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ABSTRACT

On Boundary Values of Solutions in Involutive Structures

Ziad Adwan
Doctor of Philosophy

Temple University, August, 2006

Professor Shiferaw Berhanu, Chair

An involutive structure is a pair (M,V) where M is a C*° manifold and V is a
subbundle of the complexified tangent bundle CT'M which is involutive, that is, the bracket
of two smooth sections of V is also a smooth section of V. The involutive structure (M, V) is
called locally integrable if the orthogonal of V in CT™ M is locally generated by exact forms.
In Chapter 1, we will study hypo-analytic structures which are special locally integrable
structures. A microlocal theory of hypo-analyticity was developed in [BCT] and it was used
to describe the regularity of solutions in [BCT]. A more invariant definition of microlocal
hypo-analyticity was given more recently by Eastwood and Graham [EG]. We will present
a proof of the equivalence of the notions of microlocal hypo-analyticity given in the works
[BCT] and [EG]. We will then use the definition of microlocal hypo-analyticity given in
[EG] to present a proof of a criterion (see Theorem 34) for a distribution v on a maximally
real submanifold X in C™ to be expressible as the sum of boundary values of holomorphic
functions on prescribed wedges. The hypo-analytic wave-front set of u, WFX(u), is con-
strained as a consequence of the fact that u extends as a holomorphic function to a wedge.
We then prove a result (see Theorem 42) which shows how to decompose a distribution u
on a maximally real submanifold in C™ as a sum of distributions u;, 1 < j < N, whose
hypo-analytic wavefront sets are contained in pre-assigned cones.

In Chapter 2, we study existence of boundary values of solutions defined on wedges;
this can be summarized as follows: Let N be a submanifold of a smooth manifold M. In
a neighborhood of a point of N we may introduce coordinates («/,z”) for M with 2’ € R"
and z” € R® in which, locally, N = {z” = 0}. By a wedge in M with edge N we mean
an open set W C M which in some such coordinate system is of the form W = B x C,

where B is a ball in R” and C is a truncated, open convex cone in R*\{0}. When (M, V)



is a hypo-analytic structure, a submanifold £ of M is called strongly noncharacteristic if
CI,M = CI,E + V), for each p € E, and maximally real if CT,M = CT,E ® V, for each
p € E. Suppose W is a wedge in M whose edge E is maximally real. Let v € D’'(W) be a
solution of V. Let (2, 2") be a coordinate system in which F = {2 =0} and W = B x C as
above. It is known that the solution u is a smooth function of z” € C valued in distributions
in 2’-space B. We will prove (see Theorem 45) a sufficient condition for the existence of a
boundary value for u, bu, at ” = 0 when u is continuous on the wedge W. This generalizes
previous results in [BH1| and [BH2]. Then we prove a similar result (see Theorem 50) when
our involutive structure is not necessarily locally integrable.

In Chapter 3, we study Edge-of-the-Wedge theory in involutive structures that are

not necessarily locally integrable (see Theorems 58 and 61).
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CHAPTER 1

Microlocal Hypo-analyticity and
the FBI Transform

1.1 Introduction

In this chapter, we study microlocal regularity properties of the distributions u on
a maximally real submanifold X of a hypo-analytic manifold M that arise as the boundary
values of holomorphic functions on wedges in M with edge X. The hypo-analytic wave-front
set of u is constrained as a consequence of the fact that u extends as a holomorphic function

to a wedge.

1.2 Hypo-analytic Structures

Definition 1 Let (M,V) be a locally integrable structure, where dimgr M = m + n, and
dimc V = n. Suppose that M can be covered by charts (Uy, Zy), where Uy, C M is open and
Lo = (Zé,...,Z(T) : Uy — C™ are a complete set of first integrals; (i.e., dZ},...,dZ™ are
everywhere linearly independent and VZ, = 0). Suppose further that whenever UyNUg # O,

there exists a local bitholomorphism

fag:U'C C™—Cm

such that

fap o (Zalvanus) = Zsluanu,-
B B



Then we say that (M,V) is a hypo-analytic manifold. Here, the number m is called the

dimension of the hypo-analytic structure, and n its codimension.

Definition 2 A function f : M — C on a hypo-analytic manifold M is said to be hypo-
analytic if in a neighborhood of each point p € M it is of the form

f=h2Z1,....Zm)

where h is holomorphic and defined in a neighborhood of (Z1(p), ..., Zm(p)) in C™.
In other words, f is hypo-analytic at p € M if f can be represented by a convergent

power series in (Z1, ..., Zy) in some neighborhood of p in M.
Definition 3 We define the structure bundle T' of M by
= U Tzlv
peEM

where
T, ={w e CI; M : (w,v) =0 for allv € V,} = spanc{dZi(p), ...,dZm(p)}.

Definition 4 Let (M,V) be involutive. A submanifold X C M 1is called mazximally real if
the pullback map
7 CT*"M|x — CT*X

nduces an isomorphism

T'|x = CT*X.

Note that, therefore, dimg X = m. The next lemma gives other equivalent definitions of

mazximally real submanifolds.

Lemma 5 Let X C M be a submanifold. Then the following are equivalent:
(i) X is mazximally real;
(i) CT,M = CT,X &V, for allp € X; and
(i) CI;M = CN; X © T, for allp € X.

Proof. (i) = (ii) Suppose that X C M is maximally real. This means that the pull-
back map 7* : CT*M|x — CT*X induces an isomorphism 7"|x = CT*X. Let p € X. If
{w1, ., wim} is abasis of Ty, then {7*(w1), ..., 7™ (wm) } is a basis of CT; X. Let v € CT, XNV,



Being in V), we have that (7*(w;),v) = 0 for all 1 < j < m. Thus, <CT;X, U> = 0 and since
v € CT,X, v =0. Hence, CI},X NV, = {0}. Since CT,X @V, C CT,M, dimc CT,X = m,
dimc V = n, and dim¢ CT,M = m + n, we get that CI;,M = CT, X @ V.

(i1) == (iii) Fix p € X and let w € CN; X NT,, € CTyM. Then {(w, CT,X) = 0
and (w,V,) = 0. But CI,M = CI,X ¢ V,. Hence, (w,CI,M) = 0 and so w = 0. Hence,
CN,X NT, = {0}. Since CN;X & T, € CT;M, dim¢ CN; X = n, dimcT, = m, and
dime CTy M = m + n, we get that CI; M = CN; X & T,

(1it) = (1) We need to show that the pullback map 7* : CT*M|x — CT*X
induces an isomorphism 7"|x = CT*X. Since dimc T, = m = dimc CT; X, it suffices to
show that 7* : T1,7 — CT, X is injective for every p € X. So, fix p € X and let w € Tlﬁ.
Suppose that 7* (w) = 0. Then 0 = (7* (w) , CT,, X) = (w, CTX) . Hence, w € CN; X. Thus,
w € CN;jX NT, = {0} and so w = 0. This shows that 7* : T) — CT; X is injective and

hence, an isomorphism. =

Definition 6 Let X C M be mazimally real. The real structure bundle of X, denoted by
RTY%, is the image of the real cotangent bundle of X, T*X, under the natural isomorphism
T'x = CT*X.

Definition 7 The characteristic set of M, denoted T°, is defined to be
T =T'NT*M.
It can be easily shown that if X C M is a maximally real submanifold, then T®|x C RT%.

Suppose that (M, V) is a hypo-analytic manifold, X C M is maximally real, p € X,
and let {Z1,..., Z,,} be a complete set of first integrals near p in M. Then we have that
{d(Zj|x) : 1 < j < m} is a basis of CI*X. Since V,X =V, NCT,X = {0}, X inherits a
hypo-analytic structure from M of codimension 0.

From the Baouendi-Treves Approximation Formula, we get the following result:

Proposition 8 If (M,V) is locally integrable, X C M is mazimally real, and f is a solution
such that f|x =0, then f =0 in a neighborhood of X in M.

As an immediate consequence, one has the following proposition:



Proposition 9 Suppose (M,V) is a hypo-analytic manifold, X C M mazimally real, and
h a solution in a neighborhood of X in M. Let po € X and Z = (Z1, ..., Zym) be a complete
set of first integrals near py. Suppose further that H is holomorphic near Z(py) and h(z) =
H(Z(z)) for x € X near pg. Then h(p) = H(Z(p)) for p € M near pp.

Hence, to study regularity (hypo-analyticity) of a solution h, it is enough to study
the restriction h|x where X C M is maximally real.

Now, let X be a manifold with a hypo-analytic structure of codimension 0, (such an
X will often arise as a maximally real submanifold of a large hypo-analytic manifold), and
let p € X. We may choose our hypo-analytic chart Z such that Z(p) = 0 and ImdZ(p) = 0,
in which case we may take z; = Re Z; (1 < j < m) as local coordinates on X near p. These
coordinates enable us to identify a neighborhood of p in X with a neighborhood of 0 in R™
and Ty X with TgR™ = R™. Set ® = Im Z so that near 0 in R™, Z(z) = = + i®(z) € C™,
where ®(0) =0, and D®(0) = 0. Then Z : X — Z(X) is an embedding near p of X onto a
totally real submanifold of C™ of maximal dimension. We will often identify X with Z(X).

Remark 10 (Description of the real structure bundle RT% near 0) Let X C C™ be a
mazximally real submanifold. After a translation and a C-linear transformation in C™, we
may assume that 0 € X and that ToX = R"™. Then in a small enough neighborhood €2 of 0
in X, Q is the image of some open neighborhood U of 0 in R™ wunder the map x — Z(x)
with Z(x) = x +i®(z); where & : U — R™ is C°, ®(0) =0, and ®,(0) = 0. Then a point
(2,) € RT%, with z € Z(U), if there is x € U and § € R™ such that

z2=Z(x) and ¢ = 'Z, ()¢

1.3 FBI Transform in a Maximally Real Submanifold of C™

The variable point in C™ will be denoted by z or z’; "dual" coordinates will be (;

(1 <j <m). For any number 7 > 0 we write
C,={¢eC™:|Im(| <T|Re(|}
For any z = (21, ..., 2m) € C™, we write

(2P =z-2=2+4..+2%



and for any ¢ € Cy, we write
€)= (¢- §)1/2 (main branch of square root).

Note that Re (¢)? > 0 for all ¢ € C;. We shall also use the notation

A(z,0) = det (I +i(2©¢) /()

where z©( denotes the m xm matrix (ziCj) 1<ij<m’ A(z,() is just the Jacobian determinant

of the map
(= (¢+i(Qz (2€C™, Cely).

From now on, let (M,V) be C™ with the standard complex structure

V:span@{aaz:lgjgm}.
J

Also, let X C C™ be a maximally real submanifold.
Definition 11 Let u € £'(X). For (z,() € C™ x C1, the duality bracket

Fuler) = [ =0 4 (o .0
X

will be called the FBI transform of w.
Proposition 12 F,(z,{) € O (C™ x (y).

Proof. Let M;, 1 <i < m, be the vector fields on X defined by the relations M;(z;|x) = 6;;.
Then {Mj, ..., M,,} form a basis of CT'X. The structure theorem for compactly supported
distributions u € £'(X) states that we may write

u= Y M%% (0= (a1,....qm) €L} r€Zy; M =M ---Mm),
la|<r

where for each «, u, is continuous on X and supp(u,) is compact and contained in an

arbitrary neighborhood of supp(u) . By linearity, one has

Fu(27<) = Z fM"ua(va)'

laf<r

Integration by parts gives

Faton (2:C) = / Ny IYP( — o, (),
X



where

_ iz O(2)? e i Q)2 _ —icerio? ((O)° iz (C)(2)?
Palz.) = ¢ Mz ) b=c (5.) (600 )

To every compact set K C C™ there exists a constant Cx > 0 such that

1Palz,0)| < Cx (1+ ¢! for all (z,¢) € K xC

8 e}
fMO‘u_ ((92> fu,

Fus= 5 (5) Fulet) = 8 [0 0py - 2005

la|<r

Also, we have

and hence,

We note that
/ e () Pz — 2, () de
X

defines a holomorphic function of (z,() € C™ x C; (This follows since u, is continuous, and

so we can differentiate under the integral sign). m

Definition 13 Let X C C™ be a mazimally real submanifold and let zg € X. We say that
X s well-positioned at zy if there is a number 7, 0 < 7 < 1, and an open neighborhood €2

of zo in X such that the following is true:

Whatever z,2" € Q and ¢ € (RT%|.) U (RT%|.),
m¢| < 7 [Re(];
I [¢- (2= )+ (C) (= #)°] = (=) [cl |2 — 2P

We shall say that X is very well-positioned at zg if, given any number 7, 0 < 7 < 1,

there is an open neighborhood 2 of 2y in X such that the same as above holds.

Proposition 14 (Proposition IX.2.2 in [T]) Given any mazimally real submanifold X C
C™, and any point zg € X, there exists a biholomorphism H of an open neighborhood O of

2o in C™ onto an open neighborhood of the origin, with H(zg) = 0, such that
H(X N O) is very well-positioned at 0.

The following proposition follows easily from the above discussion:



Proposition 15 Let X C C™ be a maximally real submanifold that is well-positioned at zg.
Then there exists a neighborhood Q2 of zo in X with the following property: For allu € £'(X)

there are an integer k > 0 and a number C > 0 such that
[ Fulz, QI SCA+[C)" for all (2,¢) € RTk|a.
Definition 16 Define, for any € > 0 and z € C™,

u(z) = /e‘e<<>2fu(z,{)dg‘ = //eiC'(Z—Z’)—<C>(Z—Z’>2—6<C>2u(z/) A(z =2, 0)dd¢

Rm R™ X

(of course, since ¢ € R™, we have () = |(]). Observe that for each fized € > 0, u € O (C™).

Theorem 17 (FBI Inversion Formula) Suppose that X C C™ is a mazimally real subman-
ifold, 0 € X, and X is well-positioned at the origin. There is a neighborhood ) of 0 in X
such that

whatever u € £'(Q), u(z) = (2r) " limu‘(2) in D'(Q).

el0

Remark 18 Suppose that X C C™ is a mazimally real submanifold, and X is well-
positioned at the origin. Thanks to the property that |Im(| < 7 |Re(| we can, for each
2,2 € Q, deform the domain of (-integration in the integral at the right in Definition 16
from R™ to RT% |, within the cone Cr. We conclude that the integration with respect to

(2, C) in that same integral can be carried out over RTY .

Finally, we will use the following " Paley- Wiener" theorem in our proof of Theorem

34:

Theorem 19 (Theorem IX.4.1in [T]) Let X C C™ be a maximally real submanifold pass-
ing through, and well-positioned at the origin. Let Q0 C X be a sufficiently small neighbor-
hood of 0 and u € E'(Q). Then the following are equivalent:

(1) w is C* in some neighborhood Q' of 0 in §;

(ii) There is a compact neighborhood K of 0 in Q such that the following is true:

For any integer k> 0 there exists a constant Cy, > 0 such that

Ful2,Q)] < Cue@Q+[¢)7" for all (2,¢) € RT k.



1.4 Wedges in C" with Generic CR Edges and the Hypo-
analytic Wavefront Set

Definition 20 Let M C CV be a C*® generic CR submanifold of codimension d and CR-
dimension n (so that N =n+d) and let po € M. Let p = (py, ..., pq) be a defining function
of M near po and V' a small neighborhood of po in CN in which p is defined. If T C R? is

an open convexr cone with vertex at the origin, we define
WV, p,T)={Z2€V:p(Z,7) €T}

This is an open subset of CN whose boundary contains M N'V. Such a set is called a wedge

with edge M in the direction of I centered at pg.

Example 21 If M C CV is a hypersurface; i.e., d = 1, a wedge with edge M centered at

po 1s just a one-sided neighborhood of po; i.e., an open set of the form
{ZEV:p(Z,Z) >0} or {ZGV:p(Z,Z) <0}.
Definition 20 is, in a sense, independent of the choice of p :

Lemma 22 (Proposition 7.1.2 of [BER]) Let p and p’ be two defining functions of M near
po. Then there is a d X d real invertible matriz B such that for every V and I' as above the
following holds: For every open convex cone I'y C R with BTy NS4t cc I' NS L, there
exists an open neighborhood Vi of py in CN such that W(Vi, o/, T1) ¢ W(V, p,T).

Definition 23 We say that a holomorphic function f(Z) € OW(V,p,T)) is of tempered

growth (or slow growth) if there exists a constant C > 0 and an integer k > 0 such that

C
1f(Z2)| < ———=— forall Z e W(V,p,T).
n(2,7)]
If dist(Z, M) denotes the distance from a point Z to the submanifold M, then the above

inequality is equivalent to

C
F(2)] < m for all Z € W(V, p,T),

where C' > 0 might be different from the one above.



Now, if M c CV is a C* generic CR submanifold of codimension d and CR-

dimension n, with 0 € M, then, near 0 in M, we can find holomorphic coordinates
Z = (z,w) = (z + iy, s + it) € C" x C4,

so that near 0,
M ={(z,s +1ip(2,%5))},
where ©(0) = 0 and D(0) = 0. As a defining function of M near 0, say in V C CV, we can
take
p=(p1;-pa) = (b1 = 01(2,%,8), ., ta — a(2, %, 5)) -

So, if we let I' € R? be an open convex cone with vertex at the origin, then

W= W({V,pl)
= {(z,s+it) : t =9(2,2,5) +v,v el |z|, |s| <€}

= {(z,s+1ip(z,Z,8) +iv) v €T, |z], |s| <€}

will be a wedge with edge M in the direction of T' centered at 0. Thus, a function f € O(W)

is of tempered growth if there exists a constant C' > 0 and an integer k > 0 such that
. _ . C
v

for all sufficiently small z € C*, s € R¢, and v € T.

A holomorphic function f € O(W) of tempered growth has a distribution boundary
value on the edge M :

Theorem 24 (Theorem 7.2.6 of [BER]) Suppose f € O(W) is of tempered growth. Then
for any x = x(x,y, s) € C(R*"+4) supported in |z| < ¢, |s| < e, we have that

11limo / f(z,s+ip(z,Z,s) +iv)x(z,y, s)dedyds = (bf, x) exists,
Sv—

R2n+d
and u = bf is a distribution of order less than or equal to k + 1. In addition, uniqueness
holds; i.e., if u = bf = 0, then f = 0. The boundary value uw = bf 1is independent of the

choice of regular coordinates.
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In Chapter II, namely in Theorem 45, we shall prove a more general version of the

above theorem. Next, we state a converse to Theorem 24:

Theorem 25 Suppose f € OOW) and v = bf exists in D'*(M). Then in a slightly smaller
wedge

W ={(z,s+ip(2,%z,s) +iv) :v €Tl CcC T, |2], |s| <€ <e},

we have

If(z,s +ip(2,Z,s) +iv)| < ‘C”l in W
v

for some constant C' > 0 and an integer [ > 0.

Definition 26 Given a wedge W in C™ with edge M and a point p € M, we define the
direction wedge T', (W) C T,C™ to be the interior of the set

{d(0)] ¢:]0,1) = C™ is a C*° curve satisfying c(t) € W for t > 0 and c(0) = p}.

Note that T, (W) is a linear wedge in T,C™ with edge T,M.

Example 27 Let N = m+d, M C CV be a generic CR submanifold of codimension d with
0 € M. Then in a neighborhood of 0 in C,

M = {(z,s+ip(2,%,s)): zeUcCC™, seV cR},
where (0) = 0 and Dp(0) = 0. Let T' C R? be an acute open convex cone and
W ={(z,5+ip(z,%,s)+iv): zeUCC™ seV cR? vel}.
Then W is a wedge in CN with edge M, and
Lo (W) = ToM + i C ToCV.

In particular, if X C C™ is a mazximally real submanifold with 0 € X, then in a neighborhood
of 0 in C™,
X ={(z+1i®(z)): x €U CR™},
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where ®(0) =0 and D®(0) = 0. Let I' C R™ be an acute open convex cone and
W={(x+i®(z)+iv):x €U CR™, vel}.
Then W is a wedge in C™ with edge X, and
To (W) = ToX + il C ToC™

Definition 28 Let X C C™ be a maximally real submanifold, v € D'(X), p € X, and
s T;X\O. We say that u is microlocally hypo-analytic at o if there are acute open convex
cones I'r,...,I'y in T, X, satisfying: o(v) < 0 for allv € T; (1 < j < N), and wedges

Wi, .., Wn in C™ with edge X such that JT'j C T,(W;) and for all 1 < j < N, there are
N
holomorphic functions f; € O(W;), such that bf; exists and such that w= ) bf; on X.

J=1

Definition 29 The hypo-analytic wave-front set W FX (u) of u is the complement in T* X \0
of the set of points at which u is microlocally hypo-analytic. It is a closed conic subset of

T*X\0. We set WEFX(u) = Ty X N WFX(u).

Proposition 30 Let X C C™ be a maximally real submanifold passing through, and well-
positioned at 0. Near 0, we may write X = {(z +i®(x)): « € U C R™}, where ®(0) =0
and D®(0) = 0 so that TpX = R™ and hence, T{X = R™. Let u € &' (X) and suppose
that £y ¢ WES(u). Then there is a neighborhood V of 0 in C™, an open cone C in C™\0

containing &y, and constants c1,ca > 0 such that
|Ful(2,0)| < cre™ @l for all (2,¢) e V x C.

Proof. If u vanishes identically in a neighborhood of 0 in X, then the result follows easily;
so we can assume that u € £'(Q2) where Q C X is an open neighborhood of 0 as small as
we wish. Since &, ¢ WE;X(u), we may assume, see Remark 31 at the end of the proof,
that there is an acute open convex cone I' in Tp X = R™, satisfying £, - I' < 0, a wedge
W in C™ with edge X such that JI' C T'o(W) (in this case, the wedge has the form
W= {(x+i®(xz) +w):2 €U CR™ v e TIs}), and a holomorphic function f € O(W)
such that u = bf on €. Fix vy € I' and let ¢ > 0 be such that

Lo Y

— = —c<0.
(€l [vol
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Let 2 C X be an open neighborhood of 0 so that Q C B./3(0) N X and the requirement for
being well-positioned at 0 is satisfied for some 7, 0 < 7 < 1. As we mentioned above, we

may assume that u € £'(Q2). Recall that the FBI transform of w,

fu(z,f) — /eig.(z—z/)_|§<z—zl>2u(z/) A (Z o z’,f)dz’.
0
Since u = bf on X, we can write
Fu(z,€) = lim g(z')eig'(z_z/)_|§|<Z_Z/>2f(z’ + i)\v—o) N (z—2€)d,

A0 [vo
Q

where g € C3°(X) is such that g = 1 in a neighborhood of € in X. Introduce x € C5°(2)
so that 0 < xy <1 and x = 1 near 0 in ; say x = 1 on B,/14(0) N Q. Define for some s > 0,
to be determined later,
~__ = s N /
z=2(2)==z —i—zsx(z)ﬁ for 2" € Q.
Vg
Make sure that s and A are small enough so that
~ .\ Yo /
Z+iA— €W for all 2 € Q.
vl
For a fixed A > 0 which is small enough, we can use Stokes’ theorem to deform contour in

the z’-variable and get that

Ful8) = lim é (@) AT (74 i) A (2 o)
Let
Q(z,2,8) = it (z—2) —I¢|(z-2)
2
. e _ l_ . ! 'Uio _ _ /_ . ! ﬂ
= i€ (z z st(z)‘v()’) €] <z 2 —isx(2) ]v0\>
Then
Re(Q(O,#,60)} = Re{=iy '~ 16| (+)° } + 16l (mesx() + x(=) = 2502 1)
< — (1 =1 &l |7 + 1ol (—esx(2) + s2X()? + 2sx(<) |2/]).-
Hence,
Re{Q(0, 2’ S0 <—-1-7) ‘z"Q —sx(2') [e = (sx(z') +2|7'])] -

1ol
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We have two cases:
c c
|ZI| S E and T6 < |ZI} < g

IR < then x(2/) = 1 and so, for s < 3¢ we have

16’

Re{Q(0,7, 2%)} < —s [e— (s +2|¢])] <.

!5 |
If & < |2/| < &, then, it is easily checked that for s < 3¢

Re{Q(0,2, 22} < —(1—71 ) |2 { < 0.

\5!

Therefore, if we fix s < %, then we get that for all 2’ € Q,

Re{Q(0, 2/, T ’)} < —c3, where c3 > 0.

Thus, by continuity of Re ), we can find an open neighborhood V of 0 in C™, an open cone

C in C"™\0 containing &, such that
Re{Q(z,7,¢)} < —%3 I¢| forall (2,{) €V xC, and 2’ € Q.

Note that since u = bf, one can find a A\g > 0 and C > 0 such that for all 0 < \ < Ay,

’<f(z+z>\) go(z')>‘ <C Y D] for all p € CF(Q).

|vo || <order(u)

In our present case, ¢(2') = g(E)eié'(z_a_|£|<Z_5>2A(z—?, &p) and hence, for all (z,() € V xC,
| Fu(z, Q)| < cre=ll. m

N

Remark 31 We proved the result for u = bf. So, if u = Y bfj, then the result holds for
j=1

each bf; and using linearity of the FBI transform, we get our result for u. |

There is a converse to Proposition 30:

Proposition 32 Let X C C™ be a maximally real submanifold passing through, and well-
positioned at 0 and suppose that near 0, X has the form given in the previous proposition.
Let uw € £'(X) and suppose that there is a neighborhood V' of 0 in C™, an open cone C
in C™\0 containing &y, and constants ci,ca > 0 such that |Fyu(z,¢)| < cre™2Kl for all
(2,() € V x C. Then &y ¢ WE5X(u).
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Proof. We may assume, as in the proof of Proposition 30, that u € £'(2), where Q C X is a
small enough open neighborhood of 0 for which the requirement for being well-positioned is
satisfied for some 0 < 7 < 1 and for which Theorem 17 holds so that we can use the inversion
formula. Shrink €, if necessary, so that in €2, X is the image of some open neighborhood U

of 0 in R under the map z — Z(x) with
Z(x) = x +1®(x),
where @ : U — R™ is C*°, ®(0) =0, and ®,(0) = 0. Then we have

u(z) = (2m) " lim [ (2 e,
R™m

where
Fu(z,€8) = /eig'(z_z/)_|5|<z_zl>2u(z') N (z— 72, €)d7
Q
is the FBI transform of u. Let
r=CcnRm™,

an acute open convex cone in R™. We can write
u(z) = ui(z) + ua(2),
where

w(z) = (20"l / P £, (2, €)de, and
T

us(z) = (2m)™™ lim / e8P £, (2, €)de.
€
R7™\T

By the exponential decay of the FBI transform of u in I', we obtain at once that ui(z) is
the restriction in QNV of a holomorphic function f € O(V). For uz(z), we do the following:
Write

N __

R™\I'= U Cj,
j=1

where each C is an acute open convex cone, such that

(i) C;NCp = @ for all j #[; and
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)Ty ={veTpX :{-v>0foral&eCjand £ v < 0} is a nonempty acute
open convex cone.

Shrink I';, if necessary, so that one can find a constant ¢ > 0 such that
£-v>clé|v] forall (v,£) eT'j xCj.

We can write

us(z) = u21(2) + - - - + uan(2),

where
uzj(2) = (2m) " lim el £, (2, €)de for j=1,...,N.
Cj

Define, for j = 1,..., N, and for § > 0 (to be determined later):
W;={Z@)+iv:zecUve [T} ={z+i®(x)+iv:zecUwve [T);}.
Then W; is a wedge in C™ with edge X such that
JT; C To(W;).
For z = Z(z) +iv € W; define

fi(z) = (27r)_m//ei£~(z—Z(y))—I£|<z—Z(y)>2U(Z(y)) A (z — Z(y), £)dedZ (y).
Q C;

We claim the following: (for a proof, see Remark 36 in the next section):

(i) f; € OW;);

(ii) There exist C' > 0 and an integer £ > 0 such that |fj(z)] < ﬁ for all
z=Z(x)+iv € W;; and

(iii) Hence, bf; exists in D'(2) and we claim that it equals ug;.

To sum up, we have proved that there are acute open convex cones I'y,...,I'y in
ToX, satisfying: £5-v < 0 for allv € I'; (1 < j < N) and wedges Wi, ..., Wy in C™ with

edge X such that JI'; C T'o(W;) and for all 1 < j < N, there are holomorphic functions
N
fj € O(W;), such that bf; exists and such that v = ) bf; on X. Thus, by Definition 28,

=1
€ & WEX(u). ’
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1.5 Extendability

Definition 33 If V is a vector space and T C V is a cone, we define the polar T°, a closed

convex cone in V*\0, by
M ={ecVv*\0:£&w) >0 forallvel}.

Theorem 34 (Proposition I1.5 in [EG]) Let T'1,...,I'y be acute open convex cones in TpX
and let u € D'(X). The following two properties are equivalent:

N
(1) WE () € U TS
]:
(2) Given for each j = 1,..., N a nonempty acute open convex cone I'; in T, X

whose closure is contained in I';, there are wedges W, in C™ with edge X such that J fj C
N
I',(Wj), and holomorphic functions f; € O(W;), of tempered growth, such that u = ) bf;

J=1
on X.

Proof. (1) = (2): Assume that 0 € X and that X is well-positioned at the origin. Let
Q) C X be an open neighborhood of 0 and let 7, 0 < 7 < 1, be such that

Whatever 2,2’ € @ and C € (RTk]:) U (RTk|.)
Im¢| < 7|Re(|;
(¢ (: =) +i(Q) (2 =2)°] = @-7)cl] =

Shrink €, if necessary, so that in {2, X is the image of some open neighborhood U of 0 in
R™ under the map = — Z(z) with

Z(x) =z +i®(z);

where ® : U — R™ is C®, ®(0) = 0, and ®,(0) = 0. (We can achieve |®(z)| < const. |z
for any k > 2). For each j = 1,..., N, let fj be as in the statement of the theorem, and let

C; be an acute open convex cone in 77 X'\0 = R™\0 such that

_ ~n\ tnt ~
rfcc;cqjc (F?) c Iy,
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Then one can find ¢ > 0 such that
E-v>clg]|v| forall (v,€) € fj x Cj.
Shrink 2 again, if necessary, so that

1 c
‘z -7 < 16° for all 2,2/ € Q, and |®,(2)| < 1tec for all x € U.

We may assume, as we must, that u € £'(Q2) and so by the FBI inversion, we have in D’'(Q),

u(z) = (2m)™ ™" leiﬂ)me (2),

where

u(z) = /€_E£|2-7'—u(275)d§ = / /eig'(z_zl)_lﬂ<z_zl>2_6|§|2u(z') A (z— 2, €6)d7 dE.

Rm™ R™ Q

One can write

N
w(z) = wlz) + 2 uy(z),

where

w(z) = 2m)™" hﬁ)l / 676‘5|2.7:u(z,§)d§, and
R7rz\u§}7:10j

uj(z) = (27r)7mlifg1 / 6_6‘5|2Fu(z,§)df for j=1,...,N.
CH\ULZ1C

We claim that: (See Remarks 35 and 36, respectively, for proofs)

(i) w is the restriction in 2NV of a holomorphic function in a neighborhood V' of
0 in C™;

(ii) For each j =1,..., N, there is a wedge W; in C™ with edge X such that

and holomorphic functions f; € O(W;), such that
u; =bf; in D'(Q).

Hence, the proof of the first implication is complete.
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N
(2) = (1): Let ¢ € (T;X\0) \jL_J1 9. Then & ¢ T for each j = 1,..., N and so
one can find v; € I'; so that

& v; < 0
and hence, one can find acute open convex cones fj with v; € fj CC I'j so that
f-fj <0 foreachj=1,...,N.

By our assumption in (2), there are wedges W; in C™ with edge X such that J fj c Ir,(w;),
N
and holomorphic functions f; € O(W;), of tempered growth, such that v = " bf; on X.

7j=1
N

Using Definition 28, we get that £ ¢ WFZ;X(u) and so WF];X (u) C I‘?. [ |
j=1

N N
Remark 35 Since WFs<(u) C | I’? and since (]Rm\ U Cj> NS™ ! is compact, we can
Jj=1 j=1

N
use Proposition 30 to get a neighborhood V' of 0 in C™, a conic neighborhood C of R™\ |J C;

7j=1
in C"™\0, and constants c1,ca > 0 such that

|Fu(2, Q)| < cre™lCl for all (2,¢) e V x C.

For z € V, define
e =0 [ R

Rm\ué\’leJ
Since Fu(z,€) is an entire holomorphic function of z for each fized &, and by the above
inequality, we get that h € O(V') and one can pass the limit under the integral sign in the

expression for w for z € QNV; i.e.,

w(z) = (2m)" ™ / Fu(z,8)dE for z=Z(z) e QNV.

Rm\Ué\IZICj

Thus, w s the restriction in Q NV of a holomorphic function in a neighborhood V of 0 in
cm.

Remark 36 For j =1,...,N, and for § > 0 (to be determined later) define

Wj:{Z(x)+iv:m€U,v€ (fj>6} = {m—i—i@(m)—l—iv:er,vE (fj>5}'
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Then Wj is a wedge in C™ with edge X such that
JT; C To(W;).
Forz=Z(z)+iveW;, E€Cy, andy €U, if ( =((&) = 'Z,(y) "¢ € RT% | z(y), define
ery [ [ OO u(Z(0)) A (: - Z(0), OdCAZ(0),

@ c\UiZiok

We claim the following:

(i) f; € OW;);

(it) f; is of tempered growth in Wy; i.e., there exist C > 0 and an integer k > 0
such that

|f5(z )’_| |k for all z = Z(x) +iv € Wj; and

(iii) Hence, bf; exists in D'(Q) and we claim that it equals u;.

Proof of claim (i): Define, for z,y € U, £ € Cj, and v € (fj)g’
Qay,&v) = i (Z(x) +iv—Z(y) — () {Z(2) +iv — Z(y))*
= i€ (Z(2) - 2(y) ~ () (Z(2) = Z(W))°] = ¢+
— () [2iv- (2(2) - 2(y) — ol?] .
Since X is well-positioned at the origin, we have Vx,y € U,§ € C;
Re {iC - (2(2) = Z(y) = () (Z() = Z(y)*} < = (1= 7) [¢]|Z(x) - Z(y)P"-
Also, for all (v,€) € fj x Cj,
v o= = (W)

= =& (Zy(y)_lv)
= ¢ (1 +ioy(y) o)

f«wﬂ%@wﬂ

k=0

= —¢-

= ¢ o+ £ @,

— —gume |5 @t

k=1
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Thus,

Ref¢ov} = —e-o-Refer |5 (@00}

k=1

IN

—elellol+ f¢- | £ (0" @)

< —clélo] + Iel o [é |@y<y>\k]

00 c k
< —clellol + il £ (15)
3
= —eléllel.

Thus, we have
3 ~
Re{—C-v} < ——cl{||v] V€ Cjandv e (I‘j> .
4 5
Finally, since |(C)| < |(|, and after shrinking 2 further so that |¢| < 2|, we have for

1.
6<§C

Re {~(¢) [210- (Z() - 2(9) - o]}

IN

(O [2 10112 (2) = Z ()] + vP?]
cl1el 1212 (@) = Z ()| + o]

c 1
2 2— 4+ =
el 25 + 3¢

IN

N

1 ~
§c|£| [v|, forallz,yecUEeCjandve (Fj>6.

Hence,
1 ~
. 2
— . _ _ < Z . A
Re{ (C) [2“} (Z(z) — Z(y)) — |v| ]} < 2c|§] lv| Vz,yeU, £€Cjandv € <P])6
Hence, combining the above inequalities, we obtain
1 ~
Re{Q(x.y,€v)} < —gelél o] VayeU, ¢€C;andve () .

Since holomorphy is a local property, we can use the last inequality, after fixing a point

z € Wj, to show that near the fized point z, one has

Re{Q(m,y,f,v)} < —c |€| y

for all v in an appropriately chosen open set in its domain and for all z,y € U, § € Cj.

Thus,

eI (2 (@) +iv=Z) = (NZ@+v=ZW)%y(Z()) A (Z(x) + v — Z(y), O)| < cre2lél € LY(R™)
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and consequently, f; is holomorphic near our fized point in W; and by randomness of our
choice, we conclude that f; € O(W;).
Proof of claim (ii): We have, as we did in the proof of claim (i):

Hz@+w) < @ [ [aekl Qe dz)
CAUZICr @
= 4 / eI (14 Jel)! de.
C\ULZ1Ck
From this, one can easily show that there are C > 0 and an integer k > 0 such that

|fi(Z(x) +iv)| < |vc|1k for all Z(x) +iv e W.

Proof of claim (iii): We will use the following Lemma (compare to Theorem 19):

Lemma 37 Let p € C3° (2). Then for any integer | > 0 there exists a constant d; > 0 such
that the following holds: For any x € U, if 2 = Z(z) +iv € W; and if ¢ € 'Zy(x)"1C; =
{tZ,(x)71E : € € Oy}, then

[Folz, O < di(1+ )"

Proof. Integration by parts gives
l , , ,
(14 46) Faleg) = [ @) (14 85) {e @ pla) A (- 2,0) }
X

where Ay, = M2+ -+ M/? and M/ is the vector field on X denoted by M; in Proposition

1.2.1, but now acting in the variables z’. There is a constant a; > 0 such that

‘e<g><HI>2 (14 85,) {06 (1) 2 (s - z',C)H

< a1+ |z — 2P | \Z@ | M p(2)].

Shrinking €2 further, if necessary, assuming that § < 1/2, and using the estimates that we
had in the proof of claim (i) above, we get that for a suitable b; > 0

‘(1 H0Y) ol 4)‘ <ti(uldl) [ (14160 {126 - 27+ ] ) ez eiday,

suppep



The integrand in the last inequality is bounded and so, for some ¢; > 0 we have
l
(14 07) 70| < a1 + ).
Now, using the fact that [Im (| < 7 |Re(], one can find ¢; > 0 such that

1+ @7 = 1™

and consequently there is a constant d; > 0 such that |F,(Z(x) + v, ()| < di(1 +¢])~

Now, define

Q = Q,y,¢v) =i (Z(x) +iv— Z(y) — () (Z(x) +iv — Z(y))*,
AN = ANZ(z)+iv—Z(y),()

and let ¢ € C§° (€2). Then we have

" o) = @ tim [ )+ ez
suppe
- Lim / / / u(Z(y))p(Z(x)) & dCdZ(y)dZ(x)

s i—1
LAY TN

= im e® x x)lu
= i [ [ L[ ez s azeuamca)

2 ¢\, v

- Ll / / Fo(Z(y) — iv, —C)] u(Z(y))dCdZ ()
@ cpuiZio

- [ | Flzw.-0uzw)iciz(y)  (by Lemma 31)

& C\ULZ1Ck
Now, recall that
w) = o im [ e e,

€l0
Cj\ULZ 1 Cx

and by deforming contour in the {-variable as we did in claim (i), we obtain

u;j(z) = (2m)" " lim / / (2=2")= ()22 >2_€<C>2u(z') N (z— 2, ¢)d2 dC.

el
C; \U =1 Ck

22
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Therefore, (here, Q =iC - (z — ') — () (z — 2)* and A = A(z — /,¢))

2m)" (uj, ) = lim / / / e@= )o(2) A d2'dCdz

€l0
supPe o \UiL o, 2

= lifg / / / 2) Adz| e ¢ >2u(z’)dz’dC

ci\uiio, @ Lswpe
= lifgl / / [Fo(z', )] e_€<<>2u(z')dz'd§"
ci\uiZic, &
= / / Fo( (2')dz'd¢ (by Theorem 19).
C \U =1 Ck

Hence, bf; = u;j in D' ().

We have some corollaries to Theorem 34. The first one is just a restatement for

the special case N = 1.

Corollary 38 LetT' be an acute open convex cone in Tp,X and let u € D'(X). The following
two properties are equivalent:

(1) WFIf((u) c I

(2) Given a nonempty acute open convex coneI' in T, X whose closure is contained
in I, there is a wedges W in C™ with edge X such that JT C I',(W), and a holomorphic
function f € O(W), of tempered growth, such that u ="bf on X.

The second corollary to Theorem 34 is the so called Edge-of-the-Wedge Theorem:

Corollary 39 (Edge-of-the-Wedge Theorem) Let X C C™ be a mazimally real submani-
fold, let p € X, and let W and W~ be wedges in C™ with edge X whose directions are
opposite: T,(WT) = —T,(W™). If u € D'(X) is the boundary value of a holomorphic func-
tion fT € OOWT) and also the boundary value of a holomorphic function f~ € O(W™),
then WF;((’LL) =o.
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Proof. Let I' C T, X be an acute open convex cone such that JI' C T')(W™). Then J(-T") =
—JT € —Tp(W*) =T,(W~) and so, by Corollary 38, we get that WF;* (u) c I’ N (-I)°.
Note that if £ € TN (=T)°, then £ - T > 0 and ¢ - (-T') = —¢ - T > 0 which implies that
¢ = 0. But recall that WF; (u) C Ty X\0. m

Remark 40 The conclusion WFI;X(u) = @ in Corollary 39 means that u is actually the
restriction, to X, of a holomorphic function f € O(V') where V is a small open neighborhood

of p in C™. Thus, u is hypo-analytic at p. Also, by uniqueness of boundary value, we get

that flyew+ = T and flyaw- = f~.

Before we state and prove our second theorem in this section, we have the following

useful lemma that will be used in the proof of the theorem:

Lemma 41 Let X C C™ be a mazimally real submanifold passing through, and well-
positioned at the origin. Suppose that near the origin, X is of the form given in Proposition
30. LetTy,...,T'n be acute open convex cones in ToX\{0} = R™\{0} and uq,...,un € D'(X)
be such that
WFOX(uj) C I‘? forj=1,...,N.
N
Set u = ]gl uj. Then

N
WF*(u) c U IY.
j=1

N
Proof. Suppose that £, ¢ |J I‘?-. Then &, ¢ WFOX(uj) for all j = 1,...,N. Hence, by
j=1
Proposition 30, for each j = 1,..., N, there is a neighborhood Vj; of 0 in C™, an open cone

C; in C™\0 containing &g, and constants ci;, ca; > 0 such that
| Fu, (2,¢)] < crje” il for all (z,¢) € V; x C;.
If we set

N N
e = max {ey}; 2 = min {ey}; V= jDIVj; and C = j@l Cj
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then we get that there is a neighborhood V of 0 in C™, an open cone C in C™\0 containing

o, and constants ¢y, ca > 0 such that for all j =1,..., N,
{]:uj (Z,C)‘ < cre el forall (2,¢) e V xC.

Hence,
N
Z fuj' (Z7 C)

j=1

|Fu(z,0)| = < Negem 2l for all (2,¢) € V xC.

N
This implies, using Proposition 32, that &, ¢ W EFs*(u), and so W Fs< (u) € | I‘?. ]
j=1

Theorem 42 Let X C C™ be a maximally real submanifold passing through, and well-
positioned at the origin. Suppose that near the origin, X is of the form given in Proposition
30. Let w € D'(X) and suppose that I'1,...,I'x are acute open convex cones in ToX\{0} =
N
R™\{0} such that -U1 r9 =R™{0} = T X\{0}. Then
]:
N
(a) u can be decomposed as u = Y u;, where uj € D'(X) and
j=1
W g (u;) € WE (u) NTY.
N
(b) If u = 3 uj is another such decomposition, then u; = w;j + > uj, with

Jj=1 J#l
uji € D'(X), uj + wy; is hypo-analytic, and

WFg* (uj) CcT9NTY.

(In fact, the uj’s can be chosen so that uj = —uy;).

Proof. (a) We may assume that

nt

nr)) ™ =0

(Otherwise, replace I‘? by F?*, where F?* = I‘?\ (F(l) U---U F]Q_l) C F?). Forj=1,...,N, let

(D k=1,2,3,...}
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be a sequence of acute open convex cones such that

le (- FjQCFj3C"‘,

Iy < Tjforeach k=1,2,..., and
(0.0
Uriw = 1,
k=1
Then, for each £k =1,2,3, ..., I‘? cC F?k and one can find ¢ = ¢(k) > 0 such that
E-v>clEf|v] forall (§,v) € T9 x Ty

For k =1,2,3,..., define

W; {Z(a:)+iv:x€U7U€(ij)5}

— {x—l—iq)(:v) +w:xelUwve (ij)g}'

For z = Z(z) + i € Wy, £ € T}, and y € U, if ¢ = ¢(€) = 'Z,(y) '€ € RT%|z(), define
for k=1,2,3,...,

ful) = (amy 7 [ [ 2020 w2 ) A (2 - 200),0dCa ()
Q F?
As we did in Remark 36, we get that, for each k =1,2,3,..., fjr € OWj;) and bfji = uy,
where
ui(2) = w(Z(a)) = (2m) "lim [ P )i
19
J

N
Of course, uj € D'(X), and u = Y uj. We claim that
j=1

W Fg* (u;) C TY.
To show this, suppose that &, ¢ F?. Since F? is closed, one can find an acute open convex

cone I‘; CC T'j so that

Choose k € N large enough so that
I, CC Ty

Set
W]{:{x—l—i@(x)—&—iv:er,ve (F;)a} C Wik.
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To summerize, we have found an acute open convex cone F; in R"\0 satisfying
§0 : F; <0,

and a wedge W]' in C™ with edge X such that J F;- c’T O(WJ'-) and a holomorphic function
fix € O(W;) such that
bfjk = uj.

Hence, using the definition of W E5 (u;), we get that &, ¢ WE; (u;) and so
WF (u;) C T9.

It remains to show that WFg* (u;) C WFE; (u). To do so, suppose that & ¢ WEF (u).
Then, by Proposition 30, there is a neighborhood V of 0 in C™, an open cone C in C™\0

containing &, and constants cg, ca > 0 such that
|Fu(z,0)] < crelCl for all (z,¢) e V x C.

Write
ui(2) = uj1(z) + uje(2),

where

wn() = (m " hm [ o F g and
rove
ujo(z) = (2m)" " lim e_e‘5|2fu(z,§)d§.

€l0
Fgmc

Thanks to the exponential decay of the FBI transform of u in V' x C, we get that u;s
is the restriction of a holomorphic function in a small neighborhood of 0 in C™ and so
W F5 (uj2) = @. Hence,

W (uj) € WE (ujn).

Using the same argument which showed that W Fs* (u;) C Fg, we get that
WFOX(Ujl) C F?\C,

and so

o & WE (uj1).
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Therefore, &, ¢ W F;X (uj) and we conclude that W F5* (u;) C WFg* (u) N I‘(J]-.

(b) We claim that (see Remark 43 for a proof)

WF (uf —uj) € U (T9NTY).
I#j

We may assume that F? N F? N Fg = @& whenever 1 < j <l < k < N. (Otherwise,
replace I‘g with Fg* = 112\1“;C C F% where I',, is an acute open convex cone which contains
F? QF?). Then, one can find acute open convex cones Cj;, j # [, whose closures are distinct,
such that

F;-) N F? C le.

Hence, by our claim,

WF(jX(u; — Uj) C U le.
I#j

N N’
R™\{0} = ( U le) U (U Wj) ,
I#j=1 j=1

N o
where each W) is a closed convex cone. (This can be done by writing (R™\{0}) \ < U le>
I£j=1
as a union of acute open convex cones and then taking closures of these cones). Now, we

Write

claim that if C € R™\{0} is a closed convex cone, then

int\ 0
c=(()™)".
To show this, let v € C. Then v -C° > 0 and in particular, v - (Co)im > 0. Hence, v €

N0
((Co)mt> . On the other hand, if v ¢ C, then one can find an acute open convex cone

N0
C' cc C° such that v-C" < 0. Hence, v ¢ <(C0)mt> and the claim follows. This allows us,

using part (a), to write

, N N’
uj—uj: Z ujl+2vj,
I#j=1 j=1

where (note here that (J (Fg N F?) Nnw; c (U Cﬂ> NW; =)
I#3 I#5

WEFK (uj)) © WEF (us—u)nCyc U MYNIP)nCy=T9NIY; and
1£]

WFX(v)) € WFN(uj—u)nW;c U @InI})nw; =2.
1]
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If one ignores the v;’s (since they are hypo-analytic after all) by adding them to one of the
uj;’s, then one gets that

) N
u; —ug = Y ug,
I£j=1

with u;; € D'(X) and

WFg* (uj) CT9NTY.

Now, it remains to show that wj + w;; is hypo-analytic, or in other words,
W (uj + wy) = 2.
To do so, fix jand [, 7 # [, 1 < j,1 < N. For ease of notation let {p # ¢}" denote the
statement:

{payn{j,l} #{j,1} and 1<p#q<N.

Note that
N N
> (uj—uj) =0=> > up=0=> (ujy+uy)=0=ujy+u;=— Y (Upg+Ugp)-
j=1 J=11#j I#j {p#q}”
But by Lemma 41,
W (ujp +u;) © TYNIY; and
WES (— S (upg + qu)> c U [@nry).
{p#q}* {p#4}”
Hence,

WF5<<uﬂ+uU>c<r9mr?>m( U (r;zmr2>) -o

{r#a}”
Therefore, u;; + w;; is hypo-analytic in X. m

Remark 43 By Lemma 41, we know that

WFOX(u; —uj) C I’?.
So, it suffices to prove that

WFOX(u; —u;) N [rg?\ U (r;? nrY)| =o.

I#j
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To do so, fixr j € {1,...,N} and suppose that &, € F?\ U (F? OF?) . Then & ¢ TY for all
#j

I # 7. Since I‘? is closed, we can find an open convex cone I, cC Iy such that
€Ty <0 foralll 3.

Now, we invoke Corollary 38. Since both WEFX (u]) and WFg (u;) C TV, we can find a
unified wedge W, in C™ with edge X such that Jfl C Lo(W,), and holomorphic functions
fi, [l € OOW,), of tempered growth, such that w; =bf; and u; = bf] on X. Hence,
u;-—uj =Y —u =Y b(fi — f]) inX.
I i)
If we set
l” = fl - fllv
then we get that

[ €OW); and ) —u; =Y bf in X
I#5

proving that &, ¢ WFOX(u; —uj) and we are done.
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CHAPTER 2

Boundary Values of Solutions of

Complex Vector Fields

2.1 Introduction

Let N be a submanifold of a smooth manifold M. In a neighborhood of a point of
N we may introduce coordinates (z,t) for M with € R™ and ¢ € R™ in which, locally,
N = {t = 0}. By a wedge in M with edge N we mean an open set YW C M which in
some such coordinate system is of the form W = B x C, where B is a ball in R™ and C
is a truncated, open convex cone in R™\{0}. When (M, V) is a hypo-analytic structure, a
submanifold £ of M is called strongly noncharacteristic if C1,M = CT,E + V, for each
p € F, and maximally real if CT,M = CT,E ® V), for each p € E. Suppose W is a wedge
in M whose edge F is maximally real. Let f € D'(W) be a solution of V. Let (z,t) be
a coordinate system in which £ = {¢t = 0} and W = B x C as above. It is known that
the solution f is a smooth function of ¢ € C valued in distributions in x-space B. In this
chapter, we prove a sufficient condition for the existence of a boundary value for f, bf, at
t = 0 when f is continuous on the wedge W. This generalizes previous results in [BH1| and
[BH2|. Then we prove a similar result (see Theorem 50) when our involutive structure is

not necessarily locally integrable.
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2.2 Existence of Boundary Values in the Locally Integrable

Case

Suppose L is a smooth complex vector field,

L= z (o) 2.1)

defined on a domain © C RY and f € C(R) is such that Lf = 0 in Q. Assume 0
is smooth. We would like to explore conditions on f that guarantee that f will have a
distribution boundary value on 0€2. Theorem 24 showed us that when f is holomorphic on

a domain D C CV, then f has a boundary value if

C

for some C, k > 0. For simplicity, we recall here a precise statement in the planar case:

Proposition 44 Let A,B > 0, Q = (—A, A) x (0, B) and suppose that f is holomorphic
in Q. If for some integer N >0 and C > 0,

[fz+iy)| <Cy™™, z+iyeq,
then there exists bf € D'(—A, A) of order N + 1 such that
ln [ f(z +ig)p(a)de = (b, 9) V€ O~ A, A)
y—)

Because of the local equivalence of L' and sup norms for solutions in the elliptic
(Cauchy-Riemann) case, the preceeding proposition asserts that a holomorphic function f

on @ has a boundary value (trace) at y = 0 if for some integer N > 0,

/ |f(x +iy)| v dady < .

From now on, unless we state otherwise, we shall reason under the following setup: Let
x = (21,...,xm) € R™ t = (t1,....,t,) € R", and suppose that U C R™*™ is an open set,
0 €U, and ®(x,t) : U — R™ is a smooth function satisfying

$(0,0) =0 and ®,(0,0) = 0.
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For simplicity, suppose that U = B,(0) x Bs(0) C R™ x R™. Let

Z(z,t) = x4 iP(z,t)
= (21 +1P1(x, ), ..., Ty + 1Dy (2, 1))

= (Z1(z, 1), ..., Zm(x,t)).
For 1 < k < m, let M} be the vector fields in z-space satisfying
MpZy =6y for 1 <k,l <m,

and consider the locally integrable structure L = {L, ..., L,,} generated by the vector fields

0 m Q7

L= — — adnd,
P03 ot

(z,t) M.

Note that L;Z, =0 for all 1 < j <n, 1 <k <m. In Theorem 45, we will give a sufficient
condition for the existence of a boundary value of a continuous function f, bf, when f is a
solution of Lf = 0. In Theorem 49, we shall give a formula for bf. This generalizes previous

results in [BH1] and [BH2|. Before we state the Theorems, we make some conventions:
(1) We write RY" to denote R™ with coordinates = = (z1, ..., Tp).

(2) We write g(z,t) € C§%. (R x RY) if g(z,t) € C°(R' x RY) and the z-support

of g is contained in a fixed compact set independent of ¢.

(3) We write I's C R} to denote an acute open convex cone I' C R} intersected

with Bs(0) C RY.

(4) In Theorem 45, we will make use of the vector fields V}, that are the restrictions
of the vector fields My, to the maximally real submanifold ¥ = {Z(z,0) = 2 +i®(x,0) : z €
B.(0)}; i.e., Vi = Mg|s. Thus, Vj, [Z;(z,0)] = 6g; for 1 < k,l < m.

(5) Finally, if @« = (aq,...,o) € N™ is a multi-index, then V¢ will denote
Ve em,

m
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Theorem 45 Let VW = B, (0) x I's C R x R} and suppose that f(x,t) € C(W) satisfies
(1) fBr |L; f(z,t)]dz < C < o0; and
(2) 3N € N such that

|[f (@, )] 1Z(x,t) = Z(x,0)|" < C < .

Then bf = r(;léltriof( t) exists in D'(B,(0)).

Proof. Let
P(z,t) = ®(x,t) — &(x,0).
For g(z,t) € C§%(Br(0) x Bs(0)) and for k =0,1,2, ..., define
jlel
? (0% e
(Trg) (z,t) = > — (V) (z,1) P (2, 1).
|| <k o
Note that
(Tog) (z,1) = g(=,1).
Fix ¢ € C3°(B,(0)). We will divide the proof into 3 steps:
Step (1): We claim that

. lign . / f(z,t) (TnY) (x,t)dZ(x,t) exists (See Remark 46)
§t—

B (0)

Now, for a general g(,t) € Cg%,(B;(0) x B5(0)), existence of the above limit for an arbitrary
Y € C§°(By(0)) implies that

T's35t—0
B (0)

lim / f(z,t) (Tng) (z,t)dZ(x,t) exists.

Step (2): We now claim that existence of the last limit implies that

- liEfn . / f(z,t) (Tn-19) (z,t)dZ(z,t) exists (See Remark 47)
st~
B,(0)

Step (8): Finally, we claim that, in fact, for any g(z,t) € C§%(B,(0) x B;(0)) and for
0<k<N,

- lirtn . / f(z,t) (Tkg) (z,t)dZ(z,t) exists (See Remark 48)
5t

Br(0)



In particular, for £ = 0 and g(z,t) = ¢(z) € C§°(B,(0)), we get that

T's35t—0

lim / flz, t)(x)dZ(z,t) exists
B;-(0)

Note that on the submanifold B,(0) x {to}, we have
dZ(x,tg) = Zy(z,to)dx,

where

Zyp(x,t) = I 4 1Py(z,1).

Thus,

I's5t—0 T's>t—0

B.(0) B.(0)

This shows that bf = - lim f(.,t) exists in D'(B,(0)). =

52t—0

Remark 46 For k=0,1,2,... define

iled

wlaw) = 50V @) - 20"

We claim that:

(a) up(Z(x,0)) = P(z); and
(b) %(xay)) < Cdist((z,y), 2)" for some C >0 and all k < N.

Assume for the moment that the claims are true. Then we would get:

(1) (Tkt)) (x,0) = ¢(x); and
(i) |Lj (Tp)) (z,t)| < C'|Z(x,t) — Z(x,0)|* for all1 < j <n.
To see this, note that

(Ti) (z,t) = w(Z (2, 1)),

and so, by (a),
(Ti) (2,0) = up(Z(,0)) = ().

lim / f(z,t)Y(x)dZ(z,t) = lim / f(z,t) Zy(x, t)(x)de = (Zy(x,0)bf, ) .

35
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Also,
Lj (Tx) (z,t) = Lj (ur(Z(z,1)))

= in: (auk(.’ﬂ, (D(x,t))Lj(xl) + 882;];(5[5» (I)(.’L', t))Lj((I)l(x’t))>

where the last equality follows since L;Zj(x,t) = 0 and so L;j(®(x,t)) = iL;j(x;). Hence,
Using (b), (ii) follows. We will now show the validity of claims (a) and (b). We have

This proves (a). To see why (b) is true, we will prove, using induction on k, that

Vg = 3 Lo (V) @) (60 (2.2
Fork =1,
() = () + 3 (V) (@) (s — B4(a,0).
and so,
Phay) = i(Viv) @) and
Iy
) = Gh@) i 5 S (Vi) () (5~ (2,0~ 35 (Vi) (), 0.0,
Next, observe that
881:[ — V] +¢§1 %{;(x,om (2.3)

Thus, using (2.3), we get (2.2) for k = 1. Now, suppose that (2.2) holds for k —1, k > 1.
We can write
Uk;(x, y) = kal(i[f,y) + Ek(m7y)7
where
L

Ey(z,y) = i*
’ |a\:k Oé!

(V) () (y — 2(,0))" .
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Using the induction hypothesis on ug_1(z,y) and (2.3), we can write
Ooup_1 . m 1 00

— ('Ia y) = zk n .
07 |8|=k—1 s=1 B! oz

+ﬁ*w§4;w(@%@w0@—@@mf.

2

2.0V, ((v7%) @) (v - @(,0))°

Now, we can easily obtain that

298y = 5 L1 oy @) (- (e, 00)° + (V) (2) 2

= (y— B o
o7, s (y — ©(z,0))

o=k o! 81’[

*’L'k_l i « T i - T «
2 @5, - e@o).

Hence, adding the last two equations, we get

Oug_1

0z,

Guk
2=
07

OF , 1 0
(2.y) =275 2 (@) + 2 wsy) = 5 o

lo|=k a! al’l

(V) () (y — ©(,0))" .

This ends the proof of claim (b). Recall that the main purpose of Remark 46 is to prove the

existence of

lim / fx,t) (Tny) (x,t)dZ(x, t).

I's>t—0
B(0)

For this, note that for any C* function g(z,t) defined near the origin in R™ x R",
n m
dg(z,t) = > Ljg(z,t)dt; + > Myg(z,t)dZ(x,t).
j=1 k=1

Consider the m-form

w(z,t) = g(x,t)dZ(z,t).

Then
dw =d(gdZ) =dgNdZ =) Ljgdt; NdZ.
j=1
Plugging
g(:l,‘,t) = f(mvt) (T]\ﬂﬁ) (‘rvt)v
we get that

dw =S fe,O)L; (Tn) (w,)dt; AdZ + S Lif(x,1) (Tne) (@, £)dt; A dZ.
i=1 i=1

Fiz T €Ts and let &' =6 — |T|. For s € Ty, define

V(1) =1 —71)s+7T.
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We now avail ourselves of Stokes Theorem:
/ /dw(az,t) = / w(z,T) — / w(x,s).
B(0) Vs B, (0) B,(0)
Writing things out explicitly, we get
[ 1o @) @sazws) = [ f@ 1) (@n0) (@112 7)
B,(0) B,(0)

- / / L, t) (Tn) (2, £)dt; A dZ(, 1)

Br(0) Vs

-y / / F(2,OL; (Tw) (. £)dt; A dZ(z, 1)
= B o)
(2.4)

The first integral on the RHS clearly exists. The second integral on the RHS exists, inde-
pendently of s, by assumption (1) of the theorem. Now, since

ILj (Tn) (z,1)| < C|Z(x,t) — Z(z,0)[N  forall1 <j<n,
and by assumption (2) of the theorem, we get that the third integral on the RHS exists,

I's2s—0

B,-(0)

independently of s, and hence lim / fx,s) (TnY) (z,8)dZ(x, s) exists as well.

Remark 47 Here, we are assuming that

Ii t) (T t)YdZ(x,t .51,
Jim [ ft) (Tag) (.02, 0) eaists

B,(0)

and we want to show that

li _ A Sts.
Pl / fz,t) (Tn-19) (x,t)dZ(x,t) exists

B (0)
To do so, suppose that
g(x,t) = ¥(@, ) P(z,1)",
for some (z,t) € C§%,(B(0) x B;s(0)) and for a multi-index 3 with |3| = N. Note that we

may write

Ty (wpﬁ) (2,t) = b(@, ) P(@, )% + ¥(2,8) 3 ealz, )Pz, )+ 3 ho(z,t)P(z,t)
ja|=N >N .
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where eq(x,t) and h(x,t) are smooth functions and

%in(lJDg‘/ea(a:, t) =0,

for all multi-indices o, /. Also, by our assumption on the growth of f and the fact that
|P(x,t)| = |Z(z,t) — Z(z,0)],
we get that for each multi-index vy with |y| > N,

lim / (@, t)hy(z, t)P(x,t)7dZ(x,t) exists.
I's>t—0
B..(0)

Using (5), we get that

lal=N

Félértrio / f(z,t) <w($,t)P(x,t)B+w(:c,t) > ea(x,t)P(x,t)a) dZ(x,t) exists.
B (0)

Since Y(z,t) € C5%(B(0) x Bs(0)) was chosen arbitrarily, we can substitute (x,t) for
Y(z,t) in the last limit, where 1g(z,t) € C§5,.(Br(0) x Bs(0)) and sum over § with |3| = N,

to conclude that

lim / f(z,t) ( > @bﬁPﬁ (1 +E,3(£L‘,t))> dZ(x,t) exists.

T's3t—0 |B|=N
B:(0)

where %i_r%Dg/Eﬁ(az,t) =0 for all multi-indices 3. It follows that
lim 3 ¢sP” (1+ Eg(x,t) = 3 ¢sP? in C5°(B,(0)).
=015=N |BI=N

This implies that

Fh?l . / f(z,t) < > ¢6Pﬁ> dZ(z,t) ewists, whenever ¥g(z,t) € C5%(Br(0) x Bs(0)).
53t BI=N |
B-(0)

Now, note that for g(z,t) € C§%.(Br(0) x Bs(0)),

(TNg) (wat) = (TN—lg) (xat) + Z Ip/@(aj,t)P(l‘,t)ﬁ,

I8|=N
where 18]
i
Valet) = 5 (V) (@),
Hence, lim / f(z,t) (Tn-19) (x,t)dZ(x,t) exists.
I's25t—0

B (0)
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Remark 48 We use descending induction. The proof is identical to that in Remark 47 but

with appropriate modifications.
We avail ourselves of the proof of Theorem 45 to get a formula for bf :

Theorem 49 Under the hypotheses and notation of Theorem 45, we have the following
formula for bf : For any ¢ € C3°(B;(0)),

(Zo(z, 0, 6) = / f(x.T) (Tnt) (2, T)dZ(x, T)

B,(0)

-> / [ B3t (e.t) (T) (o, )t 1 d2 ()

= B:(0) 7o

i / /f 2, )Ly (Twds) (2, )ty A dZ(x,b).

B
(Here, 7, is the line segment joining 0 to T'). This formula shows that bf is a distribution
of order N + 1.

Proof. We have established the existence ofF lim . / f(z,s) (TnY) (x,8)dZ(x, s) in The-
§D85—

B (0)
orem 45 and we showed that it equals to the RHS of the formula in the statement of this

theorem. Hence, we will be done if we can show that this limit is equal to (Z,(z,0)bf, ).

This follows since the functions
x— (ITnY) (z,s) —¢(z) and 2z — Z(z,s)— Z(x,0)
and all their z-derivatives converge to 0 as s — 0 and so
Zy(,8) (TNY) (2, 8) — Zo(2,0)1)(x)

as s — 0 in C§°(B,(0)). m
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2.3 Existence of Boundary Values in General

Suppose V = {L, ..., L, } is a system of smooth complex vector fields

0 - 0
Lj = 8775] + ;ajk(x,t)axk

in a neighborhood U of the origin in R x R}. For simplicity, say U = B, (0) x Bs(0) and let
W = B,(0) xI's be a wedge where I's C R} is a truncated open convex cone. For analogues
of the following theorem for a single vector field see Theorem 1.1 in [BH] and Theorem

VI.1.3 in [BCH]:

Theorem 50 Let W = B,(0) x I's be as above and suppose that f(x,t) € C(W) satisfies:
for some C > 0 and some N € N
(1)
| L@l <o
B (0)

and (ii)
|[fa )] 1t < C.

Then bf = thgi)of("t) exists in D'(B-(0)).

Proof. Let 71, ..., Z,, : U — C be a complete set of smooth approximate first integrals for

V near the origin in U. That is,
LiZy(x,t) = O(Jt]") for1=1,2,.., and Zy(z,0) =z, 1<Fk<m. (2.6)

Define
bjk($at) = LjZk($7t)' (27)

Write

Z(x,t) = (Zi(x,t),..., Zy(2,t)); and
Zi(z,t) = Wy(z,t) +iPo(x, 1),

where Wy (z,t) and Woi(x,t) are real-valued. For j =1,...,m, let

i b,
k=1 k
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be vector fields in z-space satisfying
MjZk = 5jka [MJ,Mk] =0. (28)

Note that for each j, k,

(M, Li) = dyra(a, )M, (2.9)
=1

where each dj(z,t) = O(|t|*) for s =1,2,.... Indeed, the latter can be seen by expressing
[Mj, L] in terms of the basis {L1, ..., Ly, My, ..., M, } and applying both sides to the n+m
functions {t1, ..., tn, Z1, ..., Zm}. Equations (2.6) and (2.7) imply that

Mpbjr = O(Jt]?) for s =1,2,.... (2.10)
Using (2.7) and (2.8), we obtain

Lj\Ifgk = iLj\Illk—ibjk (2.11)
MUy, = MUy, —idp. (2.12)

Now, if g(x,t) is any C! function defined in U, observe that the differential

m

dg =Y My (9)dZi+ Y Lj(g)dt; — > > My (g) bjdt;. (2.13)

k=1 j=1 j=1k=1

Hence, if we consider the m-form w = g dZ, we get

do=dgndZ = L;(g)dt; NdZ = > > My (g)bjkdt; AdZ. (2.14)
j=1 7=1k=1

Observe that hypothesis (ii) in the theorem together with the fact that
by(.£) = O(|f*)  Mibyi(,t) = O(|tl*) Vs

imply that Vo € C§°(B,(0)),

/ / by, ) Mif () p()dadt| < Co, (2.15)
I's JB:(0)

where C3 > 0 is a constant that depends only on  sup >°,, o [[D%p(2)]]. Let
z€B,(0) -

\111 = (\1’11, .. .,\I’lm) and \1’2 = (‘1/12, .. ‘>\I’2m)-
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For ¢ € C§°(B,(0)) and k a nonnegative integer, define

et = 3 "2 ewen] @, (2,10

We will first show that Flign ofB ) f(x,t) (Tny) (x,t)dZ(x,t) exists. To prove this, fix
§It— "
T €Tsand let ' =& — |T|. For s € Ty, define v,(7) = (1—-7)s+ 7T, 0 < 7 < 1. Let
w = (fTny)dZ. Using (2.14) and Stokes’ theorem, we get
/ o f(z,s) (Ine)(x,s)dZ(z, s) =/ [, T)(Tng) (x,T)dZ(z,T)
B (0

B:(0)

B :/ (0)/ (LjfZMk (f)b]k> TNSOdtj/\dZ
j:l r s k=1

_Z/ (0)/ <LjTNgo — 3" M (Twy) bjk> fdt; NdZ.  (2.17)
Jj=1 r s

k=1

The second integral on the RHS has a limit as s — 0 by hypothesis (i) of the theorem and

the argument similar to the one used to get (2.15). For the third integral, consider

Z 7;; [Lj <aam>a90(‘l’1)} (T2)*

la] <N

LiTny

) Z(lj [(i)aw(‘l’l)] Lj (W2)"

Q<N

a+eg
- yye ((j) mfl)) (L) ()"

+ ). 04!(;1:) P(W1) [ (U2)" ™ LWy

m o ater
-y e ((j) mfl)) (L) (82)°

™ lal+1 atep
. (51) (W1 (L W) ()"

—+

. atep
-y e ((;) ga(\h)> (L) (¥2)"

™ oglel o9\ ete
+ Z Za'(@x) ©(¥1) (W2)* Lij(Z)). (2.18)

la|<N-11=1
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Since Z(x,0) =z, |Wa(x,t)] = |¥a(x,t) — Ua(z,0)] < C'|t| and so, recalling that the Z; are
approximate solutions, we conclude that

LTz, t)] < C [N (2.19)

Hence,
lim fla, ) Tne(z,t)dZ(x,t) exists.
I's>t—0 B(0)
We will next use the existence of

lim

I's>t—0 f(x’t) (TNg) (xvt)dZ(Jf,t)

B, (0)
to show that

lim

7t Tn- 7tdZ 7t ists.
['55t—0 BT(O)f(‘T ) (Tn-19) (z,t)dZ(z,1) exists

To do so, let (z,t) € C°(Br(0) x Bs(0)) and for a fixed multi-index 5 with |3] = N let
g(m, t) = 121(% t)\I’Q(xa t)57

where 9(z,t) = ¥(Vy(z,t),t) and Uy(x,t) = Us(W(z,t),t). The functions ¢ and Uy (x, )
exist since the map (z,t) — (¥1(x,t),t) is a diffeomorphism. Note that we may write

Ty (P95) (0,8) = w(e,a(a,t)’ + (@) Y aale,t)¥a(z, 1)

|a|=N
+ > by(a, ) Wy(a,t) (2.20)
[vI>N

where aq(z,t) and by(z,t) are smooth and a(x,0) = 0. The assumption on the growth of
f implies that

lim f(IL’,t) lb(x,t) Z aa(JI,t)\I/Q(.’L’,t)a-i- Z b"/(x7t)\112(x7t)’y dz
I's35t—0 B (0) | =N N

exists. It follows that for any v¢(z,t) € C§°(B,(0) x Bs(0)) and any multi-index 8 with
Bl = N,

lim

e F@, ) (x,t)Ua(z, 1)’ dZ(z,t)

B-(0)

exists. Note next that for any g(z,t) € C§°(B,(0) x Bs(0)),

Tng(w,t) = Tn-1g(z,t) + Y ds(x,t)Va(, 1)
|BI=N
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for some smooth 15 of compact support. Hence,

li t) (T — tYdZ(x,t
m%?i»o BT(O)ﬂm’ J(g) oz 1)

exists. We will prove by descending induction that for any
g(z,t) € C§°(B,(0) x B5(0)) and 0 < k < N,

lim fz,t)Tkg(x,t)dZ(x,t) exists,
t—0 B,(0)

which for £ = 0 and g(z,t) = ¢(x) € C§°(B,(0)) proves the Theorem. To proceed by
induction, suppose 1 < k < N and assume that for any multi-index § with |5| = k, the
limits

lim f(2,t)Us(x,t)g(x, t) dZ(x,t) and
t—0 BT(O)

t—0 BT(O)

both exist for any g(x,t) € C5°(B,(0) x By(r)). We have already seen that (2.21) is true for
k= N. Fix ' with |8'| = k — 1. Plug g(=,t) = ¥(z,t)¥s(z, t)? in the limit on the right in

(2.21)

(2.21) and observe that Tj_1g may be written as

Tk—lg(m’t) = ¢(w7t)q12(x7t)6/ =+ T,D(.%', t) Z Ca(xat)\l/2($at)a + Z dw(xvt)\l@(xvt)7
lor|=k—1 [v[>k (2.22)

where co(z,t) and d,(z,t) are smooth and c,(z,0) = 0. From the existence of the two

limits in (2.21) we derive that

%ir% f@,t) (W, t)Ta(z, t)% + p(x, t) Z Colz, t)Uo(z, 1)) dZ(z, 1) (2.23)
7B (0) lo|=h—1

exists. Observe next that since each cq(z,0) = 0, given any collection {¢5(z,t) : || = k—1}
of compactly supported functions, we can find compactly supported functions {ng(z,?) :

|8'| = k — 1} such that
YSUTTED SN) SER S
B’ 6’

We conclude that

lim [z, ) s(x,t)0(x,t) dZ(x,t)  exists (2.24)
t—0 B (0)



46

for all g with |5] = k—1 and ¥ (z,t) € C*(B,(0) x B,(0)). Hence, taking account of (2.21)
and (2.24) we conclude that
lim flz, t)Ty—2g(x,t)dZ(x,t) exists. (2.25)
=0/, (0)

We have thus proved that (2.21) holds for k — 1, completing the inductive step. Therefore,
lim f(z,t)(x)dZ(x,t) exists (2.26)
t=0./B,(0)

and thus bf = lim;_,o f(.,t) exists. m

For the rest of this section, let (M,)) be R™™" = R” x R} with a CR structure

V near the origin; i.e., YNV = {0} in a neighborhood U = B,(0) x Bs(0) of the origin in

R x R}. Suppose that V is generated, in U, by the complex vector fields {Ly, ..., L, }, where

Lj= o, +Z_:ajk (2,1) 5~

Let Z1,...,Z,, : U — C be a complete set of smooth approximate first integrals for V in U
such that
Zi(z,0)=x;, 1<1<m.

For each | = 1,...,m, we may write
n
Zy(x,t) =z + Y tay(a,t), (2.27)
s=1

where ¢ (z,t) = 1/1(1) (x,t) + iiﬁl(? (z,t). Since V is CR in U, for each 1 < j < n there exists
1 < j' < m such that

Observe that
Sa;(0,0) = —7(0,0). (2.29)
Indeed,
97, “ 97,
L;iZy(z,t) = aTj(a:,t) + Zajk(x,t)a—xk(x,t)

= (Zt % t) + vy, t))

s=1

+ ( a]k x,t) <5kl+zt 81/}18 t)))
k=1
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Evaluating this at (0,0), we get
0= ¢lj(0, 0) + a;(0,0).

Corollary 51 Let W = B,(0) x I's be a wedge with edge B,(0), where I' C R} is an open
cone with vertex at the origin, and suppose that f(z,t) € C(W) satisfies: for some C > 0
and some N € N

(z)fB y 1L f(2,t)dz < C < oo; and
(1) there exist N € N and C > 0 such that

|f(@,0)]|Z(x,t) = Z(2,0)]" < C.
Then bf = l;n f(.,t) exists in D'(B,(0)).

Proof. If we set

Z(z,t) = (Z1(z,t), 0y Zm(z,1))
z = (T1,.0, Tm),
t = (t1,...,tn), and

Az, t) = (¥i(®:0) ciom 1<j<n

Then we can rewrite (2.27) in the matrix form
Z(x,t) =z + Az, t)t.

Since V is CR in U, SA(x,t) has rank n at and hence near the origin. Without loss of
generality, suppose that

B(z,t) = (St (z, t))1<ij<n is invertible near the origin.
Then
|A(z, t)t| > |B(z,t)t| > |Bi(z,t) - t| for all (x,t) near (0,0),

where By(z,t) is the I-th row of B(z,t). Fix t° € T. Since B(0,0) is invertible, one can find
a row B;(0,0) of B(0,0) such that

40
[£0]

By(0,0) -

=Cp > 0.



Hence, we can find an open convex cone FccT containing t° such that

t 1 =~
‘BK0,0) : ‘ > 500 forallt eT.

]
Therefore, we can find a wedge W = Bx(0) x T'5 CC W (where 0 < 7 < 7 ) such that

t 1 —~
‘Bl(as,t) : |t|‘ > ZCO for all (x,t) € W.

This implies that for all (z,t) € W
1

Thus,
|f @, t)] [t < const. | f(x, )] |Z (2, 1) — Z(2,0)[" < C.

Hence, by Theorem 4.1, bf = - lign Of(.,t) exists in D'(B,(0)). m
§It—
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CHAPTER 3

Edge of the Wedge Theory in

Involutive Structures

3.1 Introduction

Let M be a C° manifold and V € CT'M a subbundle with rank n which is
involutive, that is, the bracket of two smooth sections of V is also a section of V. We
will refer to the pair (M,V) as an involutive structure. The involutive structure (M,V) is
called locally integrable if the orthogonal of V in CT™* M is locally generated by exact forms.
In [EG] assuming that (M,V) is locally integrable, the authors proved some microlocal
regularity results for a distribution w on certain submanifolds £ of M where u arises as the
boundary value of a solution on a wedge W in M with edge E. These results were expressed
in terms of the hypo-analytic wave-front set developed in [BCT]. In this chapter we prove
some analogous results in the setting of involutive structures that are not necessarily locally
integrable, and for boundary values of approximate solutions (Definition 57) in wedges.

In section 3.2 we summerize some of the notions from [EG] and in section 3.3 we
state and prove our main results. Also, throughout this chapter, W F'(u) will denote the

C*° wave-front set of u.

3.2 Preliminaries

In this section we will briefly recall some of the notions and results we will need

about involutive structures. The reader is refered to [EG] for more details. We assume
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(M,V) is an involutive structure and the fiber dimension of V equals n. A distribution f
on M is called a solution if Lf = 0 for all smooth sections L of V. A real cotangent vector
o € Ty M is said to be characteristic for the involutive structure (M, V) if o(L) = 0 for all
L €V, and we let

Tg ={o € T; M : o is characteristic for (M,V)}.

Even when V is a line bundle, the dimension of T£ may not be constant as p varies. However,

when V is a CR structure, that is, VNV = {0}, then T? is a vector bundle.

Definition 52 A smooth submanifold X of M is called mazimally real if CI,M =V, @
CT,X for each p € X.

If X is a maximally real submanifold and p € X, define
V)i ={L€eV,:RLeT,X}.

We recall the following result from [EG] which is also valid for a general involutive

structure.
Proposition 53 (Lemma II.1 in [EG]) VX is a real subbundle of V|x of rank n. The map
S:V|x = TM
which takes the imaginary part induces an isomorphism
VX~ TM|x/TX.

Proposition 54 shows that when X is maximally real, for p € X, & defines an
isomorphism from VZ‘QX to an n—dimensional subspace NN, of T,,M which is a canonical

complement to 7, X in the sense that
TyM =T,X ® N,.

Definition 54 Let E be a submanifold of M, dimg E = k. We say an open set W is a
wedge in M at p € E with edge E if the following holds: there exists a diffeomorphism F
of a neighborhood V of 0 in RN (N = dimg M) onto a neighborhood U of p in M with
F(0) =p and a set Bx T CV with B a ball centered at 0 € Rk an T a truncated, open

convez cone in RYN=F with vertex at 0 such that

F(BxT)=W and F(Bx{0})=EnU.
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Definition 55 Let E, W and p € E be as in the previous definition. The direction wedge
I',(W) C T, M is defined as the interior of the set

{d(0)]c:[0,1) = M is C*°, ¢(0) = p, c(t) € W Vt > 0}.
It is easy to see that I',(W) is a linear wedge in T, M with edge T,E. Set
rov) = Jr,mw).
peE

Suppose W is a wedge in M with a maximally real edge X. As observed in [EG],
since I',(W) is determined by its image in T, M /T, X, the isomorphism ¥ can be used to

define a corresponding wedge in Vlf( by setting
IYW) ={LeV, :SLeT,(W)}.
V . . . X . . . .
Iy (W) is a linear wedge in V' with edge {0}, that is, it is a cone. Define also
ITW)={RL:LeTy(W)}.

IT(W) is an open cone in (RV,) NT,X (see [EG]). Set

o) = [ IYW) and TT(W) = | J TE(W).
peX peX
Definition 56 Let W be a wedge in M with edge a mazximally real submanifold X. We say
a distribution f € D'(W) is an approximate solution if Lf € L1 (W) and

loc
Lf(p) = O(dist(p, X)) V1 =1,2,3,...,
and for all smooth sections L of V.

Definition 57 Let W and X be as above, f € D'(W) and u € D'(X). Near a point p € X
let (2',2") € B x T be a coordinate system where B and T are as in Definition 55. We
say that f has a boundary value u if at each p and in each such coordinate system, f is a
smooth function on T' with values in D'(B), extends continuously to T'U {0} and equals u

at " = 0.
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3.3 Edge of the Wedge Theory in Involutive Structures

Theorem 58 Let (M,V) be an involutive structure (not necessarily locally integrable),
dimgr M = m+n, rankcV =n, X C M a maximally real submanifold, and W a wedge in
M with edge X. Suppose that u € D'(X) is the boundary value of an approzimate solution
feD (W) of Vf=0. Then

WF(u) c (TTW))".

Proof. Since W is a wedge in M with edge X, we get that near a point p € X, (say, in
Q2 C M), there are coordinates (z,t) = (z1, ..., Tm, t1, ..., t,) vanishing at p so that in Q

X ={(,0) : |z| < r} = B;(0),

W =X xT' for some open convex cone I' C R}

Since X is maximally real,

CrM=Crxeasyv

and so for each j = 1,...,n, there exists a smooth section L; of V ( near 0 ) and smooth

functions a;,(z,t), 1 < j <n, 1 <k < m such that

0 “ 0
L, =— ; — (1 <7< n). 1
J 8tj +kZ:1a]k(xvt)axk ( >J = n) (3 )

Observe that the L;’s are linearly independent over C, and so
V =spanc{L; : 1 < j <n}.

Let
{Z1(x,t)y ooy Zp (1) } (3.2)

be smooth functions satisfying the following properties: for all N € N there exists Cy > 0
such that
L Zi(z,t)] < Cn [t]Y, and Zi(x,0) = ay, for 1 <1< m. (3.3)

Forl=1,...,m, and (z,t) € Q, we can write

Zl(ilj, t) =x;+ Z tﬁ%(% t)a (3'4)
s=1
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where ¥ (z,t) = zpl(i)(x, t) + il/}l(g) (x,t). Set

Z(z,t) = (Zi(x,t),...; Zm(z,t)), and
Az, t) = (wij(x’t))gigm, 1<i<n (3.5)
Then we can rewrite (3.4) in the matrix form
Z(x,t) =z + Az, t)t. (3.6)

Using (3.3), forall 1 <j<mn, 1<I<m

—a;i(0,0) = ¢;;(0,0). (3.7)
Hence, forall 1 <j<n, 1 <I<m
~Sa;(0,0) = v;(0,0). (3.8)
We have:
V& ={L e Vy: RL € TyX} = spang{iL;|o: 1 < j <n}. (3.9)

Indeed, the above span is contained in Vg( and since its dimension over R is n, by Proposition

54, it equals V()X . The direction wedge

TCo(W) = Zaj; lo +ij£]0:aeRm,beF ~R™ xT. (3.10)
j=1 i j=1 J
Hence,
TyW)={LeVy :SLeTy(W)} = {Zz’bijo be r} , (3.11)
j=1
and

rfow) = {RL:LeTyW)}

= {ij (Z —%Ajk(o,())aikk)) :be F}

j=1 k=1
- ) 9\,

= >y Zwkj(o,o)a—mb bhel
j=1 k=1

- {i (i bjwﬁj.)(o,o)) %!o the F} C ToX. (3.12)

k=1 \j=1



Hence,

TT)° = {€eTyX\{0} ~R™ {0} : €-v>0 forall v e TH(W)}
= {£e€R™{0}:£-3A(0,006>0 forallbel}.

Therefore, since (FE(W))O is closed in R™\{0}, we obtain
¢ (Fg(W))O & 3 an open convex cone I C I': £2- SA(0,0)" < 0.
For j =1,...,n, define the vector fields

m
Lj=1L; = LijZ(w,t)My,
k=1

54

(3.13)

(3.14)

(3.15)

where My, ..., M, are C* complex vector fields involving differentiation in the x variables

only such that
MkZl:(Skl fOI‘aHlS/{)Sm, 1§l§m

Note that
L;Zl:() forall1<j<mn, 1<I<m.

If g(w,t) is any C! function defined in ), observe that the differential

dg(z,t) = Z Lig(x, t)dt; + Z My.g(x,t)dZ).
j=1 k=1

Hence, if we consider the m-form
w(z,t) =gz, t)dZ(x,t) = g(x,t)dZy N -+ NdZpy(x,t),
its differential becomes

n
dw(z,t) =Y Lig(x,t)dt; A dZ(x,t).
j=1

Since f(x,t) is an approximate solution of V in W,
YN € N3Cy > 0: |Ljf(z,t)] < O [t[N for all (z,t) € W.
We also know that

lim / f(z,t)p(x)dr = (u,p) exists for all ¢ € C5°(X).
I'st—0 Jx

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Let n(x) € CP(R™), n(z) =1 for |z| < r, and n(x) = 0 when |z| > 2r (r small). We will
consider the FBI transform of nf:

]}fﬁnhg):t[;85@Z@¢»|§@Z@”Pnﬁmeut)@htZihgﬂ)dm. (3.22)

where for z € C™, we write (2)? = 27 + -+ + 22,. Since the boundary value bf = u exists,

we have
For(0:9,6) = /Xeig'(y_m)‘5'<y"’”>2n<w)u(w> dx (3.23)
= fnu(yug)

Let ¢° € R™\{0} be such that £° ¢ (Fg(W))O . Then, by (3.14), we can get an open convex
cone I' C T such that
€% SA(0,0)T < 0. (3.24)

Fix T € T and let
v(s) =sT for 0 < s < 1.

Consider the m-form w(z,t) = g(x,t) dZ(x,t), where
and it is to be understood that y and £ are parameters. We now avail ourselves of Stokes’

/v/xdmx’t):/émxmw(x’t)' (3.25)

Using (3.20), (3.25) becomes

theorem

L/}(;Lég(xat)dtjAdZ(xat)Z/Xw(x,T)—/Xw(a:,O). (3.26)
Note that by (3.17),

+ 6 W= 2@0)-lel=Z(@0)* £ t) L (x, 1),
w(xz,T) = g(x,T)(det Zy(z,t)) dzx
= eig'(y*Z(I’T))*|§|<y*Z(x’T)>2n(m)f(x, T) (det Zy(z,T')) dx, and
w(z,0) = g¢g(z,0)dz = e’f'(y_l’)_‘g'<y_x>2n(m)u(x) dx.
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Hence, together with (3.26), the above equations imply

|fnu(ya £)| < '/ eif'(y—Z(oﬁ,T))_m<y—Z(x,T))2n(x)f($’ T) (det Zx(_x, T)) du
X

n
2
j=1

/ / 6 @O IE=2@0) () 1 f (2, ) (det Zo(x, 1)) derdt;
vJX

" ; /v /x (&= 2@O)~IEN=2@0) £ (2 1)L (x) det Z, ddt;|  (3.27)
Write
Qs t,y,€) = i€ - (y = Z(.)) = el y = Z(w, )" (3.28)

We have

(3.29)
Let M > 0 such that

|A(x,t) — A(0,0)]| < M (|z| + |t]) for all (z,t) € Q
and so, for all (z,t) € Q:
£ SA(x, t)t < &-SA0,0)t + M (] [t] (|| + [¢]) -
Therefore, for some C' > 0,
RQ(z,t,y,8) < & SA(0,0)t + M (|| + [¢])[¢]|¢]

ly — x|
€]

2 p—
+OluPlel - 2

Since €° - (3A(0,0)T) < 0, there is a conic neighborhood C of €% and ¢ > 0 such that
€-(SA0,0)t) < —2¢|t]|¢] VE e, Vten.
Hence for r small enough, |z| < r, and |t| small,
RQ(z,1,y,6) < —cft[[¢] V€ C, Viecr.

Thus, there are 6 > 0, Cy > 0, an open neighborhood O C R™ of the origin and an open
conic neighborhood C € R™\{0} of £° such that for all ¢ € v and all (y,£) € O x C :

RQ(, 1,3,€) < —;Co €] (3.30)
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We are now ready to conclude the proof. Look back at (3.27). We have

[t 2T ) 0T (0 240, T)

IN

/ e~ 1Ol () f (2, T)| (det Zo(x, T)) dee
X

Ce 1%kl for all (y,) € O xC.

IN

Since Lin(z) = 0 for [z| < r, the term

(& =2 @) el y=2@0) [ () f (2, 1) (det Zy(x, 1)) dadt,

has an exponential decay for y near 0 and £ in a conic neighborhood of ;. For N a positive

gy / /X IS 2e)-IE-2@OV () [ f(z, t)d
.

< cmNL

+Clgy
k

integer,

dt;

/X 202 @0 ()T (i, £)d

dt;

(i W= 2@ NeN=2@0 () L Z, (2, 8) M f (2, £) | dt .

Since f is an approximate solution of the L;’s, we obtain

clelN e‘£~(y—Z(w O =lElw=2@0) p () L f (2, 8)dae

CCN// o~ 1 Coltl[€] 3R ]Ndxdtj
< (' forall (y,£) € O xC.

dt;

IN

Since bf = u exists, so does b (Mjf) for all K = 1,...,m. Hence, after decreasing 0, we can

find a positive integer n independent of N such that

2
< KplgfY Z/ sup ‘DO‘ i€ (y=Z(@.0) = [l ly—Z(@.0)) n(x)LjZk(x,t)Hdtj

|a|<n

Koye~1Coltll] 3R

IN

IN

C" for all (y,£) € O xC.
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Therefore, for each N € N there exists a constant Cy > 0 such that for all (y,£) € O x C :
Cn
| Fou(y, O] < ey

This shows that the FBI transform of u, F,(z, &), has rapid decay in & for all (z,£) € O xC.
It is well known (e.g., see [BH3]) that this implies

(0,£%) & WFy(u).

This completes the proof. m

We are now in a position to consider the Edge-of-the-Wedge Theorem:

Corollary 59 (Edge-of-the-Wedge Theorem) Let W' and W~ be wedges in Q with edge
X whose directions are opposite: Ty(WT) = —T',(W™). If u € D'(X) is the boundary value
of an approzimate solution f* of V on W and also the boundary value of an approzimate

solution f~ of V on W, then W F,(u) C i (T)Q).

Proof. By the above theorem,

Note that

Thus, if £€* € W F,(u), then
&I (WH) >0 and - T) (W) > 0.

This imples that
0 pT
&I, (W+) =0.

Since I’} (W) is open in RV, N T, X, we conclude that
€ e RV, NT,X)" =ik (109).
Thus, WFy(u) C i% (7). =

Corollary 60 If (M,V) is an elliptic structure and we have the same hypothesis as in the

previous corollary, then u is C*° on X.
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There is a converse to Theorem 58&:

Theorem 61 Let (M,V) be an involutive structure (not necessarily locally integrable),
dimgr M = m +n, rankcV =n, X C M a mazimally real submanifold, and W a wedge in
M with edge X. Suppose u € E'(X) is such that

WF(u) c (TTW))°.

Then in a slightly smaller wedge W' CC W with edge X, there exists an approximate solution
FeDW) of Vf =0 such that
u=>bf on X.

Proof. We proceed exactly as in the proof of Theorem 58 until (3.13). For some open

convex cone IV CC T, one can write
W' = B,(0) x I'".

Using (3.13) and the fact that I' CC T', one can find an open convex cone C C R™\{0}

containing (FOT(W))O and a constant ¢ > 0 such that
£-SA0,0)t > clé|]t]  forall (&,t) eC xT. (3.31)
For (z,t) € W' and ¢ € C, define

Q(x7t7§) = ZfZ(ZL‘,t)
= i€ (z+ RA(x,t)t) — € - SA(z, t)t.

Using (3.31) and the fact that SA(x,t) is of class C'*! near (0,0), one obtains for some M > 0
and for all (z,¢) € W and £ € C :

%Q(C{?,t,f) = - SA(:}C,t)t
< —§-SA0,0)0 + M E[ e (] + ¢ )
—cl&l|t] + M €] (=] + [¢])

VAN

Choosing 0 < 7,6 < 737, we can insure that

RQ(z,t,€) < —g €| [t|  for all (z,t,€) € B(0) x T’ x C. (3.32)
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Since u € £'(X), the Paley-Wiener theorem implies that there exists a constant C' > 0 and

a positive integer N such that the Fourier transform
[a) <o+ ghN  for all € € R™, (3.33)

This allows us to define for (z,t) € B,(0) x I'§j the continuous function

hle.t) = g [ €2 Oaee
c

BCOR / e 2 eDu(g)d. (3.34)
c

We claim that
(i) f1 is an approximate solution of V;

(i) // | f1(z, )| |t dedt < oo (N is the same as the one in (3.33)).

B, (0)xT,
Assuming that the claims are true for the moment, we can use Theorem (50) to

guarantee the existence of the boundary value of f1, bf; = - lim fi(.,t), in D'(B-(0)) and
52t—0

we can use the formula obtained in that theorem to show that in fact

bfi(x) = (2;),,1 / CER(E)de. (3.35)
C
Now, we show the validity of claims (i) and (ii) above. To show (i), we fix ¢y € I'j and we
consider a small open neighborhood of ¢y in I'§. In this small neighborhood, the dominated
convergence theorem together with the estimate (3.32) allow us to pass L; under the integral
sign

L t) = —— / i€ - 1, 2w, ) 2N G(E) de

(2m) )

Since Z(x,t) are approximate first integrals for V, we get that for each [ = 1,2, ... there

exists a constant C; > 0 such that
\L; Z(x,t)] < Cy|t|"  for all (x,t) € B.(0) x Bs(0). (3.36)
There is a constant K = K (c) > 0 such that

Y ¢V e 2kl < K for all ¢ and ¢&. (3.37)
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This implies, together with (3.36), that for each [ = 1,2, ... there exists a constant K; > 0
such that

\Lifi(z,t)| < K |t forall (z,t) € B,(0) x T (3.38)
Hence, f; is an approximate solution of V and claim (i) is proved. To prove claim (ii), we

observe (using (3.37)) that there is a constant C’ > 0 such that
|fi(z, )] [t < for all (z,t) € B.(0) x T'}.

Hence,

/ / (e, t)] |1 ddt < oo,

B,(0)xT

and claim (ii) follows. Now, for z € B,(0), define

v(z) = ) / eCTh(€)dE. (3.39)
Rm\C
Using the fact that WFy(u) C (Fg(W))O, compactness of (R™\C) NS™~1 and the charac-
terization of the C'™° wavefront set by the rapid decay of the Fourier transform, we get
that v € C°°(B,(0)). It is well known that in this case, one can find a C* function
fa € C®(B;(0) x Bs(0)) such that fo is an approximate solution of V and bfs = v on
X. Thus, from the Fourier Inversion formula, (3.35) and (3.39) we get that

u=">bf1+0bf2 =0bf,

where f = f1 + f2 is an approximate solution of V in the wedge WW'. This completes the

proof. m



[BCT]

[BER]

[BCH]

[BH1]

[BH2|

62

REFERENCES

Asano, C. H. (1995) On the C*° Wave-front set of Solutions of First Order Nonlinear
PDFEs. Proc. of AMS, volume 123, Number 10, October 1995, pp. 3009-3019.

Baouendi, M. S., Chang, C. H., and Treves, F. (1983) Microlocal hypo-analyticity
and FExtension of CR Functions. Jour. Diff. Geom. 18:331-391.

Baouendi, M. S., Ebenfelt, P., and Rothschild, L. P. (1999). Real Submanifolds in
Complex Space and their Mappings, Princeton University Press.

Baouendi, M. S., and Treves, F. (1981) A Property of the Functions and Distributions
Annihilated by a Locally Integrable System of Complex Vector Fields. Ann. of Math.
113, 387-421.

Berhanu, S., Cordaro, P., and Hounie, J. (2006) An Introduction to Involutive Struc-

tures.

Berhanu, S., and Hounie, J. (2003) Traces and the F. and M. Riesz theorem for
vector fields. Ann. Inst. Fourier, Grenoble, 53, 5 (2003), 1425-1460.

Berhanu, S., and Hounie, J. (2002) On boundary properties of solutions of complex

vector fields. Journal of Functional Analysis 192, 446-490.

Berhanu, S., and Hounie, J. (2001) An F. and M. Riesz Theorem for Planar Vector
Fields. Mathematische Annalen, 320, 463-485.

Cordaro, P. D., and Treves, F. (1994) Hyperfunctions on Hypo-Analytic Manifolds.
Annals of Mathematics Studies (Study 136), Princeton University Press.



63

[EG] Eastwood, M. G., and Graham, C. R. (2003). Edge of the Wedge Theory in Hypo-
Analytic Manifolds. Comm. in PDEs, vol. 28, Nos. 11 & 12, pp. 2003-2028.

[H] Hormander, L. (1983). The Analysis of Linear Partial Differential Operators I (Dis-
tribution Theory and Fourier Analysis), Grundlehren der mathematischen Wis-

senschaften, Vol. 256.

[T] Treves, F. (1992). Hypo-Analytic Structures (Local Theory), Princeton University

Press.



