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ABSTRACT

We consider three different phenomena governing the fluid flow in the presence of

charged particles: electroconvection in fluids, electroconvection in porous media,

and electrodiffusion. Electroconvecton in fluids is mathematically represented by a

nonlinear drift-diffusion partial differential equation describing the time evolution

of a surface charge density in a two-dimensional incompressible fluid. The ve-

locity of the fluid evolves according to Navier-Stokes equations forced nonlinearly

by the electrical forces due to the presence of the charge density. The resulting

model is reminiscent of the quasi-geostrophic equation, where the main difference

resides in the dependence of the drift velocity on the charge density. When the fluid

flows through a porous medium, the velocity and the electrical forces are related

according to Darcy’s law, which yields a challenging doubly nonlinear and dou-

bly nonlocal model describing electroconvection in porous media. A different type

of particle-fluid interaction, called electrodiffusion, is also considered. This latter

phenomenon is described by nonlinearly advected and nonlinearly forced continu-

ity equations tracking the time evolution of the concentrations of many ionic species

having different valences and diffusivities and interacting with an incompressible

fluid. This work is based on [1, 2, 3] and addresses the global well-posedness,

long-time dynamics, and other features associated with the aforementioned three

models.
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CHAPTER 1

Navier-Stokes Equations on the Torus

We consider the incompressible Navier-Stokes equations, forced by time-independent

body forces in the fluid, on two-dimensional periodic domains. We address the ex-

istence, uniqueness, smoothness, and long-time behavior of solutions.

1.1 Viscous Homogeneous Incompressible Fluids

Let Ω ⊂ Rd be a domain occupied by a viscous incompressible fluid. The particle

trajectories are described by the flow map

X(·, t) : Ω → Ω, a 7→ X(a, t) (1.1)

at positive times t ≥ 0. The velocity field

u(x, t) = (u1(x, t), . . . , ud(x, t)) (1.2)

at (X(a, t), t) is tangent to the curve {X(a, s) : 0 ≤ s ≤ t} at X(a, t) and obeys

∂tX(a, t) = u(X(a, t), t). (1.3)

The density scalar field ρ(·, t) determines the mass of a volume element V in the

fluid via

m(V, t) =

∫
V

ρ(x, t)dx. (1.4)
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Assuming the conservation of mass, we have

d

dt
m(X(V, t), t) = 0 ⇔

∫
X(V,t)

(∂tρ+∇ · (uρ)) (x, t)dx = 0 (1.5)

for any smooth volume element V in Ω. Consequently, mass is conserved if and

only if the the density ρ obeys the equation

∂tρ+∇ · (ρu) = 0. (1.6)

Due to the incompressibility of the fluid, the velocity field satisfies the divergence-

free condition

∇ · u = 0, (1.7)

hence the equation (1.6) reduces to

∂t (ρ(X(a, t), t)) = ∂tρ(X(a, t), t) + (u · ∇ρ)(X(a, t), t) = 0. (1.8)

Therefore, ρ(X(a, t), t) is constant in time and amounts to the initial density ρ0 at

a. This gives the explicit expression

ρ(x, t) = ρ0(X
−1(x, t)) (1.9)

for all x ∈ Ω and all nonnegative times. If ρ0 is homogeneous (constant in space),

then we obtain

ρ(x, t) = ρ0 (1.10)

for all x ∈ Ω and all times t ≥ 0. The pressure and viscosity of the fluid exerts a

force on the surface of any volume element in the fluid. Due to the conservation of

momentum (Newton’s second law of motion), and in the presence of body forces in
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the fluid, the following relation

d

dt

∫
X(V,t)

ρ0u(x, t)dx =

∫
X(V,t)

ρf(x, t)dx

+

∫
∂X(V,t)

(
pI + ν(∇u+∇uT )

)
· n(x)dσ(x) (1.11)

holds, where p is the pressure of the fluid, ν > 0 is a positive constant denoting the

dynamic viscosity, n(x) is the outward unit normal to the boundary ∂X(V, t), and

I is the identity operator. An application of Green’s formula yields

d

dt

∫
X(V,t)

ρ0u(x, t)dx =

∫
X(V,t)

(−∇p(x) + ν∆(x) + ρ0f(x)) dx (1.12)

for all volume elements in Ω, from which we infer that

ρ0 (∂tu+ u · ∇u) +∇p− ν∆u = ρ0f. (1.13)

Dividing both sides by ρ0, we obtain the Navier-Stokes system describing the time

evolution of the velocity field u,

∂tu+ u · ∇u+
1

ρ0
∇p− ν

ρ
∆u = f. (1.14)

The constant νρ−1 is called the kinematic viscosity. We refer the reader to [6,

Chapter 1] for more details.

In the following sections of this chapter, the constants ρ0 and ν will be taken

to be 1 as they don’t have any contribution to the analysis of the problems we are

addressing.

1.2 Functional Spaces and Notations

Let T2 = [0, 2π]2.
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For 1 ≤ p ≤ ∞, we denote by Lp(T2) the Lebesgue spaces of measurable

periodic functions f from T2 to R (or R2) such that

∥f∥Lp =

(∫
T2

∥f∥pdx
)1/p

< ∞ (1.15)

if p ∈ [1,∞) and

∥f∥L∞ = esssupT2 |f | < ∞ (1.16)

if p = ∞. The L2(T2) inner product is denoted by (·, ·)L2 .

We denote by P the Leray-Hodge projection onto the space divergence free

vector fields. For a mean-free periodic vector field v = (v1, v2) with Fourier series

v =
∑

j∈Z2\{0}

vje
ij·x, (1.17)

Pv has the following Fourier representation

Pv =
∑

j∈Z2\{0}

[
vj − (vj · j)

j

|j|2

]
eij·x. (1.18)

The operator P is bounded on Lp spaces for any p ∈ (1,∞).

For s > 0, we denote by Hs(T2) the Sobolev spaces of measurable periodic

mean-free functions f

f =
∑

j∈Z2\{0}

fje
ij·x (1.19)

from T2 to R (or R2), obeying

∥f∥2Hs =
∑
k∈Z2

|k|2s|fk|2 < ∞. (1.20)

Let H and V be the Hilbert spaces of L2(T2) and H1(T2) respectively, consist-

ing of periodic vector fields which are mean zero and divergence-free, with norms

∥u∥H = ∥u∥L2 (1.21)
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and

∥u∥V = ∥∇u∥L2 (1.22)

respectively.

For a Banach space (X, ∥·∥X) and p ∈ [1,∞], we consider the Lebesgue spaces

Lp(0, T ;X) of functions f from X to R (or R2) satisfying∫ T

0

∥f∥pXdt < ∞ (1.23)

with the usual convention when p = ∞.

Throughout this chapter, C denotes a positive universal constant, and it changes

from line to line along the proofs.

1.3 Existence and Uniqueness of Solutions

We consider the forced incompressible Navier-Stokes equations

∂tu+ u · ∇u+∇p−∆u = f, (1.24)

∇ · u = 0 (1.25)

on T2 × [0,∞), with initial data u0(x). All unknowns are periodic in space. The

body forces f are divergence-free, time independent and have mean zero.

The Stokes operator A := P∆ is positive, self-adjoint, with compact inverse.

By the spectral theorem for Hilbert spaces, there is an orthonormal basis of H

consisting of eigenfunctions {Φk}∞k=1 of the Stokes operator

AΦk = P(−∆Φk) = µkΦk (1.26)
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with periodic boundary condition on T2, where the sequence of eigenvalues µk is

increasing and obeys 0 < µ1 ≤ µ2 ≤ · · · ≤ µk → ∞. The functions Φk’s are

C∞, divergence-free and have mean zero. Since the operators P and ∆ are Fourier

multipliers, they commute, and consequently, it holds that

−∆Φk = µkΦk (1.27)

for all k ∈ N. For a positive integer n ≥ 1, we let

un = Pnu =
n∑

k=1

(u,Φk)L2Φk (1.28)

be the Galerkin approximations of u. For each n ∈ N, un is C∞, divergence-free

and has mean zero. We consider the approximating equations

∂

∂t
un −∆un + Pn(un · ∇un) = Pnf. (1.29)

These are equivalent to a system of nonlinear ODE’s for the coefficients of the

Galerkin approximations (u,Φi)L2 , 1 ≤ i ≤ n,

d

dt
(u,Φi)L2 + µi(u,Φi)L2

+
n∑

k,l=1

(Φk · ∇Φl,Φi)L2(u,Φk)L2(u,Φl)L2 = (f,Φi)L2 , (1.30)

hence a solution of the approximating system would exist if it is bounded in L2. In-

deed, we take the L2 inner product of (1.29) with un. In view of the self-adjointness

of the projector Pn and the divergence-free condition obeyed by un, the following

cancellation

(Pn(un · ∇un), un)L2 = (un · ∇un,Pnun)L2 = (un · ∇un, un)L2 = 0 (1.31)

holds, yielding the differential inequality

1

2

d

dt
∥un∥2L2 + ∥∇un∥L2 ≤ ∥f∥2L2∥un∥L2 ≤ 1

2
∥f∥2L2 +

1

2
∥un∥2L2 , (1.32)
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after making use of Cauchy-Schwarz and Young inequalities. Now we control the

L2 norm of un by the L2 of its gradient via application of the Poincaré inequality

and obtain the energy inequality

d

dt
∥un∥2L2 + ∥un∥2L2 ≤ ∥f∥2L2 , (1.33)

from which we infer that

∥un(t)∥2L2 ≤ ∥u0∥2L2e−t + ∥f∥2L2 (1.34)

holds for every t ≥ 0. Moreover, we have
T∫

0

∥∇un(t)∥2L2dt ≤ ∥u0∥2L2 + ∥f∥2L2T (1.35)

for every T > 0. Therefore, the Galerkin approximants un are uniformly bounded

in the Lebesgue spaces

un ∈ L∞(0,∞;L2) ∩ L2(0, T ;H1). (1.36)

for any T > 0. Moreover, the time-derivatives of the approximants un obey

∂

∂t
un ∈ L4/3(0, T ;H−1) (1.37)

uniformly in n. Indeed, if Φ ∈ H1, then

|(−∆un,Φ)L2| = |(∇un,∇Φ)L2 | ≤ ∥∇un∥L2∥Φ∥H1 (1.38)

and so

∥∆un∥H−1 ≤ ∥∇un∥L2 (1.39)

which implies that

∆un ∈ L2(0, T ;H−1) ⊂ L4/3(0, T ;H−1). (1.40)
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Also, if Φ ∈ H1, then the nonlinear term in un can be bounded as

|(Pn(un · ∇un),Φ)L2| ≤ ∥un∥L4∥∇un∥L2∥PnΦ∥L4

≤ C∥un∥
1
2

L2∥∇un∥
3
2

L2∥Φ∥H1 (1.41)

in view of Ladyzhenskaya’s interpolation inequality. By taking the supremum over

all functions Φ in H1 whose H1 norm is bounded by 1, we infer that

∥Pn(un · ∇un)∥H−1 ≤ C∥un∥
1
2

L2∥∇un∥
3
2

L2 , (1.42)

from which the inclusion

Pn(un · ∇un) ∈ L4/3(0, T ;H−1) (1.43)

follows. By making use of the PDE (1.29) obeyed by un, we obtain the desired

control (1.37) of the time derivatives. Now we apply the Aubin-Lions lemma and

conclude that the sequence {un}∞n=1 has a subsequence that converges strongly in

L2(0, T ;L2) to some function u. Testing (1.29) with Φ ∈ V and integrating in time

from 0 to t, we have

(un(t),Φ)L2 − (u0,Φ)L2 +

t∫
0

(∇un,∇Φ)L2ds

+

t∫
0

(un · ∇un,PnΦ)L2ds = t(f,PnΦ)L2 . (1.44)

Since un → u strongly in L2(0, T ;L2), we conclude, passing to subsequences, that

un(t) → u(t) in L2 for a.e. t ∈ [0, T ], and thus

|(un,Φ)L2 − (u,Φ)L2| ≤ ∥un − u∥L2∥Φ∥L2 → 0. (1.45)
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Now, since un is bounded in L2(0, T ;H1), we deduce, passing to subsequences,

that ∇un ⇀ ∇u in L2(0, T ;L2), and so
t∫

0

(∇un,∇Φ)L2ds →
t∫

0

(∇u,∇Φ)L2ds. (1.46)

Moreover, ∣∣∣∣∣∣
t∫

0

{(un · ∇un,PnΦ)L2 − (u · ∇u,Φ)L2} ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

0

((un − u) · ∇un,PnΦ)L2ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

0

(u · ∇(un − u),PnΦ)L2ds

∣∣∣∣∣∣
+

∣∣∣∣∫ t

0

(u · ∇u,PnΦ− Φ)L2ds

∣∣∣∣
:= An +Bn + Cn. (1.47)

We show that the quantities An, Bn and Cn converge to 0. Indeed, we have

An ≤
t∫

0

C∥un − u∥
1
2

L2∥∇un −∇u∥
1
2

L2∥∇un∥L2∥PnΦ∥L4ds

≤ C∥Φ∥H1

 t∫
0

∥∇un∥2L2


1
2
 t∫

0

∥∇un −∇u∥2L2


1
4
 t∫

0

∥un − u∥2L2


1
4

which approaches 0 as n blows up due to the estimate (1.35). Since uPnΦ ∈

L2(0, T ;L2), then by the weak convergence ∇un ⇀ ∇u in L2(0, T ;L2) we con-

clude that

Bn =

∣∣∣∣∣∣
t∫

0

(∇(un − u), uPnΦ)L2ds

∣∣∣∣∣∣→ 0. (1.48)
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Finally, we have

Cn ≤ C∥PnΦ− Φ∥H1

t∫
0

∥u∥
1
2

L2∥∇u∥
3
2

L2 → 0. (1.49)

Therefore, u obeys the equation

(u(t),Φ)L2 − (u0,Φ)L2

+

t∫
0

(∇u,∇Φ)L2ds+

t∫
0

(u · ∇u,Φ)L2ds = t(f,Φ)L2 . (1.50)

for all Φ ∈ V and a.e. t ∈ [0, T ]. This gives the following theorem:

Theorem 1.1. Let T > 0 be arbitrary. Let u0 ∈ H and f ∈ H . Then, the system

(1.24)–(1.25) has a unique solution u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) satisfying

∥u(t)∥2L2 ≤ ∥u0∥L2e−t + ∥f∥2L2 (1.51)

for any t ∈ [0, T ]. Moreover, we have
T∫

0

∥∇u(t)∥2L2 ≤ ∥u0∥2L2 + T∥f∥2L2 (1.52)

for every T > 0.

Proof: In view of the bounds (1.34) and (1.35), and the lower semicontinuity of

the norm, we obtain (1.51) and (1.52). For uniqueness, suppose u1 and u2 are

two solutions of (1.24)–(1.25) with same initial conditions, such that u1, u2 ∈

L∞(0, T ;H) ∩ L2(0, T ;V ). Then the difference u = u1 − u2 obeys

∂tu+ u · ∇u1 + u2 · ∇u+∇(p1 − p2)−∆u = 0. (1.53)

Taking the L2 inner product of this latter equation with u gives the energy equality

1

2

d

dt
∥u∥2L2 + ∥∇u∥2L2 = −

∫
(u · ∇u1) · udx. (1.54)
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We estimate ∣∣∣∣∫ (u · ∇u1) · udx
∣∣∣∣ ≤ C∥u∥L2∥∇u∥L2∥∇u1∥L2

≤ 1

2
∥∇u∥2L2 + C∥∇u1∥2L2∥u∥2L2 (1.55)

using Ladyzhenskaya’s interpolation inequality followed by an application of Young’s

inequality. Consequently, u satisfies the differential inequality

d

dt
∥u∥2L2 ≤ C∥∇u1∥2L2∥u∥2L2 , (1.56)

from which we infer that u1 = u2 a.e. in T2 for all t ∈ [0, T ].

Theorem 1.2. Suppose u0 ∈ V and f ∈ H . Then, for any t ≥ 0, it holds that

∥∇u(t)∥2L2 ≤ ∥∇u0∥2L2e−t + ∥f∥2L2 . (1.57)

Moreover,
T∫

0

∥∆u(t)∥2L2ds ≤ ∥∇u0∥2L2 + T∥f∥2L2 (1.58)

holds for all T > 0.

Proof: We take the L2 inner product of equation (1.29) obeyed by un with −∆un.

In view of the the identity

Tr(MTM2) = 0 (1.59)

that holds for the two-by-two traceless matrix M with entries Mij =
∂(un)i
∂xj

, the non-

linear term in un vanishes. Moreover, the forcing term (f,−∆un)L2 is bounded by

the product of ∥f∥L2 and ∥∆un∥L2 due the Cauchy-Schwarz inequality. A straight-

forward application of Young’s inequality yields

d

dt
∥∇un∥2L2 + ∥∆un∥2L2 ≤ ∥f∥2L2 . (1.60)
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By the Poincaré inequality, the term ∥∆un∥L2 is bounded from below by ∥∇un∥L2 .

We multiply by the integrating factor, integrate in time from 0 to t, apply the Banach

Alaoglu theorem, and use the lower semicontinuity of the norm in order to obtain

(1.57). Integrating (1.60) in time from 0 to T and using again the Banach Alaoglu

theorem and the lower semicontinuity of the norm, we obtain (1.58).

Remark 1.1. It follows from the proof provided above that∫ t+1

t

∥∆u(s)∥2L2ds ≤ ∥∇u0∥2L2e−t + 2∥f∥2L2 (1.61)

for any t ≥ 0. These bounds will be used later to bootstrap the regularity and

exponential decay to higher-order derivatives.

Theorem 1.3. Let u0 ∈ H, f ∈ H , and u be the solution of (1.24)–(1.25) with

initial data u0. There exists a radius R > 0 depending only on ∥f∥L2 , and a time

t0 > 0 depending only on ∥u0∥L2 , such that the bound

∥∇u(t)∥L2 ≤ R (1.62)

holds for t ≥ t0.

Proof: From the local-in-time integral (1.52), we infer the existence of a small

positive time t1 ∈ [0, 1] with the property that

∥∇u(t1)∥2L2 ≤ 2∥u0∥2L2 + 2∥f∥2L2 < ∞. (1.63)

In view of the bound (1.57), there exists a time t0 ≥ t1 such that

∥∇u(t)∥2L2 ≤ 2∥f∥2L2 := R (1.64)

for all t ≥ t0. This ends the proof of Theorem 1.3.
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Now we address higher regularity properties of the solutions. We need the fol-

lowing Gronwall Lemma:

Lemma 1.1. Let y(t) ≥ 0 obey a differential inequality

d

dt
y + c1y ≤ F1 + F (t) (1.65)

with initial datum y(0) = y0, with F1 a positive constant and F (t) ≥ 0 obeying∫ t+1

t

F (s)ds ≤ g0e
−c2t + F2 (1.66)

where c1, c2, g0, F2 are positive constants. Then

y(t) ≤ y0e
−c1t + g0e

c1+c(t+ 1)e−ct +
1

c1
F1 +

ec1

1− e−c1
F2 (1.67)

holds with c = min{c1, c2}.

The main point of the lemma is that the constants y0 and g0 are multiplied by

exponentially decaying factors.

Proof: Integrating, we have

y(t) ≤ y0e
−c1t +

1

c1
F1 +

∫ t

0

e−c1(t−s)F (s)ds, (1.68)

and, taking N to be the integer part of t, i.e. t ∈ [N,N + 1), we have∫ t

0

e−c1(t−s)F (s)ds ≤
N∑
k=0

e−c1(t−k−1)

∫ k+1

k

F (s)ds

≤ ec1
N∑
k=0

e−c1(N−k)(g0e
−c2k + F2)

≤ ec1(N + 1)e−min{c1,c2}Ng0 +
ec1

1− e−c1
F2. (1.69)

Note that

ec1(N + 1)e−min{c1,c2}N ≤ ec1+c(t+ 1)e−ct ≤ Cγe
−γt

for γ < c = min{c1, c2}.
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By making use of this latter lemma, we obtain the following theorem:

Theorem 1.4. (Higher Regularity) Let k ≥ 1 be an integer. Let u0 ∈ Hk and

f ∈ Hk−1. Then we have

∥u(t)∥Hk +

∫ t+1

t

∥u(s)∥2Hk+1ds ≤ Ck∥u0∥Hke−
t

2k−1 + Ck∥f∥k−1 (1.70)

for all t ∈ [0,∞). Here Ck is a positive constant depending only on k and some

universal constants.

Proof: We present a proof by induction. In view of the estimate (1.57) and Remark

1.1, we infer that Theorem 1.4 holds for k = 1. Suppose the theorem holds at the

(k − 1)-th level. Taking the L2 inner product of the equation (1.29) obeyed by the

velocity approximants un with (−∆)
k
2un, we obtain the energy equality

1

2

d

dt
∥(−∆)

k
2un∥2L2 + ∥(−∆)

k+1
2 un∥2L2

= (Pnf, (−∆)kun)L2 − (Pn(un · ∇un), (−∆)kun)L2 . (1.71)

Here (−∆)
1
2 is the square root of the Laplacian, defined as a Fourier multiplier

with symbol |j| 12 . In view of the self-adjointness of Pn, the fact that Pn and (−∆)k

commute as they are Fourier multipliers, and the identity Pnun = un, we bound the

forcing term as follows,

|(Pnf, (−∆)kun)L2| ≤ ∥(−∆)
k−1
2 f∥L2∥(−∆)

k+1
2 un∥L2

≤ 1

4
∥(−∆)

k+1
2 un∥2L2 + C∥(−∆)

k−1
2 f∥2L2 . (1.72)

The first inequality follows from integrating by parts whereas the second inequality

is a direct consequence of Young’s inequality for products. As for the nonlinear
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term in un, we distinguish two cases: k = 2 and k > 2. If k = 2, then we have

|(Pn(un · ∇un), (−∆)2un)L2| = |(∇(un · ∇un),∇(−∆)un)L2|

≤ ∥∇un∥2L4∥∇∆un∥L2 + ∥un∥L4∥∆un∥L4∥∇∆un∥L2

≤ C∥∇un∥L2∥∆un∥L2∥∇∆un∥L2 + C∥∇un∥L2∥∆un∥
1
2

L2∥∇∆un∥
3
2

L2

≤ 1

4
∥∇∆un∥2L2 + C

(
∥∇un∥4L2 + ∥∇un∥2L2

)
∥∆un∥2L2 (1.73)

after several applications of Ladyzhenskaya’s interpolation inequality. If k > 2,

then Hk−1 is a Banach Algebra, and consequently, we have

|(Pn(un · ∇un), (−∆)kun)L2| = |((−∆)
k−1
2 (un · ∇un), (−∆)

k+1
2 un)L2|

≤ ∥(−∆)
k−1
2 (un · ∇un)∥L2∥(−∆)

k+1
2 un∥L2

≤ C∥(−∆)
k−1
2 un∥L2∥(−∆)

k
2un∥L2∥(−∆)

k+1
2 un∥L2

≤ 1

4
∥(−∆)

k+1
2 un∥2L2 + C∥(−∆)

k−1
2 un∥2L2∥(−∆)

k
2un∥2L2 (1.74)

via integration by parts and use of Hölder and Young inequalities. Therefore, we

obtain the differential inequalities

d

dt
∥∆un∥2L2 + ∥∇∆un∥2L2

≤ C∥∇f∥2L2 + C
(
∥∇un∥4L2 + ∥∇un∥2L2

)
∥∆un∥2L2 (1.75)

when k = 2, and

d

dt
∥(−∆)

k
2un∥2L2 + ∥(−∆)

k+1
2 un∥2L2

≤ C∥(−∆)
k−1
2 f∥2L2 + C∥(−∆)

k−1
2 un∥2L2∥(−∆)

k
2un∥2L2 (1.76)

when k > 2. An application of Lemma 1.1 completes the proof of Theorem 1.4.
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Remark 1.2. The solutions to the forced Navier-Stokes system are infinitely differ-

entiable in space and time provided that the initial data is C∞. This follows from

the Sobolev Hk regularity obtained in Theorem 1.4 for all k ≥ 0 and standard

Sobolev embeddings.

Remark 1.3. In the absence of body forces in the fluid (that is f = 0), the velocity u

and all its spatial derivatives decay exponentially in time to zero, a fact that follows

from Theorem 1.4.

1.4 Existence of a Finite Dimensional Global

Attractor

Let

S(t) : H → H (1.77)

be the solution map

S(t)u0 = u(t) (1.78)

corresponding to the forced incompressible Navier-Stokes system (1.24)–(1.25).

Note that S(t) is well-defined on H for every t ≥ 0. Moreover, the uniqueness of

solutions implies that

S(t+ s)u0 = S(t)S(s)u0 (1.79)
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for all t, s ≥ 0. In other words, S(t) is a semi-group. We proceed to investigate

other properties of the map S(t).

Theorem 1.5. (Continuity) Let u1
0, u

2
0 ∈ H . Let t > 0. There exists a constant C(t),

locally uniformly bounded as a function of t ≥ 0 and locally bounded as initial data

u1
0, u

2
0 are varied in H , such that S(t) is Lipschitz continuous in H obeying

∥S(t)u1
0 − S(t)u2

0∥2H ≤ C(t)∥u1
0 − u2

0∥2H . (1.80)

Proof: Let u1(t) = S(t)u1
0, u2(t) = S(t)u2

0. The difference u = u1 − u2 obeys the

differential inequality

d

dt
∥u∥2L2 ≤ ∥∇u1∥2L2∥u∥2L2 , (1.81)

see the proof of Theorem 1.1. By Gronwall’s inequality, we infer that

∥u(t)∥2L2 ≤ C(t)∥u1
0 − u2

0∥2L2 (1.82)

where

C(t) = exp


t∫

0

∥∇u1(s)∥2L2ds

 . (1.83)

This completes the proof of Theorem 1.5.

Now we address the injectivity of the solution map S(t) on H:

Theorem 1.6. (Backward Uniqueness) Let u1
0, u

2
0 ∈ V . If there exists T > 0 such

that S(T )u1
0 = S(T )u2

0, then u1
0 = u2

0.

Proof: Let u(t) = S(t)u1
0 − S(t)u2

0, ũ(t) =
1
2
(S(t)u1

0 + S(t)u2
0). WLOG, assume

u ̸= 0 on [0, T ).
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Let E0(t) = ∥u(t)∥2L2 , E1(t) = ∥∇u(t)∥2L2 , Y (t) = log(1/E0(t)). Then Y (t) is

bounded from below on [0, T ) and lim
t→T−

Y (t) = +∞. We show that the following

differential inequalities

d

dt

E1

E0

≤ C1(t)
E1

E0

(1.84)

and

d

dt
Y (t) ≤ C2(t)

E1

E0

(1.85)

hold, with
T∫

0

(C1(t) + C2(t))dt < ∞. (1.86)

This implies that Y ∈ L∞(0, T ), yielding consequently a contradiction.

The equation obeyed by u is given by

∂tu+ Au+B(ũ, u) +B(u, ũ) = 0, (1.87)

where A = −P∆ is the Stokes operator and B is the operator defined by B(v, ω) =

P(v · ∇ω). We take the L2 inner product of (1.87) with u and obtain the energy

equality

1

2

d

dt
∥u∥2L2 + ∥∇u∥2L2 + (B(ũ, u) +B(u, ũ), u)L2 = 0, (1.88)

from which we derive the equation desribing the time evolution of Y (t),

1

2

d

dt
Y (t) = −1

2

d

dt
logE0 =

E1

E0

+
(B(ũ, u) +B(u, ũ), u)L2

E0

. (1.89)

Due to the cancellation law

(B(ũ, u), u)L2 = 0, (1.90)
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and the estimate

|(B(u, ũ), u)L2 | ≤ ∥u∥2L4∥∇ũ∥L2 ≤ C∥∇ũ∥L2E1, (1.91)

we conclude that (1.85) holds. On the other hand, the time evolution of E1/E0

depends upon the time evolution of both E1 and Y via

d

dt

E1

E0

=
1

E0

d

dt
E1 +

E1

E0

d

dt
Y. (1.92)

We derive the differential equality obeyed by E1 by taking the L2 inner product of

(1.87) with Au and obtain

1

2

d

dt
E1 + ∥Au∥2L2 + (B(u, ũ) +B(ũ, u), Au)L2 = 0. (1.93)

Inserting (1.93) in (1.92) gives

1

2

d

dt

E1

E0

=
1

E0

(−∥Au∥2L2 − (B(u, ũ) +B(ũ, u), Au)L2)

+
E1

E0

(
E1

E0

+
(B(u, ũ) +B(ũ, u), u)L2

E0

)
(1.94)

which, after making use of the identity

E2
1

E2
0

−
∥Au∥2L2

E0

= −E−1
0 ∥(A− E1E

−1
0 )u∥2L2 , (1.95)

reduces to

1

2

d

dt

E1

E0

= −E−1
0 ∥(A− E1E

−1
0 )u∥2L2

− E−1
0 (B(u, ũ) +B(ũ, u), (A− E1E

−1
0 )u)L2 . (1.96)

We apply the Cauchy-Schwarz inequality to the second term on the right hand-side

of (1.96) and split the resulting product using Young’s inequality.
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We estimate

∥B(u, ũ) +B(ũ, u)∥2L2 ≤ C(∥B(u, ũ)∥L2 + ∥B(ũ, u)∥2L2)

≤ C(∥u∥2L4∥∇ũ∥2L4 + ∥ũ∥2L∞∥∇u∥2L2)

≤ C(∥∇ũ∥2L4 + ∥ũ∥2L∞)E1, (1.97)

using Hölder’s and Ladyzhenskaya’s inequalities. We obtain (1.84), completing the

proof of Theorem 1.6.

As a consequence of Theorem 1.3, there exists a positive radius R > 0 depend-

ing only on the body forces f , such that for any initial velocity u0 ∈ H , there exists

a time t0 > 0, depending only on ∥u0∥L2 , such that

S(t)u0 ∈ BR = {u ∈ H : ∥∇u∥L2 ≤ R} (1.98)

for all t ≥ t0. Due to the Poincaré inequality, there exists a time T > 0, depending

only on the radius R, such that the inclusion

S(t)BR ⊂ BR (1.99)

holds for all times t ≥ T .

The continuity and injectivity properties of the solution map S(t), together with

the connectedness and compactness properties of the absorbing ball BR, imply the

existence of a global attractor:

Theorem 1.7. (Global Attractor) Let

X =
⋂
t>0

S(t)BR (1.100)

Then:

(i) X is compact in H .
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(ii) S(t)X = X for all t ≥ 0.

(iii) If Z is bounded in H in the norm of of H , and S(t)Z = Z for all t ≥ 0, then

Z ⊂ X .

(iv) For every u0 ∈ H, lim
t→∞

distH(S(t)u0, X) = 0.

(v) X is connected.

Proof:

(i) Since BR is compact in H , then by continuity of the solution map S(t), we

see that S(t)BR is compact in H for all t ≥ 0, and so is their intersection.

(ii) Let x ∈ X , and t > 0. We show that S(t)x ∈ X . Since x ∈ X , then for each

σ > 0, there exists yσ ∈ BR such that x = S(σ)yσ, so S(t)x = S(t + σ)yσ,

and so S(t)x ∈
⋂
s>t

S(s)BR. Now, if s ≤ t, then S(t)x = S(s)S(t− s)x. But

x = S(T + s)ys for some ys ∈ BR, so S(t − s)x = S(t − s)S(T + s)ys =

S(t + T )ys ∈ BR since S(T + t)BR ⊂ BR. Thus S(s)S(t− s)x ∈ S(s)BR,

so S(t)x ∈ S(s)BR, and so S(t)x ∈
⋂
s≤t

S(s)BR. Therefore, S(t)x ∈ X .

Now, let x ∈ X and fix t > 0. We show that x ∈ S(t)X . Well, there exists

yt ∈ BR such that x = S(t)yt. If s > 0, then there exists zs ∈ BR such

that x = S(t + s)zs, and so S(t)S(s)zs = S(t)yt. By injectivity of S(t), it

follows that S(s)zs = yt, so yt ∈ S(s)BR. This is true for any s > 0, so

yt ∈
⋂
s>0

S(s)BR, which implies that yt ∈ X and thus x = S(t)yt ∈ S(t)X .
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(iii) Since Z is bounded in H , there exists tZ such that S(t)u0 ∈ BR for all t ≥ tZ

and all u0 ∈ Z.

Then, let z ∈ Z, and fix s > 0. We show that there exists ys ∈ BR such

that z = S(s)ys. From the invariance property of Z, it follows that there

exists zs ∈ Z such that z = S(s + tZ)zs. Thus, z = S(s)S(tZ)zs, with

S(tZ)zs ∈ BR. Hence, z ∈
⋂
s>0

S(s)BR, and thus z ∈ X .

(iv) Let u0 ∈ H . Define ω(u0) by

ω(u0) =

{
u ∈ H : ∃sj → ∞, u = lim

j→∞
S(sj)u0

}
(1.101)

where the limit is taken in H . We recall that there exists t0 = t0(∥u0∥L2) > 0

such that S(t)u0 ∈ BR for all t ≥ t0, thus ω(u0) is non empty and bounded

in H.

Now, we claim that S(t)ω(u0) = ω(u0) for all t ≥ 0. To show this claim,

we note that if u ∈ ω(u0), then u = lim
j→∞

S(sj)u0 and so S(t)u = lim
j→∞

S(t+

sj)u0, thus S(t)u ∈ ω(u0). On the other hand, if u ∈ ω(u0) and S(sj)u0 →

u, in H , we consider the sequence S(sj−t)u0 for all j such that sj ≥ t. Since

BR is compact and S(sj − t)u0 ∈ BR for all but finitely many j’s, it follows,

passing to a subsequence, that S(sjk − t)u0 converges to some v ∈ BR. But

S(t)S(sjk−t)u0 = S(sjk)u0 converges to u and S(t)v simultaneously. Thus,

u ∈ S(t)ω(u0).

Finally, we apply (iii) to Z = ω(u0). More precisely, suppose there exists

ϵ > 0 and a sequence tj → ∞ such that dist(S(tj)u0, X) ≥ ϵ > 0. By
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compactness of BR, S(tj)u0 has a subsequence converging to an element of

ω(u0), which by our assumption would lie outside X, contradicting the fact

that ω(u0) ⊂ X .

(v) Assume that D1 and D2 are non-empty open (in H) disjoint sets such that

X ⊂ D1 ∪ D2. Assume x1 ∈ X ∩ D1, x2 ∈ X ∩ D2. Let t > 0. Then,

there exists y1 = y1(t), y2 = y2(t) ∈ BR such that x1 = S(t)y1, x2 = S(t)y2.

Let γ be a straight line in BR joining y1 to y2. Thus, S(t)γ is a continuous

curve joining x1 to x2. Choose a point x(t) = S(t)y(t) on S(t)γ such that

x(t) ∈ F = H \ (D1 ∪ D2). Note that F is closed in H and F ∩ X = ∅.

Since S(t)BR ⊂ BR for all t ≥ T , we see that x(t) ∈ BR for all t ≥ T ,

and so there exists tj → ∞ such that x(tj) converges in H to some x. But

x(tj) ∈ F and F is closed, so x ∈ F . We claim that x ∈ X , and this will

contradict the fact that F ∩ X = ∅. To prove our claim, let s > 0. Take

the sequence S(tj − s)y(tj) for tj ≥ s + T . Since y(tj) ∈ γ ⊂ BR, it

follows that S(tj − s)y(tj) ∈ BR for tj ≥ s+ T . Since BR is compact, there

exists tjk → ∞ such that S(tjk − s)y(tjk) converges to some y ∈ BR. Thus

S(s)S(tjk − s)ytjk converges to S(s)y in H . But S(tjk)ytjk converges to x

in H . Thus, x = S(s)y with y ∈ BR. Thus is true for any s > 0. Thus, we

proved our claim.

Remark 1.4. The attractor X is smooth, a fact that follows from the C∞ regularity

of the solutions to the forced Navier-Stokes system.
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Let Φ be a smooth function defined on an open set Ω ⊂ RN , N ≥ 1 and taking

values in H . Let

Σt = S(t)Φ(Ω). (1.102)

The volume element in Σt is∣∣∣∣ ∂

∂α1

(S(t)Φ(α)) ∧ · · · ∧ ∂

∂αN

(S(t)Φ(α))
∣∣∣∣ dα1 . . . dαN (1.103)

where dα1 . . . dαN is the volume element in RN .

The functions

vi(t) =
∂

∂αi

(S(t)Φ(α)), i = 1, . . . , N (1.104)

satisfy the linearized equation

∂tv +B(v, u) +B(u, v) + Av = 0 (1.105)

along u(t) = S(t)Φ(α). Thus, the time evolution of the volume element of an

N -dimensional surface transported by S(t) is characterized by that of

∥v1(t) ∧ · · · ∧ vN(t)∥ΛNH (1.106)

where ΛNH is the N -th exterior product of H , and v1, . . . , vN satisfy (1.105) along

some u(t) = S(t)u0.

Theorem 1.8. (Decay of Volume Elements) There exists a time t0 depending only

on ∥u0∥L2 and an integer N0 depending only on the body forces ∥f∥L2 such that

∥v1(t) ∧ · · · ∧ vN(t)∥H ≤ ∥v1(0) ∧ · · · ∧ vN(0)∥He−CN2t (1.107)

for all t ≥ t0 and for all N ≥ N0.
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Proof: We consider the operator

Tv := Av +B(u, v) +B(v, u). (1.108)

defined on H2 ∩H . The wedge product v1 ∧ · · · ∧ vN evolves according to

∂t(v1 ∧ · · · ∧ vN) + TN(v1 ∧ · · · ∧ vN) = 0 (1.109)

where TN is the operator defined by

TN = T ∧ I ∧ · · · ∧ I + I ∧ T ∧ I ∧ · · · ∧ I + I ∧ · · · ∧ I ∧ T, (1.110)

and I is the identity operator. Consequently, it holds that

1

2

d

dt
∥v1 ∧ · · · ∧ vN∥2H + Tr(TQ)∥v1 ∧ · · · ∧ vN∥2H = 0 (1.111)

where Q = Q(v1, . . . , vN) is the orthogonal projector in H onto the space spanned

by v1, . . . , vN . An application of Gronwall’s inequality yields the bound

∥v1(t) ∧ · · · ∧ vN(t)∥H

≤ ∥v1(0) ∧ · · · ∧ vN(0)∥H exp

−
t∫

0

Tr(TQ(s))ds

 . (1.112)

For each t > 0, let bi, i = 1, . . . , N, be an orthonormal family of functions in H

spanning the linear span of v1, . . . , vN . Then, the trace of TQ is given by

Tr(TQ) =
N∑
i=1

(Tbi, bi)L2 =
N∑
i=1

(Abi, bi)L2 +
N∑
i=1

(B(bi, u), bi)L2 . (1.113)

We note that
N∑
i=1

(Abi, bi)L2 ≥ µ1 + · · ·+ µN (1.114)

where µi are the eigenvalues of A in H . Asymptotically, each eigenvalue µi satisfies

µi ≥ Ci, and so the asymptotic behavior of their sum is described by

µ1 + · · ·+ µN ≥ C(1 + · · ·+N) ≥ CN2. (1.115)
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On the other hand, we have∣∣∣∣∣
N∑
i=1

(B(bi, u), bi)L2

∣∣∣∣∣ ≤
N∑
i=1

∥bi∥2L4∥∇u∥L2

≤ C
N∑
i=1

∥bi∥L2∥∇bi∥L2∥∇u∥L2

≤ C

N∑
i=1

∥∇bi∥L2∥∇u∥L2

≤ C∥∇u∥L2N1/2

(
N∑
i=1

∥∇bi∥2L2

)1/2

≤ C∥∇u∥2L2N +
1

4

N∑
i=1

∥∇bi∥2L2

= C∥∇u∥2L2N +
1

4

N∑
i=1

(Abi, bi)L2 (1.116)

due to applications of Hölder, Ladyzhenskaya, and Young inequalities. Putting

(1.113)–(1.116) together, and integrating in time from 0 to t, we infer that
t∫

0

Tr(TQ(s))ds ≥ 1

2

t∫
0

N∑
i=1

(Abi, bi)L2ds− CN

t∫
0

∥∇u∥2L2ds

≥ CNt

N − 1

t

t∫
0

∥∇u(s)∥2L2ds

 . (1.117)

We choose a time t0 = t0(∥u0∥L2) > 0 such that the estimate

∥∇u(t)∥2L2 ≤ 2∥f∥2L2 (1.118)

holds for all t ≥ t0. Starting at t0, the following bound
t∫

0

Tr(TQ(s))ds ≥ CNt(N − 2∥f∥2L2) (1.119)

holds. Finally, we choose an integer N0 ≥ 4∥f∥2L2 and conclude that
t∫

0

Tr(TQ(s))ds ≥ CN2t (1.120)

for all integers N ≥ N0 and all times t ≥ t0. This ends the proof of Theorem 1.8.
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The exponential decay of volume elements carried by the flow yield the finite-

ness of the fractal dimension of the attractor:

Theorem 1.9. The global attractor X has finite fractal dimension DH(X),

DH(X) = lim sup
r→0

logNH(r)

log
(
1
r

) (1.121)

where NH(r) is the minimal number of balls in H of radii r needed to cover X .

The proof is based on global Lyapunov exponents and the Kaplan-Yorke for-

mula. We omit it here and refer the reader to [35, Chapter 14] for more details.



28

CHAPTER 2

Electroconvection in Fluids

We study a model of electroconvection in which a two dimensional viscous fluid

caries electrical charges and interacts with them. The system has global solutions,

but in general the solutions do not have bounded mean. Tracking the mean, we

associate to each solution a mean zero frame and show that in the mean zero frame

the system has a compact, finite dimensional global attractor. If the fluid is forced

only by electrical forces and no other body forces are present, then the attractor

reduces to one point.

2.1 Introduction

We consider an electroconvection model that describes the evolution of a surface

charge density interacting with a two dimensional fluid. The model was used in

theoretical and numerical studies related to experiments of electroconvection in

thin smectic layers of liquid crystals [25, 41]. Analogies with Rayleigh-Bénard

convection motivated the physical studies [42].

The surface charge density q = q(x, t) is a real valued function of position x and

time t. Its evolution is a continuity equation, with the current density J given by the

sum of the Ohmic density σE, with E the electric field, and the advective current
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density qu, where u is the velocity of the fluid. Magnetic effects are neglected and

the electric field E is the gradient of a potential. The restriction to a two dimensional

region results in a nonlocal relation between the surface charge density and the

divergence of the electrical field [13, 42, 41]. The evolution of the surface charge

density is given by

∂tq +∇ · J = 0 (2.1)

where the current density J is given by

J = σE + qu (2.2)

with σ a constant conductivity, and the electric field given by

E = −∇Φ−∇Λ−1q. (2.3)

Here Φ is a given smooth function which represents the restriction to the surface

of the potential due to the applied voltage, and Λ−1q (with Λ the square root of

the two dimensional spatially periodic Laplacian) is the restriction to the surface of

the potential due to the surface density charge q. The equation is coupled to the

incompressible Navier-Stokes system

∂tu+ u · ∇u+∇p−∆u = qE + f, ∇ · u = 0, (2.4)

where f are body forces in the fluid. In this chapter, we consider two dimensional

periodic boundary conditions. The potential Φ and forces f are time independent

and smooth.

The global existence of regular solutions of this system with homogeneous

Dirichlet boundary conditions was established in [13]. In this work we focus on
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long time dynamics. The long time dynamics of dissipative partial differential equa-

tions has been investigated by many authors. The two dimensional forced Navier-

Stokes equations are known to possess global finite dimensional attractors ([14, 35],

and references therein). The long time behavior of various types of dissipative PDE

has been studied extensively [9, 21, 23, 32, 34]. Closer to the present system, the

study of long time dynamics of the critical dissipative SQG system with fractional

Laplacian dissipation and the existence of a finite dimensional global attractor were

done in [19].

We investigate the system (2.1)–(2.4). This has weak solutions in L2 (Theorem

2.1) which, however, are not known to be unique. After any positive time, weak so-

lutions become strong, and strong solutions exist globally and are unique (Theorem

2.2). Our main result is the existence of a global attractor X which is compact in

a natural phase space of strong solutions and has finite fractal dimension. In order

to establish the existence of the attractor we need to account for the fact that spatial

averages of the velocity are time dependent, and might grow in time, driven by the

integral
∫
q∇Φ. This integral does not vanish in general, nor is it time integrable.

The remarkable property of the system is that the spatial average of velocity can be

tracked, or “moded” out, and the resulting system has a compact global attractor. In

this mean zero frame, the initial value problem for the system is solved by a non-

linear semigroup S(t) which has a compact absorbing ball, is Lipschitz continuous
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in various norms, is injective, and high dimensional volume elements carried by its

flow decay in phase space.

This chapter is organized as follows. In Section 2.2 we gather preliminaries

concerning the dissipative operators. A lower bound, in the spirit of [19], Proposi-

tion 2.2, is proved in Section 2.2. Commutator estimates for positive and negative

fractional powers of the Laplacian (Proposition 2.3) are also proved in this section.

Section 2.3 is devoted to basic PDE results: existence of weak solutions, existence

and uniqueness of strong solutions. Here we also prove uniform long time bounds

for various norms of the solutions, which have the feature that the initial data con-

tributions to them decay exponentially, leaving only contributions coming from the

steady forces. The passage to the mean zero frame is described in Section 2.4. The

absorbing ball for the nonlinear semigroup is described in Section 2.5. In Section

2.6 continuity properties of the semigroup are established, and Section 2.7 is de-

voted to the proof of backward uniqueness. Decay of volume elements is proved

in Section 2.8. In Section 2.9 we prove the finite dimensionality of the attractor for

general fluid body forces f . We also show that in the absence of body forces in the

fluid, the system has a unique globally attracting steady solution in the mean zero

frame. In this case, in the original variables, the fluid’s spatial average velocity has

a finite limit in infinite time.
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2.2 Preliminaries

We denote functions spaces of spatially periodic functions on the torus without

distinct notation for vector valued functions. We write the Fourier series for mean

zero velocities u as

u =
∑

j∈Z2\{0}

uje
ij·x (2.5)

with uj ∈ C2. The reality condition for the series is uj = u−j . The divergence-free

condition is

j · uj = 0. (2.6)

For s ∈ R, the fractional Laplacian Λs applied to a mean zero scalar function q is

defined as a Fourier multiplier with symbol |k|s, that is, for q given by

q =
∑

k∈Z2\{0}

qke
ik·x, (2.7)

we have that

Λsq =
∑

k∈Z2\{0}

|k|sqkeik·x. (2.8)

We consider the Hilbert space H

H = H ⊕ L2 (2.9)

where H is the Hilbert space of L2 periodic vector fields which are mean zero and

divergence-free, H = P(L2). The scalar product in H is denoted (· ; ·):

((u1, q1); (u2, q2)) =

∫
T2

(u1 · u2 + q1q2)dx. (2.10)
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As all spatial integrals are on T2, we denote them simply by
∫

. We consider the

operator A defined on H by

Aw = (Au,Λq) (2.11)

where w = (u, q) and A = −P∆ is the Stokes operator. The domain of definition

of A is

D(A) = (H2 ∩H)⊕H1. (2.12)

The operator

A : D(A) ⊂ H → H (2.13)

is positive and selfadjoint. There is an orthonormal basis of the Hilbert space H

formed by a sequence wk of eigenvectors,

Awk = µkwk. (2.14)

The set of eigenvalues is precisely the union of the eigenvalues of A and those of

Λ, counted with their multiplicities. The multiplicity of an eigenvalue λ of A is the

same as the multiplicity of the same eigenvalue λ considered as an eigenvalue of

the scalar Laplacian with periodic boundary conditions on [0, 2π] × [0, 2π]. This

follows from the fact that in two dimensions we can uniquely associate a stream

function to each eigenfunction of the Stokes operator A. It can be shown that the

eigenvalues µk obey 0 < µ1 ≤ . . . µk ≤ . . . and that there exists a constant C0 such

that

µk ≥ C0µ1

√
k (2.15)
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holds for all k ≥ 1. If we denote the eigenvalues of A counted with multiplicity

by 0 < λ1 ≤ λ2 · · · ≤ λj ≤ . . . and those of Λ, counted also with multiplicity

as 0 < r1 ≤ r2 · · · ≤ rj ≤ . . . then we have j ≤ c1λj and k ≤ c2r
2
k with c1, c2

positive constants. Assuming that

{µi | i = 1, . . . N} = {λi | i = 1, . . . , j} ∪ {ri | i = 1, . . . , k}

if µN = λj it follows that j ≤ c1µN and if µN = rk it follows that k ≤ c2µ
2
N .

Because N = j + k it follows that N ≤ c1µN + c2µ
2
N ≤ (c1 + c2)µ

2
N because

µN ≥ 1, and thus (2.15) follows.

We recall that the Riesz transforms R = (R1, R2) for periodic functions are

defined as multipliers

(Rjq)k = i
kj
|k|

qk, k ∈ Z2 \ {0}, j = 1, 2, (2.16)

and they are bounded operators in Lp, 1 < p < ∞.

The fractional Laplacian has certain lower bounds in Lp spaces which we are

going to use. A Poincaré inequality in Lp spaces is given in [19] in the following

proposition

Proposition 2.1. Let p = 2m, m ≥ 1, 0 ≤ α ≤ 2, and let q ∈ C∞ have zero mean

on T2. Then ∫
T2

qp−1(x)Λαq(x)dx ≥ 1

p
∥Λα/2(qp/2)∥2L2 + λ∥q∥pLp (2.17)

holds, with an explicit constant λ > 0, which is independent of p.

Proposition 2.2. The inequality∫
∇q · Λ∇qdx ≥ c∥q∥−

2
3

L4 ∥∇q∥
8
3

L
8
3

(2.18)
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holds for q ∈ H
3
2 .

Proof: This inequality is based on [19]. We recall the pointwise identity ([19])

∇q(x) · Λ∇q(x) =
1

2
Λ(|∇q|2)(x) + 1

2
D[q](x) (2.19)

where

D[q](x) = cP.V.

∫
R2

|∇q(x)−∇q(x+ y)|2

|y|3
dy, (2.20)

with c a universal constant. We abused notation and wrote q for the periodic exten-

sion of q, as a function defined on all R2.

We consider a cutoff function Ψ : [0,∞) → [0,∞), which is smooth, non-

decreasing, identically 1 on [2,∞), vanishes on [0, 1] and obeys |Ψ′| ≤ 3.

For l > 0 to be determined, we have

D[q](x) ≥ c

∫
R2

|∇q(x)−∇q(x+ y)|2

|y|3
Ψ

(
|y|
l

)
dy

≥ c

∫
R2

|∇q(x)|2 − 2∇q(x) · ∇q(x+ y)

|y|3
Ψ

(
|y|
l

)
dy

≥ c|∇q(x)|2
∫

|y|≥l

1

|y|3
dy − 2c

2∑
j=1

∣∣∣∣∣∣
∫
R2

∂jq(x)∂jq(x+ y)

|y|3
Ψ

(
|y|
l

)
dy

∣∣∣∣∣∣
≥ c1

|∇q(x)|2

l
− c2|∇q(x)|

2∑
j=1

∫
R2

|q(x+ y)|
∣∣∣∣∇( 1

|y|3
Ψ

(
|y|
l

))∣∣∣∣ dy.
Now∫

R2

|q(x+ y)|
∣∣∣∇( 1

|y|3Ψ
(

|y|
l

))∣∣∣ dy
=
∑

j∈Z2

∫
Q0+2πj

|q(x+ y)|
∣∣∣∇( 1

|y|3Ψ
(

|y|
l

))∣∣∣ dy
=
∑

j∈Z2

∫
Q0

|q(x+ y)|
∣∣∣∇( 1

|y−2πj|3Ψ
(

|y−2πj|
l

))∣∣∣ dy ≤ k(l)∥q∥L4 ,

(2.21)
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where Q0 = [−π, π]× [−π, π] and

k(l) =
∑
j∈Z2

[∫
Q0

∣∣∣∣∇( 1

|y − 2πj|3
Ψ

(
|y − 2πj|

l

))∣∣∣∣ 43 dy
] 3

4

. (2.22)

The contribution of the term corresponding to j = 0 in the sum is of the order l−
5
2

for small l and Ψ = 1 for j ̸= 0 and l < π
4
. We obtain

k(l) ≤ C(l−
5
2 + 1), (2.23)

for all 0 < l < π
4
, and hence have from (2.21)

D[q](x) ≥ |∇q(x)|(c1l−1|∇q(x)| − c2k(l))∥q∥L4). (2.24)

We may choose

l = min

{(
2
Cc2∥q∥L4

c1|∇q(x)|

)2/3

,
π

4

}
(2.25)

and deduce the pointwise inequality

D[q](x) ≥ C1

20
∥q∥−

2
3

L4 |∇q(x)|
8
3 − c3∥q∥2L4 (2.26)

with c3 a positive absolute constant. Indeed, if
(

2Cc2∥q∥L4

c1|∇q(x)|

)2/3
≤ π

4
, then l =(

2Cc2∥q∥L4

c1|∇q(x)|

)2/3
. In this case, (2.24) implies that

D[q](x) ≥ c1|∇q(x)|2
[

c
2/3
1 |∇q(x)|2/3

22/3C2/3c
2/3
2 ∥q∥2/3L4

]

− Cc2|∇q(x)|∥q∥L4

[
c
5/3
1 |∇q(x)|5/3

25/3C5/3c
5/3
2 ∥q∥5/3L4

]
− Cc2|∇q(x)|∥q∥L4

=

(
1

22/3
− 1

25/3

)
c
5/3
1

C2/3c
2/3
2

|∇q(x)|8/3∥q∥−2/3

L4 − Cc2|∇q(x)|∥q∥L4

≥ 1

4

c
5/3
1

C2/3c
2/3
2

|∇q(x)|8/3∥q∥−2/3

L4 − Cc2|∇q(x)|∥q∥L4 .

Let

C1 =
c
5/3
1

C2/3c
2/3
2

.
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Since

2Cc2∥q∥L4

c1|∇q(x)|
≤
(π
4

)3/2
,

then

Cc2|∇q(x)|∥q∥L4 = Cc2|∇q(x)|∥q∥−2/3

L4 ∥q∥5/3L4

≤ Cc2|∇q(x)|∥q∥−2/3

L4

(
π

3
2 c1|∇q(x)|
4

3
22Cc2

)5/3

=
π

5
2

2
20
3

c
5/3
1

C2/3c
2/3
2

|∇q(x)|8/3∥q∥−2/3

L4

and so

D[q](x) ≥

(
1

4
− π

5
2

2
20
3

)
C1|∇q(x)|8/3∥q∥−2/3

L4

≥ 1

20
C1|∇q(x)|8/3∥q∥−2/3

L4

≥ C1

20
|∇q(x)|8/3∥q∥−2/3

L4 − c3∥q∥2L4 .

On the other hand, if the opposite inequality
(

2Cc2∥q∥L4

c1|∇q(x)|

) 2
3 ≥ π

4
holds, then

l = π
4
, and (2.24) implies that

D[q](x) ≥ c1|∇q(x)|2
[

c
2/3
1 |∇q(x)|2/3

22/3C2/3c
2/3
2 ∥q∥2/3L4

]
− Cc2

((π
4

)−5/2

+ 1

)
|∇q(x)|∥q∥L4

=
1

22/3
c
5/3
1

C2/3c
2/3
2

|∇q(x)|8/3∥q∥−2/3

L4 − C ′c2|∇q(x)|∥q∥L4

≥ C1

2
|∇q(x)|8/3∥q∥−2/3

L4 − C ′c2|∇q(x)|∥q∥L4 .

This gives the desired estimate (2.26).

Integrating (2.26) over T2, we obtain

c4∥q∥2L4 +

∫
∇qΛ∇q ≥ C1

20
∥q∥−

2
3

L4 ∥∇q∥
8
3

L
8
3
. (2.27)
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We also know that ∫
∇qΛ∇q ≥ c5∥q∥2L4 (2.28)

and therefore ∫
∇qΛ∇q ≥ c6∥q∥

− 2
3

L4 ∥∇q∥
8
3

L
8
3

(2.29)

follows with c6 =
C1

20(1+
c4
c5

)
, and thus (2.18) holds.

The following commutator estimates are needed in the sequel.

Proposition 2.3. Let u ∈ H2∩H and q ∈ Hs+α. Let s ∈ (−1, 1) and let 0 ≤ α ≤ 1

with s+ α ≤ 1. Then the commutator [Λs, u · ∇] obeys the inequality

∥[Λs, u · ∇] q∥L2 ≤ Cs[u]1−α∥Λs+αq∥L2 (2.30)

where

[u]1−α =
∑

j∈Z\{0}

|j|1−α|uj|. (2.31)

Proof: The function ϕ = [Λs, u · ∇] q has the Fourier expansion

ϕl = i
∑
j+k=l

(uj · k)qk(|l|s − |k|s). (2.32)

In view of the fact that uj · j = 0 we have uj · k = −uj · l and therefore

|uj · k| ≤ |uj|min{|l|, |k|}.

If s is negative then we write

|l|−r − |k|−r =
|k|r − |l|r

|l|r|k|r

with r = |s|, and we estimate for positive numbers m ≤ M and exponent 0 ≤ r ≤ 1

using the conjugate powers:

(M r −mr)(M1−r +m1−r) = M −m+M rm1−r −mrM1−r ≤ 2(M −m).
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We denote by M = max{|l|, |k|}, m = min{|l|, |k|}. For s < 0, using the triangle

inequality M −m ≤ |j| ≤ 2M , we obtain that

2m|j|α

M rmr(M1−r +m1−r)
≤ 21+αm1−rMα

M
= 21+αm−r+α

(m
M

)1−α

= 21+αM−r+α
(m
M

)(1−r)

≤ 21+α|k|−r+α

and therefore

|(uj · k)qk(|l|s − |k|s)| ≤ 2m|j|
M rmr(M1−r +m1−r)

|uj||qk| ≤ 21+α|j|1−α|k|s+α|uj||qk|.

Similarly for s > 0 we obtain with s = r

2m|j|α

M1−r +m1−r
≤ 21+αmMα+r−1 = 21+αmr+α

(m
M

)1−r−α

≤ 21+α|k|s+α

and thus

|(uj · k)qk(|l|s − |k|s)| ≤ 2m|j|
M1−r +m1−r

|uj||qk| ≤ 21+α|j|1−α|k|s+α|uj||qk|.

The proof is concluded by noting that the ℓ2(Z2) norm of the sequence ϕl is bounded

by the product of the ℓ1(Z2) norm of the sequence |j|1−α|uj| and the ℓ2(Z2) norm

of the sequence |k|s+α|qk|.

2.3 Existence and Uniqueness of Solutions

We consider the system

∂tq + u · ∇q + Λq = ∆Φ

∂tu+ u · ∇u−∆u+∇p = −qRq − q∇Φ + f

∇ · u = 0.

(2.33)
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The unknowns u, q are periodic in space. We consider smooth, mean zero, divergence-

free body forces f , and smooth potential Φ. The body forces and the potential

are time independent. We discuss first a class of weak solutions. The equations

(2.33) are meant in distribution sense, assuming that q ∈ L∞(0, T ;L2) and u is

divergence-free and belongs to L∞(0, T ;L2).

Theorem 2.1. Weak solutions. Let u0 ∈ L2 be divergence-free, let q0 ∈ L2 with∫
q0 = 0, and let T > 0 be arbitrary. There exists a weak solution (u, q) of the

system (2.33) satisfying u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) and q ∈ L∞(0, T ;L2) ∩

L2(0, T ;H
1
2 ). Moreover the following inequalities hold a.e. in 0 ≤ t ≤ T ,

∥q(t)∥2L2 +

∫ t

0

∥Λ
1
2 q∥2L2 ≤ ∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2 , (2.34)

∥q(t)∥L2 ≤ ∥q0∥L2e−λt +
1

λ
∥∆Φ∥L2 , (2.35)

and

∥u(t)∥2L2 + ∥Λ− 1
2 (q(t)−Q)∥2L2 +

∫ t

0

(
∥q(s)−Q∥2L2 + ∥∇u(s)∥2L2

)
ds

≤ ∥u0∥2L2 + ∥Λ− 1
2 (q0 −Q)∥2L2 +

∫ t

0

∥Λ−1f∥2L2dt, (2.36)

where Q is defined by

Q = −ΛΦ. (2.37)

Furthermore,

t∥q(t)∥2L4 ≤ C∥q0∥2L2 + C

∫ T

0

∥Λ
3
2Φ∥2L2ds+

1

λ

∫ T

0

s∥∆Φ∥2L4ds (2.38)
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and

t∥∇u(t)∥2L2 ≤ ∥u0∥2L2 + ∥Λ− 1
2 (q0 −Q)∥2L2 +

∫ T

0

∥Λ−1f∥2L2ds

+ C

∫ T

0

s(∥f∥2L2 + ∥Q∥4L4)ds+ C∥q0∥2L2

(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
+ C

(∫ T

0

∥Λ
3
2Φ∥2L2ds

)(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
+ C

(
1

λ

∫ T

0

s∥∆Φ∥2L4ds

)(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
(2.39)

hold t-a.e. in [0, T ].

Proof: We consider a viscous approximation of the system with smoothed out ini-

tial data. For 0 < ϵ ≤ 1, we let Jϵ be a standard mollifier operator, and we consider

the system

∂tq
ϵ + uϵ · ∇qϵ + Λqϵ − ϵ∆qϵ = ∆Φ

∂tu
ϵ + uϵ · ∇uϵ −∆uϵ +∇pϵ = −qϵRqϵ − qϵ∇Φ + f,

∇ · uϵ = 0

(2.40)

with qϵ0 = Jϵq0, u
ϵ
0 = Jϵu0. For fixed positive ϵ this system has global smooth

solutions for t > 0, a fact that can be proved using a number of different methods.

We provide a priori bounds and pass to the limit ϵ → 0.

We note that the mean of qϵ is zero, and therefore we can use the Poincaré

inequality (2.17). Multiplying the first equation of system (2.40) by (qϵ)p−1, with

p ≥ 2 even, and integrating, we obtain, by using uϵ is divergence-free, the non-

negativity of the integral involving the Laplacian, (2.17), and a Hölder inequality
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that

1

p
∂t∥qϵ∥pLp + λ∥qϵ∥pLp ≤

∣∣∣∣∣∣
∫

∆Φ(qϵ)p−1dx

∣∣∣∣∣∣ ≤ ∥qϵ∥p−1
Lp ∥∆Φ∥Lp . (2.41)

Thus the Lp norms of qϵ obey diffferential inequalities

∂t∥qϵ∥Lp + λ∥qϵ∥Lp ≤ ∥∆Φ∥Lp . (2.42)

The L2(0, T ;H
1
2 ) norm of qϵ is bounded using

1

2

d

dt
∥qϵ∥2L2 +

∫
qϵΛqϵ ≤ ∥Λ

3
2Φ∥L2∥Λ

1
2 qϵ∥L2

and integrating in time, leading to

∥qϵ(t)∥2L2 +

∫ t

0

∥Λ
1
2 qϵ∥2L2 ≤ ∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2 . (2.43)

A cancellation is used to obtain bounds for uϵ in L2. We take the scalar product in L2

with uϵ in the second equation, and in the first equation we mutiply by Λ−1(qϵ−Q)

and integrate. We obtain

1

2

d

dt
∥uϵ∥2L2 + ∥∇uϵ∥2L2 ≤

∫
f · uϵ −

∫
qϵuϵ ·R(qϵ −Q)

and

1

2

d

dt
∥Λ− 1

2 (qϵ −Q)∥2L2 + ∥(qϵ −Q)∥2L2 ≤
∫

qϵuϵ ·R(qϵ −Q) + ϵ

∫
qϵΛQ.

Adding we obtain

1

2

d

dt

[
∥uϵ∥2L2 + ∥Λ− 1

2 (qϵ −Q)∥2L2

]
+ ∥∇uϵ∥2L2 + ∥(qϵ −Q)∥2L2

≤ ∥Λ−1f∥L2∥∇uϵ∥L2 + ϵ

∫
qϵΛQ (2.44)

and consequently

∥uϵ(t)∥2L2 + ∥Λ− 1
2 (qϵ(t)−Q)∥2L2 +

∫ t

0

(
∥∇uϵ∥2L2 + ∥(qϵ −Q)∥2L2

)
ds ≤ ∥u0∥2L2

+ ∥Λ− 1
2 (q0 −Q)∥2L2 +

∫ t

0

(
∥Λ−1f∥2L2 + ϵ2∥ΛQ∥2L2 + 2ϵ∥Λ

1
2Q∥2L2

)
ds. (2.45)
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Now, from (2.42) we deduce

d

dt
t∥qϵ(t)∥2L4 + λt∥qϵ∥2L4 ≤ t

1

λ
∥∆Φ∥2L4 + ∥qϵ(t)∥2L4 , (2.46)

and in view of the embedding H
1
2 ⊂ L4 and (2.43) we deduce

t∥qϵ(t)∥2L4 ≤ C∥q0∥2L2 + C

∫ t

0

∥Λ
3
2Φ∥2L2ds+

1

λ

∫ t

0

se−λ(t−s)∥∆Φ∥2L4ds. (2.47)

We take the second equation of (2.40), multiply by −∆uϵ and integrate in space.

We use the identity

Tr(MTM2) = 0,

valid for any two-by-two traceless matrix M , which follows because M2 is a mul-

tiple of the identity matrix. We use this identity in our case for a matrix M with

entries Mij =
∂uϵ

i

∂xj
, and obtain

1

2

d

dt
∥∇uϵ∥2L2 + ∥∆uϵ∥2L2 =

∫
[f − qϵR(qϵ −Q)] · (−∆uϵ) (2.48)

and thus

d

dt
∥∇uϵ∥2L2 + ∥∆uϵ∥2L2 ≤ ∥f − qϵR(qϵ −Q)∥2L2 . (2.49)

We multiply by t and integrate in time

t∥∇uϵ(t)∥2L2 +

∫ t

0

s∥∆uϵ∥2ds

≤
∫ t

0

∥∇uϵ(s)∥2L2ds+ C

∫ t

0

s
(
∥f∥2L2 + ∥qϵ(s)∥4L4 + ∥Q∥4L4

)
ds. (2.50)

In view of (2.43), (2.45) and (2.47) we obtain
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t∥∇uϵ(t)∥2L2 +

∫ t

0

s∥∆uϵ∥2ds ≤ ∥u0∥2L2 + ∥Λ− 1
2 (q0 −Q)∥2L2

+

∫ t

0

(
∥Λ−1f∥2L2 + ϵ2∥ΛQ∥2L2 + 2ϵ∥Λ

1
2Q∥2L2

)
ds

+ C

∫ t

0

s(∥f∥2L2 + ∥Q∥4L4)ds

+ C∥q0∥2L2

(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
+ C

(∫ T

0

∥Λ
3
2Φ∥2L2ds

)(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
+ C

(∫ T

0

se−λ(T−s) 1

λ
∥∆Φ∥2L4ds

)(
∥q0∥2L2 +

∫ t

0

∥Λ
3
2Φ∥2L2ds

)
. (2.51)

These inequalities are used to pass to the limit. From (2.43) and (2.45) it folllows

that qϵ is bounded in L2(0, T ;H
1
2 ) and uϵ is bounded in L2(0, T ;H1) on any se-

quence ϵ → 0. The equation (2.40) and the Aubin-Lions lemma imply that there

exist q ∈ L2(0, T ;H
1
2 ) and u ∈ L2(0, T ;H1) such that

lim
ϵ→0

∫ T

0

(
∥uϵ(t)− u(t)∥2L2 + ∥qϵ(t)− q(t)∥2L2

)
dt = 0, (2.52)

and, without loss of generality,

lim
ϵ→0

(
∥uϵ(t)− u(t)∥2L2 + ∥qϵ(t)− q(t)∥2L2

)
= 0, t− a.e. in [0, T ]. (2.53)

At each t where qϵ(t) → q(t) strongly in L2 it follows that qϵ(t) converges weakly

to q(t) in L4, and therefore, by the weak lower semicontinuity of the L4 norm, we

have

∥q(t)∥L4 ≤ lim inf
ϵ→0

∥qϵ(t)∥L4 , t− a.e. in [0, T ]. (2.54)

Similarly, at any t where uϵ(t) converges strongly in L2 to uϵ(t), the gradient ∇uϵ(t)

converges weakly in L2 to ∇u. Therefore, by the weak lower semicontinuity of the
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L2 norm

∥∇u(t)∥2L2 ≤ lim inf
ϵ→0

∥∇uϵ(t)∥L2 , t− a.e. in [0, T ]. (2.55)

The inequalities (2.47) and (2.51) thus yield (2.38) and (2.39) in the limit ϵ → 0.

The fact that q and u obtained in the limit solve weakly the system (2.33) follows

by testing the system (2.33) by test functions and passing to the limit. The proof of

Theorem 2.1 is complete.

Remark 2.1. Weak solutions are not known to be unique. The inequalities (2.38)

and (2.39) show that for any t0 > 0 the weak solutions become more regular,

u(t0) ∈ H1, q(t0) ∈ L4 with quantitative bounds. This level of regularity gen-

erates strong solutions which are unique, as shown in the next theorem.

Theorem 2.2. Strong solutions. Let u0 ∈ H1 be divergence-free, let q0 ∈ L4

have mean zero, and let T be arbitrary. There exists a unique solution (u, q) of the

system (2.33) with initial data (u0, q0) such that u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2)

is divergence-free and q ∈ L∞(0, T ;L4) ∩ L2(0, T ;H
1
2 ). Moreover,

∥q(t)∥L4 ≤ ∥q(0)∥L4e−λt +
1

λ
∥∆Φ∥L4 , (2.56)

∥∇u(t)∥2L2 ≤ ∥∇u0∥2L2e−t + Cγ∥q0∥4L4e−γt

+ Cλ

(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
, (2.57)

with 0 < γ < min{1, 4λ}, and∫ T

0

∥∆u∥2L2 ≤ ∥∇u0∥2L2 + Cγ∥q0∥4L4

+ CλT
(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
. (2.58)
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hold.

Proof: We provide a priori bounds directly on the equations of (2.33). Their justifi-

cation can be done using a viscous approximation of the q equation. The differential

inequality

∂t∥q(t)∥L4 + λ∥q(t)∥L4 ≤ ∥∆Φ∥L4 (2.59)

is obtained as (2.42) above, and yields

∥q(t)∥L4 ≤ ∥q(0)∥L4e−λt +
1

λ
∥∆Φ∥L4 . (2.60)

The differential inequality

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 ≤ ∥f − qR(q −Q)∥2L2

≤ C
(
∥f∥2L2 + ∥Q∥4L4 + ∥q∥4L4

)
(2.61)

is obtained like the inequality (2.49) above. Because the gradient has mean zero,

we have a Poincaré inequality for the gradient

∥∆u∥2L2 ≥ ∥∇u∥2L2 (2.62)

and, using it, we obtain

∥∇u(t)∥2L2 ≤ ∥∇u0∥2L2e−t + Cγ∥q0∥4L4e−γt

+ Cλ

(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
, (2.63)

with 0 < γ < min{1, 4λ}. This follows from (2.60) because∫ t

0

e−(t−s)
(
e−4λs∥q0∥4L4 + λ−4∥∆Φ∥4L4

)
ds

≤ ∥q0∥4L4e−t

∫ t

0

e(1−4λ)sds+ λ−4∥∆Φ∥4L4 .
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Returning to (2.61) we deduce∫ T

0

∥∆u∥2L2dt ≤ ∥∇u0∥2L2 + Cγ∥q0∥4L4

+ CT
(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
. (2.64)

For the proof of uniqueness we take two solutions (u1, q1) and (u2, q2) of (2.33) and

we write q = q2 − q1, u = u2 − u1. The differences obey the equations

∂tq + Λq + u1 · ∇q + u · ∇q + u · ∇q1 = 0, (2.65)

and

∂tu+ u2 · ∇u+ u · ∇u1 +∇p−∆u+ q1Rq + qRq + qRq1 − qRQ = 0. (2.66)

We multiply (2.65) by Λ−1q, (2.66) by u and integrate. The cubic terms cancel∫
(u · ∇q)Λ−1q +

∫
qRq · u = 0

and the q1 terms cancel as well∫
(u · ∇q1)Λ

−1q +

∫
q1Rq · u = 0,

and we are left with

1

2

d

dt

(
∥Λ− 1

2 q∥2L2 + ∥u∥2L2

)
+ ∥∇u∥2L2 + ∥q∥2L2

=

∫
qu1 ·Rq −

∫
u · ∇u1 · u+

∫
q(R(Q− q1) · u. (2.67)

We estimate ∣∣∣∣∫ u · ∇u1 · u
∣∣∣∣ ≤ C

(
∥u∥L2∥∇u∥L2 + ∥u∥2L2

)
∥∇u1∥L2 (2.68)

and∣∣∣∣∫ q(R(Q− q1) · u
∣∣∣∣ ≤ C∥q∥L2∥Q− q1∥L4

(
∥u∥

1
2

L2∥∇u∥
1
2

L2 + ∥u∥L2

)
(2.69)
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using L4 bounds for u and the Ladyzhenskaya interpolation inequality. The first

term in the right hand side of (2.67) can be written adding and subtracting zero as∣∣∣∣∫ qu1 ·Rq

∣∣∣∣ = ∣∣∣∣∫ ([Λ− 1
2 , u1 · ∇

]
q
)
Λ− 1

2 q

∣∣∣∣ (2.70)

and using Proposition 2.3 with s = −1
2

and α = 1
2

we obtain∣∣∣∣∫ qu1 ·Rq

∣∣∣∣ ≤ C[u1] 1
2
∥q∥L2∥Λ− 1

2 q∥L2 (2.71)

Using Young inequalities in (2.68), (2.69) and (2.71) we obtain from (2.67),

d

dt

[
∥Λ− 1

2 q∥2L2 + ∥u∥2L2

]
≤ C

(
∥∇u1∥2L2 + ∥Q− q1∥4L4 + ∥∇u1∥L2 + ∥Q− q1∥2L4

)
∥u∥2L2

+ C[u1]
2
1
2
∥Λ− 1

2 q∥2L2 . (2.72)

Using the bound

[u1] 1
2
≤ C∥∆u1∥L2 (2.73)

for u1 we obtain uniqueness from the fact that∫ T

0

(∥∆u1∥2L2 + ∥q1∥4L4)dt < ∞ (2.74)

This concludes the proof of Theorem 2.2.

Remark 2.2. The proof of uniqueness shows that we have weak-strong uniqueness:

Strong solutions are unique among the larger class of weak solutions.

Remark 2.3. We have∫ t+T

t

∥∆u(s)∥2L2ds ≤ ∥∇u0∥2L2e−t + Cγ∥q0∥4L4e−γt

+ C(1 + T )
(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
. (2.75)
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This is obtained by applying (2.58) on the interval [t, t + T ] and using the bounds

(2.56) and (2.57) for the terms involving the “initial” time t.

Proposition 2.4. The H
1
2 norm of the q component of strong solutions is locally

uniformly bounded and their H1 norm is locally uniformly square integrable in

time. Moreover, for any 2 ≤ p ≤ ∞, p even,

∥q(t)∥Lp ≤ ∥q0∥Lpe−λt +
1

λ
∥∆Φ∥Lp (2.76)

holds for all t.

Proof: The bound (2.34) holds for strong solutions. In view of it, for t ≥ t0 > 0

we consider the evolution of ∥Λ 1
2 q∥L2 . We have

1

2

d

dt
∥Λ

1
2 q∥2L2 + ∥Λq∥2L2 =

∫
ΛQΛq −

∫ ([
Λ

1
2 , u · ∇

]
q
)
Λ

1
2 q. (2.77)

We use Proposition 2.3 with s = 1
2

and α = 1
2

and (2.73) for u, and deduce, after

using a Young inequality that

d

dt
∥Λ

1
2 q∥2L2 + ∥Λq∥2L2 ≤ ∥ΛQ∥2L2 + C∥∆u∥2L2∥Λ

1
2 q∥2L2 . (2.78)

Therefore the bound (2.64) implies

∥Λ
1
2 q∥2L2 ≤ C

[
T∥ΛQ∥2L2 + ∥Λ

1
2 q(t0)∥2L2

]
expK (2.79)

with K given by

K = ∥∇u0∥2L2 + Cλ∥q0∥4L4 + CT
(
∥f∥2L2 + ∥Q∥4L4 + ∥∆Φ∥4L4

)
(2.80)

and consequently∫ t

t0

∥Λq∥2L2 ≤ T∥ΛQ∥2L2

+ C
[
T∥ΛQ∥2L2 + ∥Λ

1
2 q(t0)∥2L2

]
K expK + ∥Λ

1
2 q(t0)∥2L2 (2.81)



50

hold for 0 < t0 ≤ t ≤ T .

The Lp bound (2.76) follows from the uniform Poincaré inequality (2.17) and

the fact that u is divergence-free.

Remark 2.4. The quantitative bound (2.81) shows that there exists t1 ∈ [t0, t0+T ]

such that q(t1) ∈ H1, with a quantitative bound on its H1 norm.

Proposition 2.5. Let u0 ∈ H1 be divergence-free and q0 ∈ H1 have mean zero.

Then ∥∇q(t)∥L2 can be bounded as

∥∇q(t)∥L2 ≤ C [1 + ∥∇q0∥L2 + ∥q0∥L4 + ∥∇u0∥L2 ]8 e−c1t +R1(Φ, f) (2.82)

where c1 > 0 is an explicit positive number and R1(Φ, f) is an explicit function of

norms of Φ and f . Moreover∫ t+T

t

∥Λ
3
2 q(s)∥2L2ds

≤ C [1 + ∥∇q0∥L2 + ∥q0∥L4 + ∥∇u0∥L2 ]16 e−c2t +R2(Φ, f, T ) (2.83)

with c2 > 0 and R2(Φ, f, T ) an explicit function of the norms of Φ,f and T . More-

over, if u0 ∈ H2 we have

∥∆u(t)∥L2 ≤ C [1 + ∥∇q0∥L2 + ∥q0∥L4 + ∥∆u0∥L2 ]16 e−c3t +R3(Φ, f) (2.84)

with c3 > 0 and R3(Φ, f) and explicit function of the norms of Φ and f .

Proof: We take the first equation of (2.33) obeyed by q, multiply by −∆q and

integrate. We obtain

1

2

d

dt
∥∇q(t)∥2L2 +

∫
(Λ∇q)∇q =

∫
ΛQ(−∆q)−

∫
(∇u∇q)∇q (2.85)
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We bound ∣∣∣∣∫ ΛQ(−∆q)

∣∣∣∣ ≤ ∥∆Q∥L2∥Λ
3
2 q∥L2 (2.86)

and we bound ∣∣∣∣∫ (∇u∇q)∇q

∣∣∣∣ ≤ ∥∇u∥L4∥∇q∥2
L

8
3
. (2.87)

Using (2.18) and a Young inequality we deduce

d

dt
∥∇q∥2L2 + c∥Λ

3
2 q∥2L2 ≤ C∥∆Q∥2L2 + C∥q∥2L4∥∇u∥4L4 . (2.88)

In view of the Ladyzhenskaya inequality

∥∇u∥4L4 ≤ C∥∇u∥2L2∥∆u∥2L2 , (2.89)

and the inequalities (2.57), (2.75), (2.76) it follows that the function

F (t) = ∥q(t)∥2L4∥∇u(t)∥4L4

obeys the assumptions of the uniform Gronwall lemma, Lemma 1.1. The result

(2.82) then follows using Lemma 1.1 for y(t) = ∥∇q∥2L2 . The inequality (2.83)

follows then by integrating in time (2.88).

For the bound (2.84) we apply −∆ to the equation obeyed by u. We obtain

1

2

d

dt
∥∆u∥2L2 + ∥∇∆u∥2L2

= −
∫

∆(u · ∇u)∆u+

∫
∇(q(R(q −Q)− f)∇∆u. (2.90)

After a cancellation due to the divergence-free condition, we have∣∣∣∣∫ ∆(u · ∇u)∆u

∣∣∣∣ ≤ C∥∇u∥L2∥∆u∥L2∥∇∆u∥L2 . (2.91)
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Here we also used L4 norms of the second order derivatives of u and Ladyzhenskaya

interpolation inequality. We have also∣∣∣∣∫ ∇(q(R(q −Q)− f)∇∆u

∣∣∣∣
≤ C∥∇q∥L4 (∥q∥L4 + ∥Q∥L4) ∥∇∆u∥L2

+ C (∥∇Q∥L4∥q∥L4 + ∥∇f∥L2) ∥∇∆u∥L2 . (2.92)

Using the embedding H
1
2 ⊂ L4 for ∇q, we obtain

d

dt
∥∆u∥2L2 + ∥∇∆u∥2L2

≤ C
[
∥∇u∥2L2∥∆u∥2L2 +

(
∥Λ

3
2 q∥2L2 + ∥∇Q∥2L4

)
∥q∥2L4

]
+ C

[
∥Λ

3
2 q∥2L2∥Q∥2L4 + ∥∇f∥2L2

]
. (2.93)

In view of (2.57), (2.75), (2.76), (2.83) we have that the function

F (t) = ∥∇u∥2L2∥∆u∥2L2 + ∥Λ
3
2 q∥2L2

(
∥q∥2L4 + ∥Q∥2L4

)
+ ∥∇Q∥2L4∥q∥2L4 + ∥∇f∥2L2

obeys the assumptions of Lemma 1.1. The inequality (2.84) then follows from this

lemma applied to y(t) = ∥∆u∥2L2 .

2.4 The Mean-Zero Frame

The second equation in (2.33) does not maintain a bounded average velocity u.

Decomposing

u = v + u′(t) (2.94)
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where v = v(t) ∈ R2 is the average of u(t), i.e.

u = v +
∑

j∈Z2\{0}

uje
ij·x (2.95)

we can rewrite the system (2.33) as

d
dt
v = −(2π)−2

∫
q∇Φ,

∂tq + (v + u′) · ∇q + Λq = ∆Φ

∂tu
′ + (v + u′) · ∇u′ −∆u′ +∇p

= −qRq − q∇Φ + (2π)−2
∫
(q∇Φ) + f

∇ · u′ = 0

(2.96)

where we used the fact that R is antisymmetric and f has mean zero. Given a

solution of (2.96), we compute the displacement

ℓ(t) =

∫ t

0

v(s)ds (2.97)

and define the change of variables

X(x, t) = x−
∫ t

0

v(s) = x− ℓ(t) (2.98)

with inverse

Y (y, t) = y + ℓ(t) (2.99)

and note that

d

dt
F (y + ℓ(t), t) = (∂t + v(t) · ∇)F ◦ Y (t). (2.100)

Introducing the variables

ũ(y, t) = u′(Y (y, t), t) (2.101)
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and

q̃(y, t) = q(Y (y, t), t) (2.102)

i.e.

u′(x, t) = ũ(x− ℓ(t), t) = ũ ◦X, q(x, t) = q̃(x− ℓ(t), t) = q̃ ◦X (2.103)

we obtain the equations

∂tq̃ + ũ · ∇q̃ + Λq̃ = ∆Φ̃ (2.104)

and

∂tũ+ ũ · ∇ũ−∆ũ+∇p̃ = −q̃Rq − q̃∇Φ̃ + (2π)−2

∫
q̃∇Φ̃ + f̃ (2.105)

together with the divergence-free condition ∇ · ũ = 0. We used the translation

invariance of the operators involved, and we used the notation

F̃ (y, t) = F (Y (y, t), t) (2.106)

The new variables are still periodic in space with period 2π in each direction. The

average of ũ is zero.

We note also that we can recover the solution (u, q) from the solution (ũ, q̃)

with the same initial data by the change of variables (2.103) and (2.97) where v(t)

is computed as

d

dt
v(t) = −(2π)−2

∫
q̃∇Φ̃. (2.107)
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The two systems are equivalent, solution by solution. Dropping tildes we consider

the system

∂tq + u · ∇q + Λq = ∆Φ

∂tu+ u · ∇u−∆u+∇p = −qRq − q∇Φ + (2π)−2
∫
(q∇Φ) + f

∇ · u = 0

(2.108)

in which both u and q have mean zero. This is the system for which we can show

that solutions have a finite dimensional attractor.

2.5 Long Time Dynamics

We are concerned with the long time behavior of solutions of (2.33) in the mean

zero frame (2.108). Summarizing the results of Section 2.3 we know that solutions

(u(x, t), q(x, t)) of the system (2.108) with initial data in L2 exist globally, and they

become strong at positive times. Strong solutions are unique, and have additional

properties. We consider the subset V ⊂ H where H is defined in (2.9)

V = H1 ∩H ⊕ L4 (2.109)

and study the evolution of solutions (u(t), q(t)) of (2.108) with initial data w0 =

(u0, q0) ∈ V . The solution map

S(t)(u0, q0) = (u(t), q(t)) (2.110)

is a semigroup

S(t) : V 7→ H, (2.111)
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S(t+ s)w0 = S(t)(S(s)w0) (2.112)

for t, s ≥ 0. The abstract formulation of the system (2.108) is
∂tu+ Au+B(u, u) + P(qR(q −Q)) = f,

∂tq + Λq + u · ∇q = ΛQ

(2.113)

where

B(u, v) = P(u · ∇v), (2.114)

and Q = −ΛΦ, as before. Note that, in view of

u = Pu (2.115)

and the fact that −∆ commutes with P in the periodic case, we have

Au = −∆u. (2.116)

Theorem 2.1 implies that there exist weak solutions of (2.113) with initial data in

H. If the initial data are in V the solutions are strong, unique and have additional

properties.

Proposition 2.6. There exists a constant R0 depending on Φ and f , such that for

any w0 = (u0, q0) ∈ V , there exists t0 depending only on ∥u0∥H1 and ∥q0∥L4 such

that the strong solution (u(t), q(t)) = S(t)w0 of (2.108) with initial data w0 =

(u0, q0) satisfies

∥u(t)∥H1 + ∥q(t)∥L4 ≤ R0 (2.117)

for all t ≥ t0
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Proof: Because u has mean zero we have the Poincaré inequality

∥u(t)∥2L2 ≤ ∥∇u(t)∥2L2 . (2.118)

The result (2.117) follows from (2.57) and (2.76) because of the translation invari-

ance of norms

∥∇u∥L2 = ∥∇(u ◦X)∥L2 , ∥q∥Lp = ∥q ◦X∥Lp . (2.119)

Proposition 2.7. There exists R1 depending only on Φ and f , and t1 > 0 depending

only on R0 and R1 such that for any w0 = (u0, q0) ∈ V satsfying

∥u0∥H1 + ∥q0∥L4 ≤ R0 (2.120)

we have

∥Λ
1
2 q(t1)∥L2 ≤ R1 (2.121)

and

1

T

∫ t1+T

t1

(
∥∆u∥2L2 + ∥Λq∥2L2

)
dt ≤ R2

1 (2.122)

for any T > 0. There exists t2 > t1, depending on R1 such that

∥∆u(t2)∥2L2 + ∥Λq(t2)∥2L2 ≤ R1 (2.123)

holds.

Proof: The bound on ∥Λ 1
2 q(t1)∥L2 follows from∫ t

0

∥Λ
1
2 q(s)∥2L2ds ≤ ∥q0∥2L2 + t∥Λ

3
2Φ∥2L2 (2.124)

(see (2.43)) and the Chebyshev inequality. The inequality (2.122) follows from

(2.58) and (2.81). The existence of t2 for which (2.123) is true follows from (2.122).
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Theorem 2.3. Absorbing ball. There exists R2 depending only on Φ an f such

that, for any initial data w0 = (u0, q0) ∈ V , there exists t3 > 0 depending only on

the norms ∥u0∥H1 , ∥q0∥L4 and on R2 such that, for any t ≥ t3

∥u(t)∥H2 + ∥q∥H1 ≤ R2 (2.125)

holds for t ≥ t3, i.e.

S(t)w0 ∈ KR2 = {w ∈ V | ∥u∥H2 + ∥q∥H1 ≤ R2}. (2.126)

holds for t ≥ t3.

Proof: By Proposition 2.6 and Proposition 2.7 above there exists R1 depending

on f and Φ and t2 > 0 depending on the norms ∥u0∥H1 and ∥q0∥L4 such that

∥u(t2)∥H2 + ∥q(t2)∥H1 ≤ R1. Then the result follows from Proposition 2.5

2.6 Continuity Properties of the Solution Map

In addition to the topology of H with norm

∥w∥2H = ∥u∥2L2 + ∥q∥2L2 (2.127)

we consider the natural topology of V which is a Banach space on its own, with

norm

∥w∥2V = ∥u∥2H1 + ∥q∥2L4 (2.128)

We consider the space

V ′ = H1 ∩H ⊕H1 (2.129)

and note that the absorbing ball KR2 of Theorem 2.3 is included in V ′.
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Theorem 2.4. Continuity. Let w0
1 = (u0

1, q
0
1) ∈ V ′ and w0

2 = (u0
2, q

0
2) ∈ V ′. Let

t > 0. There exist constants C(t), C1(t), and C2(t) locally uniformly bounded

above as functions of t ≥ 0 and locally bounded as initial data w0
1, w

0
2 are varied

in V ′, such that S(t) is Lipschitz continuous in H, obeying

∥S(t)w0
1 − S(t)w0

2∥H ≤ C(t)∥w0
1 − w0

2∥H, (2.130)

S(t) is Lipschitz continuous in V , obeying

∥S(t)w0
1 − S(t)w0

2∥V ≤ C1(t)∥w0
1 − w0

2∥V , (2.131)

and S(t) is Lipschitz continuous for t > 0 from H to V , obeying

√
t∥S(t)w0

1 − S(t)w0
2∥V ≤ C2(t)∥w0

1 − w0
2∥H. (2.132)

Proof: We take the two solutions of (2.113) w1 = S(t)w0
1 = (u1(t), q1(t)) and

w2 = S(t)w0
2 = (u2(t), q2(t)) and denote w(t) = S(t)w0

2 − S(t)w0
1 = (u2(t) −

u1(t), q2(t)− q1(t)) and w = (u, q) = 1
2
(S(t)w0

1 +S(t)w0
2). Then w(t) satisfies the

system
∂tu+ Au+B(u, u) +B(u, u) + P(qR(q −Q) + qRq) = 0,

∂tq + Λq + u · ∇q + u · ∇q = 0.

(2.133)

We obtain

d

dt
∥w(t)∥2H + ∥∇u∥2L2 + ∥Λ

1
2 q∥2L2

≤ C(∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2)∥w(t)∥2H (2.134)

by using estimates ∣∣∣∣∫ u · ∇qq

∣∣∣∣ ≤ ∥∇q∥L2∥q∥L4∥u∥L4
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and interpolation. Thus (2.130) holds with

C(t) = exp

{
C

∫ t

0

(
∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

)
ds

}
(2.135)

which is a locally uniformly bounded function of time and initial data w0
1, w

0
2 ∈ V ′.

The evolution of the norm the H1 norm of u is obtained from the identity ([35])

(B(u, u) +B(u, u), Au)H = −(B(u, u), Au)H (2.136)

which yields

1

2

d

dt
∥A

1
2u∥2H+∥Au∥2H = (B(u, u), Au)H−(P(qR(q−Q)+qRq), Au)H (2.137)

and results in

d

dt
∥A

1
2u∥2H + ∥Au∥2H

≤ C∥Au∥
4
3
H∥u∥

2
3
H∥A

1
2u∥

4
3
H + C

[
∥q∥2L4 + ∥Q∥2L4

]
∥q∥2L4 . (2.138)

The L4 norm of q evolves according to

1

4

d

dt
∥q∥4L4 +

∫
q3Λq +

∫
q3(u∇q) = 0 (2.139)

The inequality (2.17) and the embedding H
1
2 ⊂ L4 results in∫

q3Λq ≥ c∥q∥4L8 (2.140)

and using the embedding H1 ⊂ L8 we deduce∣∣∣∣∫ q3(u∇q)

∣∣∣∣ ≤ ∥q∥3L8∥u∥L8∥∇q∥L2 ≤ C∥q∥3L8∥A
1
2u∥H∥∇q∥L2 , (2.141)

and therefore,

d

dt
∥q∥4L4 ≤ C∥A

1
2u∥4H∥∇q∥4L2 . (2.142)

Putting these together we obtain
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d

dt

[
∥A

1
2u∥4H + ∥q∥4L4

]
≤ C

(
∥Au∥

4
3
H + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

) [
∥A

1
2u∥4L2 + ∥q∥4L4

]
(2.143)

Thus (2.131) holds with

C1(t) = exp

{
C

∫ t

0

(
∥Au∥

4
3
H + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

)
ds

}
(2.144)

which is a locally uniformly bounded function of t > 0 and initial data w0
1, w

0
2 in

V ′.

For the Lipschitz continuity from H to V , we estimate slightly differently in

(2.137),

d

dt
∥A

1
2u∥2H + ∥Au∥2H ≤ C∥Au∥

4
3
H∥u∥

2
3
H∥A

1
2u∥

4
3
H

+ C
[
∥q∥2L∞ + ∥Rq∥2L∞ + ∥RQ∥2L∞

]
∥q∥2L2 . (2.145)

Using the inequality ∥Au∥H∥u∥H ≥ ∥A 1
2u∥2H and a Young inequality, we obtain

d

dt
∥A

1
2u∥2H +

1

2
∥Au∥2H

≤ C∥Au∥2H∥u∥2H + C
[
∥q∥2L∞ + ∥Rq∥2L∞ + ∥RQ∥2L∞

]
∥q∥2L2 . (2.146)

Integrating in time in (2.134) and using (2.130) we have∫ t

0

(
∥A

1
2u(s)∥2H + ∥Λ

1
2 q(s)∥2L2

)
ds ≤ C̃(t)∥w0∥2H (2.147)

with

C̃ = 1 + C

∫ t

0

C(s)(∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2)ds (2.148)

Multiplying (2.146) by t, using (2.147) and (2.130) we obtain

t∥A
1
2u(t)∥2H ≤ C3(t)∥w0∥2H (2.149)
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with C3(t) an explicit function of time which is locally uniformly bounded for t ≥

0, and locally bounded as initial data w0
1, w

0
2 vary in V ′. Returning to (2.141) but

estimating differently, using the Hölder inequality with exponents 2, 4, 4 and then

interpolation, we obatin∣∣∣∣∫ q3(u∇q)

∣∣∣∣ ≤ C∥q∥2L8∥q∥L4∥u∥
1
2
H∥A

1
2u∥

1
2
H∥∇q∥L4 (2.150)

and therefore, from (2.139) we obtain after a Young inequality and use of (2.140),

d

dt
∥q∥2L4 ≤ C∥u∥H∥A

1
2u∥H∥∇q∥2L4 . (2.151)

Multiplying (2.151) by t, integrating in time, and using (2.147), the embedding

H
1
2 ⊂ L4 and (2.149) we obtain

t∥q(t)∥2L4 ≤ C4(t)∥w0∥2H (2.152)

with C4(t) an explicit function of time which locally uniformly bounded for t ≥ 0,

and locally bounded as initial data w0
1, w

0
2 vary in V ′. From (2.149) and (2.152) we

obtain (2.132).

2.7 Backward Uniqueness

Theorem 2.5. Backward uniqueness. Let w0
1, w0

2 be two initial data in V ′. For

any T > 0, if S(T )w0
1 = S(T )w0

2, then w0
1 = w0

2.

Proof: We use the notation of the proof of Theorem 2.4. The difference w(t) obeys

(2.133). We can write this abstractly as

∂tw +Aw + L(w)w = 0 (2.153)
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where w = (u, q), w = (u, q), and

L(w)w = (L1(w)w, L2(w)w), with

L1(w)w = B(u, u) +B(u, u) + P(qR(q −Q) + qRq), and

L2(w)w = u · ∇q + u · ∇q

(2.154)

Let us consider the evolution of the norm

E0 = ∥u∥2L2 + ∥q∥2
H− 1

2
(2.155)

obtained by taking the scalar product in H of the equation (2.153) with (u,Λ−1q) =

(I⊕ Λ−1)w = Bw. The operator

B = I⊕ Λ−1 (2.156)

is selfadjoint and commutes with A. We obtain

1

2

d

dt
E0 + E1 + (L(w)w,Bw)H = 0 (2.157)

where

E1 = ∥A
1
2u∥2H + ∥q∥2L2 = (w,ABw)H. (2.158)

Now we denote by

µ =
E1

E0

(2.159)

and observe that

1

2

d

dt
log

(
1

E0

)
= µ+ (L(w)ϕ,Bϕ)H (2.160)

where

ϕ = E
− 1

2
0 w. (2.161)
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Let us consider the function

Y (t) = log

(
1

E0

)
, (2.162)

and so we have

1

2

d

dt
Y (t) = µ+ (L(w)ϕ,Bϕ)H. (2.163)

The aim is to show that Y (t) cannot reach the value +∞ in finite time. To this end

we take the derivative of µ and note

d

dt
µ = E−1

0

d

dt
E1 − µ

d

dt
logE0 = E−1

0

d

dt
E1 + µ

d

dt
Y. (2.164)

We have

1

2

d

dt
E1 + (w,A2Bw)H + (L(w)w,ABw)H = 0. (2.165)

which implies that

E−1
0

d

dt
E1 = −2(ϕ,A2Bϕ)H − 2(L(w)ϕ,ABϕ)H (2.166)

and therefore

1

2

d

dt
µ = −(ϕ,A2Bϕ)H − (L(w)ϕ,ABϕ)H + µ (µ+ (L(w)ϕ,Bϕ)H) . (2.167)

Let us note that

µ = (Aϕ,Bϕ)H (2.168)

and if we introduce the scalar product in H defined by

(a, b)B = (a,Bb)H (2.169)

then we see that

∥ϕ∥2B = 1 (2.170)



65

and

(A2ϕ, ϕ)B − µ2 = ∥(A− µ)ϕ∥2B (2.171)

hold. The equation (2.167) becomes

1

2

d

dt
µ = −∥(A− µ)ϕ∥2B − (L(w)ϕ, (A− µ)ϕ)B. (2.172)

Let us note also that (2.163) can be written as

1

2

d

dt
Y (t) = µ+ (L(w)ϕ, ϕ)B. (2.173)

This is a general structure, we could have used any postive selfadjoint operator

B which commutes with A, and it did really not matter what L(w) or A were.

Our choice is of course motivated by the properties of the latter, but some general

features already can be taken advantage of.

We compute in our case

(L(w)ϕ, ϕ)B =
1

E0

[
(B(u, u), u)H +

∫
(qR(q −Q) · u− qu ·Rq) dx

]
(2.174)

where we used the cancellation of the terms involving qu · Rq and (u · ∇q)Λ−1q.

The estimate

(L(w)ϕ, ϕ)B ≤ K0(t)µ (2.175)

with

K0(t) = C [∥Au∥H + ∥R(q −Q)∥L∞ ] (2.176)

holds, and ∫ T

0

K0(t)dt < ∞ (2.177)
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holds as well (see (2.75) and (2.83)). If we decompose

L(w)ϕ = T1ϕ+ T2ϕ (2.178)

where

∥T1ϕ∥2B ≤ K2(t)∥A
1
2ϕ∥2B (2.179)

then the contribution coming from T1 can be estimated using the Schwarz inequality

in the term (T1ϕ, (A− µ)ϕ)B, and we obtain that

d

dt
µ ≤ −∥(A− µ)ϕ∥2B +K2(t)µ− 2(T2ϕ, (A− µ)ϕ)B. (2.180)

The bound (2.179) means that the velocity component of T1w is bounded from

H1 × L2 to L2 and the second component is bounded from H1 × L2 to H− 1
2 . The

requirement (2.179) is satisfied in our case by

T1w = (L1(w)w, u · ∇q). (2.181)

Indeed, (2.179) holds, i.e.

∥L1(w)w∥2L2 + ∥Λ− 1
2 (u · ∇q)∥2L2 ≤ K2(t)

[
∥A

1
2u∥2H + ∥q∥2L2

]
(2.182)

with

K(t) = C
[
∥Au∥H + ∥R(q −Q)∥L∞ + ∥q∥L∞ + ∥∇q∥

1
2

L2∥∇q∥
1
2
L∞

]
. (2.183)

It remains to examine what happens to T2,

T2w = (0, u · ∇q) (2.184)

which does not satisfy (2.179). Its contribution to the evolution of µ in (2.180) is

2(T2ϕ, (A− µ)ϕ)B = 2E−1
0

∫
(u · ∇q)(Λ− µ)Λ−1q

= −2E−1
0 µ

∫
(u · ∇q)Λ−1q. (2.185)
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In view of the fact that∫
(u · ∇q)Λ−1q = −

∫
Λ− 1

2 q
[
u · ∇,Λ− 1

2

]
q (2.186)

and Proposition 2.3 with s = −1
2

and α = 0, we have

−2(T2ϕ, (A− µ)ϕ)B ≤ C[u]1µ. (2.187)

Thus, putting together the bounds (2.180) and (2.187) we obtain

d

dt
µ ≤ C(K2(t) + [u]1)µ (2.188)

and because ∫ T

0

(K2(t) + [u]1)dt < ∞ (2.189)

it follows that µ(t) is locally bounded in time. From the bounds (2.175) and (2.177)

it follows that Y (t) is locally bounded.

2.8 Decay of Volume Elements

We consider a solution w = S(t)w0 of (2.113) with initial data in the absorbing ball

w0 ∈ KR2 = {w ∈ V | ∥u∥H2 + ∥q∥H1 ≤ R2}. We consider the linearization of

S(t) along w(t),

w0 7→ w(t) = S ′(t, w)w0 (2.190)

viewed as an operator in H. The function w(t) solves

∂tw +Aw + L(w)w = 0 (2.191)
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with initial data w0. We denote w = (u, q), w = (u, q), and

L(w)w = (L1(w)w, L2(w)w), with

L1(w)w = B(u, u) +B(u, u) + P(qR(q −Q) + qRq), and

L2(w)w = u · ∇q + u · ∇q.

(2.192)

The volume elements associated to it are the norms in
∧N H. The scalar product

in
∧N H is

(w1 ∧ · · · ∧ wN ; y1 ∧ · · · ∧ yN)∧N H = det (wi, yj)H (2.193)

and the volume elements are norms

VN(t) = ∥w1(t) ∧ . . . wN(t)∥∧N H (2.194)

where

wi(t) = S ′(t, w)wi(0) (2.195)

are the images under the linearization of N linearly independent vectors. The mono-

mial w1(t) ∧ · · · ∧ wN(t) evolves according to

∂t (w1(t) ∧ · · · ∧ wN(t)) + (A+ L(w))N (w1(t) ∧ · · · ∧ wN(t)) = 0 (2.196)

with

(A+ L(w))N(w1(t) ∧ · · · ∧ wN(t))

= (A+ L(w))w1 ∧ · · · ∧ wN + · · ·+ w1 ∧ · · · ∧ (A+ L(w))wN (2.197)

and, as a consequence, the volume element evolves according to

d

dt
VN(t) + Trace ((A+ L(w))QN)VN(t) = 0 (2.198)
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where QN is orthogonal projection in H onto the linear subspace spanned by the

vectors wi, 1 ≤ i ≤ N . These are calculations which parallel well known calcula-

tions for the Navier-Stokes equations ([14], [35]).

The volume element VN(t) decays if N is large enough, as specified in the

following theorem.

Theorem 2.6. There exists a constant M depending on R2 and norms of Φ and of

f such that, for any initial data w0 in the absorbing ball KR2 , for any N ≥ M , and

any initial data w1(0), w2(0), . . . wN(0) in H, we have that

∥S ′(t, w)w1(0) ∧ · · · ∧ S ′(t, w)wN(0)∥∧N H ≤ VN(0)e
−cN

3
2 t (2.199)

holds for t ≥ t0, with t0 depending on R2.

Proof: The trace in (2.198) is computed as follows. At each instant of time t we

choose an orthonormal basis ϕi = (vi, ri) of the linear span of w1, . . . wN . Then

Trace ((A+ L(w))QN) =
N∑
i=1

(Aϕi, ϕi)H +
N∑
i=1

(L(w)ϕi, ϕi)H. (2.200)

Now

Trace(AQN) =
N∑
i=1

(Aϕi, ϕi)H

=
N∑
i=1

[(Avi, vi)H + (Λri, ri)L2 ] ≥ µ1 + . . . µN , (2.201)

and
N∑
i=1

(L(w)ϕi, ϕi)H (2.202)

=
N∑
i=1

[
(B(vi, u), vi)H + (P(riR(q −Q) + qRri), vi)H +

∫
(vi · ∇q)ri

]
.
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On one hand we have a lower bound
N∑
i=1

(Aϕi, ϕi)H ≥
N∑
i=1

[
∥A

1
2vi∥2H + c∥ri∥2L4

]
, (2.203)

and on the other hand we have the upper bound∣∣∣∣∣
N∑
i=1

(L(w)ϕi, ϕi)H

∣∣∣∣∣ (2.204)

≤ C
N∑
i=1

[
∥∇u∥L2∥vi∥H∥A

1
2vi∥H + (∥q∥L4 + ∥Q∥L4)∥ri∥L4∥vi∥L2

]
+ C

N∑
i=1

[
∥∇q∥L2∥vi∥

1
2
H∥A

1
2vi∥

1
2
H∥ri∥L4

]
.

Applying Schwarz inequalities in the first two terms in the right hand side of (2.204),

and a Hölder inequality in RN with exponents 4, 4, 2 in the last term, followed by

Young inequalities, we deduce after taking advantage of (2.203) that∣∣∣∣∣
N∑
i=1

(L(w)ϕi, ϕi)H

∣∣∣∣∣ ≤ 1

2
Trace(AQN)

+ C
(
∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

) N∑
i=1

∥vi∥2H . (2.205)

Because of the normalization ∥vi∥2H + ∥ri∥2L2 = ∥ϕi∥2H = 1 we obtain∣∣∣∣∣
N∑
i=1

(L(w)ϕi, ϕi)H

∣∣∣∣∣ ≤ 1

2
Trace(AQN)

+ CN
(
∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

)
. (2.206)

Let us note that, in view of the fact that KR2 is an absorbing ball, we have

sup
T≥0

1

T

∫ T

0

(
∥∇u∥2L2 + ∥q∥2L4 + ∥Q∥2L4 + ∥∇q∥4L2

)
dt ≤ C(R2) (2.207)

with C(R2) a nondecreasing function of R2. From (2.15) we have

µ1 + · · ·+ µN ≥ cN
3
2 , (2.208)
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and, in view of (2.198), (2.200), (2.201) and (2.206) we see that if

N
1
2 ≥ 8c−1CC(R2) (2.209)

then VN(t) decays exponentially,

VN(t) ≤ VN(0)e
−cN

3
2 t (2.210)

for t ≥ t0 with t0 depending on R2. Therefore the proof is complete.

2.9 Global Attractor

The properties of S(t) of existence of a compact absorbing ball KR2 (Theorem

2.3), continuity in H (Theorem 2.4), backward uniqueness (Theorem 2.5) imply

the existence of a global attractor.

Theorem 2.7. Let

X =
⋂
t>0

S(t)KR2 (2.211)

where S(t) is the semigroup solving (2.113) and KR2 is the absorbing ball (2.126).

Then:

(i) X is compact in H.

(ii) S(t)X = X for all t ≥ 0.

(iii) If Z is bounded in V in the norm of of V , and S(t)Z = Z for all t ≥ 0, then

Z ⊂ X .

(iv) For every w0 ∈ V , lim
t→∞

distH(S(t)w0, X) = 0.
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(v) X is connected.

The proof of this result follows verbatim the proof of Theorem 1.7. If the body

forces vanish, then the attractor is particularly simple, it is a singleton.

Theorem 2.8. Let f = 0. Then the attractor is a singleton, formed with the unique,

globally attracting steady solution wQ = (0, Q),

X = {wQ}. (2.212)

Proof: We take the scalar product in H of the first equation of (2.113) with u, we

take the scalar product in L2 of the second equation with Λ−1(q−Q) and add. The

terms

(P(qR(q −Q)), u)H + (u · ∇q,Λ−1(q −Q))L2 = 0 (2.213)

cancel, and we obtain

1

2

d

dt

(
∥u∥2H + ∥Λ− 1

2 (q −Q)∥2L2

)
+ ∥A

1
2u∥2H + ∥q −Q∥2L2 = 0. (2.214)

Because of the Poincaré inequality we obtain exponential decay of the distance to

wQ, first in H ×H− 1
2 and then in H. The latter follows because

1

2

d

dt
∥q −Q∥2L2 + ∥Λ

1
2 (q −Q)∥2L2

= −
∫

qu · ∇Qdx ≤ ∥u∥H∥q∥L2∥∇Q∥L∞ (2.215)

and ∥q∥L2 is bounded in time, while ∥u∥H decays exponentially by (2.214), and

therefore, from (2.215) we obtain the exponential convergence of w to wQ in H.

This concludes the proof.
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Remark 2.5. When f = 0, returning to the nonzero mean velocity frame we see

that the average velocity converges in time. Indeed, its time derivative, given in

(2.107), obeys ∣∣∣∣ ddtv(t)
∣∣∣∣ = ∣∣∣∣−(2π)−2

∫
(q −Q)∇Φdx

∣∣∣∣ (2.216)

because
∫
Q∇Φdx = 0. The right hand side of (2.216) belongs to L1(0,∞) by

(2.214).

Employing methods initiated in [14] and used in many subsequent works, The-

orem 2.6 implies

Theorem 2.9. The global attractor X has finite fractal dimension

DH(X) ≤ M (2.217)

where M depends only on norms of f and Φ.

The fractal dimension is defined as

lim sup
r→0

logNH(r)

log
(
1
r

) (2.218)

where NH(r) is the minimal number of balls in H of radii r needed to cover X .

Theorem 2.10. The global attractor X has finite fractal dimension

DV(X) = DH(X). (2.219)

Proof: If Bi ⊂ H are a family of balls in H of radii ρ and centers wi that cover

X , then, because of the invariance S(t)X = X , the sets S(t)Bi cover X . Now

because of the continuity (2.132), the sets S(t)Bi are included in balls in V of radii
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t−
1
2C2(t)ρ = r. Therefore

NH(r) ≤ NV(r) ≤ NH(
√
tC2(t)

−1r). (2.220)

Fixing t > 0 we obtain

lim sup
r→0

logNV(r)

log
(
1
r

) = lim sup
r→0

logNH(r)

log
(
1
r

) . (2.221)
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CHAPTER 3

Electroconvection in Porous Media

We consider the evolution of a surface charge density interacting with a two di-

mensional fluid in a porous medium. In the momentum equation, Stokes’ law is

replaced by Darcy’s law balanced by the electrical forces. This results in an active

scalar equation, in which the transport velocity is computed from the scalar charge

density via a nonlinear and nonlocal relation. We address the model in the whole

space R2 and in the periodic setting on T2. We prove the global existence and

uniqueness of solutions in Besov spaces Ḃ
2
p

p,1 for small initial data.

3.1 Introduction

Electroconvection, the evolution of charge distributions in fluids, was investigated

experimentally and numerically in situations in which the fluid and charges are

confined to thin films [25, 42, 41]. The charge distribution is carried by the fluid

and diffuses due to the parallel component of the electrical field. This results in a

nonlocal transport equation for the charge density ρ,

∂tρ+ u · ∇ρ+ Λρ = 0 (3.1)
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where Λ = (−∆)
1
2 is the square root of the two dimensional Laplacian and u is the

fluid velocity. The fluid is incompressible and is forced by electrical forces

F = ρE (3.2)

where E is the parallel component of the electrical field,

E = −∇Φ, (3.3)

with ∇ the gradient in R2. The relationship between the electrical potential Φ and

the charge distribution confined to a two dimensional region is

Φ = Λ−1ρ (3.4)

and we thus have

F = −ρRρ (3.5)

with R = ∇Λ−1 the Riesz transforms. In general, the fluid obeys Navier-Stokes

or related equations driven by the forces F . The derivation of this system for the

physical setup in bounded domains was obtained in [13], where global regular-

ity and uniqueness of solutions were obtained for the coupling with Navier-Stokes

equations.

In this chapter, we consider flow through a porous medium, in which the dom-

inant dissipation mechanism is due not to the viscosity of the fluid, but rather to

an effective damping caused by flow through pores. The Stokes operator is then

replaced by u + ∇p. We consider a system in which the fluid equilibrates rapidly

and the Reynolds number is low, so that forces are balanced by damping,

u+∇p = F. (3.6)
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This balance, together with (3.5) and the requirement of incompressibility,

∇ · u = 0, (3.7)

leads to

u = −P(ρRρ) (3.8)

where P is the Leray-Hodge projector on divergence-free vector fields. The electro-

convection situation described above leads to the active scalar equation (3.1) with

constitutive law (3.8), which is the equation we study in this work. In comparison to

the work [13], the nonlinear advection is missing, but also there is no viscosity, and

because of the nonlinearity in the electrical force, the velocity’s dependence of the

charge density is more singular. The equation is L∞-critical, and resembles critical

SQG [15, 17, 19, 28] except for the constitutive law (3.8) which in this case is non-

linear and doubly nonlocal. Global regularity of critical SQG was originally proved

by different methods in [8, 31] and was subsequently extensively studied. In [29],

the balance law (3.8) was used to describe the solvent in a Nernst-Planck-Darcy

system of ionic diffusion in 2D and 3D. An active scalar equation describing flow

through porous media with fractional dissipation and linear nonlocal constitutive

law was studied in [10] and global regularity was obtained.

In this chapter, we show that the equation (3.1), (3.8) has global weak solutions.

We describe local existence and uniqueness results for strong solutions. We also

show that solutions with small initial data in Besov spaces slightly smaller than L∞

exist globally.
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This chapter is organized as follows. In section 3.2, we recall results about

Besov spaces and Littlewood-Paley decomposition. In section 3.3, we prove exis-

tence of global in time weak solutions of (3.1), (3.8) for initial data in L2+δ(R2) for

some δ > 0. If the initial data is in Lp(R2) for p ∈ (2,∞], then the Lp norm of

any solution of (3.1), (3.8) remains bounded in time. If the initial data is H2(R2)

regular, then we obtain a unique local strong solution. In section 3.4, we show that

a global in time solution exists provided that the initial data is sufficiently small in

Besov spaces that are slightly smaller than L∞(R2). In section 3.5, we show that

Hölder continuity of the charge distribution is a sufficient condition for the smooth-

ness of solutions for arbitrary initial data, a result that is similar to the situation for

SQG [20]. In section 3.6, we treat the periodic case, and we prove that the solution

of the problem (3.1), (3.8) posed on the two dimensional torus converges exponen-

tially in time to zero. Finally, we consider in section 3.7 the subcritical Darcy’s law

electroconvection, and we show existence of global smooth solutions for arbitrary

initial data.

3.2 Preliminaries

We denote the Fourier transform of f by

Ff(ξ) = f̂(ξ) =
1

2π

∫
R2

f(x)e−iξ·xdx (3.9)

and its inverse by F−1.
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Let Φ be a nonnegative, nonincreasing, infinitely differentiable, radial function

such that Φ(r) = 1 for r ∈
[
0, 1

2

]
and Φ(r) = 0 for r ∈

[
5
8
,∞
]
. Let

Ψ(r) = Φ
(r
2

)
− Φ(r). (3.10)

For each j ∈ Z, let

Ψj(r) = Ψ(2−jr). (3.11)

We have

Φ(|ξ|) +
∞∑
j=0

Ψj(|ξ|) = 1 (3.12)

for all ξ ∈ R2 and
∞∑

j=−∞

Ψj(|ξ|) = 1 (3.13)

for all ξ ∈ R2 \ {0}. We define the homogeneous dyadic blocks

∆jf(x) = F−1
[
Ψj(| · |)f̂(·)

]
(x) (3.14)

and the lower frequency cutoff functions

Sjf =
∑

k≤j−1

∆kf. (3.15)

We note that the Fourier transform of each dyadic block is compactly supported.

More precisely, we have

supp F(∆jf) ⊂ 2j
[
1

2
,
5

4

]
(3.16)

for all j ∈ Z.

Let S ′
h(R2) be the set of all tempered distributions u ∈ S ′(R2) such that

lim
j→−∞

Sju = 0 (3.17)
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in S ′(R2). For f ∈ S ′
h(R2), we denote the homogeneous Littlewood-Paley decom-

position of f by

f =
∑
j∈Z

∆jf. (3.18)

For s ∈ R, 1 ≤ p, q ≤ ∞, we denote the homogeneous Besov space

Ḃs
p,q(R2) =

{
f ∈ S ′

h(R2) : ∥f∥Ḃs
p,q(R2) < ∞

}
(3.19)

where

∥f∥Ḃs
p,q(R2) =

(∑
j∈Z

2jsq∥∆jf∥qLp(R2)

)1/q

(3.20)

and the inhomogeneous Besov space

Bs
p,q(R2) =

{
f ∈ S ′(R2) : ∥f∥Bs

p,q(R2) < ∞
}

(3.21)

where

∥f∥Bs
p,q(R2) =

(
2−sq∥∆̃−1f∥qLp(R2) +

∞∑
j=0

2jsq∥∆jf∥qLp(R2)

)1/q

(3.22)

with the usual modification when q = ∞. Here

∆̃−1f = F−1
[
Φ(| · |)f̂(·)

]
(x). (3.23)

We note that the definition of the space Ḃs
p,q is independent of the function Φ which

defines the dyadic blocks. Indeed, any other dyadic partition yields an equivalent

norm.

If s > 0, 1 ≤ p, q ≤ ∞, then

Bs
p,q(R2) = Ḃs

p,q(R2) ∩ Lp(R2). (3.24)

Moreover, the norms ∥f∥Bs
p,q(R2) and ∥f∥Ḃs

p,q(R2) + ∥f∥Lp(R2) are equivalent.
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We also consider the following time dependent homogeneous Besov spaces

Lr(0, T ; Ḃs
p,q(R2)) =

{
f(t) ∈ S ′

h(R2) : ∥f∥Lr(0,T ;Ḃs
p,q(R2)) < ∞

}
(3.25)

and

L̃r(0, T ; Ḃs
p,q(R2)) =

{
f(t) ∈ S ′

h(R2) : ∥f∥L̃r(0,T ;Ḃs
p,q(R2)) < ∞

}
, (3.26)

where

∥f∥L̃r(0,T ;Ḃs
p,q(R2)) =

(∑
j∈Z

2jsq∥∆jf∥qLr(0,T ;Lp(R2))

)1/q

.

We recall inequalities that are used in the upcoming sections (see for instance

[5, 27, 43]).

Proposition 3.1. Let f ∈ S ′
h(R2).

1. (Bernstein’s inequality) Let 1 ≤ p ≤ ∞. Let k be a nonnegative integer. Then

sup
|α|=k

∥∂α∆jf∥Lp(R2) ≤ Ck2
jk∥∆jf∥Lp(R2) (3.27)

holds for all j ∈ Z.

2. Let 1 ≤ p ≤ q ≤ ∞. Then

∥∆jf∥Lq(R2) ≤ C22j(
1
p
− 1

q )∥∆jf∥Lp(R2) (3.28)

holds for all j ∈ Z. Moreover, the continuous Besov embedding

Ḃs
p1,q1

(R2) ↪→ Ḃ
s−2

(
1
p1

− 1
p2

)
p2,q2 (R2) (3.29)

holds for 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞ and s ∈ R.

3. Let 1 ≤ p ≤ ∞, t ≥ 0, α > 0. Then

∥e−tΛα

∆jf∥Lp(R2) ≤ Ce−C−1t2jα∥∆jf∥Lp(R2) (3.30)
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holds for all j ∈ Z. Here Λα is the fractional Laplacian of order α defined as

a Fourier multiplier with symbol |ξ|α.

4. Let R = (R1, R2) be the Riesz transform, i.e., for k ∈ {1, 2}, Rk = ∂kΛ
−1.

For each p ∈ [1,∞], there is a positive constant C > 0 depending only on p

(independent of j) such that

∥∆jRf∥Lp(R2) ≤ C∥∆jf∥Lp(R2) (3.31)

holds for all j ∈ Z. Hence, for s ∈ R and 1 ≤ p, q ≤ ∞, R is bounded from

Ḃs
p,q(R2) to itself.

The following decomposition formula holds.

Proposition 3.2. Let f, g ∈ S ′
h(R2). Then

∆j(fg) =
∑

k≥j−2

∆j(Sk+1f∆kg) +
∑

k≥j−2

∆j(Skg∆kf)

=
∑

k≥j−2

∆j(Sk+1g∆kf) +
∑

k≥j−2

∆j(Skf∆kg) (3.32)

holds for any j ∈ Z.

Proof: Let f, g ∈ S ′
h. Bony’s paraproduct gives the decomposition

fg =
∑
j∈Z

Sj−1f∆jg +
∑
j∈Z

Sj−1g∆jf +
∑

|j−j′|≤1

∆jf∆j′g. (3.33)
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We note that∑
|j−j′|≤1

∆jf∆j′g =
∑
j∈Z

∆jf∆jg +
∑
j∈Z

∆jf∆j−1g +
∑
j∈Z

∆jf∆j+1g

=
∑
j∈Z

∆jf∆jg +
∑
j∈Z

∆jf∆j−1g +
∑
j∈Z

∆j−1f∆jg

=
∑
j∈Z

(∆j−1f +∆jf)∆jg +
∑
j∈Z

∆jf∆j−1g. (3.34)

This implies that

fg =
∑
j∈Z

Sj+1f∆jg +
∑
j∈Z

Sjg∆jf. (3.35)

Now we apply ∆j . In view of (3.16), we have

k ≤ j − 2 ⇒ ∆j(Skg∆kf) = 0 (3.36)

and

k ≤ j − 3 ⇒ ∆j(Sk+1f∆kg) = 0. (3.37)

Indeed, for f, g ∈ L1(R2),

F(∆j(Skg∆kf)(ξ) = Ψj(|ξ|)F(Skg∆kf)(ξ)

= Ψj(|ξ|)

∑
l≤k−1

∫
R2

Ψl(|ξ − y|)Fg(ξ − y)Ψk(|y|)Ff(y)dy


= Ψj(|ξ|)


∑
l≤k−1

∫
2k

2
≤|y|≤ 2k5

4

Ψl(|ξ − y|)Fg(ξ − y)Ψk(|y|)Ff(y)dy


= Ψj(|ξ|)Ψ̃k(ξ) (3.38)

where

Ψ̃k(ξ) =
∑
l≤k−1

∫
2k

2
≤|y|≤ 2k5

4

Ψl(|ξ − y|)Fg(ξ − y)Ψk(|y|)Ff(y)dy. (3.39)
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Fix l ≤ k − 1. Let y ∈ R2 be such that 2k

2
≤ |y| ≤ 2k5

4
and Ψl(|ξ − y|) ̸= 0. This

implies that |ξ − y| ≤ 2l5
4

, thus

|ξ| ≤ |ξ − y|+ |y| ≤ 2l5

4
+

2k5

4
≤ 2k−15

4
+

2k5

4
= 2k−315. (3.40)

Consequently, if |ξ| > 2k−315, then Ψl(|ξ − y|) = 0 for all l ≤ k − 1 and for all

y satisfying 2k

2
≤ |y| ≤ 2k5

4
, and so Ψ̃k(ξ) = 0. We conclude that the support of

Ψ̃k is included in the closed ball centered at 0 with radius 2k−315. But the support

of Ψj(| · |) is included in the closed annulus centered at 0 with radii 2j

2
and 2j5

4
.

Therefore, if k + 1 ≤ j − 1, then 2k−315 < 2k+1 ≤ 2j−1 and so

F(∆j(Skg∆kf)) = 0 (3.41)

which gives (3.36). The property (3.37) follows from a similar argument. This gen-

eralizes to distributions with compact supports, because the support of the convolu-

tion of two distributions with compact supports A and B respectively is contained

in A + B. Therefore, we obtain the decomposition

∆j(fg) =
∑

k≥j−2

∆j(Sk+1f∆kg) +
∑

k≥j−2

∆j(Skg∆kf). (3.42)

This ends the proof of Proposition 3.2.

Throughout this chapter, C (or Ci, i = 1, 2, . . . ) denotes a positive constant that

may change from line to line in the proofs.

3.3 Well-Posedness in Lebesgue Spaces

We consider the transport and nonlocal diffusion equation

∂tρ+ u · ∇ρ+ Λρ = 0 (3.43)
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in the whole space R2, where

u = −P(ρRρ). (3.44)

The initial data are

ρ(x, 0) = ρ0(x). (3.45)

Here P is the Leray-Hodge projector, Λ = (−∆)
1
2 is the fractional Laplacian, and

R = ∇Λ−1 is the 2D vector of Riesz transforms.

Definition 3.1. A solution ρ of the initial value problem (3.43)–(3.45) is said to be

a weak solution on [0, T ] if

ρ ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ; Ḣ
1
2 (R2)) (3.46)

and ρ obeys

(ρ(t),Φ)L2 − (ρ0,Φ)L2 −
∫ t

0

(ρ, u · ∇Φ)L2ds+

∫ t

0

(Λ
1
2ρ,Λ

1
2Φ)L2ds = 0 (3.47)

for all time-independent test functions Φ ∈ H
5
2 (R2) and a.e. t ∈ [0, T ].

For ϵ ∈ (0, 1], let Jϵ be the standard mollifier operator Jϵf = Jϵ ∗ f , and let ρϵ

be the solution of

∂tρ
ϵ + ũϵ · ∇ρϵ + Λρϵ − ϵ∆ρϵ = 0 (3.48)

where

ũϵ = −JϵP(ρϵRρϵ) (3.49)

with smoothed out initial data

ρϵ0 = Jϵρ0 (3.50)
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Remark 3.1. We note that P and Jϵ commutes, hence ũϵ is divergence free.

Theorem 3.1. Let T > 0 be arbitrary. Let ρ0 ∈ L2(R2). Then for each ϵ ∈

(0, 1], the mollified initial value problem (3.48)–(3.50) has a solution ρϵ on [0, T ]

satisfying

1

2
∥ρϵ(t)∥2L2 +

∫ t

0

∥Λ
1
2ρϵ(s)∥2L2ds ≤

1

2
∥ρ0∥2L2 (3.51)

for all t ∈ [0, T ]. Moreover, the sequence
{
ρ1/n

}∞
n=1

has a subsequence that con-

verges strongly in L2(0, T ;L2(R2)) and weakly in L2(0, T ;H
1
2 (R2)) to a function

ρ obeying

1

2
∥ρ(t)∥2L2 +

∫ t

0

∥Λ
1
2ρ(s)∥2L2ds ≤

1

2
∥ρ0∥2L2 (3.52)

for a.e. t ∈ [0, T ]. If ρ0 ∈ L2+δ(R2) for some δ > 0, then ρ is a weak solution of

(3.43)–(3.45) on [0, T ].

Proof: We take the L2 inner product of (3.48) with ρϵ and we obtain

1

2

d

dt
∥ρϵ∥2L2 + ∥Λ

1
2ρϵ∥2L2 + ϵ∥∇ρϵ∥2L2 = 0. (3.53)

Here we used the fact that ũϵ is divergence free, which implies that

(ũϵ · ∇ρϵ, ρϵ)L2 = 0. (3.54)

Integrating (3.53) in time from 0 to t, we obtain (3.51). Therefore, the family

{ρϵ : ϵ ∈ (0, 1]} is uniformly bounded in L2(0, T ;H
1
2 ). Moreover, we have

|(Λρϵ,Φ)L2| = |(Λ
1
2ρϵ,Λ

1
2Φ)L2|

≤ ∥Λ
1
2ρϵ∥L2∥Λ

1
2Φ∥L2 ≤ C∥Λ

1
2ρϵ∥L2∥Φ∥

H
5
2
, (3.55)

ϵ|(−∆ρϵ,Φ)L2| = ϵ|(ρϵ,−∆Φ)L2 | ≤ C∥ρϵ∥L2∥Φ∥
H

5
2
, (3.56)
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and

|(ũϵ · ∇ρϵ,Φ)L2| = |(ũϵρϵ,∇Φ)L2|

≤ ∥ũϵ∥L2∥ρϵ∥L2∥∇Φ∥L∞ ≤ C∥ρϵ∥2L4∥ρϵ∥L2∥Φ∥
H

5
2

(3.57)

for all Φ ∈ H
5
2 . Here we used the boundedness of the Riesz operator on L4, and

the continuous Sobolev embedding H
3
2 ↪→ L∞. Therefore, we obtain the bound

∥ũϵ · ∇ρϵ∥
H− 5

2
+ ∥Λρϵ∥

H− 5
2
+ ϵ∥∆ρϵ∥

H− 5
2

≤ C(∥ρϵ∥2L4∥ρϵ∥L2 + ∥ρϵ∥L2 + ∥Λ
1
2ρϵ∥L2). (3.58)

In view of the continuous embedding H
1
2 ↪→ L4, we conclude that the family

{∂tρϵ : ϵ ∈ (0, 1]} is uniformly bounded in L1(0, T ;H− 5
2 ). Now, we note that the

inclusion H
1
2 ↪→ L2 is compact whereas the inclusion L2 ↪→ H− 5

2 is continuous.

Let ϵn be a decreasing sequence in (0, 1] converging to 0. By the Aubin-Lions

lemma and (3.51), the sequence {ρϵn}∞n=1 has a subsequence that converges strongly

in L2(0, T ;L2) and weakly in L2(0, T ;H
1
2 ) to some function ρ. By the lower semi-

continuity of the norms, we obtain (3.52).

For simplicity of notations, we assume that ρϵ converges to ρ strongly in L2(0, T ;L2)

and weakly in L2(0, T ;H
1
2 ). We note that

(ρϵ(t),Φ)L2 − (ρ0,Φ)L2 +

∫ t

0

(ũϵ · ∇ρϵ,Φ)L2ds

+

∫ t

0

(Λ
1
2ρϵ,Λ

1
2Φ)L2ds+ ϵ

∫ t

0

(∇ρϵ,∇Φ)L2ds = 0 (3.59)

holds for all Φ ∈ H
5
2 and t ∈ [0, T ]. Without loss of generality, we may assume

that ρϵ converges to ρ in L2 for a.e. t ∈ [0, T ], and so

|(ρϵ(t),Φ)L2 − (ρ(t),Φ)L2 | ≤ ∥ρϵ − ρ∥L2∥Φ∥L2 → 0 (3.60)
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for all Φ ∈ H
5
2 and a.e. t ∈ [0, T ]. By the weak convergence in L2(0, T ;H

1
2 ), we

obtain ∣∣∣∣∫ t

0

(Λ
1
2ρϵ,Λ

1
2Φ)L2ds−

∫ t

0

(Λ
1
2ρ,Λ

1
2Φ)L2ds

∣∣∣∣→ 0 (3.61)

for all Φ ∈ H
5
2 and all t ∈ [0, T ]. For the nonlinear term, we let Φ ∈ H

5
2 , t ∈ [0, T ]

and we write∫ t

0

(ũϵ · ∇ρϵ,Φ)L2ds−
∫ t

0

(u · ∇ρ,Φ)L2ds

= −
∫ t

0

((ρϵ − ρ)u,∇Φ)L2ds−
∫ t

0

((ũϵ − u)ρϵ,∇Φ)L2ds

= I1 + I2. (3.62)

We note that

|I1| ≤ C∥Φ∥
H

5
2

∫ t

0

∥ρ∥2L4∥ρϵ − ρ∥L2ds → 0 (3.63)

by the Lebesgue Dominated Convergence theorem. For I2, we split it as

I2 =

∫ t

0

((JϵP(ρ(Rρϵ −Rρ)))ρϵ,∇Φ)L2ds+

∫ t

0

((JϵP((ρϵ − ρ)Rρϵ))ρϵ,∇Φ)L2ds

= I2,1 + I2,2. (3.64)

In view of the boundedness of the Riesz transform on L2 and the boundedness of

the Leray operator on L4/3, we have

|I2,1| ≤ C∥Φ∥
H

5
2

∫ t

0

∥ρϵ∥L4∥P(ρR(ρϵ − ρ))∥L4/3ds

≤ C∥Φ∥
H

5
2

∫ t

0

∥ρϵ∥L4∥ρ∥L4∥ρϵ − ρ∥L2ds

≤ C∥Φ∥
H

5
2

(∫ t

0

∥ρϵ∥2L4ds

)1/2(∫ t

0

∥ρ∥2L4∥ρϵ − ρ∥2L2ds

)1/2

→ 0 (3.65)

by the Lebesgue Dominated Convergence theorem.
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We note that we have not yet used the assumption that ρ0 ∈ L2+δ. It will be

needed to estimate |I2,2|. Indeed, we multiply equation (3.48) by ρϵ|ρϵ|δ and we

integrate in the space variable. We use the Córdoba-Córdoba inequality [22]∫
R2

|ρϵ|δ(ρϵΛρϵ)dx ≥ 0 (3.66)

and we obtain the differential inequality

d

dt
∥ρϵ(t)∥L2+δ ≤ 0. (3.67)

Integrating in time from 0 to t, we end up having the bound

∥ρϵ(t)∥L2+δ ≤ ∥ρ0∥L2+δ (3.68)

for all t ∈ [0, T ]. As a consequence,

|I2,2| ≤ C∥Φ∥
H

5
2

∫ t

0

∥ρϵ∥L4∥ρϵ∥L2+δ∥ρϵ − ρ∥
L

8+4δ
2+3δ

ds

≤ C∥Φ∥
H

5
2
∥ρ0∥L2+δ

∫ t

0

∥ρϵ∥L4∥ρϵ − ρ∥
2δ
2+δ

L2 ∥ρϵ − ρ∥
2−δ
2+δ

L4 ds

≤ C∥Φ∥
H

5
2
∥ρ0∥L2+δ

(∫ t

0

∥ρϵ∥2L4

) 2
2+δ
(∫ t

0

∥ρϵ − ρ∥2L2ds

) δ
2+δ

+ C∥Φ∥
H

5
2
∥ρ0∥L2+δ

(∫ t

0

∥ρϵ∥2L4

)1/2(∫ t

0

∥ρ∥2L4ds

) 2−δ
4+2δ

(∫ t

0

∥ρϵ − ρ∥2L2ds

) δ
2+δ

→ 0.

Here we used the interpolation inequality

∥f∥
L

8+4δ
2+3δ

≤ C∥f∥
2δ
2+δ

L2 ∥f∥
2−δ
2+δ

L4 (3.69)

that holds for any f ∈ L4.

Therefore ρ is a weak solution of (3.43). This ends the proof of Theorem 3.1.
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As a consequence of the Córdoba-Córdoba inequality [22], the Lp norm of any

solution of the equation (3.43)–(3.44) is bounded by the Lp norm of the initial data

for any p ∈ (2,∞]:

Proposition 3.3. Let p > 2 and ρ0 ∈ Lp(R2). Suppose ρ is a smooth solution of

(3.43)–(3.45) on [0, T ]. Then

∥ρ(t)∥Lp ≤ ∥ρ0∥Lp (3.70)

holds for all t ∈ [0, T ].

Proof: We multiply (3.43) by ρ|ρ|p−2 and we integrate in the space variable. We

obtain the differential inequality

d

dt
∥ρ∥Lp ≤ 0. (3.71)

This gives (3.70).

Remark 3.2. If ρ0 ∈ L∞(R2) , then

∥ρ(·, t)∥L∞ ≤ ∥ρ0∥L∞

1 + Ct∥ρ0∥L∞
(3.72)

for t ∈ [0, T ) (see [22]). This bound is useful to study the long time behavior of

solutions.

Definition 3.2. A weak solution ρ of (3.43)–(3.45) is said to be a strong solution

on [0, T ] if it obeys

ρ ∈ L∞(0, T ; Ḣ2(R2)) ∩ L2(0, T ; Ḣ
5
2 (R2)). (3.73)

Theorem 3.2. Let ρ0 ∈ H2(R2). Then there exists T0 > 0 depending only on

∥ρ0∥H2 such that a unique strong solution of (3.43)–(3.45) exists on [0, T0].
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Proof: We apply −∆ = Λ2 to (3.48) and we obtain

−∂t∆ρϵ − ũϵ · ∇∆ρϵ − 2∇ũϵ∇∇ρϵ −∆ũϵ · ∇ρϵ + Λ3ρϵ + ϵ∆∆ρϵ = 0 (3.74)

We multiply (3.74) by −∆ρϵ and we integrate over R2. In view of the fact that

(ũϵ · ∇∆ρϵ,∆ρϵ)L2 = 0, (3.75)

we obtain

1

2

d

dt
∥∆ρϵ∥2L2 + ∥Λ

5
2ρϵ∥2L2 + ϵ∥Λ3ρϵ∥2L2

= −2(∇ũϵ∇∇ρϵ,∆ρϵ)L2 − (∆ũϵ · ∇ρϵ,∆ρϵ)L2 . (3.76)

Using the product rule

∥fg∥Hs ≤ C∥f∥Hs∥g∥L∞ + C∥g∥Hs∥f∥L∞ (3.77)

that holds for any f, g ∈ Hs, s > 0, we estimate

∥∇ũϵ∥L4 ≤ C∥ũϵ∥
H

3
2
≤ C∥ρϵRρϵ∥

H
3
2

≤ C∥ρϵ∥L∞∥Rρϵ∥
H

3
2
+ C∥Rρϵ∥L∞∥ρϵ∥

H
3
2

≤ C∥ρϵ∥2
H

3
2
. (3.78)

Here, we have used the continuous embedding H
1
2 ↪→ L4, the fact that the Leray

projector is bounded on H
3
2 , and the boundedness of the Riesz transforms as oper-

ators from H
3
2 into L∞. Similarly, we bound

∥∆ũϵ∥L4 ≤ C∥ρϵRρϵ∥
H

5
2

≤ C∥ρϵ∥L∞∥Rρϵ∥
H

5
2
+ C∥Rρϵ∥L∞∥Rρϵ∥

H
5
2

≤ C∥ρϵ∥
H

3
2
∥ρϵ∥

H
5
2

(3.79)
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Consequently,

1

2

d

dt
∥∆ρϵ∥2L2 + ∥Λ

5
2ρϵ∥2L2

≤ 2∥∇ũϵ∥L4∥∇∇ρϵ∥L4∥∆ρϵ∥L2 + ∥∆ũϵ∥L4∥∇ρϵ∥L4∥∆ρϵ∥L2

≤ C∥ρϵ∥2
H

3
2
∥ρϵ∥

H
5
2
∥∆ρϵ∥L2 (3.80)

and by Young’s inequality, we obtain

d

dt
∥∆ρϵ∥2L2 + ∥Λ

5
2ρϵ∥2L2

≤ C∥ρϵ∥4
H

3
2
∥∆ρϵ∥2L2 + C∥ρϵ∥2

H
3
2
∥ρϵ∥L2∥∆ρϵ∥L2

≤ C(∥ρϵ∥6H2 + ∥ρϵ∥4H2). (3.81)

We note that

∥ρϵ∥H2 =
∥∥(1 + |.|2)F(ρϵ)(·)

∥∥
L2 ≤ C∥Fρϵ∥L2 + C∥∆ρϵ∥L2

= C∥ρϵ∥L2 + C∥∆ρϵ∥L2 ≤ C∥ρ0∥L2 + C∥∆ρϵ∥L2 (3.82)

in view of Plancherel’s theorem and the uniform boundedness of ρϵ in L2 described

by (3.52). Therefore, we obtain the differential inequality

d

dt
∥∆ρϵ∥2L2 + ∥Λ

5
2ρϵ∥2L2 ≤ C∥∆ρϵ∥6L2 + Cρ0 (3.83)

where Cρ0 is a positive constant depending only on ρ0 and some universal constants.

This implies that

d

dt

(
∥∆ρϵ∥2L2 + 1

)
≤ C0

(
∥∆ρϵ∥2L2 + 1

)3 (3.84)

for some constant C0 depending only on the initial data. Diving both sides by(
∥∆ρϵ∥2L2 + 1

)3 and integrating in time from 0 to t, we get

1

2
(
∥∆ρϵ(t)∥2L2 + 1

)2 ≥ 1

2
(
∥∆ρ0∥2L2 + 1

)2 − C0T0 (3.85)
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for all t ∈ [0, T0]. We choose a positive time T0 > 0 such that

T0 <
1

2C0

(
∥∆ρ0∥2L2 + 1

)2 (3.86)

and we conclude that

∥∆ρϵ(t)∥2L2 ≤
∥∆ρ0∥2L2 + 1√

1− 2C0T0

(
∥∆ρ0∥2L2 + 1

)2 (3.87)

for all t ∈ [0, T0]. In view of the energy inequality (3.83), we also have that∫ T0

0

∥Λ
5
2ρϵ(t)∥2L2dt ≤ Γ(ρ0, T0) (3.88)

where Γ(ρ0, T0) is a positive constant depending only on the initial data and T0.

This shows that that {ρϵ : ϵ ∈ (0, 1]} is uniformly bounded in

L∞(0, T ; Ḣ2(R2)) ∩ L2(0, T ; Ḣ
5
2 (R2)). (3.89)

Passing to the limit on a subsequence and using the lower semi-continuity of norms,

we conclude that the weak solution ρ, obtained in Theorem 3.1, is strong.

For uniqueness, suppose that ρ1 and ρ2 are two strong solutions of (3.43) on

[0, T0] with the same initial condition. Let ρ = ρ1 − ρ2 and u = u1 − u2. Then ρ

obeys the equation

∂tρ+ u · ∇ρ1 + u2 · ∇ρ+ Λρ = 0. (3.90)

We take the L2 inner product with ρ and we obtain

1

2

d

dt
∥ρ∥2L2 + ∥Λ

1
2ρ∥2L2 = −(u · ∇ρ1, ρ)L2 . (3.91)
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In view of the boundedness of the Riesz transforms on L4, we have

∥u∥L4 ≤ ∥P(ρRρ1)∥L4 + ∥P(ρ2Rρ)∥L4

≤ C∥ρ∥L4∥Rρ1∥L∞ + ∥ρ2∥L∞∥Rρ∥L4

≤ C∥ρ∥L4

(
∥ρ1∥H 3

2
+ ∥ρ2∥H 3

2

)
. (3.92)

Hence

|(u · ∇ρ1, ρ)L2| ≤ ∥u∥L4∥∇ρ1∥L4∥ρ∥L2

≤ 1

2
∥ρ∥2

H
1
2
+ C

(
∥ρ1∥2

H
3
2
+ ∥ρ2∥2

H
3
2

)
∥ρ1∥2

H
3
2
∥ρ∥2L2 . (3.93)

Therefore,

d

dt
∥ρ∥2L2 ≤ K(t)∥ρ∥2L2 (3.94)

where

K(t) = C
(
∥ρ1∥2

H
3
2
+ ∥ρ2∥2

H
3
2

)
∥ρ1∥2

H
3
2
. (3.95)

We note that K(t) is time-integrable on [0, T0] since ρ1 and ρ2 belong to the space

L∞(0, T0;H
2(R2)). This shows that for each t ≥ 0, ρ1(·, t) = ρ2(·, t) a.e. in R2,

and so we obtain uniqueness. This completes the proof of Theorem 3.2.

3.4 Existence of Global Solutions in Besov Spaces

In this section, we show the existence of a global in time solution in Besov spaces

for sufficiently small initial data. The proof uses methods of [4, 11].
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Theorem 3.3. Let 1 ≤ p < ∞. Let ρ0 ∈ Ḃ
2
p

p,1(R2) be sufficiently small. We consider

the functional space Ep defined by

Ep =

{
f(t) ∈ S ′

h(R2) : ∥f∥Ep = ∥f∥
L̃∞
t Ḃ

2
p
p,1

+ ∥f∥
L̃1
t Ḃ

2
p+1

p,1

< ∞
}
. (3.96)

Then (3.43)–(3.45) has a unique global in time solution ρ ∈ Ep.

Proof: Let ρ(0) = 0. For each positive integer n, let ρ(n) be the solution of

∂tρ
(n) + Λρ(n) = −u(n−1) · ∇ρ(n−1) (3.97)

in R2, where

u(n−1) = −P(ρ(n−1)Rρ(n−1)), (3.98)

with initial data

ρ
(n)
0 = ρ(n)(·, 0) = ρ0. (3.99)

We write ρ(n) in the integral form,

ρ(n)(t) = e−tΛρ0 −
∫ t

0

e−(t−s)Λ∇ · (u(n−1)ρ(n−1))(s)ds

= e−tΛρ0 − B(un−1, ρn−1) (3.100)

where B is the bilinear form defined by

B(v, θ) =
∫ t

0

e−(t−s)Λ∇ · (vθ)(s)ds. (3.101)

See [11] for a similar approach.

Step 1. Fix a positive integer n. We show that

∥ρ(n)∥Ep ≤ C1∥ρ0∥
Ḃ

2
p
p,1

+ C2∥ρ(n−1)∥3Ep
. (3.102)
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We start by estimating e−tΛρ0 in Ep. We apply ∆j and we take the Lp norm. In

view of the bound (3.30), we have

∥e−tΛ∆jρ0∥Lp ≤ Ce−C−1t2j∥∆jρ0∥Lp , (3.103)

hence

∥e−tΛρ0∥Ep = ∥e−tΛρ0∥
L̃∞
t Ḃ

2
p
p,1

+ ∥e−tΛρ0∥
L̃1
t Ḃ

2
p+1

p,1

≤ C∥ρ0∥
Ḃ

2
p
p,1

. (3.104)

Now, we estimate the term B(u(n−1), ρ(n−1)) in Ep. First, we note that

∥B(u(n−1), ρ(n−1))∥Ep ≤ C∥u(n−1)ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

. (3.105)

Indeed, we apply ∆j to B(u(n−1), ρ(n−1)) and we estimate. On one hand,

∥∆jB(u(n−1), ρ(n−1))∥L∞
t Lp ≤ C2j

∥∥∥∥∫ t

0

e−c−1(t−s)2j∥∆j(u
(n−1)ρ(n−1))(s)∥Lpds

∥∥∥∥
L∞
t

≤ C2j∥∆j(u
(n−1)ρ(n−1))∥L1

tL
p (3.106)

in view of Bernstein’s inequality (3.27) and the bound (3.30). We multiply by 2j
2
p

and we take the ℓ1 norm. We obtain the bound

∥B(u(n−1), ρ(n−1))∥
L̃∞
t Ḃ

2
p
p,1

≤ C∥u(n−1)ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

. (3.107)

On the other hand,

∥∆jB(u(n−1), ρ(n−1))∥L1
tL

p ≤ C

∥∥∥∥∫ t

0

2je−c−1(t−s)2j∥∆j(u
(n−1)ρ(n−1))(s)∥Lpds

∥∥∥∥
L1
t

≤ C

∫ ∞

0

(∫ ∞

0

2je−c−1(t−s)2jχ[0,t](s)dt

)
∥∆j(u

(n−1)ρ(n−1))(s)∥Lpds

≤ C∥∆j(u
(n−1)ρ(n−1))∥L1

tL
p (3.108)

where χE denotes the characteristic function of the set E. Multiplying by 2j(
2
p
+1)

and taking the ℓ1 norm yields the bound

∥B(u(n−1), ρ(n−1))∥
L̃1
t Ḃ

2
p+1

p,1

≤ C∥u(n−1)ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

. (3.109)
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Combining (3.107) and (3.109), we obtain (3.105). Accordingly, our next goal is to

show that

∥u(n−1)ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

≤ C∥ρ(n−1)∥3Ep (3.110)

which gives (3.102). In order to establish the bound (3.110), we use the decompo-

sition (3.32)

∆j(u
(n−1)ρ(n−1)) =

∑
k≥j−2

∆j(Sku
(n−1)∆kρ

(n−1))

+
∑

k≥j−2

∆j(Sk+1ρ
(n−1)∆ku

(n−1)). (3.111)

We apply the L1
tL

p norm, we use the bound

∥∆jf∥Lp ≤ C∥f∥Lp (3.112)

that holds for any f ∈ S ′
h where C is a positive universal constant independent of

j, and we obtain

∥∆j(u
(n−1)ρ(n−1))∥L1

tL
p ≤ C

∑
k≥j−2

∥Sku
(n−1)∥L∞

t L∞∥∆kρ
(n−1)∥L1

tL
p

+ C
∑

k≥j−2

∥Sk+1ρ
(n−1)∥L∞

t L∞∥∆ku
(n−1)∥L1

tL
p . (3.113)

In view of Bernstein’s inequality (3.28), we have

∥Sk+1ρ
(n−1)∥L∞

t L∞ ≤
∑
l≤k

∥∆lρ
(n−1)∥L∞

t L∞

≤ C
∑
l≤k

2l
2
p∥∆lρ

(n−1)∥L∞
t Lp ≤ C∥ρ(n−1)∥

L̃∞
t Ḃ

2
p
p,1

. (3.114)

We show below that

∥Sku
(n−1)∥L∞

t L∞ ≤ C∥ρ(n−1)∥2
L̃∞
t Ḃ

2
p
p,1

(3.115)
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and

∥∆ku
(n−1)∥L1

tL
p ≤ C∥ρ(n−1)∥

L̃∞
t Ḃ

2
p
p,1

( ∑
m≥k−2

∥∆mρ
(n−1)∥L1

tL
p

)
. (3.116)

Using the bounds (3.115) and (3.116), we obtain

∥∆j(u
(n−1)ρ(n−1))∥L1

tL
p ≤ C∥ρ(n−1)∥2

L̃∞
t Ḃ

2
p
p,1

∑
k≥j−2

∥∆kρ
(n−1)∥L1

tL
p

+ C∥ρ(n−1)∥2
L̃∞
t Ḃ

2
p
p,1

∑
k≥j−2

∑
m≥k−2

∥∆mρ
(n−1)∥L1

tL
p . (3.117)

We multiply (3.117) by 2j(
2
p
+1) and we take the ℓ1 norm. In view of Young’s

convolution inequality, we have in the first term∑
j∈Z

∑
k≥j−2

2j(
2
p
+1)∥∆kρ

(n−1)∥L1
tL

p

=
∑
j∈Z

∑
k≥j−2

2−(k−j)( 2
p
+1)2k(

2
p
+1)∥∆kρ

(n−1)∥L1
tL

p

≤

(∑
j≥−2

2−j( 2
p
+1)

)(∑
j∈Z

2j(
2
p
+1)∥∆jρ

(n−1)∥L1
tL

p

)

≤ C∥ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

. (3.118)

For the second summation on the right hand side of (3.117), we apply Fubini’s

theorem and write it as∑
j∈Z

∑
k≥j−2

∑
m≥k−2

2j(
2
p
+1)∥∆mρ

(n−1)∥L1
tL

p

=
∑
j∈Z

∑
m≥j−4

∑
j−2≤k≤m+2

2−(m−j)( 2
p
+1)2m(

2
p
+1)∥∆mρ

(n−1)∥L1
tL

p

=
∑
j∈Z

∑
m≥j−4

(m− j + 5)2−(m−j)( 2
p
+1)2m(

2
p
+1)∥∆mρ

(n−1)∥L1
tL

p .
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Now estimate as in (3.118) and obtain∑
j∈Z

∑
k≥j−2

∑
m≥k−2

2j(
2
p
+1)∥∆mρ

(n−1)∥L1
tL

p

≤ C
∑
j∈Z

∑
m≥j−4

2−(m−j)( 1
p
+ 1

2)2m(
2
p
+1)∥∆mρ

(n−1)∥L1
tL

p

+ 5
∑
j∈Z

∑
m≥j−4

2−(m−j)( 2
p
+1)2m(

2
p
+1)∥∆mρ

(n−1)∥L1
tL

p

≤ C∥ρ(n−1)∥
L̃1
t Ḃ

2
p+1

p,1

. (3.119)

Here, we have used the fact that x2−x ≤ C2−
x
2 for all x ∈ R. Putting (3.118) and

(3.119) together, we obtain (3.110).

We end the proof of Step 1 by showing the estimates (3.115) and (3.116). For

each l ∈ Z, we use again paraproducts to decompose ∆l(ρ
(n−1)Rρ(n−1)) as

∆l(ρ
(n−1)Rρ(n−1)) =

∑
m≥l−2

∆l(Sm+1ρ
(n−1)∆mRρ(n−1))

+
∑

m≥l−2

∆l(SmRρ(n−1)∆mρ
(n−1)). (3.120)

In view of the boundedness of the Riesz transform (3.31) and the definition of the

Leray projector as

P = I +R⊗R, (3.121)

we bound

∥Sku
(n−1)∥L∞

t L∞ ≤
∑
l≤k−1

∥∆lu
(n−1)∥L∞

t L∞ ≤ C
∑
l≤k−1

2l
2
p∥∆lu

(n−1)∥L∞
t Lp

≤ C
∑
l≤k−1

2l
2
p∥∆l(ρ

(n−1)Rρ(n−1))∥L∞
t Lp (3.122)
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for any p ∈ [1,∞] and using the paraproduct decomposition (3.120), we obtain

∥Sku
(n−1)∥L∞

t L∞ ≤ C
∑
l≤k−1

2l
2
p

∑
m≥l−2

∥Sm+1ρ
(n−1)∥L∞

t L∞∥∆mRρ(n−1)∥L∞
t Lp

+ C
∑
l≤k−1

2l
2
p

∑
m≥l−2

∥SmRρ(n−1)∥L∞
t L∞∥∆mρ

(n−1)∥L∞
t Lp . (3.123)

We note that

∥Sm+1ρ
(n−1)∥L∞

t L∞ ≤ C∥ρ(n−1)∥
L̃∞
t Ḃ

2
p
p,1

(3.124)

as shown in (3.114). Moreover, in view of (3.31), we have

∥SmRρ(n−1)∥L∞
t L∞ ≤

∑
z≤m−1

∥∆zRρ(n−1)∥L∞
t L∞

≤ C
∑

z≤m−1

2z
2
p∥∆zRρ(n−1)∥L∞

t Lp ≤ C
∑

z≤m−1

2z
2
p∥∆zρ

(n−1)∥L∞
t Lp

≤ C∥ρ(n−1)∥
L̃∞
t Ḃ

2
p
p,1

. (3.125)

Now we use the assumption that p < ∞ which implies that 2
p
> 0 and so we can

apply Young’s convolution inequality to obtain

∥Sku
(n−1)∥L∞

t L∞ ≤ C∥ρ(n−1)∥
L̃∞
t Ḃ

2
p
p,1

{∑
l≤k−1

2l
2
p

∑
m≥l−2

∥∆mρ
(n−1)∥L∞

t Lp

}

= C∥ρ(n−1)∥
L̃∞
t Ḃ

2
p
p,1

{∑
l≤k−1

∑
m≥l−2

2−(m−l) 2
p2m

2
p∥∆mρ

(n−1)∥L∞
t Lp

}

≤ C∥ρ(n−1)∥2
L̃∞
t Ḃ

2
p
p,1

(3.126)

which proves (3.115). We proceed to show (3.116). Using the paraproduct decom-

position (3.120) and the bound (3.31), we have
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∥∆ku
(n−1)∥L1

tL
p ≤ C∥∆k(ρ

(n−1)Rρ(n−1))∥L1
tL

p

≤ C
∑

m≥k−2

∥Sm+1ρ
(n−1)∥L∞

t L∞∥∆mRρ(n−1)∥L1
tL

p

+ C
∑

m≥k−2

∥SmRρ(n−1)∥L∞
t L∞∥∆mρ

(n−1)∥L1
tL

p

≤ C∥ρ(n−1)∥
L̃∞
t Ḃ

2
p
p,1

( ∑
m≥k−2

∥∆mρ
(n−1)∥L1

tL
p

)
(3.127)

yielding (3.116). This ends the proof of Step 1.

Step 2. We show that there exists an ϵ > 0 sufficiently small such that if

C1∥ρ0∥
Ḃ

2
p
p,1

< ϵ, then the sequence
{
ρ(n)
}∞
n=1

converges to a unique solution ρ

of (3.43)–(3.45) obeying ∥ρ∥Ep < 2ϵ.

First, choose an ϵ > 0 such that C2(2ϵ)
3 < ϵ, where C2 is the constant in

(3.102), and suppose that C1∥ρ0∥
Ḃ

2
p
p,1

< ϵ. Then an inductive argument yields

∥ρ(n)∥Ep < 2ϵ (3.128)

for all n ≥ 1. Indeed,

∥ρ(1)∥Ep ≤ C1∥ρ0∥
Ḃ

2
p
p,1

< ϵ < 2ϵ (3.129)

in view of (3.102). Suppose that

∥ρ(n−1)∥Ep < 2ϵ. (3.130)

Then

∥ρ(n)∥Ep < ϵ+ C2(2ϵ)
3 < ϵ+ ϵ = 2ϵ. (3.131)

Therefore, we obtain (3.128)
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Now, we show that the sequence
{
ρ(n)
}∞
n=1

is Cauchy. Indeed, the difference

ρ(n) − ρ(n−1) obeys

(ρ(n) − ρ(n−1))(t)

=

∫ t

0

e−(t−s)Λ∇ ·
[
u(n)(ρ(n) − ρ(n−1))− (u(n−1) − u(n))ρ(n−1)

]
(s)ds

= B(u(n), ρ(n) − ρ(n−1))− B(u(n−1) − u(n), ρ(n−1)). (3.132)

As in Step 1 and using (3.128), it can be shown that

∥ρ(n) − ρ(n−1)∥Ep

≤ ∥B(u(n), ρ(n) − ρ(n−1))∥Ep + ∥B(u(n−1) − u(n), ρ(n−1))∥Ep

≤ C(ϵ)∥ρ(n−1) − ρ(n−2)∥Ep (3.133)

where C(ϵ) is a constant depending on ϵ obeying C(ϵ) < 1 for a sufficiently small

ϵ. Therefore, the sequence
{
ρ(n)
}∞
n=1

is Cauchy in Ep and converges to a solution

ρ of (3.43)–(3.45). Uniqueness follows from a similar estimate to (3.133). This

finishes the proof of Step 2. Therefore the proof of Theorem 3.3 is complete.

3.5 Regularity of Solutions for Arbitrary Initial Data

In this section, we prove that any solution of (3.43)–(3.45) is smooth for arbitrary

initial data, provided that it satisfies a certain regularity condition.

Theorem 3.4. Let ρ be a weak solution of (3.43)–(3.45) on [0,∞). Let 0 < t0 <

t < ∞. If

ρ ∈ L∞([t0, t];C
δ(R2)), (3.134)
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for some δ ∈ (0, 1), then

ρ ∈ C∞((t0, t]× R2). (3.135)

Proof: We sketch the main ideas. Let us note first that

u ∈ L∞([t0, t];C
δ(R2)). (3.136)

where

u = −P(ρRρ). (3.137)

Indeed, for any s ∈ [t0, t], we have

∥u(s)∥Cδ ≤ C∥ρ(s)Rρ(s)∥Cδ

≤ C∥ρ(s)∥L∞∥Rρ(s)∥L∞ + C∥ρ(s)∥L∞∥Rρ(s)∥Cδ + C∥Rρ(s)∥L∞∥ρ(s)∥Cδ

≤ C∥ρ(s)∥2Cδ (3.138)

in view of the boundedness of the Leray projector and Riesz transforms on the

Hölder space Cδ. Consequently, the Hölder regularity of ρ imposed in (3.134)

gives (3.136).

Next, we show that

ρ ∈ L∞([t0, t]; Ḃ
δ1
p,∞(R2) ∩ Cδ1(R2)) (3.139)

and

u ∈ L∞([t0, t]; Ḃ
δ1
p,∞(R2) ∩ Cδ1(R2)) (3.140)
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for any p ≥ 2 and δ1 = δ
(
1− 2

p

)
. Indeed, for any s ∈ [t0, t], we have

∥ρ(s)∥
Ḃ

δ1
p,∞

= sup
j∈Z

(
2δ1j∥∆jρ(s)∥Lp

)
≤ sup

j∈Z

(
2δ1j∥∆jρ(s)∥

1− 2
p

L∞ ∥∆jρ(s)∥
2
p

L2

)
≤ C

(
∥ρ(s)∥Ḃδ

∞,∞

)1− 2
p ∥ρ(s)∥

2
p

L2 ≤ C (∥ρ(s)∥Cδ)1−
2
p ∥ρ(s)∥

2
p

L2 (3.141)

and similarly

∥u(s)∥
Ḃ

δ1
p,∞

≤ C
(
∥u(s)∥Ḃδ

∞,∞

)1− 2
p ∥u(s)∥

2
p

L2

≤ C (∥u(s)∥Cδ)1−
2
p ∥ρ(s)∥

4
p

L4 . (3.142)

The last inequality holds in view of the boundedness of the Leray projector on L2

followed by an application of Hölder’s inequality with exponents 4, 4. The interpo-

lation inequality

∥ρ(s)∥L4 ≤ ∥ρ(s)∥1/2L∞∥ρ(s)∥1/2L2 (3.143)

together with (3.136) and (3.134) gives (3.139) and (3.140).

Now, we proceed as in [20]. We apply ∆j to (3.43), we multiply the resulting

equation by p|∆jρ|p−2∆jρ, we integrate first in the space variable x ∈ R2 and then

in time from t0 to t. We obtain the bound

∥∆jρ(t)∥Lp ≤ Ce−c2j(t−t0)∥∆jρ(t0)∥Lp

+ C

∫ t

t0

e−c2j(t−s)2(1−2δ1)j∥ρ(s)∥Cδ1∥u(s)∥Ḃδ1
p,∞

+ C

∫ t

t0

e−c2j(t−s)2(1−2δ1)j∥u(s)∥Cδ1∥ρ(s)∥Ḃδ1
p,∞

ds (3.144)
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(see [20] for details). We multiply by 22δ1j and we take the ℓ∞ norm in j. This

yields the bound

∥ρ(t)∥
Ḃ

2δ1
p,∞

≤ C sup
j∈Z

{
2δ1je−c2j(t−t0)

}
∥ρ(t0)∥Ḃδ1

p,∞

+ C sup
j∈Z

{
1− e−c2j(t−t0)

}
sup

s∈[t0,t]
∥ρ(s)∥Cδ1∥u(s)∥Ḃδ1

p,∞

+ C sup
j∈Z

{
1− e−c2j(t−t0)

}
sup

s∈[t0,t]
∥u(s)∥Cδ1∥ρ(s)∥Ḃδ1

p,∞
(3.145)

Therefore

ρ(·, t) ∈ Ḃ2δ1
p,∞(R2). (3.146)

for any p ≥ 2. In view of the continuous Besov embedding (3.29), we have the

continuous inclusion

Ḃ2δ1
p,∞(R2) ↪→ Ḃ

2δ1− 2
p

∞,∞ (R2) (3.147)

for any p ≥ 2. We choose p > 2+2δ
δ

so that 2δ1 − 2
p
> δ1, hence

ρ(·, t) ∈ Ḃδ2
p,∞(R2) ∩ Cδ2(R2) (3.148)

where δ2 > δ1. In fact, the spacial regularity (3.148) holds at any s in [t0, t] because

the pointwise-in-time estimate (3.144) holds at those times as well. Now we iterate

the above process infinitely many times to upgrade the spacial regularity of the

solution and we simultaneously use the PDE (3.43) to upgrade their time regularity.

This yields the desired smoothness (3.135), completing the proof of Theorem 3.4.
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3.6 Periodic Case

In this section, we consider the initial value problem (3.43)–(3.45) posed on the

torus T2 with periodic boundary conditions. We assume the initial data ρ0 have

zero mean. We prove existence and regularity of solutions.

Theorem 3.5. Let 1 ≤ p < ∞. Let ρ0 ∈ Ḃ
2
p

p,1(T2) be sufficiently small. We consider

the functional space Ep defined by

Ep(T2) =
{
f(t) ∈ D′

0(T2) : ∥f∥Ep(T2) < ∞
}

(3.149)

where

∥f∥Ep(T2) = ∥f∥
L̃∞
t Ḃ

2
p
p,1(T2)

+ ∥f∥
L̃1
t Ḃ

2
p+1

p,1 (T2)
, (3.150)

and D′
0(T2) is the dual space of

D0(T2) =

{
f ∈ C∞(T2) :

∫
T2

f(x)dx = 0

}
.

Then (3.43)–(3.45) has a unique global in time solution ρ ∈ Ep(T2).

The proof of Theorem 3.5 follows from the proof of Theorem 3.3.

In view of the Besov embedding and Theorem 3.5, we conclude that if ρ0 ∈

Ḃ1
2,1(T2) is sufficiently small, then there is a constant C > 0 depending only on the

initial data such that the unique solution ρ of (3.43)–(3.45) obeys

sup
t>0

∥∇ρ(t)∥L2(T2) +

∫ ∞

0

∥∆ρ(t)∥L2(T2)dt ≤ C. (3.151)

Using this latter estimate, we end this section by showing that the L2(T2) norm

of Λ
1
2ρ converges exponentially in time to zero.
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Corollary 3.1. Let ρ0 ∈ Ḃ1
2,1(T2) be sufficiently small. Then there is a constant

C > 0 depending only on the initial data such that the unique solution ρ of (3.43)–

(3.45) obeys

∥Λ
1
2ρ(t)∥2L2(T2) ≤ Ce−t (3.152)

for all t ≥ 0.

Proof: We take the inner product in L2(T2) of (3.43) with Λρ to obtain

1

2

d

dt
∥Λ

1
2ρ(t)∥2L2(T2) + ∥Λρ(t)∥2L2(T2) = −

∫
T2

(u · ∇ρ)Λρdx. (3.153)

We estimate the nonlinear term∣∣∣∣∫
T2

(u · ∇ρ)Λρdx

∣∣∣∣ ≤ C∥ρ∥L∞(T2)∥ρ∥L4(T2)∥∇ρ∥L4(T2)∥∇ρ∥L2(T2)

≤ C∥ρ∥L4(T2)∥∇ρ∥2L4(T2)∥∇ρ∥L2(T2)

≤ C∥ρ∥
1
2

L2(T2)∥∇ρ∥
5
2

L2(T2)∥∆ρ∥L2(T2) (3.154)

in view of the boundedness of the Leray projector and Riesz transforms on L4(T2),

the continuous embedding W 1,4(T2) ↪→ L∞(T2), and the Ladyzhenskaya interpo-

lation inequality.

Since H1(T2) is continuously embedded in H
1
2 (T2), we have

∥Λ
1
2ρ∥L2(T2) ≤ C∥Λρ∥L2(T2), (3.155)

yielding the differential inequality

d

dt
∥Λ

1
2ρ∥L2(T2) + C1∥Λ

1
2ρ∥L2(T2) ≤ C2∥ρ∥

1
2

L2(T2)∥∇ρ∥
5
2

L2(T2)∥∆ρ∥L2(T2). (3.156)

We note that

∥ρ(t)∥L2(T2) ≤ C∥ρ0∥L2(T2)e
−ct (3.157)
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for all t ≥ 0. Indeed, we multiply (3.43) by ρ and we integrate in the space variable.

Then we use the cancellation of the nonlinear term and the continuous embedding

of H
1
2 (T2) in L2(T2) to obtain

d

dt
∥ρ(t)∥L2(T2) + C∥ρ(t)∥L2(T2) ≤ 0 (3.158)

which gives (3.157).

Now we go back to the differential inequality (3.156). Using the bounds (3.151)

and (3.157) together with Lemma 1.1, we obtain (3.152).

3.7 Subcritical Periodic Case

In this section, we consider the subcritical case where the dissipation is given by Λα

for α ∈ (1, 2], that is, we consider the equation

∂tρ+ u · ∇ρ+ Λαρ = 0 (3.159)

posed on T2, where

u = −P(ρRρ). (3.160)

The initial data are given by

ρ(x, 0) = ρ0(x) (3.161)

and have zero mean.

Global weak solutions exist:
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Theorem 3.6. Let α ∈ (1, 2]. Let T > 0 be arbitrary. Let ρ0 ∈ L2(T2). Then

(3.159)–(3.161) has a weak solution ρ on [0, T ] obeying

1

2
∥ρ(t)∥2L2(T2) +

∫ t

0

∥Λ
α
2 ρ(s)∥2L2(T2)ds ≤

1

2
∥ρ0∥2L2(T2) (3.162)

for t ∈ [0, T ].

The proof is similar to that of Theorem 3.1, and so we omit the details.

We note that the regularity of the initial data imposed in the critical case (α =

1), namely ρ0 ∈ L2+δ for some δ > 0, is not required in the subcritical case in view

of the fact that ρ obeys

ρ ∈ L2(0, T ;H
α
2 (T2)). (3.163)

The following proposition is the analogue of Proposition 3.3:

Proposition 3.4. Let α ∈ (1, 2]. Let p > 2 and ρ0 ∈ Lp(T2). Suppose ρ is a smooth

solution of (3.159)–(3.161) on [0, T ]. Then

∥ρ(t)∥Lp(T2) ≤ ∥ρ0∥Lp(T2) (3.164)

holds for all t ∈ [0, T ]. Moreover, if ρ0 ∈ L∞(T2), then

∥ρ(t)∥L∞(T2) ≤ ∥ρ0∥L∞(T2) (3.165)

holds for all t ∈ [0, T ].

The solution of the initial value problem (3.159)–(3.161) with large smooth data

are globally regular.

Theorem 3.7. Let α ∈ (1, 2], s > 0. Let T > 0 be arbitrary. Let ρ0 ∈ Hs(T2) ∩

L∞(T2). Then there are positive constants C1, C2 and C3 depending only on



110

∥ρ0∥L∞(T2) such that the solution of (3.159)–(3.160) with initial data ρ0 exists and

satisfies

∥Λsρ(t)∥L2(T2) ≤ ∥Λsρ0∥L2(T2)e
C1t (3.166)

and∫ t

0

∥Λs+α
2 ρ(τ)∥2L2(T2)dτ ≤ ∥Λsρ0∥2L2(T2) + C2∥Λsρ0∥2L2(T2)(e

C3t − 1) (3.167)

for t ∈ [0, T ].

Proof: Fix a small ϵ ∈ (0, 1) such that α ≥ ϵ+1. We multiply (3.159) by Λ2sρ and

we integrate in the space variable over T2. We obtain the equation

1

2

d

dt
∥Λsρ∥2L2(T2) + ∥Λs+α

2 ρ∥2L2(T2) = −
∫
T2

(u · ∇ρ)Λ2sρdx. (3.168)

We estimate the nonlinear term. Integrating by parts and using Hölder’s in-

equality, we have∣∣∣∣∫
T2

(u · ∇ρ)Λ2sρdx

∣∣∣∣ = ∣∣∣∣∫
T2

Λs−α
2 ∇ · (uρ)Λs+α

2 ρdx

∣∣∣∣
≤ ∥Λs−α

2
+1(uρ)∥L2(T2)∥Λs+α

2 ρ∥L2(T2). (3.169)

In view of the fractional estimate

∥Λs(fg)∥Lp(T2) ≤ C∥g∥Lp1 (T2)∥Λsf∥Lp2 (T2) + C∥Λsg∥Lp3 (T2)∥f∥Lp4 (T2) (3.170)

that holds for any mean zero functions f, g ∈ C∞(T2), s > 0, p ∈ (1,∞) with

1
p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, p2, p3 ∈ (1,∞) (see [19]), we estimate

∥Λs−α
2
+1(uρ)∥L2(T2)

≤ C∥u∥
L

2
ϵ (T2)

∥Λs−α
2
+1ρ∥

L
2

1−ϵ (T2)
+ C∥ρ∥L∞(T2)∥Λs−α

2
+1u∥L2(T2). (3.171)
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In view of the boundedness of the Riesz transforms (and hence the Leray pro-

jector) on Lp(T2) for p ∈ (1,∞) and Proposition 3.4, we bound

∥u∥
L

2
ϵ (T2)

≤ C∥ρRρ∥
L

2
ϵ (T2)

≤ C∥ρ∥L∞(T2)∥ρ∥L 2
ϵ (T2)

≤ C∥ρ∥2L∞(T2) ≤ C∥ρ0∥2L∞(T2). (3.172)

By the fractional estimate (3.170), we have

∥Λs−α
2
+1u∥L2(T2) ≤ C∥Λs−α

2
+1(ρRρ)∥L2(T2)

≤ C∥ρ∥L∞(T2)∥Λs−α
2
+1Rρ∥L2(T2) + C∥Rρ∥

L
2
ϵ (T2)

∥Λs−α
2
+1ρ∥

L
2

1−ϵ (T2)

≤ C∥ρ0∥L∞(T2)∥Λs−α
2
+1ρ∥L2(T2) + C∥ρ0∥L∞(T2)∥Λs−α

2
+1ρ∥

L
2

1−ϵ (T2)
(3.173)

Hence

∥Λs−α
2
+1(uρ)∥L2(T2) ≤ C∥ρ0∥2L∞(T2)∥Λs−α

2
+1ρ∥

L
2

1−ϵ (T2)

+ C∥ρ0∥2L∞(T2)∥Λs−α
2
+1ρ∥L2(T2). (3.174)

In view of the continuous Sobolev embedding

Hϵ(T2) ↪→ L
2

1−ϵ (T2), (3.175)

we obtain the bound

∥Λs−α
2
+1(uρ)∥L2(T2) ≤ C∥ρ0∥2L∞(T2)∥Λs−α

2
+1+ϵρ∥L2(T2)

+ C∥ρ0∥2L∞(T2)∥Λs−α
2
+1ρ∥L2(T2). (3.176)

Using the Sobolev interpolation inequality

∥Λs1f∥L2(T2) ≤ C∥Λs0f∥1−σ
L2(T2)∥Λ

s2f∥σL2(T2) (3.177)

that holds for any mean zero function f ∈ Hs2(T2) and s1 = (1 − σ)s0 + σs2,

σ ∈ [0, 1], we estimate

∥Λs−α
2
+1ρ∥L2(T2) ≤ C

(
∥Λsρ∥L2(T2)

) 2(α−1)
α
(
∥Λs+α

2 ρ∥L2(T2)

) 2
α
−1

(3.178)
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and

∥Λs−α
2
+1+ϵρ∥L2(T2) ≤ C

(
∥Λsρ∥L2(T2)

) 2(α−ϵ−1)
α

(
∥Λs+α

2 ρ∥L2(T2)

) 2(ϵ+1)
α

−1
. (3.179)

Consequently,

∥Λs−α
2
+1(uρ)∥L2(T2)∥Λs+α

2 ρ∥L2(T2)

≤ C∥ρ0∥2L∞(T2)

(
∥Λsρ∥L2(T2)

) 2(α−ϵ−1)
α

(
∥Λs+α

2 ρ∥L2(T2)

) 2(ϵ+1)
α

+ C∥ρ0∥2L∞(T2)

(
∥Λsρ∥L2(T2)

) 2(α−1)
α
(
∥Λs+α

2 ρ∥L2(T2)

) 2
α . (3.180)

By Young’s inequality, we end up with∣∣∣∣∫
T2

(u · ∇ρ)Λ2sρdx

∣∣∣∣ ≤ Cρ0∥Λsρ∥2L2(T2) +
1

2
∥Λs+α

2 ρ∥2L2(T2) (3.181)

where Cρ0 is a constant depending on the L∞ norm of the initial data ρ0.

Therefore, we obtain the differential inequality,

d

dt
∥Λsρ∥2L2(T2) + ∥Λs+α

2 ρ∥2L2(T2) ≤ 2Cρ0∥Λsρ∥2L2(T2) (3.182)

which gives (3.166) and (3.167).

We have shown existence of global smooth solutions in the subcritical case,

provided that the initial data is smooth enough. No smallness condition is imposed

on the size of the initial data.

Remark 3.3. The solutions in the subcritical case are unique. This is obtained by

following the same argument as for the uniqueness of local strong solutions in the

critical case.

Remark 3.4. The results obtained in Theorem 3.7 holds as well in the whole space

R2 when the initial data is smooth. The proof of Theorem 3.7 is mainly based

on fractional estimates (3.170) which hold in the whole space (see [30]), the uni-
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form boundedness of the Lp norms of solutions to the subcritical equation which is

obtained in R2 (see Proposition 3.3 and Remark 3.2), and periodic Sobolev inter-

polation inequalities given by (3.177) which, in the whole space setting, becomes

∥f∥Hs1 (R2) ≤ C∥f∥1−σ
Hs0 (R2)∥f∥

σ
Hs1 (R2) (3.183)

for f ∈ Hs2(R2) and s1 = (1 − σ)s0 + σs2, σ ∈ [0, 1]. Therefore, the differential

inequality (3.182) becomes

d

dt
∥Λsρ∥2L2(R2) + ∥Λs+α

2 ρ∥2L2(R2) ≤ C0
1∥Λsρ∥2L2(T2) + C0

2 (3.184)

where C0
1 and C0

2 are constants depending only on the initial data, yielding the

desired bounds.
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CHAPTER 4

Nernst-Planck-Navier-Stokes Equations

We consider long time dynamics of solutions of 2D periodic Nernst-Planck-Navier-

Stokes systems forced by body charges and body forces. We show that, in the

absence of body charges, but in the presence of fluid body forces, the charge den-

sity of the ions converges exponentially in time to zero, and the ion concentrations

converge exponentially in time to equal time independent constants. This happens

while the fluid continues to be dynamically active for all time. In the general case of

body charges and body forces, the solutions converge in time to an invariant finite

dimensional compact set in phase space.

4.1 Introduction

Electrodiffusion of ions in fluids, described by the Nernst-Planck-Navier-Stokes

(NPNS) equations [36], is a broad subject, extensively studied in the chemical-

physics, bio-physics and engineering literature. From mathematical point of view,

the Nernst-Planck system without added charges and without fluid possesses global

smooth solutions which converge to unique stationary states in bounded domains

in two dimensions [7, 12, 26]. These results are obtained in situations in which

boundaries are impermeable to the ions, where the relevant blocking boundary con-
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ditions require the vanishing of the normal fluxes of ions through the boundary. The

NPNS system with blocking boundary conditions and with no applied voltage at the

boundary is globally well posed in 2D [39]. Furthermore, the NPNS system was

proved to have globally smooth and stable solutions in 2D with blocking bound-

ary conditions and nonzero applied voltage [16]. In [40], weak solutions in three

dimensions were shown to exist for homogeneous Neumann boundary conditions

for the potential. Recently, in [33], the authors established the existence of weak

solutions in the whole space, Ω = R3. All these results concern situations without

forcing in which there is a unique stable stationary solution.

Numerical simulations [37, 44] and experiments [38] show that instabilities oc-

cur in regimes when the system is forced. The lack of stability was suggested to

lead to chaotic, and even turbulent behavior [24], analogous to fluid turbulence.

In this chapter, we consider the issue of long time dynamics of solutions of

the NPNS system with forcing of two kinds: added charges and fluid body forces.

Two ionic species, with concentrations c1 and c2, with valences z1 = 1 and z2 =

−1 respectively, and with equal diffusivities D > 0, evolve according the Nernst-

Planck equations

(∂t + u · ∇)ci = Ddiv(∇ci + zici∇Φ), (4.1)

i = 1, 2. The ionic species concentrations ci(x, t) are nonnegative functions of the

two variables, position x and time t. The potential Φ obeys the Poisson equation

−ϵ∆Φ = ρ+N (4.2)
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driven by the charge density

ρ = c1 − c2 (4.3)

and by the added charge density N , which we take smooth and time independent.

The constant ϵ > 0 is proportional to the square of the Debye length. The velocity

u of the fluid obeys the Navier-Stokes equations

∂tu+ u · ∇u− ν∆u+∇p = −(ρ+N)∇Φ + f (4.4)

with the divergence free condition

∇ · u = 0. (4.5)

The variable p represents the pressure. The positive constant ν is the kinematic

viscosity. The body forces f are time independent, smooth, and divergence free.

We consider the NPNS system in the two dimensional periodic domain

T2 = [−π, π]× [−π, π] (4.6)

with periodic boundary conditions.

Our main results are as follows. In the absence of forcing of any kind (f =

N = 0), we prove that solutions are global and regular. The velocity converges

exponentially in time to zero, the concentrations converge exponentially in time

to equal constant values and the charge density converges exponentially in time

to zero. In the case of body forces, but in the absence of added charge densities

(f ̸= 0, N = 0), we prove that the solutions are global, regular and the ionic

concentrations still converge exponentially in time to equal constant values, while

the charge density converges exponentially in time to zero. This is interesting in
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view of the fact that the Navier-Stokes evolution is forced and the velocity does not

cease to be dynamically active. In all cases of forced equations, including f ̸= 0 and

N ̸= 0, we prove that all solutions converge in time to a global attractor, which is

an invariant compact set in phase space with finite Hausdorff and fractal dimension.

The chapter is organized as follows. Section 4.2 is devoted to preliminaries. We

describe the asymptotic behavior of eigenvalues of the dissipative operator A =

(νA,−D∆,−D∆), where A is the Stokes operator and ∆ is the Laplacian. In

section 4.3, we prove, as in [18], that∫ T

0

∫
T2

(
|c1(x)|2 + |c2(x)|2

)
dxdt < ∞, (4.7)

for all T > 0 is a necessary and sufficient condition for the persistence of global

regular solutions of the NPNS system (4.1)–(4.5). Under condition (4.7), the non-

negativity of the initial ionic concentrations is preserved for all positive times. In

section 4.4, we discuss the case where no body forces f are present in the fluid and

no added charge densities N take part in generating the electric field. We prove that

the concentrations decay exponentially in all Lp spaces (p ∈ [2;∞)) independently

of the velocity u, implying, together with the exponential decay of the Lp norms

of u, the existence of a single point attractor. We prove further that the solutions

decay exponentially in H2. In section 4.5, we consider added body forces, and we

establish that the concentrations converge exponentially to equal constant steady

states, and the charge density vanishes in the limit of large times. We address the

evolution of the system in a phase space corresponding to strong solutions (H1).
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We show that there exists a compact set (a ball in a the stronger norm H2) which

is an absorbing ball. This means that starting from any initial data w0 in phase

space, there exists a time t0, depending locally uniformly on the norm of the initial

data in the phase space, such that solution S(t)w0 belongs to the absorbing ball

for times larger than t0. We study further the properties of the nonlinear solution

map S(t) corresponding to the NPNS system. We establish Lipschitz continuity

of S(t) in various norms, including a smoothing property for positive times (see

Theorem 4.5). We prove the injectivity of the solution map S(t) in Appendix A.

Exponential decay of volume elements is proved in Appendix B. The existence of

a finite dimensional global attractor is thus established for the case N = 0, f ̸= 0.

The global attractor is a set which is invariant under the solution map, and such

that all solutions converge to it as time tends to infinity. In section 4.6 we treat the

general case with an added charge density N . In this case the concentrations and

the charge density are no longer convergent in time, but we still obtain the proper-

ties of existence of a compact absorbing ball, Lipschitz continuity and smoothing

properties of the solution map. The injectivity and decay of volume elements are

valid as well, and we obtain the existence of a global attractor with finite Hausdorff

and fractal dimension.

4.2 Preliminaries

We consider the Hilbert space
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H = H ⊕ L2 ⊕ L2 (4.8)

where H is the space of L2 periodic vector fields which are divergence free and

have mean zero. We define

Aw = (νAu,−D∆c1,−D∆c2) (4.9)

where ∆ is the Laplacian operator with periodic boundary conditions on T2, and

A = P(−∆) is the Stokes operator. Here, P denotes the Leray-Hopf projector. We

recall that P and −∆ commute on T2. The domain of definition of A is

D(A) = (H2 ∩H)⊕H2 ⊕H2. (4.10)

By the spectral theorem for Hilbert spaces, and since 0 is not an eigenvalue, there

is an orthonormal basis of H formed by a sequence of eigenvectors ωk of A with

corresponding eigenvalues µk counted with multiplicity such that 0 < µ1 ≤ µ2 ≤

· · · ≤ µk → ∞.

Proposition 4.1. There exists a constant C > 0 such that µk ≥ Ck for all k ≥ 1.

Proof: We denote by {λj} the eigenvalues of −∆ with periodic boundary condi-

tions on T2 counted with multiplicity, 0 < λ1 ≤ λ2 ≤ . . . . There exists a constant

c > 0 such that j ≤ cλj for all j ∈ N, and {νλj} and {Dλj} are the eigenvalues of

νA and D(−∆) respectively counted with multiplicity. We write

{µi : i = 1, . . . , N} = {νλi : i = 1, . . . , j} ∪ {Dλi : i = 1, . . . , k} (4.11)

and we note that if µN = νλj , then j ≤ c
ν
µN , whereas if µN = Dλk, then

k ≤ c
D
µN . Consequently, N = j + k ≤ c

(
1
ν
+ 1

D

)
µN , which completes the
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proof of the lemma.

4.3 Existence and Uniqueness of Solutions

We consider the system

∂tu+ u · ∇u+∇p = ν∆u− (ρ+N)∇Φ + f

∇ · u = 0

ρ = c1 − c2

−ϵ∆Φ = ρ+N

∂tc1 + u · ∇c1 = D∆c1 +D∇ · (c1∇Φ)

∂tc2 + u · ∇c2 = D∆c2 −D∇ · (c2∇Φ)

(4.12)

in T2 × [0,∞), where ν,D, ϵ are positive constants. The body forces f are smooth,

divergence free, time independent, and have mean zero. The added charge density

N is smooth and time independent. We assume that the initial fluid velocity u0 has

mean zero. We also assume that the initial concentrations c1(x, 0) and c2(x, 0) have

space averages c̄1 and c̄2 satisfying

c̄2 − c̄1 = N̄ (4.13)

where N̄ is the space average of the charge density N .

Remark 4.1. We note that ρ maintains a space average equal to −N̄ whereas u

maintains a space average equal to zero for all t ≥ 0. This follows by integrating
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the equations satisfied by ρ and u and by using∫
(ρ+N)∇Φ = −1

ϵ

∫
(ρ+N)∇Λ−2(ρ+N)

= −1

ϵ

∫
Λ−1/2(ρ+N)RΛ−1/2(ρ+N) = 0 (4.14)

where the last equality holds because the Riesz operator R = ∇Λ−1 is antisymmet-

ric.

We use the following convention regarding constants: we denote by C a positive

constant that might depend on the parameters of the problem or universal constants,

CN a positive constant depending, in addition, on the charge density N . Following

the same pattern, we denote by CN,f a constant depending on N and f . These

constants may change from line to line along the proofs.

Theorem 4.1. (Local Solution) Suppose u0 ∈ H1 and ci(0) ∈ L2. Then, there

exists T0 depending on ∥u0∥H1 , ∥ci(0)∥L2 and the parameters of the problem such

that system (4.12) has a unique solution such that u ∈ L∞(0, T ;H1)∩L2(0, T ;H2)

and ci ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) on [0, T0].

Proof: We start by taking the L2 inner product of the equation satisfied by u with

−∆u. We use the identity

Tr(GTG2) = 0 (4.15)

for the two-by-two traceless matrix G with entries Gij =
∂ui

∂xj
, and we obtain

1

2

d

dt
∥∇u∥2L2 + ν∥∆u∥2L2 =

∫
(ρ+N)∇Φ ·∆u−

∫
f∆u. (4.16)
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In view of Hölder’s, Ladyzhenskaya’s, Poincaré’s, and Young’s inequalities, we

have ∫
(ρ+N)∇Φ ·∆u ≤ ∥ρ+N∥L2∥∇Φ∥L∞∥∆u∥L2

≤ C∥∆u∥L2 [∥ρ∥L2 + ∥N∥L2 ][∥ρ∥L4 + ∥N∥L4 ]

≤ ν

4
∥∆u∥2L2 +

D

8
∥∇ρ∥2L2 + C∥ρ∥6L2 + CN . (4.17)

and consequently, we obtain the differential inequality

d

dt
∥∇u∥2L2 + ν∥∆u∥2L2 ≤

D

4
∥∇ρ∥2L2 + C∥ρ∥6L2 + CN,f (4.18)

Let σ = c1 + c2. Then, σ and ρ obey the system
∂tσ + u · ∇σ = D∆σ +D∇ · (ρ∇Φ)

∂tρ+ u · ∇ρ = D∆ρ+D∇ · (σ∇Φ).

(4.19)

Taking the L2 inner product of the first equation with σ and of the second equation

with ρ, adding them, and noting that∣∣∣∣∫ ρ∆Φσ

∣∣∣∣ ≤ C∥ρ∥L4∥σ∥L4∥ρ+N∥L2

≤ D

2
[∥∇ρ∥2L2 + ∥∇σ∥2L2 ] + C∥σ∥4L2 + C∥ρ∥4L2 + CN (4.20)

by Ladyzhenskaya’s and Young’s inequalities, we obtain the differential inequality

d

dt
(∥σ∥2L2 + ∥ρ∥2L2) +D(∥∇σ∥2L2 + ∥∇ρ∥2L2) ≤ C[∥σ∥4L2 + ∥ρ∥4L2 ] +CN . (4.21)

Let

M(t) = ∥∇u∥2L2 + ∥ρ∥2L2 + ∥σ∥2L2 . (4.22)

Adding (4.21) to (4.18), we obtain

M ′(t) +
D

2
(∥∇σ(t)∥2L2 + ∥∇ρ(t)∥2L2) + ν∥∆u(t)∥2L2 ≤ CM(t)3 + CN,f . (4.23)
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This latter differential inequality gives short time control of the desired norms. For

uniqueness, suppose (u1, c
1
1, c

1
2) and (u2, c

2
1, c

2
2) are two solutions of (4.12). Let

ρ1 = c11 − c12, ρ2 = c21 − c22, σ1 = c11 + c12, σ2 = c21 + c22. We write u = u1 − u2,

ρ = ρ1 − ρ2 and σ = σ1 − σ2. Then u, ρ and σ obey the system

∂tu+ u1 · ∇u1 − u2 · ∇u2 +∇(p1 − p2)

= ν∆u− [ρ1∇Φ1 − ρ2∇Φ2]

∂tρ+ u1 · ∇ρ1 − u2 · ∇ρ2 = D∆ρ+D∇ · (σ1∇Φ1 − σ2∇Φ2)

∂tσ + u1 · ∇σ1 − u2 · ∇σ2 = D∆σ +D∇ · (ρ1∇Φ1 − ρ2∇Φ2)

(4.24)

We take the L2 inner product of the first equation of (4.24) with u to obtain

1

2

d

dt
∥u∥2L2 + ν∥∇u∥2L2 = −

∫
(u1 · ∇u1 − u2 · ∇u2) · u dx

−
∫

(ρ1∇Φ1 − ρ2∇Φ2) · u dx. (4.25)

We estimate the term∣∣∣∣∫ (u1 · ∇u1 − u2 · ∇u2) · u dx

∣∣∣∣ = ∣∣∣∣∫ [u · ∇u1 + u2 · ∇u] · u dx

∣∣∣∣
≤ C∥u∥3/2L2 ∥∇u∥1/2L2 ∥∇u1∥1/2L2 ∥∆u1∥1/2L2 (4.26)

using Ladyzhenskaya’s inequality. In view of elliptic regularity

∥∇Φ∥L∞ ≤ C∥ρ∥L4 , (4.27)

we have ∣∣∣∣∫ (ρ1∇Φ1 − ρ2∇Φ2) · u dx

∣∣∣∣ = ∣∣∣∣∫ [ρ∇Φ1 + ρ2∇Φ] · u dx

∣∣∣∣
≤ C[∥∇Φ1∥L∞∥ρ∥L2∥u∥L2 + ∥ρ2∥L2∥ρ∥1/2L2 ∥∇ρ∥1/2L2 ∥u∥L2 ]. (4.28)
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Now, we take the L2 inner product of the second equation of (4.24) with ρ, and we

get

1

2

d

dt
∥ρ∥2L2 +D∥∇ρ∥2L2 = −

∫
(u1 · ∇ρ1 − u2 · ∇ρ2) ρ

+D

∫
∇ · (σ1∇Φ1 − σ2∇Φ2)ρ. (4.29)

We have ∣∣∣∣∫ (u1 · ∇ρ1 − u2 · ∇ρ2) ρ

∣∣∣∣ = ∣∣∣∣∫ [u · ∇ρ1 + u2 · ∇ρ]ρ

∣∣∣∣
≤ C∥∇ρ1∥L2∥u∥1/2L2 ∥∇u∥1/2L2 ∥ρ∥1/2L2 ∥∇ρ∥1/2L2 (4.30)

and ∣∣∣∣∫ ∇ · (σ1∇Φ1 − σ2∇Φ2)ρ

∣∣∣∣
≤ C

[
∥∇Φ1∥L∞∥σ∥L2∥∇ρ∥L2 + ∥σ2∥L2∥ρ∥1/2L2 ∥∇ρ∥3/2L2

]
. (4.31)

Finally, we take the L2 inner product of the third equation of (4.24) with σ to obtain

1

2

d

dt
∥σ∥2L2 +D∥∇σ∥2L2 = −

∫
(u1 · ∇σ1 − u2 · ∇σ2)σ

+D

∫
∇ · (ρ1∇Φ1 − ρ2∇Φ2)σ. (4.32)

We estimate the first term on the right hand side of (4.32) as in (4.30). For the

second term, as in (4.31), we have∣∣∣∣∫ ∇ · (ρ1∇Φ1 − ρ2∇Φ2)σ dx

∣∣∣∣
≤ C

[
∥∇Φ1∥L∞∥ρ∥L2∥∇σ∥L2 + ∥ρ2∥L2∥ρ∥1/2L2 ∥∇ρ∥1/2L2 ∥∇σ∥L2

]
. (4.33)

Putting (4.25)–(4.33) together, and applying Young’s inequality, we obtain a differ-

ential inequality of the form

d

dt

[
∥u∥2L2 + ∥ρ∥2L2 + ∥σ∥2L2

]
≤ CC(t)

[
∥u∥2L2 + ∥ρ∥2L2 + ∥σ∥2L2

]
(4.34)
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where

C(t) = ∥∇u1∥2/3L2 ∥∆u1∥2/3L2 + ∥∇ρ1∥2L2 + ∥∇σ1∥2L2

+ ∥ρ1 +N∥2L3 + ∥σ2∥4L2 + ∥ρ2∥4L2 + 1. (4.35)

Since
t∫

0

C(s)ds < ∞. (4.36)

for any t ∈ [0, T0], we obtain uniqueness.

Theorem 4.1 shows existence of local solutions. The calculations can be done

rigorously using Galerkin approximations. Namely, we consider an orthonormal

basis of L2 consisting of the eigenfunctions {Φk}∞k=1 of the Stokes operator

−∆Φk +∇ξk = µkΦk (4.37)

with periodic boundary condition on T2, and such that

∇ · Φk = 0 ∀k ∈ N. (4.38)

The functions Φk are C∞, divergence free, and have mean zero. We also consider an

orthonormal basis of L2 consisting of the eigenfunctions {wk}∞k=1 of the Laplacian

operator

−∆wk = λkwk (4.39)

with periodic boundary condition on T2. The functions wk are C∞ and have mean

zero. Let

Pnu =
n∑

k=1

(u,Φk)HΦk (4.40)
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and

Pnci =
n∑

k=1

(ci, wk)L2wk + c̄i =
n∑

k=0

(ci, wk)L2wk (4.41)

be the Galerkin approximations of u and ci for i ∈ {1, 2}. Here, c̄i is the constant

average of ci over T2, and w0 = 1/2π. We fix m and n and write the system

of nonlinear ODE’s obeyed by the coefficients of the Galerkin approximations. A

solution of this latter system exists if it is bounded in some norm. To show that, we

multiply the equations of this latter system by Φi and wi correspondingly and we

sum. We obtain the approximate system

∂tun + Pn(un · ∇un)− ν∆un = −Pn((ρn + PnN)∇Φn) + Pnf

∂tc
1
n + Pn(un · ∇c1n)−D∆c1n = DPn(∇ · (c1n∇Φn))

∂tc
2
n + Pn(un · ∇c2n)−D∆c2n = DPn(∇ · (c2n∇Φn))

−ϵ∆Φn = ρn + PnN

ρn = c1n − c2n

(4.42)

with un(0) = Pnu0, c
i
n(0) = Pnci(0), i = 1, 2. We establish a priori estimates by

taking suitable scalar products in L2 and integrating in time. Then, we pass to the

limit via the Aubin-Lions lemma.

Theorem 4.2. Let u0 ∈ H1 and ci(0) ∈ H1. Let T > 0. Suppose (u, c1, c2) solves

(4.12) on the interval [0, T ] with
T∫

0

(∥c1(t)∥2L2 + ∥c2(t)∥2L2)dt < ∞. (4.43)

Then, u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) and ci ∈ L∞(0, T ;H1) ∩ L2(0, T,H2).
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Proof: The following calculations can be done rigorously using Galerkin approxi-

mations.

The differential inequality (4.21) gives

d

dt
(∥σ∥2L2 + ∥ρ∥2L2) ≤ C(∥σ∥2L2 + ∥ρ∥2L2)2 + CN . (4.44)

Thus, under the assumption (4.43), we obtain that ci ∈ L∞(0, T ;L2)∩L2(0, T ;H1).

Moreover, the differential inequality (4.18) allows us to conclude that u ∈ L∞(0, T ;H1)∩

L2(0, T ;H2).

Now, we taking the L2 inner product of the equation satisfied by ρ in (4.19) with

−∆ρ, and we obtain the equation

1

2

d

dt
∥∇ρ∥2L2 +D∥∆ρ∥2L2 =

∫
(u · ∇ρ)∆ρ−D

∫
∇ · (σ∇Φ)∆ρ. (4.45)

We estimate ∣∣∣∣∫ σ∆Φ∆ρ

∣∣∣∣ ≤ 1

4
∥∆ρ∥2L2 + C∥σ∥2L2∥∇σ∥2L2

+ C∥σ∥4L2 + C∥∇ρ∥4L2 + CN , (4.46)∣∣∣∣∫ (∇σ · ∇Φ)∆ρ

∣∣∣∣ ≤ 1

4
∥∆ρ∥2L2 + C∥∇ρ∥4L2 + C∥∇σ∥4L2 + CN (4.47)

and ∣∣∣∣∫ (u · ∇ρ)∆ρ

∣∣∣∣ = ∣∣∣∣∫ ∇u∇ρ∇ρ

∣∣∣∣ ≤ D

4
∥∆ρ∥2L2 + C∥∇u∥2L2∥∇ρ∥2L2 (4.48)

where we used elliptic regularity together with Ladyzhenskaya’s inequality and

Poincaré’s inequality applied to the mean zero function ρ+N .

Finally, we take the L2 inner product of the equation obeyed by σ in (4.19) with

−∆σ to get

1

2

d

dt
∥∇σ∥2L2 +D∥∆σ∥2L2 =

∫
(u · ∇σ)∆σ −D

∫
∇ · (ρ∇Φ)∆σ (4.49)
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and proceeding in the same fashion as above, we obtain∣∣∣∣∫ ρ∆Φ∆σ

∣∣∣∣ ≤ 1

4
∥∆σ∥2L2 + C∥ρ∥4L2 + C∥∇ρ∥4L2 + CN , (4.50)∣∣∣∣∫ (∇ρ · ∇Φ)∆σ

∣∣∣∣ ≤ 1

4
∥∆σ∥2L2 + C∥∇ρ∥4L2 + CN (4.51)

and ∣∣∣∣∫ (u · ∇σ)∆σ

∣∣∣∣ ≤ D

4
∥∆σ∥2L2 + C∥∇u∥2L2∥∇σ∥2L2 . (4.52)

Putting (4.45)–(4.52) together, we conclude that ci lies in L∞(0, T ;H1) and

L2(0, T ;H2) with bounds depending on the initial data and T .

Remark 4.2. Note that if we assume that u0 ∈ H2 and ci(0) ∈ H2, then the

regularity of the solutions is upgraded to u ∈ L∞(0, T0;H
2) ∩ L2(0, T0;H

3) and

ci ∈ L∞(0, T0;H
2) ∩ L2(0, T0, H

3).

Remark 4.3. Under the conditions of Theorem 4.2, if ci(0) ≥ 0, then ci(t) ≥ 0 for

0 ≤ t ≤ T (see [16]).

4.4 NPNS System without Body Forces nor Charge

Densities

In this section, we treat the case where f = N = 0. We consider the system
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

∂tu+ u · ∇u+∇p = ν∆u− ρ∇Φ

∇ · u = 0

ρ = c1 − c2

−ϵ∆Φ = ρ

∂tc1 + u · ∇c1 = D∆c1 +D∇ · (c1∇Φ)

∂tc2 + u · ∇c2 = D∆c2 −D∇ · (c2∇Φ)

(4.53)

in T2 × [0,∞). We prove global regularity and asymptotic behavior of solutions.

We start with a priori L2 bounds.

Proposition 4.2. Let u0 ∈ H, ci(0) ∈ L2. We assume that ci(t) ≥ 0 holds for all

t ≥ 0. Then, there exists an absolute constant C > 0 such that

∥σ(t)− σ̄∥2L2 + ∥ρ(t)∥2L2 ≤ (2∥σ0∥2L2 + 2∥σ̄∥2L2 + ∥ρ0∥2L2)e−2CDt (4.54)

holds for all t ≥ 0. Moreover,
t+T∫
t

(
∥∇ρ(s)∥2L2 + ∥∇σ(s)∥2L2 +

1

ϵ
∥ρ(s)∥3L3

)
ds

≤ 1

2D
(2∥σ0∥2L2 + 2∥σ̄∥2L2 + ∥ρ0∥2L2)Te−2CDt (4.55)

holds for any t ≥ 0, T > 0.

Proof: We recall that σ and ρ obey
∂tσ + u · ∇σ = D∆σ +D∇ · (ρ∇Φ)

∂tρ+ u · ∇ρ = D∆ρ+D∇ · (σ∇Φ).

(4.56)
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We take the L2 inner product of the first equation of system (4.56) with σ and of the

second equation with ρ, we add them and we use the fact that∫
ρ∆Φσ = −1

ϵ

∫
σ(ρ)2 (4.57)

and that ci > 0 for i = 1, 2, to obtain the differential inequality

d

dt
(∥σ − σ̄∥2L2 + ∥ρ∥2L2) + 2D(∥∇σ∥2L2 + ∥∇ρ∥2L2) +

2D

ϵ
∥ρ∥3L3 ≤ 0. (4.58)

In view of Poincaré’s inequality, we get (4.54). Going back to (4.58) and integrat-

ing, we obtain (4.55).

Theorem 4.3. Let u0 ∈ H1 be divergence free, and let ci(0) ∈ H1 be nonnegative

ci(0) ≥ 0. Let T > 0. Then there exists a unique solution (u, c1, c2) satisfying

u ∈ L∞(0, T ;H1)∩L2(0, T ;H2) and ci ∈ L∞(0, T ;H1)∩L2(0, T,H2). Moreover

ci(t) ≥ 0 holds on [0, T ].

Proof: By the local existence theorem (Theorem 4.1) there exists T0 > 0 depending

only on the norms of initial data in H1 such that the solution exists and belongs to

H1. The condition (4.43) holds, and therefore, by Remark 4.3 ci(t) ≥ 0. The

inequality (4.58) is valid on [0, T0]. By Theorem 4.2 the solution is bounded in

H1. We apply the local existence theorem again, starting from T0, and deduce that

the solution can be extended for T1 > T0. The inequality (4.58) holds on [0, T1].

Because the inequality (4.58) holds as long as ci ≥ 0, reasoning by contradiction

we see that the solution extends to the whole interval [0, T ].

Corollary 4.1. Under the assumptions of Proposition 4.2 there exists a positive

constant a = a(D, ν) depending on D and ν, and a positive constant A depending
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on ∥ρ0∥L2 , ∥σ0∥L2 , ∥u0∥L2 , the parameters of the problem and universal constants,

such that

∥u(t)∥L2 ≤ Ae−at (4.59)

holds for all t ≥ 0.

Proof: We take the L2 inner product of the first equation in (4.53) with u, and we

get

1

2

d

dt
∥u∥2L2 + ν∥∇u∥2L2 = −

∫
ρ∇Φ · u. (4.60)

We estimate∣∣∣∣∫ ρ∇Φ · u dx

∣∣∣∣ ≤ ∥ρ∥L2∥∇Φ∥L∞∥u∥L2 ≤ C∥ρ∥L2∥ρ∥L3∥u∥L2 (4.61)

and thus, we obtain the differential inequality

d

dt
∥u∥L2 + ν∥u∥L2 ≤ C∥ρ∥L2∥ρ∥L3 . (4.62)

By Proposition 4.2 and Lemma 1.1, using (4.55), we obtain (4.59).

Remark 4.4. In the case f = N = 0, the global attractor exists and is the single-

ton (0, σ̄/2, σ̄/2). That is, for all initial data, the solution (u, c1, c2) converges to

(0, σ̄/2, σ̄/2).

Proposition 4.3. Let u0 ∈ H1 and ci(0) ∈ H1. Let p > 2. Then, there exist positive

constants a1, a2 depending on D, ϵ, σ̄, and λ (the constant in Proposition 2.1), and

positive constants Cp
1 (∥ρ0∥Lp , ∥σ0∥L2) and Cp

2 (∥σ0∥Lp , ∥ρ0∥L2) depending on the

corresponding initial data, σ̄, p and universal constants, such that

∥ρ(t)∥Lp ≤ Cp
1e

−a1t (4.63)
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and

∥σ(t)− σ̄∥Lp ≤ Cp
2e

−a2t (4.64)

hold for all t ≥ 0.

Proof: The equation (4.56) for ρ is equivalent to

∂tρ+ u · ∇ρ+
Dσ̄

ϵ
ρ−D∆ρ = D∇ · ((σ − σ̄)∇Φ). (4.65)

Taking the L2 inner product of equation (4.65) with ρ|ρ|p−2 gives

1

p

d

dt
∥ρ∥pLp +

Dσ̄

ϵ
∥ρ∥pLp +D(p− 1)

∫
|∇ρ|2|ρ|p−2dx

= −D(p− 1)

∫
(σ − σ̄)∇Φ · |ρ|p−2∇ρ. (4.66)

By Hölder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequal-

ity, we get∣∣∣∣∫ (σ − σ̄)∇Φ · |ρ|p−2∇ρ

∣∣∣∣ ≤ ∥∇Φ∥L∞∥|ρ|
p−2
2 ∇ρ∥L2∥σ − σ̄∥Lp∥|ρ|

p−2
2 ∥

L
2p
p−2

≤ 1

2
∥|ρ|

p−2
2 ∇ρ∥2L2 +

1

2
∥∇Φ∥2L∞∥σ − σ̄∥2Lp∥ρ∥p−2

Lp . (4.67)

In view of the Gagliardo-Nirenberg inequality, we have

∥σ − σ̄∥Lp ≤ Cp∥σ − σ̄∥
p−2
p

H1 ∥σ − σ̄∥
2
p

L2 (4.68)

where Cp is a constant that depends on p. Therefore, we get the differential inequal-

ity

d

dt
∥ρ∥2Lp +

2Dσ̄

ϵ
∥ρ∥2Lp ≤ C2

pD(p− 1)∥∇Φ∥2L∞∥σ − σ̄∥
2(p−2)

p

H1 ∥σ − σ̄∥
4
p

L2 . (4.69)
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If p = 3, then elliptic regularity, an application of Young’s inequality with expo-

nents 3, 3/2 and Poincaré inequality imply that

∥∇Φ∥2L∞∥σ − σ̄∥
2
3

H1∥σ − σ̄∥
4
3

L2

≤ C
(
∥ρ∥3L3∥σ − σ̄∥L2 + ∥∇σ∥2L2∥σ − σ̄∥2L2

)
. (4.70)

In view of (4.55), (4.69) and Lemma 1.1, we obtain (4.63) for p = 3.

Now, we go back to the differential inequality (4.69). We estimate

∥∇Φ∥2L∞∥σ − σ̄∥
2(p−2)

p

H1 ∥σ − σ̄∥
4
p

L2 ≤ C∥ρ∥2L3∥∇σ∥2L2 (4.71)

where we have used elliptic regularity and Poincaré’s inequality. Therefore, (4.69)

and an application of Lemma 1.1 give (4.63) for any p > 2.

Next, we note that the equation satisfied by σ − σ̄ is given by

∂t(σ − σ̄) + u · ∇(σ − σ̄) = D∆(σ − σ̄) +D∇ · (ρ∇Φ). (4.72)

We take the L2 inner product of equation (4.72) with (σ− σ̄)|σ− σ̄|p−2 and we get

the equation

1

p

d

dt
∥σ − σ̄∥pLp −D

∫
|σ − σ̄|p−2(σ − σ̄)∆(σ − σ̄)dx

= −D

∫
ρ∇Φ · ∇((σ − σ̄)|σ − σ̄|p−2)dx (4.73)

By Hölder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequal-

ity, we obtain∣∣∣∣∫ ρ∇Φ · ∇((σ − σ̄)|σ − σ̄|p−2)dx

∣∣∣∣
≤ (p− 1)∥∇Φ∥L∞∥ρ∥Lp∥|σ − σ̄|

p−2
2 ∥

L
2p
p−2

∥|σ − σ̄|
p−2
2 ∇(σ − σ̄)∥L2

≤ (p− 1)

[
1

2
∥|σ − σ̄|

p−2
2 ∇(σ − σ̄)∥2L2 +

1

2
∥∇Φ∥2L∞∥ρ∥2Lp∥σ − σ̄∥p−2

Lp

]
. (4.74)
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Thus, we have the differential inequality

1

p

d

dt
∥σ − σ̄∥pLp +

D(p− 1)

2

∫
|∇(σ − σ̄)|2|σ − σ̄|p−2dx

≤ D(p− 1)

2
∥∇Φ∥2L∞∥ρ∥2Lp∥σ − σ̄∥p−2

Lp . (4.75)

We note that

D(p− 1)

∫
|∇(σ − σ̄)|2|σ − σ̄|p−2dx

= −D

∫
|σ − σ̄|p−2(σ − σ̄)∆(σ − σ̄) ≥ Dλ∥σ − σ̄∥pLp (4.76)

if p is an even number greater than 2. This follows from Proposition 2.1. Thus, for

any even number p > 2,

d

dt
∥σ − σ̄∥2Lp +Dλ∥σ − σ̄∥2Lp ≤ D(p− 1)∥ρ∥2L3∥ρ∥2Lp . (4.77)

In view of Lemma 1.1, we obtain (4.64) for any even number p > 2. An Lp estimate

when p is not even can be obtained by an application of Hölder’s inequality.

Proposition 4.4. Let u0 ∈ H2, ci(0) ∈ H2. Then, there exist positive constants

c3, c4, c5, c6 depending on D, ϵ and ν, and positive constants C3, C4, C5, C6 depend-

ing on the initial data ∥u0∥H2 , ∥c1(0)∥H2 , ∥c2(0)∥H2 , σ̄ and universal constants,

such that

∥∇u(t)∥2L2 ≤ C3e
−c3t, (4.78)

∥∇ρ(t)∥2L2 + ∥∇σ(t)∥2L2 ≤ C4e
−c4t, (4.79)

∥∆u(t)∥2L2 ≤ C5e
−c5t, (4.80)
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and

∥∆ρ(t)∥2L2 + ∥∆σ(t)∥2L2 ≤ C6e
−c6t (4.81)

hold for all t ≥ 0.

Proof: We take the L2 inner product of the equation satisfied by u in (4.53) with

−∆u, and we apply Hölder’s and Young’s inequalities to get

d

dt
∥∇u∥2L2 + ν∥∆u∥2L2 ≤ C∥ρ∥2L3∥ρ∥2L2 (4.82)

and so we obtain (4.78) by an application of Lemma 1.1.

Now, we take the L2 inner product of equation (4.65) obeyed by ρ with −∆ρ

and we estimate∣∣∣∣∫ (σ − σ̄)∆Φ∆ρ

∣∣∣∣ ≤ C∥∆ρ∥L2∥ρ∥1/2L2 ∥∇ρ∥1/2L2 ∥σ − σ̄∥1/2L2 ∥∇σ∥1/2L2 , (4.83)∣∣∣∣∫ (∇σ · ∇Φ)∆ρ

∣∣∣∣ ≤ C∥∆ρ∥L2∥∇σ∥L2∥ρ∥L3 (4.84)

and ∣∣∣∣∫ (u · ∇ρ)∆ρ

∣∣∣∣ ≤ C∥∇ρ∥1/2L2 ∥∆ρ∥3/2L2 ∥∇u∥L2 (4.85)

in view of Ladyzhenskaya’s inequality. This gives

d

dt
∥∇ρ∥2L2 +D∥∆ρ∥2L2

≤ C
[
(∥ρ∥2L2 + ∥∇u∥4L2)∥∇ρ∥2L2 + (∥ρ∥2L3 + ∥σ − σ̄∥2L2)∥∇σ∥2L2

]
. (4.86)
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Next, we take the L2 inner product of the equation satisfied by σ, and proceeding

as above, we obtain

d

dt
∥∇σ∥2L2 +D∥∆σ∥2L2

≤ C
[
(∥ρ∥2L2 + ∥ρ∥2L3)∥∇ρ∥2L2 + ∥∇u∥4L2∥∇σ∥2L2

]
. (4.87)

Adding (4.87) to (4.86) and using (4.55), we obtain (4.79).

Then, we apply −∆ to the equation obeyed by u in (4.53) and we take the L2

inner product of the resulting equation with −∆u. We obtain

1

2

d

dt
∥∆u∥2L2 + ν∥∇∆u∥2L2 = −

∫
∆(u · ∇u) ·∆u−

∫
∆(ρ∇Φ) ·∆u. (4.88)

In view of Ladyzehsnkaya’s inequality, we have∣∣∣∣∫ ∆(u · ∇u) ·∆u

∣∣∣∣ ≤ C∥∇∆u∥L2∥∇u∥L2∥∆u∥L2 . (4.89)

Moreover,∣∣∣∣∫ ∆(ρ∇Φ) ·∆u

∣∣∣∣ ≤ C∥∇∆u∥L2(∥ρ∥L2∥∇ρ∥L2 + ∥ρ∥L3∥∇ρ∥L2). (4.90)

Here we have used the fact that the Riesz transforms are bounded in L4, so

∥∇∇Φ∥L4 =
1

ϵ
∥∇∇Λ−2ρ∥L4 ≤ C∥ρ∥L4 . (4.91)

Consequently, we obtain

d

dt
∥∆u∥2L2 + ν∥∇∆u∥2L2

≤ C
[
∥∇u∥2L2∥∆u∥2L2 + ∥ρ∥2L2∥∇ρ∥2L2 + ∥ρ∥2L3∥∇ρ∥2L2

]
. (4.92)

In view of (4.82) and Lemma 1.1, we deduce (4.80).

Finally, we apply −∆ to the equations satisfied by ρ and σ in (4.56) and we take

the L2 inner product of the resulting equations with −∆ρ and −∆σ respectively.
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We obtain

1

2

d

dt
∥∆ρ∥2L2 +

Dσ̄

ϵ
∥∆ρ∥2L2 +D∥∇∆ρ∥2L2

= D

∫
∆∇ · ((σ − σ̄)∇Φ)∆ρ−

∫
∆(u · ∇ρ)∆ρ (4.93)

and

1

2

d

dt
∥∆σ∥2L2 +D∥∇∆σ∥2L2 = D

∫
∆∇ · (ρ∇Φ)∆σ −

∫
∆(u · ∇σ)∆σ. (4.94)

We estimate∣∣∣∣∫ ∆(u · ∇ρ)∆ρ

∣∣∣∣ ≤ ∥∇∆ρ∥L2∥∇u∥L4∥∇ρ∥L4

≤ C∥∇∆ρ∥L2∥∇u∥1/2L2 ∥∆u∥1/2L2 ∥∇ρ∥1/2L2 ∥∆ρ∥1/2L2 (4.95)

and similarly∣∣∣∣∫ ∆(u · ∇σ)∆σ

∣∣∣∣ ≤ C∥∇∆σ∥L2∥∇u∥1/2L2 ∥∆u∥1/2L2 ∥∇σ∥1/2L2 ∥∆σ∥1/2L2 . (4.96)

Now, we have∣∣∣∣∫ ∆((σ − σ̄)∆Φ)∆ρ

∣∣∣∣
≤ ∥∇∆ρ∥L2 [∥∇σ∥L4∥∆Φ∥L4 + ∥σ − σ̄∥L4∥∇∆Φ∥L4 ]

≤ C∥∇∆ρ∥L2

[
∥∇σ∥1/2L2 ∥∆σ∥1/2L2 ∥∇ρ∥L2 + ∥∇σ∥L2∥∇ρ∥1/2L2 ∥∆ρ∥1/2L2

]
(4.97)

whereas∣∣∣∣∫ ∆(∇(σ − σ̄) · ∇Φ)∆ρ

∣∣∣∣
≤ ∥∇∆ρ∥L2 [∥∇∇σ∥L2∥∇Φ∥L∞ + ∥∇σ∥L4∥∇∇Φ∥L4 ]

≤ C∥∇∆ρ∥L2

[
∥∆σ∥L2∥ρ∥L3 + ∥∇σ∥1/2L2 ∥∆σ∥1/2L2 ∥∇ρ∥L2

]
. (4.98)

Here, we have used the fact that the Riesz transforms are bounded in L2, and so

∥∇∇σ∥L2 = ∥∇Λ−1∇Λ−1∆σ∥L2 ≤ C∥∆σ∥L2 (4.99)
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Similarly, we have the bounds∣∣∣∣∫ ∆(ρ∆Φ)∆σ

∣∣∣∣
≤ C∥∇∆σ∥L2

[
∥∇ρ∥1/2L2 ∥∆ρ∥1/2L2 ∥∇ρ∥L2 + ∥∇ρ∥L2∥∇ρ∥1/2L2 ∥∆ρ∥1/2L2

]
(4.100)

and ∣∣∣∣∫ ∆(∇ρ · ∇Φ)∆σ

∣∣∣∣
≤ C∥∇∆σ∥L2

[
∥∆ρ∥L2∥ρ∥L3 + ∥∇ρ∥1/2L2 ∥∆ρ∥1/2L2 ∥∇ρ∥L2

]
. (4.101)

Putting (4.93)–(4.101) together, and applying Young’s and Poincaré’s inequalities,

we have the differential inequality

d

dt
(∥∆ρ∥2L2 + ∥∆σ∥2L2) +D(∥∇∆ρ∥2L2 + ∥∇∆σ∥2L2)

≤ C(∥∆u∥2L2 + ∥∇ρ∥2L2 + ∥∇σ∥2L2)∥∆ρ∥2L2

+ C(∥∆u∥2L2 + ∥∇ρ∥2L2)∥∆σ∥2L2 (4.102)

Consequently, (4.81) follows from (4.86), (4.87), and Lemma 1.1.

We denote by C0,γ the space of γ-Hölder continuous functions on T2 with the

norm

∥v∥C0,γ = ∥v∥L∞ + sup
x,y∈T2,x ̸=y

|v(x)− v(y)|
|x− y|γ

. (4.103)

Corollary 4.2. Let u0 ∈ H2, ci(0) ∈ H2. Then, there exists a positive constant c8

depending on D, ϵ, ν, and a positive constant C8 depending on ∥u0∥H2 , ∥ci(0)∥H2 ,

∥ci(0)∥H2 , σ̄ and universal constants, such that

∥u(t)∥C0,1/2 + ∥ρ(t)∥C0,1/2 + ∥σ(t)− σ̄∥C0,1/2 ≤ C8e
−c8t (4.104)

holds for all t ≥ 0.
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Proof: The estimate (4.104) follows from the bound

∥v∥C0,1/2 ≤ C∥v∥W 1,4 ≤ C[∥v∥L4 + ∥∇v∥L4 ]

≤ C[∥v∥1/2L2 ∥∇v∥1/2L2 + ∥∇v∥1/2L2 ∥∆v∥1/2L2 ], (4.105)

which holds for all v ∈ W 1,4(T2) with mean zero, and from Proposition 4.4.

Remark 4.5. In Proposition 4.3, we assumed that u0 ∈ H1, ci(0) ∈ H1 which

guarantee by Theorem 4.3 the global existence of solutions and the nonnegativity of

the concentrations ci, and obtained the exponential decay of the Lp norm of ρ and

σ− σ̄. In Corollary 4.2, we have assumed higher regularity of the initial data to get

the exponential decay of the L∞ norm of u, ρ and σ − σ̄. However, if we assume

in this latter corollary that the initial data are only in H1, then from (4.86), (4.87),

and (4.82) we deduce the existence of t0 such that

∥∆u(t0)∥2L2 + ∥∆ρ(t0)∥2L2 + ∥∆σ(t0)∥2L2 < ∞ (4.106)

and so we obtain (4.81) and (4.80) for all t ≥ t0. We also note that the constants

Cp
1 and Cp

2 in Proposition 4.3 are independent of u, depending only on the Lp norm

of the c1(0) and c2(0), whereas the constants C4 and C6 in Proposition 4.4 depend

on the H2 norm of all initial data.

4.5 Added Body Forces

In this section, we consider the Navier-Stokes equations driven the electrical force

and a smooth, mean zero, divergence-free body force,
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

∂tu+ u · ∇u+∇p = ν∆u− ρ∇Φ + f

∇ · u = 0

ρ = c1 − c2

−ϵ∆Φ = ρ

∂tc1 + u · ∇c1 = D∆c1 +D∇ · (c1∇Φ)

∂tc2 + u · ∇c2 = D∆c2 −D∇ · (c2∇Φ)

(4.107)

in T2 × [0,∞), with u0, c1(0), c2(0) ∈ H1. We assume that u0 has mean zero, and

c1(0) and c2(0) have equal mean. We take ci(0) ≥ 0, and by Theorem 4.3 which is

valid in this case as well, the concentrations ci are nonnegative for all time t > 0.

Proposition 4.5. Let p ≥ 2. u0, c1(0), c2(0) ∈ H1 There exist positive constants

a1, a2 depending on D, ϵ, σ̄, and λ (the constant in Proposition 2.1), and posi-

tive constants Cp
1 (∥ρ0∥Lp , ∥σ0∥L2) and Cp

2 (∥σ0∥Lp , ∥ρ0∥L2) depending on the cor-

responding initial data, σ̄, p and universal constants, such that

∥ρ(t)∥Lp ≤ Cp
1e

−a1t (4.108)

and

∥σ(t)− σ̄∥Lp ≤ Cp
2e

−a2t (4.109)

hold for all t ≥ 0. Furthermore,
t+T∫
t

(
∥∇ρ(s)∥2L2 + ∥∇σ(s)∥2L2 +

1

ϵ
∥ρ(s)∥3L3

)
ds

≤ 1

2D
(2∥σ0∥2L2 + 2∥σ̄∥2L2 + ∥ρ0∥2L2)Te−2CDt (4.110)
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holds for any t ≥ 0, T > 0.

The proof follows along the lines of the proofs of Propositions 4.2 and 4.3.

Indeed, multiplying the ρ and σ − σ̄ equations by ρ|ρ|p−2 and (σ − σ̄)|σ − σ̄|p−2

respectively, the terms involving u cancel out and we conclude that the estimates

for the Lp norms of ρ and σ (4.108) and (4.109) hold for any p ≥ 2. In particular,

(4.43) is satisfied.

The following proposition shows that adding a body force to the Navier-Stokes

equation does not change the exponential decay of the H2 norms of ρ and σ− σ̄ but

results in the velocity u being bounded in H2.

Proposition 4.6. Let u0 ∈ H2, ci(0) ∈ H2. Then, there exist positive constants

c′3, c
′
4, c

′
5, c

′
6 depending on D, ϵ and ν, and positive constants C ′

3 and C ′
5 depending

on the initial data ∥u0∥H2 , ∥c1(0)∥H2 , ∥c2(0)∥H2 and σ̄, and positive constants C ′
4

and C ′
6 depending in addition on the forces f , and positive constants R3 and R5

depending on f such that

∥∇u(t)∥2L2 ≤ C ′
3e

−c′3t +R3, (4.111)

∥∇ρ(t)∥2L2 + ∥∇σ(t)∥2L2 ≤ C ′
4e

−c′4t, (4.112)

∥∆u(t)∥2L2 ≤ C ′
5e

−c′5t +R5, (4.113)

and

∥∆ρ(t)∥2L2 + ∥∆σ(t)∥2L2 ≤ C ′
6e

−c′6t (4.114)
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hold for all t ≥ 0.

Moreover, there exists a positive constant L > 0 depending on ∥u0∥H1 , ∥c1(0)∥H1 ,

∥c2(0)∥H1 , f and universal constants such that
t∫

0

(∥∆u(s)∥2L2 + ∥∆ρ(s)∥2L2 + ∥∆σ(s)∥2L2)ds ≤ L (4.115)

for all t ≥ 0.

We note that the estimate (4.115) requires only that u0, c1(0), c2(0) ∈ H1. No

additional regularity of the initial data is required.

The proof is similar to the proof of Proposition 4.4. We omit the details.

Corollary 4.3. Let u0 ∈ H2, ci(0) ∈ H2. Then, there exist positive constants c′8 and

c′9 depending on D, ϵ, ν, and a positive constant C ′
8 depending on ∥u0∥H2 , ∥ci(0)∥H2 ,

∥ci(0)∥H2 , and σ̄, a positive constant C ′
9 depending in addition on the body forces

f , and a positive constant R9 depending on f such that

∥u∥C0,1/2 ≤ C ′
8e

−c′8t +R9 (4.116)

and

∥ρ(t)∥C0,1/2 + ∥σ(t)− σ̄∥C0,1/2 ≤ C ′
9e

−c′9t (4.117)

holds for all t ≥ 0.

This follows from Proposition 4.6, see the proof of Corollary 4.2.

Theorem 4.4. (Absorbing Ball) Let u0, c1(0), c2(0) ∈ H1 such that u0 and (c1 −

c2)(0) have mean zero. Suppose that (u, c1, c2) solves (4.107). Then, there exists

an R > 0 depending on f , and t0 > 0 depending on ∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1
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and the parameters of the problem, such that

∥∆u(t)∥2L2 + ∥∆c1(t)∥2L2 + ∥∆c2(t)∥2L2 ≤ R (4.118)

holds for all t ≥ t0.

Proof: In view of equation (4.115), there exists t0 ∈ [0, 1] such that

∥∆u(t0)∥2L2 + ∥∆ρ(t0)∥2L2 + ∥∆σ(t0)∥L2 ≤ L. (4.119)

Thus, the result follows from equations (4.113), (4.114), and from the parallelogram

law

∥∆ρ∥2L2 + ∥∆σ∥2L2 = 2∥∆c1∥2L2 + 2∥∆c2∥2L2 . (4.120)

Let V = H1∩H⊕H1⊕H1 ⊂ H. Let V ′ be the convex subset of V consisting of

vectors (u, c1, c2) such that u is divergence free with mean zero and c1 ≥ 0, c2 ≥ 0

a.e. with
∫
c1 =

∫
c2. Let

S(t) : V ′ 7→ V ′ (4.121)

be the solution map

S(t)(u0, c1(0), c2(0)) = (u(t), c1(t), c2(t)) (4.122)

corresponding to system (4.107). As a consequence of Theorem 4.2, S(t) is well-

defined on V ′ for every t ≥ 0. Moreover, the uniqueness of solutions implies that

S(t+ s)w0 = S(t)(S(s)w0) (4.123)

for all t, s ≥ 0, i.e., S(t) is a semigroup. We proceed to investigate other properties

of the map S(t).

We consider the natural topology on H
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∥w∥2H = ∥u∥2L2 + ∥c1∥2L2 + ∥c2∥2L2 (4.124)

and the natural topology on V ′

∥w∥2V ′ = ∥u∥2H1 + ∥c1∥2H1 + ∥c2∥2H1 . (4.125)

We address the continuity of the map S(t).

Theorem 4.5. (Continuity) Let w0
1 = (u1(0), c

1
1(0), c

1
2(0)), w

0
2 = (u2(0), c

2
1(0), c

2
2(0))

∈ V ′. Let t > 0. There exist constants K1(t), K2(t) and K3(t), locally uniformly

bounded as functions of t ≥ 0, and locally bounded as initial data w0
1, w

0
2 are varied

in V ′, such that S(t) is Lipschitz continuous in H obeying

∥S(t)w0
1 − S(t)w0

2∥2H ≤ K1(t)∥w0
1 − w0

2∥2H, (4.126)

S(t) is Lipschitz continuous in V ′ obeying

∥S(t)w0
1 − S(t)w0

2∥2V ′ ≤ K2(t)∥w0
1 − w0

2∥2V ′ , (4.127)

and S(t) is Lipschitz continuous for t > 0 from H to V ′ obeying

t∥S(t)w0
1 − S(t)w0

2∥2V ′ ≤ K3(t)∥w0
1 − w0

2∥2H. (4.128)

Proof: We write S(t)w0
1 = (u1(t), c

1
1(t), c

1
2(t)) and S(t)w0

2 = (u2(t), c
2
1(t), c

2
2(t)).

Let ρ1 = c11 − c12, ρ2 = c21 − c22, σ1 = c11 + c12, σ2 = c21 + c22. We write u = u1 − u2,

ρ = ρ1 − ρ2 and σ = σ1 − σ2.

We note that u, ρ and σ obey system (4.24). Following the proof of uniqueness

in Theorem 4.1, we obtain a differential inequality of the form

d

dt

[
∥u∥2L2 + ∥ρ∥2L2 + ∥σ∥2L2

]
+ ν∥∇u∥2L2 +D∥∇ρ∥2L2 +D∥∇σ∥2L2

≤ k1(t)
[
∥u∥2L2 + ∥ρ∥2L2 + ∥σ∥2L2

]
(4.129)
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where

k1(t) = C[∥∇u1∥2/3L2 ∥∆u1∥2/3L2 +∥∇ρ1∥2L2+∥∇σ1∥2L2+∥ρ1∥2L3+∥σ2∥4L2+∥ρ2∥4L2+1].

Letting

K1(t) = 4 exp


t∫

0

k1(s)ds

 , (4.130)

we obtain (4.126).

Now, we take the L2 inner product of the three equations of system (4.24) with

−∆u, −∆ρ and −∆σ respectively, and we add them. We obtain the differential

inequality

d

dt

[
∥∇u∥2L2 + ∥∇ρ∥2L2 + ∥∇σ∥2L2

]
+ ν∥∆u∥2L2 +D∥∆ρ∥2L2 +D∥∆σ∥2L2

≤ C
[
∥u1 · ∇u1 − u2 · ∇u2∥2L2 + ∥u1 · ∇ρ1 − u2 · ∇ρ2∥2L2

]
+ C

[
∥u1 · ∇σ1 − u2 · ∇σ2∥2L2 + ∥ρ1∇Φ1 − ρ2∇Φ2∥2L2

]
+ C

[
∥∇ · (σ1∇Φ1 − σ2∇Φ2)∥2L2 + ∥∇ · (ρ1∇Φ1 − ρ2∇Φ2)∥2L2

]
. (4.131)

We estimate

∥u1 · ∇u1 − u2 · ∇u2∥2L2 = ∥u · ∇u1 + u2 · ∇u∥2L2

≤ C[∥∇u1∥2L4∥∇u∥2L2 + ∥u2∥2L∞∥∇u∥2L2 ], (4.132)

∥u1 · ∇ρ1 − u2 · ∇ρ2∥2L2 = ∥u · ∇ρ1 + u2 · ∇ρ∥2L2

≤ C[∥∇ρ1∥2L4∥∇u∥2L2 + ∥u2∥2L∞∥∇ρ∥2L2 ] (4.133)

and
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∥u1 · ∇σ1 − u2 · ∇σ2∥2L2 = ∥u · ∇σ1 + u2 · ∇σ∥2L2

≤ C[∥∇σ1∥2L4∥∇u∥2L2 + ∥u2∥2L∞∥∇σ∥2L2 ] (4.134)

using Poincaré and Ladyzhenskaya’s interpolation inequalities. Using in addition

elliptic regularity, we have

∥ρ1∇Φ1 − ρ2∇Φ2∥2L2 = ∥ρ∇Φ1 + ρ2∇Φ∥2L2

≤ C[∥∇Φ1∥2L∞ + ∥ρ2∥2L2 ]∥∇ρ∥2L2 . (4.135)

We also estimate

∥∇ · (σ1∇Φ1 − σ2∇Φ2)∥2L2

= ∥σ∆Φ1 + σ2∆Φ+∇σ · ∇Φ1 +∇σ2 · ∇Φ∥2L2

(4.136)

≤ C[∥ρ1∥2L∞∥σ∥2L2 + ∥∇Φ1∥2L∞∥∇σ∥2L2 ]

+ C(∥σ2∥2L∞ + ∥∇σ2∥2L2)∥∇ρ∥2L2 (4.137)

and

∥∇ · (ρ1∇Φ1 − ρ2∇Φ2)∥2L2

= ∥ρ∆Φ1 + ρ2∆Φ+∇ρ · ∇Φ1 +∇ρ2 · ∇Φ∥2L2

≤ C[∥ρ1∥2L∞ + ∥ρ2∥2L∞ + ∥∇Φ1∥2L∞ + ∥∇ρ2∥2L2 ]∥∇ρ∥2L2 . (4.138)

In view of (4.129), we obtain a differential inequality of the form

d

dt
[∥u∥2H1 + ∥ρ∥2H1 + ∥σ∥2H1 ] ≤ k2(t)[∥u∥2H1 + ∥ρ∥2H1 + ∥σ∥2H1 ] (4.139)

where
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k2(t) = k1(t) + C[∥∇u1∥2L4 + ∥∇ρ1∥2L4 + ∥∇σ1∥2L4 + ∥∇ρ2∥2L2 ]

+ C[∥∇σ2∥2L2 + ∥u2∥2L∞ + ∥σ2∥2L∞ + ∥ρ2∥2L∞ ]. (4.140)

Letting

K2(t) = 4 exp


t∫

0

k2(s)ds

 , (4.141)

we obtain (4.127).

The derivation of (4.128) is a little different. The sum of the equations resulting

from taking L2 inner product of the u, ρ and σ equations with −∆u, −∆ρ and −∆σ

respectively gives

1

2

d

dt
[∥∇u∥2L2 + ∥∇ρ∥2L2 + ∥∇σ∥2L2 ]

+ ν∥∆u∥2L2 +D∥∆ρ∥2L2 +D∥∆σ∥2L2

=

∫
(u · ∇u1 + u2 · ∇u) ·∆u+

∫
(u · ∇ρ1 + u2 · ∇ρ)∆ρ

+

∫
(u · ∇σ1 + u2 · ∇σ)∆σ +

∫
(ρ∇Φ1 + ρ2∇Φ) ·∆u

−D

∫
(∇ · (σ∇Φ1 + σ2∇Φ))∆ρ−D

∫
(∇ · (ρ∇Φ1 + ρ2∇Φ))∆σ. (4.142)

In order to get (4.128), we let w(t) = (u(t), ρ(t), σ(t)), and we show that w obeys

a differential inequality of the type

d

dt
∥w∥2H1 ≤ Z1(t)∥w∥2H1 + Z2(t)∥w∥2L2 (4.143)

such that

∥w(t)∥2L2 ≤ Z3(t)∥w0∥2L2 (4.144)

and
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t∫
0

∥w(s)∥2H1ds ≤ C(Z4(t) + 1)∥w0∥2L2 (4.145)

where Z1(t), Z3(t) and Z4(t) are locally bounded functions in time, Z2(t) is a lo-

cally integrable function in time, and C is a positive constant. Then, multiplying

(4.143) by t and integrating by parts in time from 0 to t, we obtain

t∥w(t)∥2H1 ≤ C ′(Z5(t) + 1)∥w0∥2L2 (4.146)

where Z5(t) is a locally bounded function in time, and C ′ > 0 is a positive constant.

We start by integrating (4.129). Using (4.126), we obtain
t∫

0

(∥∇u(s)∥2L2 + ∥∇ρ(s)∥2L2 + ∥∇σ(s)∥2L2)ds

≤ C

1 + t∫
0

k1(s)K1(s)ds

 ∥w0
1 − w0

2∥2L2 . (4.147)

This is the analogue of (4.145). Then, we estimate∣∣∣∣∫ (u · ∇u1 + u2 · ∇u) ·∆u

∣∣∣∣ ≤ C∥u∥1/2L2 ∥∇u∥1/2L2 ∥∇u1∥1/2L2 ∥∆u1∥1/2L2 ∥∆u∥L2

+ C∥u2∥1/2L2 ∥∇u2∥1/2L2 ∥∇u∥1/2L2 ∥∆u∥3/2L2 , (4.148)∣∣∣∣∫ (u · ∇ρ1 + u2 · ∇ρ)∆ρ

∣∣∣∣ ≤ C∥u∥1/2L2 ∥∇u∥1/2L2 ∥∇ρ1∥1/2L2 ∥∆ρ1∥1/2L2 ∥∆ρ∥L2

+ C∥u2∥1/2L2 ∥∇u2∥1/2L2 ∥∇ρ∥1/2L2 ∥∆ρ∥3/2L2 (4.149)

and∣∣∣∣∫ (u · ∇σ1 + u2 · ∇σ)∆σ

∣∣∣∣ ≤ C∥u∥1/2L2 ∥∇u∥1/2L2 ∥∇σ1∥1/2L2 ∥∆σ1∥1/2L2 ∥∆σ∥L2

+ C∥u2∥1/2L2 ∥∇u2∥1/2L2 ∥∇σ∥1/2L2 ∥∆σ∥3/2L2 . (4.150)

In view of the fact that

∥∇Φ∥L4 ≤ C∥ρ∥L2 , (4.151)
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we have ∣∣∣∣∫ (ρ∇Φ1 + ρ2∇Φ) ·∆u

∣∣∣∣
≤ C[∥ρ1∥L3∥ρ∥L2∥∆u∥L2 + ∥ρ2∥L4∥ρ∥L2∥∆u∥L2 ] (4.152)

Moreover,∣∣∣∣∫ (∇ · (σ∇Φ1 + σ2∇Φ))∆ρ

∣∣∣∣
≤ C[(∥σ∥1/2L2 ∥∇σ∥1/2L2 + |σ∥L2)∥∇ρ1∥L2 + ∥σ2∥L∞∥ρ∥L2 ]∥∆ρ∥L2

+ C[∥ρ1∥L3∥∇σ∥L2 + ∥∇σ2∥L2∥∇ρ∥L2 ]∥∆ρ∥L2 (4.153)

and ∣∣∣∣∫ (∇ · (ρ∇Φ1 + ρ2∇Φ))∆σ

∣∣∣∣
≤ C[∥∇ρ∥L2∥∇ρ1∥L2 + ∥ρ2∥L∞∥ρ∥L2 ]∥∆σ∥L2

+ C[∥ρ1∥L3∥∇ρ∥L2 + ∥∇ρ2∥L2∥∇ρ∥L2 ]∥∆σ∥L2 . (4.154)

We apply Young’s inequality and we use (4.129) to obtain

d

dt
[∥u∥2H1 + ∥ρ∥2H1 + ∥σ∥2H1 ]

≤ CM1(t)∥u∥2L2 + CM2(t)(∥ρ∥2L2 + ∥σ∥2L2)

+ CM3(t)(∥∇u∥2L2 + ∥∇ρ∥2L2 + ∥∇σ∥2L2), (4.155)

where

M1(t) = k1 + ∥∇u1∥2L2∥∆u1∥2L2 + ∥∇ρ1∥2L2∥∆ρ1∥2L2

+ ∥∇σ1∥2L2∥∆σ1∥2L2 , (4.156)

M2(t) = k1 + ∥∇ρ1∥2L2 + ∥∇ρ2∥2L2 + ∥σ2∥2L∞ + ∥ρ2∥2L∞ , (4.157)
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and

M3(t) = 1 + ∥∇u2∥4L2 + ∥∇ρ1∥2L2 + ∥∇ρ2∥2L2 + ∥∇σ2∥2L2 . (4.158)

This is a differential inequality of type (4.143), with w(t) = (u(t), ρ(t), σ(t)) satis-

fying (4.144) and (4.145). Therefore, we obtain (4.128).

We proceed to show that the solution map S(t) is injective on V ′.

Theorem 4.6. (Backward Uniqueness) Let w0
1, w

0
2 ∈ V ′. If there exists T > 0 such

that S(T )w0
1 = S(T )w0

2, then w0
1 = w0

2.

Proof: Let w(t) = S(t)w0
1 −S(t)w0

2 = (u(t), c1(t), c2(t)) and w̃(t) = 1
2
(S(t)w0

1 +

S(t)w0
2) = (ũ(t), c̃1(t), c̃2(t)). Let ρ = c1 − c2, ρ̃ = c̃1 − c̃2, Φ = 1

ϵ
Λ−2ρ and

Φ̃ = 1
ϵ
Λ−2ρ̃.

We note that w(t) obeys the equation

∂tw +Aw + L(w̃)w = 0 (4.159)

where

Aw = (νAu,−D∆c1,−D∆c2) (4.160)

and

L(w̃)w = (L1(w̃)w,L2(w̃)w,L3(w̃)w) (4.161)

with

L1(w̃)w = B(ũ, u) +B(u, ũ) + P(ρ∇Φ̃ + ρ̃∇Φ)), (4.162)

L2(w̃)w = u · ∇c̃1 + ũ · ∇c1 −D∇ · (c1∇Φ̃ + c̃1∇Φ), (4.163)



151

L3(w̃)w = u · ∇c̃2 + ũ · ∇c2 +D∇ · (c2∇Φ̃ + c̃2∇Φ). (4.164)

We consider the evolution of the norm

E0 = ∥u∥2L2 + ∥c1∥2L2 + ∥c2∥2L2 = ∥w∥2H (4.165)

obtained by taking the inner product in H of equation (4.159) with (u, c1, c2) = w,

and we note that E0 obeys the equation

1

2

d

dt
E0 + E1 + (L(w̃)w,w)H = 0 (4.166)

where

E1 = ν∥A
1
2u∥2H +D∥∇c1∥2L2 +D∥∇c2∥2L2 = (w,Aw)H. (4.167)

We observe that

1

2

d

dt
log

(
1

E0

)
=

E1

E0

+
(L(w̃)w,w)H

E0

(4.168)

Let

Y (t) = log

(
1

E0

)
(4.169)

and so

1

2

d

dt
Y (t) =

E1

E0

+
(L(w̃)w,w)H

E0

. (4.170)

We proceed to show that Y (t) cannot reach the value +∞ in finite time. We

start by noting that the derivative of E1/E0 obeys

d

dt

E1

E0

= E−1
0

d

dt
E1 −

E1

E0

d

dt
logE0 = E−1

0

d

dt
E1 +

E1

E0

d

dt
Y. (4.171)

Taking the inner product of equation (4.159) in H with Aw leads to

1

2

d

dt
E1 + ∥Aw∥2H + (L(w̃)w,Aw)H = 0 (4.172)
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which implies that

1

2

d

dt

E1

E0

= −∥Aw∥2H + (L(w̃)w,Aw)H
E0

+
E1

E0

(
E1 + (L(w̃)w,w)H

E0

)
(4.173)

Since

E2
1

E2
0

− ∥Aw∥2H
E0

= −

∥∥∥∥∥
(
A− E1

E0

)
w

E
1/2
0

∥∥∥∥∥
2

H

, (4.174)

we obtain

1

2

d

dt

E1

E0

= −E−1
0 ∥(A−E1E

−1
0 )w∥2H−E−1

0

(
L(w̃)w,

(
A− E1E

−1
0

)
w
)
H . (4.175)

Now, we claim that

|(L(w̃)w,w)H| ≤ A1(t)E1 + A0(t)E0 (4.176)

with
T∫

0

(A0(t) + A1(t))dt < ∞. (4.177)

To prove this claim, we note first that

(B(ũ, u), u)L2 = (ũ · ∇c1, c1)L2 = (ũ · ∇c2, c2)L2 = 0. (4.178)

Since u has mean zero, an application of Ladyzhenskaya’s inequality followed by

Poincaré’s inequality gives

|(B(u, ũ), u)L2 | ≤ ∥∇ũ∥L2∥u∥2L4 ≤ C∥∇ũ∥L2∥∇u∥2L2 ≤ C∥∇ũ∥L2E1. (4.179)

Using in addition elliptic regularity and the fact that ρ has mean zero, we obtain

|(P(ρ∇Φ̃ + ρ̃∇Φ), u)L2 | ≤ ∥u∥L4∥ρ∥L4∥∇Φ̃∥L2 + ∥u∥L4∥ρ̃∥L2∥∇Φ∥L4

≤ C∥∇u∥L2(∥∇c1∥L2 + ∥∇c2∥L2)(∥∇Φ̃∥L2 + ∥ρ̃∥L2)

≤ C
(
1 + ∥∇Φ̃∥2L2 + ∥ρ̃∥2L2

)
E1. (4.180)

Now, we estimate
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|(u · ∇c̃1, c1)L2| = |(u · ∇c1, c̃1)L2| ≤ C∥∇u∥L2∥∇c1∥L2∥c̃1∥L4

≤ C(1 + ∥c̃1∥2L4)E1, (4.181)

|(u · ∇c̃2, c2)L2| ≤ C(1 + ∥c̃2∥2L4)E1, (4.182)

|(∇ · (c1∇Φ̃ + c̃1∇Φ), c1)L2 |

≤ C(∥c1∥L2∥∇Φ̃∥L∞∥∇c1∥L2 + ∥c̃1∥L2∥∇c1∥L2(∥∇c1∥L2 + ∥∇c2∥L2))

≤ C(∥∇Φ̃∥2L∞ + ∥c̃1∥L2 + ∥c̃1∥2L2 + 1)E1 + E0 (4.183)

and

|(∇·(c2∇Φ̃+c̃2∇Φ), c2)L2| ≤ C(∥∇Φ̃∥2L∞+∥c̃2∥L2+∥c̃2∥2L2+1)E1+E0 (4.184)

This ends the proof of the first claim.

Next, we claim that

∥L(w̃)w∥2H ≤ B1(t)E1 +B0(t)E0 (4.185)

with
T∫

0

(B0(t) +B1(t))dt < ∞. (4.186)

Since u and ρ have mean zero, then elliptic regularity together with an application

of Hölder, Ladyzhenskaya, Poincaré and Young inequalities gives

∥B(ũ, u) +B(u, ũ)∥2L2 ≤ C(∥ũ∥2L∞∥∇u∥2L2 + ∥∇u∥2L2∥∇ũ∥2L4)

≤ C(∥ũ∥2L∞ + ∥∇ũ∥2L4)E1, (4.187)

∥P(ρ∇Φ̃ + ρ̃∇Φ)∥2L2 ≤ C(∥∇ρ∥2L2∥∇Φ̃∥2L∞ + ∥ρ̃∥2L2∥∇ρ∥2L2)

≤ C(∥∇Φ̃∥2L∞ + ∥ρ̃∥2L2)E1, (4.188)
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∥u · ∇c̃1 + ũ · ∇c1∥2L2 ≤ C(∥∇u∥2L2∥∇c̃1∥2L4 + ∥ũ∥2L∞∥∇c1∥2L2)

≤ C(∥∇c̃1∥2L4 + ∥ũ∥2L∞)E1, (4.189)

∥u · ∇c̃2 + ũ · ∇c2∥2L2 ≤ C(∥∇c̃2∥2L4 + ∥ũ∥2L∞)E1, (4.190)

∥∇ · (c1∇Φ̃ + c̃1∇Φ)∥2L2

= ∥c1∆Φ̃ +∇c1∇Φ̃ + c̃1∆Φ+∇c̃1∇Φ∥2L2

≤ C((∥c1∥L2∥∇c1∥L2 + ∥c1∥2L2)∥ρ̃∥L2∥∇ρ̃∥L2 + ∥∇c1∥2L2∥∇Φ̃∥2L∞)

+ C(∥c̃1∥2L4∥ρ∥L2∥∇ρ∥L2 + ∥∇c̃1∥2L2∥∇ρ∥2L2)

≤ C(∥ρ̃∥2L2∥∇ρ̃∥2L2 + ∥∇Φ̃∥2L∞ + ∥c̃1∥2L4 + ∥∇c̃1∥2L2)E1

+ ∥ρ̃∥L2∥∇ρ̃∥L2E0, (4.191)

and

∥∇ · (c2∇Φ̃ + c̃2∇Φ)∥2L2

≤ C(∥ρ̃∥2L2∥∇ρ̃∥2L2 + ∥∇Φ̃∥2L∞ + ∥c̃2∥2L4 + ∥∇c̃2∥2L2)E1

+ ∥ρ̃∥L2∥∇ρ̃∥L2E0. (4.192)

Thus, the second claim is proved.

As a consequence of the above claims and Schwarz inequality, we deduce the

differential inequalities

d

dt

E1

E0

≤ 2B1(t)
E1

E0

+ 2B0(t) (4.193)

and

d

dt
Y (t) ≤ (2A1(t) + 1)

E1

E0

+ 2A0(t) (4.194)
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which imply that Y (t) ∈ L∞(0, T ). This ends the proof.

Now, we fix M > 0, and we let VM to be the subset of V ′ consisting of vectors

(u, c1, c2) such that u is divergence free with mean zero and c1 and c2 are non-

negative functions a.e. with equal space averages less than or equal to M . As a

consequence of Theorem 4.4, there exists R1 > 0 depending only on f such that

for any initial data w0 = (u0, c1(0), c2(0)) ∈ VM , there exists t0 > 0 depending on

∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 and the parameters of the problem such that for all

t ≥ t0, we have S(t)w0 ∈ BM
R1

, where

BM
R1

= {w = (u, c1, c2) ∈ VM : ∥u∥H2 + ∥c1 − c̄1∥H2 + ∥c2 − c̄2∥H2 ≤ R1} .

Remark 4.6. We note that there exists T > 0 depending only on R1 and M and the

parameters of the problem such that

S(t)BM
R1

⊂ BM
R1

(4.195)

for all t ≥ T .

Remark 4.7. BM
R1

is compact in H because the space averages of all the concen-

trations c1 and c2 such that (u, c1, c2) ∈ VM are uniformly bounded by M .

Remark 4.8. The set VM is convex. Consequently, BM
R1

is a convex set, and so it is

connected.

The properties of the map S(t) listed and proved above, together with the con-

nectedness and compactness properties of BM
R1

, imply the existence of a global at-

tractor.
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Theorem 4.7. (Global Attractor) Let

XM =
⋂
t>0

S(t)BM
R1

(4.196)

Then:

(a) XM is compact in H.

(b) S(t)XM = XM for all t ≥ 0.

(c) If Z is bounded in VM in the norm of of V , and S(t)Z = Z for all t ≥ 0, then

Z ⊂ XM .

(d) For every w0 ∈ VM , lim
t→∞

distH(S(t)w0, XM) = 0.

(e) XM is connected.

The proof is omitted and follows the proof of Theorem 1.7

We end this section by showing that XM has finite fractal dimension. The ab-

stract formulation of the system is

∂tu+ νAu+B(u, u) + P(ρ∇Φ) = f,

∂tc1 + u · ∇c1 −D∆c1 −D∇ · (c1∇Φ) = 0,

∂tc2 + u · ∇c2 −D∆c2 +D∇ · (c2∇Φ) = 0,

−ϵ∆Φ = ρ,

ρ = c1 − c2

(4.197)

where P is the Leray-Hopf projector, A = P(−∆) is the Stokes operator, and

B(u, v) = P(u.∇v).
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We consider a solution w̃ = S(t)w̃0 = (ũ(t), c̃1(t), c̃2(t)) of (4.197) with initial

data w̃0 in BM
R1

. We consider the linearization of S(t) along w̃(t)

w0 7→ w(t) = S ′(t, w̃)w0 (4.198)

viewed as an operator on H. The function w(t) = (u(t), c1(t), c2(t)) solves

∂tw +Aw + L(w̃)w = 0 (4.199)

where

Aw = (νAu,−D∆c1,−D∆c2) (4.200)

and

L(w̃)w = (L1(w̃)w,L2(w̃)w,L3(w̃)w) (4.201)

with

L1(w̃)w = B(ũ, u) +B(u, ũ) + P(ρ∇Φ̃ + ρ̃∇Φ)), (4.202)

L2(w̃)w = u · ∇c̃1 + ũ · ∇c1 −D∇ · (c1∇Φ̃ + c̃1∇Φ), (4.203)

L3(w̃)w = u · ∇c̃2 + ũ · ∇c2 +D∇ · (c2∇Φ̃ + c̃2∇Φ). (4.204)

We consider the scalar product in ∧nH given by

(w1 ∧ · · · ∧ wn, y1 ∧ · · · ∧ yn)∧nH = det(wi, yj)H (4.205)

and the volume elements given by

Vn(t) = ∥w1(t) ∧ · · · ∧ wn(t)∥∧nH. (4.206)

We note that the monomial w1(t) ∧ · · · ∧ wn(t) evolves according to the equation

∂t(w1(t) ∧ · · · ∧ wn(t)) + (A+ L(w̃))n(w1(t) ∧ · · · ∧ wn(t)) = 0 (4.207)
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where

(A+ L(w̃))n(w1(t) ∧ · · · ∧ wn(t))

= (A+ L(w̃))w1 ∧ · · · ∧ wn + · · ·+ w1 ∧ · · · ∧ (A+ L(w̃))wn. (4.208)

Thus, the volume element evolves according to the ODE

d

dt
Vn + Trace((A+ L(w̃))Qn)Vn = 0 (4.209)

where Qn is the orthogonal projection in H onto the linear space spanned by the

vectors w1, . . . , wn.

Theorem 4.8. (Decay of Volume Elements) There exists a positive integer N0 de-

pending on R1 and M such that for any w̃0 ∈ BR1 , and for any n ≥ N0, and for

any w1(0), . . . , wn(0) ∈ H

∥S ′(t, w̃)w1(0) ∧ · · · ∧ S ′(t, w̃)wn(0)∥ΛnH ≤ Vn(0)e
−cnt (4.210)

holds for any t ≥ t0 with t0 depending on R1.

Proof: For each t, choose an orthonormal basis bi = (vi, r
1
i , r

2
i ) of the linear span

of w1, . . . , wn. Then

Trace((A+ L(w̃))Qn) =
n∑

i=1

(Abi, bi)H +
n∑

i=1

(L(w̃)bi, bi)H. (4.211)

We note that

Trace(AQn) =
n∑

i=1

(Abi, bi)H

=
n∑

i=1

[
(νAvi, vi)H + (−D∆r1i , r

1
i )L2 + (−D∆r2i , r

2
i )L2

]
≥ µ1 + · · ·+ µn (4.212)
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where µi are eigenvalues of A in H. By Proposition 4.1, there exists a constant C

such that µk ≥ Ck for all k ≥ 1. It follows that Trace(AQn) ≥ C0n
2 for some

positive constant C0.

Let ρi = r1i − r2i and Φi =
1
ϵ
Λ−2ρi. In view of Hölder’s inequality, Ladyzhen-

skaya’s inequality, elliptic regularity and the fact that ∥bi∥H = 1 for all i, we have

the bounds

|
n∑

i=1

(B(vi, ũ), vi)L2| ≤
n∑

i=1

∥vi∥2L4∥∇ũ∥L2

≤ C∥∇ũ∥L2n1/2

(
n∑

i=1

∥∇vi∥2L2

)1/2

(4.213)

and

|
n∑

i=1

(P(ρi∇Φ̃ + ρ̃∇Φi), bi)L2|

≤
n∑

i=1

(
∥∇Φ̃∥L∞∥ρi∥L2∥bi∥L2 + ∥∇Φi∥L∞∥ρ̃∥L2∥bi∥L2

)
≤

n∑
i=1

(
2∥∇Φ̃∥L∞ + C∥ρ̃∥L2∥∇r1i ∥

1/2

L2 + C∥ρ̃∥L2∥∇r2i ∥
1/2

L2

)
≤ 2∥∇Φ̃∥L∞n

+ C∥ρ̃∥L2n3/4

( n∑
i=1

∥∇r1i ∥2L2

)1/4

+

(
n∑

i=1

∥∇r2i ∥2L2

)1/4
 (4.214)

and

|
n∑

i=1

(vi · ∇c̃1, r
1
i )L2| ≤

n∑
i=1

C∥∇vi∥1/2L2 (∥∇r1i ∥
1/2

L2 + 1)∥∇c̃1∥L2

≤ C∥∇c̃1∥L2n1/2

(
n∑

i=1

∥∇vi∥2L2

)1/4( n∑
i=1

∥∇r1i ∥2L2

)1/4

+ C∥∇c̃1∥L2n3/4

(
n∑

i=1

∥∇vi∥2L2

)1/4

(4.215)
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and

|
n∑

i=1

(vi · ∇c̃2, r
2
i )L2|

≤ C∥∇c̃2∥L2n1/2

(
n∑

i=1

∥∇vi∥2L2

)1/4( n∑
i=1

∥∇r2i ∥2L2

)1/4

+ C∥∇c̃2∥L2n3/4

(
n∑

i=1

∥∇vi∥2L2

)1/4

. (4.216)

Now, using the triangle inequality, we have∣∣∣∣∣
n∑

i=1

[
−(∇ · (r1i∇Φ̃ + c̃1∇Φi), r

1
i )L2 + (∇ · (r2i∇Φ̃ + c̃2∇Φi), r

2
i )L2

]∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

[
(r1i∇Φ̃,∇r1i )L2 − (r2i∇Φ̃,∇r2i )L2

]∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

[
((c̃1 − c̃1)∇Φi,∇r1i )L2 − ((c̃2 − c̃2)∇Φi,∇r2i )L2

]∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

(c̄∇Φi,∇(r1i − r2i ))L2

∣∣∣∣∣ (4.217)

where c̄ = c̃1 = c̃2, and using the same inequalities as above, we obtain

|
n∑

i=1

[(r1i∇Φ̃,∇r1i )L2 − (r2i∇Φ̃,∇r2i )L2 ]|

≤
n∑

i=1

[
∥∇Φ̃∥L∞∥∇r1i ∥L2 + ∥∇Φ̃∥L∞∥∇r2i ∥L2

]

≤ ∥∇Φ̃∥L∞n1/2

( n∑
i=1

∥∇r1i ∥2L2

)1/2

+

(
n∑

i=1

∥∇r2i ∥2L2

)1/2
 (4.218)

and ∣∣∣∣∣
n∑

i=1

((c̃1 − c̃1)∇Φi,∇r1i )L2

∣∣∣∣∣ ≤
n∑

i=1

C∥∇r1i ∥L2∥∇ρi∥1/2L2 ∥c̃1 − c̃1∥L2

≤ Cn1/4∥c̃1 − c̃1∥L2

(
n∑

i=1

∥∇r1i ∥2L2

)3/4

+ Cn1/4∥c̃1 − c̃1∥L2

(
n∑

i=1

∥∇r2i ∥2
)1/4( n∑

i=1

∥∇r1i ∥2L2

)1/2

(4.219)
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and ∣∣∣∣∣
n∑

i=1

((c̃2 − c̃2)∇Φi,∇r2i )L2

∣∣∣∣∣
≤ Cn1/4∥c̃2 − c̃2∥L2

(
n∑

i=1

∥∇r2i ∥2L2

)3/4

+ Cn1/4∥c̃2 − c̃2∥L2

(
n∑

i=1

∥∇r1i ∥2
)1/4( n∑

i=1

∥∇r2i ∥2L2

)1/2

(4.220)

and ∣∣∣∣∣
n∑

i=1

(c̄∇Φi,∇(r1i − r2i ))L2

∣∣∣∣∣ =
n∑

i=1

c̄

ϵ
∥∇Λ−1(r1i − r2i )∥2L2

≤
n∑

i=1

Cc̄∥r1i − r2i ∥2L2 ≤ 4Cc̄n. (4.221)

Since w̃0 ∈ BM
R1

, there exists t0 depending on R1 such that w̃(t) = S(t)w̃0 ∈ BM
R1

for all t ≥ t0.

Combining the bounds (4.213)–(4.221) and applying Young’s inequality give

1

t

t∫
0

Trace((A+ L(w̃))Qn)ds ≥
1

4
Trace(AQn)− C1c̄n− C2C(R1)n

≥ n

(
1

4
C0n− C1c̄− C2C(R1)

)
(4.222)

for all t ≥ t0. Here, C1, C2 are universal positive constants, C(R1) is a constant

depending on R1, and 0 ≤ c̄ ≤ M . Thus, choosing

n ≥ 4

C0

(1 + C1M + C2C(R1)) (4.223)

ends the proof.

As a consequence, and following the proof of the similar result in [35], we

conclude that

Theorem 4.9. The global attractor XM has a finite fractal dimension in H.
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We end this section with the following result:

Theorem 4.10. The global attractor XM has a finite fractal dimension in V .

Proof: Since BM
R1

is bounded in H2, we conclude by Rellich compactness theorem

that S(t)BM
R1

is compact in V for all t ≥ T , see Remark 4.6. Hence, the property

(4.128), together with the fact that XM has a finite fractal dimension in H, allows

us to conclude that XM has a finite fractal dimension in V .

4.6 Added Body Forces and Added Charge Density

In this section, we consider the general case

∂tu+ u · ∇u+∇p = ν∆u− (ρ+N)∇Φ + f

∇ · u = 0

ρ = c1 − c2

−ϵ∆Φ = ρ+N

∂tc1 + u · ∇c1 = D∆c1 +D∇ · (c1∇Φ)

∂tc2 + u · ∇c2 = D∆c2 −D∇ · (c2∇Φ)

(4.224)

where the body forces f are smooth, divergence-free, time independent, and have

mean zero, and the added charge density N is smooth and time independent. We as-

sume that u0 has mean zero, and that the initial concentrations c1(x, 0) and c2(x, 0)

have space averages c̄1 and c̄2 satisfying c̄2 − c̄1 = N̄ . We consider initial data
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(u0, c1(0), c2(0)) ∈ H1. We also assume that the initial concentrations are nonneg-

ative functions and we recall that this property is preserved for all positive times t

by Theorem 4.3, which holds in this case as well.

Proposition 4.7. Let u0 ∈ H and ci(0) ∈ L2 . Then, there exists C > 0 such that

∥σ(t)− σ̄∥2L2 + ∥ρ(t)− ρ̄∥2L2

≤ (∥σ0 − σ̄∥2L2 + ∥ρ0 − ρ̄∥2L2)e−Dt + ∥σ̄∥2L2 + C∥N∥6L6 (4.225)

holds for all t ≥ 0. Moreover,
t+T∫
t

(
∥∇ρ(s)∥2L2 + ∥∇σ(s)∥2L2 +

1

ϵ
∥ρ(s)∥3L3

)
ds

≤ 1

D
((∥σ0 − σ̄∥2L2 + ∥ρ0 − ρ̄∥2L2)e−Dt

+ C(T + 1)(∥σ̄∥2L2 + ∥N∥6L6) (4.226)

holds for any t ≥ 0, T > 0.

Proof. We recall that σ and ρ obey
∂tσ + u · ∇σ = D∆σ +D∇ · (ρ∇Φ)

∂tρ+ u · ∇ρ = D∆ρ+D∇ · (σ∇Φ).

(4.227)

We take the L2 inner product of the equations obeyed by σ and ρ with σ and ρ

respectively, we add, and use the fact that∫
ρ∆Φσ = −1

ϵ

∫
σ(ρ)2 − 1

ϵ

∫
Nρσ (4.228)

to get the equation

1

2

d

dt
(∥σ∥2L2 + ∥ρ∥2L2) +D(∥∇σ∥2L2 + ∥∇ρ∥2L2)

+
D

ϵ

∫
σ(ρ)2 = −D

ϵ

∫
Nρσ. (4.229)
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We estimate∣∣∣∣Dϵ
∫

Nρσ

∣∣∣∣ ≤ D

ϵ
∥N∥L6∥ρ∥L3∥σ∥L2 ≤ D

2ϵ
∥ρ∥3L3 +

D

4
∥σ∥2L2 + C∥N∥6L6

≤ D

2ϵ
∥ρ∥3L3 +

D

2
∥σ − σ̄∥2L2 +

D

2
∥σ̄∥2L2 + C∥N∥6L6 (4.230)

in view of Hölder’s and Young’s inequalities. We obtain the differential inequality

1

2

d

dt
(∥σ − σ̄∥2L2 + ∥ρ− ρ̄∥2L2) +

D

2
(∥∇σ∥2L2 + ∥∇ρ∥2L2)

+
D

2ϵ
∥ρ∥3L3 ≤

D

2
∥σ̄∥2L2 + C∥N∥6L6 . (4.231)

In view of Poincaré inequality, we get

d

dt
(∥σ − σ̄∥2L2 + ∥ρ− ρ̄∥2L2) +D(∥σ − σ̄∥2L2 + ∥ρ− ρ̄∥2L2)

≤ D∥σ̄∥2L2 + C∥N∥6L6 . (4.232)

This gives (4.225). Integrating (4.231), we obtain (4.226).

Proposition 4.8. Let u0 ∈ H1, ci(0) ∈ H1. Then, there exist positive constants

M1,M2,M3,M4 and M5 depending on the initial data and the parameters of the

problem, and positive constants ξ1, ξ2, and ξ3 depending on f,N and σ̄ such that

∥∇u∥2L2 ≤ M1(∥∇u0∥L2 , ∥σ0∥L2 , ∥ρ0∥L2)e−Dt + ξ1(f,N, σ̄), (4.233)

∥ρ∥2L3 ≤ M2(∥ρ0∥L3 , ∥σ0∥L2)e−Dt + ξ2(f,N, σ̄), (4.234)

and

∥∇ρ∥2L2 + ∥∇σ∥2L2

≤ M3(∥∇ρ0∥L2 , ∥∇σ0∥L2 , ∥ρ0∥L3 , ∥∇u0∥L2)e−Dt + ξ3(f,N, σ̄) (4.235)
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hold for any t ≥ 0. Moreover,
t+T∫
t

(∥∆ρ∥2L2 + ∥∆σ∥2L2)ds ≤ M4(∥∇ρ0∥L2 , ∥∇σ0∥L2 , ∥ρ0∥L3 , ∥∇u0∥L2)e−Dt

+ ξ3 (f,N, σ̄) (T + 1) (4.236)

and
t+T∫
t

∥∆u∥2L2ds ≤ M5(∥∇u0∥L2 , ∥σ0∥L2 , ∥ρ0∥L2)e−Dt+ξ1(f,N, σ̄)(T+1) (4.237)

hold for any t ≥ 0, T > 0.

Proof. The proof is similar to that of Proposition 4.4. We briefly sketch the main

ideas. Taking the L2 inner product of the u-equation with −∆u leads to the differ-

ential inequality

d

dt
∥∇u∥2L2 + ν∥∆u∥2L2 ≤ C∥ρ∥6L2 + C∥ρ∥3L3 + Cf,N . (4.238)

An application of Lemma 1.1 gives (4.237). Integrating (4.238) gives (4.237).

Taking the L2 inner product of the ρ-equation (4.65) with ρ|ρ| and estimating

the resulting terms gives

1

2

d

dt
∥ρ∥2L3 +

Dσ̄

ϵ
∥ρ∥2L3 ≤ C∥σ − σ̄∥2/3H1 ∥σ − σ̄∥4/3L2 ∥ρ∥2L3 + CN

≤ C∥ρ∥3L3 + C∥∇σ∥2L2∥σ − σ̄∥4L2 + CN . (4.239)

Thus, Lemma 1.1 gives (4.234).

Finally, taking the L2 inner product of the ρ-equation (4.65) and of the σ-

equation with −∆ρ and −∆σ respectively, adding the resulting equations, and es-
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timating the obtained terms give the differential inequality

d

dt
(∥∇ρ∥2L2 + ∥∇σ∥2L2) +D(∥∆ρ∥2L2 + ∥∆σ∥2L2)

≤ C(∥∇u∥4L2 + ∥ρ∥2L3 ++∥N∥2L3)(∥∇ρ∥2L2 + ∥∇σ∥2L2)

+ C∥σ − σ̄∥2L2∥∇σ∥2L2 + C∥ρ∥2L2∥∇ρ∥2L2 ++∥ρ∥4L2 + CN . (4.240)

Lemma 1.1 gives (4.235). Integrating (4.240) gives (4.236).

Proposition 4.9. Let u0 ∈ H2, ci(0) ∈ H2. Then, there exist positive constants

M6 and M7 depending on the initial data and the parameters of the problem, and

positive constants ξ4 and ξ5 depending on f,N and σ̄ such that

∥∆u∥2L2 ≤ M6(∥∆u0∥L2 , ∥∇σ0∥L2 , ∥∇ρ0∥L2)e−Dt + ξ4(f,N, σ̄) (4.241)

and

∥∆ρ∥2L2 + ∥∆ρ∥2L2 ≤ M7(∥∆ρ0∥L2 , ∥∆σ0∥L2 , ∥∇u0∥L2)e−Dt

+ ξ5(f,N, σ̄) (4.242)

hold for all t ≥ 0.

Proof. The proof follows the derivation of (4.80) and (4.81) in Proposition 4.4. We

omit the details.

Let V ′′ be the convex subset of V = H1 ⊕H ⊕H1 ⊕H1 consisting of vectors

(u, c1, c2) such that u is divergence free with mean zero and c1 and c2 are non-

negative functions a.e. whose difference has a space average equal to −N̄ . We

define the solution map

O(t) : V ′′ 7→ V ′′
(4.243)
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corresponding to system (4.224) by

O(t)(u0, c1(0), c2(0)) = (u(t), c1(t), c2(t)). (4.244)

For each M > 0, we consider the convex subset V ′
M of V ′′ consisting of vectors

(u, c1, c2) such that u is divergence free with mean zero and c1 and c2 are non-

negative functions a.e. whose space averages are less than or equal to M and whose

difference has a space average equal to −N̄ . By Proposition 4.9, there exists R2 >

0 depending on the body forces f , the added charge density N , and the positive

constant M , such that for any w0 = (u0, c1(0), c2(0)) ∈ V ′
M , there exists t′0 >

0 depending on ∥u0∥H1 , ∥c1(0)∥H1 , ∥c2(0)∥H1 such that for all t ≥ t′0, we have

O(t)w0 ∈ BM
R2

, where

BM
R2

= {(u, c1, c2) ∈ V ′
M : ∥u∥H2 + ∥c1 − c̄1∥H2 + ∥c2 − c̄2∥H2 ≤ R2} . (4.245)

We note that the map O(t) has the same properties as the map S(t), namely the

existence of a compact absorbing ball, continuity properties (cf. Theorem 4.5) and

injectivity (cf. Theorem 4.6). The existence of a global attractor is proved as in

Theorem 4.7 and its finite dimensionality follows from decay of volume elements

(Theorem 4.8) like in Theorems 4.9 and 4.10. The proofs of these theorems are

similar to the proofs of the respective results for N = 0, and are omitted.

Theorem 4.11. There exists a global attractor X which is compact in V ′′ and has

finite fractal dimension, such that

lim
t→∞

distV(O(t)w0, X) = 0 (4.246)

holds uniformly for w0 in bounded sets in V ′′.



168

REFERENCES CITED

[1] E. Abdo and M. Ignatova. Long time dynamics of a model of electroconvec-
tion. Trans. Amer. Math. Soc, 374:5849–5875, 2021.

[2] E. Abdo and M. Ignatova. Long time finite dimensionality in charged fluids.
Nonlinearity, 34(9):6173–6209, 2021.

[3] E. Abdo and M. Ignatova. On electroconvection in porous media. Indiana
University Mathematics Journal, 2023.

[4] H. Bae, A. Biswas, and E. Tadmor. Analyticity of the navier-stokes equations
in critical besov spaces. Arch. Ration. Mech. Anal., 205(3):963–991, 2012.

[5] H. Bahouri, Y. Chemin, and Danchin R. Fourier analysis and nonlinear par-
tial differential equations. Springer, Berlin, 2011.

[6] J. Bedrossian and V. Vicol. The Mathematical Analysis of the Incompress-
ible Euler and Navier-Stokes Equations: An Introduction, volume 225. AMS
Graduate Studies in Mathematics, 2022.

[7] P. Biler and J. Dolbeault. Long time behavior of solutions to nernst-planck and
debye-hckel drift-diffusion systems. Ann. Henri Poincaré, 1:461–472, 2000.
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