a coalgebra map

U : C(V ) −→ C(W ). (5.7)

Finally, it is a straightforward check that the compatibility of F with the differentials

on Cyl(C) and EndV,W is equivalent to U being a dg coalgebra map, respecting the

coderivations QV and QW (which correspond to Fα and Fβ).

It is easy to see that, given an operad O, an O-algebra V with algebra struc-

ture map F : O → EndV , and an endomorphism ϕ of O, the composite F ◦ ϕ
defines a new O-algebra structure on V via pullback, which we will often denote

V ϕ. This also holds true for colored operads and algebras over them. Thus, given a

pair (V,W ) that is an algebra over Cyl(C) via the operad morphism F̃ : Cyl(C)→
EndV,W , and given an endomorphism ϕ̃ of Cyl(C), the morphism F̃ ϕ̃ = F̃ ◦ ϕ̃
defines a new Cyl(C)-algebra structure on (V,W ); the result is encoded in the dia-

gram

U ϕ̃ : V ϕ̃α  W ϕ̃β (5.8)
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where ϕ̃α and ϕ̃β denote the obvious restriction maps of ϕ̃ onto the first and second

single-colored components, respectively (we will begin using this notation more

generally, keeping in mind the earlier results about resα and resβ for derivations).

Keeping with the above notation for consistency, we will henceforth decorate col-

ored derivations, automorphisms, maps, etc. by tildes (e.g. ϕ̃), and omit such

decoration for derivations etc. on single-color objects.

This procedure is very general, but requires that we start with an endomorphism

of Cyl(C), which may be difficult to construct. The goal of this section is to show

how, in certain instances, to extend an automorphism of Cobar(C) to an automor-

phism of Cyl(C) in a well-controlled way. Therefore, given a diagram U : V  W ,

we will not only be able to modify V and W via the automorphism ϕ, but the∞-

morphism U as well, in some coherent way.

Given an algebra structure map F as above, we will often abuse notation slightly

and write FD instead of F exp(D) (likewise for the colored setting). We will similarly

abbreviate the decoration of homotopy algebras, writing V D instead of V exp(D), etc.

At this point, we can state and prove the main theorem of these chapters.

Theorem 5.1. Let V and W be Cobar(C)-algebras for a given cooperad C, and let

U : V  W be an∞-morphism between them. Given a degree 0 closed derivation

D ∈ Der′(Cobar(C)), there exists a degree 0 cocycle D̃ ∈ Der′(Cyl(C)) such that

D, D̃α, and D̃β are cohomologous in Der′(Cobar(C)). Therefore we can construct

U D̃ : V D̃α  W D̃β

such that V D̃α is homotopy equivalent to V D and W D̃β is homotopy equivalent to

WD, and so that the linear term of U is unchanged: U D̃
(0) = U(0).

Proof. The existence of D̃ satisfying the above properties is provided by Theorem

4.1, which says that the maps resα, resβ are homotopic quasi-isomorphisms. There-

fore the automorphism exp(D̃) ∈ Aut(Cyl(C)) may be used to modifyU : V  W

to U D̃ : V D̃α  W D̃β , as explained earlier.

For the statement about homotopy equivalence, observe first that Proposition

B.2 says that exponentiating cohomologous derivations of Cobar(C) yields ho-

motopic automorphisms (here, we use a path object notion of homotopy). Thus,
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exp(D) and exp(D̃)α are homotopic. Using [15] to link various notions of homo-

topy, we see that exp(D) and exp(D̃)α are cylinder homotopic in the sense of [19].

Therefore, Theorem 5.2.1 of [19] says that there is an∞-quasi-isomorphism

ΦV : V  V D̃α . (5.9)

Similarly, using that D and D̃β are cohomologous, we deduce the existence of an

∞-quasi-isomorphism

ΦW : W  W D̃β . (5.10)

Finally, the statement that the linear terms of U D̃ and U coincide follows from the

fact that we are modifying U via exponentiated derivations, which necessarily start

with the identity. Since all derivations considered raise weight by at least 1, all

linear terms remain unchanged.

In [10], we need the above theorem exactly, in particular that the∞-morphism

U D̃ comes from an exponentiated derivation. The following corollary may be useful

in other applications, and may be seen as a more full answer to the motivating

question.

Corollary 5.1. Let V andW be Cobar(C)-algebras for a given cooperad C, and let

U : V  W be an∞-morphism between them. Given a degree 0 closed derivation

D ∈ Der′(Cobar(C)), there exists an∞-morphism

U ′ : V D  WD

Proof. Using the same notation as in the proof of Theorem 5.1, let

U ′ = ΦW
−1 ◦ U D̃ ◦ ΦV : V D  WD, (5.11)

where ΦW
−1 : W D̃β  WD is a homotopy inverse to ΦW in the sense of Section

10.4 of [27].

We may also study how the construction behaves when iterated, and see that

the result is straightforward. For simplicity of notation, we will just focus on the

∞-morphisms - the changes on the source/target algebras should be clear.
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Proposition 5.2. Let U : V  W be as above, and D1, D2 ∈ Der′(Cobar(C))
degree zero closed derivations that give D̃1, D̃2 ∈ Der′(Cyl(C)). Then, using the

above notation,

(U D̃1)D̃2 = UCH(D̃1,D̃2)

where CH(x, y) denotes the Campbell-Hausdorff series in the symbols x and y.

Proof. If U : V  W is an algebra over Cyl(C) via F : Cyl(C) → EndV,W , we

have

F ◦ exp(D̃1) ◦ exp(D̃2) = F ◦ exp(CH(D̃1, D̃2)) (5.12)

which gives the desired formula.

As an example of a situation in which H0(Der′(Cobar(C))) is known to be

nonzero, results from [38] show thatH0(Der′(Cobar(Ger∨))) ∼= grt1, the Grothendieck-

Teichmueller Lie algebra. This leads to an application of Theorem 5.1 to jus-

tify a statement made in Section 10.2 of [38], concerning GRT1-equivariance of

Tamarkin’s construction of formality morphisms. We will deal with this question

in the remaining chapters 1.

5.2 Homotopy uniqueness

Given that the only choices in the proof of Theorem 5.1 involve cohomologous

derivations, the result should be “unique up to homotopy” in some sense. We give

two characterizations of this uniqueness in this section. 2

First, and most obviously, we can reinterpret Theorem 4.2 as saying the follow-

ing:

Proposition 5.3. Any automorphism ϕ̃ ∈ Aut′(Cyl(C)) is uniquely determined

up to homotopy by its restriction onto either color. In particular, if Theorem 5.1
1Alternately, in the stable setting, this question will be addressed in [7].
2A full answer would rely on a more appropriate theoretical framework, such as the theory of

model categories or∞-categories, that are outside the scope of this dissertation.
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produces exp(D̃) such that exp(D) is homotopic to either ϕ̃α or ϕ̃β , then exp(D̃)

is homotopic to ϕ̃.

Homotopic automorphisms will yield homotopic operad maps Cyl(C)→ EndV,W ,

and so the second characterization of homotopy uniqueness involves unraveling ex-

actly what results from homotopic structure maps, in terms of the resulting homo-

topy algebras and∞-morphisms. This should be viewed as a 2-colored extension

of the result from [19] that homotopic structure maps Cobar(C) → EndV yield

homotopy equivalent algebras.

Proposition 5.4. Let F,G : Cyl(C)→ EndV,W be maps of operads, corresponding

respectively to the homotopy algebras and∞-morphisms

UF : VF  WF

UG : VG  WG.

Suppose F is homotopic to G. Then we obtain∞-quasi-isomorphisms

Φ : VF  VG

Ψ : WF  WG

such that Ψ ◦ UF is homotopic to UG ◦ Φ. That is, the following diagram of ∞-

morphisms commutes up to homotopy:

VF WF

VG WG

UF

UG

Φ Ψ

Proof. Let

H : Cyl(C)→ EndV,W ⊗Ω•(k) (5.13)

be the operadic homotopy between F and G:

H|t=0,dt=0 = F, H|t=1,dt=0 = G. (5.14)
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By restricting H to color α, we see that Fα is homotopic to Gα. As explained

more fully in the proof of Theorem 5.1, this yields homotopy equivalent algebras

Φ : VF  WF [19]. Restricting to color β, we similarly obtain Ψ.

Let us express

H(t, dt) = H0(t) +H1(t)dt (5.15)

so thatH being a map of operads is equivalent to the following:

1. For all t,H0 is a map of operads Cyl(C)→ EndV,W

2. For all t,H1 is a derivation relative toH0

3. d
dt
H0 = ∂EndV,W ◦ H1 +H1 ◦ ∂Cyl(C)

(see also Proposition B.2). We will use the above data to construct an explicit

homotopy between Ψ ◦ UF and UG ◦ Φ, that is, a map of cofree C-coalgebras

H : C(VF ) −→ C(WG ⊗ Ω•(k)) (5.16)

such that

H|t=0,dt=0 = Ψ ◦ UF , H|t=1,dt=0 = UG ◦ Φ (5.17)

Here, we are using the notation C(VF ) to denote the cofree C-coalgebra on V , with

differential coming from Fα : Cobar(C) → EndV , and similarly elsewhere. If we

also write

H(t, dt) = H0(t) +H1(t)dt, (5.18)

we see the H must satisfy appropriate parallel conditions as H listed above; H0 is

a map of coalgebras, H1 is a coderivation relative to H0, and the correct similar

condition on d
dt
H0.

For all t,H yields the following: a diagram of homotopy algebras

Ut : Vt  Wt (5.19)

along with∞-quasi-isomorphisms

Φt : VF  Vt (5.20)
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Ψ1−t : Wt  WG. (5.21)

Just as for coderivations, relative coderivations are uniquely determined by their

composition with the canonical projection, so we may define a coderivation relative

to Ut by the following formula:

Pt : C(Vt) Wt (5.22)

Pt(X; v1, ..., vn) = H1(Xαβ)(v1, ..., vn) (5.23)

where (X; v1, ..., vn) ∈ C(Vt).

Since Pt is a coderivation relative to the coalgebra map Ut, Ψ1−t ◦ Pt ◦ Φt is a

coderivation relative to Ψ1−t ◦ Ut ◦ Φt. It is then easy to check that

H0(t) = Ψ1−t ◦ Ut ◦ Φt (5.24)

H1(t) = Ψ1−t ◦ Pt ◦ Φt (5.25)

satisfy the required properties for H = H0 + H1dt to be the desired homotopy

between Ψ ◦ UF and UG ◦ Φ.
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CHAPTER 6

TAMARKIN’S CONSTRUCTION

OF FORMALITY MORPHISMS

We now proceed to show how the previous operadic results may be applied to

show that Tamarkin’s construction is equivariant with respect to the action of the

Grothendieck-Teichmueller group. Various solutions of the Deligne conjecture on

thr Hochschild cochain complex [3], [4], [13], [24], [30], [35], [37] imply that the

dg operad Braces is quasi-isomorphic to the dg operad

C−•(E2, k)

of singular chains for the little disc operad E2 .

Combining this statement with the formality [23], [34] for the dg operadC−•(E2, k),

we conclude that the dg operad Braces is quasi-isomorphic to the operad Ger.

Hence there exists a quasi-isomorphism of dg operads

Ψ : Ger∞ → Braces (6.1)

for which the vector1 Ψ(s(b1b2)∗) is cohomologous to the sum T + T21 and the

vector Ψ(s{b1, b2}∗) is cohomologous to

1

2
(T∪ + T∪opp) ,

1Here, we use basis (2.29) in Ger∨(n).
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where T (resp. T21, T∪, T∪opp) is the brace tree depicted on figure 2.5 (resp. figure

2.6, 2.7, 2.8).

Replacing Ψ by a homotopy equivalent map we may assume, without loss of

generality, that

Ψ(s(b1b2)∗) = T + T21 , Ψ(s{b1, b2}∗) =
1

2
(T∪ + T∪opp) . (6.2)

So from now on we will assume that the map Ψ (6.1) satisfies conditions (6.2).

Since the dg operad Braces acts on the Hochschild cochain complex C•(A) of

an A∞-algebra A, the map Ψ equips the Hochschild cochain complex C•(A) with a

structure of a Ger∞-algebra. We will call it Tamarkin’s Ger∞-structure and denote

by

C•(A)Ψ

the Hochschild cochain complex of A with the Ger∞-structure coming from Ψ.

The choice of the homotopy class of Ψ (6.1) (and hence the choice of Tamarkin’s

Ger∞-structure) is far from unique. In fact, it follows from [38, Theorem 1.2] that

the set of homotopy classes of maps (6.1) satisfying conditions (6.2) form a torsor

for an infinite dimensional pro-algebraic group.

A simple degree bookkeeping in Braces shows that for every n ≥ 3

Ψ(s(b1b2 . . . bn)∗) = 0 . (6.3)

Combining this observation with (6.2) we see that any Tamarkin’s Ger∞-structure

on C•(A) satisfies the following remarkable property:

Property 6.1. The Λ Lie∞ part of Tamarkin’s Ger∞-structure on C•(A) coincides

with the Λ Lie-structure given by the Gerstenhaber bracket on C•(A).

From now on, we only consider the case when A = k[x1, ..., xd], i.e. the free

(graded) commutative algebra over k in variables x1, x2, . . . , xd of (not necessarily

zero) degrees t1, t2, . . . , td, respectively. Furthermore, VA denotes the Gerstenhaber

algebra of polyvector fields on the corresponding graded affine space, i.e.

VA := SA
(
s Derk(A)

)
.
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It is known2 [22] that the canonical embedding

VA ↪→ C•(A) (6.4)

is a quasi-isomorphism of cochain complexes, where VA is considered with the zero

differential. We refer to (6.4) as the Hochschild-Kostant-Rosenberg embedding.

Let us now consider the Ger∞-algebra C•(A)Ψ for a chosen map Ψ (6.1).

By the first claim of Corollary D.2 from Appendix D, there exists a Ger∞-quasi-

isomorphism

UGer : VA  C•(A)Ψ (6.5)

whose linear term coincides with the Hochschild-Kostant-Rosenberg embedding.

Restricting UGer to the Λ2 coCom-coalgebra

Λ2 coCom(VA)

and taking into account Property 6.1 we get a Λ Lie∞-quasi-isomorphism

ULie : VA  C•(A) (6.6)

of (dg) Λ Lie-algebras.

Thus we have obtained the main statement of Tamarkin’s construction [36]

which can be summarized as

Theorem 6.1 (D. Tamarkin, [36]). Let A (resp. VA) be the algebra of functions

(resp. the algebra of polyvector fields) on a graded affine space. Let us consider

the Hochschild cochain complex C•(A) with the standard Λ Lie-algebra struc-

ture. Then, for every map of dg operads Ψ (6.1), there exists a Λ Lie∞-quasi-

isomorphism

ULie : VA  C•(A) (6.7)

which can be extended to a Ger∞-quasi-isomorphism

UGer : VA  C•(A)Ψ

where VA carries the standard Gerstenhaber algebra structure.
2Paper [22] treats only the case of usual (not graded) affine algebras. However, the proof of [22]

can be generalized to the graded setting in a straightforward manner.
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Remark 6.1. We tacitly assume that the linear part of every Λ Lie∞ (resp. Ger∞)-

quasi-isomorphism from VA toC•(A) (resp. C•(A)Ψ) coincides with the Hochschild-

Kostant-Rosenberg embedding of polyvector fields into Hochschild cochains.

Since the above construction involves several choices, we are left with the fol-

lowing obvious questions:

Question A. Is it possible to construct two homotopy inequivalent Λ Lie∞-quasi-

isomorphisms (6.6) corresponding to the same map Ψ (6.1)? And if no then

Question B. Are Λ Lie∞-quasi-isomorphisms ULie and ŨLie (6.6) homotopy equiv-

alent if so are the corresponding maps of dg operads Ψ and Ψ̃ (6.1)?

The (expected) answer (NO) to Question A is given in the following proposition:

Proposition 6.1. Let Ψ a map of dg operads (6.1) satisfying (6.2) and

ULie, ŨLie : VA  C•(A) (6.8)

be Λ Lie∞-quasi-morphisms which extend to Ger∞-quasi-isomorphisms

UGer, ŨGer : VA  C•(A)Ψ (6.9)

respectively. Then ULie is homotopy equivalent to ŨLie.

Proof. This statement is essentially a consequence of general Corollary D.2 from

Appendix D.2.

Indeed, the second claim of Corollary D.2 implies that Ger∞-morphisms (6.9)

are homotopy equivalent. Hence so are their restrictions to the Λ2 coCom-coalgebra

Λ2 coCom(VA)

which coincide with ULie and ŨLie, respectively.

The expected answer (YES) to Question B is given in the following addition to

Theorem 6.1:



51

Theorem 6.2. The homotopy type of ULie (6.6) depends only on the homotopy type

of the map Ψ (6.1).

Proof. Let Ψ and Ψ̃ be maps of dg operads (6.1) satisfying (6.2) and let

ULie : VA  C•(A) (6.10)

ŨLie : VA  C•(A) (6.11)

be Λ Lie∞-quasi-morphisms which extend to Ger∞-quasi-isomorphisms

UGer : VA  C•(A)Ψ , and ŨGer : VA  C•(A)Ψ̃ (6.12)

respectively. Our goal is to show that if Ψ is homotopy equivalent to Ψ̃ then ULie is

homotopy equivalent to ŨLie.

Let us denote by Ω•(k) the dg commutative algebra of polynomial forms on the

affine line with the canonical coordinate t.

Since quasi-isomorphisms Ψ, Ψ̃ : Ger∞ → Braces are homotopy equivalent,

we have3 a map of dg operads

H : Ger∞ → Braces⊗Ω•(k) (6.13)

such that

Ψ = p0 ◦ H , and Ψ̃ = p1 ◦ H ,

where p0 and p1 are the canonical maps (of dg operads)

p0, p1 : Braces⊗Ω•(k)→ Braces ,

p0(v) := v
∣∣∣
dt=0, t=0

, p1(v) := v
∣∣∣
dt=0, t=1

.

The map H induces a Ger∞-structure on C•(A)⊗Ω•(k) such that the evaluation

maps (which we denote by the same letters)

p0 : C•(A)⊗ Ω•(k)→ C•(A)Ψ , p0(v) := v
∣∣
dt=0, t=0

,

p1 : C•(A)⊗ Ω•(k)→ C•(A)Ψ̃ , p1(v) := v
∣∣
dt=0, t=1

.
(6.14)

3For justification of this step see, for example, [11, Section 5.1].
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are strict quasi-isomorphisms of the corresponding Ger∞-algebras.

So, in this proof, we consider the cochain complex C•(A) ⊗ Ω•(k) with the

Ger∞-structure coming from H (6.13). The same degree bookkeeping argument in

Braces shows that4

H(s(b1b2 . . . bn)∗) = 0 . (6.15)

Hence, the Λ Lie∞ part of the Ger∞-structure on C•(A)⊗Ω•(k) coincides with the

Λ Lie-structure given by the Gerstenhaber bracket extended fromC•(A) toC•(A)⊗
Ω•(k) to by Ω•(k)-linearity.

Since the canonical embedding

P 7→ P ⊗ 1 : C•(A) ↪→ C•(A)⊗ Ω•(k) (6.16)

is a quasi-isomorphism of cochain complexes, Corollary D.2 from Appendix D.2

implies that there exists a Ger∞-quasi-isomorphism

UH
Ger : VA  C•(A)⊗ Ω•(k) , (6.17)

where VA is considered with the standard Gerstenhaber structure.

Since the Λ Lie∞ part of the Ger∞-structure on C•(A) ⊗ Ω•(k) coincides with

the standard Λ Lie-structure, the restriction of UH
Ger to the Λ2 coCom-coalgebra

Λ2 coCom(VA) gives us a homotopy connecting the Λ Lie∞-quasi-isomorphism

p0 ◦ UH
Ger

∣∣∣
Λ2 coCom(VA)

: VA  C•(A) (6.18)

to the Λ Lie∞-quasi-isomorphism

p1 ◦ UH
Ger

∣∣∣
Λ2 coCom(VA)

: VA  C•(A) , (6.19)

where p0 and p1 are evaluation maps (6.14).

Let us now observe that Λ Lie∞-quasi-isomorphisms (6.18) and (6.19) extend

to Ger∞-quasi-isomorphisms

p0 ◦ UH
Ger : VA  C•(A)Ψ , and p1 ◦ UH

Ger : VA  C•(A)Ψ̃ (6.20)

4Here, we use basis (2.29) in Ger∨(n).



53

respectively. Hence, by Proposition 6.1, Λ Lie∞-quasi-isomorphism (6.18) is ho-

motopy equivalent to (6.10) and Λ Lie∞-quasi-isomorphism (6.19) is homotopy

equivalent to (6.11).

Thus Λ Lie∞-quasi-isomorphisms (6.10) and (6.11) are indeed homotopy equiv-

alent.

The general conclusion of this chapter is that Tamarkin’s construction [21], [36]

gives us a map

T : π0

(
Ger∞ → Braces

)
→ π0

(
VA  C•(A)

)
(6.21)

from the set π0

(
Ger∞ → Braces

)
of homotopy classes of operad morphisms (6.1)

satisfying conditions (6.2) to the set π0

(
VA  C•(A)

)
of homotopy classes of

Λ Lie∞-morphisms from VA toC•(A) whose linear term is the Hochschild-Kostant-

Rosenberg embedding.
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CHAPTER 7

ACTIONS OF THE

GROTHENDIECK-

TEICHMUELLER GROUP ON

TAMARKIN’S CONSTRUCTION

Let C be a coaugmented cooperad in the category of graded vector spaces and

C◦ be the cokernel of the coaugmentation. Recall the standing assumption that all

cooperads are reduced, that is, that C(0) = 0 and C(1) = k.

Let us denote by

Der′
(

Cobar(C)
)

(7.1)

the dg Lie algebra of derivation D of Cobar(C) satisfying the condition

ps C◦ ◦D = 0 , (7.2)

where ps C◦ is the canonical projection Cobar(C) → s C◦. Since C is reduced,

(7.2) implies that Der′
(

Cobar(C)
)0 andH0

(
Der′(Cobar(C))

)
are pronilpotent Lie

algebras.

In this dissertation, we are mostly interested in the case when C = Λ2 coCom

and C = Ger∨. The corresponding dg operads Λ Lie∞ = Cobar(Λ2 coCom) and

Ger∞ = Cobar(Ger∨) govern Λ Lie∞ and Ger∞ algebras, respectively.
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A simple degree bookkeeping shows that

Der′(Λ Lie∞)≤0 = 0 , (7.3)

i.e. the dg Lie algebra Der′(Λ Lie∞) does not have non-zero elements in degrees

≤ 0. In particular, the Lie algebra H0
(

Der′(Λ Lie∞)
)

is zero.

On the other hand, the Lie algebra

g = H0
(

Der′(Ger∞)
)

(7.4)

is much more interesting. According to Willwacher’s theorem [38, Theorem 1.2],

this Lie algebra is isomorphic to the pro-nilpotent part grt1 of the Grothendieck-

Teichmüller Lie algebra grt [1, Section 4.2]. Hence, the group exp(g) is isomorphic

to the group GRT1 = exp(grt1).

Let us now describe how the group exp(g) ∼= GRT1 acts both on the source and

the target of Tamarkin’s map T (6.21).

7.1 The action of GRT1 on π0

(
Ger∞ → Braces

)
Let v be a vector of g represented by a (degree zero) cocycle D ∈ Der′(Ger∞).

Since the Lie algebra Der′(Ger∞)0 is pro-nilpotent, D gives us an automorphism

exp(D) (7.5)

of the operad Ger∞.

Let Ψ be a quasi-isomorphism of dg operads (6.1). Due to Proposition B.2, the

homotopy type of the composition

Ψ ◦ exp(D) (7.6)

does not depend on the choice of the cocycle D in the cohomology class v. Fur-

thermore, for every pair of (degree zero) cocycles D, D̃ ∈ Der′(Ger∞) we have

Ψ ◦ exp(D) ◦ exp(D̃) = Ψ ◦ exp
(

CH(D, D̃)
)
, (7.7)
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where CH(x, y) denotes the Campbell-Hausdorff series in symbols x, y .

Thus the assignment

Ψ→ Ψ ◦ exp(D) (7.8)

induces a right action of the group exp(g) on the set π0

(
Ger∞ → Braces

)
of

homotopy classes of operad morphisms (6.1).

7.2 The action of GRT1 on π0

(
VA  C•(A)

)
Let us now show that exp(g) ∼= GRT1 also acts on the set π0

(
VA  C•(A)

)
of

homotopy classes of Λ Lie∞-morphisms from VA to C•(A).

For this purpose, we denote by

Actstan : Ger∞ → EndVA (7.9)

the operad map corresponding to the standard Gerstenhaber algebra structure on

VA.

Then, given a degree 0 cocycle D ∈ Der′(Ger∞) representing v ∈ g, we

may precompose map (7.9) by the automorphism exp(D). This way, we equip

the graded vector space VA with a new Ger∞-structure Qexp(D) whose binary oper-

ations are the standard ones. Therefore, by Corollary D.1 from Appendix D.1, there

exists a Ger∞-quasi-isomorphism

Ucorr : VA → V Qexp(D)

A (7.10)

from VA with the standard Gerstenhaber structure to VA with the Ger∞-structure

Qexp(D).

Due to observation (7.3), the restriction ofD onto the suboperad Cobar(Λ2 coCom) ⊂
Cobar(Ger∨) is zero. Hence, for every degree zero cocycle D ∈ Der′(Ger∞), we

have

exp(D)
∣∣∣
Cobar(Λ2 coCom)

= Id : Cobar(Λ2 coCom)→ Cobar(Λ2 coCom) .

(7.11)
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Therefore the Λ Lie∞-part of the Ger∞-structure Qexp(D) coincides with the stan-

dard Λ Lie-structure on VA given by the Schouten bracket. Hence the restriction of

the Ger∞-quasi-isomorphism Ucorr onto the Λ2 coCom-coalgebra Λ2 coCom(VA)

gives us a Λ Lie∞-automorphism

UD : VA  VA . (7.12)

Note that, for a fixed Ger∞-structure Qexp(D), Ger∞-quasi-isomorphism (7.10)

is far from unique. However, the second statement of Corollary D.2 implies that the

homotopy class of (7.10) is unique. Therefore, the assignment

D 7→
[
UD
]

is a well defined map from the set of degree zero cocycles of Der′(Ger∞) to homo-

topy classes of Λ Lie∞-automorphisms of VA.

This statement can be strengthened further:

Proposition 7.1. The homotopy type of UD does not depend on the choice of the

representative D of the cohomology class v. Furthermore, for any pair of degree

zero cocyclesD1, D2 ∈ Der′(Ger∞), the compositionUD1◦UD2 is homotopy equiv-

alent toUCH(D1,D2), where CH(x, y) denotes the Campbell-Hausdorff series in sym-

bols x, y.

Let us postpone the technical proof of Proposition 7.1 to Section 7.4 and observe

that this proposition implies the following statement:

Corollary 7.1. Let D be a degree zero cocycle in Der′(Ger∞) representing a coho-

mology class v ∈ g and let ULie be a Λ Lie∞-quasi-isomorphism from VA to C•(A).

The assignment

ULie 7→ ULie ◦ UD (7.13)

induces a right action of the group exp(g) on the set π0

(
VA  C•(A)

)
of homotopy

classes of Λ Lie∞-morphisms from VA to C•(A).

From now on, by abuse of notation, we denote by UD any representative in the

homotopy class of Λ Lie∞-automorphism (7.12).
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7.3 The theorem on GRT1-equivariance

The following theorem is the main result of these chapters:

Theorem 7.1. Let π0

(
Ger∞ → Braces

)
be the set of homotopy classes of operad

maps (6.1) from the dg operad Ger∞ governing homotopy Gerstenhaber algebras

to the dg operad Braces of brace trees. Let π0

(
VA  C•(A)

)
be the set of ho-

motopy classes of Λ Lie∞-quasi-isomorphisms1 from the algebra VA of polyvector

fields to the algebra C•(A) of Hochschild cochains of a graded affine space. Then

Tamarkin’s map T (6.21) commutes with the action of the group exp(g) which cor-

responds to Lie algebra (7.4).

Proof. Following the notation of earlier chapters, we will denote by Cyl(Ger∨) the

2-colored dg operad whose algebras are pairs (V,W ) with the data

1. a Ger∞-structure on V ,

2. a Ger∞-structure on W , and

3. a Ger∞-morphism F from V to W , i.e. a homomorphism of corresponding

dg Ger∨-coalgebras Ger∨(V )→ Ger∨(W ).

Recall that if we forget about the differential, then the operad Cyl(Ger∨) is

a free operad on a certain 2-colored collection M(Ger∨) naturally associated to

Ger∨.

Recall that we denote by

Der′(Cyl(Ger∨)) (7.14)

the dg Lie algebra of derivations D of Cyl(Ger∨) subject to the condition2

p ◦D = 0 , (7.15)
1We tacitly assume that operad maps (6.1) satisfies conditions (6.2) and Λ Lie∞ quasi-

isomorphisms VA  C•(A) extend the Hochschild-Kostant-Rosenberg embedding.
2Recall that it is condition (7.15) which guarantees that any degree zero cocycle in

Der′(Cyl(Ger∨)) can be exponentiated to an automorphism of Cyl(Ger∨) .
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where p is the canonical projection from Cyl(Ger∨) ontoM(Ger∨).

The restrictions to the first color part and the second color part of Cyl(Ger∨),

respectively, give us natural maps of dg Lie algebras

resα, resβ : Der′(Cyl(Ger∨))→ Der′(Ger∞), (7.16)

and, due to 4.1, resα and resβ are chain homotopic quasi-isomorphisms.

Therefore, for every v ∈ g there exists a degree zero cocycle

D ∈ Der′(Cyl(Ger∨)) (7.17)

such that both resα(D) and resβ(D) represent the cohomology class v.

Let

UGer : VA  C•(A)Ψ (7.18)

be a Ger∞-morphism from VA to C•(A) which restricts to a Λ Lie∞-morphism

ULie : VA  C•(A) . (7.19)

The triple consisting of

• the standard Gerstenhaber structure on VA,

• the Ger∞-structure on C•(A) coming from a map Ψ, and

• Ger∞-morphism (7.18)

gives us a map of dg operads

UCyl : Cyl(Ger∨)→ EndVA,C•(A) (7.20)

from Cyl(Ger∨) to the 2-colored endomorphism operad EndVA,C•(A) of the pair

(VA, C
•(A)).

Precomposing UCyl with the endomorphism

exp(D) : Cyl(Ger∨)→ Cyl(Ger∨)

we get another operad map

UCyl ◦ exp(D) : Cyl(Ger∨)→ EndVA,C•(A) (7.21)

which corresponds to the triple consisting of



60

• the new Ger∞-structure Qexp(resα(D)) on VA,

• the Ger∞-structure on C•(A) corresponding to Ψ ◦ exp(resβ(D)), and

• a Ger∞-quasi-isomorphism

ŨGer : V Qexp(resα(D))

A  C•(A)Ψ ◦ exp(resβ(D)) (7.22)

Due to technical Proposition E.1 proved in Appendix E below, the restriction

of the Ger∞-quasi-isomorphism ŨGer (7.22) to Λ2 coCom(VA) gives us the same

Λ Lie∞-morphism (7.19).

On the other hand, by Corollary D.1 from Appendix D.1, there exists a Ger∞-

quasi-isomorphism

Ucorr : VA  V Qexp(resα(D))

A (7.23)

from VA with the standard Gerstenhaber structure to VA with the new Ger∞-structure

Qexp(resα(D)) .

Thus, composing Ucorr with ŨGer (7.22), we get a Ger∞-quasi-isomorphism

U
exp(D)
Ger : VA  C•(A)Ψ ◦ exp(resβ(D)) (7.24)

from VA with the standard Gerstenhaber structure toC•(A) with the Ger∞-structure

coming from Ψ ◦ exp(resβ(D)).

The restriction of this Ger∞-morphism U
exp(D)
Ger to Λ2 coCom(VA) gives us the

Λ Lie∞-morphism

ULie ◦ U resα(D) (7.25)

where U resα(D) is the Λ Lie∞-automorphism of VA obtained by restricting (7.23) to

Λ2 coCom(VA) .

Since both cocycles resα(D) and resβ(D) of Der′(Ger∞) represent the same

cohomology class v ∈ g, Theorem 7.1 follows.
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7.4 The proof of Proposition 7.1

Let D and D̃ be two cohomologous cocycles in Der′(Ger∞) and let Qexp(D),

Qexp(D̃) be Ger∞-structures on VA corresponding to the operad maps

Actstan ◦ exp(D) : Ger∞ → EndVA , (7.26)

Actstan ◦ exp(D̃) : Ger∞ → EndVA , (7.27)

respectively. Here Actstan is the map Ger∞ → EndVA corresponding to the stan-

dard Gerstenhaber structure on VA.

Due to Proposition B.2, operad maps (7.26) and (7.27) are homotopy equivalent.

Hence there exists a Ger∞-structureQt on VA⊗Ω•(k) such that the evaluation maps

p0 : VA ⊗ Ω•(k)→ V Qexp(D)

A , p0(v) := v
∣∣
dt=0, t=0

,

p1 : VA ⊗ Ω•(k)→ V Qexp(D̃)

A , p1(v) := v
∣∣
dt=0, t=1

.
(7.28)

are strict quasi-isomorphisms of the corresponding Ger∞-algebras.

Furthermore, observation (7.3) implies that the restriction of a homotopy con-

necting the automorphisms exp(D) and exp(D̃) of Ger∞ to the suboperad Λ Lie∞

coincides with the identity map on Λ Lie∞ for every t. Therefore, the Λ Lie∞-part

of the Ger∞-structureQt on VA⊗Ω•(k) coincides with the standard Λ Lie-structure

given by the Schouten bracket.

Since tensoring with Ω•(k) does not change cohomology, Corollary D.2 from

Appendix D.2 implies that the canonical embedding VA ↪→ VA ⊗ Ω•(k) can be

extended to a Ger∞ quasi-isomorphism

UH
corr : VA  VA ⊗ Ω•(k) (7.29)

from VA with the standard Gerstenhaber structure to VA ⊗ Ω•(k) with the Ger∞-

structure Qt.

Since the Λ Lie∞-part of the Ger∞-structure Qt on VA ⊗ Ω•(k) coincides with

the standard Λ Lie-structure given by the Schouten bracket, the restriction of UH
corr

onto Λ2 coCom(VA) gives us a homotopy connecting the Λ Lie∞-automorphisms

p0 ◦ UH
corr

∣∣∣
Λ2 coCom(VA)

: VA  VA (7.30)
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and

p1 ◦ UH
corr

∣∣∣
Λ2 coCom(VA)

: VA  VA . (7.31)

Due to the second part of Corollary D.2, Λ Lie∞-automorphism (7.30) is homo-

topy equivalent to UD and Λ Lie∞-automorphism (7.31) is homotopy equivalent to

U D̃.

Thus the homotopy type of UD is indeed independent of the representative D

of the cohomology class.

To prove the second claim of Proposition 7.1, we will need to use the 2-colored

dg operad Cyl(Ger∨) recalled in the proof of Theorem 7.1 above. Moreover, we

need [33, Theorem 4.3] which implies that restrictions (7.16) are homotopic quasi-

isomorphisms of cochain complexes.

Let D1 and D2 be degree zero cocycles in Der′(Ger∞) and let Qexp(D1) be the

Ger∞-structure on VA which comes from the composition

Actstan ◦ exp(D1) : Ger∞ → EndVA , (7.32)

where Actstan denotes the map Ger∞ → EndVA corresponding to the standard

Gerstenhaber structure on VA.

Let UGer,1 be a Ger∞-quasi-isomorphism

UGer,1 : VA  V Qexp(D1)

A , (7.33)

where the source is considered with the standard Gerstenhaber structure.

By construction, the Λ Lie∞-automorphism

UD1 : VA  VA

is the restriction of UGer,1 onto Λ2 coCom(VA).

Let us denote by UVA
Cyl the operad map

UVA
Cyl : Cyl(Ger∨)→ EndVA,VA

which corresponds to the triple:

• the standard Gerstenhaber structure on the first copy of VA,
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• the Ger∞-structure Qexp(D1) on the second copy of VA, and

• the chosen Ger∞ quasi-isomorphism in (7.33).

Due to [33, Theorem 4.3], there exists a degree zero cocycleDCyl in Der′
(

Cyl(Ger∨)
)

for which the cocycles

D := resα(DCyl) , D′ := resβ(DCyl) (7.34)

are both cohomologous to the given cocycle D2.

Precomposing the map UVA
Cyl with the automorphism exp(DCyl) we get a new

Cyl(Ger∨)-algebra structure on the pair (VA, VA) which corresponds to the triple

• the Ger∞-structure Qexp(D) on the first copy of VA,

• the Ger∞-structure Qexp(CH(D1,D′)) on the second copy of VA, and

• a Ger∞ quasi-isomorphism

ŨGer : V Qexp(D)

A  V Qexp(CH(D1,D
′))

A . (7.35)

Let us observe that, due to Proposition E.1 from Appendix E, the restriction of

ŨGer onto Λ2 coCom(VA) coincides with the restriction of (7.33) onto Λ2 coCom(VA).

Hence,

ŨGer

∣∣∣
Λ2 coCom(VA)

= UD1 , (7.36)

where UD1 is a Λ Lie∞-automorphism of VA corresponding3 to D1.

Recall that there exists a Ger∞-quasi-isomorphism

UGer : VA  V Qexp(D)

A . (7.37)

where the source is considered with the standard Gerstenhaber structure. Further-

more, sinceD is cohomologous toD2, the first claim of Proposition 7.1 implies that

the restriction of UGer onto Λ2 coCom(VA) gives us a Λ Lie∞-automorphism UD of

VA which is homotopy equivalent to UD2 .
3Strictly speaking, only the homotopy class of the Λ Lie∞-automorphism UD1 is uniquely de-

termined by D1.



64

Let us also observe that the composition ŨGer ◦ UGer gives us a Ger∞-quasi-

isomorphism

ŨGer ◦ UGer : VA  V Qexp(CH(D1,D
′))

A (7.38)

Hence, the restriction of ŨGer ◦ UGer gives us a Λ Lie∞-automorphism of VA
corresponding to CH(D1, D

′). Due to (7.36), this Λ Lie∞-automorphism coincides

with

UD1 ◦ UD .

Since D and D′ are both cohomologous to D2, the second claim of Proposition

7.1 follows.

Remark 7.1. The second claim of Proposition 7.1 can probably be deduced from

[38, Proposition 5.4] and some other statements in [38]. However, this would re-

quire a digression to “stable setting” which we avoid in this dissertation. For this

reason, we decided to present a complete proof of Proposition 7.1 which is inde-

pendent of any intermediate steps in [38].
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CHAPTER 8

CONNECTING DRINFELD

ASSOCIATORS TO FORMALITY

MORPHISMS

In this chapter we recall how to construct a GRT1-equivariant map B from the

set DrAssoc1 of Drinfeld associators to the set

π0

(
Ger∞ → Braces

)
of homotopy classes of operad morphisms (6.1) satisfying conditions (6.2).

Composing B with the map T (6.21), we get the desired map

T ◦B : DrAssoc1 → π0

(
VA  C•(A)

)
(8.1)

from the set DrAssoc1 to the set of homotopy classes of Λ Lie∞-morphisms from

VA to C•(A) whose linear term is the Hochschild-Kostant-Rosenberg embedding.

Theorem 7.1 will then imply that map (8.1) is GRT1-equivariant.

8.1 The sets DrAssocκ of Drinfeld associators

In this short section, we briefly recall Drinfeld’s associators and the Grothendieck-

Teichmueller group GRT1 . For more details we refer the reader to [1], [2], or [17].



66

Letm be an integer≥ 2. We denote by tm the Lie algebra generated by symbols

{tij = tji}1≤i 6=j≤m subject to the following relations:

[tij, tik + tjk] = 0 for any triple of distinct indices i, j, k ,

[tij, tkl] = 0 for any quadruple of distinct indices i, j, k, l . (8.2)

The notation Apb
m is reserved for the associative algebra (over k) of formal power

series in noncommutative symbols {tij = tji}1≤i 6=j≤m subject to the same relations

(8.2). Let us recall [34, Section 4] that the collection Apb := {Apb
m }m≥1 with

Apb
1 := k forms an operad in the category of associative k-algebras.

Let lie(x, y) be the degree completion of the free Lie algebra in two symbols x

and y and let κ be any element of k.

The set DrAssocκ consists of elements Φ ∈ exp
(
lie(x, y)

)
which satisfy the

equations

Φ(y, x)Φ(x, y) = 1 , (8.3)

Φ(t12, t23 + t24) Φ(t13 + t23, t34) = Φ(t23, t34) Φ(t12 + t13, t24 + t34) Φ(t12, t23) ,

(8.4)

eκ(t13+t23)/2 = Φ(t13, t12)eκt
13/2Φ(t13, t23)−1eκt

23/2Φ(t12, t23) , (8.5)

and

eκ(t12+t13)/2 = Φ(t23, t13)−1eκt
13/2Φ(t12, t13)eκt

12/2Φ(t12, t23)−1 . (8.6)

For κ 6= 0, elements Φ of DrAssocκ are called Drinfeld associators. However,

for our purposes, we only need the set DrAssoc1 and the set DrAssoc0.

According to [17, Section 5], the set

DrAssoc0 (8.7)

forms a prounipotent group and, by [17, Proposition 5.5], this group acts simply

transitively on the set of associators in DrAssoc1 . Following [17], we denote the

group DrAssoc0 by GRT1.
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8.2 A map B from DrAssoc1 to π0

(
Ger∞ → Braces

)
Let us recall [2], [34] that collections of all braid groups can be assembled into

the operad PaB in the category of k-linear categories. Similarly, the collection of

algebras {Apb
m }m≥1 can be “upgraded” to the operad PaCD also in the category of

k-linear categories. Every associator Φ ∈ DrAssoc1 gives us an isomorphism of

these operads

IΦ : PaB
∼=−→ PaCD . (8.8)

The group GRT1 acts on the operad PaCD in such a way that, for every pair g ∈
GRT1, Φ ∈ DrAssoc1, the diagram

PaB PaCD

PaB PaCD

IΦ

id

Ig(Φ)

g

(8.9)

commutes.

Applying to PaB and PaCD the functor C−•(−, k), where C•(−, k) denotes the

Hochschild chain complex with coefficients in k, we get dg operads

C−•(PaB, k) (8.10)

and

C−•(PaCD, k) . (8.11)

By naturality of C−•( , k), diagram (8.9) gives us the commutative diagram

C−•(PaB, k) C−•(PaCD, k)

C−•(PaB, k) C−•(PaCD, k),

IΦ

id

Ig(Φ)

g

(8.12)

where, for simplicity, the maps corresponding to IΦ, Ig(Φ) and g are denoted by the

same letters, respectively.
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Recall that Eq. (5) from [34] gives us the canonical quasi-isomorphism from

the operad Ger to C−•(Apb, k). The latter operad, in turn, receives the natural map

C−•(PaCD, k)→ C−•(Apb, k)

from C−•(PaCD, k) which is also known to be a quasi-isomorphism.

Thus, using the lifting property (see [11, Corollary 5.8]) for maps from the

operad Ger∞ = Cobar(Ger∨), we get the quasi-isomorphism1

Ger∞
∼−→ C−•(PaCD, k) . (8.13)

Using this quasi-isomorphism and [11, Corollary 5.8], one can construct (see

[38, Section 6.3.1]) a group homomorphism

GRT1 → exp(g) , (8.14)

where the Lie algebra g is defined in (7.4). By [38, Theorem 1.2], homomorphism

(8.14) is an isomorphism.

Any specific solution of Deligne’s conjecture on the Hochschild complex (see,

for example, [4], [13], or [30]) combined with Fiedorowicz’s recognition principle

[18] provides us with a sequence of quasi-isomorphisms

Braces
∼← • ∼→ • ∼← • . . . • ∼→ C−•(PaB, k) (8.15)

which connects the dg operad Braces to C−•(PaB, k) .

Hence, every associator Φ ∈ DrAssoc1 gives us a sequence of quasi-isomorphisms

Braces
∼← • ∼→ • ∼← • . . . • ∼→ C−•(PaB, k)

IΦ−→ C−•(PaCD, k)
∼←− Ger∞

(8.16)

connecting the dg operads Braces to Ger∞.

Using [11, Corollary 5.8] once again, we conclude that the sequence of quasi-

isomorphisms (8.16) determines a unique homotopy class of quasi-isomorphisms

(of dg operads)

Ψ : Ger∞ → Braces . (8.17)
1By the same lifting property (see [11, Corollary 5.8]), we know that the homotopy type of the

quasi-isomorphism (8.13) is uniquely determined by the operad map Ger→ C−•(Apb, k) from [34,
Eq. (5)].
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Thus we get a well defined map

B : DrAssoc1 → π0

(
Ger∞ → Braces

)
. (8.18)

In view of isomorphism (8.14), the set of homotopy classes π0

(
Ger∞ → Braces

)
is equipped with a natural action of GRT1. Moreover, the commutativity of diagram

(8.12) implies that the map B is GRT1-equivariant.

Thus, combining this observation with Theorem 7.1 we deduce the following

corollary:

Corollary 8.1. Let π0

(
VA  C•(A)

)
be the set of homotopy classes of Λ Lie∞

quasi-isomorphisms which extend the Hochschild-Kostant-Rosenberg embedding

of polyvector fields into Hochschild cochains. If we consider π0

(
VA  C•(A)

)
as

a set with the GRT1-action induced by isomorphism (8.14) then the composition

T ◦B : DrAssoc1 → π0

(
VA  C•(A)

)
(8.19)

is GRT1-equivariant.

Remark 8.1. Any sequence of quasi-isomorphisms of dg operads (8.15) gives us

an isomorphism between the objects corresponding to C−•(PaB, k) and Braces

in the homotopy category of dg operads. However, there is no reason to expect

that different solutions of the Deligne conjecture give the same isomorphisms from

C−•(PaB, k) to Braces in the homotopy category. Hence the resulting composition

in (8.19) may depend on the choice of a specific solution of Deligne’s conjecture on

the Hochschild complex.
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APPENDIX A

A LEMMA ON COLIMITS FROM

CONNECTED GROUPOIDS

The following result seems to be well-known, but we take take the opportunity

to record its statement and proof for use in this dissertation, and for future reference.

Lemma A.1. Let F : g → Chk be a functor from a connected groupoid g. Then

colimF = F (a)Aut(a), for any object a ∈ g.

Proof. Choose a ∈ g; we need to show that F (a)Aut(a) is a co-cone for F : g →
Chk, and that it is universal. That is, for any other co-cone X for F , there is a

unique map τ : F (a)Aut(a) → X , and for any a, b ∈ g there are maps πb : F (b) →
F (a)Aut(a) and πc : F (c)→ F (a)Aut(a), such that the following diagram commutes:

F (b) F (c)

F (a)Aut(a)

X

F (g)

πb πc

ψb ψcτ

Note that we trivially have this for b = c = a, where g is any automorphism of

a. Then πb = πc = π, the canonical projection F (a) � F (a)Aut(a), and τ exists
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and is unique because of the universal property of quotients. Since g is a connected

groupoid we have maps hba : b→ a and hca : c→ a (for simplicity, let the inverses

of these maps be denoted hab and hac, respectively). Then we have the commuting

diagram

F (b) F (c)

F (a) F (a)

F (a)Aut(a)

X

F (g)

F (hba) F (hca)

F (hcaghab)

π π

ψa ψaψb ψc

τ

where the left and right triangles commute because X is a co-cone for F , and the

top rectangle commutes by construction. This then gives us the first diagram with

πb = π ◦ F (hba) and πc = π ◦ F (hca), and therefore colimF = F (a)Aut(a).
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APPENDIX B

ON COHOMOLOGOUS

DERIVATIONS AND HOMOTOPIC

AUTOMORPHISMS

In this appendix we investigate the relationship between cohomologous deriva-

tions and homotopic automorphisms of operads. The techniques and results of this

appendix were inspired by Appendix A of [39], where a similar situation was con-

sidered in the specific setting of L∞-algebras.

All operads will be (possibly colored) quasi-free dg operads O = OP(M) (M
a collection), equipped with the weight filtration as in Section 3 (our motivating ex-

ampes are Cobar(C) and Cyl(C) for a reduced cooperad C). Let π be the projection

O →M. We then have the filtered dg Lie algebra Der(O) of operad derivations of

O, which contains the subalgebra

Der′(O) = {D ∈ Der(O) | π ◦D|M = 0}. (B.1)

We also have the group Aut(O) of operad automorphisms of O, with subgroup

Aut′(O) = {ϕ ∈ Aut(O) | π ◦ ϕ|M = idM}. (B.2)

With these conditions, we have well-defined maps

D 7→ exp(D) =
∑
k≥0

Dn

n!
: Z0(Der′(O))→ Aut′(O) (B.3)
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and

ϕ 7→ log(ϕ) =
∑
k≥1

(−1)n−1 (ϕ− id)n

n
: Aut′(O)→ Z0(Der′(O)) (B.4)

that are inverse to each other (it is straightforward to show that degree 0 closed

derivations exponentiate to operad automorphisms, and vice versa).

We can makeZ0(Der′(O)) into a group with composition given by the Campbell-

Hausdorff formula

CH(X, Y ) = log(exp(X) exp(Y )) (B.5)

and identity 0 (it is an easy exercise that if X, Y are degree 0 and closed, so too is

CH(X, Y )). It will be clear from context whether we consider Z0(Der′(O)) as a dg

Lie algebra, or as a group. The following proposition is well known:

Proposition B.1. The maps

exp : Z0(Der′(O))→ Aut′(O)

log : Aut′(O)→ Z0(Der′(O))

are inverse group isomorphisms.

All of the above constructions and results are preserved when considering co-

homologous derivations and homotopic automorphisms. It is straightforward to see

that the group structure onZ0 Der′(O) induces the group structure onH0(Der′(O)).

Recall [11, Section 5.1] that two automorphisms ϕ1, ϕ2 ∈ Aut′(O) are homotopic

if there exists an operad map

H : O → O ⊗ Ω•(k) (B.6)

such that

H|t=0,dt=0 = ϕ1, H|t=1,dt=0 = ϕ2 (B.7)

where Ω•(k) denotes the algebra of polynomial differential forms on k. We will

also insist that such homotopies occur in Aut′(O), in the following sense. It is easy

to see that for any specific choice of t,H|dt=0 is an operad endomorphism ofO (see
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proof below); we additionally require that it be in Aut′(O). Let hAut′(O) denote

the group of homotopy classes of automorphisms in Aut′(O). Then we have the

following version of Proposition B.1:

Proposition B.2. The induced maps

exp : H0(Der′(O))→ hAut′(O)

log : hAut′(O)→ H0(Der′(O))

are inverse group isomorphisms.

Proof. This proof is essentially borrowed from Appendix A of [39]. It must be

shown that the above maps are well-defined; that they are inverse group isomor-

phisms is then essentially obvious.

To show that exp is well-defined, we will show that exp(∂(P )) is homotopic to

the identity in Aut′(O) for every degree−1 derivation P ∈ Der′(O). Let us denote

by t an auxiliary variable and consider the following map of dg operads:

exp(t∂(P )) : O → O[t] (B.8)

(this map lands in O[t] for the same reasons that exp is well-defined in this situa-

tion). We have
d

dt
exp(t∂(P )) = ∂(P ) ◦ exp(t∂(P )) (B.9)

and hence the sum

HP = exp(t∂(P )) + dt P ◦ exp(t∂(P )) (B.10)

is a map of dg operads

HP : O → O ⊗ Ω•(k). (B.11)

It is clear that

HP |t=0,dt=0 = idO, HP |t=1,dt=0 = exp(∂(P )) (B.12)

and therefore HP is the desired homotopy connecting idO to the automorphism

exp(∂(P )).
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To show that log is well-defined, we will show that if ϕ ∈ Aut′(O) is homotopic

to idO in Aut′(O), then log(ϕ) is exact. So assume that there is a homotopy

H : O → O ⊗ Ω•(k) (B.13)

such that

H|t=0,dt=0 = idO, H|t=1,dt=0 = ϕ. (B.14)

H necessarily has the form

H = H0 + dtH1, where H0,H1 : O → O[t]. (B.15)

The compatibility of H with the operadic multiplications is equivalent to the equa-

tions

H0(x ◦i y) = H0(x) ◦i H0(y) (B.16)

H1(x ◦i y) = H1(x) ◦i H0(y) + (−1)|x|H0(x) ◦i H1(y) (B.17)

and compatibility with the differentials is equivalent to the equations

∂ ◦ H0 = H0 ◦ ∂ (B.18)

d

dt
H0 = ∂ ◦ H1 +H1 ◦ ∂. (B.19)

Extending H0,H1 linearly across k[t] to get maps H0,H1 : O[t] → O[t], we see

that the previous equation implies that

d

dt
log(H0) =

∞∑
n=1

(−1)n−1

n

n−1∑
m=0

(H0 − id)m ◦ [∂,H1] ◦ (H0 − id)n−m−1 (B.20)

which can be rewritten as
d

dt
log(H0) = [∂, Z] (B.21)

where

Z =
∞∑
n=1

(−1)n−1

n

n−1∑
m=0

(H0 − id)m ◦ H1 ◦ (H0 − id)n−m−1. (B.22)



81

By integrating, this implies that log(ϕ) = log(H0)|t=1 is exact, provided that Z is

a derivation of O[t]. To show this, recall that for fixed t, H0 is in Aut′(O). Conse-

quently we can construct H−1
0 . Since H1 is a derivation relative to H0, H−1

0 H1 is a

derivation of O[t]. Now consider

Ψ(u) = log(H0 exp(uH−1
0 H1)) =

∞∑
n=1

(−1)n−1

n
(H0 exp(uH−1

0 H1)− id)n,

(B.23)

which is an element of Der′(O[t])⊗̂k[u]. Therefore d
dt

Ψ(u)|u=0 is a derivation of

O[t], and it is straightforward to check that

d

dt
Ψ(u)|u=0 =

∞∑
n=1

(−1)n−1

n

n−1∑
m=0

(H0 − id)m ◦H1 ◦ (H0 − id)n−m−1 = Z. (B.24)

So Z is indeed a derivation.
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APPENDIX C

FILTERED HOMOTOPY LIE

ALGEBRAS

Let L be a cochain complex with the differential ∂. Recall that a Λ−1Lie∞-

structure on L is a sequence of degree 1 multi-brackets

{ , , . . . , }m : Sm(L)→ L , m ≥ 2 (C.1)

satisfying the relations

∂{v1, v2, . . . , vm}+
m∑
i=1

(−1)|v1|+···+|vi−1|{v1, . . . , vi−1, ∂vi, vi+1, . . . , vm}

+
m−1∑
k=2

∑
σ∈Shk,m−k

(−1)ε(σ;v1,...,vm){{vσ(1), . . . , vσ(k)}, vσ(k+1), . . . , vσ(m)} = 0 ,

(C.2)

where (−1)ε(σ;v1,...,vm) is the Koszul sign factor (see eq. (2.1)).

We say that a Λ−1Lie∞-algebra L is filtered if it is equipped with a complete

descending filtration

L = F1L ⊃ F2L ⊃ F3L ⊃ . . . . (C.3)

For such filtered Λ−1Lie∞-algebras we may define a Maurer-Cartan element as
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a degree zero element α satisfying the equation

∂α +
∑
m≥2

1

m!
{α, α, . . . , α}m = 0 . (C.4)

Note that this equation makes sense for any degree 0 element α because L = F1L

and L is complete with respect to filtration (C.3). Let us denote by MC(L) the set

of Maurer-Cartan elements of a filtered Λ−1Lie∞-algebra L.

According to1 [20], the set MC(L) can be upgraded to an∞-groupoid MC(L)

(i.e. a simplicial set satisfying the Kan condition). To introduce the ∞-groupoid

MC(L), we denote by Ω•(∆n) the dg commutative k-algebra of polynomial forms

[20, Section 3] on the n-th geometric simplex ∆n. Next, we declare that set of

n-simplices of MC(L) is

MC
(
L ⊗̂Ω•(∆n)

)
, (C.5)

where L is considered with the topology coming from filtration (C.3) and Ω•(∆n) is

considered with the discrete topology. The structure of the simplicial set is induced

from the structure of a simplicial set on the sequence {Ω•(∆n)}n≥0 .

For example, 0-cells of MC(L) are precisely Maurer-Cartan elements of L and

1-cells are sums

α′ + dt α′′ , α′ ∈ L0 ⊗̂ k[t] , α′′ ∈ L−1 ⊗̂ k[t] (C.6)

satisfying the pair of equations

∂α′ +
∑
m≥2

1

m!
{α′, α′, . . . , α′}m = 0 , (C.7)

d

dt
α′ = ∂α′′ +

∑
m≥1

1

m!
{α′, α′, . . . , α′, α′′}m+1 . (C.8)

Thus, two 0-cells α0, α1 of MC(L) (i.e. Maurer-Cartan elements of L) are

isomorphic if there exists an element (C.6) satisfying (C.7) and (C.8) and such that

α0 = α′
∣∣∣
t=0

and α1 = α′
∣∣∣
t=1

. (C.9)

We say that a 1-cell (C.6) connects α0 and α1.
1A version of the Deligne-Getzler-Hinich ∞-groupoid for pro-nilpotent Λ−1Lie∞-algebras is

introduced in [12, Section 4].
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C.1 A lemma on adjusting Maurer-Cartan elements

Let α be a Maurer-Cartan element of a filtered Λ−1Lie∞-algebra and ξ be a

degree −1 element in FnL for some integer n ≥ 1.

Let us consider the following sequence {α′k}k≥0 of degree zero elements in

L ⊗̂ k[t]

α′0 := α , α′k+1(t) := α +

∫ t

0

dt1

(
∂ξ +

∑
m≥1

1

m!
{α′k(t1), . . . , α′k(t1), ξ}m+1

)
.

(C.10)

Since L is complete with respect to filtration (C.3), the sequence {α′k}k≥0 con-

vergences to a (degree 0) element α′ ∈ L ⊗̂ k[t] which satisfies the integral equation

α′(t) = α +

∫ t

0

dt1

(
∂ξ +

∑
m≥1

1

m!
{α′(t1), . . . , α′(t1), ξ}m+1

)
. (C.11)

We claim that

Lemma C.1. If, as above, ξ is a degree −1 element in FnL and α′ is an element of

L ⊗̂ k[t] obtained by recursive procedure (C.10) then the sum

α′ + dt ξ (C.12)

is a 1-cell of MC(L) which connects α to another Maurer-Cartan element α̃ of L

such that

α′ − α ∈ FnL ⊗̂ k[t] , (C.13)

and

α̃− α− ∂ξ ∈ Fn+1L . (C.14)

If the element ξ satisfies the additional condition

∂ξ ∈ Fn+1L (C.15)

then

α′ − α ∈ Fn+1L ⊗̂ k[t] , (C.16)

and

α̃− α− ∂ξ − {α, ξ} ∈ Fn+2L . (C.17)
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Proof. Equation (C.11) implies that α′ satisfies the differential equation

d

dt
α′ = ∂ξ +

∑
m≥1

1

m!
{α′, . . . , α′, ξ}m+1 (C.18)

with the initial condition

α′
∣∣∣
t=0

= α . (C.19)

Let us denote by Ξ the following degree 1 element of L ⊗̂ k[t]

Ξ := ∂α′ +
∑
m≥2

1

m!
{α′, α′, . . . , α′}m . (C.20)

A direct computation shows that Ξ satisfies the following differential equation

d

dt
Ξ = −

∑
m≥0

1

m!
{α′, . . . , α′,Ξ, ξ}m+2 . (C.21)

Furthermore, since α is a Maurer-Cartan element of L, the element Ξ satisfies

the condition

Ξ
∣∣∣
t=0

= 0

and hence Ξ satisfies the integral equation

Ξ(t) = −
∫ t

0

dt1

(∑
m≥0

1

m!
{α′(t1), . . . , α′(t1),Ξ(t1), ξ}m+2

)
. (C.22)

Equation (C.22) implies that

Ξ ∈
⋂
n≥1

FnL ⊗̂ k[t] .

Therefore Ξ = 0 and hence the limiting element α′ of sequence (C.10) is a

Maurer-Cartan element of L ⊗̂ k[t] .

Combining this observation with differential equation (C.18), we conclude that

the element α′ + dt ξ ∈ L ⊗̂Ω•(∆1) is indeed a 1-cell in MC(L) which connects

the Maurer-Cartan element α to the Maurer-Cartan element

α̃ := α +

∫ 1

0

dt
(
∂ξ +

∑
m≥1

1

m!
{α′(t), . . . , α′(t), ξ}m+1

)
. (C.23)
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Since ξ ∈ FnL and L = F1L, equation (C.11) implies that

α′ − α ∈ FnL ⊗̂ k[t]

and equation (C.23) implies that

α̃− α− ∂ξ ∈ Fn+1L .

Thus, the first part of Lemma C.1 is proved.

If ξ ∈ FnL and ∂ξ ∈ Fn+1L then, again, it is clear from (C.11) that inclusion

(C.16) holds.

Finally, using inclusion (C.16) and equation (C.23), it is easy to see that

α̃− α− ∂ξ − {α, ξ} ∈ Fn+2L .

Lemma C.1 is proved.

C.2 Convolution Λ−1Lie∞-algebra,∞-morphisms and

their homotopies

As usual, let C be a coaugmented, reduced cooperad, and let V be a cochain

complex. (In our applications, C is usually the cooperad Ger∨.)

Following Chapter 2, we say that V is a homotopy algebra of type C if V carries

Cobar(C)-algebra structure, or equivalently the C-coalgebra C(V ) has a degree 1

coderivation Q satisfying Q
∣∣∣
V

= 0 and the Maurer-Cartan equation

∂(Q) +
1

2
[Q,Q] = 0 (C.24)

where

∂(Q) = [dC(V ), Q]. (C.25)

For two homotopy algebras (V,QV ) and (W,QW ) of type C, we consider the

graded vector space

Hom(C(V ),W ) (C.26)



87

with the differential ∂

∂(f) := dW ◦ f − (−1)|f |f ◦ (dC(V ) +QV ) (C.27)

and the multi-brackets (of degree 1)

{ , , . . . , }m : Sm
(

Hom(C(V ),W )
)
→ Hom(C(V ),W ) , m ≥ 2

{f1, . . . , fm}(X) = pW ◦QW

(
1⊗ f1 ⊗ · · · ⊗ fm(∆m(X))

)
, (C.28)

where ∆m is the m-th component of the comultiplication

∆m : C(V )→
(
C(m)⊗ C(V )⊗m

)Sm
and pW is the canonical projection

pW : C(W )→ W .

According to [9] or [15, Section 1.3], equation (C.28) define a Λ−1 Lie∞-structure

on the cochain complex Hom(C(V ),W ) with the differential ∂ (C.27). The Λ−1Lie∞-

algebra

Hom(C(V ),W ) (C.29)

is called the convolution Λ−1Lie∞-algebra of the pair V,W .

The convolution Λ−1Lie∞-algebra Hom(C(V ),W ) carries the obvious descend-

ing filtration “by arity”

Fn Hom(C(V ),W ) = {f ∈ Hom(C(V ),W ) | f
∣∣
C(m)⊗SmV ⊗m

= 0 ∀m < n}.
(C.30)

Hom(C(V ),W ) is obviously complete with respect to this filtration and

Hom(C(V ),W ) = F1 Hom(C(V ),W ). (C.31)

In other words, under our assumption on the cooperad C, the convolution Λ−1Lie∞-

algebra Hom(C(V ),W ) is pronilpotent.

According to [15, Proposition 3], ∞-morphisms from V to W are in bijec-

tion with Maurer-Cartan elements of Hom(C(V ),W ) i.e. 0-cells of the Deligne-

Getzler-Hinich ∞-groupoid corresponding to Hom(C(V ),W ). Furthermore, due
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to [15, Corollary 2], two∞-morphisms from V to W are homotopic if and only if

the corresponding Maurer-Cartan elements are isomorphic 0-cells in the Deligne-

Getzler-Hinich∞-groupoid of Hom(C(V ),W ).
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APPENDIX D

TAMARKIN’S RIGIDITY

Let VA denote the Gerstenhaber algebra of polyvector fields on the graded affine

space corresponding to A = k[x1, x2, . . . , xd] with

|xi| = ti .

As a graded commutative algebra over k, VA is freely generated by variables

x1, x2, . . . , xd, θ1, θ2, . . . , θd,

where θi carries degree 1− ti .

VA = k[x1, x2, . . . , xd, θ1, θ2, . . . , θd] . (D.1)

Let us denote by µ∧ and µ{ , } the vectors in EndVA(2) corresponding to the multi-

plication and the Schouten bracket { , } on VA, respectively.

The composition of the canonical quasi-isomorphism

Cobar(Ger∨)→ Ger (D.2)

and the map Ger→ EndVA corresponds to the following Maurer-Cartan element

α := µ∧ ⊗ {b1, b2}+ µ{ , } ⊗ b1b2 (D.3)

in the graded Lie algebra

Conv⊕(Ger∨,EndVA) :=
⊕
n≥1

HomSn (Ger∨(n),EndVA(n)) (D.4)
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for which we frequently use the obvious identification1

Conv⊕(Ger∨,EndVA) ∼=
⊕
n≥1

(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn
. (D.5)

In this appendix, we consider Conv⊕(Ger∨,EndVA) as the cochain complex

with the following differential

∂ := [α, ] . (D.6)

We observe that Conv⊕(Ger∨,EndVA) carries the natural descending filtration

“by arity”:

Conv⊕(Ger∨,EndVA) = F0 Conv⊕(Ger∨,EndVA) ⊃ F1 Conv⊕(Ger∨,EndVA) ⊃ . . .

Fm Conv⊕(Ger∨,EndVA) :=
⊕

n≥m+1

(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn
. (D.7)

More precisely,

∂
(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn ⊂ (
EndVA(n+ 1)⊗ Λ−2 Ger(n+ 1)

)Sn+1 .

(D.8)

In particular, every cocycle X ∈ Conv⊕(Ger∨,EndVA) is a finite sum

X =
∑
n≥1

Xn , Xn ∈
(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn (D.9)

where each individual term Xn is a cocycle.

In this dissertation, we need the following version of Tamarkin’s rigidity

Theorem D.1. If n is an integer ≥ 2 then for every cocycle

X ∈
(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn ⊂ Conv⊕(Ger∨,EndVA)

there exists a cochain Y ∈ (EndVA(n− 1)⊗ Λ−2 Ger(n− 1))
Sn−1 such that

X = ∂Y .

1Recall from Chapter 2 that the cooperad Ger∨ is the linear dual of the operad Λ−2 Ger .
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Remark D.1. Note that the above statement is different from Tamarkin’s rigidity in

the “stable setting” [11, Section 12]. According to [11, Corollary 12.2], one may

think that the vector

µ{ , } ⊗ b1b2

is a non-trivial cocycle in (D.4). In fact,

µ{ , } ⊗ b1b2 = [α, P ⊗ b1] ,

where P is the following version of the “Euler derivation” of VA:

P (v) :=
d∑
i=1

θi
∂

∂θi
.

Proof of Theorem D.1. Theorem D.1 is only a slight generalization of the state-

ment proved in Section 5.4 of [21] and, in the proof given here, we pretty much

follow the same line of arguments as in [21, Section 5.4].

First, we introduce an additional set of auxiliary variables

x̌1, x̌2, . . . , x̌d, θ̌
1, θ̌2, . . . , θ̌d (D.10)

of degrees

|x̌i| = 2− ti , |θ̌i| = ti + 1 .

Second, we consider the de Rham complex of VA:

Ω•
k
VA := VA[x̌1, x̌2, . . . , x̌d, θ̌1, θ̌2, . . . , θ̌d] (D.11)

with the differential

D =
d∑
i=1

x̌i
∂

∂θi
+

d∑
i=1

θ̌i
∂

∂xi
(D.12)

and equip it with the following descending filtration:

FmΩ•
k
VA :=

{
P ∈ VA[x̌1, x̌2, . . . , x̌d, θ̌1, θ̌2, . . . , θ̌d]∣∣ the total degree of P in x̌1, . . . , x̌d, θ̌1, . . . , θ̌d is ≥ m+ 1

}
. (D.13)
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Next, we observe that every homogeneous vector2

P = P i1i2...ik
j1j2...jq

x̌i1 . . . x̌ik θ̌
j1 . . . θ̌jq ∈ VA[x̌1, x̌2, . . . , x̌d, θ̌1, θ̌2, . . . , θ̌d]

defines an element PEnd ∈ EndVA(k + q):

PEnd(v1, v2, . . . , vk+q) :=∑
σ∈Sk+q

±P i1i2...ik
j1j2...jq

∂xi1vσ(1) ∂xi2vσ(2) . . . ∂xikvσ(k)

∂θj1vσ(k+1) ∂θj2vσ(k+2) . . . ∂θjq vσ(k+q) , (D.14)

where the sign factors ± are determined by the usual Koszul rule.

Finally, we claim that the formula

VH(P ) := PEnd ⊗ b1b2 . . . bk+q (D.15)

defines a degree zero injective map

VH : s−2 F0Ω•
k
VA → Conv⊕(Ger∨,EndVA) (D.16)

which is compatible with filtrations (D.7) and (D.13). A direct computation shows

that VH intertwines differentials (D.6) and (D.12).

Let m be an integer and

Gm Conv⊕(Ger∨,EndVA) (D.17)

be the subspace of Conv⊕(Ger∨,EndVA) of sums∑
i

Mi ⊗ qi ∈
⊕
n≥1

(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn (D.18)

satisfying the condition

the number of Lie brackets in qi − |Mi ⊗ qi | ≤ m. (D.19)

It is easy to see that the sequence of subspaces (D.17)

· · · ⊂ G−1 Conv⊕(Ger∨,EndVA) ⊂ G0 Conv⊕(Ger∨,EndVA) ⊂ G1 Conv⊕(Ger∨,EndVA) ⊂ . . .

2Summation over repeated indices is assumed.
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form an ascending filtration on the cochain complex Conv⊕(Ger∨,EndVA) and the

associated graded cochain complex

GrG Conv⊕(Ger∨,EndVA) (D.20)

is isomorphic to ⊕
n≥1

(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn
with the differential

∂Gr = [µ∧ ⊗ {b1, b2}, ] , (D.21)

where µ∧ is the vector in EndVA(2) which corresponds to the multiplication on VA.

Let us observe that (D.20) is naturally a VA-module (where VA is viewed as a

graded commutative algebra), differential (D.21) is VA-linear, and since

Ger∨(VA) = Λ2 coCom(Λ coLie(VA)) ,

cochain complex (D.20) is isomorphic to

HomVA

(
s2 SVA(s−1 VA ⊗k coLie(s−1 VA)), VA

)
(D.22)

with the differential coming from the one on the Harrison homological3 complex

[26, Section 4.2.10]

VA ⊗k coLie(s−1 VA) (D.23)

of the graded commutative algebra VA with coefficients in VA.

Since VA is freely generated by elements x1, . . . , xd, θ1, . . . , θd, Theorem 3.5.6

and Proposition 4.2.11 from [26] imply that the embedding

IHarr :
d⊕
i=1

VAe
i ⊕

d⊕
i=1

VAfi → VA ⊗ coLie(s−1 VA) (D.24)

IHarr(e
i) := 1⊗ s−1 xi , IHarr(fi) := 1⊗ s−1 θi

from the free VA-module
d⊕
i=1

VAe
i ⊕

d⊕
i=1

VAfi , |ei| := ti − 1, |fi| := −ti (D.25)

3The cochain complex in (D.23) is obtained from the conventional Harrison homological com-
plex from [26, Section 4.2.10] by reversing the grading.
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is a quasi-isomorphism of cochain complexes of VA-modules from (D.25) with the

zero differential to (D.23) with the Harrison differential.

Since (D.24) is a quasi-isomorphism of cochain complexes of free VA-modules,

it induces a quasi-isomorphism of cochain complexes of (free) VA-modules:

s2 VA[s−1 e1, . . . , s−1 ed, s−1 f1, . . . , s
−1 fd]→ s2 SVA(s−1 VA ⊗k coLie(s−1 VA)) ,

(D.26)

where the source carries the zero differential.

Therefore, map (D.16) induces a quasi-isomorphism of cochain complexes

s−2 F0Ω•
k
VA → GrG Conv⊕(Ger∨,EndVA) ,

where the source is considered with the zero differential. Thus, by Lemma A.3

from [11], map (D.16) is a quasi-isomorphism of cochain complexes.

Let n ≥ 2 and

X ∈
(
EndVA(n)⊗ Λ−2 Ger(n)

)Sn ⊂ Conv⊕(Ger∨,EndVA) (D.27)

be a cocycle. Since (D.16) is a quasi-isomorphism of cochain complexes, there

exists a cocycle

X̃ ∈ s−2 F0Ω•
k
VA (D.28)

such that X is cohomologous to VH(X̃) .

Let us observe that de Rham differential D (D.12) satisfies the property

D
(
F0Ω•

k
VA
)
⊂ F1Ω•

k
VA .

Hence, since VH is injective, we conclude that

X̃ ∈ s−2 F1Ω•
k
VA . (D.29)

It is obvious that every cocycle in F1Ω•
k
VA is exact in F0Ω•

k
VA. Therefore X̃ is

exact and so is cocycle (D.27).

Combining this statement with property (D.8) we easily deduce Theorem D.1.
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D.1 The standard Gerstenhaber structure on VA is

“rigid”

The first consequence of Theorem D.1 is the following corollary:

Corollary D.1. Let VA be, as above, the algebra of polyvector fields on a graded

affine space and Q be a Ger∞-structure on VA whose binary operations are the

Schouten bracket and the usual multiplication. Then the identity map id : VA → VA

can be extended to a Ger∞ morphism

Ucorr : VA  V Q
A (D.30)

from VA with the standard Gerstenhaber structure to VA with the Ger∞-structure

Q .

Proof. To prove this statement, we consider the graded space

Hom(Ger∨(VA), VA) (D.31)

with two different algebraic structures. First, (D.31) is identified with the convolu-

tion Lie algebra4

Conv(Ger∨,EndVA) (D.32)

with the Lie bracket [ , ] defined in terms of the binary (degree zero) operation •
from [11, Section 4, Eq. (4.2)].

To introduce the second algebraic structure on (D.31), we recall that a Ger∞-

structure on VA is precisely a degree 1 element

Q = Q2 +
∑
n≥3

Qn Qn ∈ HomSn(Ger∨(n)⊗ V ⊗nA , VA) (D.33)

in (D.32) satisfying the Maurer-Cartan equation

[Q,Q] = 0 (D.34)

4In our case, Lie algebra (D.32) carries the zero differential.
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and the above condition on the binary operations is equivalent to the requirement

Q2 = α , (D.35)

where α is Maurer-Cartan element (D.3) of (D.32).

Given such a Ger∞-structureQ on VA, we get the convolution Λ−1 Lie∞-algebra

Hom(Ger∨(VA), V Q
A ) (D.36)

corresponding to the pair (VA, V
Q
A ), where the first entry VA is considered with the

standard Gerstenhaber structure and the second entry is considered with the above

Ger∞-structure Q.

As a graded vector space, Λ−1 Lie∞-algebra (D.36) coincides with (D.31). How-

ever, it carries a non-zero differential dα given by the formula

dα(P ) = −(−1)|P |P • α , (D.37)

and the corresponding (degree 1) brackets

{ , , . . . , }k : Sk
(

Hom(Ger∨(VA), V Q
A )
)
→ Hom(Ger∨(VA), V Q

A )

are defined by general formula (C.28) in terms of the Ger∨-coalgebra structure on

Ger∨(VA) and the Ger∞-structure Q on VA.

Let us recall [9], [15] that Ger∞-morphisms from VA to V Q
A are in bijection with

Maurer-Cartan elements5

β =
∑
n≥1

βn , βn ∈ HomSn(Ger∨(n)⊗ V ⊗nA , VA) (D.38)

of Λ−1 Lie∞-algebra (D.36) such that β1 corresponds to the linear term of the cor-

responding Ger∞-morphism.

Thus our goal is to prove that, for every Maurer-Cartan element Q (D.33) of Lie

algebra (D.32) satisfying condition (D.35), there exists a Maurer-Cartan element β

(see (D.38)) of Λ−1 Lie∞-algebra (D.36) such that

β1 = id : VA → VA . (D.39)
5Recall that Maurer-Cartan elements of a Λ−1 Lie∞-algebra have degree 0.
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Condition (D.35) implies that the element

β(1) := id ∈ Hom(Ger∨(VA), V Q
A )

satisfies the equation (in the Λ−1 Lie∞-algebra Hom(Ger∨(VA), V Q
A ))(

dα(β(1)) +
∑
k≥2

1

k!
{β(1), . . . , β(1)}k

)
(X) = 0 (D.40)

for every X ∈ (Ger∨(m)⊗ V ⊗mA )Sm with m ≤ 2 .

Let us assume that we constructed (by induction) a degree zero element

β(n−1) = id +β2 +β3 + · · ·+βn−1 , βj ∈ HomSj(Ger∨(j)⊗V ⊗ jA , VA) (D.41)

such that (
dα(β(n−1)) +

∑
k≥2

1

k!
{β(n−1), . . . , β(n−1)}k

)
(X) = 0 (D.42)

for every X ∈ (Ger∨(m)⊗ V ⊗mA )Sm with m ≤ n .

We will try to find an element

βn ∈ HomSn(Ger∨(n)⊗ V ⊗nA , VA) (D.43)

such that the sum

β(n) := id +β2 + β3 + · · ·+ βn−1 + βn (D.44)

satisfies the equation(
dα(β(n)) +

∑
k≥2

1

k!
{β(n), . . . , β(n)}k

)
(X) = 0 (D.45)

for every X ∈ (Ger∨(m)⊗ V ⊗mA )Sm with m ≤ n+ 1 .

Since βn ∈ HomSn(Ger∨(n)⊗ V ⊗nA , VA) and (D.42) is satisfied for every X ∈
(Ger∨(m)⊗ V ⊗mA )Sm with m ≤ n, equation (D.45) is also satisfied for every X ∈
(Ger∨(m)⊗ V ⊗mA )Sm with m ≤ n.

For X ∈ (Ger∨(n+ 1)⊗ V ⊗ (n+1)
A )Sn+1 , equation (D.45) can be rewritten as

− βn • α(X) + α • βn(X) = −
∑
k≥2

1

k!
{β(n−1), . . . , β(n−1)}k(X) . (D.46)



98

Let us denote by γ the element in HomSn+1(Ger∨(n+1)⊗V ⊗ (n+1)
A , VA) defined

as

γ :=
∑
k≥2

1

k!
{β(n−1), . . . , β(n−1)}k

∣∣∣
Ger∨(n+1)⊗V ⊗ (n+1)

A

(D.47)

Evaluating the Bianchi type identity [20, Lemma 4.5]∑
k≥2

1

k!
dα{β(n−1), . . . , β(n−1)}k +

∑
k≥1

1

k!
{β(n−1), . . . , β(n−1), dαβ

(n−1)}k+1

+
∑
k≥2
t≥1

1

k!t!
{β(n−1), . . . , β(n−1), {β(n−1), . . . , β(n−1)}k}t+1 = 0 (D.48)

on an arbitrary element

Y ∈ (Ger∨(n+ 2)⊗ V ⊗ (n+2)
A )Sn+2

and using the fact that

β(n−1)(X) = 0 , ∀ X ∈ (Ger∨(m)⊗ V ⊗mA )Sm with m ≥ n

we deduce that element γ (D.47) is a cocycle in cochain complex (D.4) with differ-

ential (D.6). Thus Theorem D.1 implies that equation (D.46) can always be solved

for βn, which concludes the proof of Corollary D.1.

D.2 The Gerstenhaber algebra VA is intrinsically for-

mal

Let (C•, d) be an arbitrary cochain complex whose cohomology is isomorphic

to VA
H•(C•) ∼= VA . (D.49)

Let us consider VA as the cochain complex with the zero differential and choose6

a quasi-isomorphism of cochain complexes

I : VA → C• . (D.50)
6Such a quasi-isomorphism exists since we are dealing with cochain complexes of vector spaces

over a field.
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Let us assume that C• carries a Ger∞-structure such that the map I induces an

isomorphism of Gerstenhaber algebras VA ∼= H•(C•) .

Then Theorem D.1 gives us the following remarkable corollary:

Corollary D.2. There exists a Ger∞-morphism

U : VA  C• (D.51)

whose linear term coincides with I (D.50). Moreover, any two such Ger∞-morphisms

U, Ũ : VA  C• (D.52)

are homotopy equivalent.

Remark D.2. The above statement is a slight refinement of one proved in [21,

Section 5]. Following V. Hinich, we say that the Gerstenhaber algebra VA is intrin-

sically formal.

Proof of Corollary D.2. By the Homotopy Transfer Theorem [9, Section 5], [27,

Section 10.3], there exists a Ger∞-structureQ on VA and a Ger∞-quasi-isomorphism

U ′ : V Q
A  C• , (D.53)

such that

• the binary operations of the Ger∞-structureQ on VA are the Schouten bracket

and the usual multiplication of polyvector fields,

• the linear term of U ′ coincides with I .

Corollary D.1 implies that there exists a Ger∞-morphism

Ucorr : VA  V Q
A , (D.54)

whose linear term is the identity map id : VA → VA .



100

Hence the composition

U = U ′ ◦ Ucorr : VA  C• (D.55)

is a desired Ger∞-morphism.

To prove the second claim, we need the Λ−1Lie∞-algebra

Hom(Ger∨(VA), C•) (D.56)

corresponding to the Gerstenhaber algebra VA and the Ger∞-algebra C• . The dif-

ferential D on (D.56) is given by the formula

D(Ψ) := d ◦Ψ− (−1)|Ψ|Ψ ◦Q∧,{ , } , Ψ ∈ Hom(Ger∨(VA), C•) , (D.57)

where d is the differential onC• andQ∧,{ , } is the differential on the Ger∨-coalgebra

Ger∨(VA) corresponding to the standard Gerstenhaber structure on VA.

The multi-brackets { , , . . . , }m are defined by the general formula (see eq.

(C.28)) in terms of the Ger∨-coalgebra structure on Ger∨(VA) and the Ger∞-structure

on C•.

Let us recall (see Appendix C.2 for more details) that Ger∞-morphisms from VA

to C• are in bijection with Maurer-Cartan elements of Λ−1 Lie∞-algebra (D.56) and

Ger∞-morphisms (D.52) are homotopy equivalent if and only if the corresponding

Maurer-Cartan elements P and P̃ in (D.56) are isomorphic 0-cells in the Deligne-

Getzler-Hinich∞-groupoid [20] of (D.56).

So our goal is to prove that any two Maurer-Cartan elements P and P̃ in (D.56)

satisfying

P
∣∣∣
VA

= P̃
∣∣∣
VA

= I : VA → C• (D.58)

are isomorphic.

Condition (D.58) implies that

P̃ − P ∈ F2 Hom(Ger∨(VA), C•) ,

whereF•Hom(Ger∨(VA), C•) is the arity filtration (C.30) on Hom(Ger∨(VA), C•) .



101

Let us assume that we constructed a sequence of Maurer-Cartan elements

P = P2, P3, P4, . . . , Pn+1 (D.59)

such that for every 2 ≤ m ≤ n+ 1

P̃ − Pm ∈ Fm Hom(Ger∨(VA), C•) (D.60)

and for every 2 ≤ m ≤ n there exists 1-cell

P ′m(t) + dt ξm−1 ∈ Hom(Ger∨(VA), C•) ⊗̂Ω•(∆1)

which connects Pm to Pm+1 and such that

ξm−1 ∈ Fm−1 Hom(Ger∨(VA), C•) , (D.61)

and

P ′m(t)− Pm ∈ Fm Hom(Ger∨(VA), C•) ⊗̂ k[t] . (D.62)

Let us now prove that one can construct a 1-cell

P ′n+1(t) + dt ξn ∈ Hom(Ger∨(VA), C•) ⊗̂Ω•(∆1) (D.63)

such that

P ′n+1(t)
∣∣∣
t=0

= Pn+1 ,

ξn ∈ Fn Hom(Ger∨(VA), C•) , (D.64)

P ′n+1(t)− Pn+1 ∈ Fn+1 Hom(Ger∨(VA), C•) ⊗̂ k[t] , (D.65)

and the Maurer-Cartan element

Pn+2 := P ′n+1(t)
∣∣∣
t=1

(D.66)

satisfies the condition

P̃ − Pn+2 ∈ Fn+2 Hom(Ger∨(VA), C•) . (D.67)

Let us denote the difference P̃−Pn+1 byK. Since P̃−Pn+1 ∈ Fn+1 Hom(Ger∨(VA), C•),

K =
∑

m≥n+1

Km , Km ∈ HomSm(Ger∨(m)⊗ V ⊗mA , C•) . (D.68)
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Subtracting the left hand side of the Maurer-Cartan equation

D(Pn+1) +
∑
m≥2

1

m!
{Pn+1, Pn+1, . . . , Pn+1}m = 0 (D.69)

from the left hand side of the Maurer-Cartan equation

D(P̃ ) +
∑
m≥2

1

m!
{P̃ , P̃ , . . . , P̃}m = 0 (D.70)

we see that element (D.68) satisfies the equation

D(K) +
∑
m≥1

1

m!
{Pn+1, . . . , Pn+1, K}m+1 +

∑
m≥2

1

m!
{K,K, . . . ,K}Pn+1

m = 0 ,

(D.71)

where the multi-bracket {K,K, . . . ,K}Pn+1
m is defined by the formula

{X1, X2, . . . , Xm}Pn+1
m :=

∑
q≥0

1

q!
{Pn+1, . . . , Pn+1, X1, X2, . . . , Xm}q+m (D.72)

Evaluating (D.71) on Ger∨(n+ 1)⊗ V ⊗ (n+1)
A and using the fact that

K ∈ Fn+1 Hom(Ger∨(VA), C•) , (D.73)

we conclude that

d ◦Kn+1 = 0 , (D.74)

where d is the differential on C•.

Hence there exist elements

KVA
n+1 ∈ HomSn+1(Ger∨(n+ 1)⊗ V ⊗ (n+1)

A , VA)

and

K ′n+1 ∈ HomSn+1(Ger∨(n+ 1)⊗ V ⊗ (n+1)
A , C•)

such that

Kn+1 = I ◦KVA
n+1 + d ◦K ′n+1 . (D.75)

Next, evaluating (D.71) on Y ∈ Ger∨(n + 2) ⊗ V
⊗ (n+2)
A and using inclusion

(D.73) again, we get the following identity

d ◦Kn+2(Y )−Kn+1 ◦Q∧,{ , }(Y ) + {Pn+1, Kn+1}2(Y ) = 0 . (D.76)
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Unfolding {Pn+1, Kn+1}2(Y ) we get

{Pn+1, Kn+1}2(Y ) =
n+2∑
i=1

QC•

(
(idGer∨(2)⊗Kn+1 ⊗ I) ◦

(
∆ti ⊗ id⊗ (n+2)

)
(Y )
)
,

(D.77)

where QC• is the Ger∞-structure on C•, ti is the (n+ 2)-labeled planar tree shown

on figure (D.1), and ∆ti is the corresponding component of the comultiplication

∆ti : Ger∨(n+ 2)→ Ger∨(2)⊗Ger∨(n+ 1) . (D.78)

1 2 . . . i− 1 i+ 1 . . . n+ 2

i

Figure D.1: The (n+ 2)-labeled planar tree ti

Now using (D.75) and (D.77), we rewrite (D.76) as follows

d ◦Kn+2(Y )− I ◦ (KVA
n+1 • α)(Y )

+
n+2∑
i=1

QC•

(
(idGer∨(2)⊗(d ◦K ′n+1)⊗ I) ◦

(
∆ti ⊗ id⊗ (n+2)

)
(Y )
)

+
n+2∑
i=1

QC•

(
(idGer∨(2)⊗(I ◦KVA

n+1)⊗ I) ◦
(
∆ti ⊗ id⊗ (n+2)

)
(Y )
)

= 0 , (D.79)

where α is defined in (D.3).

Since the last two sums in (D.79) involve only binary Ger∞-operations on

C• and these binary operations induce the usual multiplication and the Schouten

bracket on VA, we conclude that each term in the first sum in (D.79) is d-exact and

the second sum in (D.79) is cohomologous to

I ◦ (α •KVA
n+1)(Y )
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Therefore, identity (D.79) implies that for every Y ∈ Ger∨(n + 2) ⊗ V ⊗ (n+2)
A

the expression

I ◦ (α •KVA
n+1 −K

VA
n+1 • α)(Y ) (D.80)

is d-exact. Thus

α •KVA
n+1 −K

VA
n+1 • α = 0 (D.81)

or, in other words, the element KVA
n+1 is a cocycle in complex (D.4) with differential

(D.6).

Hence, by Theorem D.1, there exists a degree −1 element

K̃VA
n ∈ HomSn(Ger∨(n)⊗ V ⊗ (n)

A , VA) (D.82)

such that

KVA
n+1 = [α, K̃VA

n ] . (D.83)

Let us now consider the degree −1 element

ξn = I ◦ K̃VA
n +K ′′n+1 ∈ Fn Hom(Ger∨(VA), C•) , (D.84)

where K̃VA
n is element (D.82) entering equation (D.83) and K ′′n+1 is an element in

HomSn+1

(
Ger∨(n+ 1)⊗ V ⊗ (n+1)

A , C•
)

which will be determined later.

Using ξn, we define P ′n+1(t) ∈ Hom(Ger∨(VA), C•) ⊗̂ k[t] as the limiting ele-

ment of the recursive procedure

(P ′)(0) := Pn+1 ,

(P ′)(k+1)(t) := Pn+1+

∫ t

0

dt1

(
D(ξn)+

∑
m≥1

1

m!
{(P ′)(k)(t1), . . . , (P ′)(k)(t1), ξn}m+1

)
.

(D.85)

Since

d
(
I ◦ K̃VA

n

)
= 0 (D.86)

the element ξn satisfies the condition

D(ξn) ∈ Fn+1 Hom(Ger∨(VA), C•) . (D.87)
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Hence, by Lemma C.1, the sum

P ′n+1(t) + dtξn ∈ Hom(Ger∨(VA), C•) ⊗̂Ω•(∆1) (D.88)

is a 1-cell in the∞-groupoid corresponding to Hom(Ger∨(VA), C•) satisfying (D.65)

and such that the Maurer-Cartan element Pn+2 (D.66) satisfies the condition

Pn+2 − Pn+1 −D(ξn)− {Pn+1, ξn}2 ∈ Fn+2 Hom(Ger∨(VA), C•) . (D.89)

Let us now show that, by choosing the element K ′′n+1 in (D.84) appropriately,

we can get desired inclusion (D.67).

For this purpose we unfold {Pn+1, ξn}2(Y ) for an arbitrary Y ∈ Ger∨(n+ 1)⊗
V
⊗ (n+1)
A and get

{Pn+1, ξn}2(Y ) =
n+1∑
i=1

QC•

(
(idGer∨(2)⊗(I ◦ K̃VA

n )⊗ I) ◦
(
∆t′i ⊗ id⊗ (n+1)

)
(Y )
)
,

(D.90)

where QC• is the Ger∞-structure on C•, t′i is the (n+ 1)-labeled planar tree shown

on figure (D.91), and ∆t′i is the corresponding component of the comultiplication

∆t′i : Ger∨(n+ 1)→ Ger∨(2)⊗Ger∨(n) . (D.91)

1 2 . . . i− 1 i+ 1 . . . n+ 1

i

Figure D.2: The (n+ 1)-labeled planar tree t′i

Since the right hand side of (D.90) involves only binary Ger∞-operations on

C• and these binary operations induce the usual multiplication and the Schouten

bracket on VA, we conclude that {Pn+1, ξn}2(Y ) is cohomologous (in C•) to

I ◦ (α • K̃VA
n )(Y ) ,



106

where α is defined in (D.3).

In other words, there exists an element

φ ∈ HomSn+1

(
Ger∨(n+ 1)⊗ V ⊗ (n+1)

A , C•
)

(D.92)

such that

{Pn+1, ξn}2(Y ) = I ◦ (α • K̃VA
n )(Y ) + d ◦ φ(Y ). (D.93)

Hence the expression
(
D(ξn) + {Pn+1, ξn}2

)
(Y ) can be rewritten as(

D(ξn) + {Pn+1, ξn}2

)
(Y ) = d ◦K ′′n+1(Y ) + d ◦φ(Y ) + I ◦ [α, K̃VA

n ](Y ) . (D.94)

Thus if

K ′′n+1 = K ′n+1 − φ (D.95)

then equations (D.75), (D.83), and inclusion (D.89) imply that (D.67) holds, as

desired.

Thus we showed that one can construct an infinite sequence of Maurer-Cartan

elements

P = P2, P3, P4, . . . (D.96)

and an infinite sequence of 1-cells (m ≥ 2)

P ′m(t) + dt ξm−1 ∈ Hom(Ger∨(VA), C•) ⊗̂Ω•(∆1) (D.97)

such that for every m ≥ 2

P̃ − Pm ∈ Fm Hom(Ger∨(VA), C•) , (D.98)

the 1-cell P ′m(t) + dt ξm−1 connects Pm to Pm+1

ξm−1 ∈ Fm−1 Hom(Ger∨(VA), C•) , (D.99)

and

P ′m(t)− Pm ∈ Fm Hom(Ger∨(VA), C•) ⊗̂ k[t] . (D.100)

Since the Λ−1Lie∞-algebra Hom(Ger∨(VA), C•) is complete with respect to

“arity” filtration (C.30), inclusions (D.99) and (D.100) imply that we can form
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the infinite composition7 of all 1-cells (D.97) and get a 1-cell which connects the

Maurer-Cartan element P = P2 to the Maurer-Cartan element P̃ . Thus, Corollary

D.2 is proved.

7Note that the composition of 1-cells in an infinity groupoid is not unique but this does not create
a problem.
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APPENDIX E

ON DERIVATIONS OF

HOMOTOPY DIAGRAMS

Let C be a coaugmented, reduced cooperad in the category of graded vector

spaces and C◦ be the cokernel of the coaugmentation.

Following Chapter 3, we will denote by Cyl(C) the 2-colored dg operad whose

algebras are pairs (V,W ) with the data

1. a Cobar(C)-algebra structure on V ,

2. a Cobar(C)-algebra structure on W , and

3. an∞-morphism F from V to W , i.e. a homomorphism of corresponding dg

C-coalgebras C(V )→ C(W ).

In fact, if we forget about the differential, then Cyl(C) is a free operad on a

certain 2-colored collectionM(C) naturally associated to C.

Following the conventions of Chapters 4 and 7, we denote by

Der′
(

Cyl(C)
)

(E.1)

the dg Lie algebra of derivations D of Cyl(C) subject to the condition

p ◦D = 0 , (E.2)
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where p is the canonical projection from Cyl(C) ontoM(C).

We have the following generalization of (7.3):

Proposition E.1. The dg Lie algebra Der′
(

Cyl(Λ2 coCom)
)

does not have non-

zero elements in degrees ≤ 0, i.e.

Der′
(

Cyl(Λ2 coCom)
)≤0

= 0 .

Proof. Let us denote by α and β, respectively, the first and the second color for the

collectionM(Λ2 coCom) and the operad Cyl(Λ2 coCom).

Recall from [33] that Cyl(Λ2 coCom) is generated by the collection M =

M(Λ2 coCom) with

M(n, 0;α) = sΛ2 coCom◦(n) = s3−2n k ,

M(0, n; β) = sΛ2 coCom◦(n) = s3−2n k ,

M(n, 0; β) = Λ2 coCom(n) = s2−2n k ,

and with all the remaining spaces being zero. LetD be a derivation of Cyl(Λ2 coCom)

of degree ≤ 0.

Since

Cyl
(
Λ2 coCom

)
(n, 0, α) = Λ Lie∞(n) (E.3)

Cyl
(
Λ2 coCom

)
(0, n, β) = Λ Lie∞(n) (E.4)

observation (7.3) implies that

D
∣∣∣
M(n,0;α)

= D
∣∣∣
M(0,n;β)

= 0 . (E.5)

Hence, it suffices to show that

D
∣∣∣
M(n,0;β)

= 0 . (E.6)

Let us denote by π0(Treek(n)) the set of isomorphism classes of labeled 2-

colored planar trees corresponding to corolla (n, 0; β) with k internal vertices. Fig-

ure E.1 show two examples of such trees with n = 5 leaves. The left tree has k = 2

internal vertices and the right tree has k = 3 internal vertices.
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3 1 4

52

4 3 1 5 2

Figure E.1: Solid edges carry the color α and dashed edges carry the color β;
internal vertices are denoted by small white circles; leaves and the root vertex are
denoted by small black circles

For a generatorX ∈M(n, 0; β) = s2−2n k, the elementD(X) ∈ Cyl(Λ2 coCom)

takes the form

D(X) =
∑
k≥2

∑
z∈π0(Treek(n))

(tz;X1, ..., Xk) (E.7)

where tz is a representative of an isomorphism class z ∈ π0(Treek(n)) and Xi are

the corresponding elements ofM.

For every term in sum (E.7), we have k1 Xi’s in sΛ2 coCom◦ (call them Xia),

and k2 Xi’s in Λ2 coCom (call them Xjb).

We obviously have that k = k1 + k2 and

|D| =
k1∑
a=1

|Xia|+
k2∑
b=1

|Xjb| − |X| (E.8)

or equivalently

|D| = 2(n− 1) +

k1∑
a=1

(3− 2nia) +

k2∑
b=1

(2− 2njb) , (E.9)

where nia (resp. njb) is the number of incoming edges of the vertex corresponding

to Xia (resp. Xjb) .

On the other hand, simple combinatorics of trees shows that

n− 1 =

k1∑
a=1

(nia − 1) +

k2∑
b=1

(njb − 1) (E.10)

and hence

|D| = k1 . (E.11)
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Since |D| ≤ 0 the latter is possible only if k1 = 0 = |D|, i.e. every tree in

the sum D(X) is assembled exclusively from mixed colored corollas. That would

force every tree t to have only one internal vertex which contradicts to the fact that

the summation in (E.7) starts at k = 2 .

Therefore (E.6) holds, and the proposition follows.
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