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Abstract

We study the number of integer points (”lattice points”) in rational polytopes. We use an
associated generating function in several variables, whose coefficients are the lattice point
enumerators of the dilates of a polytope. We focus on applications of this theory to several
problems in combinatorial number theory.

In chapter 2, we present a new method of deriving the lattice point count operators for
rational polytopes. In particular, we show how various generalizations of Dedekind sums
appear naturally in the lattice point count formulas, and give geometric interpretations of
reciprocity laws for these sums.

In chapter 3, we use our methods to obtain new results on the Frobenius problem: namely,
given positive integers a1, . . . , an with gcd(a1, . . . , an) = 1, find the largest integer that
cannot be represented as a linear combination of a1, . . . , an with nonegative coefficients.
We transfer this problem into our geometric setting and deduce and extend from this point
of view some classical results on this problem.

In our formulas, the following generalization of the Dedekind sum appears naturally: Let
c1, . . . , cn ∈ Z be relatively prime to c ∈ Z, and let t ∈ Z. Define the Fourier-Dedekind sum
as

σt (c1, . . . , cn; c) =
1
c

∑
λc=1 6=λ

λt

(λc1 − 1) · · · (λcn − 1)
.

We discuss these sums in depth; in particular, we prove two reciprocity laws for them: a
rederivation of the reciprocity law for Zagier’s higher-dimensional Dedekind sums, and a
new reciprocity law that generalizes a theorem of Gessel.

In chapter 4, we generalize Ehrhart’s idea of counting lattice points in dilated rational
polytopes: instead of just a single dilation factor, we allow different dilation factors for each
of the facets of the polytope. We prove that the lattice point counts in the interior and
closure of such a vector-dilated polytope are quasipolynomials satisfying an Ehrhart-type
reciprocity law. Our theorem generalizes the classical reciprocity law for rational polytopes.
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Chapter 1

Introduction

Ubi materia, ibi geometria. (Where there is matter, there is geometry.)
Johannes Kepler

1.1 Pick’s Theorem

We study the number of integer points in polytopes, contained in some real space Rn. Since
the integer points Zn form a lattice in Rn, we frequently call them lattice points. The
first interesting case is dimension n = 2. Consider a simple, closed polygon whose vertices
have integer coordinates. Denote the number of integer points inside the polygon by I,
and the number of integer points on the polygon by B. In 1899, Pick ([Pi]) discovered the
astonishing fact that the area A inside the polygon can be computed simply by counting
lattice points:

Theorem 1.1 (Pick)

A = I +
1
2
B − 1 .

We give an elementary proof of Pick’s theorem; the main ideas are from [Va].

Proof. We start by proving that Pick’s identity has an additive character: suppose our
polygon has more than 3 vertices. Then we can write the 2-dimensional polytope P bounded
by our polygon as the union of two 2-dimensional polytopes P1 and P2, such that the
interiors of P1 and P2 do not meet. Both have fewer vertices than P. We claim that the
validity of Pick’s identity for P is equivalent to the validity of Pick’s identity for P1 and P2.
Denote the area, number of interior lattice points, and number of boundary lattice points
of Pk by Ak, Ik, and Bk, respectively, for k = 1, 2. Clearly,

A = A1 +A2 .

1
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Figure 1.1: Embedding of triangles
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Furthermore, if we denote the number of lattice points on the edges common to P1 and P2

by L, then
I = I1 + I2 + L− 2 and B = B1 +B2 − 2L+ 2 .

Hence

I +
1
2
B − 1 = I1 + I2 + L− 2 +

1
2
B1 +

1
2
B2 − L+ 1− 1

= I1 +
1
2
B1 − 1 + I2 +

1
2
B2 − 1 .

This proves the claim. Therefore, we can triangulate P, and it suffices to prove Pick’s
theorem for triangles. Moreover, by further triangulations, we may assume that there are
no lattice points on the boundary of the triangle other than the vertices. To prove Pick’s
theorem for such triangles, embed them into rectangles, as shown in figure 1.1.

Again by additivity, we conclude that it suffices to prove Pick’s theorem for rectangles and
rectangular triangles, which have no lattice points on the hypothenuse, and whose other two
sides are parallel to a coordinate axis. If these two sides have lengths a and b, respectively,
we have

A =
1
2
ab and B = a+ b+ 1 .

Furthermore, by thinking of the triangle as ’half’ of a rectangle, we obtain

I =
1
2

(a− 1)(b− 1) .

(Here it is crucial that there are no points on the hypothenuse.) Pick’s identity is now a
straightforward consequence for these triangles. Finally, for a rectangle whose sides have
length a and b, it is easy to see that

A = ab, I = (a− 1)(b− 1), B = 2a+ 2b,

and Pick’s theorem follows for rectangles, which finishes our proof. 2

1.2 Ehrhart Theory

In which ways does Pick’s theorem extend to higher dimensions, and to polytopes whose
vertices are not on the lattice? To study rigorously the lattice point count in polytopes,
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Ehrhart ([Eh]) initiated in the 1960’s (when he was a high school teacher) the very useful
notion of lattice point enumeration in dilated polytopes. Let’s start with some terminology.

A convex polytope is the convex hull of finitely many points in some real vector space. A
polytope is the union of finitely many overlapping convex polytopes. Note that this implies
that our polytopes are always compact. Equivalently, we can define a polytope to be the
union of overlapping sets which are determined by a bounded intersection of halfspaces.

Next, we define the notion of a face of a polytope. We will do this for convex polytopes; the
definitions extend very naturally to general polytopes. Given a convex polytope P ∈ Rn, we
say that the linear inequality a·x ≤ b is valid for P if it holds for all x ∈ P; here cdot denotes
the usual scalar product in Rn. A face of P is a set of the form P ∩ {x ∈ Rn : a · x = b},
where a · x ≤ b is a valid inequality for P. Note that both P itself and the empty set are
faces of P. The (n−1)-dimensional faces are called facets, the 1-dimensional faces vertices
of P. Ehrhart restricted himself, for reasons that will become obvious soon, to rational
polytopes, that is, polytopes whose vertices have rational coordinates. For positive integers
t, we define tP = {tx : x ∈ P}. This allows to make the following

Definition 1.1 Let P ⊂ Rn be a rational polytope, and t a positive integer. We denote the
number of lattice points in the dilates of P and its interior by

L(P, t) = # (tP ∩ Zn) and L(P◦, t) = # (tP◦ ∩ Zn) ,

respectively.

Pick’s Theorem, written in these terms, reads now

L(P◦, 1) = A− 1
2
B + 1 ,

which holds for any two-dimensional lattice polytope, that is, whose vertices are on the
integer lattice. It is not hard to modify our proof of Pick’s theorem to arbitrary dilates of
such a polytope:

L(P◦, t) = At2 − 1
2
Bt+ 1 .

It is this kind of formula that we aim to achieve for more general polytopes. Two funda-
mental results will prove very helpful in this process. The first one is due to Ehrhart himself
([Eh]), and shows in what ways we can expect Pick’s theorem to generalize. Before stating
Ehrhart’s theorem, we need the

Definition 1.2 A quasipolynomial is an expression of the form

cn(t) tn + · · ·+ c1(t) t+ c0(t) ,

where c0, . . . , cn are periodic functions in the integer variable t.
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Theorem 1.2 (Ehrhart) Let P be a rational polytope. Then L(P, t) and L(P◦, t) are
quasipolynomials in the integer variable t. The leading term of L(P, t) is the volume of
P. Moreover, if P is a lattice polytope then L(P, t) is a polynomial in t. In this case, the
second leading term of L(P, t) is the (relative) volume of the boundary of P, normalized
with respect to the sublattice on each facet of P, and the constant term of L(P, t) is the
Euler characteristic of P. 2

The Euler characteristic of an n-dimensional polytope P can be defined as

χ(P) =
n∑
k=0

(−1)kfk ,

where fk denotes the number of k-dimensional faces of P. We note that most of the
polytopes we consider here will be convex, and hence have Euler characteristic 1; this is the
content of the famous Euler-Poincaré formula ([Poi]).

The normalization for the contribution of a facet F to the second term of L(P, t) can be
visualized as follows: F lives on a hyperplane H. Now H ∩ Zn forms an abelian group of
rank n−1, that is, H∩Zn ' Zn−1, via a bijective affine transformation φ. The contribution
of F to the second term of L(P, t) is the volume (in Rn−1) of φ(F).

We will see the validity of Theorem 1.2 in all the polytopes we discuss here. Ehrhart also
conjectured the following fundamental theorem, which establishes an algebraic connection
between our two lattice point count operators. Its original proof is due to Macdonald
([Ma]). Recall that two subsets of Rn are homeomorphic if there exists a continuous
bijection mapping one into the other, whose inverse is also continuous.

Theorem 1.3 (Ehrhart-Macdonald reciprocity law) Suppose the rational polytope P
is homeomorphic to an n-manifold. Then

L(P◦,−t) = (−1)nL(P, t) .

2

In particular, this result holds for convex rational polytopes. We postpone a new proof,
which will at the same time generalize this reciprocity law, to chapter 4.

Since Ehrhart’s initiative, formulas for the coefficients of the lattice point count operators for
rational polytopes have long been sought. It is interesting to note that the first formulas for
such Ehrhart quasipolynomials came up as recently as 1993, in a paper by Pommersheim
([Pom]), who generalized a result of Mordell ([Mo]). Other recent work on lattice point
enumeration in polytopes can be found in [Ba], [BV], [CS], [DR], [Gu], [KK], [KP]. In this
thesis, we will present a new approach to this problem, which works in particular for a wide
class of rational polytopes. We emphasize new connections to generalizations of Dedekind
sums (which will be introduced in the next section), and applications of our formulas to the
linear diophantine problem of Frobenius (chapter 3).
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1.3 Dedekind Sums

According to Riemann’s will, it was his wish that Dedekind should get Riemann’s un-
published notes and manuscripts ([RG]). Among these was a discussion of the important
function

η(z) = e
πiz
12

∏
n≥1

(
1− e2πinz

)
,

which Dedekind took up and eventually published in Riemann’s collected works ([De]).
Through the study of the transformation properties of η under SL2(Z), he naturally arrived
at the following expression.

Definition 1.3 Let ((x))? be the sawtooth function defined by

((x))? =
{
x− [x]− 1

2 if x 6∈ Z
0 if x ∈ Z .

For two integers a and b, we define the Dedekind sum as

s(a, b) =
∑

k mod b

((
ka

b

))?((k
b

))?
.

This expression has since appeared in various contexts in Number Theory, Combinatorics,
and Topology. The classic introduction to the arithmetic properties of the Dedekind sum
is [RG]. The most important of these, already proved by Dedekind ([De]), is the famous
reciprocity law

Theorem 1.4 (Dedekind) If a and b are relatively prime then

s(a, b) + s(b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
.

2

This reciprocity law is easily seen to be equivalent to the transformation law of the η-
function ([De]). We note that, among other things, Theorem 1.4 allows us to compute
s(a, b) in polynomial time, similar in spirit to the Euclidean algorithm. This is due to the
periodicity of ((x))?: we can reduce a modulo b in s(a, b). The Dedekind sum s(a, b) has
various generalizations, of which we introduce two here. The first one is due to Rademacher
([Ra]), who generalized sums introduced by Meyer ([Me]) and Dieter ([Di]):

Definition 1.4 For a, b ∈ Z, x, y ∈ R, the Dedekind-Rademacher sum is defined by

s(a, b;x, y) =
∑

k mod b

((
(k + y)a

b
+ x

))?((k + y

b

))?
.
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This sum posseses again a reciprocity law:

Theorem 1.5 (Rademacher) If a and b are relatively prime and x and y are not both
integers, then

s(a, b;x, y) + s(b, a; y, x) = ((x))?((y))? +
1
2

(
a

b
B2(y) +

1
ab
B2(ay + bx) +

b

a
B2(x)

)
.

Here
B2(x) := (x− [x])2 − (x− [x]) +

1
6

is the periodized second Bernoulli polynomial. 2

If x and y are both integers, the Dedekind-Rademacher sum is simply the classical Dedekind
sum, whose reciprocity law we already stated.

The second generalization of the Dedekind sum we mention here is due to Zagier ([Za2]).
From topological considerations, he arrived naturally at expressions of the following kind:

Definition 1.5 Let a1, . . . , an be integers relatively prime to a0 ∈ N. Define the higher-
dimensional Dedekind sum as

s(a0; a1, . . . , an) =
(−1)n/2

a0

a0−1∑
k=1

cot
πika1

a0
· · · cot

πikan
a0

.

This sum vanishes if n is odd. It is not hard to see ([RG]) that this indeed generalizes the
classical Dedekind sum:

s(a, b) =
1
4b

∑
k mod b

cot
πika

b
cot

πik

b
= −1

4
s(b; a, 1) .

Again, there exists a reciprocity law for Zagier’s sums:

Theorem 1.6 (Zagier) If a0, . . . , an are pairwise relatively prime positive integers then
n∑
j=0

s(aj ; a0, . . . , âj , . . . , an) = φ(a0, . . . , an) .

Here φ is a rational function in a0, . . . , an, which can be expressed in terms of Hirzebruch
L-functions ([Za2]). 2

It should be mentioned that a version of the higher-dimensional Dedekind sums was already
introduced by Carlitz ([Ca]) via sawtooth functions.

In the process of obtaining formulas for the lattice point count in various classes of polytopes,
we will give geometric proofs of Dedekind’s and Zagier’s reciprocity laws, as well as a
reciprocity law for Dedekind-Rademacher sums due to Gessel ([Ge]).



Chapter 2

Lattice Points in Rational
Polytopes

The full beauty of the subject of generating functions emerges only from tuning in on both channels:
the discrete and the continuous.
Herb Wilf ([Wi])

In this chapter we introduce a new method of computing formulas for the lattice point
count in rational polytopes. We use generating functions whose coefficients are the lattice
point counts of different dilates of the polytope. We present two ways of extracting this
information from the generating function: partial fractions and the residue theorem. Both
are inspired by works on generalized Dedekind sums, the first one by Gessel ([Ge]), the
latter one by Zagier ([Za2]). In fact, the two ways are completely equivalent, since our
generating functions are rational. We will illustrate both methods below; in section 2.1 we
will use the residue theorem, in section 2.2 partial fractions.

2.1 The Mordell-tetrahedron in n Dimensions

We start with a tetrahedron which has integer vertices: let

P =

{
(x1, . . . , xn) ∈ Rn : xk ≥ 0,

n∑
k=1

xk
ak
≤ 1

}
,

where a1, . . . , an are positive integers. We present an elementary method for computing
the Ehrhart polynomials L(P, t) and L(P◦, t) using the residue theorem. We verify the
Ehrhart-Macdonald reciprocity law for these n-dimensional tetrahedra. To illustrate our
method, we compute the first nontrivial coefficient, cn−2, of the Ehrhart polynomial.

7
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2.1.1 Generating Functions and the Residue Theorem

Let us begin with L(P, t). We introduce the notation

A := a1 · · · an, Ak := a1 · · · âk · · · an,

where âk means we omit the factor ak. We can write

L(P, t) = #

{
(m1, . . . ,mn) ∈ Zn : mk ≥ 0,

n∑
k=1

mk

ak
≤ t

}

= #

{
(m1, . . . ,mn,m) ∈ Zn+1 : mk,m ≥ 0,

n∑
k=1

mkAk +m = tA

}
,

so that we have cleared the denominators, and introduced a ’slack’ variable m. Throughout
this chapter, it is important to keep in mind that t is a positive integer. One can interpret
L(P, t) as the Taylor coefficient of ztA for the function(

1 + zA1 + z2A1 + . . .
) (

1 + zA2 + z2A2 + . . .
)
· · ·

·
(
1 + zAn + z2An + . . .

) (
1 + z + z2 + . . .

)
=

1
1− zA1

1
1− zA2

· · · 1
1− zAn

1
1− z

.

Equivalently,

L(P, t) = Res
(

z−tA−1

(1− zA1) (1− zA2) · · · (1− zAn) (1− z)
, z = 0

)
.

It is convenient to change this function slightly; this residue is clearly equal to

Res
(

z−tA − 1
(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z

, z = 0
)

+ 1.

This trick allows us to reduce the number of poles, and hence simplifies the computation. If
this expression counts the number of lattice points in tP, then all we have to do is compute
the other residues of

f−t(z) :=
z−tA − 1

(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z

and use the residue theorem for the compact sphere C ∪ {∞}. In this notation,

L(P, t) = Res (f−t(z), z = 0) + 1 . (2.1)

Alternatively, one could have expanded f−t into partial fractions. We will illustrate this
equivalent method in section 2.2.

The only poles of f−t are at 0, 1 and the roots of unity in

Ω :=
{
z ∈ C \ {1} : z

A
akaj = 1, 1 ≤ k < j ≤ n

}
.

Note that Res(f−t, z =∞) = 0, so that the residue theorem gives us our first result:
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Theorem 2.1

L(P, t) = 1− Res (f−t(z), z = 1)−
∑
λ∈Ω

Res (f−t(z), z = λ)

2

The residue at z = 1 can be calculated easily:

Res (f−t(z), z = 1) = Res (ezf−t(ez), z = 0)

= Res
(

e−tAz − 1
(1− eA1z) (1− eA2z) · · · (1− eAnz) (1− ez)

, z = 0
)
.

This enables us to use the Laurent expansion

1
ez − 1

=
1
z

∑
k≥0

Bk
k!
zk ,

where Bk denotes the k’th Bernoulli number.

To facilitate the computation in higher dimensions, one can use mathematics software such
as Maple, Mathematica, or Derive. It is easy to see that Res(f−t(z), z = 1) is a polynomial
in t whose coefficients are rational expressions in a1, . . . , an. The first few are as follows:

For dimension n = 2:
−a1a2

2
t2 − t

2
(a1 + a2 + 1)

n = 3:

−a1a2a3

6
t3 − t2

4
(a1a2 + a1a3 + a2a3 + 1)− t

4

(
a1 + a2 + a3 +

1
a1

+
1
a2

+
1
a3

)
− t

12

(
a1a2

a3
+
a1a3

a2
+
a2a3

a1
+

1
a1a2a3

)
.

n = 4:

−a1a2a3a4

24
t4 − t3

12
(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4 + 1)

− t
2

8

(
a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4 +

1
a1

+
1
a2

+
1
a3

+
1
a4

)
− t

2

24

(
a1a2a3

a4
+
a1a2a4

a3
+
a1a3a4

a2
+
a2a3a4

a1
+

1
a1a2a3a4

)
− t

8

(
a1 + a2 + a3 + a4 +

1
a1a2

+
1

a1a3
+

1
a1a4

+
1

a2a3
+

1
a2a4

+
1

a3a4

)
− t

24

(
a1a2

a3
+
a1a2

a4
+
a1a3

a2
+
a1a3

a4
+
a1a4

a2
+
a1a4

a3
+
a2a3

a1
+
a2a3

a4

+
a2a4

a1
+
a2a4

a3
+
a3a4

a1
+
a3a4

a2
+

1
a2

1

+
1
a2

2

+
1
a2

3

+
1
a2

4

+
1

a2
1a2a3a4

+
1

a1a2
2a3a4

+
1

a1a2a2
3a4

+
1

a1a2a3a2
4

)
.
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The residues at the roots of unity in Ω are in general not as easy to compute. They give rise
to Dedekind sums and their higher dimensional analogues, as we will illustrate below. There
is, however, one feature we can read off from these residues immediately, the dependency
on the dilation parameter t: as promised in the introduction, we have

Corollary 2.2 L(P, t) is a polynomial in t.

With Corollary 2.4 below, this will also imply that L(P◦, t) is a polynomial.

Proof. Let λ ∈ Ω be a B’th root of unity, where B is the product of some of the ak. Now
express z−tA in terms of its power series about z = λ. The coefficients of this power series
involve various derivatives of z−tA, evaluated at z = λ. Here we can introduce a change
of variable: z = w

1
B = exp

(
1
B logw

)
, where a suitable branch of the logarithm is chosen

such that exp
(

1
B log(1)

)
= λ. The terms depending on t in the power series of z−tA consist

therefore of derivatives of the function z−tA/B, evaluated at z = 1. From this it is easy to
see that the coefficients of the power series of z−tA are polynomials in t. Finally, the fact
that L(P, t) is simply the sum of all of these residues gives the statement. 2

We remark that this is not the simplest way to prove that L(P, t) is a polynomial. In fact,
we could have proved this fact right after introducing our generating function, without the
use of residues. However, the proof given here ties in naturally with the residue methods
introduced earlier.

For the computation of L(P◦, t) (the number of lattice points in the interior of our tetra-
hedron tP), we write, similarly,

L(P◦, t) = #

{
(m1, . . . ,mn) ∈ Zn : mk > 0,

n∑
k=1

mk

ak
< t

}

= #

{
(m1, . . . ,mn,m) ∈ Zn+1 : mk,m > 0,

n∑
k=1

mkAk +m = tA

}
.

Now L(P◦, t) can be interpreted as the Taylor coefficient of ztA for the function(
zA1 + z2A1 + . . .

)
· · ·
(
zAn + z2An + . . .

) (
z + z2 + . . .

)
=

zA1

1− zA1

zA2

1− zA2
· · · zAn

1− zAn
z

1− z
,

or equivalently as

Res
(

zA1

1− zA1

zA2

1− zA2
· · · zAn

1− zAn
z

1− z
z−tA−1, z = 0

)
= Res

(
zA1

1− zA1

zA2

1− zA2
· · · zAn

1− zAn
z

1− z
z−tA − 1

z
, z = 0

)
= Res

(
−1
z2

1
zA1 − 1

1
zA2 − 1

· · · 1
zAn − 1

1
z − 1

z
(
ztA − 1

)
, z =∞

)
.
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Again we used the function

− zA1

1− zA1

zA2

1− zA2
· · · zAn

1− zAn
z

1− z
1
z

with residue 0 at z = 0 to cancel some of the poles. To be able to use the residue theorem,
this time we have to consider the function

− 1
zA1 − 1

1
zA2 − 1

· · · 1
zAn − 1

1
z − 1

ztA − 1
z

= (−1)nft(z) ,

so that
L(P◦, t) = (−1)n Res (ft(z), z =∞) . (2.2)

The finite poles of ft are at 0 (with residue -1), 1, and the roots of unity in Ω as before.
This gives us, by the residue theorem,

Theorem 2.3

L(P◦, t) = (−1)n
(

1− Res (ft(z), z = 1)−
∑
λ∈Ω

Res (ft(z), z = λ)

)
.

2

As an immediate consequence we get the first instance of the Ehrhart-Macdonald reciprocity
law:

Corollary 2.4
L(P◦,−t) = (−1)nL(P, t) .

Proof. Compare the statements of Theorems 2.1 and 2.3. 2

2.1.2 The Ehrhart Coefficients

With a small modification of ft(z), we can actually derive a formula for each coefficient of
the Ehrhart polynomial

L(P, t) = cnt
n + · · ·+ c0 .

Consider the function

gk(z) :=

(
z−tA − 1

)k
(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z

=

∑k
j=0

(
k
j

)
z−tA(k−j)(−1)j

(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z
.
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If we insert −
∑k

j=0

(
k
j

)
(−1)j = 0 in the numerator, this becomes

gk(z) =
k∑
j=0

(
k

j

)
(−1)j

z−t(k−j)A − 1
(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z

=
k−1∑
j=0

(
k

j

)
(−1)jf−t(k−j)(z) .

Recall that (2.1) gave us L(P, t) = Res (f−t(z), z = 0) + 1. Using this relation, we obtain

Res (gk(z), z = 0) =
k−1∑
j=0

(
k

j

)
(−1)j Res

(
f−t(k−j)(z), z = 0

)
=

k−1∑
j=0

(
k

j

)
(−1)j

(
L
(
P, (k − j)t

)
− 1
)

=
k−1∑
j=0

(
k

j

)
(−1)jL

(
P, (k − j)t

)
+ (−1)k .

We claim that this polynomial has no terms with exponent smaller than k:

Lemma 2.5 Suppose L(P, t) = cnt
n + · · ·+ c0. Then for 1 ≤ k ≤ n

Res (gk(z), z = 0) = k!
n∑

m=k

S(m, k) cm tm , (2.3)

where S(m, k) denotes the Stirling number of the second kind.

Proof. Suppose
k−1∑
j=0

(
k

j

)
(−1)jL

(
P, (k − j)t

)
=

n∑
m=0

bk,mt
m , (2.4)

so that for m > 0

bk,m =
k−1∑
j=0

(
k

j

)
(−1)jcm(k − j)m = cm

k∑
j=0

(
k

j

)
(−1)k−jjm .

The Stirling number of the second kind S(m, k) is the number of partitions of an m-set into
k subsets. We are interested in these numbers because ([St2])

S(m, k) =
1
k!

k∑
j=0

(
k

j

)
(−1)k−jjm,
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so that bk,m = cm k! S(m, k) for m > 0. Some of the elementary properties of S(m, k) are
([St2])

S(m, k) = 0 if k > m (2.5)
S(m, 1) = 1 (2.6)
S(m,m) = 1 (2.7)
S(m, k) = k S(n− 1, k) + S(n− 1, k − 1) .

By (2.5), we conclude that bk,m = 0 for 1 ≤ m < k. The constant term in (2.4) is

bk,0 =
k−1∑
j=0

(
k

j

)
(−1)jc0 = −c0(−1)k.

Since c0 = χ(P) = 1 for our tetrahedron (in fact, c0 = 1 for any convex lattice polytope
[Eh]), (2.3) follows. 2

The other poles of gk are at 1 and the roots of unity in

Ωk :=
{
z ∈ C \ {1} : z

A
aj1
···ajk+1 = 1, 1 ≤ j1 < j2 < · · · < jk+1 ≤ n

}
.

Note that as k gets larger, Ωk gets smaller. That is, we have fewer residues to consider.
This is consistent with the notion that the computational complexity increases with each
additional coefficient, that is, the computation of ck is more complicated than that of ck+1.
Using the residue theorem, we can rewrite (2.3) as

Theorem 2.6 Suppose L(P, t) = cnt
n + · · ·+ c0. Then for 1 ≤ k ≤ n

n∑
m=k

S(m, k) cm tm =
−1
k!

Res (gk(z), z = 1) +
∑
λ∈Ωk

Res (gk(z), z = λ)

 .

2

Remarks. 1. For k = 1, (2.6) yields a reformulation of Theorem 2.1.

2. The coefficients of L(P◦, t) are the same as those of L(P, t), up to the sign: By Corollary
2.4,

L(P◦, t) = cnt
n − cn−1t

n−1 + · · ·+ (−1)nc0 .

3. Res(gk(z), z = 1) can be computed as easily as before; the slightly more difficult task is
to get the residues at the roots of unity (see also remark 2 following Theorem 2.1). However,
with increasing k, we have to consider fewer of them, so that there is less to calculate. If
we want to compute the Ehrhart coefficient cm, we only have to consider the roots of unity
in Ωm. We can make this more precise: With (2.7), we obtain
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Corollary 2.7 For m > 0, cm is the coefficient of tm in

−1
m!

Res (gm(z), z = 1) +
∑
λ∈Ωm

Res (gm(z), z = λ)

 .

2

2.1.3 An Example

As an application, we will compute the first nontrivial Ehrhart coefficient cn−2 for the
n-dimensional tetrahedron P (n ≥ 3) under the additional assumption that a1, . . . , an are
pairwise relatively prime integers ≥ 2. This case was first explored by Pommersheim ([Pom])
in 1993.

Theorem 2.8 Under the above assumptions,

cn−2 =
1

(n− 2)!

(
Cn − s(A1, a1)− · · · − s(An, an)

)
,

where s(a, b) denotes the Dedekind sum, and

Cn :=
1
4

(n+A1,2 + · · ·+An−1,n) +
1
12

(
1
A

+
A1

a1
+ · · ·+ An

an

)
.

Here Aj,k denotes a1 · · · âj · · · âk · · · an.

Proof. We have to consider

gn−2(z) =

(
z−tA − 1

)n−2

(1− zA1) (1− zA2) · · · (1− zAn) (1− z) z
.

Because a1, . . . , an are pairwise relatively prime, gn−2 has simple poles at all the a1, . . . , an’th
roots of unity. Let λa1 = 1 6= λ. Then

Res (gn−2(z), z = λ) =
1

(1− λA1) (1− λ)λ
Res

( (
z−tA − 1

)n−2

(1− zA2) · · · (1− zAn)
, z = λ

)
.

Using the methods that allowed us to arrive at Corollary 2.2, we make a change of variables
z = w1/a1 = exp

(
1
a1

logw
)

, where we choose a suitable branch of the logarithm such that

exp
(

1
a1

log(1)
)

= λ. We thus obtain

Res (gn−2(z), z = λ) =
1

(1− λA1) (1− λ)λ
λ

a1
Res

( (
w−tB − 1

)n−2

(1− wB2) · · · (1− wBn)
, w = 1

)
,
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where B := a2 · · · an, Bk := a2 · · · âk · · · an. We claim that

Res

( (
z−tB − 1

)n−2

(1− zB2) · · · (1− zBn)
, z = 1

)
= −tn−2.

To prove this, first note that(
z−tB − 1

)n−2
= (−tB)n−2(z − 1)n−2 +O

(
(z − 1)n−1

)
.

Now for m ∈ N,

Res
(

1
1− zm

, z = 1
)

= lim
z→1

z − 1
1− zm

= − 1
m

.

Putting all of this together, we obtain

Res

( (
z−tB − 1

)n−2

(1− zB2) · · · (1− zBn)
, z = 1

)
=

(−tB)n−2

(−B2) · · · (−Bn)
= − t

n−2an−2
2 · · · an−2

n

an−2
2 · · · an−2

n

= −tn−2,

as desired. Therefore

Res (gn−2(z), z = λ) =
−tn−2

a1 (1− λA1) (1− λ)
.

Adding up all the a1’th roots of unity 6= 1, we get∑
λa1=1 6=λ

Res (gn−2(z), z = λ) =
−tn−2

a1

∑
λa1=1 6=λ

1
(1− λA1) (1− λ)

=
−tn−2

a1

a1−1∑
k=1

1
(1− ξkA1) (1− ξk)

,

where ξ is a primitive a1’th root of unity. This finite sum is practically a Dedekind sum:

1
a1

a1−1∑
k=1

1
(1− ξkA1) (1− ξk)

=
1

4a1

a1−1∑
k=1

(
1 +

1 + ξkA1

1− ξkA1

)(
1 +

1 + ξk

1− ξk

)

=
1

4a1
(a1 − 1)− i

4a1

a1−1∑
k=1

(
cot

πkA1

a1
+ cot

πk

a1

)
− 1

4a1

a1−1∑
k=1

cot
πkA1

a1
cot

πk

a1

=
1
4
− 1

4a1
− s(A1, a1).

The imaginary terms disappear here, since the sum on the left hand side and s(A1, a1) are

rational: Both are elements of the cyclotomic field of a1’th roots of unity Q
(
e

2πi
a1

)
, and

invariant under all Galois transformations of this field.

Hence we obtain∑
λa1=1 6=λ

Res (gn−2(z), z = λ) = −tn−2

(
1
4
− 1

4a1
− s(A1, a1)

)
.
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We get similar expressions for the residues at the other roots of unity, so that Corollary 2.7
gives us for n ≥ 3

cn−2 =
1

(n− 2)!

(
n

4
− C − 1

4

(
1
a1

+ · · ·+ 1
an

)
−s(A1, a1)− · · · − s(An, an)

)
, (2.8)

where C is the coefficient of tn−2 of Res (gn−2(z), z = 1). We can actually obtain a closed
form for C: As before,

Res (gn−2(z), z = 1) = Res (ezgn−2(ez), z = 0)

= Res

( (
e−tAz − 1

)n−2

(1− eA1z) (1− eA2z) · · · (1− eAnz) (1− ez)
, z = 0

)
.

Now with (
e−tAz − 1

)n−2
= (−tAz)n−2 +O

(
(tz)n−1

)
and

1
1− ez

= −z−1 +
1
2
− 1

12
z +O

(
z3
)
,

the coefficient of tn−2 of Res (gn−2(z), z = 1) turns out to be

C = (−A)n−2

[
1
12

(
(−1)n+1

A1 · · ·An
+

(−1)n+1A1

A2 · · ·An
+ · · ·+ (−1)n+1An

A1 · · ·An−1

)
+

+
1
4

(
(−1)n−1

A2 · · ·An
+ · · ·+ (−1)n−1

A1 · · ·An−1
+

+
(−1)n−1

A3 · · ·An
+

(−1)n−1

A2A4 · · ·An
+ · · ·+ (−1)n−1

A1 · · ·An−2

)]
= − 1

12

(
1
A

+
A1

a1
+ · · ·+ An

an

)
− 1

4

(
1
a1

+ · · ·+ 1
an

+A1,2 + · · ·+An−1,n

)
.

Substituting this into (2.8) yields the statement. 2

The other Ehrhart-coefficients for this tetrahedron can be derived in a similar fashion,
although the computation gets more and more complicated, as noted in the previous section.
The coefficient ck contains information about the k-skeleton of our polytope.

2.2 Rational Polygons

We turn now to the first interesting case of polytopes with rational vertices, namely of
dimension 2. We give explicit, polynomial-time computable (in the logarithm of the coor-
dinates of the vertices) formulas for the number of integer points in any two-dimensional
rational polytope and its integral dilations. Our formulas bear new connections between
Ehrhart theory and the Dedekind-Rademacher sum s(a, b;x, y) introduced in the first chap-
ter.
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2.2.1 Generating Functions and Partial Fractions

Since we can triangulate any polytope, it suffices to consider rational triangles. We can
further simplify the picture by embedding an arbitrary rational triangle in a rational rect-
angle, a fact we already used to prove Pick’s theorem in the first chapter. Since rectangles
are easy to deal with, the problem reduces to finding a formula for a right-angled rational
triangle.

Such a rectangular triangle T is given as a subset of R2 consisting of all points (x, y)
satisfying

x ≥ a

d
, y ≥ b

d
, ex+ fy ≤ r

for some integers a, b, d, e, f, r with ea+fb ≤ rd. Because the lattice point count is invariant
under horizontal and vertical integer translation and under flipping about x- or y-axis, we
may assume that a, b, d, e, f, r ≥ 0 and a, b < d. Let’s further factor out the greatest common
divisor c of e and f , so that e = cp and f = cq, where p and q are relatively prime. Hence

T =
{

(x, y) ∈ R2 : x ≥ a

d
, y ≥ b

d
, cpx+ cqy ≤ r

}
. (2.9)

To derive a formula for L
(
T , t

)
we interpret the lattice point enumerator, as in the previous

section,

L
(
T , t

)
= #

{
(m,n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, cpm+ cqn ≤ tr

}
as the Taylor coefficient of ztr of the function ∑

m≥[ ta−1
d ]+1

zcpm


 ∑
n≥[ tb−1

d ]+1

zcqn


∑
k≥0

zk


=
z([

ta−1
d ]+1)cp

1− zcp
z([

tb−1
d ]+1)cq

1− zcq
1

1− z

=
zu+v

(1− zcp) (1− zcq) (1− z)
, (2.10)

where we introduced, for ease of notation,

u :=
([

ta− 1
d

]
+ 1
)
cp and v :=

([
tb− 1
d

]
+ 1
)
cq . (2.11)

Again it is crucial that t is a positive integer. We could now shift the Taylor coefficient we
are interested in to a residue and use the methods of the previous section. This time, we
will use a partial fraction approach, which is completely equivalent, since our generating
function is rational. We will show
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Theorem 2.9 For the rectangular rational triangle T given by (2.9),

L
(
T , t

)
=

1
2c2pq

(tr − u− v)2 +
1
2

(tr − u− v)
(

1
cp

+
1
cq

+
1

c2pq

)
+

1
4

(
1 +

1
cp

+
1
cq

)
+

1
12

(
p

q
+
q

p
+

1
c2pq

)
+
(

1
2cp

+
1

2cq
− u+ v − tr

c2pq

) ∑
λc=1 6=λ

λ−tr

1− λ
− 1
c2pq

∑
λc=1 6=λ

λ−tr+1

(1− λ)2

+
1
cp

∑
λcp=1 6=λc

λv−tr

(1− λcq) (1− λ)
+

1
cq

∑
λcq=1 6=λc

λu−tr

(1− λcp) (1− λ)
,

where u and v are given by (2.11).

It will be useful to have the Laurent expansion of the factors of our generating function. The
following lemma will provide a bridge between the residue method and the partial fraction
method.

Lemma 2.10 Let a, b be positive integers, and λa = 1. Then

1
1− zab

= − λ

ab
(z − λ)−1 +

ab− 1
2ab

+O(z − λ) .

Proof. First,

Res
( 1

1− zab
, z = λ

)
= lim

z→λ

z − λ
1− zab

= − λ

ab
.

For ab = 1, the statement is trivial, so we may assume ab ≥ 2. Then the constant term of
the Laurent series of 1

1−zab can be computed as

lim
z→λ

(
1

1− zab
+

λ

ab(z − λ)

)
= lim

z→λ

ab(z − λ) + λ
(
1− zab

)
ab(z − λ) (1− zab)

= lim
z→λ

ab− abλzab−1

ab (1− zab − (z − λ)abzab−1)

= lim
z→λ

−λ(ab− 1)zab−2

−2abzab−1 − (z − λ)ab(ab− 1)zab−2
=
ab− 1

2ab
.

Proof of Theorem 2.9. To make life easier, we translate the coefficient of ztr of our generating
function, which yields the lattice point count, to the constant coefficient of the function

zu+v−tr

(1− zcp) (1− zcq) (1− z)
. (2.12)
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By expanding (2.12) into partial fractions

zu+v−tr

(1− zcp) (1− zcq) (1− z)
=

∑
λcp=1 6=λc

Aλ
z − λ

+
∑

λcq=1 6=λc

Bλ
z − λ

+
∑

λc=1 6=λ

(
Cλ
z − λ

+
Dλ

(z − λ)2

)
+

3∑
k=1

Ek
(z − 1)k

+
tr−u−v∑
k=1

Fk
zk

,

we can compute L
(
T , t

)
as the constant coefficient of the right-hand side:

L
(
T , t

)
= −

∑
λcp=1 6=λc

Aλ
λ
−

∑
λcq=1 6=λc

Bλ
λ

+
∑

λc=1 6=λ

(
−Cλ
λ

+
Dλ

λ2

)
−E1 + E2 − E3 . (2.13)

The computation of the coefficients Aλ for λcp = 1 6= λc is straightforward:

Aλ = lim
z→λ

(z − λ)zu+v−tr

(1− zcp) (1− zcq) (1− z)
=

λv−tr

(1− λcq) (1− λ)
lim
z→λ

(z − λ)
1− zcp

= − λv−tr+1

cp (1− λcq) (1− λ)
.

Similarly, we obtain, for the cq’th roots of unity λcq = 1 6= λc,

Bλ = − λu−tr+1

cq (1− λcp) (1− λ)
.

The coefficients Dλ and Cλ are the two leading coefficients of the Laurent series of (2.12)
about a nontrivial c’th root of unity λ. By Lemma 2.10, they are easily seen to be

Dλ =
λ−tr+2

c2pq(1− λ)

and

Cλ =
(
− 1

2cp
− 1

2cq
+
u+ v − tr + 1

c2pq

)
λ−tr+1

1− λ
+

λ−tr+2

c2pq(1− λ)2
.

Finally, we obtain the coefficients Ek from the Laurent series of (2.12) about z = 1 (by
hand or, preferably, using a computer algebra system) as

E3 = − 1
c2pq

, E2 = −u+ v − tr + 1
c2pq

+
1

2cp
+

1
2cq

,

and

E1 = −(u+ v − tr)2

2c2pq
+
u+ v − tr

2

(
− 1
c2pq

+
1
cp

+
1
cq

)
+

1
4

(
1
cp

+
1
cq
− 1
)
− 1

12

(
p

q
+

1
c2pq

+
q

p

)
.

Substituting all of these expressions into (2.13) yields the statement. 2

In the following section, we will further analyze the finite sums appearing in the lattice point
count operators; consequently, we will be able to make statements about their computational
complexity.
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2.2.2 Using the Dedekind-Rademacher Sums as Building Blocks

We will now take a closer look at the finite sums over roots of unity appearing in Theorem
2.9, namely,

1
cp

∑
λcp=1 6=λc

λw

(1− λcq) (1− λ)

for some integers c, p, q, w, where p and q are relatively prime. Viewing this as a finite
Fourier series in w suggests the use of the well-known convolution theorem for finite Fourier
series (see, for example, [Te]):

Theorem 2.11 Let f(t) = 1
N

∑
λN=1 aλλ

t and g(t) = 1
N

∑
λN=1 bλλ

t. Then

1
N

∑
λN=1

aλbλλ
t =

N−1∑
m=0

f(t−m)g(m) .

2

We first define the sawtooth function

((x)) := x− [x]− 1/2 ,

which differs from the one appearing in the classical Dedekind sum only at the integers. The
reason for introducing this slightly modified sawtooth function is its natural appearance in
our formulas.

The key ingredient to be able to apply the convolution theorem to our case is

Lemma 2.12 For p ∈ N, t ∈ Z,

1
p

∑
λp=1 6=λ

λt

λ− 1
=
((
−t
p

))
+

1
2p

.

This lemma is well-known (see, for example, [RG]), however, for sake of completeness we
give a short proof based on the residue theorem method of section 2.1.1.

Proof. Consider the interval I := [0, 1
p ], viewed as a one-dimensional polytope. Then the

lattice point count in the dilated interval is clearly

L
(
I, t
)

=
[
t

p

]
+ 1 . (2.14)

On the other hand, we can write this number, by applying the ideas in section 2.1.1, as

L
(
I, t
)

= Res
(

z−t−1

(1− zp) (1− z)
, z = 0

)
.
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Equivalently, we could expand this generating function into partial fractions. Using the
residue theorem, this can be rewritten as

L
(
I, t
)

=
t

p
+

1
2p

+
1
2
− 1
p

∑
λp=1 6=λ

λ−t

λ− 1
. (2.15)

Comparing (2.14) with (2.15) yields the statement. 2

Corollary 2.13 For c, p, q, t ∈ Z, (p, q) = 1,

1
cp

∑
λcp=1 6=λc

λt

1− λcq
=

{
−
((
−q−1t
cp

))
− 1

2p if c|t
0 else.

Here, qq−1 ≡ 1 mod p.

Proof. If c|t, write t = cw to obtain

1
cp

∑
λcp=1 6=λc

λt

1− λcq
=

1
cp

∑
λcp=1 6=λc

λcw

1− λcq
=

1
p

∑
λp=1 6=λ

λw

1− λq
=

1
p

∑
λp=1 6=λ

λq
−1w

1− λ

(?)
= −

((
−q−1w

p

))
− 1

2p
= −

((
−q−1t

cp

))
− 1

2p
.

Here, (?) follows from Lemma 2.12. If c does not divide t, let ξ = e2πi/cp. Then

1
cp

∑
λcp=1 6=λc

λt

1− λcq
=

1
cp

p−1∑
m=1

c−1∑
n=0

ξ(mc+np)t

1− ξ(mc+np)cq
=

1
cp

c−1∑
n=0

ξnpt
p−1∑
m=1

ξmct

1− ξmc2q
= 0 .

2

Corollary 2.14 For c, p, q, t ∈ Z, (p, q) = 1,

1
cp

∑
λcp=1 6=λc

λ−t

(1− λcq) (1− λ)
= −s

(
q, p;

t

cp
, 0
)
− 1

2

((
t

cp

))
+

1
2p

((
t

c

))
.

Proof. We will repeatedly use the periodicity of the sawtooth function. One consequence
is, for p ∈ Z, x ∈ R,

p−1∑
m=0

((
m+ x

p

))
= ((x)) , (2.16)

the proof of which is left as an exercise ([RG]). Now by Lemma 2.12,

1
cp

∑
λcp=1 6=λc

λt

(1− λ)
=

1
cp

∑
λcp=1 6=λ

λt

(1− λ)
− 1
cp

∑
λc=1 6=λ

λt

(1− λ)

= −
((
−t
cp

))
− 1

2cp
− 1
p

(
−
((
−t
c

))
− 1

2c

)
= −

((
−t
cp

))
+

1
p

((
−t
c

))
.
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Finally we use the Convolution Theorem 2.11 and Corollary 2.13 to obtain

1
cp

∑
λcp=1 6=λc

λt

(1− λcq) (1− λ)
=

=
cp−1∑
m=0
c|m

(
−
((
−q−1m

cp

))
− 1

2p

)(
−
((
−(t−m)

cp

))
+

1
p

((
−(t−m)

c

)))

=
p−1∑
k=0

((
−q−1k

p

))((
k

p
− t

cp

))
− 1
p

p−1∑
k=0

((
−q−1k

p

))((
−t
c

))

+
1
2p

p−1∑
k=0

((
k

p
− t

cp

))
− 1

2p2

p−1∑
k=0

((
−t
c

))
(2.16)

=
p−1∑
k=0

((
−k
p

))((
qk

p
− t

cp

))
+

1
2p

((
−t
c

))
+

1
2p

((
−t
c

))
− 1

2p

((
−t
c

))
(2.16)

= −s
(
q, p;
−t
cp
, 0
)
− 1

2

((
−t
cp

))
+

1
2p

((
−t
c

))
.

In the last step, we used

s(a, b;x, 0) =
p−1∑
k=0

((
ka

b
+ x

))((
k

b

))
+

1
2

((x)) . (2.17)

2

One of the Dedekind-Rademacher sums appearing in Theorem 2.9 actually turns out to be
of an even simpler form. To show this, we first need to rewrite Theorem 2.9 for the special
case where T has the origin as a vertex:

Theorem 2.15 For the rectangular rational triangle T given by (2.9) with a = b = 0,
c = r = 1, and p and q relatively prime,

L
(
T , t

)
=

t2

2pq
+
t

2

(
1
p

+
1
q

+
1
pq

)
+

1
4

+
1
12

(
p

q
+
q

p
+

1
pq

)
−s
(
q, p;

t

p
, 0
)
− s
(
p, q;

t

q
, 0
)
− 1

2

((
t

p

))
− 1

2

((
t

q

))
.

Proof. Theorem 2.9 gives for this special case

L
(
T , t

)
=

t2

2pq
+
t

2

(
1
p

+
1
q

+
1
pq

)
+

1
4

(
1 +

1
p

+
1
q

)
+

1
12

(
p

q
+
q

p
+

1
pq

)
+

1
p

∑
λp=1 6=λ

λ−t

(1− λq) (1− λ)
+

1
q

∑
µq=1 6=µ

µ−t

(1− µp) (1− µ)
.
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The statement now follows from Corollary 2.14. 2

We use this Theorem to show

Lemma 2.16 For p, t ∈ Z,

s
(
1, p;

t

p
, 0
)

=
p−1∑
k=0

((
k + t

p

))((
k

p

))
= − p

24
+

1
6p

+
p

2

((
t

p

))2

+
1
2

((
t

p

))
.

Proof. Consider the triangle ∆ :=
{

(x, y) ∈ R2 : x+ py ≤ 1
}

and its integer dilates. By
summing over vertical line segments in the triangle, we obtain

L (∆, t) =

[
t
p

]∑
m=0

(t− pm+ 1) = (t+ 1)
([

t

p

]
+ 1
)
− p

2

[
t

p

]([
t

p

]
+ 1
)

=
t2

2p
+
(

1
p

+
1
2

)
t+

1
2

+
p

8
−
((

t

p

))
− p

2

((
t

p

))2

. (2.18)

On the other hand, we can compute the same number via Theorem 2.15:

L (∆, t) =
t2

2p
+
t

2

(
2
p

+ 1
)

+
1
4

+
1
12

(
p+

2
p

)
− s
(
1, p;

t

p
, 0
)

−1
4
− 1

2

((
t

p

))
+

1
2
. (2.19)

Again we used (2.16). Equating (2.18) with (2.19) yields the statement. 2

Using these ingredients, we can finally restate Theorem 2.9 as the main theorem of this
section:

Theorem 2.17 For the rectangular rational triangle T given by (2.9),

L
(
T , t

)
=

1
2c2pq

(tr − u− v)2 + (tr − u− v)
(

1
2cp

+
1

2cq
+

1
c2pq

+
1
cpq

((
tr

c

)))
+

1
4

+
1
12

(
p

q
+
q

p

)
− 1

24pq
+

1
c2pq

− 1
2

((
tr − v
cp

))
− 1

2

((
tr − u
cq

))
+

1
cpq

((
tr

c

))
+

1
cpq

((
tr − 1
c

))
+

1
2pq

((
tr − 1
c

))2

−s
(
q, p;

tr − v
cp

, 0
)
− s
(
p, q;

tr − u
cq

, 0
)
.

Here u and v are given by (2.11).
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Proof. By Lemma 2.12,

1
c

∑
λc=1 6=λ

λw

1− λ
= −

((
−w
c

))
− 1

2c
. (2.20)

By Corollary 2.14 and Lemma 2.16,

1
c

∑
λc=1 6=λ

λw

(1− λ)2
= −s

(
1, c;
−w
c
, 0
)
− 1

2

((
−w
c

))
− 1

4c

=
c

24
− 5

12c
−
((
−w
c

))
− c

2

((
−w
c

))2

. (2.21)

Now simplify the identity in Theorem 2.9 by means of (2.20), (2.21), and Corollary 2.14.
2

2.2.3 Remarks and Consequences

An important property of s(a, b;x, y) is the reciprocity law Theorem 1.5. From this reci-
procity law it follows immediately that the function s(a, b;x, 0), the nontrivial part of our
lattice point count formulas, is polynomial-time computable. It is amusing to note that
s(a, b;x, 0) appears in the multiplier system of a weight-0 modular form ([Rob]).

To complete the picture for an arbitrary two-dimensional rational polytope P, we return
to the statements in the introduction of this section. After triangulating P, the problem
reduces to rational rectangles and the rectangular triangles which were treated above. A
lattice point count formula for a rational rectangle R is easy to obtain. Suppose R has
vertices (a1

d
,
a2

d

)
,

(
b1
d
,
a2

d

)
,

(
b1
d
,
b2
d

)
,

(
a1

d
,
b2
d

)
,

with aj < bj . Then it is not hard to see that

L
(
R, t

)
=
([

tb1
d

]
−
[
ta1 − 1
d

])([
tb2
d

]
−
[
ta2 − 1
d

])
.

We summarize in

Theorem 2.18 Let P be a two-dimensional rational polytope. The coefficients of L
(
P, t
)

can be written in terms of the sawtooth function ((x)) and the Dedekind-Rademacher sum
s(a, b;x, 0). Consequently, the formula given by Theorem 2.17 for the lattice point count
operator can be computed in polynomial time. 2

Barvinok ([Ba]) showed that for any fixed dimension the lattice point enumerator of a
rational polytope can be computed in polynomial time. The distinction here is that we get
a simple formula, which happens to be also polynomial-time computable.
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As another remark, we can deduce the reciprocity law Theorem 1.4 for the classical Dede-
kind sum ([De], [RG]) from our formulas:

Proof of Theorem 1.4. Ehrhart’s Theorem 1.2 says that the constant term of a lattice
polytope equals the Euler characteristic of the polytope. Consider the simplest case of our
triangle mentioned in Theorem 2.15. If we dilate this polytope by t = pqw, that is, only by
multiples of pq, we obtain the dilates of a lattice polytope P. Theorem 2.15 simplifies for
these t to

L
(
P, w

)
=
pqw2

2
+
w

2
(p+ q + 1) +

1
4

+
1
12

(
p

q
+
q

p
+

1
pq

)
−s
(
q, p; 0, 0

)
− s
(
p, q; 0, 0

)
+

1
2
.

On the other hand, we know that the constant term is the Euler characteristic of P and
hence equals 1, which yields the identity

−1
4

+
1
12

(
p

q
+
q

p
+

1
pq

)
− s
(
q, p; 0, 0

)
− s
(
p, q; 0, 0

)
= 0 .

2

As a concluding consequence of our formulas, we rederive a reciprocity law due to Gessel
([Ge]), at the same time interpreting it geometrically.

Corollary 2.19 (Gessel) Let p and q be relatively prime and suppose that 1 ≤ t ≤ p+ q.
Then

1
p

∑
λp=1 6=λ

λt

(1− λq) (1− λ)
+

1
q

∑
λq=1 6=λ

λt

(1− λp) (1− λ)

= − t2

2pq
+
t

2

(
1
p

+
1
q

+
1
pq

)
− 1

4

(
1
p

+
1
q

+ 1
)
− 1

12

(
p

q
+

1
pq

+
q

p

)
.

It is easy to see that the reciprocity law for classical Dedekind sums (Theorem 1.4) is a
special case of Gessel’s theorem. We prove Gessel’s theorem below, after rephrasing it in
terms of Dedekind-Rademacher sums by means of Corollary 2.14:

Corollary 2.20 Let p and q be relatively prime and suppose that 1 ≤ t ≤ p+ q. Then

s
(
q, p;
−t
p
, 0
)

+ s
(
p, q;
−t
q
, 0
)

=

t2

2pq
− t

2

(
1
p

+
1
q

+
1
pq

)
+

1
4

+
1
12

(
p

q
+

1
pq

+
q

p

)
− 1

2

((
−t
p

))
− 1

2

((
−t
q

))
.

2
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We first need to rewrite Theorem 2.9 for the interior of our triangle. This can be done either
from scratch or by using the Ehrhart-Macdonald reciprocity law (Theorem 1.3), which will
be proved in chapter 4.

Corollary 2.21 For the rectangular rational triangle T given by (2.9) with a = b = 0,
c = r = 1, and p and q relatively prime,

L (T ◦, t) =
t2

2pq
− t

2

(
1
p

+
1
q

+
1
pq

)
+

1
4

(
1 +

1
p

+
1
q

)
+

1
12

(
p

q
+
q

p
+

1
pq

)
+

1
p

∑
λp=1 6=λ

λt

(1− λq) (1− λ)
+

1
q

∑
λq=1 6=λ

λt

(1− λp) (1− λ)
.

2

Note that this allows us to conclude a computability statment for the interior of a two-
dimensional rational polytope similar to Theorem 2.18.

Proof of Corollary 2.19. Consider dilates of the triangle given in Corollary 2.21, that is,

tT ◦ =
{

(x, y) ∈ R2 : x, y > 0, px+ qy < t
}
.

By the very definition, tT ◦ does not contain any integer points for 1 ≤ t ≤ p + q, in other
words, L (T ◦, t) = 0. Hence Corollary 2.21 yields an identiy for these values of t:

0 =
t2

2pq
− t

2

(
1
p

+
1
q

+
1
pq

)
+

1
4

(
1 +

1
p

+
1
q

)
+

1
12

(
p

q
+
q

p
+

1
pq

)
+

1
p

∑
λp=1 6=λ

λt

(1− λq) (1− λ)
+

1
q

∑
λq=1 6=λ

λt

(1− λp) (1− λ)
.

2

These two methods (proofs of Theorem 1.4 and Corollary 2.19) of obtaining reciprocity laws
from lattice point enumeration formulas extend easily to higher dimensions. We will make
use of this fact in section 3.1.2.

2.3 General Rational Polytopes

In the last section we set up a complete machinery for the computation of lattice point
enumeration formulas for any 2-dimensional rational polytope. We will extend this in the
next chapter to a certain class of rational polytopes in arbitrary dimension. Before doing
so, we conclude this chapter with a remark on the general case.

It certainly suffices to look at convex rational polytopes. These can be described by a finite
number of inequalities with integer coefficients. In other words, a convex lattice polytope
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P is an intersection of finitely many half-spaces. Translation by a lattice vector does not
change the lattice point count, so we can assume that the points in the polytope have
nonnegative coordinates and apply the ideas of the previous sections to P. Suppose P is
given by the n+ q inequalities

x1, . . . , xn ≥ 0

a11x1 + · · ·+ a1nxn ≤ b1 (2.22)
...

aq1x1 + · · ·+ aqnxn ≤ bq ,

with ajk, bj ∈ Z. Define a matrix

M =
(
ajk

)
j=1..q
k=1..n

,

and let Cj denote the j’th column and Rk the k’th row of M . Then we can rewrite the
nontrivial inequalities determining tP as

R1 · x ≤ tb1
... (2.23)

Rq · x ≤ tbq,

where x = (x1, . . . , xn) and · denotes the usual scalar product. Now consider the function

f (z1, . . . , zq) =
z−tb1−1

1 · · · z−tbq−1
q

(1− zC1) · · ·
(
1− zCq

)
(1− z1) · · · (1− zq)

.

Here we use the standard multinomial notation zv := zv1
1 · · · z

vq
q . We will integrate f with

respect to each variable over a circle with small radius:∫
|z1|=ε1

· · ·
∫
|zq |=εq

f (z1, . . . , zq) dzq · · · dz1 . (2.24)

Here, 0 < ε0, . . . , εq < 1 are chosen such that we can expand all the 1
1−zCk

into power
series about 0. To ensure the existence of ε0, . . . , εq, we may, if necessary, add an additional
inequality x1 + · · · + xn ≤ tb0 for a suitable large b0. This is always possible, since P is
bounded.

Since the integral over one variable will give the respective residue at 0, we can integrate
with respect to one variable at a time. When f is expanded into its Laurent series about
0, each term has the form

zm·R1+r1−tb1−1
1 · · · zm·Rq+rq−tbq−1

q ,

where m := (m1, . . . ,mn), and m1, . . . ,mn, r1, . . . , rq are nonnegative integers. Thus, in
the integral (2.24), this term will give a contribution precisely if m satisfies the inequalities
(2.23). In other words, we have proved
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Theorem 2.22

L(P, t) =
1

(2πi)q

∫
|z1|=ε1

· · ·
∫
|zq |=εq

f (z1, . . . , zq) dzq · · · dz1 .

2

However, in several complex variables, we do not have a maschinery equivalent to the residue
theorem. The methods introduced above therefore do not easily extend to the most general
rational polytopes.



Chapter 3

The Frobenius Problem

If you think it’s simple, then you have misunderstood the problem.
Bjarne Strustrup (lecture at Temple University, 11/25/97)

Given relatively prime positive integers a1, . . . , an, we call a positive integer t representable
if there exist nonnegative integers m1, . . . ,mn such that

t =
n∑
j=1

mjaj .

In this chapter, we discuss the linear diophantine problem of Frobenius: namely, find the
largest integer t which is not representable. We call this largest integer the Frobenius num-
ber g(a1, . . . , an). We study a more general problem: namely, we consider Nt(a1, . . . , an),
the number of nonnegative integer solutions (m1, . . . ,mn) to

∑n
j=1mjaj = t for any positive

integral t. Geometrically, Nt(a1, . . . , an) enumerates the lattice points on the dilates of a
rational polytope. Finding g(a1, . . . , an) simply means finding the largest integer zero of
Nt(a1, . . . , an). We can also interpret Nt(a1, . . . , an) as a partition function: Nt(a1, . . . , an)
enumerates the number of partitions of t into parts which come from the set {a1, . . . , an}
([EL], [Na]).

Frobenius inaugurated the study of g(a1, . . . , an) in the 19th century. For n = 2, Sylvester
([Sy]) proved that g(a1, a2) = a1a2 − a1 − a2. For n > 2, all attempts to obtain explicit
formulas have proved elusive. Here we focus on the study of Nt(a1, . . . , an), and show
that it has an explicit representation as a quasipolynomial. Through the discussion of
Nt(a1, . . . , an), we gain new insights into Frobenius’s problem.

Within our formulas there appears a generalized Dedekind sum, which shares some proper-
ties with its classical siblings. In particular, we prove two reciprocity laws for these sums: a
rederivation of the reciprocity law for Zagier’s higher-dimensional Dedekind sums (Theorem
1.6), and a new reciprocity law that generalizes Gessel’s reciprocity law Corollary 2.19.

29
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Another motivation to study Nt(a1, . . . , an) is the following trivial reduction formula to
lower dimensions:

Nt(a1, . . . , an) =
∑
m≥0

Nt−man(a1, . . . , an−1) . (3.1)

Here we use the convention that Nt(a1, . . . , an) = 0 if t ≤ 0; in particular, the sum in (3.1)
is finite. This identity can be easily verified by viewing Nt(a1, . . . , an) as

Nt(a1, . . . , an) = #

{
(m1, . . . ,mn) ∈ Zn≥0 :

n−1∑
k=1

mkak = t−mnan

}
.

Hence, precise knowledge of the values of t for which Nt(a1, . . . , an) = 0 in lower dimensions
sheds additional light on the Frobenius number in higher dimensions.

Finally, we extend the Frobenius problem in a way that is naturally motivated by studying
Nt(a1, . . . , an) = 0.

The literature on the Frobenius problem is vast, see for example [BS], [Da], [EG], [Ka],
[NW], [Rod1], [Rod2], [Se], [Sy], [Vi].

3.1 A Related Polytope

Nt(a1, . . . , an) enumerates the lattice points on the t-dilate of the rational polytope

P =

{
(x1, . . . , xn) ∈ Rn : xk ≥ 0,

n∑
k=1

xkak = 1

}
.

Our computation of the quantity Nt(a1, . . . , an) is similar to that of the lattice point count
formulas in chapter 2. We note that one does not have to think of Nt(a1, . . . , an) as the
lattice point count of a polytope to understand how to compute its formula; however,
this geometric interpretation was the motivation for our proof and offers guidance for our
intuition.

3.1.1 Computation of Nt(a1, . . . , an)

We first need to introduce the generalized Dedekind sum that appears in this context.

Definition 3.1 Let c1, . . . , cn ∈ Z be relatively prime to c ∈ Z, and t ∈ Z. Define the
Fourier-Dedekind sum as

σt (c1, . . . , cn; c) =
1
c

∑
λc=1 6=λ

λt

(1− λc1) · · · (1− λcn)
.
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Some properties of σt are discussed in section 3.1.2. With this notation, we are ready to
state the central theorem of this chapter:

Theorem 3.1 Suppose a1, . . . , an are pairwise relatively prime, and t is a positive integer.
Then

Nt(a1, . . . , an) = R−t (a1, . . . , an) +
n∑
j=1

σ−t(a1, . . . , âj , . . . , an; aj) ,

where Rt (a1, . . . , an) = −Res(G−t(z), z = 1), and

Gt(z) =
zt−1

(1− za1) · · · (1− zan)
.

Remarks. 1. Rt can be computed in precisely the same way as the rational-function part
in Theorem 2.1. The first values are

Rt(a1, a2) =
t

a1a2
+

1
2

(
1
a1

+
1
a2

)
Rt(a1, a2, a3) =

t2

2a1a2a3
+
t

2

(
1

a1a2
+

1
a1a3

+
1

a2a3

)
+

1
12

(
3
a1

+
3
a2

+
3
a3

+
a1

a2a3
+

a2

a1a3
+

a3

a1a2

)
Rt(a1, a2, a3, a4) =

t3

6a1a2a3a4
+
t2

4

(
1

a1a2a3
+

1
a1a2a4

+
1

a1a3a4
+

1
a2a3a4

)
+
t

4

(
1

a1a2
+

1
a1a3

+
1

a1a4
+

1
a2a3

+
1

a2a4
+

1
a3a4

)
+
t

12

(
a1

a2a3a4
+

a2

a1a3a4
+

a3

a1a2a4
+

a4

a1a2a3

)
+

1
24

(
a1

a2a3
+

a1

a2a4
+

a1

a3a4
+

a2

a1a4
+

a2

a1a3
+

a2

a3a4

+
a3

a1a2
+

a3

a1a4
+

a3

a2a4
+

a4

a1a2
+

a4

a1a3
+

a4

a2a3

)
+

1
8

(
1
a1

+
1
a2

+
1
a3

+
1
a4

)
.

2. If a1, . . . , an are not pairwise relatively prime, we can get similar, slightly more compli-
cated formulas for Nt(a1, . . . , an). This remark will become more transparent in the proof
of the theorem.

Proof. As in the last chapter, we interpret

Nt(a1, . . . , an) = #

{
(m1, . . . ,mn) ∈ Zn≥0 :

n∑
k=1

mkak = t

}
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as the Taylor coefficient of zt of the function(
1 + za1 + z2a1 + . . .

)
· · ·
(
1 + zan + z2an + . . .

)
=

1
1− za1

· · · 1
1− zan

.

Shifting this coefficient to the coefficient of z−1, we obtain a residue

Nt(a1, . . . , an) = Res
(

z−t−1

(1− za1) · · · (1− zan)
, z = 0

)
= Res (G−t(z), z = 0) . (3.2)

Thus, we have to find the other residues of G−t(z). The other poles of G−t(z) are at all
a1’th, . . . , an’th roots of unity. These poles are simple by the pairwise-coprime condition
(which is why we imposed this condition). Let λ be a nontrivial a1’th root of unity. Then

Res (G−t(z), z = λ) =
λ−t−1

(1− λa2) · · · (1− λan)
Res

(
1

1− za1
, z = λ

)
= − λ−t

a1 (1− λa2) · · · (1− λan)
.

Adding up all the nontrivial a1’th roots of unity, we obtain∑
λa1=1 6=λ

Res (G−t(z), z = λ) = − 1
a1

∑
λa1=1 6=λ

λ−t

(1− λa2) · · · (1− λan)

= −σ−t (a2, . . . , an; a1) .

Together with the other similar residues at the other roots of unity and the residue at z = 1,
we can restate (3.2) by means of the residue theorem. 2

3.1.2 The Fourier-Dedekind Sum

In the derivation of the previous lattice point count formula (Theorem 3.1), we naturally
arrived at the Fourier-Dedekind sum

σt (c1, . . . , cn; c) =
1
c

∑
λc=1 6=λ

λt

(1− λc1) · · · (1− λcn)
.

This expression is a generalization of the classical Dedekind sum s(h, k) and its various
generalizations mentioned in the introductory chapter. In fact, we came across various
special cases of σt (c1, . . . , cn; c) before: in section 2.1.3, we obtained

σ0 (a, 1; c) =
1
c

∑
λc=1 6=λ

1
(1− λa) (1− λ)

=
1
4
− 1

4c
− s(a, c) .

In section 2.2.2, we got another easy special case: Corollary 2.13 gives

σt (q; p) =
1
p

∑
λp=1 6=λ

λt

1− λq
= −

((
−q−1t

p

))
− 1

2p
.
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The Dedekind-Rademacher sums appearing in the lattice point formulas in the same section
2.2.2 are another specialization: Corollary 2.14 says that

σt (q, 1; p) =
1
p

∑
λp=1 6=λ

λt

(1− λq) (1− λ)
= −s

(
q, p;
−t
p
, 0
)
− 1

2

((
−t
p

))
− 1

4p
.

Finally, it is not hard to see that Zagier’s higher-dimensional Dedekind sum can be expressed
as a sum of Fourier-Dedekind sums with trivial numerator, that is, σ0 (c1, . . . , cn; c).

In general, note that σt (c1, . . . , cn; c) is a rational number: it is an element of the cyclotomic
field of c’th roots of unity, and invariant under all Galois transformations of this field. Some
other obvious properties are

σt (c1, . . . , cn; c) = σt
(
cπ(1), . . . , cπ(n); c

)
for any π ∈ Sn

σt (c1, . . . , cn; c) = σ(t mod c) (c1 mod c, . . . , cn mod c; c) (3.3)
σt (c1, . . . , cn; c) = σbt (bc1, . . . , bcn; c) for any b ∈ Z with (b, c) = 1

We conclude this section by proving two reciprocity laws for Fourier-Dedekind sums; these
are the proposed generalizations of the two reciprocity laws proved in section 2.2.3. The
first one is equivalent to Zagier’s reciprocity law for his higher dimensional Dedekind sums,
Theorem 1.6.

Theorem 3.2 For pairwise relatively prime positive integers a1, . . . , an,
n∑
j=1

σ0(a1, . . . , âj , . . . , an; aj) = 1−R0 (a1, . . . , an) ,

where Rt is the rational function given in Theorem 3.1.

Proof. Recall once more that Ehrhart’s Theorem 1.2 states that the constant term of the
Ehrhart polynomial of a lattice polytope equals the Euler characteristic of the polytope.
Consider the polytope

P =

{
(x1, . . . , xn) ∈ Rn≥0 :

n∑
k=1

xkak = 1

}
,

whose dilates correspond to the enumerator Nt(a1, . . . , an) of Theorem 3.1. If we dilate this
polytope only by multiples of a1 · · · an, say t = a1 · · · anw, we obtain the dilates of a lattice
polytope. Theorem 3.1 simplifies for these t to

Na1···anw(a1, . . . , an) = Ra1···anw (a1, . . . , an) +
n∑
j=1

σ0(a1, . . . , âj , . . . , an; aj) ,

using the periodicity of σt (3.3). On the other hand, we know that the constant term (in
terms of w) is the Euler characteristic of the polytope and hence equals 1, which yields the
identity

1 = R0 (a1, . . . , an) +
n∑
j=1

σ0(a1, . . . , âj , . . . , an; aj) .
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2

The second one is a new reciprocity law, which generalizes Gessel’s reciprocity law Corollary
2.19. It is not hard to see that Gessel’s theorem is the two-dimensional case of

Theorem 3.3 Let a1, . . . , an be pairwise relatively prime positive integers and 0 < t <
a1 + · · ·+ an. Then

n∑
j=1

σt(a1, . . . , âj , . . . , an; aj) = −Rt (a1, . . . , an) ,

where Rt is the rational function given in Theorem 3.1.

Proof. Consider the interior of our polytope,

P◦ =

{
(x1, . . . , xn) ∈ Rn : xk > 0,

n∑
k=1

xkak = 1

}
.

By the Ehrhart-Macdonald reciprocity law Theorem 1.3,

L(P◦, t) = (−1)n−1N−t(a1, . . . , an) .

By definition, tP◦ does not contain any integer points for 0 < t < a1 + · · · + an. Hence
Theorem 3.1 yields an identiy for these values of t:

0 = (−1)n−1

Rt (a1, . . . , an) +
n∑
j=1

σt(a1, . . . , âj , . . . , an; aj)

 .

2

3.2 Classical Results

We finally get to apply our formulas to the Frobenius problem. In this section we prove two
classical results, both due to Sylvester ([Sy]). Both follow immediately from the formula

Nt(a1, a2) =
t

a1a2
−
((

a−1
2 t

a1

))
−
((

a−1
1 t

a2

))
, (3.4)

which is the two-dimensional version of Theorem 3.1, using Corollary 2.13.

Corollary 3.4 (Sylvester) g(a, b) = ab− a− b.
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Proof. We have to show that Nab−a−b(a, b) = 0 and that Nt(a, b) > 0 for every t > ab−a−b.
First, by the periodicity of the sawtooth function,

Nab−a−b(a, b) =
ab− a− b

ab
−
((

b−1(ab− a− b)
a

))
−
((

a−1(ab− a− b
b

))
= 1− 1

b
− 1
a
−
((
−1
a

))
−
((
−1
b

))
= 1− 1

b
− 1
a
−
(

1
2
− 1
a

)
−
(

1
2
− 1
b

)
= 0 .

For any integer m,
((

m
a

))
≤ 1

2 −
1
a . Hence for any positive integer n,

Nab−a−b+n(a, b) ≥ ab− a− b+ n

ab
−
(

1
2
− 1
a

)
−
(

1
2
− 1
b

)
=

n

ab
> 0.

2

Corollary 3.5 (Sylvester) Exactly half of the integers between 1 and (a − 1)(b − 1) are
representable.

Proof. We first claim that, if t ∈ [1, ab− 1] is not a multiple of a or b,

Nt(a, b) +Nab−t(a, b) = 1 . (3.5)

This identity follows directly from (3.4):

Nab−t(a, b) =
ab− t
ab

−
((

b−1(ab− t)
a

))
−
((

a−1(ab− t)
b

))
= 1− t

ab
−
((
−b−1t

a

))
−
((
−a−1t

b

))
(?)
= 1− t

ab
+
((

b−1t

a

))
+
((

a−1t

b

))
= 1−Nt(a, b) .

Here, (?) follows from the fact that ((−x)) = −((x)) if x 6∈ Z. This shows that, for t between
1 and ab − 1 and not divisible by a or b, exactly one of t and ab − t is not representable.
There are

ab− a− b+ 1 = (a− 1)(b− 1)

integers between 1 and ab − 1 which are not divisible by a or b. Finally, we note that
Nt(a, b) > 0 if t is a multiple of a or b, by the very definition of Nt(a, b). Hence the number
of non-representable integers is 1

2(a− 1)(b− 1). 2

Note that we proved even more. By (3.5), every positive integer less than ab has at most
one representation. Hence, the representable integers in the above corollary are uniquely
representable.

These two results can now be generalized in two ways: we can stay in dimension two and
generalize the notion of a nonrepresentable integer (section 3.4), or we can move to higher
dimensions (section 3.3).
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3.3 New Bounds on the Frobenius Number

We will now use our formulas to give new results on the first nontrivial case of the Frobenius
problem, dimension 3. Known bounds on the Frobenius number include

g(a1, . . . , an) ≤
[

1
2(a2 − 1)(an − 2)

]
− 1

([Vi]) and
g(a1, . . . , an) ≤ 2an

[
a1
n

]
− a1

([Se]); for both we assume that a1 < · · · < an.

We note that a bound in three dimensions yields a bound for the general case: directly from
the definition of g, we conclude that for n ≥ 3

g(a1, . . . , an) ≤ g(a1, a2, a3) . (3.6)

Furthermore, in dimension 3 it suffices to assume that a1, a2, a3 are pairwise coprime, be-
cause of Johnson’s formula ([Jo]): If c = (a1, a2), then

g(a1, a2, a3) = c · g
(a1

c
,
a2

c
, a3

)
+ (c− 1)a3 . (3.7)

Hence, we may assume a, b, c pairwise relatively prime. We need a handy expression for
σt(a, b; c), which can be achieved through the application of Corollary 2.14:

σt(a, b; c) =
1
c

∑
λc=1 6=λ

λt

(1− λa) (1− λb)
=

1
c

∑
λc=1 6=λ

λb
−1t(

1− λb−1a
)

(1− λ)

Cor. 2.14= −
c−1∑
k=0

((
k

c

))((
b−1(ak − t)

c

))
−
((
−b−1t

c

))
− 1

4c

=
c−1∑
k=1

((
k

c

))((
−b−1(ak + t)

c

))
− 1

2

((
−b−1t

c

))
− 1

4c

=
c−1∑
k=0

((
k

c

))((
−b−1(ak + t)

c

))
− 1

4c
.

We will use the Cauchy-Schwartz inequality∣∣∣∣∣
n∑
k=1

akaπ(k)

∣∣∣∣∣ ≤
n∑
k=1

a2
k . (3.8)

Here ak ∈ R, and π ∈ Sn is a permutation. Since (b−1a, c) = 1, we can use (3.8) to obtain

σt(a, b; c) ≥ −
c−1∑
m=0

((m
c

))2
− 1

4c
= −

c−1∑
m=0

(
m

c
− 1

2

)2

− 1
4c

= − 1
c2

(2c− 1)(c− 1)c
6

+
1
c

c(c− 1)
2

− c

4
− 1

4c
= − c

12
− 1

12c
.
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This also restates Rademacher’s bound on the classical Dedekind sums ([RG]). Using this
in the formula for dimension 3 (remark after Theorem 3.1), we get

Nt(a, b, c) ≥
t2

2abc
+
t

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)
− 1

12
(a+ b+ c)− 1

12

(
1
a

+
1
b

+
1
c

)
=

t2

2abc
+
t

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
a

bc
+

b

ac
+

c

ab

)
− 1

12
(a+ b+ c) +

1
6

(
1
a

+
1
b

+
1
c

)
.

The larger zero of the right-hand side is an upper bound for the solution of the Frobenius
problem:

g(a, b, c) ≤ abc

(
−1

2

(
1
ab

+
1
bc

+
1
ac

)
+

[
1
4

(
1
ab

+
1
bc

+
1
ac

)2

− 2
abc

·
(

1
12

(
a

bc
+

b

ac
+

c

ab

)
− 1

12
(a+ b+ c) +

1
6

(
1
a

+
1
b

+
1
c

))]1/2
)

≤ −1
2

(a+ b+ c) + abc

√
1
4

(
1
ab

+
1
bc

+
1
ac

)2

+
1
6

(
1
ab

+
1
bc

+
1
ac

)

= −1
2

(a+ b+ c) + abc

√
1
2

(
1
ab

+
1
bc

+
1
ac

)(
1
2

(
1
ab

+
1
bc

+
1
ac

)
+

1
3

)

≤ −1
2

(a+ b+ c) + abc

√
1
4

(
1
ab

+
1
bc

+
1
ac

)
.

For the last inequality, we used the fact that 1
ab + 1

bc + 1
ac ≤

1
6 + 1

10 + 1
15 = 1

3 . This proves

Theorem 3.6 Let a1, a2, a3 be pairwise relatively prime. Then

g(a1, . . . , an) ≤ 1
2

(√
a1a2a3 (a1 + a2 + a3)− a1 − a2 − a3

)
.

2

Remarks. 1. This inequality is useful only for certain ranges of a1, a2, a3. For example, the
inequality becomes meaningless if a3 > a1 + a2, as a straightforward calculation shows.

2. More general results can be easily obtained from Theorem 3.6 by way of (3.6) and (3.7).
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3.4 Frobenius’s Problem Extended

We now turn to the proposed natural extension of the Frobenius problem: we define an
integer t to be k-representable if Nt(a1, . . . , an) = k; that is, t can be represented in
exactly k ways. Define gk = gk(a1, . . . , an) to be the largest k-representable integer. It
is fairly easy to see that for each k, eventually all integers are representable in at least k
ways. Hence gk is well-defined, and every integer greater than gk is representable in at least
k + 1 ways. In particular g0(a1, . . . , an) = g(a1, . . . , an). We will prove statements about
gk similar in spirit to the two classical results by Sylvester mentioned in section 3.2. Our
proofs are again based on the dimension-two formula (3.4).

The fundamental result connecting the classical notion of (0-)representable integers to our
new notion of k-representable integers is

Theorem 3.7 Nt+ab(a, b) = Nt(a, b) + 1.

Proof. By the periodicity of the sawtooth function,

Nt+ab(a, b) =
t+ ab

ab
−
((

b−1(t+ ab)
a

))
−
((

a−1(t+ ab)
b

))
=

t

ab
+ 1−

((
b−1t

a

))
−
((

a−1t

b

))
= Nt(a, b) + 1 .

2

Corollary 3.8 gk(a, b) = (k + 1)ab− a− b.

Proof. By the preceeding theorem, gk+1 = gk + ab. The statement now follows inductively,
starting with Sylvester’s theorem (Corollary 3.4). 2

Corollary 3.9 Given k ≥ 2, the smallest k-representable integer is ab(k − 1).

Proof. Let n be a nonnegative integer. Then

Nab(k−1)−n(a, b) =

=
ab(k − 1)− n

ab
−
((

b−1(ab(k − 1)− n)
a

))
−
((

a−1(ab(k − 1)− n)
b

))
(3.9)

= k − 1− n

ab
−
((
−b−1n

a

))
−
((
−a−1n

b

))
. (3.10)

If n = 0, (3.10) equals k. If n is positive, we use ((x)) ≥ −1
2 to see that

Nab(k−1)−n(a, b) ≤ k − n

ab
< k .
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2

All nonrepresentable positive integers lie, by definition, in the interval [1, g(a, b)]. It is
easy to see that the smallest interval containing all uniquely representable integers is
[min(a, b), g1]. For k ≥ 2, the corresponding interval always has length 2ab − a − b + 1,
and the precise interval is given next.

Corollary 3.10 Given k ≥ 2, the smallest interval containing all k-representable integers
is [gk−2 + a+ b, gk].

Proof. By Corollaries 3.8 and 3.9, the smallest integer in the interval is

ab(k − 1) = gk−2 + a+ b .

The upper bound of the interval follows by definition of gk. 2

Corollary 3.11 There are exactly ab− 1 integers which are uniquely representable. Given
k ≥ 2, there are exactly ab k-representable integers.

Proof. First, in the interval [1, ab], there are, by Corollaries 3.5 and 3.9,

ab− (a− 1)(b− 1)
2

− 1

1-representable integers. Using Theorem 3.7, we see that there are

(a− 1)(b− 1)
2

1-representable integers above ab. For k ≥ 2, the statement follows by similar reasoning.
2
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Chapter 4

Multidimensional Ehrhart
Reciprocity

If things are nice there is probably a good reason why they are nice: and if you do not know at least
one reason for this good fortune, then you still have work to do.
Richard Askey ([As])

One of the exercises on the greatest integer function [x] in an elementary course in number
theory is to prove the statement [

t− 1
a

]
= −

[
−t
a

]
− 1 (4.1)

for t ∈ Z, a ∈ N. Geometrically, this is a special instance of a much more general theme.
Consider the interval

[
0, 1

a

]
, viewed as a 1-dimensional rational polytope. Now we dilate

this polytope by an integer factor t > 0, and count the number of integer points in the
dilated polytope. It is straightforward that this number in the open dilated polytope is[
t−1
a

]
, whereas in the closure there are

[
t
a

]
+ 1 integer points. Hence (4.1) marks the sim-

plest, namely one-dimensional, case of the Ehrhart-Macdonald reciprocity law for rational
polytopes (Theorem 1.3).

In this chapter, we generalize the notion of dilated polytopes: we use the description of a
convex polytope as the intersection of halfspaces, which determine the facets of the polytope.
Instead of dilating the polytope by a single factor, we allow different dilation factors for
each facet, such that the combinatorial type of the polytope does not change. Recall that
two polytopes are combinatorially equivalent if there exists a bijection between their
faces that preserves the inclusion relation.

For the following definition, it is a crucial fact that rational polytopes can be described by
inequalities with integer coefficients.

40
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Definition 4.1 Let the convex rational polytope P be given by

P = {x ∈ Rn : A x ≤ b} ,

with A ∈Mm×n(Z),b ∈ Zm. Here the inequality is understood componentwise. For t ∈ Zm,
define the vector-dilated polytope P(t) as

P(t) = {x ∈ Rn : A x ≤ t} .

For those t for which P (t) is combinatorially equivalent to P = P(b), we define the number
of lattice points in the interior and closure of P(t) as

iP(t) = #
(
P(t)◦ ∩ Zn

)
and jP(t) = #

(
P(t) ∩ Zn

)
,

respectively.

Geometrically, for a given polytope we fix the normal vectors to its facets and consider all
possible translations of the facets that do not change the face structure of the polytope.
Note that the dimension of t is the number of facets of the polytope. The previously defined
quantities L(P◦, t) and L(P, t) can be recovered from this new definition by choosing t = tb.

We will prove that these new lattice point count operators have again a quasi-polynomial
behavior satisfying an Ehrhart-type reciprocity law. In fact, the quasi-polynomial behavior
is the more difficult part of the theory. We start by proving such a reciprocity law for
simplices, which implies already the classical Ehrhart-Macdonald reciprocity law (Theorem
1.3). It is worth noticing that our proof is elementary in the sense that it does not use
any sophisticated machinery. In fact, the original motivation for our reciprocity law was to
construct an elementary proof of Theorem 1.3. In section 4.2, we extend this reciprocity
theorem to general rational polytopes.

4.1 Vector-dilated Simplices

Here is the proposed generalization of Theorems 1.2 and 1.3 for simplices.

Theorem 4.1 Let S be an n-dimensional rational simplex. Then iS(t) and jS(t) are
quasipolynomials in t ∈ Zn+1, satisfying

iS(−t) = (−1)njS(t) .

A quasipolynomial in the d-dimensional variable t = (t1, . . . , td) is the natural gener-
alization of a quasipolynomial in a 1-dimensional variable: namely, an expression of the
form ∑

0≤k1,...,kd≤n
c(k1,...,kd) t

k1
1 · · · t

kd
d ,

where c(k1,...,kd) = c(k1,...,kd)(t1, . . . , td) is periodic in t1, . . . , td. We first need to prove a
lemma on such expressions.
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4.1.1 A Lemma on Quasipolynomials

Lemma 4.2 Let q(t1, . . . , tm) be a quasipolynomial, and fix a1, . . . , am, c0, . . . , cm, d ∈
Z, d 6= 0. Then

Q1(t) = Q1(t0, t1, . . . , tm) =

[
c0t0+···+cmtm−1

d

]∑
k=1

q (t1 + a1k, . . . , tm + amk)

and

Q2(t) =

[
c0t0+···+cmtm

d

]∑
k=0

q (t1 + a1k, . . . , tm + amk)

are also quasipolynomials.

Remark. Here and in the following we define a finite series
∑b

k=a . . . for both cases a ≤ b
and a > b, in the usual way:

b∑
k=a

· · · =


∑b

k=a . . . if a ≤ b
0 if a = b+ 1
−
∑a−1

k=b+1 . . . if a ≥ b+ 2 .
(4.2)

Proof. We will prove the statement for Q2; the proof for Q1 follows in a similar fashion.
After expanding out q in all its terms and multiplying out the binomial expressions, it
suffices to prove that

Q3(t) =

[
c0t0+···+cmtm

d

]∑
k=0

f (t1 + a1k, . . . , tm + amk) kj

is a quasipolynomial, where j is a fixed nonnegative integer and f is a periodic function
in m variables. Consider a period p which is common to all the arguments of f , that
is, f (x1 + p, . . . , xm + p) = f (x1, . . . , xm). To see that Q3 is a quasipolynomial, use the
properties of f to write it as

Q3(t) = f (t1, . . . , tm)

[
c0t0+···+cmtm

dp

]∑
k=0

(kp)j

+ f (t1 + a1, . . . , tm + am)

[
c0t0+···+cmtm−d

dp

]∑
k=0

(1 + kp)j +

+ f (t1 + 2a1, . . . , tm + 2am)

[
c0t0+···+cmtm−2d

dp

]∑
k=0

(2 + kp)j + . . . +

+ f
(
t1 + (p− 1)a1, . . . , tm + (p− 1)am

) [ c0t0+···+cmtm−(p−1)d
dp

]∑
k=0

(p− 1 + kp)j .
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Upon expanding all of the binomials, putting the finite sums into closed forms, and writing
[x] = x−{x}, the only dependency on t is periodic (with period dividing dp) or polynomial.
2

4.1.2 Proofs of Theorems 4.1 and 1.3

Proof of Theorem 4.1. We use induction on the dimension n. First, a 1-dimensional rational
simplex S is an interval with rational endpoints. Hence S(t) is given by

t1
a1
≤ x ≤ t2

a2
,

so that we obtain

iS(t) =
[
t2 − 1
a2

]
−
[
t1
a1

]
and jS(t) =

[
t2
a2

]
−
[
t1 − 1
a1

]
.

These are quasipolynomials, as can be seen by writing [x] = x−{x}. Furthermore, by (4.1),

iS(−t) =
[
−t2 − 1
a2

]
−
[
−t1
a1

]
= −

[
t2
a2

]
+
[
t1 − 1
a1

]
= −jS(t) .

Now, let S be an n-dimensional rational simplex. After harmless unimodular transfor-
mations, which leave the lattice point count invariant, we may assume that the defining
inequalities for S are

a11x1 ≤ b1
a21x1 + . . . + a2nxn ≤ b2

...
an+1,1x1 + . . . + an+1,nxn ≤ bn+1 .

(Actually, we could obtain a lower triangular form for A by Hermite normal form; however,
the above form suffices for our purposes.) Hence there exists a vertex v = (v1, . . . , vn)
with v1 = b1

a11
and another vertex w = (w1, . . . , wn) whose first component is not b1

a11
.

After switching x1 to −x1, if necessary, we may further assume that v1 < w1. Since w
satisfies all equalities but the first one, it is not hard to see that w has first component
w1 = r2b2 + · · · + rnbn, for some rational numbers r2, . . . , rn; write this number as w1 =
c2b2+···+cnbn

d with c2, . . . , cn, d ∈ Z. Viewing the defining inequalities of the vector-dilated
simplex S(t) as

t1
a11

≤ x1 ≤ c2t2+···+cntn
d

a22x2 + . . . + a2nxn ≤ t2 − a21x1
...

an+1,2x2 + . . . + an+1,nxn ≤ tn+1 − an+1,1x1 ,
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we can compute the number of lattice points in the interior and closure of S(t) as

iS(t) =

[
c2t2+···+cntn−1

d

]∑
m=

[
t1
a11

]
+1

iQ (t2 − a21m, . . . , tn+1 − an+1,1m) (4.3)

and

jS(t) =

[
c2t2+···+cntn

d

]∑
m=

[
t1−1
a11

]
+1

jQ (t2 − a21m, . . . , tn+1 − an+1,1m) , (4.4)

respectively, where the (n− 1)-dimensional simplex Q(b) is given by

Q(b) =
{
x ∈ Rn−1 : B x ≤ b

}
,

and

B =

 a22 . . . a2n
...

an+1,2 . . . an+1,n

 ∈Mn×(n−1)(Z) .

Note that if we start with some t ∈ Zn+1 which satisfies Definition 4.1, then the dilation
parameters for Q in (4.3) and (4.4) will ensure that the lattice point count operators are well
defined. iQ(t) and jQ(t) are, by induction hypothesis, quasipolynomials satisfying the reci-
procity law Theorem 4.1. Hence, by Lemma 4.2, iS(t) and jS(t) are also quasipolynomials.
Note that we again use (4.2) to define these expressions for all t ∈ Zn+1. Furthermore,

iS(−t) =

[
−c2t2−···−cntn−1

d

]∑
m=

[
−t1
a11

]
+1

iQ (−t2 − a21m, . . . ,−tn+1 − an+1,1m)

Thm. 4.1= −

[
−t1
a11

]∑
[
−c2t2−···−cntn−1

d

]
+1

(−1)n−1jQ (t2 + a21m, . . . , tn+1 + an+1,1m)

(4.1)
= (−1)n

−
[
t1−1
a11

]
−1∑

m=−
[
c2t2+···+cntn

d

] jQ (t2 + a21m, . . . , tn+1 + an+1,1m)

= (−1)n

[
c2t2+···+cntn

d

]∑
m=

[
t1−1
a11

]
+1

jQ (t2 − a21m, . . . , tn+1 − an+1,1m) = (−1)njS (t) .

2

We are finally in a position that allows us to prove the classical Ehrhart-Macdonald reci-
procity law.
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Proof of Theorem 1.3. We use double induction on the dimension of the polytope P and
on the number of n-dimensional simplices which triangulate P. We saw already that The-
orem 1.3 follows for 1-dimensional polytopes (that is, intervals) from (4.1). Also, Theorem
1.3 holds for simplices, as a special case of Theorem 4.1. For a general P satisfying the
hypotheses of the statement, write

P = P1 ∪ P2 ,

where P1 is an n-dimensional simplex such that P2 := P − P1 is again a polytope homeo-
morphic to an n-manifold. Note that the conditions on P imply that P1 and P2 share an
(n− 1)-dimensional polytopal boundary, which we denote by P3. Hence

L(P, t) = L(P1, t) + L(P2, t)− L(P3, t)

and
L(P◦, t) = L(P◦1 , t) + L(P◦2 , t) + L(P◦3 , t) .

By induction, we can apply Theorem 1.3 to P1, P2, and P3:

L(P,−t) = L(P1,−t) + L(P2,−t)− L(P3,−t)
= (−1)nL(P◦1 , t) + (−1)nL(P◦2 , t)− (−1)n−1L(P◦3 , t)
= (−1)nL(P◦, t) .

2

4.1.3 Some Remarks and an Example

An obvious generalization of Theorem 4.1 is a similar statement for arbitrary rational poly-
topes (with any number of facets). This is the theme of section 4.2.

Another variation of the idea of vector-dilating a polytope is to dilate the vertices by cer-
tain factors, instead of the facets. This would most certainly require methods completely
different from the ones used here.

It is, finally, of interest to compute precise formulas (that is, the coefficients of the quasipoly-
nomials) for iS (t) and jS (t), corresponding to the various existing formulas for L (P◦, t)
and L

(
P, t
)
.

To illustrate this, we will compute jS (t) for a two-dimensional rectangular rational triangle,
namely,

S =

x ∈ R2 :
a1x1 ≥ 1

a2x2 ≥ 1
c1x1 + c2x2 ≤ 1

 .

Here, a1, a2, c1, c2 are positive integers; we will also assume that c1 and c2 are relatively
prime. To derive a formula for jS (t) we can use once more the methods of chapter 2. A
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straightforward computation yields

jS (t) =
1

2c1c2
(e1 + e2 − t3)2 − 1

2
(e1 + e2 − t3)

(
1
c1

+
1
c2

+
1
c1c2

)
+

1
4

+
1
12

(
c1

c2
+
c2

c1
+

1
c1c2

)
+
c1−1∑
k=0

((
t3 − e2 − c2k

c1

))((
k

c1

))

+
c2−1∑
k=0

((
t3 − e1 − c1k

c2

))((
k

c2

))
.

Here we introduced, for ease of notation, ej :=
([

tj−1
aj

]
+ 1
)
cj for j = 1, 2. To see the

quasipolynomial character better, we substitute back the expressions for e1 and e2, and
write [x] = x − ((x)) − 1/2 for the greatest integer function. After a somewhat tedious
calculation, we obtain

jS (t) =
c1

2a2
1c2

t21 +
c2

2a2
2c1

t22 +
1

2c1c2
t23 +

1
a1a2

t1t2 −
1

a1c2
t1t3 −

1
a2c1

t2t3

+ν1(t) t1 + ν2(t) t2 + ν3(t) t3 + ν0(t) ,

where

ν1(t) = − c1

a2
1c2

(
1 +

((
t1 − 1
a1

)))
− 1
a1

((
t2 − 1
a2

))
− 1
a1a2

− 1
2a1c2

ν2(t) = − c2

a2
2c1

(
1 +

((
t2 − 1
a2

)))
− 1
a2

((
t1 − 1
a1

))
− 1
a1a2

− 1
2a2c1

ν3(t) =
1

a1c2
+

1
a2c1

+
1

2c1c2
+

1
c2

((
t1 − 1
a1

))
+

1
c1

((
t2 − 1
a2

))
ν0(t) = − 1

4c1
− 1

4c2
+

1
a1a2

+
1

2a1c2
+

1
2a2c1

+
1

12c1c2
− c1

24c2
− c2

24c1

+
c1

2a2
1c2

+
c2

2a2
2c1

+
((

t1 − 1
a1

))(
1
a2

+
1

2c2
+

c1

a1c2

)
+
((

t2 − 1
a2

))(
1
a1

+
1

2c1
+

c2

a2c1

)
+

c1

2c2

((
t1 − 1
a1

))2

+
c2

2c1

((
t2 − 1
a2

))2

+
((

t1 − 1
a1

))((
t2 − 1
a2

))
+
c1−1∑
k=0

((
t3
c1
− t2 − 1

a2c1
+

1
c1

((
t2 − 1
a2

))
− 1

2c1
− c2k

c1

))((
k

c1

))

+
c2−1∑
k=0

((
t3
c2
− t1 − 1

a1c2
+

1
c2

((
t1 − 1
a1

))
− 1

2c2
− c1k

c2

))((
k

c2

))
.
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4.2 Extension to General Polytopes

In this section, we finish the picture by extending Theorem 4.1 to general rational polytopes.
We should start by extending Definition 4.1 to nonconvex polytopes. This can be done
naturally in an additive way: write the polytope as the union of convex polytopes, and apply
the above Definition 4.1 to these components. More thoroughly, we make the following

Definition 4.2 Let P be a rational polytope. Write P =
⋃r
k=1 Pk, where Pk are convex

rational polytopes, say,
Pk = {x ∈ Rn : Ak x ≤ bk} ,

with bk ∈ Zmk . Given t ∈ Zm, where m = m1 + · · ·+mr, combine the first m1 components
of t in a vector t1, the next m2 components in t2, etc. Define the vector-dilated polytope
P(t) as

P(t) =
r⋃

k=1

P(tk)
k .

For those t for which P (t) is combinatorially equivalent to P, we define as above

iP(t) = #
(
P(t)◦ ∩ Zn

)
and jP(t) = #

(
P(t) ∩ Zn

)
.

4.2.1 Extending Ehrhart Reciprocity

From the Ehrhart-Macdonald reciprocity law we will now conclude a generalized version of
Theorem 4.1:

Theorem 4.3 Suppose the rational polytope P is homeomorphic to an n-manifold. Then
iP(t) and jP(t) are quasipolynomials in t ∈ Zm, satisfying

iP(−t) = (−1)njP(t) .

Proof. It suffices to prove that iP(t) and jP(t) are quasipolynomials. In fact, once we know
this, the statement follows from Theorem 1.3:

iP(−t) = L
(
P(t)◦,−1

)
= (−1)nL

(
P(t), 1

)
= (−1)njP(t) .

To show that our lattice point count operators are quasipolynomials, it clearly suffices to
prove that iP(t) and jP(t) are quasipolynomials in one of the components of t, say t1.
Because we leave only this one component variable, we may also assume that P is convex.
We make a unimodular transformation (which leaves the lattice invariant) similar to that
in the last section: we may assume that the defining inequalities for P(t) are

a11x1 ≤ t1
a21x1 + . . . + a2nxn ≤ t2

...
am,1x1 + . . . + am,nxn ≤ tm .
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(Again, we could obtain a lower triangular form.) Viewing these inequalities as

x1 ≤ t1
a11

a22x2 + . . . + a2nxn ≤ t2 − a21x1
...

am,2x2 + . . . + am,nxn ≤ tm − am,1x1 ,

we can compute the number of lattice points in the interior and closure of P(t) as

iP(t) =

[
t1−1
a11

]∑
k=s1

iQ (t2 − a21k, . . . , tm − am,1k) (4.5)

and

jP(t) =

[
t1
a11

]∑
k=s2

jQ (t2 − a21k, . . . , tm − am,1k) , (4.6)

respectively. Here s1 and s2 are rational numbers not depending on t1, and the (n − 1)-
dimensional polytope Q(b) is given by

Q(b) =
{
x ∈ Rn−1 : B x ≤ b

}
,

where

B =

 a22 . . . a2n
...

am,2 . . . am,n

 ∈M(m−1)×(n−1)(Z) .

The functions iQ and jQ, which are summed in (4.5) and (4.6), are constant in t1. Thus we
only need a weak form of Lemma 4.2 to deduce that iP(t) and jP(t) are quasipolynomials
in t1. 2

At this point, we find it appropriate to remark why we did not simply start the notion of
vector-dilated polytopes with this proof, assuming classical Ehrhart-Macdonald reciprocity.
The point of section 4.1 (or at least half of it) was really to give an elementary proof of
Theorem 1.3. It is for this reason that we chose to build our proof of Theorem 4.3 upon the
work in section 4.1. The course of the proof looks like the following diagram:

(4.1) =⇒ Theorem 4.1 =⇒ Theorem 1.3 =⇒ Theorem 4.3

4.2.2 Extending Stanley’s Theorem

We conclude by proving an appropriate generalization of the following theorem due to
Stanley ([St1]). The Ehrhart-Macdonald reciprocity law compares the lattice point count
of the polytope with that of the interior, that is, the polytope with all its facets removed.
Stanley’s theorem tells us what to expect if we only remove some of the facets.
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Theorem 4.4 (Stanley) Suppose the rational polytope P is homeomorphic to an n-manifold.
Denote the set of all (closed) facets of P by F , and let T be a subset of F , such that

⋃
F∈T F

is homeomorphic to an (n− 1)-manifold. Let

jP,T (t) = #

(
t

(
P −

⋃
F∈T
F

)
∩ Zn

)
and

iP,T (t) = #

(
t

(
P −

⋃
F∈F−T

F

)
∩ Zn

)
.

Then
iP,T (−t) = (−1)njP,T (t) .

2

Note that Theorem 1.3 is the special case T = ∅ of Theorem 4.4. For an example which
shows that this result does not hold in general, see [St1].

Our generalization will be proved essentially in the same way Stanley deduced Theorem 4.4
from Theorem 1.3.

Corollary 4.5 Suppose the rational polytope P is homeomorphic to an n-manifold. Denote
the set of all (closed) facets of P by F , and let T be a subset of F , such that

⋃
F∈T F is

homeomorphic to an (n− 1)-manifold. Let

jP,T (t) = #

((
P(t) −

⋃
F∈T
F (t)

)
∩ Zn

)
and

iP,T (t) = #

((
P(t) −

⋃
F∈F−T

F (t)

)
∩ Zn

)
.

Then
iP,T (−t) = (−1)njP,T (t) .

Again, note that Theorem 4.3 is the special case T = ∅ of this corollary.

Proof. By definition,
jP,T (t) = jP(t)−

∑
F∈T

jF (t)

and
iP,T (t) = jP(t)−

∑
F∈F−T

jF (t) = iP(t) +
∑
F∈T

iF (t) .

Hence by Theorem 4.3,

iP,T (−t) = (−1)njP(t) +
∑
F∈T

(−1)n−1jF (t) = (−1)njP,T (t) .

2
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