ON THE NONLINEAR INTERACTION OF CHARGED PARTICLES
WITH FLUIDS

A Dissertation
Submitted to
the Temple University Graduate Board

in Partial Fulfillment

of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY

by
Elie Abdo
August 2023

Examining Committee Members:

Mihaela Ignatova, Advisory Chair, Mathematics
Cristian Gutierrez, Mathematics

Irina Mitrea, Mathematics

Nathan Glatt-Holtz, Mathematics, Tulane University



©
by
Elie Abdo
August 2023

All Rights Reserved

i1



111

ABSTRACT

We consider three different phenomena governing the fluid flow in the presence of
charged particles: electroconvection in fluids, electroconvection in porous media,
and electrodiffusion. Electroconvecton in fluids is mathematically represented by a
nonlinear drift-diffusion partial differential equation describing the time evolution
of a surface charge density in a two-dimensional incompressible fluid. The ve-
locity of the fluid evolves according to Navier-Stokes equations forced nonlinearly
by the electrical forces due to the presence of the charge density. The resulting
model is reminiscent of the quasi-geostrophic equation, where the main difference
resides in the dependence of the drift velocity on the charge density. When the fluid
flows through a porous medium, the velocity and the electrical forces are related
according to Darcy’s law, which yields a challenging doubly nonlinear and dou-
bly nonlocal model describing electroconvection in porous media. A different type
of particle-fluid interaction, called electrodiffusion, is also considered. This latter
phenomenon is described by nonlinearly advected and nonlinearly forced continu-
ity equations tracking the time evolution of the concentrations of many ionic species
having different valences and diffusivities and interacting with an incompressible
fluid. This work is based on [1, 2, 3] and addresses the global well-posedness,
long-time dynamics, and other features associated with the aforementioned three

models.
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CHAPTER 1

Navier-Stokes Equations on the Torus

We consider the incompressible Navier-Stokes equations, forced by time-independent
body forces in the fluid, on two-dimensional periodic domains. We address the ex-

istence, uniqueness, smoothness, and long-time behavior of solutions.

1.1 Viscous Homogeneous Incompressible Fluids

Let Q C R be a domain occupied by a viscous incompressible fluid. The particle
trajectories are described by the flow map
X(+,t): Q— 0, a— X(a,t) (1.1)
at positive times ¢ > (0. The velocity field
u(z,t) = (uy (2, 1), ..., uq(z, 1)) (1.2)
at (X (a,t),t) is tangent to the curve { X (a,s) : 0 < s <t} at X (a,t) and obeys
0 X (a,t) =u(X(a,t),t). (1.3)
The density scalar field p(-,¢) determines the mass of a volume element V' in the
fluid via

m(V,t):/p(x,t)dx. (1.4)
v



Assuming the conservation of mass, we have

d

—m(X(V,t),t) =0< / (Op + V - (up)) (z,t)de =0 (1.5)
dt X(Vit)

for any smooth volume element V' in ). Consequently, mass is conserved if and
only if the the density p obeys the equation

Op+ V- (pu) =0. (1.6)
Due to the incompressibility of the fluid, the velocity field satisfies the divergence-
free condition

V-u=0, (1.7)

hence the equation (1.6) reduces to
O (p(X(a,t),t)) = 0p(X(a,t),t) + (u-Vp)(X(a,t),t) =0. (1.8)
Therefore, p(X (a,t),t) is constant in time and amounts to the initial density py at
a. This gives the explicit expression
pla,t) = po(X ' (z,1)) (1.9)
for all x € € and all nonnegative times. If py is homogeneous (constant in space),

then we obtain

p(a,t) = po (1.10)

for all x € Q) and all times ¢ > 0. The pressure and viscosity of the fluid exerts a
force on the surface of any volume element in the fluid. Due to the conservation of

momentum (Newton’s second law of motion), and in the presence of body forces in



the fluid, the following relation

d

G| ptde= [ttt
dt Jxv

X(Vit)
+ / (pI +v(Vu+ Vu")) - n(z)do(z) (1.11)
dX(Vit)
holds, where p is the pressure of the fluid, » > 0 is a positive constant denoting the
dynamic viscosity, n(x) is the outward unit normal to the boundary 0.X (V,t), and

[ is the identity operator. An application of Green’s formula yields

d

pr pou(z, t)dx = / (—=Vp(x) + vA(z) + pof(x)) dx (1.12)
X(Vit)

X(Vit)
for all volume elements in €2, from which we infer that
po (Owu+u-Vu)+ Vp —vAu = pof. (1.13)

Dividing both sides by pg, we obtain the Navier-Stokes system describing the time
evolution of the velocity field u,

1 v
ou+u-Vu+ —Vp——Au=f. (1.14)

Po p

The constant vp~*

is called the kinematic viscosity. We refer the reader to [6,
Chapter 1] for more details.
In the following sections of this chapter, the constants py and v will be taken

to be 1 as they don’t have any contribution to the analysis of the problems we are

addressing.

1.2 Functional Spaces and Notations

Let T2 = [0, 272,



For 1 < p < oo, we denote by LP(T?) the Lebesgue spaces of measurable

periodic functions f from T? to R (or R?) such that

1/p
Il = ([ I1rae) < o (115)

1l = esssuppal f] < oo (1.16)

if p € [1,00) and

if p = co. The L?(T?) inner product is denoted by (-, ) 2.
We denote by P the Leray-Hodge projection onto the space divergence free

vector fields. For a mean-free periodic vector field v = (vy, v9) with Fourier series

v = Z ;e (1.17)
JE€Z2\{0}
Pv has the following Fourier representation
Po= > [vj (v -j)‘%} e, (1.18)
jezA\(o) i

The operator P is bounded on L? spaces for any p € (1, c0).
For s > 0, we denote by H*(T?) the Sobolev spaces of measurable periodic

mean-free functions f

= ¥ e 0o
J€Z\{0}
from T? to R (or R?), obeying
113 = D IRP1fif? < oo, (1.20)
kez?

Let H and V be the Hilbert spaces of L?(T?) and H'(T?) respectively, consist-
ing of periodic vector fields which are mean zero and divergence-free, with norms

lull = lullz2 (1.21)



and

[ully = [IVullz2 (1.22)

respectively.

For a Banach space (X, ||-||x) and p € [1, o], we consider the Lebesgue spaces
LP(0,T; X) of functions f from X to R (or R?) satisfying

T
/ I flI%dt < oo (1.23)
0

with the usual convention when p = oo.

Throughout this chapter, C' denotes a positive universal constant, and it changes

from line to line along the proofs.

1.3 Existence and Uniqueness of Solutions

We consider the forced incompressible Navier-Stokes equations
ou+u-Vu+Vp—Au=f, (1.24)

Vou=0 (1.25)

on T? x [0, 00), with initial data uy(x). All unknowns are periodic in space. The
body forces f are divergence-free, time independent and have mean zero.

The Stokes operator A := PA is positive, self-adjoint, with compact inverse.
By the spectral theorem for Hilbert spaces, there is an orthonormal basis of H

consisting of eigenfunctions {®},- , of the Stokes operator



with periodic boundary condition on T?, where the sequence of eigenvalues /i, is
increasing and obeys 0 < p; < po < --- < pp — 0o. The functions ®;’s are
C*°, divergence-free and have mean zero. Since the operators P and A are Fourier
multipliers, they commute, and consequently, it holds that

—ADy, = 1, Py (1.27)

for all £ € N. For a positive integer n > 1, we let

n

Uy =Pyu = (u, D)2 Py (1.28)
k=1
be the Galerkin approximations of u. For each n € N, w,, is C'*°, divergence-free

and has mean zero. We consider the approximating equations

a%un — Auy, + Py (uy, - Vuy,) =P, f. (1.29)

These are equivalent to a system of nonlinear ODE’s for the coefficients of the
Galerkin approximations (u, ®;)r2, 1 <i <n,

d
E(U, D)2 + pi(u, ®;) 2

+ zn:(@)k -V, ;)2 (u, Pr)p2(u, )2 = (f, Di) e, (1.30)
hence a solutionkgf: tlhe approximating system would exist if it is bounded in L?. In-
deed, we take the L? inner product of (1.29) with w,,. In view of the self-adjointness
of the projector PP, and the divergence-free condition obeyed by u,,, the following
cancellation

(P (- Vug), un)rz = (U - Vg, Paun)rz = (un - Vg, uy)2 =0 (1.31)

holds, yielding the differential inequality

1d
2dt

1 1
lnllze + IVenllz < 1z lwnllzz < SIAIZ + 5 llunllZ, (1.32)



after making use of Cauchy-Schwarz and Young inequalities. Now we control the
L? norm of u, by the L? of its gradient via application of the Poincaré inequality
and obtain the energy inequality
 unllzs + luallZe < 1715 (133)
from which we infer that
[un ()72 < lluoll72e™ + (1 £II72 (1.34)
holds for every ¢ > 0. l\goreover, we have
19Ot < ol + 15177 (135)
for every T > 0. Ther((]afore, the Galerkin approximants w,, are uniformly bounded
in the Lebesgue spaces
u, € L*(0,00; L) N L*(0,T; H). (1.36)
for any 7" > (. Moreover, the time-derivatives of the approximants w,, obey
Q 4/3 -1
atun e LY2(0,T;H™ ) (1.37)
uniformly in n. Indeed, if ® € H*, then
[(=Aun, @) 2] = [(Vn, VO) 2] < ||V 2| 9] 11 (1.38)
and so

[Aun || < [[Vun| 2 (1.39)

which implies that

Au, € L*(0,T; H™Y) ¢ L¥3(0,T; H™Y). (1.40)



Also, if ® € H', then the nonlinear term in u,, can be bounded as
[(Pr(un - V), @) 2] < |2 [ Vatn|| 22 [P @] 2o
1 3
< Clluall | Vot 72121 (1.41)
in view of Ladyzhenskaya’s interpolation inequality. By taking the supremum over
all functions ® in H' whose H' norm is bounded by 1, we infer that
1wt Ve la-1 < Cliwll 2 Pl e, (1.42)
from which the inclusion
P, (u, - Vu,) € LY3(0,T; H™Y) (1.43)
follows. By making use of the PDE (1.29) obeyed by u,,, we obtain the desired
control (1.37) of the time derivatives. Now we apply the Aubin-Lions lemma and
conclude that the sequence {u,}, -, has a subsequence that converges strongly in
L?(0,T; L?) to some function u. Testing (1.29) with ® € V and integrating in time

from O to ¢, we have
t

(un(t), ®)r2 — (ug, ®)r2 + /(Vun,V@)des

0
t

+ /(Un . Vun, I[an))LQdS = t(f, an)>L2' (144)
0
Since u,, — u strongly in L(0, T’; L?), we conclude, passing to subsequences, that
U (t) — u(t) in L? for a.e. t € [0, 71, and thus

(1, @) 2 — (u, ) 2| < |Juim — ual|z2]| @] 12 — 0. (1.45)



Now, since u,, is bounded in L?(0,7; H'), we deduce, passing to subsequences,

that Vu,, — Vu in L?*(0,T; L?), and so

t t

/(Vun,VQ))des — /(Vu,V(I))des. (1.46)
0 0

Moreover,

t
/{(un Vi, Py®)r2 — (u- Vu, @)z} ds
0

t
< /((un —u) - Vi, P,®)2ds
0

t

+ /(u -V (tp — u),P,®)2ds

0

¢
+ / (u-Vu,P,® — ®)2ds
0

=A, + B, +C,. (1.47)
We show that the quantities A,,, B,, and C,, converge to 0. Indeed, we have

t
1 1
An < [ Cllwn =l Tty = Wl | T2 B0 s
0

4

t 2 t % t
<clol | [19ul: | | [190 - vulis ) { [l -l

0 0 0
which approaches 0 as n blows up due to the estimate (1.35). Since ulP,® €
L?(0,T; L?), then by the weak convergence Vu,, — Vu in L?*(0,T; L?) we con-

clude that
t

B, = /(V(un — w), uP,®)2ds| — 0. (1.48)

0
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Finally, we have
t
1 3
Cu < @ — Bl [ Jull [ Vulf 0. (1.49)
0
Therefore, u obeys the equation

(u(t), ®)rz — (ug, D)2

t t

+ /(Vu, Vo) 2ds —I—/(u VY, ®)ads = t(f, ®) 2. (1.50)

0 0
forall ® € V and a.e. t € [0, T]. This gives the following theorem:

Theorem 1.1. Let T" > 0 be arbitrary. Let ug € H and f € H. Then, the system
(1.24)—~(1.25) has a unique solution v € L>=(0,T; H) N L*(0,T; V) satisfying
lu(®)l72 < lluollzze™ + [ fII72 (1.51)
foranyt € [0,T). Moreo;er, we have
JIu®I: < ol + 71112 152
0

for everyT' > 0.

Proof: In view of the bounds (1.34) and (1.35), and the lower semicontinuity of
the norm, we obtain (1.51) and (1.52). For uniqueness, suppose u; and uy are
two solutions of (1.24)—(1.25) with same initial conditions, such that u;,us €
L>=(0,T; H) N L*(0,T; V). Then the difference u = u; — uy obeys

Ou—+u-Vuy +us - Vu+ V(py — pa) — Au=0. (1.53)

Taking the L? inner product of this latter equation with u gives the energy equality

1d

éauuné + | Vul|2: = — /(u V) - udz. (1.54)
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We estimate

‘/(U-Vul)-udx < Clfull 2 | Vaul| g2 Vot | 2

< IVuls + OV [Zalful3s (1.55)
using Ladyzhenskaya’s interpolation inequality followed by an application of Young’s
inequality. Consequently, u satisfies the differential inequality

Dl < CIVu 2l (1.56)

from which we infer that u; = uy a.e. in T? for all t € [0, T].

Theorem 1.2. Suppose uy € V and f € H. Then, for any t > 0, it holds that
[Vu)l: < [IVuoll7ze™ + || fII72- (1.57)
Moreover,

T
[ 18u(®)|-ds < [Tz + 7171 (159
0

holds for all T' > 0.

Proof: We take the L? inner product of equation (1.29) obeyed by u,, with —Auw,,.
In view of the the identity

Tr(MTM?) =0 (1.59)

that holds for the two-by-two traceless matrix M with entries M;; = %, the non-
J

linear term in w,, vanishes. Moreover, the forcing term (f, —Au,,) 2 is bounded by
the product of || f|| .2 and ||Aw,|| 12 due the Cauchy-Schwarz inequality. A straight-

forward application of Young’s inequality yields

d
ZIVunllZz + 1 Aun|Z2 < [1f]7:- (1.60)
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By the Poincaré inequality, the term || Aw, || .2 is bounded from below by ||V, || 2.
We multiply by the integrating factor, integrate in time from O to ¢, apply the Banach
Alaoglu theorem, and use the lower semicontinuity of the norm in order to obtain
(1.57). Integrating (1.60) in time from O to 7" and using again the Banach Alaoglu

theorem and the lower semicontinuity of the norm, we obtain (1.58).

Remark 1.1. It follows from the proof provided above that
t+1
[ 18u(s) s < [ TuolEae + 2012 (LoD
t
for any t > 0. These bounds will be used later to bootstrap the regularity and

exponential decay to higher-order derivatives.

Theorem 1.3. Let ug € H,f € H, and u be the solution of (1.24)—(1.25) with
initial data uy. There exists a radius R > 0 depending only on || f|| 12, and a time
to > 0 depending only on ||ug|| 2, such that the bound

IVu(t)||2 < R (1.62)

holds for t > t,.

Proof: From the local-in-time integral (1.52), we infer the existence of a small
positive time ¢; € [0, 1] with the property that
IVut)lIz2 < 2lluollz + 2[1 117> < 0. (1.63)
In view of the bound (1.57), there exists a time ¢y > ¢; such that
IVu)lZ: <20 fl2: =R (1.64)

for all ¢ > t,. This ends the proof of Theorem 1.3.
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Now we address higher regularity properties of the solutions. We need the fol-

lowing Gronwall Lemma:

Lemma 1.1. Let y(t) > 0 obey a differential inequality

d
P +cay < Fi+ F(t) (1.65)
with initial datum y(0) = yo, with F a positive constant and F'(t) > 0 obeying
t+1
/ F(s)ds < goe @' + Fy (1.66)
t
where cy, co, go, F5 are positive constants. Then
1 o
y(t) < yoe M + goe T (t+ 1)e " + —F) + I ¢ - (1.67)
1 —e ¢

holds with ¢ = min{cy, ¢ }.

The main point of the lemma is that the constants g, and gy are multiplied by
exponentially decaying factors.
Proof: Integrating, we have
y(t) < yoe ' + iFl + /t e~ =9 B (s)ds, (1.68)
0

1

and, taking N to be the integer part of ¢, i.e. t € [N, N + 1), we have
t N k+1
/ e F(s)ds < Z ecl(tkl)/ F(s)ds

N
< o Z efcl(ka) (9067C2k3 + Fg)
k=0

. “
< oC1 (N + 1)6_ mln{C1,62}NgO + 1_6—MF2 (169)

Note that

ecl(N + 1)6_ min{ci,ca} N S ecl—l—c(t + 1)e—ct S 076—7t

for v < ¢ = min{cy, e2}.
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By making use of this latter lemma, we obtain the following theorem:

Theorem 1.4. (Higher Regularity) Let k > 1 be an integer. Let vy € H* and
f € H*'. Then we have
t+1 .
[[w(t)]] e +/ lu(s)1Fpeirds < Cilluollgre” T + Crll fllemr (1.70)
t
forallt € [0,00). Here Cy, is a positive constant depending only on k and some

universal constants.

Proof: We present a proof by induction. In view of the estimate (1.57) and Remark
1.1, we infer that Theorem 1.4 holds for £ = 1. Suppose the theorem holds at the
(k — 1)-th level. Taking the L? inner product of the equation (1.29) obeyed by the

velocity approximants u,, with (_A)§

—A)'

= (Pof, (=A)*u) 2 — (P (ty - V), (—A) uy,) 2. (1.71)

u,, we obtain the energy equality

k+1

[z + 1(=2) 2 w72

Here (—A)% is the square root of the Laplacian, defined as a Fourier multiplier
with symbol |j|2. In view of the self-adjointness of P,,, the fact that P, and (—A)*
commute as they are Fourier multipliers, and the identity P,u,, = u,,, we bound the

forcing term as follows,

B fy (=) ) 2] < [(=A)F Fl22 (= 2) % w2

k+1

1 h—1
< ZI(=2) 2 wun[l7: + Cl(=2) = [z, (1.72)
The first inequality follows from integrating by parts whereas the second inequality

is a direct consequence of Young’s inequality for products. As for the nonlinear
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term in u,,, we distinguish two cases: k = 2 and k£ > 2. If £ = 2, then we have
|(Po(tn - Vn), (= A)un) 2] = [(V (s - Vn), V(=A)) 2]
< N VunllZa VAU 22 + [[wn] 2o | At ]| 24 | V Ay | 2
< OVt 2l At 211V At 22 + [ Vet 2 A ||V A1

< ZIIVAuIZ + C (IVunlze + [VtnllZ2) [ Aun]lZ: (1.73)

e~ =

after several applications of Ladyzhenskaya’s interpolation inequality. If & > 2,

then H*! is a Banach Algebra, and consequently, we have

k-1 k+1

(P Vi), (=A) un) 2] = [((=A) % (un - Vi), (=A) % ) 12|

k—1 k+1

< H(=A) = (un - Vun) ([ 2 [(=2) 7 | 22

ktl
2 Un||L2

k1 E
< C(=A) 7 uplr2[[(=A) Zup | 2] (=A)

+ k k
2

1 ki1 E-1
< I=4)= un |7z + Cl(=A) 7 |72 [ (= A) 2 un [ 72 (1.74)

via integration by parts and use of Holder and Young inequalities. Therefore, we
obtain the differential inequalities

d 2 2

I AunlEe + 11V Aual

< CIVSIZ: + C (IVunllze + Vuall72) [ Auall7: (1.75)

when k = 2, and

k k+1
2

d
TN (=2) 7wl + (=2) 7 unll72

< CY(=A)7 fllfz+ Cl(=2) 7 unll7: ]l (=A)

k
2

Up ||32 (1.76)

when £ > 2. An application of Lemma 1.1 completes the proof of Theorem 1.4.
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Remark 1.2. The solutions to the forced Navier-Stokes system are infinitely differ-
entiable in space and time provided that the initial data is C*°. This follows from
the Sobolev H* regularity obtained in Theorem 1.4 for all k > 0 and standard

Sobolev embeddings.

Remark 1.3. In the absence of body forces in the fluid (that is f = 0), the velocity u
and all its spatial derivatives decay exponentially in time to zero, a fact that follows

from Theorem 1.4.

1.4 Existence of a Finite Dimensional Global

Attractor

Let

S(t): H— H (1.77)

be the solution map

S(t)ug = u(t) (1.78)

corresponding to the forced incompressible Navier-Stokes system (1.24)—(1.25).
Note that S(t) is well-defined on H for every ¢ > 0. Moreover, the uniqueness of

solutions implies that

S(t+ s)upg = S(t)S(s)uo (1.79)
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for all t,s > 0. In other words, S(t) is a semi-group. We proceed to investigate

other properties of the map S(t).

Theorem 1.5. (Continuity) Let u}, u3 € H. Lett > 0. There exists a constant C (t),
locally uniformly bounded as a function of t > 0 and locally bounded as initial data

up, u are varied in H, such that S(t) is Lipschitz continuous in H obeying

1S (t)ug — St)ugllz < C)|Jug — ug||F- (1.80)

Proof: Let u;(t) = S(t)up, uz(t) = S(t)u3. The difference u = u; — uy obeys the
differential inequality

d
—lullz < 1Vurlzallull:, (1.81)

see the proof of Theorem 1.1. By Gronwall’s inequality, we infer that

[u()|17: < Ct)|lug — gl (1.82)
where
t
C(t) = exp /||Vu1(s)||%2ds : (1.83)
0

This completes the proof of Theorem 1.5.

Now we address the injectivity of the solution map S(¢) on H:

Theorem 1.6. (Backward Uniqueness) Let up,ul € V. If there exists T > 0 such

that §(T)uy = S(T)ul, then uy = ul.

Proof: Let u(t) = S(t)uj — S(t)ud, u(t) = 3(S(t)uf + S(t)ud). WLOG, assume

u##0onl0,7).
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Let Ey(t) = |[u(®)||3s, E1(t) = ||[Vu(t)|3., Y (t) = log(1/Ey(t)). Then Y () is

bounded from below on [0,7) and lim Y'(¢) = 4+o00. We show that the following

t—1T—

differential inequalities

d E, FE
< = )
AE, = 4 (t)EO (1.84)
and
d FE
—Yt) < —_— 1.
U0k (1.85)
hold, with
T
/ )+ Cs(t))dt < oo. (1.86)
0

This implies that Y € L>°(0,T'), yielding consequently a contradiction.
The equation obeyed by u is given by
Owu + Au+ B(u,u) + B(u,u) = 0, (1.87)
where A = —PA is the Stokes operator and B is the operator defined by B(v,w) =
P(v - Vw). We take the L? inner product of (1.87) with u and obtain the energy

equality

1d ~ -
5l + IVl + (B@ ) + Bl @), wi: =0, (189)

from which we derive the equation desribing the time evolution of Y (¢),

liy(t): 1d &_i_(B(ﬂ,u)—i—B(u,ﬂ),u)Lz'
2dt 2dt Ey Ey

(1.89)
Due to the cancellation law

(B(@, u),u)z2 = 0, (1.90)
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and the estimate
|(B(u, @), u)re| < |Jull 7|Vl 2 < O Va2 By, (1.91)
we conclude that (1.85) holds. On the other hand, the time evolution of E;/E,

depends upon the time evolution of both £ and Y via

iB 1d. B d
ab_ldp  Bidy 1.92
B, Bedat T B, (1.92)

We derive the differential equality obeyed by E) by taking the L? inner product of

(1.87) with Au and obtain
1d

Inserting (1.93) in (1.92) gives
1dFE 1 ~ ~
§%§:E#¢m@—wmm+mwmmm)
E1 E1 (B(u, ﬂ) -+ B(ﬂ, u), U)LZ
= 1.94
+ Ey (Eg + Ey ( )
which, after making use of the identity
Ef || Aul|Z. - _
g~ Bl EE (1.95)
reduces to
1dE; _ _
SdlEy —Eq (A = B Eg ull72
— EyY(B(u,u) + B(t,u), (A — EyE;u) . (1.96)

We apply the Cauchy-Schwarz inequality to the second term on the right hand-side

of (1.96) and split the resulting product using Young’s inequality.
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We estimate
1B (u, @) + B(@,u)ll7> < C(IB(u, @)l 2 + |1 B, w)|72)
< CullZslIValZs + [l 7o [IVullZ)
< C(IValZs + [[ullZe ) 1, (1.97)
using Holder’s and Ladyzhenskaya’s inequalities. We obtain (1.84), completing the
proof of Theorem 1.6.

As a consequence of Theorem 1.3, there exists a positive radius R > 0 depend-
ing only on the body forces f, such that for any initial velocity uy € H, there exists
a time ¢y > 0, depending only on ||ug|| 2, such that

S(t)up € Br = {u € H:||Vul|;» < R} (1.98)
for all ¢ > ¢y. Due to the Poincaré inequality, there exists a time 7" > 0, depending
only on the radius R, such that the inclusion

S(t)Br C By (1.99)
holds for all times ¢ > T.

The continuity and injectivity properties of the solution map S(t), together with

the connectedness and compactness properties of the absorbing ball By, imply the

existence of a global attractor:
Theorem 1.7. (Global Attractor) Let
X =()S(t)Bxr (1.100)

t>0

Then:

(i) X is compactin H.
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S(t)X = X forallt > 0.

(iii) If Z is bounded in H in the norm of of H, and S(t)Z = Z for allt > 0, then

Z C X.
(iv) Foreveryuy € H, tliglo disty(S(t)ug, X) = 0.
(v) X is connected.
Proof:
(i) Since Bg is compact in H, then by continuity of the solution map S(t), we
see that S(t)Bg is compact in H for all ¢ > 0, and so is their intersection.
(ii) Letz € X, and ¢ > 0. We show that S(¢)x € X. Since x € X, then for each

o > 0, there exists y, € Bg such that x = S(0)y,, so S(t)x = S(t + 0)y,,
and s0 S(t)z € [ S(s)Bg. Now, if s < t, then S(t)z = S(s)S(t — s)x. But
x=38(T+ s)y:>ftor some ys € Br, s0 S(t — s)x = S(t — $)S(T + s)ys =
S(t+T)ys € Bgsince S(T' + t)Br C Bg. Thus S(s)S(t — s)z € S(s)Bg,
so S(t)x € S(s)Bg, and so S(t)x € ﬂS(s)BR. Therefore, S(t)x € X.

Now, let z € X and fix ¢t > 0. We slslf):v that z € S(t)X. Well, there exists
Yy € Bg such that x = S(t)y,. If s > 0, then there exists z; € Bg such
that * = S(t + s)zs, and so S(t)S(s)zs = S(t)y:. By injectivity of S(¢), it

follows that S(s)zs = y, so yr € S(s)Bg. This is true for any s > 0, so

Y € ﬂ S(s)Bg, which implies that y, € X and thus x = S(t)y, € S(t)X.

s>0
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Since Z is bounded in H, there exists ¢, such that S(t)ug € Bg forallt > t,
and all ug € Z.

Then, let z € Z, and fix s > 0. We show that there exists y; € Br such
that = = S(s)ys. From the invariance property of Z, it follows that there
exists z; € Z such that z = S(s + tz)zs. Thus, z = S(s)S(tz)zs, With

S(tz)zs € Br. Hence, z € ﬂ S(s)Bg, and thus z € X.

>0
Let ug € H. Define w(ug) by

w(ug) = {u € H:3s; = o0,u = leTOS(sj)uo} (1.101)
where the limit is taken in H. We recall that there exists to = to(||ug|[z2) > 0
such that S(t)ug € Bg for all ¢t > t, thus w(ug) is non empty and bounded
in H.
Now, we claim that S(t)w(ug) = w(ug) for all ¢ > 0. To show this claim,
we note that if u € w(uy), then u = jlirgo S(s;)up and so S(t)u = jlirgo S(t+
s;)ug, thus S(t)u € w(ug). On the other hand, if u € w(ug) and S(s;)ug —
u, in H, we consider the sequence S(s; —t)u, for all j such that s; > ¢. Since
Br is compact and S(s; — t)ug € By for all but finitely many j’s, it follows,
passing to a subsequence, that S(s;, — t)ug converges to some v € Br. But
S(t)S(sj, —t)uo = S(sj, )up converges to u and S(t)v simultaneously. Thus,
u € S(t)w(ug).

Finally, we apply (iii) to Z = w(ug). More precisely, suppose there exists

e > 0 and a sequence t; — oo such that dist(S(t;)ug, X) > € > 0. By
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compactness of Br, S(t;)u, has a subsequence converging to an element of
w(ug), which by our assumption would lie outside X, contradicting the fact

that w(ug) C X.

(v) Assume that D; and D, are non-empty open (in /) disjoint sets such that
X C DiUD,. Assume z1 € X N Dy,z9 € X N Dy. Lett > 0. Then,
there exists y1 = y1(t), y2 = y2(t) € By such that 21 = S(t)y1, x2 = S(t)yo.
Let v be a straight line in Bg joining y; to y». Thus, S(¢)v is a continuous
curve joining x; to z3. Choose a point z(t) = S(t)y(t) on S(t)7 such that
z(t) € F = H\ (D; U Dy). Note that F'is closed in H and FF N X = ().
Since S(t)Br C Bg forall t > T, we see that x(t) € Bg forallt > T,
and so there exists t; — oo such that z(¢;) converges in H to some x. But
x(t;) € F and F is closed, so z € F. We claim that x € X, and this will
contradict the fact that ¥ N X = (). To prove our claim, let s > 0. Take
the sequence S(t; — s)y(t;) for t; > s+ T. Since y(t;) € v C Bg, it
follows that S(t; — s)y(t;) € Bgr fort; > s+ 1. Since By is compact, there
exists ¢;, — oo such that S(t;, — s)y(¢;,) converges to some y € Bg. Thus
S(s)S(tj, — s)yt;, converges to S(s)y in H. But S(¢;,)y;, converges to x
in H. Thus, x = S(s)y with y € Bg. Thus is true for any s > 0. Thus, we

proved our claim.

Remark 1.4. The attractor X is smooth, a fact that follows from the C* regularity

of the solutions to the forced Navier-Stokes system.
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Let ® be a smooth function defined on an open set 2 C RY, N > 1 and taking

values in H. Let

Y =S(t)P(Q). (1.102)
The volume element in X, is
0 0
E(S(t)q)(a)) ANCERIA E(S(t)@(a)) doy ... day (1.103)

where doy . .. day is the volume element in RY.

The functions

0
vi(t) = a&'(S(t)(I)(a)),i =1,...,N (1.104)
satisfy the linearized equation
Ow + B(v,u) + B(u,v) + Av =0 (1.105)

along u(t) = S(t)®(«). Thus, the time evolution of the volume element of an
N-dimensional surface transported by S(t) is characterized by that of

[or(E) A== Aoy (@) ||avn (1.106)
where AY H is the N-th exterior product of H, and vy, . .., vy satisfy (1.105) along

some u(t) = S(t)uy.

Theorem 1.8. (Decay of Volume Elements) There exists a time t, depending only
on ||ugl|z2 and an integer Ny depending only on the body forces || f|| 12 such that
lor(E) A~ ANoxn()||lg < |Jlvr(0) A=+ A UN(O)HHG’CN% (1.107)

forallt >ty and for all N > N,.
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Proof: We consider the operator
Tv:= Av + B(u,v) + B(v,u). (1.108)
defined on H? N H. The wedge product v; A - - - A vy evolves according to
vy A ANoy) + Ty A= Aoy) =0 (1.109)
where Ty is the operator defined by
Tn=TANIN---ANT+IANTANIN---ANT+IAN---NIAT, (1.110)

and [ is the identity operator. Consequently, it holds that

1d

SPTLGEAREEE on i+ Tr(TQ)[vr A+ Avnl||f =0 (1.111)
where @) = Q(v1, ..., vy) is the orthogonal projector in H onto the space spanned
by vy, ..., vx. An application of Gronwall’s inequality yields the bound

[or(8) A= Aun (8]

t

< oy (0) A -+ - Aoy (0)|| g exp —/Tr(TQ(s))ds : (1.112)
0
For each t > 0, let b;,2 = 1,..., N, be an orthonormal family of functions in H
spanning the linear span of vy, ..., vy. Then, the trace of T'() is given by
N N N

Tr(TQ) =Y (Thi,b)r2 =Y (Abi,bi)r2 + Y (B(bi,u), b2 (1.113)

i=1 i=1
‘We note that
N

> (Abibi)re > -+ (1.114)
=1
where (; are the eigenvalues of A in H. Asymptotically, each eigenvalue y; satisfies

i > C', and so the asymptotic behavior of their sum is described by

pi+ - +py > CA+---+N)>CN2 (1.115)
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On the other hand, we have
N

> (B(bi, ), bi) e

=1

< leb 124Vl 2

< CZ 163l 22|V 0i 2 | V][ 2

=1

N
<O Vbl 2l Va2

i=1
N 1/2
< Cwulan (19
i=1
1
< Ol Vull=N + 5 ; Vb3
R
_ 2
= C||Vul|2.N + ZZ.Z:;(,au)i,bi)p (1.116)
due to applications of Holder, Ladyzhenskaya, and Young inequalities. Putting

(1.113)—(1. 116) together, and 1ntegrat1ng in time from O to ¢, We infer that

/TT’(TQ( ))ds > = /Z Ab;, b; deS—C’N/HVuHdes

0
1 2
> ONt| N~ HVu(s)HdeS . (1.117)
0
We choose a time tg = to(||ug||z2) > 0 such that the estimate
IVu®)llZ: < 2[fIIz: (1.118)
holds for all £ > t,. Starting at ¢, the following bound
t

/Tr(TQ(s))ds > CNEN — 2||f|12) (1.119)

0
holds. Finally, we choose an integer Ny > 4|| f||7, and conclude that
t

/ Tr(TQ(s))ds > CN*t (1.120)

0
for all integers NV > N and all times ¢ > ¢,. This ends the proof of Theorem 1.8.
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The exponential decay of volume elements carried by the flow yield the finite-

ness of the fractal dimension of the attractor:

Theorem 1.9. The global attractor X has finite fractal dimension Dy (X),

log N
Dy (X) = limsup Og—Hl(T)
r—0 log (;)

where Ny (1) is the minimal number of balls in H of radii r needed to cover X.

(1.121)

The proof is based on global Lyapunov exponents and the Kaplan-Yorke for-

mula. We omit it here and refer the reader to [35, Chapter 14] for more details.
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CHAPTER 2

Electroconvection in Fluids

We study a model of electroconvection in which a two dimensional viscous fluid
caries electrical charges and interacts with them. The system has global solutions,
but in general the solutions do not have bounded mean. Tracking the mean, we
associate to each solution a mean zero frame and show that in the mean zero frame
the system has a compact, finite dimensional global attractor. If the fluid is forced
only by electrical forces and no other body forces are present, then the attractor

reduces to one point.

2.1 Introduction

We consider an electroconvection model that describes the evolution of a surface
charge density interacting with a two dimensional fluid. The model was used in
theoretical and numerical studies related to experiments of electroconvection in
thin smectic layers of liquid crystals [25, 41]. Analogies with Rayleigh-Bénard
convection motivated the physical studies [42].

The surface charge density ¢ = ¢(z, t) is a real valued function of position = and
time ¢. Its evolution is a continuity equation, with the current density J given by the

sum of the Ohmic density o F, with E the electric field, and the advective current
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density qu, where u is the velocity of the fluid. Magnetic effects are neglected and
the electric field £ is the gradient of a potential. The restriction to a two dimensional
region results in a nonlocal relation between the surface charge density and the
divergence of the electrical field [13, 42, 41]. The evolution of the surface charge
density is given by

Qq+V-J=0 2.1)

where the current density J is given by
J=0F+qu 2.2)
with o a constant conductivity, and the electric field given by
E=-Vd—-VAlg (2.3)
Here @ is a given smooth function which represents the restriction to the surface
of the potential due to the applied voltage, and A~'q (with A the square root of
the two dimensional spatially periodic Laplacian) is the restriction to the surface of
the potential due to the surface density charge q. The equation is coupled to the
incompressible Navier-Stokes system
ou+u-Vu+Vp—Au=qE+ f, V-u=0, (2.4)
where f are body forces in the fluid. In this chapter, we consider two dimensional
periodic boundary conditions. The potential ¢ and forces f are time independent
and smooth.
The global existence of regular solutions of this system with homogeneous

Dirichlet boundary conditions was established in [13]. In this work we focus on
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long time dynamics. The long time dynamics of dissipative partial differential equa-
tions has been investigated by many authors. The two dimensional forced Navier-
Stokes equations are known to possess global finite dimensional attractors ([ 14, 35],
and references therein). The long time behavior of various types of dissipative PDE
has been studied extensively [9, 21, 23, 32, 34]. Closer to the present system, the
study of long time dynamics of the critical dissipative SQG system with fractional
Laplacian dissipation and the existence of a finite dimensional global attractor were
done in [19].

We investigate the system (2.1)—(2.4). This has weak solutions in L? (Theorem
2.1) which, however, are not known to be unique. After any positive time, weak so-
lutions become strong, and strong solutions exist globally and are unique (Theorem
2.2). Our main result is the existence of a global attractor X which is compact in
a natural phase space of strong solutions and has finite fractal dimension. In order
to establish the existence of the attractor we need to account for the fact that spatial
averages of the velocity are time dependent, and might grow in time, driven by the
integral [ ¢V ®. This integral does not vanish in general, nor is it time integrable.
The remarkable property of the system is that the spatial average of velocity can be
tracked, or “moded” out, and the resulting system has a compact global attractor. In
this mean zero frame, the initial value problem for the system is solved by a non-

linear semigroup S(¢) which has a compact absorbing ball, is Lipschitz continuous
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in various norms, is injective, and high dimensional volume elements carried by its
flow decay in phase space.

This chapter is organized as follows. In Section 2.2 we gather preliminaries
concerning the dissipative operators. A lower bound, in the spirit of [19], Proposi-
tion 2.2, is proved in Section 2.2. Commutator estimates for positive and negative
fractional powers of the Laplacian (Proposition 2.3) are also proved in this section.
Section 2.3 is devoted to basic PDE results: existence of weak solutions, existence
and uniqueness of strong solutions. Here we also prove uniform long time bounds
for various norms of the solutions, which have the feature that the initial data con-
tributions to them decay exponentially, leaving only contributions coming from the
steady forces. The passage to the mean zero frame is described in Section 2.4. The
absorbing ball for the nonlinear semigroup is described in Section 2.5. In Section
2.6 continuity properties of the semigroup are established, and Section 2.7 is de-
voted to the proof of backward uniqueness. Decay of volume elements is proved
in Section 2.8. In Section 2.9 we prove the finite dimensionality of the attractor for
general fluid body forces f. We also show that in the absence of body forces in the
fluid, the system has a unique globally attracting steady solution in the mean zero
frame. In this case, in the original variables, the fluid’s spatial average velocity has

a finite limit in infinite time.
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2.2 Preliminaries

We denote functions spaces of spatially periodic functions on the torus without
distinct notation for vector valued functions. We write the Fourier series for mean

zero velocities u as

u = Z ujeij'x (2.5)

jez>\{0}

with u; € C2. The reality condition for the series is u; = u_;. The divergence-free
condition is

jou; =0, (2.6)

For s € R, the fractional Laplacian A® applied to a mean zero scalar function q is

defined as a Fourier multiplier with symbol |k|*, that is, for ¢ given by

g= > qe’” 2.7)
kez2\{0}
we have that
Ng= D [kPge™®. (2.8)
kez2\{0}

We consider the Hilbert space H
H=HaoL (2.9)
where H is the Hilbert space of L? periodic vector fields which are mean zero and

divergence-free, H = P(L?). The scalar product in H is denoted (- ; -):

((u1, q1); (u2,q2)) = / (u1 - ug + q1q2)dx. (2.10)

’]1‘2
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As all spatial integrals are on T?, we denote them simply by [. We consider the
operator .A defined on H by

Aw = (Au, Aq) (2.11)

where w = (u,q) and A = —IPA is the Stokes operator. The domain of definition
of Ais

D(A) = (H*NnH)® H". (2.12)

The operator

A:DA) CH—H (2.13)

is positive and selfadjoint. There is an orthonormal basis of the Hilbert space H
formed by a sequence wy, of eigenvectors,

Awy = ppw. (2.14)
The set of eigenvalues is precisely the union of the eigenvalues of A and those of
A, counted with their multiplicities. The multiplicity of an eigenvalue \ of A is the
same as the multiplicity of the same eigenvalue )\ considered as an eigenvalue of
the scalar Laplacian with periodic boundary conditions on [0, 27| x [0, 27]. This
follows from the fact that in two dimensions we can uniquely associate a stream
function to each eigenfunction of the Stokes operator A. It can be shown that the
eigenvalues f; obey 0 < p1 < ... pu, < ... and that there exists a constant C such
that

1 > CopnVk (2.15)
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holds for all £ > 1. If we denote the eigenvalues of A counted with multiplicity
by 0 < Ay < Ag--- < \; < ... and those of A, counted also with multiplicity
as 0 < ry <rg--- <r; <...then we have j < ¢;\; and k < cori with ¢y, ¢
positive constants. Assuming that
{pi| i=1,...N}y={N| i=1,...,5}U{r;| i=1,... k}

if uy = A; it follows that j < ¢y and if py = ry, it follows that & < cop.
Because N = j + k it follows that N < ciuy + copid < (¢ + o) 3 because
pn > 1, and thus (2.15) follows.

We recall that the Riesz transforms R = (R;, Ry) for periodic functions are
defined as multipliers

(Rjq)i = z%qk ReZI\ {0}, j=12, (2.16)

and they are bounded operators in L, 1 < p < oo.

The fractional Laplacian has certain lower bounds in L? spaces which we are

going to use. A Poincaré inequality in L” spaces is given in [19] in the following
proposition
Proposition 2.1. Letp =2m, m > 1, 0 < a < 2, and let ¢ € C'™ have zero mean
on T?. Then

1
/ ¢ (@) Aq(z)dz > ]—)IIA“/Q(QP/Q)II%Q + AllgllZs (2.17)
T2

holds, with an explicit constant A\ > 0, which is independent of p.

Proposition 2.2. The inequality

[ Vo aVads = clallF vl 2.18)

3



35
holds for q € Hs.

Proof: This inequality is based on [19]. We recall the pointwise identity ([19])

Va(e) - AVa(x) = SA1VaP) () + 5 Dldl(@) 219
where
Dlgl(x) = cP.V. / V() _|yv|f(x o, (2.20)

with c a universal constant. We abused notation and wrote ¢ for the periodic exten-
sion of ¢, as a function defined on all R2.

We consider a cutoff function ¥ : [0,00) — [0,00), which is smooth, non-
decreasing, identically 1 on [2, c0), vanishes on [0, 1] and obeys |¥’| < 3.

For [ > 0 to be determined, we have

2
/IVq |yV|g @+y)lP, (I@l/_l) dy

> C/ Va(@)]” = 2Vy(x) - Va(z +y) (Iy_l) d

lyl® l
2
zc|Vq(x)l2/ TRl =23 /89“1(33)?3‘?3(“9)\1/(@) dy
ly|>1 I=1 g2 Y
\V/ 1
> | CJ( )I? — 2|Vq(x |Z/|qx—|—y ‘ (’ Q/(%'))‘dy
i) yl?
Now
Rf; la(z +y)] (V (ﬁ\lf ('%')) ‘ dy
= 1y (Ll
= ZjeZQQOLM lq(z +y)] ‘V <‘y|3\11 ( $ ))‘dy (2.21)

ez [ late + I [ (et (M) dv < kOllalos
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where Qg = [—m, 7] X [—m, 7] and

052 e G ()]

JEL2
The contribution of the term corresponding to j = 0 in the sum is of the order [ -3

dy] . (2.22)

for small [ and ¥ = 1 for j # 0 and [ < 7. We obtain
k(1) < C(7% +1), (2.23)

forall 0 <! < 7, and hence have from (2.21)

Dlg)(z) > [Vq(@)|(cil ™ [Va(@)| — cak(D))[lq][2)- (2.24)
We may choose
. o@uqnm)Q/?’ ™
[=min{ | 2—=—F—+ ,— (2.25)
{( alVa@))
and deduce the pointwise inequality
Ch 8 9
Dlg)(x) = 2O||qHL [Va(z)[® — csllql|7s (2.26)
- " o (2Ccalall o )PP
with c3 a positive absolute constant. Indeed, if ( C1|Vq(:c§| ) < 7, then [ =

<20c2||q|\L4 ) 28 In this case, (2.24) implies that
c1|Va(2)] :

V() ?
223C2/3¢5°| ||

i IVa()l*”?
95/3(75/3 5/3” ||5/3

Dlg)(z) > ¢1|Vq(z)|?

— Cea|Va(2)|lql| s

] — Cco|Va()||lqllpa

C2/3 cg/ 3

5/3
Cl/

5/3

¢ -2/3
(22/3—25/3) 2l Va@)*Pllall 72 = Ceal Da(@)lllall s
1
Zcz/s 2/3

Va(@)[*|lgll i = Ceal V()] lla] oo

Let
&
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Since
2Cc||q|| L < <7r>3/2
a|Ve(x) —\4/)
then
—2/3 5/3
Ceo|Va(@)|lglls = Cea| V(@) llall 2" la]l 7,
fe V@)
m2c1| Vgl
< Cey|Vg q 3
2| V(@) llall 3 Face,
7r§ 05/3 ;
_ T G 8/3 2/3
2% 02/363/3‘VQ(1.)| HQHL
and so

3 _
Dlg)(z) > (1 - 2_2;) Ci|Va () |ql 2

2/3
> 2—001\VQ($)|8/3HQHL

—2/3
> 9@ a2~ el

2
On the other hand, if the opposite inequality <%) P> 7 holds, then

[ =7, and (2.24) implies that
D[g)(z) > 1| V(x)[?
5/3

2/3\V 2/3 —5/2
q(z)| ( ™
— Cey (—) + 1) [Va(x)||lq| L
22/302/303/3Hq||%3] 4
1

2/3
PRE 02/302/3‘ q(z >’8/3HQHL/ C'ea| V()| llgll s
2

Ch 2/3
> S Va(@) [ all 7~ C'eal V() gl -
This gives the desired estimate (2.26).

Integrating (2.26) over T2, we obtain

callallZ + / VaAVq > S gl 1Vl 2.27)
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We also know that

/VqAVq > cs|ql|74 (2.28)

and therefore

[ vanva = alalfIval’, 2.29)

follows with cg = m, and thus (2.18) holds.
c5

The following commutator estimates are needed in the sequel.

Proposition 2.3. Leru € H*NH and q € H"®. Let s € (—1,1) andlet 0 < o < 1

with s + « < 1. Then the commutator [A* u - V| obeys the inequality

1A%, u- Vgl < Coluli—ollA*Tq| L2 (2.30)
where
[Wica =Y 15" uyl. (2.31)
j€z\{0}

Proof: The function ¢ = [A®, u - V] ¢ has the Fourier expansion

ov=1i ) (uj-K)ge(|l* = [K]°). (2.32)
k=l
In view of the fact that u; - j = 0 we have u; - K = —u; - [ and therefore

|u; - k| < |u;| min{|l|, |k|}.

If s is negative then we write

[k — 1"

7 =1k =
U]k

with r = |s|, and we estimate for positive numbers m < M and exponent() < r < 1
using the conjugate powers:

(M™—m" (MY +m'™ ) =M —m+ Mm'"™" —m" "M < 2(M —m).
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We denote by M = max{||, |k|}, m = min{|l|, |k|}. For s < 0, using the triangle

inequality M — m < |j| < 2M, we obtain that

2m|j|a 21+am1—7‘Mo¢ — 21+am—r+a (ﬂ) l~a
Mrmr<M17r _|_m17r) — M M

— olta) -rta (%>(1_r) < oo gt

and therefore

2m/j|
MrmT(Ml—r + ml—r)

| (- ) ar (1 = [K[*)] < [ullail < 25| R g gx -

Similarly for s > 0 we obtain with s = r

2m|] |a 1+« a+r—1 1+a, r+a m l=r-a 1+« s+a
Ty S 2TmMeT T =2t () < 2t
and thus
S S 2m’j| [ AN — ST
[(uj - k) (|I]” = [k]")] < WWJ‘HQH < 2N R g g

The proof is concluded by noting that the ¢5(Z?) norm of the sequence ¢; is bounded
by the product of the ¢;(Z?) norm of the sequence |j|'~“|u;| and the ¢2(Z?*) norm

of the sequence |k|*T%|qx|.

2.3 Existence and Uniqueness of Solutions

We consider the system
(

ohq+u-Vg+ Ag=Ad
ou+u-Vu—Au+Vp=—qRqg—qVP+ f (2.33)

V-u=0.

\
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The unknowns u, ¢ are periodic in space. We consider smooth, mean zero, divergence-
free body forces f, and smooth potential ®. The body forces and the potential
are time independent. We discuss first a class of weak solutions. The equations
(2.33) are meant in distribution sense, assuming that ¢ € L*(0,T; L?) and u is

divergence-free and belongs to L>°(0,T'; L?).

Theorem 2.1. Weak solutions. Let ug € L* be divergence-free, let qy € L* with
[ g0 = 0, and let T > 0 be arbitrary. There exists a weak solution (u,q) of the
system (2.33) satisfying v € L>(0,T; L?) N L?(0,T; H') and ¢ € L>=(0,T; L*) N
L2(0,T; H%). Moreover the following inequalities hold a.e. in 0 <t < T,
a1+ [ InNaE < ool + [ ARl @39

1
la(®)llzz < llgollze™ + SIAL] 12, (2.35)

and
t
Ju()|[72 + 1A= (q(t) — Q)[|7- +/O (lla(s) = QlI7= + [IVu(s)|172) ds
¢
< ol + 143 = Q)% + [ 1A~ 7|t (2.36)
0
where () is defined by

Q= —AD. (2.37)

Furthermore,

T 1 T
) < Cllalls + C [ A% + 5 [ slaalfds  @39)
0

0
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and

T
1 —
Vu®)lz: < luollze + A2 (00 — Q)72 +/0 1A= flIZ2ds

T t
e / S(1F 122 + QUL )ds + Claol2 (r|qo|riz+ / ||A3<I>H%zds)

T t
e ( / ||A2¢>H%zds) (Hqu%z ; / ||A2¢>H%zds>

17 s
o (5 [ staalas) (lal+ [ 1atol.as) (239
0 0

hold t-a.e. in [0, T).

Proof: We consider a viscous approximation of the system with smoothed out ini-
tial data. For 0 < e < 1, we let J, be a standard mollifier operator, and we consider

the system
(

Oq° + u - Vg + Agf — eAg = AP
atue +uf - Vs — Auf + vps — _qERqe _ qqu) + f; (240)

V-u=0

\
with ¢§ = Jeqo,uy = Jeup. For fixed positive e this system has global smooth

solutions for ¢ > 0, a fact that can be proved using a number of different methods.
We provide a priori bounds and pass to the limit € — 0.

We note that the mean of ¢¢ is zero, and therefore we can use the Poincaré
inequality (2.17). Multiplying the first equation of system (2.40) by (¢€)?~!, with
p > 2 even, and integrating, we obtain, by using u€ is divergence-free, the non-

negativity of the integral involving the Laplacian, (2.17), and a Holder inequality
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that
SOl + Al 11 < | [ vy sl < I a0l @4
Thus the LP norms of ¢¢ obey diffferential inequalities
Ollg e + Al Il < [|AP] 0. (2.42)
The L2(0,T; Hz) norm of ¢ is bounded using
1d

€ € € 3 1 €
sl + [ aae < Iatela Ak

and integrating in time, leading to
b Lo
O+ [ 1A < ol + [ IATRIE. @43
0 0
A cancellation is used to obtain bounds for u€ in L2, We take the scalar product in L?

with € in the second equation, and in the first equation we mutiply by A~*(¢¢ — Q)

and integrate. We obtain

1 d € € € €_ € €
gl + IVl < [ £ou = [t RGe - @)
and
1d 1 ¢ 2 € 2 €, € € €
s IAT2 (@ = Qe + (¢ = @)z = [ ¢*u® - R(¢" = Q) +¢ [ ¢°AQ.
Adding we obtain
1d €12 -1, ¢ 2 €12 € 2
S [l + 1IA~5 a = Q)liZa | + IVl + (0 = QI

< A fl eIV 2 + e / A (2.44)

and consequently
t
€ -1 € € €
(@172 + [1A72(¢°(t) — Q)II7- +/ (IVurlze +1l(a° = Q)II72) ds < lluoll72
0

t
+ A (0 — Q)3 + / (1A 7122 + EIAQIE: + 26 A3Q|3: ) ds. 245
0



43

Now, from (2.42) we deduce
SO+ < 18RI + @I, 246)
and in view of the embedding H 3 C L*and (2.43) we deduce
Ol < Cllaolis +C [ 1A20lds + 1 [ s a0 s 247
We take the second equation of (2.40), multiply by —Auc and integrate in space.
We use the identity

Tr(M*M?) =0,

valid for any two-by-two traceless matrix )M/, which follows because M? is a mul-

tiple of the identity matrix. We use this identity in our case for a matrix M with

entries M;; = gTuf_, and obtain
1d
3 IVl 18w = [1f = Rl - Q) (-8 a9
and thus
d €12 €12 € € 2
IVUllze 1 Auz: < I = ¢°Rg" = @)L= (2.49)

We multiply by ¢ and integrate in time

t
tHVue(t)H%z%—/ sl Aue|2ds
0

t t
< [ IVa@ds+€ [ s (171 + I+ QUL ds. @50)
0 0

In view of (2.43), (2.45) and (2.47) we obtain
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t
V(@) + [ shauPas < s + 147 - Q)
¢ 1
+ [ (107 71+ @18QIE: + 2e1ARQI:) ds
t
0 [ sl + QU

! 3
+ Clauls (Il + [ 1430 )
0

T t

e ( / ||A2<I>H%zds) (||qo||%z+ / ||A2<I>H%zds)
T 1 bty

+(J(/ se_A(T_S)X||A<I>H%4ds) <||q0||%2—|—/ ||A2(I>||%2ds). (2.51)
0 0

These inequalities are used to pass to the limit. From (2.43) and (2.45) it folllows
that ¢° is bounded in L2(0,T’; Hz) and u* is bounded in L2(0,T; H') on any se-
quence € — 0. The equation (2.40) and the Aubin-Lions lemma imply that there
exist g € L2(0,T; H2) and u € L*(0,T; H') such that

T

tim | (lu() = w172 + llg“(t) — q(®)|I72) dt = 0, (2.52)

and, without loss of generality,
im ([lu(t) — u(®)ll72 + lg°(t) —a()]72) =0, t—ae in [0,7]. (253)
At each t where ¢°(t) — q(t) strongly in L? it follows that ¢°(¢) converges weakly
to ¢(t) in L*, and therefore, by the weak lower semicontinuity of the L* norm, we

have

la(®)llps < liminf[lg“ ()]s, ¢ —ae. in [0,7) (2.54)
€—>

Similarly, at any ¢ where u¢(t) converges strongly in L? to u*(t), the gradient Vu<(t)

converges weakly in L? to Vu. Therefore, by the weak lower semicontinuity of the



45

L? norm

[Vu(t)||7: < lim inf | Vu(t)[|z2, ¢ —ae. in [0,7]. (2.55)

The inequalities (2.47) and (2.51) thus yield (2.38) and (2.39) in the limit ¢ — 0.
The fact that ¢ and u obtained in the limit solve weakly the system (2.33) follows
by testing the system (2.33) by test functions and passing to the limit. The proof of

Theorem 2.1 is complete.

Remark 2.1. Weak solutions are not known to be unique. The inequalities (2.38)
and (2.39) show that for any t, > 0 the weak solutions become more regular,
u(ty) € HY, q(ty) € L* with quantitative bounds. This level of regularity gen-

erates strong solutions which are unique, as shown in the next theorem.

Theorem 2.2. Strong solutions. Let uy € H' be divergence-free, let qo € L*
have mean zero, and let T be arbitrary. There exists a unique solution (u, q) of the
system (2.33) with initial data (v, qo) such that w € L>(0,T; H*) N L*(0,T; H?)
is divergence-free and g € L>(0,T; L*) N L*(0,T; Hz). Moreover,
la(®)llz < 1la(0)[[pae™" + %HA@HL% (2.56)
IVu®)lz> < [Vuollzee™ + Cy llqoll zae™
+ O (1172 + 1Rl + 1A®]74) (2.57)
with 0 < v < min{1, 4\}, and

T
/0 lAul: < [VuolPs + O, o]l

+ O\ ([[f1172 + 1QN 74 + [[AD]|74) - (2.58)
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hold.

Proof: We provide a priori bounds directly on the equations of (2.33). Their justifi-
cation can be done using a viscous approximation of the ¢ equation. The differential
inequality

Olla)|| s + Mlg(®) || e < [|AP|| 14 (2.59)

is obtained as (2.42) above, and yields
la(®)lle < Na(O)llzse™ + 31 AB] e 2.60)
The differential inequality
D I9uls + 1aul < 1 - aR(a - Q)1
< O (11122 + QN5 + lallzs) (2.61)
is obtained like the inequality (2.49) above. Because the gradient has mean zero,
we have a Poincaré inequality for the gradient
[AuZ > [[Vullz. (2.62)
and, using it, we obtain
IVu)l|Z: < IVuollz2e™" + G4 llqollzee ™"
+ Ox (1117 + 1QUZs + [A®]74) (2.63)
with 0 < v < min{1,4A}. This follows from (2.60) because

t
| e e P lalis + 3 AL ds
0

t
< ||QOH4L4€_t/ 1= Ns g 4 )\_4||A(I>H4L4.
0
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Returning to (2.61) we deduce

T
/me%ﬁgwm%+cmm@
0

+CT ([ fll72 + QNI 7s + [AD]74) - (2.64)
For the proof of uniqueness we take two solutions (u1, ¢; ) and (us, ¢o) of (2.33) and
we write ¢ = ¢2 — q1, 4 = us — uy. The differences obey the equations
g+ Ag+u-Vg+u-Vg+u-Vg =0, (2.65)
and
du+us - Vu+u-Vu, +Vp— Au+ 1 Rq + qRq + qRq1 — ¢RQ = 0. (2.66)
We multiply (2.65) by A~1q, (2.66) by u and integrate. The cubic terms cancel
/(u-Vq)Alq—l—/qRq-u—O
and the ¢, terms cancel as well
/(U Vg ) A g+ /Q1Rq ~u =0,

and we are left with

1d
2dt
:/qu1-Rq—/u-Vul-u+/q(R(Q—q1)-u. (2.67)

‘/u‘VUyu
and

'/ﬂﬂ@—%%u

_1
(1A= gl + 1l ) + I97uliZ2 + llall

We estimate

< C (llull eVl 2 + Jull72) Vs | 2 (2.68)

< CllallzQ = aullee (Il VullFs + Jullz2) — 2.69)
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using L* bounds for u and the Ladyzhenskaya interpolation inequality. The first

term in the right hand side of (2.67) can be written adding and subtracting zero as

qul Rq‘ ‘ / ERTE } q) A3g (2.70)
and using Proposition 2.3 with s = —5 and o = 5 we obtain
[ Rl < Ctuly otz ISl )
Using Young inequalities in (2.68), (2.69) and (2.71) we obtain from (2.67),
 [IA=bali +
C(IVullze +1Q — aall7s + IVuallz2 + 1Q — aullza) llull72
+ Clui} A2 g3 (2.72)
Using the bound
)1 < CllAuy| 2 (2.73)
for u; we obtain uniqueness from the fact that
/OT(IIAullliz + lasl[z4)dt < oo (2.74)

This concludes the proof of Theorem 2.2.

Remark 2.2. The proof of uniqueness shows that we have weak-strong uniqueness:

Strong solutions are unique among the larger class of weak solutions.

Remark 2.3. We have

t+T
/ |Au(s)|Zads < [VuglPae + O flgol|Lac™
t

FOA+T) (IF1Bs +11Ql4s + 1AL (2.75)
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This is obtained by applying (2.58) on the interval [t,t + T| and using the bounds

(2.56) and (2.57) for the terms involving the “initial” time t.

Proposition 2.4. The H 3 norm of the q component of strong solutions is locally
uniformly bounded and their H' norm is locally uniformly square integrable in
time. Moreover, for any 2 < p < o0, p even,

la®llze < laollzre™ + +1A2] 276

holds for all t.

Proof: The bound (2.34) holds for strong solutions. In view of it, for ¢ > ¢35 > 0

we consider the evolution of ||Az¢| ;2. We have

1d. .1 1 1
Ikl Iaal = [aag— [ ([ahu-V]q)ate @7
We use Proposition 2.3 with s = 1 and o = 3 and (2.73) for u, and deduce, after

using a Young inequality that
SIALG: + gl < IAQIE: + Cllaulbaladglh @78
Therefore the bound (2.64) implies
[A3]32 < © |TIAQIE: + A2 q(t0)32 ] exp K (2.79)
with K given by
K = [[Vuollzz + Cillaollzs + CT (If 1172 + | QU7s + | AL]|74) (2.80)
and consequently

t
| gl < 71AQIE:
to

+C[TIAQIE + A%q(to) 3] K exp K + [Adq(to) 3 28D
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hold for 0 < to <t <T.
The LP bound (2.76) follows from the uniform Poincaré inequality (2.17) and

the fact that u is divergence-free.

Remark 2.4. The quantitative bound (2.81) shows that there exists t; € [to,to+ T

such that q(t,) € H*, with a quantitative bound on its H' norm.

Proposition 2.5. Let uqg € H' be divergence-free and qo € H' have mean zero.
Then ||V q(t)||L2 can be bounded as

IVa(t)llr2 < C L+ |IVaollz2 + lgoll s + | Vol z2] e + Ry (®, ) (2.82)
where ¢; > 0 is an explicit positive number and R, (P, ) is an explicit function of

norms of ¢ and f. Moreover

HT

[ Iakaaas
t

< C+[IVaollrz + llaolls + [[Vuollz2]'® e + Ro(®, £, T)  (2.83)
with co > 0 and Ro(®, f,T) an explicit function of the norms of ®, f and T. More-
over, if ug € H? we have

1Au()ll2 < C1L+ [ Vaollzz + llaollne + [ Auoll 2] e + Ra(®, f) (2.84)

with cg > 0 and R3(®, f) and explicit function of the norms of ® and f.

Proof: We take the first equation of (2.33) obeyed by ¢, multiply by —Agq and

integrate. We obtain
1d

S Va0l + [a0ve= [10-a0 - [(Tvgve  289)
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‘We bound

‘ / A@(—Aq>' < AQl=lIA 3l (2.56)

and we bound

v < Va1 al. @)

Using (2.18) and a Young inequality we deduce

d 3

ZIVallZz + cllA2qlZ: < CIAQIZ: + CllgllZa Vel (2.88)
In view of the Ladyzhenskaya inequality

IVullzs < ClIVullZal| Aulze, (2.89)
and the inequalities (2.57), (2.75), (2.76) it follows that the function
F(t) = lla@)lI7: [ Vu(t)|Ls
obeys the assumptions of the uniform Gronwall lemma, Lemma 1.1. The result
(2.82) then follows using Lemma 1.1 for y(¢t) = ||Vq||?.. The inequality (2.83)
g Y L quality

follows then by integrating in time (2.88).

For the bound (2.84) we apply —A to the equation obeyed by u. We obtain

1d
Sl Aul3 + [V Aul

_— / Al - Vi) Au + / V(g(Rg— Q) — f)VAu (2.90)
After a cancellation due to the divergence-free condition, we have

’/A(u-Vu)Au < O||Vull g2 ||Au| 2 [| VAul| 2. (2.91)
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Here we also used L* norms of the second order derivatives of u and Ladyzhenskaya

interpolation inequality. We have also
[ vt~ @ - pas
< ClIVallzs (lallzs + 11Ql za) IV Aul| 2
+C(IVQlusllallie + VAl IV Aull2. (2.92)
Using the embedding H 3 C L4 for Vg, we obtain
Al + VAl
dt
< C[IVulialdul: + (I1A3)3 + 1VQIZ: ) llal3:]
+C [IA3 B QI + IV 113 (2.93)
In view of (2.57), (2.75), (2.76), (2.83) we have that the function
F(t) = || Vul 7l AulFz + [[A2q]Z2 (a7 + 1QIZ:) + IV QIZ:llalZe + [V £1172
obeys the assumptions of Lemma 1.1. The inequality (2.84) then follows from this

lemma applied to y(t) = [|Aul|,.

2.4 The Mean-Zero Frame

The second equation in (2.33) does not maintain a bounded average velocity u.
Decomposing

u=uv+u(t) (2.94)
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where v = v(t) € R? is the average of u(t), i.e.
u=v+ Y uel” (2.95)

JEZ2\{0}
we can rewrite the system (2.33) as
4

Lv=—(2m)2 [¢VO,
g+ (v+u')-Vg+ Ag=Ad
o' + (v+u') - Vu' — Au' + Vp (2.96)

= —qRq —qV® + (21)72 [(qV®) + f

V-u =0

\
where we used the fact that R is antisymmetric and f has mean zero. Given a

solution of (2.96), we compute the displacement

ot) = /Otv(s)ds (2.97)
and define the change of variables
X(o ) = o — /t o(s) = = — {(t) (2.98)
0

with inverse
Y(y,t) =y+ () (2.99)

and note that
Loy 4+ £(t),8) = (@, + o(t) - V)F 0 Y (1), (2.100)

dt

Introducing the variables

uy,t) =u'(Y(y,t),1) (2.101)
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and

q(y,t) = q(Y(y, 1), 1) (2.102)

ie.
u(z,t) =u(x —L(t),t)=uo0X, qlx,t)=qlx—L(1),t)=qoX (2.103)
we obtain the equations
OG+TU-Vi+Aj=AD (2.104)
and
U+ 1 - Vi — Ali+ VP = —GRq — gV + (27) 2 / VO + [  (2.105)
together with the divergence-free condition V - u = 0. We used the translation
invariance of the operators involved, and we used the notation
F(y,t) = F(Y(y,t),t) (2.106)
The new variables are still periodic in space with period 27 in each direction. The
average of u is zero.

We note also that we can recover the solution (u,q) from the solution (u, q)
with the same initial data by the change of variables (2.103) and (2.97) where v()
is computed as

d

() = —(27r)2/av€>. (2.107)
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The two systems are equivalent, solution by solution. Dropping tildes we consider

the system
(

Oq+u-Vg+Ag=Ad

du—+u-Vu—Au+Vp=—qRqg—qV®+ (21)72 [(¢V®) + f (2.108)

V-u=0

\
in which both u and ¢ have mean zero. This is the system for which we can show

that solutions have a finite dimensional attractor.

2.5 Long Time Dynamics

We are concerned with the long time behavior of solutions of (2.33) in the mean
zero frame (2.108). Summarizing the results of Section 2.3 we know that solutions
(u(x,t),q(z,t)) of the system (2.108) with initial data in L? exist globally, and they
become strong at positive times. Strong solutions are unique, and have additional
properties. We consider the subset )V C ‘H where H is defined in (2.9)
V=H'NnHa L' (2.109)
and study the evolution of solutions (u(t), ¢(t)) of (2.108) with initial data wy =
(uo,qo) € V. The solution map
S(t)(uo, go) = (u(t), q(t)) (2.110)

is a semigroup

S(t): Vi H, (2.111)
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St + s)wo = S()(S(s)wo) 2.112)

for t, s > 0. The abstract formulation of the system (2.108) is

Owu+ Au+ B(u,u) + P(qR(q — Q)) = f,

(2.113)
g+ Aqg+u-Vqg=AQ
where
B(u,v) = P(u - Vv), (2.114)
and (Q = —A®, as before. Note that, in view of
u=Pu (2.115)
and the fact that —A commutes with PP in the periodic case, we have
Au = —Au. (2.116)

Theorem 2.1 implies that there exist weak solutions of (2.113) with initial data in
‘H. If the initial data are in V the solutions are strong, unique and have additional

properties.

Proposition 2.6. There exists a constant Ry depending on ® and f, such that for
any wy = (ug, qo) € V, there exists ty depending only on ||uo|| g1 and ||qo|| s such
that the strong solution (u(t),q(t)) = S(t)wgy of (2.108) with initial data wy =
(w0, qo) satisfies

[u() [l + [la(®)l[zs < Ro (2.117)

forallt > tg
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Proof: Because u has mean zero we have the Poincaré inequality

[u(®)]|72 < [[Vu(t)]|7=. (2.118)
The result (2.117) follows from (2.57) and (2.76) because of the translation invari-
ance of norms

IValle = [V (o Xz, Naller = o X[l (2.119)

Proposition 2.7. There exists R, depending only on ® and f, and t, > 0 depending

only on Ry and Ry such that for any wo = (ug, qo) € V satsfying

ol + llqollz+ < Ro (2.120)
we have
IAZq(ty)]|z2 < Ry (2.121)
and
1 t1+T
2 G+ gl e < R .122)
t1

for any T' > 0. There exists to > t1, depending on Ry such that
1Au(t2)llZ + |Aq(t2)l[7: < Ry (2.123)

holds.

Proof: The bound on ||Az¢(t,)]| .2 follows from
t
| 1N a)ads < ol + elat ol @124
0
(see (2.43)) and the Chebyshev inequality. The inequality (2.122) follows from

(2.58) and (2.81). The existence of ¢, for which (2.123) is true follows from (2.122).
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Theorem 2.3. Absorbing ball. There exists Ry depending only on ® an f such

that, for any initial data wy = (ug, qo) € V, there exists t3 > 0 depending only on

the norms ||ug|| g1, ||qo||Ls and on Ry such that, for any t > t3
[u(®)][ 2 + gl < Re (2.125)
holds fort > ts, i.e.
S(tywy € Kgr, = {w € V| ||u|lgz + ||g|lz: < Ra2}. (2.126)

holds fort > ts.
Proof: By Proposition 2.6 and Proposition 2.7 above there exists R; depending

on f and ¢ and £, > 0 depending on the norms ||ug||y: and ||go||r+ such that

llu(t2)||l gz + [lq(t2)||z1 < Ri. Then the result follows from Proposition 2.5

2.6 Continuity Properties of the Solution Map

In addition to the topology of H with norm

lwli3, = llullz> + llallz: (2.127)
we consider the natural topology of V which is a Banach space on its own, with
norm

w3 = llullin + llqllZ (2.128)

We consider the space

V=H'NHae H! (2.129)

and note that the absorbing ball K, of Theorem 2.3 is included in ).
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Theorem 2.4. Continuity. Let w? = (u},¢?) € V' and w = (u3,¢3) € V'. Let
t > 0. There exist constants C(t), C1(t), and Cy(t) locally uniformly bounded
above as functions of t > 0 and locally bounded as initial data w?, w3 are varied
in V', such that S(t) is Lipschitz continuous in H, obeying

1S ()w} — S(Hwslw < C(B) ) — whn, (2.130)
S(t) is Lipschitz continuous in V, obeying

IS(H)w? = SE)whlly < Ci(t)[|wf — wllly, (2.131)
and S(t) is Lipschitz continuous for t > 0 from H to V, obeying

VE|St)w) — S(H)willy < Co(t)||wd — w]|3. (2.132)

wy = S(H)wd = (ua(t), q2(t)) and denote w(t) = S(t)w) — S(t)w = (uy(t) —
u1(t), ¢2(t) — qu(t)) and w = (w,q) = 5(S(t)w] + S(t)w$). Then w(t) satisfies the

system

du+ Au+ B(u,u) + B(u,u) + P(¢R(q — Q) +qRq) = 0,

(2.133)
g+ AN¢g+u-Vg+u-Vg=0.
‘We obtain
d 2 2 1 2
S w5+ [Vullze + A qllz:
< C(IVallZ: + lgll7s + Qs + [IVallz2) lw(t) 13, (2.134)

by using estimates

‘ / u.qu' < IVglz2 lall o 1l



and interpolation. Thus (2.130) holds with

t
() — exp {c [ vl + i+ 191 + vl ds}
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(2.135)

which is a locally uniformly bounded function of time and initial data w{, w) € V'.

The evolution of the norm the H' norm of u is obtained from the identity ([35])

(B(u,u) + B(u,u), Au)y = —(B(u,u), Au) g

which yields
1d

2dt
and results in
d, 1
%HAWII?{ + [[Aull
—N3 AL 13 =112 2 2
< Ol Aal|Fllull 1l Az ull + C [Igl7a + 1QN74] llall7a-

The L* norm of ¢ evolves according to

1d —
sglalter [ena+ [ v =o

The inequality (2.17) and the embedding H2 C L* results in
[ a0z clali
and using the embedding H' C L® we deduce
‘/q?’(uvﬁ)‘ < alldsllull sVl < Clgll3s | A2ull ||Vl 2,
and therefore,

d 1 _
EHQH4L4 < Ol A2u| 3 Vallze.

Putting these together we obtain

(2.136)

1Az ull?, + | Aull? = (B(u,u), A7)y — (P(¢R(G— Q) +TRq), Au)yy (2.137)

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)
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= (114l + gl
<O (14l + gl + 1QI3: + Vgl ) [14%ult: +llald] @143)
Thus (2.131) holds with
)= exp{C [ (1aml] + 217 + QI+ I7al) as) a4t
which is a locally uniformly bounded function of ¢ > 0 and initial data w9, w3 in
V.
For the Lipschitz continuity from H to V, we estimate slightly differently in
(2.137),
d, .1 4 2 g 4
N Azullz + [|Aullyy < ClLAT [lull ]| A2
+ C [l[gllz= + 1 RallZ + 1 RQ7] llallZe- (2.145)
Using the inequality || Aul|g||ullz > ||AZu|% and a Young inequality, we obtain
Al + 5 Aul
< Ol Aa|g|lull? + C (gl + 1 Rallz~ + [ RQI7~] lall72-  (2.146)
Integrating in time in (2.134) and using (2.130) we have
AXwﬁwﬂ@+w@«ﬂm)mséwwmm (2.147)
with
C=1+0 [ CONIVEE + Il + QU+ IValll)s 2149
Multiplying (2.146) by ¢, using (2.147) and (2.130) we obtain

tlAZu(t) || < Cs(t)][wollZ (2.149)
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with C5(t) an explicit function of time which is locally uniformly bounded for ¢ >
0, and locally bounded as initial data w?, w$ vary in V. Returning to (2.141) but
estimating differently, using the Holder inequality with exponents 2,4, 4 and then
interpolation, we obatin
‘ / q3<uva>\ < CllaBsllgleellul ARl Vel (2.150)
and therefore, from (2.139) we obtain after a Young inequality and use of (2.140),
S allys < Cllulal Abullal V. @.151)
Multiplying (2.151) by ¢, integrating in time, and using (2.147), the embedding
Hz C L* and (2.149) we obtain
tlla(®) |74 < Calt)l|woll% (2.152)
with C4(t) an explicit function of time which locally uniformly bounded for ¢ > 0,
and locally bounded as initial data w?, wg vary in V'. From (2.149) and (2.152) we

obtain (2.132).

2.7 Backward Uniqueness

Theorem 2.5. Backward uniqueness. Ler w?, w) be two initial data in V'. For

any T > 0, if S(T)w = S(T)w9, then w) = .

Proof: We use the notation of the proof of Theorem 2.4. The difference w(t) obeys
(2.133). We can write this abstractly as

dyw + Aw + Lw)w = 0 (2.153)
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where w = (u, q), w = (4, q), and

L(w)w = (L (W)w, Le(w)w), with
Ly(w)yw = B(u, 1) + B(u,u) + P(¢R(g — Q) +qRg), and (2.154)

Let us consider the evolution of the norm

_ 2 2
Eo = [|ullzz + llall, - (2.155)
obtained by taking the scalar product in H of the equation (2.153) with (u, A~1q) =
(I® A=Y w = Bw. The operator
B=IpA! (2.156)

is selfadjoint and commutes with .A. We obtain

1d

where
By = || Azull?, + ||ql3> = (w, ABuw)y,. (2.158)
Now we denote by
E,
= = 2.159
h=5 (2.159)
and observe that
L% j0g (L) = i+ (L(@)6, Bo) (2.160)
th Og EO - M w ) H .

where

_1
¢ =E,*w. (2.161)
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Let us consider the function

1
Y () = log (E) | (2.162)
and so we have
1d
S Y (1) = o+ (L@, Bo (2.163)

The aim is to show that Y'(¢) cannot reach the value 4o in finite time. To this end

we take the derivative of 1 and note

d d d d d
—oh=Eq' =By — plog By = Ey ' By 4 pY. 2.164
dt/’L 0 dt 1 ,udt 0og Ly 0 dt 1 +Mdt ( )
We have
1d 2 _
which implies that
d
Ey' =By = =2(6, A2Bo)y — 2(L(W)¢, ABo)y (2.166)

and therefore

1d

St = — (¢, A?Bo)y — (L(w) o, AB)y + (1 + (L(W)$, Bo)w) . (2.167)

Let us note that

= (Ap, Bo)y (2.168)

and if we introduce the scalar product in H defined by
(a,b)p = (a, Bb)y (2.169)
then we see that

lollg =1 (2.170)
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and

(A0, ¢)p — 1 = ||[(A— )3 (2.171)

hold. The equation (2.167) becomes

1d

57t = ~IA =l — (L@, (A= 1)o)s. (2.172)

Let us note also that (2.163) can be written as

L9y (1) = i+ (L@)s, 0)s. (2.173)

2dt
This is a general structure, we could have used any postive selfadjoint operator
B which commutes with 4, and it did really not matter what L(w) or A were.
Our choice is of course motivated by the properties of the latter, but some general

features already can be taken advantage of.

We compute in our case

1

(L(w)o, ¢)s = o

{(B(u,ﬂ), w)n + / (qR(G— Q) -u—qu- Rq)dr| (2.174)

where we used the cancellation of the terms involving qu - Rq and (u - Vq)A™lq.

The estimate

(L(w)¢, ¢)s < Ko(t)p (2.175)

with

Ko(t) = C[[|Aullg + |1 R(7 — Q)| =] (2.176)

holds, and

T
/ Ko(t)dt < oo (2.177)
0



66

holds as well (see (2.75) and (2.83)). If we decompose
L(w)p =Ti¢ + Tep (2.178)
where

ITho )% < K2(t)]| A% (2.179)

then the contribution coming from 77 can be estimated using the Schwarz inequality
in the term (7% ¢, (A — ;1)¢)g, and we obtain that
S < A= w3 + K2ty — 2(Too, (A~ n))s. (2.180)
The bound (2.179) means that the velocity component of 77w is bounded from
H' x L% to L? and the second component is bounded from H' x L? to H~2. The
requirement (2.179) is satisfied in our case by
Tw = (Li(w)w,u - Vq). (2.181)
Indeed, (2.179) holds, i.e.
|La@)wllE + A3 - Va)|3 < K20) [JlA3ul +llall3e]  2182)
with
() = C [ 4alln + 1R@ - @)l + [alls + [VallEIVali-] - @183)
It remains to examine what happens to 75,
Tow = (0,7 - Vq) (2.184)
which does not satisfy (2.179). Its contribution to the evolution of y in (2.180) is

2Tyb, (A — 1) b)s = 2By / (@ Va)(A— A

= 2B, / (w-Vq)A™q. (2.185)



In view of the fact that
/(E-Vq)A_lq = —/A‘éq [ﬂ~ V,A_%} q
and Proposition 2.3 with s = —1 and o = 0, we have
—2(T¢, (A — p)o)s < Cluip.
Thus, putting together the bounds (2.180) and (2.187) we obtain

< COR (1) + [l

and because

/OT(KQ(t) + [@);)dt < oo
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(2.186)

(2.187)

(2.188)

(2.189)

it follows that p(¢) is locally bounded in time. From the bounds (2.175) and (2.177)

it follows that Y'(¢) is locally bounded.

2.8 Decay of Volume Elements

We consider a solution w = S(t)w, of (2.113) with initial data in the absorbing ball

wy € Kr, = {w € V| |Ju|lgz + ||¢||zr < Ra}. We consider the linearization of

S(t) along w(t),

wo — w(t) = S'(t, w)wy

viewed as an operator in #. The function w(t) solves

Ow + Aw + L(w)w =0

(2.190)

(2.191)
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with initial data w,. We denote w = (u, q), w = (u,q), and
L(w)w = (L (W)w, Le(w)w), with
Li(@)w = B(u, W) + B(@, u) + P(¢R(7 — Q) +qRg), and (2.192)

Ly(w)w =u-Vq+u-Vq.

The volume elements associated to it are the norms in /\N ‘H. The scalar product
in AV H is
(wy A ANwnsyp A+ A yN)/\NH = det (ws, y5)4 (2.193)
and the volume elements are norms
Vn(t) = |lwi(t) A .. .wN(t)H/\NH (2.194)
where

wi(t) = S (t,W)w;(0) (2.195)

are the images under the linearization of N linearly independent vectors. The mono-
mial wy(¢) A --- A wy(t) evolves according to
O (wi ()N Nwy(t)) + (A+ L@))ny (wi(t) A~ Awy(t)) =0 (2.196)
with
(A4 L(w))n(wi () A=+ ANwn(t))
=(A+L@)uy A~ ANwuy+--F+w A AN(A+ Lw))wy  (2.197)
and, as a consequence, the volume element evolves according to

%VN(t) + Trace (A + L(@))Qx) Var(t) = 0 (2.198)
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where () is orthogonal projection in H onto the linear subspace spanned by the
vectors w;, 1 < ¢ < N. These are calculations which parallel well known calcula-
tions for the Navier-Stokes equations ([14], [35]).

The volume element Viy(t) decays if N is large enough, as specified in the

following theorem.

Theorem 2.6. There exists a constant M depending on Ry and norms of ® and of
f such that, for any initial data Wy in the absorbing ball Kg,, for any N > M, and
any initial data wy(0), wy(0), ... wy(0) in H, we have that

I8/, un(0) A+ A S (Do) gy, < V(@ (2.199)

holds for t > t,, with ty depending on R..

Proof: The trace in (2.198) is computed as follows. At each instant of time ¢ we

choose an orthonormal basis ¢; = (v;, ;) of the linear span of wy, ... wy. Then

N
Trace (A + L(W))Qn) = > _(Adi, ¢i)n + Z W)di, di)u-  (2.200)
=1 =1

Now
N
Trace(AQy) = Z(A¢ia bi)n
N =1
= [(Avi,vi)i + (Ari,r)pe) > i + ... oy (2.201)
i=1
and
N
> (L), di)a (2.202)

= i:: {(B(vi,ﬂ),vi)H + (P(riR(q — Q) +qRri), vi)m + /(vi : VG)TZ} .

i=1
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On one hand we have a lower bound
N N
1
> (Ai, 0w = 3 [IlA3 w3+ ellril] (2.203)
i=1 i=1
and on the other hand we have the upper bound
N
> (L@)¢i, i)u

i=1

(2.204)

N
— 1 —
< O3 [I9alus sl Aol + (s + Qo) Il sl
i=1
N _ 1 1 1
+CY [||VCJ||L2||Ui||?1||AQUi||13||Ti||L4 :
=1

Applying Schwarz inequalities in the first two terms in the right hand side of (2.204),
and a Holder inequality in R with exponents 4, 4, 2 in the last term, followed by

Young inequalities, we deduce after taking advantage of (2.203) that

N
1
Z(L(w)(bi,@)y < §Trace(AQN)
=1
N
+C (IIVallz: + [lgll7: + QN7 + IVallz2) > llvillF- (2.205)
i=1
Because of the normalization ||v;||7; + ||7i]|3. = ||¢:]|3, = 1 we obtain

N

Z(L(w)@, Gi)n

i=1

< %Trace(AQN)

+CON ([Vall?: + @l + QU7 + IVallz:) - (2.206)
Let us note that, in view of the fact that K, is an absorbing ball, we have
1 /T _ _
sup / (Va2 + a2 + QI3 + [ Vali:) dt < C(Rs)  (2.207)
T>0 0
with C'(R3) a nondecreasing function of R,. From (2.15) we have

[+ 4y > N3, (2.208)
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and, in view of (2.198), (2.200), (2.201) and (2.206) we see that if
Nz > 8¢ 'CC(Ry) (2.209)
then Vv (¢) decays exponentially,

Va(t) < Vy(0)e N2t (2.210)

for t > ty with ¢y depending on R?,. Therefore the proof is complete.

2.9 Global Attractor

The properties of S(t) of existence of a compact absorbing ball K, (Theorem
2.3), continuity in H (Theorem 2.4), backward uniqueness (Theorem 2.5) imply

the existence of a global attractor.

Theorem 2.7. Let

X =(S(t)Kr, (2.211)

t>0

where S(t) is the semigroup solving (2.113) and K, is the absorbing ball (2.126).

Then:
(i) X is compact in H.
(ii) S(t)X = X forallt > 0.

(iii) If Z is bounded in 'V in the norm of of V, and S(t)Z = Z for all t > 0, then

Z CX.

(iv) Forevery wg € V, tlim disty (S(t)wg, X) = 0.
—00
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(v) X is connected.

The proof of this result follows verbatim the proof of Theorem 1.7. If the body

forces vanish, then the attractor is particularly simple, it is a singleton.

Theorem 2.8. Let f = 0. Then the attractor is a singleton, formed with the unique,
globally attracting steady solution wg = (0, Q),

X = {wo}. (2.212)

Proof: We take the scalar product in H of the first equation of (2.113) with u, we
take the scalar product in L? of the second equation with A~!(¢ — @) and add. The

terms

(P(qR(q—Q)),w)m + (u- Vg, A" (¢ —Q))2 =0 (2.213)

cancel, and we obtain

1d

_1 1
s (Il + 1473 (g = Q) ) + [ 4%ully + g — QI = 0. @214)

Because of the Poincaré inequality we obtain exponential decay of the distance to

wq, firstin H x H ~3 and then in 7. The latter follows because

1d 1
——llg = Qll7> + IAZ(q — Q)|I7-

2dt
= —/qu -VQdzx < ||lullgllq|l 2 IVQ| L= (2.215)
and ||q||z2 is bounded in time, while ||u||y decays exponentially by (2.214), and

therefore, from (2.215) we obtain the exponential convergence of w to wg in H.

This concludes the proof.
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Remark 2.5. When f = 0, returning to the nonzero mean velocity frame we see
that the average velocity converges in time. Indeed, its time derivative, given in
(2.107), obeys

‘%U(t)‘ _ ’_(zﬂ)—2 /(q —Q)Vdds (2.216)

because [ QV®dx = 0. The right hand side of (2.216) belongs to L'(0,00) by

(2.214).

Employing methods initiated in [14] and used in many subsequent works, The-

orem 2.6 implies

Theorem 2.9. The global attractor X has finite fractal dimension
Dy(X)< M (2.217)

where M depends only on norms of f and ®.

The fractal dimension is defined as
. log N3(r)
lim sup ————
r—0 log (1)

where Ny (r) is the minimal number of balls in H of radii » needed to cover X.

(2.218)

Theorem 2.10. The global attractor X has finite fractal dimension

Dy(X) = Dy(X). (2.219)

Proof: If B, C H are a family of balls in H of radii p and centers w; that cover
X, then, because of the invariance S(t)X = X, the sets S(t)B; cover X. Now

because of the continuity (2.132), the sets S(t) B; are included in balls in ) of radii
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t72C5(t)p = r. Therefore
Nu(r) < Ny(r) < Ny (VCy(t) 7). (2.220)
Fixing ¢t > 0 we obtain

(2.221)
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CHAPTER 3

Electroconvection in Porous Media

We consider the evolution of a surface charge density interacting with a two di-
mensional fluid in a porous medium. In the momentum equation, Stokes’ law is
replaced by Darcy’s law balanced by the electrical forces. This results in an active
scalar equation, in which the transport velocity is computed from the scalar charge
density via a nonlinear and nonlocal relation. We address the model in the whole
space R? and in the periodic setting on T?. We prove the global existence and

.2
uniqueness of solutions in Besov spaces B, for small initial data.

3.1 Introduction

Electroconvection, the evolution of charge distributions in fluids, was investigated
experimentally and numerically in situations in which the fluid and charges are
confined to thin films [25, 42, 41]. The charge distribution is carried by the fluid
and diffuses due to the parallel component of the electrical field. This results in a
nonlocal transport equation for the charge density p,

Op+u-Vp+Ap=0 (3.1)
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where A = (—A)% is the square root of the two dimensional Laplacian and u is the
fluid velocity. The fluid is incompressible and is forced by electrical forces

F =pE (3.2)
where F is the parallel component of the electrical field,

E=-V9, (3.3)
with V the gradient in R?. The relationship between the electrical potential ® and
the charge distribution confined to a two dimensional region is

d=A"p (3.4)
and we thus have

F=—pRp (3.5)

with R = VA~ the Riesz transforms. In general, the fluid obeys Navier-Stokes
or related equations driven by the forces F'. The derivation of this system for the
physical setup in bounded domains was obtained in [13], where global regular-
ity and uniqueness of solutions were obtained for the coupling with Navier-Stokes
equations.

In this chapter, we consider flow through a porous medium, in which the dom-
inant dissipation mechanism is due not to the viscosity of the fluid, but rather to
an effective damping caused by flow through pores. The Stokes operator is then
replaced by u + Vp. We consider a system in which the fluid equilibrates rapidly
and the Reynolds number is low, so that forces are balanced by damping,

u+Vp=F. (3.6)
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This balance, together with (3.5) and the requirement of incompressibility,
V-u=0, 3.7
leads to

u=—P(pRp) (3.8)

where [P is the Leray-Hodge projector on divergence-free vector fields. The electro-
convection situation described above leads to the active scalar equation (3.1) with
constitutive law (3.8), which is the equation we study in this work. In comparison to
the work [13], the nonlinear advection is missing, but also there is no viscosity, and
because of the nonlinearity in the electrical force, the velocity’s dependence of the
charge density is more singular. The equation is L>-critical, and resembles critical
SQG [15, 17, 19, 28] except for the constitutive law (3.8) which in this case is non-
linear and doubly nonlocal. Global regularity of critical SQG was originally proved
by different methods in [8, 31] and was subsequently extensively studied. In [29],
the balance law (3.8) was used to describe the solvent in a Nernst-Planck-Darcy
system of ionic diffusion in 2D and 3D. An active scalar equation describing flow
through porous media with fractional dissipation and linear nonlocal constitutive
law was studied in [10] and global regularity was obtained.

In this chapter, we show that the equation (3.1), (3.8) has global weak solutions.
We describe local existence and uniqueness results for strong solutions. We also
show that solutions with small initial data in Besov spaces slightly smaller than L*°

exist globally.
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This chapter is organized as follows. In section 3.2, we recall results about
Besov spaces and Littlewood-Paley decomposition. In section 3.3, we prove exis-
tence of global in time weak solutions of (3.1), (3.8) for initial data in L2°(R?) for
some § > 0. If the initial data is in LP(R?) for p € (2, 0], then the LP norm of
any solution of (3.1), (3.8) remains bounded in time. If the initial data is H?(R?)
regular, then we obtain a unique local strong solution. In section 3.4, we show that
a global in time solution exists provided that the initial data is sufficiently small in
Besov spaces that are slightly smaller than L>°(R?). In section 3.5, we show that
Holder continuity of the charge distribution is a sufficient condition for the smooth-
ness of solutions for arbitrary initial data, a result that is similar to the situation for
SQG [20]. In section 3.6, we treat the periodic case, and we prove that the solution
of the problem (3.1), (3.8) posed on the two dimensional torus converges exponen-
tially in time to zero. Finally, we consider in section 3.7 the subcritical Darcy’s law
electroconvection, and we show existence of global smooth solutions for arbitrary

initial data.

3.2 Preliminaries

We denote the Fourier transform of f by
1 .
FIE=F) =5 | fla)e ™ dz (3.9)

27 R2

and its inverse by F 1.
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Let ® be a nonnegative, nonincreasing, infinitely differentiable, radial function

such that ®(r) = 1 forr € [0, 1] and ®(r) = 0 forr € [2, 00]. Let

U(r) = (g) —B(r). (3.10)

For each j € Z, let
W,(r) = W(277r). (3.11)

We have
(g + Y (g =1 (3.12)
j=0

for all £ € R? and

> we) =1 (3.13)

j=—00

forall ¢ € R?\ {0}. We define the homogeneous dyadic blocks

2f (@) = F [W(] - NFO)] (@) (3.14)
and the lower frequency cutoff functions
Sif= Y Aif (3.15)
k<j—1

We note that the Fourier transform of each dyadic block is compactly supported.
More precisely, we have
15
supp F (A, f) C 2 {—, —} (3.16)
for all j € Z.
Let S; (R?) be the set of all tempered distributions u € S’(R?) such that

lim Sju=0 (3.17)

j——o0
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in §’(R?). For f € S} (R?), we denote the homogeneous Littlewood-Paley decom-
position of f by

F=Y A1 (3.18)

JEL
For s € R,1 < p,q < oo, we denote the homogeneous Besov space

B; (R = { f € SR : | f]

By w2) < oo} (3.19)

where

/]

1/q
By o (R2) = (Z 27918, f !le(Rz> (3.20)

JEZL

and the inhomogeneous Besov space

B; (R = {f € S'®): /]

By () < oo} (3.21)

where

/]

1/q

Bj o(R2) = ( YA ey + Z?”HA e Rz)> (3.22)
with the usual modification when ¢ = oc. Here

Aoaf=F ol DFO)] @ (3.23)
We note that the definition of the space B; 4 1s independent of the function ¢ which
defines the dyadic blocks. Indeed, any other dyadic partition yields an equivalent
norm.

Ifs>0,1<p,q< oo,then

B:,(R*) = B: (R*) N LP(R?). (3.24)

,(r2) and HfHBS ®2) t || fl|Le(re2) are equivalent.
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We also consider the following time dependent homogeneous Besov spaces
L7(0,T; B (R?) = { /(t) € SyB) | fll ooy oy < ) (329)
and
L7(0,T; B} () = { F(1) € SLR) : |l oy oy < 0} (3:26)

where

1/q
Hf”D"(O,T;Bg,q(RQ)) = (Z 2j8q”Aijqr(o,T;Lp(R2))) :

JEZ
We recall inequalities that are used in the upcoming sections (see for instance

[5, 27, 43]).
Proposition 3.1. Let f € S, (R?).

1. (Bernstein’s inequality) Let 1 < p < oo. Let k be a nonnegative integer. Then

‘Sl|lp HaaAijLp(R2) S CijkHAijLp(RZ) (327)
al=k

holds for all j € Z.
2. Let 1 < p < qg< 0. Then
(11
185 flzaezy < €276 A flloge) (3.28)
holds for all j € 7. Moreover, the continuous Besov embedding

1 1

Bs (R < BZ;i(H*a (R?) (3.29)

P1,91

holds for 1 < p; <py < 00,1 <q1 < g <ocands € R.

3. Letl1 <p<oo,t>0,a>0. Then

HeitAa AijLP(RQ) S Oeioilea HAijLP(RQ) (330)
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holds for all j € 7Z.. Here A is the fractional Laplacian of order « defined as

a Fourier multiplier with symbol |£|°.

4. Let R = (Ry, Ry) be the Riesz transform, i.e., for k € {1,2}, R, = O, AL
For each p € [1, 00|, there is a positive constant C' > 0 depending only on p
(independent of j) such that

1A Rf ez < ClA; flzrre) (3.31)
holds for all j € Z. Hence, for s € Rand 1 < p,q < oo, R is bounded from

s 2 :
Bs (R?) to itself.
The following decomposition formula holds.

Proposition 3.2. Let f, g € S}, (R?). Then

Ni(fg) = > Dj(SkarfArg) + Y Aj(SkgArf)

k>j—2 k>j—2
= Y Aj(SengAif) + Y Aj(SefArg) (3.32)
k>j5-2 k>j5-2

holds for any j € Z.

Proof: Let f, g € S;. Bony’s paraproduct gives the decomposition

fg = Z ijlfAjg + Z ijlgAjf + Z Aijj/g. (3.33)

iz jer =311
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‘We note that

D DA =D AN+ NN g+ Y A fAjag

li—3"1<1 JEL JEL JEL
=N AN AA g+ Y A fAg
JEZL JEL JEL
= Z(A]’—lf + A]f)Ajg + Z Aijjflg. (334)
JEL JEL
This implies that
F9=> SifAjg+>_ Sigh;f. (3.35)
JEL JEL

Now we apply A;. In view of (3.16), we have
k<j—2= A;(SkgArf) =0 (3.36)
and

k< j—3= 8;(SknfArg) =0, (3.37)

Indeed, for f, g € L'(R?),

]:(AJ(SkQAkf)(f) = \Ijj(|£‘)‘F(SkgAkf)(£)

= W;(lED) { >, /\Ifz(lf —yl)Fg(€ y)‘Pk(y)ff(y)dy}

I<k—1g,

—wehd S [ Wl - u)Fale - i) F S ()dy

= U, (|€)Pr() (3.38)

Vi(§) = Ui(1€ =y Fg(& —y)Vr(ly))F f(y)dy. (3.39)
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Fix | < k — 1. Let y € R? be such that 2* < |y| < 22 and W;(|¢ — y|) # 0. This

implies that | — y| < %5, thus
2'5 285 2F15 2k :
fl<le—ultll< 2+ 0 < P24 20005 G4o)

Consequently, if |¢] > 2¥7315, then W;(|¢ — y|) = O for all [ < k — 1 and for all

y satisfying % < ly] < Z3, and so U, (€) = 0. We conclude that the support of
0}, is included in the closed ball centered at 0 with radius 25~315. But the support
of W,(| - |) is included in the closed annulus centered at 0 with radii 2—27 and 2;—5
Therefore, if k + 1 < j — 1, then 287315 < 2*¥+1 < 2/~1 and so

F(A;(SkgArf)) =0 (3.41)
which gives (3.36). The property (3.37) follows from a similar argument. This gen-
eralizes to distributions with compact supports, because the support of the convolu-
tion of two distributions with compact supports A and B respectively is contained

in A + B. Therefore, we obtain the decomposition

Aj(fg) =D Aj(SkafArg)+ D Aj(SegAif). (3.42)
k>j—2 k>j—2
This ends the proof of Proposition 3.2.
Throughout this chapter, C' (or C;,7 = 1,2, ...) denotes a positive constant that

may change from line to line in the proofs.

3.3 Well-Posedness in Lebesgue Spaces

We consider the transport and nonlocal diffusion equation

op+u-Vp+Ap=0 (3.43)
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in the whole space R?, where
u=—P(pRp). (3.44)
The initial data are

p(x,0) = po(x). (3.45)

Here P is the Leray-Hodge projector, A = (—A)% is the fractional Laplacian, and

R = VA~!is the 2D vector of Riesz transforms.

Definition 3.1. A solution p of the initial value problem (3.43)—(3.45) is said to be
a weak solution on [0, T if
p € L®(0,T; L*(R%) N L2(0, T; Hz(R?)) (3.46)
and p obeys
(0. 9)52 — (0¥ = [ - V)isds + [ (Whp AR s =0 G47)

for all time-independent test functions ® € H3 (R?) and a.e. t € [0,T].

For € € (0, 1], let J. be the standard mollifier operator J.f = J, * f, and let p°
be the solution of

Opt+u-Vp' 4+ ApS—eAp*=0 (3.48)

where

u® = —JP(p°Rp°) (3.49)

with smoothed out initial data

po = Jepo (3.50)
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Remark 3.1. We note that P and J. commutes, hence u° is divergence free.

Theorem 3.1. Let T > 0 be arbitrary. Let py € L?(R?). Then for each ¢ €
(0, 1], the mollified initial value problem (3.48)—(3.50) has a solution p¢ on [0,T]
satisfying

1, . o1, 1
S @+ [ 1836 ads < Sl G

forallt € [0, T). Moreover, the sequence { pY "}Zozl has a subsequence that con-
verges strongly in L*(0,T; L2(R2)) and weakly in L*(0,T; Hz(R?)) to a function
p obeying

1 L 1
§||p(t)||%2 +/0 A2 p(s)||72ds < §||po||%2 (3.52)

fora.e. t € [0,T). If po € L**°(R?) for some & > 0, then p is a weak solution of
(3.43)(3.45) on [0, T).

Proof: We take the L? inner product of (3.48) with p¢ and we obtain

1 d € 1 € €
5 7P Nze + 1182 o172 + el Vor72 = 0. (3.53)
2dt
Here we used the fact that u° is divergence free, which implies that

(ue - Vp<, p)p2 = 0. (3.54)
Integrating (3.53) in time from 0 to ¢, we obtain (3.51). Therefore, the family
{p° : € € (0,1]} is uniformly bounded in L%(0, T’; Hz ). Moreover, we have

[(Ap )pz| = [(A2p", A2 ) o

< A2 | 2| AZ @[ 2 < CI[AZ |2 ]| | (3.55)

5,
H?2

e[(=2p5, @) 2] = €l (p, —AP) 2| < Cllpf|2[I®] 5, (3.56)
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and
(@ - Vpt, @) 2] = (U5, V) 2|
< @[z llp N 2 VOl e < CllptlZallo (2121l 5 (3.57)
for all ® € H3. Here we used the boundedness of the Riesz operator on L*, and
the continuous Sobolev embedding H 2 e Lo, Therefore, we obtain the bound
7 Fpl g+ 1A g + el Aol
<Ol Fallp e + 16 lle + 1AZ 0 12). (3.58)
In view of the continuous embedding H 2 < L4 we conclude that the family
{8,p° : € € (0,1]} is uniformly bounded in L*(0,7; H=3). Now, we note that the
inclusion Hz — L? is compact whereas the inclusion L? — H =3 is continuous.
Let ¢, be a decreasing sequence in (0, 1] converging to 0. By the Aubin-Lions
lemma and (3.51), the sequence {p™ } - | has a subsequence that converges strongly
in L2(0,T; L?) and weakly in L2(0,T; H?) to some function p. By the lower semi-

continuity of the norms, we obtain (3.52).

For simplicity of notations, we assume that p¢ converges to p strongly in L2(0, T'; L?)

and weakly in L2(0,T; H?). We note that
t
(p6<t), (I))LZ — (p(], @)LQ + / (’?1:6 . Vpé, (I))LQdS
0
t ) 1 t
+/ (Azp, A2®) 2ds + e/ (Vp,VP)2ds =0 (3.59)
0 0
holds for all ® € H? and ¢ € [0, T]. Without loss of generality, we may assume

that p° converges to p in L? for a.e. ¢t € [0, T}, and so

|(°(1), @) 12 = (p(t), @) 2] < [|p° = pll2(|®]] 2 — O (3.60)
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forall ® € H3 and a.e. t € [0,7]. By the weak convergence in L2(0,T; H?), we
obtain

t t
/(AépgAécp)LQdS_/(A%p,A%cb)des =0 (3.61)
0 0

forall ® € H3 and all ¢ € [0, T]. For the nonlinear term, we let ® € Hz,t € [0, 7]

and we write
3 t
/ (u® - Vp, @) 2ds — / (u-Vp,®)2ds
0 0
t t
= —/ ((p° = p)u, V) 2ds — / (T — u)pS, V) 2ds
0 0
‘We note that

t
B < Clls [ Il = pliads 0 (.63
0

by the Lebesgue Dominated Convergence theorem. For /5, we split it as

o= [ ERY — R Vs + [ (OB~ )R ) s
=11+ 1. (3.64)

In view of the boundedness of the Riesz transform on L? and the boundedness of

the Leray operator on L*/3, we have

t
sl < Cl@l5 [ 15T B R = o)l

t
< CH@HHg/O 1ol zallpll sl = pllz2ds

t 1/2 t 1/2
<clall ( / ||p€r|%4ds) ( / ||p||i4||pe—p||%zds) L0 (365
0 0

by the Lebesgue Dominated Convergence theorem.
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We note that we have not yet used the assumption that py € L>*°. It will be
needed to estimate |I5»|. Indeed, we multiply equation (3.48) by p|p¢|° and we
integrate in the space variable. We use the Cérdoba-Cérdoba inequality [22]

/ 0 1°(p Ap©)da > 0 (3.66)
R2
and we obtain the differential inequality
d €
1P @245 < 0. (3.67)
Integrating in time from O to ¢, we end up having the bound

1o ()] z2+s < |lpollp2+s (3.68)

forall ¢ € [0,7]. As a consequence,

t
Lol < Cllo) / 1 el Lol = ol s ds

< C[I@]l ;3 llol |L2+5/ o llello” = olIZa? " — ol ds

€12 2+ € 2 2;-7-5
< ol ol [ 1o ) ( [0 ol
0 0
t 1/2 ¢ 5 t 335
£l s ool aes ( / WH@) ( / |\pui4ds) ( / npe—puizds)

— 0.
Here we used the interpolation inequality

ISV seas < ClIfIIE 5Hf|!“ (3.69)

L2+35

that holds for any f € L*.

Therefore p is a weak solution of (3.43). This ends the proof of Theorem 3.1.
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As a consequence of the Cérdoba-Coérdoba inequality [22], the L” norm of any
solution of the equation (3.43)—(3.44) is bounded by the L? norm of the initial data

for any p € (2, 00

Proposition 3.3. Let p > 2 and py € LP(R?). Suppose p is a smooth solution of
(3.43)—~(3.45) on [0, T). Then
lp@)llze < [lpollzr (3.70)

holds for all t € [0,T).

Proof: We multiply (3.43) by p|p[’~2 and we integrate in the space variable. We
obtain the differential inequality

d

ol < 0. (3.71)
This gives (3.70).

Remark 3.2. If py € L™(R?), then

HPOHLOO
1+ Ct{[pol| o=

fort € [0,T) (see [22]). This bound is useful to study the long time behavior of

(-, t)[| L < (3.72)

solutions.

Definition 3.2. A weak solution p of (3.43)—(3.45) is said to be a strong solution
on [0, T) if it obeys

p € L=(0,T; H2(R?) N L*(0, T; H? (R?)). (3.73)

Theorem 3.2. Let py € H?*(R?). Then there exists Ty > 0 depending only on

|pol| 2 such that a unique strong solution of (3.43)—(3.45) exists on [0, Tp).
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Proof: We apply —A = A? to (3.48) and we obtain
—OAp° — U - VApS — 2VUVVp — AU - Vot + A2p° + eAAp =0 (3.74)

We multiply (3.74) by —Ap¢ and we integrate over R, In view of the fact that

(w® - VApS, Ap)p2 = 0, (3.75)
we obtain
N+ AT s + €A%
= —2(VuVVpS, Ap)rz — (AU - Vp, Ap)pe. (3.76)
Using the product rule
[f9llzs < Cllf1asllgllzee + Cllgllas [ £ e (3.77)

that holds for any f,g € H*, s > 0, we estimate
IVa|[ps < Clluf]l, 5 < Cllp"Re |l 43
< CllpflleellBefll s + ClURA N ool 5
< Cllpll 5 (3.78)
Here, we have used the continuous embedding H AT L*, the fact that the Leray
projector is bounded on H 2, and the boundedness of the Riesz transforms as oper-
ators from H 2 into L*°. Similarly, we bound
|8 < ClloRef]l 5
< CllplleellBefll 5 + ClRA N oo [ ROl 5

< ol 16l 5 (3.79)
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Consequently,

A + AL
< 2[Vu||pal[VV | pal [ Apf[| 2 + | AU| pa ||V o pa [ Ap€]| 2
< Clp IR 5 1ol 120 | 2 (3.80)
and by Young’s inequality, we obtain
1A + AT
< CllpII s 1AAIZ + ClAIE 5 1ol 2l Ap 22
< Cllp %2 + 161 2)- (3.81)
We note that
oIl = (|1 + LF () Ol o < CIFp N2 + ClI AL 22
= Cllp Nz + CllAL L2 < Cllpollr2 + CllAL | 12 (3.82)
in view of Plancherel’s theorem and the uniform boundedness of p¢ in L? described
by (3.52). Therefore, we obtain the differential inequality
SN + A3 < CIASG +C (3.83)
where C,, is a positive constant depending only on py and some universal constants.
This implies that
% (14022 + 1) < Co (|22 +1)° (3.84)
for some constant Cjy depending only on the initial data. Diving both sides by

([ Ape)I2, + 1)3 and integrating in time from 0 to ¢, we get
1 1
>

> — CoTy (3.85)
2 2
2([lap<N17:+1)" — 2([Ap0l32 + 1)
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for all t € [0,75]. We choose a positive time T > 0 such that
1

Ty < (3.86)
2Co (I18poll2. +1)°
and we conclude that
Apoll3. +1
185Dl < —— Al : G0
V1= 2CeTh (1 Apo]12: + 1)
for all t € [0,7p). In view of the energy inequality (3.83), we also have that
To
| 1A5 5 @)t < Do, T (3.89
0

where I'(pg, Tp) is a positive constant depending only on the initial data and 7.
This shows that that {p° : € € (0, 1]} is uniformly bounded in
L>(0,T; H*(R?) N L*(0, T; H? (R?)). (3.89)
Passing to the limit on a subsequence and using the lower semi-continuity of norms,
we conclude that the weak solution p, obtained in Theorem 3.1, is strong.
For uniqueness, suppose that p; and p, are two strong solutions of (3.43) on
[0, Ty] with the same initial condition. Let p = p; — po and u = u; — us. Then p
obeys the equation
Op+u-Vpr+us-Vp+Ap=0. (3.90)

We take the L? inner product with p and we obtain
1d

1
5 gplPlze + 182 plLe = —(u- Vo, p) e (3.91)



94

In view of the boundedness of the Riesz transforms on L*, we have
ul[zs < |[P(pRp1)|[zs + [[P(p2Rp)]| L4

< Cllplipal Rorlle + [zl oo | Rl s

< Cllplles (Ilonll g + el ) - (3.92)
Hence
[(w - Vp1,p)re| < [JullzalVorllzallpll 22
1
< 5lol2y +C (Inlg + loall g ) lonl 1ol (3.93)
Therefore,
d 2 2
ol < K)ol (3.94)
where
K(t)=C (Il + leall g ) lorl . (3.95)

We note that K (t) is time-integrable on [0, Tp] since p; and p, belong to the space
L>(0, Ty; H*(R?)). This shows that for each ¢t > 0, p1(-,t) = pa(-,t) a.e. in R?,

and so we obtain uniqueness. This completes the proof of Theorem 3.2.

3.4 Existence of Global Solutions in Besov Spaces

In this section, we show the existence of a global in time solution in Besov spaces

for sufficiently small initial data. The proof uses methods of [4, 11].
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L2
Theorem 3.3. Let 1 < p < oc. Let py € B],(R?) be sufficiently small. We consider

the functional space E,, defined by

By = { 10 € SL®): Ufls, = 11,

2
P
t Bp,

A 2 < oo}. (3.96)
1 Lth’l

Then (3.43)—(3.45) has a unique global in time solution p € E,,.

Proof: Let p(¥) = 0. For each positive integer n, let p™ be the solution of

in R?, where
w1 — —]P’(p(”*l)Rp("fl)), (3.98)
with initial data
p[()n) _ p(”)(-, 0) = po. (3.99)

We write p{™ in the integral form,

t
p(n)(t) _ e—tApO . / 6—(t—s)AV . (u(”_l)p("_l))(s)ds
0

= e Mpy — Bu" 1 prh) (3.100)
where B is the bilinear form defined by
B(v,0) = /t e~ IAY L (vh)(s)ds. (3.101)
0
See [11] for a similar approach.
Step 1. Fix a positive integer n. We show that

lp™ &, < Cillpoll 2+ Collp"™ VI, (3.102)
1

2
P
P,
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tA

We start by estimating e~"*py in F,. We apply A; and we take the L? norm. In

view of the bound (3.30), we have

le™Ajpollrs < Ce™ 2| A pol| o, (3.103)
hence
e~ polle, = e poll 2 + 1™ ol 2 < Clloll 3 - B104)
pl t pl Pl

Now, we estimate the term BB (u (n=1) p(n=1)) in E,. First, we note that

By (n—l) w < C u("—l)p("_l) 2. (3.105)
AY: 0

t~p,1

Indeed, we apply A; to B(u"~V, p~1) and we estimate. On one hand,

t
18,800, ) e < O | [ 2 0 00 ) s
0

L
< CYA;(u" D p" ) |1 (3.106)
in view of Bernstein’s inequality (3.27) and the bound (3.30). We multiply by 2’ z

and we take the ¢ norm. We obtain the bound

1Bu®Y, o) 2 <Ol DI (3.107)
LtOOB;gl L%B;,I
On the other hand,
t .
||Aj5(u(n71)’p(nfl))HLtle <C H/O 9f ¢ (t=5)2 HAj(u(”*l)p(”*l))(s)||Lpds
L}
< C/ </ 2j6_c_l(t_8)2jX[07t}(S)dt) ||Aj(u("_1)p(n_1))(8)HLpdS
0 0
< Ol 25 (@™ V" ) |z (3.108)

where Y denotes the characteristic function of the set £. Multiplying by 2’ (G+1)
and taking the ¢! norm yields the bound

1B, p" |, a0 < Cllut™ Do D 2 (3.109)
t~p,1



97

Combining (3.107) and (3.109), we obtain (3.105). Accordingly, our next goal is to

show that

(n—l)H

[ut""Vp b <Ol V% (3.110)
1

2
fipp
th

which gives (3.102). In order to establish the bound (3.110), we use the decompo-
sition (3.32)

A Dp D)y = 3 A (S Y A Y)

k>j—2

+ ) A (S p VA, (3.111)
k>j5—2
We apply the L} L? norm, we use the bound

12 fllze < ClIflze (3.112)
that holds for any f € S; where C' is a positive universal constant independent of

7, and we obtain

12, (™D o) e < C Y [1Skul™ D oo oo | Akp™ D a1

k>5—2

O3 180" Ve A . (3.113)
k>j—2
In view of Bernstein’s inequality (3.28), we have

1Sk Dllzere < A" D lgperm

1<k
<O 2 A e < ClP" Vs (3.114)
1<k LBy,
‘We show below that
1Skt g < Cllp™ |2 (3.115)

2
FoonaP
L Bp,l
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and
1A D iz <ClP™ N2 (Y (18" Dl |- (3.116)
LBy, m>k—2
Using the bounds (3.115) and (3.116), we obtain
14, (ut" D p" =)y < Ol 1>H2 ; S [PV [P
P1k>j 2
+Cllpt" llP IFED DD D L7 Fr (3.117)

P1k>] 2m>k—2

We multiply (3.117) by 2’ <p 1) and we take the ¢! norm. In view of Young’s

convolution inequality, we have in the first term

S S G A

JEZL k>j5-2
— (k=) (2 2 _
=32 30 2 G G Ay
JETL k>5—2
< (Z 2—f<5+1>> (Z 2j<i“>uAjp<”l>Hw)
j==2 JEZ
<C)p" V. e, (3.118)

1BP

For the second summation on the right hand side of (3.117), we apply Fubini’s

theorem and write it as

S S 220G ALYy

JEZ k>j—2m>k—2

=33 3 2 GG A,

JEZL m>j—4 j—2<k<m+2

— Z Z (m—j+ 5)2—(m—j)(%+1)2m<%+1) HAmp(nfl)HLtle.

JEZ m>j—4
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Now estimate as in (3.118) and obtain

S5 3 26 AL Y

JEZ k>j—2m>k—2

<oy Y 2 G G AL g

JEZ m>j—4

C(m—i)(2 m(2 e
+53° S 2 DG G AL g

JEZ m>j—4
<Clp" N 2 (3.119)
LB

t~p,1

Here, we have used the fact that z2* < €22 for all z € R. Putting (3.118) and
(3.119) together, we obtain (3.110).
We end the proof of Step 1 by showing the estimates (3.115) and (3.116). For

each [ € Z, we use again paraproducts to decompose A;(p™ Y Rp"~V) as

Al(p(nq)RP(nq)): Z Al(smﬂp(nq)Ame(nq))

m>1—2

+ Y A(SnBe" I A" Y). (3.120)
m>1—2
In view of the boundedness of the Riesz transform (3.31) and the definition of the

Leray projector as

P=I+R®R, (3.121)

we bound

2 e
HSkU(n_l)HLgOLOO < Z HAlu(n_l)HL;’OLW < C Z 2lp||Alu( I)HL;’OLP

I<k—-1 I<k-—-1

2 _ e
<C > 29 A(p" I Rp™ )| e (3.122)

1<k—-1
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for any p € [1, 00| and using the paraproduct decomposition (3.120), we obtain

2 _ -
19k D peree <C Y7 2% Y (181 p™ Vg roe | Am Rp™ V| e 1

1<k-1 m>[—2

+C Z 2 Z 1S Rp" V| o oo | Amp™ V| e - (3.123)

I<k—1 m>1—2
‘We note that

ISmad* sz < Clo" s (3.124)

as shown in (3.114). Moreover, in view of (3.31), we have

1Sm B V| rgere < > ARV oo

z<m—1
2 _ 22 n—
SC YD BHARS Ve <C 3T 2FNAP" Y e
2<m—1 z<m—1
LBy,

Now we use the assumption that p < oo which implies that % > () and so we can

apply Young’s convolution inequality to obtain

1Skt | oo < CH/)(”*”H 2 2 125" Do
P

I<k—-1 m>1—2

= Cllo™ 3 {Z > 2 A Duw}

I<k—1m>1-2

< O||p(”‘”|\?oo3% (3.126)

t p,1

which proves (3.115). We proceed to show (3.116). Using the paraproduct decom-

position (3.120) and the bound (3.31), we have
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1A Y 11 < ClA PV R D) 11

<C Y NS me1p" g re [ A R V| 1y 1o

m>k—2

+C > SR e poe | Amp ™V | 1 1o

m>k—2

<Clp™ s (Z ||Amp<"‘1>||Lng> (3.127)

t el \m>k—2

yielding (3.116). This ends the proof of Step 1.
Step 2. We show that there exists an ¢ > 0 sufficiently small such that if

< €, then the sequence { p(”)}zo: converges to a unique solution p

1

of (3.43)—(3.45) obeying ||P”Ep < 2e.
First, choose an ¢ > 0 such that 02(26)3 < ¢, where Cy is the constant in

(3.102), and suppose that C||po|| .2 < €. Then an inductive argument yields
B

i
9™, < 2¢ (3.128)

for all n > 1. Indeed,

16V, < Callpoll 2 < e < 2e (3.129)
in view of (3.102). Suppose that
1" Vlg, < 2e. (3.130)
Then
1p™ 15, < €+ Ca(26)® < e+ € = 2e. (3.131)

Therefore, we obtain (3.128)



102

Now, we show that the sequence {p™}"" is Cauchy. Indeed, the difference
p™ — p=1 obeys
(o = P V)(8)
= / —(t=s)Ayy . (p(n) — p(n—l)) _ (u(n—l) _ u(n))p(n—l)] (s)ds
= B(u P ) — BuY — ) =)y, (3.132)
As in Step 1 and using (3.128), it can be shown that
1p™ = p" g,
< IB(u™, p" — p" D) g, + 1B —u™, )|,
Cellp™ " = p" |5, (3.133)
where C'(¢) is a constant depending on € obeying C'(¢) < 1 for a sufficiently small
€. Therefore, the sequence { o) }Zozl is Cauchy in £}, and converges to a solution
p of (3.43)—(3.45). Uniqueness follows from a similar estimate to (3.133). This

finishes the proof of Step 2. Therefore the proof of Theorem 3.3 is complete.

3.5 Regularity of Solutions for Arbitrary Initial Data

In this section, we prove that any solution of (3.43)—(3.45) is smooth for arbitrary

initial data, provided that it satisfies a certain regularity condition.

Theorem 3.4. Let p be a weak solution of (3.43)—(3.45) on [0,00). Let 0 < ty <
t <oo. If

p € L>([to, 1]; C°(R?)), (3.134)
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for some 6 € (0, 1), then

p e C™((to,t] x R2). (3.135)

Proof: We sketch the main ideas. Let us note first that
u € L™([to, t]; C°(R?)). (3.136)
where

u=—P(pRp). (3.137)

Indeed, for any s € [to, t|, we have

[u(s)lles < Clip(s)Rp(s)lcs

< Clip(s)llz=lIBp(s)lle + Cllp(s)l| <1 Rp(s)llcs + CllRp(s)l o[l p(s) [l cs

< Cllo(s)lIEs (3.138)
in view of the boundedness of the Leray projector and Riesz transforms on the
Holder space C°. Consequently, the Holder regularity of p imposed in (3.134)
gives (3.136).

Next, we show that

p € L= ([to, t]; B (R?) N C°(R?)) (3.139)

and

u € L™ ([to, t]; BJL(R*) N C™ (R?)) (3.140)
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forany p >2and §; = ¢ <1 — %) Indeed, for any s € [to, t], we have

o)l gor = sup (2 [1A50(5)]|r)
' J

. 1-2 2
< s (2180601 18,01

JEZ

2

-3 2 2 2
<0 (Ipelse) " ol < Clols)le)  Ip(s)lE: G14n)

and similarly

2

lus) g, < € (lu)lse,) " luls)l
< C (Ju(s)les)" " [10(s)] - (3.142)
The last inequality holds in view of the boundedness of the Leray projector on L?
followed by an application of Holder’s inequality with exponents 4, 4. The interpo-
lation inequality

p(s)llee < [lp(s) |2 ()15 (3.143)

together with (3.136) and (3.134) gives (3.139) and (3.140).
Now, we proceed as in [20]. We apply A; to (3.43), we multiply the resulting
equation by p|A;p[P~2A,p, we integrate first in the space variable x € R? and then

in time from ¢, to t. We obtain the bound

1A;p(t)l|zn < Ce U Ay p(to) | o
t v '
€ [ eI ) (o)
to Pree

t > .
+C’/ 6_02]“_8)2(1_251)3||u(s)||cal||p(s)||Ba1 ds (3.144)

to



105

(see [20] for details). We multiply by 221/ and we take the /> norm in j. This

yields the bound

Hp(t)HBf)‘sl < Csup {251j€—02j(t—t0)} Hp(tO)HB‘sl
,00 ]GZ D,00

+ Csup {1 = @D sup p(s)l|on lluls)l 5o
JEZ s€[to,t] Poe

+csup{1—efc2f<t*to>} sup [Ju(s)llea [lp(s)ll g (3.145)
JEZ s€[to,t] proe

Therefore

p(-,t) € B2 (R?). (3.146)

for any p > 2. In view of the continuous Besov embedding (3.29), we have the
continuous inclusion

. . _2
B2 (R?) < B! (R?) (3.147)

for any p > 2. We choose p > 2%;25 so that 20, — % > 01, hence

p(-,t) € B2 (R?) N C™(R?) (3.148)
where o > d;. In fact, the spacial regularity (3.148) holds at any s in [ty, t] because
the pointwise-in-time estimate (3.144) holds at those times as well. Now we iterate
the above process infinitely many times to upgrade the spacial regularity of the
solution and we simultaneously use the PDE (3.43) to upgrade their time regularity.

This yields the desired smoothness (3.135), completing the proof of Theorem 3.4.
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3.6 Periodic Case

In this section, we consider the initial value problem (3.43)—(3.45) posed on the
torus T2 with periodic boundary conditions. We assume the initial data p, have

zero mean. We prove existence and regularity of solutions.

Theorem 3.5. Let 1 < p < 0. Let py € B”l(']TQ) be sufficiently small. We consider
the functional space E, defined by

= {£(t) € DHT?) : |1l (z2) < o0} (3.149)
where

11,2y = LI HIAL 2 s (3.150)

t 1('1[‘2 LlBP (’]TQ)
and D)(T?) is the dual space of

Dy(T?) = {f € C=(T?) : 5 f(z)dx = 0} .

Then (3.43)—(3.45) has a unique global in time solution p € E,(T?).

The proof of Theorem 3.5 follows from the proof of Theorem 3.3.

In view of the Besov embedding and Theorem 3.5, we conclude that if py €
B%J (T?) is sufficiently small, then there is a constant C' > 0 depending only on the
initial data such that the unique solution p of (3.43)—(3.45) obeys

sup 190 oen + [ 180(0)sacedt < € (3.151)

Using this latter estimate, we end this section by showing that the L?(T?) norm

of A2 p converges exponentially in time to zero.
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Corollary 3.1. Let py € B},(T?) be sufficiently small. Then there is a constant
C > 0 depending only on the initial data such that the unique solution p of (3.43)—
(3.45) obeys

Proof: We take the inner product in L?(T?) of (3.43) with Ap to obtain

1d, . 1
5%”1\20@)“%2@2) + 1Ap)|72(p2) = — /m(u - Vp)Apdz. (3.153)

We estimate the nonlinear term

/ (u-Vp)Apdz
T2

< Cllplloe ol 1V ol L) Vel 22

< Cllpllzaa) Vol [V oll L2y
< ClpllZagray 170l sy 18l 2y (3.154)
in view of the boundedness of the Leray projector and Riesz transforms on L*(T?),
the continuous embedding W**4(T?) — L°°(T?), and the Ladyzhenskaya interpo-
lation inequality.
Since H'(T2) is continuously embedded in Hz(T2), we have
1A2pll 2y < CllAD] p2cre), (3.155)
yielding the differential inequality
1AL pllacrey + CrIAS plliacrey < Oollol By IVl o | Al 3156
We note that

lo(®)llz2¢z2) < Cllpollzceaye™ (3.157)
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forall t > 0. Indeed, we multiply (3.43) by p and we integrate in the space variable.
Then we use the cancellation of the nonlinear term and the continuous embedding
of Hz(T?) in L%(T?) to obtain
Dol + Cllo(®)lzcrn < 0 (3.158)
which gives (3.157).
Now we go back to the differential inequality (3.156). Using the bounds (3.151)

and (3.157) together with Lemma 1.1, we obtain (3.152).

3.7 Subcritical Periodic Case

In this section, we consider the subcritical case where the dissipation is given by A“
for a € (1, 2], that is, we consider the equation

Op+u-Vp+Ap=0 (3.159)
posed on T?, where

u= —P(pRp). (3.160)

The initial data are given by

p(x,0) = po(x) (3.161)

and have zero mean.

Global weak solutions exist:
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Theorem 3.6. Let v € (1,2]. Let T > 0 be arbitrary. Let py € L*(T?). Then
(3.159)—(3.161) has a weak solution p on [0, T| obeying

1 - 1
5“0(75)“%2@2) +/ IA2 p(s) 172 (p2yds < §HPOHZLZ(T2) (3.162)
0

fort €0,T).

The proof is similar to that of Theorem 3.1, and so we omit the details.

We note that the regularity of the initial data imposed in the critical case (o =
1), namely po € L**9 for some § > 0, is not required in the subcritical case in view
of the fact that p obeys

p € L*0,T; H?(T?)). (3.163)

The following proposition is the analogue of Proposition 3.3:

Proposition 3.4. Let o € (1,2]. Let p > 2 and py € LP(T?). Suppose p is a smooth
solution of (3.159)—(3.161) on [0, T]. Then

()| e 12y < ool e (T2 (3.164)
holds for all t € [0, T). Moreover, if py € L>(T?), then

o) || Lo 2y < || pol| Loo(r2) (3.165)

holds for all t € [0,T.

The solution of the initial value problem (3.159)—(3.161) with large smooth data

are globally regular.

Theorem 3.7. Let o € (1,2], s > 0. Let T > 0 be arbitrary. Let py € H*(T?) N

L>(T?). Then there are positive constants C1, Cy and Cs depending only on
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| po|| oo (r2y such that the solution of (3.159)—(3.160) with initial data p, exists and

satisfies

1A p(t)]| 22y < HASPoHH(T?)BClt (3.166)

/ IA™2 () 22y < 1A polZagrey + Call A0 220z (€€ — 1) (3.167)

fort €10,T).

Proof: Fix a small ¢ € (0, 1) such that « > ¢ + 1. We multiply (3.159) by A% p and

we integrate in the space variable over T?. We obtain the equation

1d

5 SNl e ey + 1A plEa ey = / (u-Vp)AZpdz.  (3.168)

’[[‘2

We estimate the nonlinear term. Integrating by parts and using Holder’s in-

equality, we have

/ (u - Vp)A* pdx
T2

/ A*T3V - (up) A2 pdx
T2

< AT E T (wp) || 2y 1A 2 pll 22y (3.169)
In view of the fractional estimate
IA°(f9)lo(r2) < Cligllee @2 [IA° fll o2 (r2) + CIA gl o3 22y | fll Loa(r2) (3.170)
that holds for any mean zero functions f,g € C™(T?),s > 0,p € (1,00) with
i1, 1_1 —I— p4,p2,p3 € (1,00) (see [19]), we estimate
HAS_%H(UP)HH(W)

< Cllull 2 o A7l 2 Cllpllm o |45 sy 3171

Lle"ﬂ‘2
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In view of the boundedness of the Riesz transforms (and hence the Leray pro-

jector) on LP(T?) for p € (1, 00) and Proposition 3.4, we bound

2) L? (11‘2) =
< C||P||%oo(1r2) < CllpollZoo z2y- (3.172)
By the fractional estimate (3.170), we have

||AS_%+IU||L2(T2) S C||AS_%+1(IOR/))||L2(T2)

< Cllpllzme) A Rpllaqeey + CUBPI 2 oy IAT 50l 2
< Clipollzoe e I3 pll 2y + Cllpol o A5 0l 2, ) BA173)
Hence
A5 wp)llaqre) < Cloliwn |50l 2,
+ Ol pollFoo 2y 1A pll 222, (3.174)
In view of the continuous Sobolev embedding
H(T?) — L+ (T?), (3.175)

we obtain the bound
1A= 2 (wp)l| 2r2) < Cllpoll T (o) A 57| 122y
+ Cllool e (r2y 1A~ 2 pll 2(12)- (3.176)
Using the Sobolev interpolation inequality
1A fllz2(rzy < ClA™ fll12fe) 1A FIIT2(re) (3.177)
that holds for any mean zero function f € H*2(T?) and s; = (1 — 0)sg + 052,
€ [0, 1], we estimate

s—2 s o 1) s+< %_1
A 2+1PHL2(’J1‘2) <C (HA PHL?(T?)) ° (HA +2PHL2(T2)) (3.178)
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and
As—%-‘rl-‘re < C (IIA® 2(07;71) As—f—% 2(62_1)_1 3.179
| pllzzr2) < (|| P||L2(T2)) (|| P||L2(T2)) - (3.179)
Consequently,
A2 (wp) || p2m2) 1A 2 pl| 22
2(a—e—1) 2(e+1)

SCHPOH%OO(TQ)(HASPHLQ(T?)) “ (|’AS+%PHL2(T2))

2(a—1) o 2
+ CllpollZarey (1A°pll2ery) = (1A 2 pll2rey) - (3.180)
By Young’s inequality, we end up with
2s s 112 1 s+ < 2
TQ(U - Vp)AZ pdz| < Cp, [ A2 () + §||A 2pl|z2(r) (3.181)
where C,, is a constant depending on the L> norm of the initial data py.
Therefore, we obtain the differential inequality,
d s s+ & S
%HA Pl Tz + A2 pll 22 (r2) < 2C5 1A Pl 222y (3.182)

which gives (3.166) and (3.167).
We have shown existence of global smooth solutions in the subcritical case,
provided that the initial data is smooth enough. No smallness condition is imposed

on the size of the initial data.

Remark 3.3. The solutions in the subcritical case are unique. This is obtained by
following the same argument as for the uniqueness of local strong solutions in the

critical case.

Remark 3.4. The results obtained in Theorem 3.7 holds as well in the whole space
R? when the initial data is smooth. The proof of Theorem 3.7 is mainly based

on fractional estimates (3.170) which hold in the whole space (see [30]), the uni-
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form boundedness of the LP norms of solutions to the subcritical equation which is
obtained in R? (see Proposition 3.3 and Remark 3.2), and periodic Sobolev inter-

polation inequalities given by (3.177) which, in the whole space setting, becomes

/]

ey < O f]

1700 ey 1 F 151 (o) (3.183)
for f € H2(R?) and s, = (1 — 0)sg + 09, 0 € [0, 1]. Therefore, the differential
inequality (3.182) becomes

d s s+< s

EHA pllTee) + A2 pllT2gey < CYIIA D)7 2(p2) + C (3.184)

where CY and C3 are constants depending only on the initial data, yielding the

desired bounds.
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CHAPTER 4

Nernst-Planck-Navier-Stokes Equations

We consider long time dynamics of solutions of 2D periodic Nernst-Planck-Navier-
Stokes systems forced by body charges and body forces. We show that, in the
absence of body charges, but in the presence of fluid body forces, the charge den-
sity of the ions converges exponentially in time to zero, and the ion concentrations
converge exponentially in time to equal time independent constants. This happens
while the fluid continues to be dynamically active for all time. In the general case of
body charges and body forces, the solutions converge in time to an invariant finite

dimensional compact set in phase space.

4.1 Introduction

Electrodiffusion of ions in fluids, described by the Nernst-Planck-Navier-Stokes
(NPNS) equations [36], is a broad subject, extensively studied in the chemical-
physics, bio-physics and engineering literature. From mathematical point of view,
the Nernst-Planck system without added charges and without fluid possesses global
smooth solutions which converge to unique stationary states in bounded domains
in two dimensions [7, 12, 26]. These results are obtained in situations in which

boundaries are impermeable to the ions, where the relevant blocking boundary con-
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ditions require the vanishing of the normal fluxes of ions through the boundary. The
NPNS system with blocking boundary conditions and with no applied voltage at the
boundary is globally well posed in 2D [39]. Furthermore, the NPNS system was
proved to have globally smooth and stable solutions in 2D with blocking bound-
ary conditions and nonzero applied voltage [16]. In [40], weak solutions in three
dimensions were shown to exist for homogeneous Neumann boundary conditions
for the potential. Recently, in [33], the authors established the existence of weak
solutions in the whole space, 2 = R3. All these results concern situations without
forcing in which there is a unique stable stationary solution.

Numerical simulations [37, 44] and experiments [38] show that instabilities oc-
cur in regimes when the system is forced. The lack of stability was suggested to
lead to chaotic, and even turbulent behavior [24], analogous to fluid turbulence.

In this chapter, we consider the issue of long time dynamics of solutions of
the NPNS system with forcing of two kinds: added charges and fluid body forces.
Two i1onic species, with concentrations ¢; and co, with valences z; = 1 and 2z, =
—1 respectively, and with equal diffusivities D > 0, evolve according the Nernst-
Planck equations

(O +u-V)e; = Ddiv(Ve; + 2,V ), 4.1)
i = 1,2. The ionic species concentrations ¢;(z, t) are nonnegative functions of the
two variables, position x and time ¢. The potential ® obeys the Poisson equation

—eAD =p+ N (4.2)
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driven by the charge density

p==C1—Cy 4.3)

and by the added charge density N, which we take smooth and time independent.
The constant € > 0 is proportional to the square of the Debye length. The velocity
u of the fluid obeys the Navier-Stokes equations
ou+u-Vu—vAu+Vp=—(p+ N)VO + f 4.4)
with the divergence free condition
V.u=0. 4.5)
The variable p represents the pressure. The positive constant v is the kinematic
viscosity. The body forces f are time independent, smooth, and divergence free.
We consider the NPNS system in the two dimensional periodic domain
T? = [, 7] x [-7, 7] (4.6)
with periodic boundary conditions.
Our main results are as follows. In the absence of forcing of any kind (f =
N = 0), we prove that solutions are global and regular. The velocity converges
exponentially in time to zero, the concentrations converge exponentially in time
to equal constant values and the charge density converges exponentially in time
to zero. In the case of body forces, but in the absence of added charge densities
(f # 0, N = 0), we prove that the solutions are global, regular and the ionic
concentrations still converge exponentially in time to equal constant values, while

the charge density converges exponentially in time to zero. This is interesting in



117

view of the fact that the Navier-Stokes evolution is forced and the velocity does not
cease to be dynamically active. In all cases of forced equations, including f # 0 and
N # 0, we prove that all solutions converge in time to a global attractor, which is
an invariant compact set in phase space with finite Hausdorff and fractal dimension.
The chapter is organized as follows. Section 4.2 is devoted to preliminaries. We
describe the asymptotic behavior of eigenvalues of the dissipative operator A =
(vA,—DA,—DA), where A is the Stokes operator and A is the Laplacian. In
section 4.3, we prove, as in [18], that
/ /W 1 (z)? + [ea(2)]?) dadt < oo, 4.7)
for all 7" > 0 is a necessary and sufficient condition for the persistence of global
regular solutions of the NPNS system (4.1)—(4.5). Under condition (4.7), the non-
negativity of the initial ionic concentrations is preserved for all positive times. In
section 4.4, we discuss the case where no body forces f are present in the fluid and
no added charge densities NV take part in generating the electric field. We prove that
the concentrations decay exponentially in all L? spaces (p € [2; 00)) independently
of the velocity u, implying, together with the exponential decay of the L” norms
of u, the existence of a single point attractor. We prove further that the solutions
decay exponentially in H2. In section 4.5, we consider added body forces, and we
establish that the concentrations converge exponentially to equal constant steady
states, and the charge density vanishes in the limit of large times. We address the

evolution of the system in a phase space corresponding to strong solutions (H!).
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We show that there exists a compact set (a ball in a the stronger norm H?) which
is an absorbing ball. This means that starting from any initial data w, in phase
space, there exists a time ¢y, depending locally uniformly on the norm of the initial
data in the phase space, such that solution S(¢)wy belongs to the absorbing ball
for times larger than ;. We study further the properties of the nonlinear solution
map S(t) corresponding to the NPNS system. We establish Lipschitz continuity
of S(t) in various norms, including a smoothing property for positive times (see
Theorem 4.5). We prove the injectivity of the solution map S(¢) in Appendix A.
Exponential decay of volume elements is proved in Appendix B. The existence of
a finite dimensional global attractor is thus established for the case N = 0, f # 0.
The global attractor is a set which is invariant under the solution map, and such
that all solutions converge to it as time tends to infinity. In section 4.6 we treat the
general case with an added charge density /V. In this case the concentrations and
the charge density are no longer convergent in time, but we still obtain the proper-
ties of existence of a compact absorbing ball, Lipschitz continuity and smoothing
properties of the solution map. The injectivity and decay of volume elements are
valid as well, and we obtain the existence of a global attractor with finite Hausdorff

and fractal dimension.

4.2 Preliminaries

We consider the Hilbert space
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H=HaoL*® L (4.8)
where H is the space of L? periodic vector fields which are divergence free and
have mean zero. We define

Aw = (vAu, —DAcy, —DAcy) 4.9)
where A is the Laplacian operator with periodic boundary conditions on T2, and
A = P(—A) is the Stokes operator. Here, [P denotes the Leray-Hopf projector. We
recall that P and —A commute on T?. The domain of definition of A is

D(A) = (H*NH)® H*© H>. (4.10)
By the spectral theorem for Hilbert spaces, and since 0 is not an eigenvalue, there
is an orthonormal basis of 7 formed by a sequence of eigenvectors wy, of .4 with
corresponding eigenvalues 1, counted with multiplicity such that 0 < g1 < po <

e S /’Lk — Q.
Proposition 4.1. There exists a constant C' > 0 such that y, > Ck forall k > 1.

Proof: We denote by {);} the eigenvalues of —A with periodic boundary condi-
tions on T? counted with multiplicity, 0 < A; < Ay < .... There exists a constant
¢ > Osuchthat j < c\; forall j € N, and {v\,;} and {D\;} are the eigenvalues of
vA and D(—A) respectively counted with multiplicity. We write
{pizi=1,.... N} ={v\:i=1,...,5yU{DN:i=1,....k}  (411)
and we note that if uy = vAj, then j < fuN, whereas if uy = DM, then

k < Hun. Consequently, N = 57 +k < ¢ (l + %) i, which completes the

- 12



120

proof of the lemma.

4.3 Existence and Uniqueness of Solutions

We consider the system
(

Ou+u-Vu+Vp=vAu— (p+ N)VP + f

V-u=0
p=7C —Co

(4.12)
—eAP=p+ N

(9,561 +u - VCl = DACl + DV - (C1V<I>)

0o +u-Veyg = DAcy — DV - (o VD)

in T2 x [0, c0), \;/here v, D, € are positive constants. The body forces f are smooth,
divergence free, time independent, and have mean zero. The added charge density
N 1is smooth and time independent. We assume that the initial fluid velocity ug has
mean zero. We also assume that the initial concentrations ¢, (z, 0) and co(z, 0) have
space averages ¢; and ¢, satisfying

co—Cc1 =N (4.13)

where N is the space average of the charge density N.

Remark 4.1. We note that p maintains a space average equal to —N whereas u

maintains a space average equal to zero for all t > 0. This follows by integrating



121

the equations satisfied by p and u and by using
1
/(p + N)VO = - /(p + N)VA™%(p+ N)

1
== /A—W(p + N)RAV2(p+ N)=0 (4.14)
€
where the last equality holds because the Riesz operator R = VA™! is antisymmet-

ric.

We use the following convention regarding constants: we denote by C' a positive
constant that might depend on the parameters of the problem or universal constants,
Cv a positive constant depending, in addition, on the charge density N. Following
the same pattern, we denote by C'y s a constant depending on /N and f. These

constants may change from line to line along the proofs.

Theorem 4.1. (Local Solution) Suppose vy € H' and c;(0) € L>. Then, there
exists Ty depending on ||ug|| g1, ||ci(0)||2 and the parameters of the problem such
that system (4.12) has a unique solution such that u € L>(0,T; H')NL*(0,T; H?)

and c; € L*(0,T; L*) N L*(0,T; H') on [0, Tp).

Proof: We start by taking the L? inner product of the equation satisfied by u with

—Awu. We use the identity

Tr(GTG*) =0 (4.15)
for the two-by-two traceless matrix G with entries G;; = %, and we obtain
1d
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In view of Holder’s, Ladyzhenskaya’s, Poincaré’s, and Young’s inequalities, we
have

[+ )V Au <o+ Nl V]~ A

< CllAul[z={llpllz + [N ][l pllzs + [ V] 4]
v 2 D 2 6
< ZHAUHH + gHVPHL? +C|lpllzz + Cn. (4.17)

and consequently, we obtain the differential inequality

b
4

Vullz: + vl Aullz. < —[IVpllz: + Clipllz> + C g (4.18)

o
dt
Let 0 = ¢; + c5. Then, o and p obey the system
0o +u-Vo=DAo+ DV - (pVP)
(4.19)
Op+u-Vp=DAp+ DV - (VD).

Taking the L? inner product of the first equation with o and of the second equation
with p, adding them, and noting that

‘/ pAdPc

< Cllplicalioliesllp + N2

D
< SVl + IVoliz] + Clloli: + Cllolli + O (4.20)
by Ladyzhenskaya’s and Young’s inequalities, we obtain the differential inequality
d
Zllollza + llpllze) + DAIVelze + [1Vollzz) < Cllollze + llpllze] + Cw. (421)
Let

M(t) = [VulZ2 + llplZ2 + lollZ-. (422)

Adding (4.21) to (4.18), we obtain

D
M'(t) + S (IVeO)lz2 + IV o(O)llz2) + v Au@®) 72 < OM(1)* + Oy (423)
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This latter differential inequality gives short time control of the desired norms. For
uniqueness, suppose (ui,ci,cs) and (ug, ¢, c3) are two solutions of (4.12). Let
pL=C]—Cy pa=C —c3 00 =cl+cy, 00 =+ 3. We write u = uy — U,

p = p1 — p2 and 0 = 01 — 09. Then u, p and o obey the system
.

Oyu+ uy - Vuy — ug - Vug + V(py — p2)

=vAu — [p1V<I>1 — pqu)g]

(4.24)
3tp + uq - Vp1 — U9 - Vpg = DAp -+ DV - (01VCI>1 — O'QVCI)Q)
8t0' + uq - V(Tl — U9 - VO'Q = DAo + DV - (p1V¢’1 — p2V<I>2)
\
We take the L? inner product of the first equation of (4.24) with u to obtain
1d 9 9
sllellze +vlIVullze = = [ (ur- Vur = uz - Vug) - u do
- / (P VP, — paVDy) - u d. (4.25)
We estimate the term
‘/(Ul‘VUl_UQ‘VUQ)‘UdLU = ‘/[U-Vu1+U2-Vu]-udx
< Cllull 3211Vl 22V |57 A1 (4.26)
using Ladyzhenskaya’s inequality. In view of elliptic regularity
V@l < Cllpl|zs, (4.27)

we have

'/ (01 VP — poVDy) - u dx

1/2 1/2
< CUIV O [[islpll szl 2 + lloall 2 oIV ol 2l 2] (4.28)
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Now, we take the L? inner product of the second equation of (4.24) with p, and we

get
3Pl + DIVl = = [ (Vi =z Voa)p
+ D/v (01V®, — 0, VD). (4.29)
We have
‘/ uy - Vpr — ug - Vo) ‘ ‘/u Vp1+us - Vplp
< CIVprll e llull 2NV ull 2 ol 2 1V oll (4.30)
and

‘/V : (01V<I>1 - Oqu)g)p‘

< C V= lloll2[Volle + lozlleallol 519 ol (3D

Finally, we take the L? inner product of the third equation of (4.24) with ¢ to obtain

1d
2 dt

Lol + DI Vo2 = — / (w1 - Vor — us - Vo) o
+D / V- (VD — ppVBo)o.  (432)
We estimate the first term on the right hand side of (4.32) as in (4.30). For the

second term, as in (4.31), we have

’/ V- (p VP — poVPy)o dx

< C[IV@ll=lollz IV orllzz + a2l 2NV 2NV o 2] 433)
Putting (4.25)—(4.33) together, and applying Young’s inequality, we obtain a differ-

ential inequality of the form

d
= iz +llollzz + llollz:] < CO@) [lullz + llollzz + llollze]  @34)
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where
2/3 2/3
O(t) = |V | 75| Aw 358 + |V pul[22 + | Vo2
+|lpr 4+ N2 + [loallLe + |2l te + 1. (4.35)
Since
t
/C’(s)ds < 0. (4.36)
0

for any t € [0, 7|, we obtain uniqueness.

Theorem 4.1 shows existence of local solutions. The calculations can be done
rigorously using Galerkin approximations. Namely, we consider an orthonormal
basis of L? consisting of the eigenfunctions {®},- , of the Stokes operator

—A®y, + V&, = 1y P (4.37)
with periodic boundary condition on T?, and such that
V- -®,=0 Vk € N. (4.38)
The functions ®, are C'*°, divergence free, and have mean zero. We also consider an
orthonormal basis of L? consisting of the eigenfunctions {wy, }, , of the Laplacian
operator

with periodic boundary condition on T?. The functions wj, are C*° and have mean

zero. Let

n

Pou=> (u, ®p)yPs (4.40)
k=1
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and

P.c; = zn:(ci, W) 2 W + € = zn:(ci, W) [2 Wk (4.41)

k=1 k=0
be the Galerkin approximations of u and ¢; for ¢ € {1,2}. Here, ¢; is the constant
average of ¢; over T?, and wy = 1/27. We fix m and n and write the system
of nonlinear ODE’s obeyed by the coefficients of the Galerkin approximations. A
solution of this latter system exists if it is bounded in some norm. To show that, we

multiply the equations of this latter system by ®; and w; correspondingly and we

sum. We obtain the approximate system
(

Oy, + P (uy - V) — vAu, = =P, ((pn + P.N)VD,) + P, f

Oict + P, (u, - Vel) — DAcL = DP,(V - (¢} V®,))

N2 + Py (u, - VE2) — DAR = DP,(V - (2V®,,)) (4.42)
—eAD, = p, + PN

— Ll 2
Pn = Cy Cn

\
with u,(0) = P,ug, ¢!,(0) = P,c;(0),i = 1,2. We establish a priori estimates by

taking suitable scalar products in L? and integrating in time. Then, we pass to the

limit via the Aubin-Lions lemma.

Theorem 4.2. Let uy € H' and ¢;(0) € H'. Let T > 0. Suppose (u, cy,cy) solves

(4.12) on the interval [0, T'] with
T

/(Ilcl(t)||%2 +lea(t)[72)dt < oo. (4.43)

0
Then, v € L>(0,T; H') N L*(0,T; H*) and ¢; € L>(0,T; H') N L*(0, T, H?).
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Proof: The following calculations can be done rigorously using Galerkin approxi-
mations.

The differential inequality (4.21) gives

%(HUH%Q +llpllz2) < Cllallz: + llollz2)* + C- (4.44)

Thus, under the assumption (4.43), we obtain that ¢; € L>(0,T; L*)NL*(0,T; H').
Moreover, the differential inequality (4.18) allows us to conclude thatu € L>(0,T; H')N
L*(0,T; H?).

Now, we taking the L? inner product of the equation satisfied by p in (4.19) with

—Ap, and we obtain the equation

1d
55 IVoll + DIl = [ Vorp =D [V (avo)ap  @ds)
We estimate

1
[ o8080| < 18015 + ClolE 19l

+ Cllollze + ClIVolz: + C, (4.46)
1
[ V@)80] < LIl + ATl + TN+ O
and

D 2 2 2
(u-Vp)p| = | [ VuVpVp| < T80l + CIVulL:lIVl2:  @48)
where we used elliptic regularity together with Ladyzhenskaya’s inequality and

Poincaré’s inequality applied to the mean zero function p + V.
Finally, we take the L? inner product of the equation obeyed by ¢ in (4.19) with

—Ao to get

1d
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and proceeding in the same fashion as above, we obtain

1
’/pA@Aa < 7140l + Clpllzz + ClIVpll: + Cn, (4.50)
1
‘/(Vp -VO)Aco| < Z||Aa||22 +C||Vpll7z + Cn (4.51)
and
D 2 2 2
(u-Vo)Ao| < —[|Acl[z: + Ol Vu|L.[|Volz.. (4.52)

Putting (4.45)—(4.52) together, we conclude that ¢; lies in L>(0,T; H') and

L?(0,T; H*) with bounds depending on the initial data and 7.

Remark 4.2. Note that if we assume that vy € H? and ¢;(0) € H?, then the
regularity of the solutions is upgraded to u € L>(0,Ty; H*) N L*(0,Ty; H?) and

¢; € L(0, To; H?) N L2(0, Ty, H3).

Remark 4.3. Under the conditions of Theorem 4.2, if ¢;(0) > 0, then ¢;(t) > 0 for

0<t<T (see[l6]).

4.4 NPNS System without Body Forces nor Charge

Densities

In this section, we treat the case where f = N = (0. We consider the system
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du+u-Vu+ Vp =vAu — pVP

V.-u=0
pP==C —C

(4.53)
—eAD =p

81501 +u- VCl = DACl -+ DV - (clv(I))

Oico +u-Veg = DAcy — DV - (o VD)

in T? x [0, 00). We prove global regularity and asymptotic behavior of solutions.

We start with a priori L? bounds.

Proposition 4.2. Let ug € H,c;(0) € L* We assume that c;(t) > 0 holds for all
t > 0. Then, there exists an absolute constant C > 0 such that

lo(t) = allze + o7 < @loollzs + 2115117 + llpollZ2)e ™ (4.54)

holds for all t > 0. Moreover,
t+T

1
[ (19661 + 190 + HIn(ol ) s
t
1 _
< o @loolts + 251 + ool 32)Te 55
holds for anyt > 0,T > 0.

Proof: We recall that o and p obey

00 +u-Vo=DAo+ DV - (pVP)
(4.56)

Op+u-Vp=DAp+ DV - (cV®).
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We take the L? inner product of the first equation of system (4.56) with ¢ and of the

second equation with p, we add them and we use the fact that

/pACI)J = —l/a(p)z 4.57)

€
and that ¢; > 0 for 7 = 1, 2, to obtain the differential inequality

d _ 2D
Z(lo =allze +llpllze) +2D(IVollZ: + IVollzz) + —llpllze < 0. (4.58)
In view of Poincaré’s inequality, we get (4.54). Going back to (4.58) and integrat-

ing, we obtain (4.55).

Theorem 4.3. Let uy € H' be divergence free, and let c;(0) € H' be nonnegative
¢;(0) > 0. Let T > 0. Then there exists a unique solution (u,cy,cs) satisfying
we L0, T; H)YNL*(0,T; H?) and c; € L>=(0,T; HYNL*(0,T, H?). Moreover

¢i(t) > 0 holds on [0, T.

Proof: By the local existence theorem (Theorem 4.1) there exists 7 > 0 depending
only on the norms of initial data in H' such that the solution exists and belongs to
H'. The condition (4.43) holds, and therefore, by Remark 4.3 ¢;(t) > 0. The
inequality (4.58) is valid on [0, 7p]. By Theorem 4.2 the solution is bounded in
H'. We apply the local existence theorem again, starting from 7Ty, and deduce that
the solution can be extended for 77 > Ty. The inequality (4.58) holds on [0, 7}].
Because the inequality (4.58) holds as long as ¢; > 0, reasoning by contradiction

we see that the solution extends to the whole interval [0, T7].

Corollary 4.1. Under the assumptions of Proposition 4.2 there exists a positive

constant a = a(D,v) depending on D and v, and a positive constant A depending
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on ||pol| 2, |oollzz, ||uol| L2, the parameters of the problem and universal constants,
such that

u(t)]| 2 < Ae™™ (4.59)
holds for all t > 0.

Proof: We take the L? inner product of the first equation in (4.53) with u, and we

get
sl + vl == [ pve (4.60)
——|U 2 1% u 2 = — - U. .
We estimate
//)V@ cudr| < |pll 2| V| ze|lullz2 < Cllpllczllpll s lul 22 (4.61)

and thus, we obtain the differential inequality
d
g llullzz + vl < Clipllzellpll e. (4.62)

By Proposition 4.2 and Lemma 1.1, using (4.55), we obtain (4.59).

Remark 4.4. In the case f = N = 0, the global attractor exists and is the single-
ton (0,6/2,6/2). That is, for all initial data, the solution (u,cy,c2) converges to

(0,6/2,5/2).

Proposition 4.3. Let ug € H' and ¢;(0) € H'. Let p > 2. Then, there exist positive
constants ay, as depending on D, €, &, and ) (the constant in Proposition 2.1), and
positive constants C{ (|| poll», |00l z2) and C5(||ool| e, || pollz2) depending on the
corresponding initial data, &, p and universal constants, such that

o) < CPe? (4.63)
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and

lo(t) — allr < CPe (4.64)

hold for all t > 0.

Proof: The equation (4.56) for p is equivalent to

Op+u-Vp+ ?p—DAp: DV - ((c —a)V®). (4.65)
Taking the L? inner product of equation (4.65) with p|p|P~2 gives

ol + =2 ol + Do = 1) [ 195 lop2da

= —D(p—1) /(cr — &)V - |p[P2Vp. (4.66)

By Holder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequal-
ity, we get
p—2 P22
(0= 3)V® - p"2Vp| < [V 1= ll0]"F Vllzallo — 5110 ll|p] " I, 2,
—H\p\ > Vol + 5 HW)H%MHU —all% el (4.67)
In view of the Gagliardo-Nirenberg inequality, we have
p=2 2
lo = aller < Collo — s llo — ol (4.68)

where C), is a constant that depends on p. Therefore, we get the differential inequal-

ity

d 2Dc 2p-2) 1
EHPH%p HpHLP<C2 (p—DIVe[i<llo = all" llo—all7.. (4.69)
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If p = 3, then elliptic regularity, an application of Young’s inequality with expo-
nents 3, 3/2 and Poincaré inequality imply that
[Vl llr = 50l = 1
< C(llpllzsllo = allz2 + Voliallo - ll7) - (4.70)
In view of (4.55), (4.69) and Lemma 1.1, we obtain (4.63) for p = 3.
Now, we go back to the differential inequality (4.69). We estimate

2(p—2)

4
IVl = ol llo—3ll7. < CllplzsIVolli: (4.71)

where we have used elliptic regularity and Poincaré’s inequality. Therefore, (4.69)
and an application of Lemma 1.1 give (4.63) for any p > 2.
Next, we note that the equation satisfied by o — o is given by
O(c—0c)4+u-V(oc—a)=DA(oc—ad)+ DV - (pVP). 4.72)
We take the L? inner product of equation (4.72) with (0 — &)|o — &|P~2 and we get

the equation

1d
};E”U — ol — D/ lo — 5P 2%(0c — 6)A(0c — 7)dx

- —D/chp V(o = &)|o — o2)da @73)
By Holder’s inequality with exponents 2, p, 2p/(p-2), followed by Young’s inequal-

ity, we obtain

‘/pVCD V(o —05)|o—a|PHdr

_p=2 _p=2 _
< (= DIVOlr=lplelllo == |l 2, lllo — o] =" V(e = )|z

1 _p-2 N 1 e
< (p=1) [Jllo = o1"F Vo = )13 + IVl loliallr ol 478
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Thus, we have the differential inequality
1d D(p—1
Lo ol + 22 1900~ o)Plo - o2

P -1

< —<—IVelilplille - 77" (4.75)

We note that

D(p—1) / V(o —5)]*|loc — oP?dx

= —D/ lo —&|P~*(0c — 5)A(0 — &) > DA||lo — &%, (4.76)
if p is an even number greater than 2. This follows from Proposition 2.1. Thus, for
any even number p > 2,

%HU =67 + DAlo = allz, < D(p = DllplzsllollZe- (4.77)
In view of Lemma 1.1, we obtain (4.64) for any even number p > 2. An L? estimate

when p is not even can be obtained by an application of Holder’s inequality.

Proposition 4.4. Let ug € H? ¢;(0) € H? Then, there exist positive constants

3, C4, C5, Cg depending on D, € and v, and positive constants Cs, Cy, Cs, Cg depend-

ing on the initial data ||ug|| g2, ||c1(0)||m2, ||c2(0)|| g2, & and universal constants,
such that

[Vu(t)[|7. < Cse™, (4.78)

IVo(Olz: + Vo (O)ze < Cae™, (4.79)

|Au(t)]|2: < Cse™e, (4.80)
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and

[Ap(E)]172 + |Ac(t)]|7> < Coe (4.81)
hold for all t > 0.

Proof: We take the L? inner product of the equation satisfied by « in (4.53) with
—Awu, and we apply Holder’s and Young’s inequalities to get
IVl + vlAuls < Clolslol: (4.82)
and so we obtain (4.78) by an application of Lemma 1.1.
Now, we take the L? inner product of equation (4.65) obeyed by p with —Ap
and we estimate

_ 1/2 1/2 —nl/2 1/2
[@ = o18080| < ClAMA SO - 21Tl s

\ o vcmp\ < Ol Apl 2|Vl el e 484)
and
[ Va0| < CITALE ALVl @.85)

in view of Ladyzhenskaya’s inequality. This gives
d
Vol + DllAs]:

< C[lpllze + IVullz2)IVpllz: + (lpllZs + llo = allZ) I Valli2] - (4.86)



136

Next, we take the L? inner product of the equation satisfied by &, and proceeding
as above, we obtain
Vol + Dl|Ac|?
ZIIVoli3: + Dl Ao
< C [Upl3 + 1oI3) IV pl22 + [Vul[ 4]V o3 4.87)
Adding (4.87) to (4.86) and using (4.55), we obtain (4.79).
Then, we apply —A to the equation obeyed by u in (4.53) and we take the L?

inner product of the resulting equation with —Awu. We obtain
1d
EEHAUH%Q +v|VAu|3: = —/A(u -Vu) - Au — /A(pVC]?) - Au. (4.88)

In view of Ladyzehsnkaya’s inequality, we have

’/A(u -Vu) - Au| < C||VAu| 2| Vu| L2 || Aul| 22 (4.89)

Moreover,

‘/A(pvq’)ﬂu < CIVAull2(llpll2Vollze + llplles Vol e2). (4.90)

Here we have used the fact that the Riesz transforms are bounded in L%, so
1
IVV||s = —IVVA=plls < Cllpll1a. (4.91)
Consequently, we obtain
d 2 2
S 18ullze + v[[VAul|L
< C [IIVullz2 1 AullZz + [lpllZ=1VellZ: + oI Z: IV AlIZ:] - (4.92)
In view of (4.82) and Lemma 1.1, we deduce (4.80).
Finally, we apply —A to the equations satisfied by p and ¢ in (4.56) and we take

the L? inner product of the resulting equations with —Ap and —Ao respectively.
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We obtain
1d
2dtIIApHLz + —||APHL2 + D||VApll7
::D/Awn«a—aVQAp—/Am-vap (4.93)
and

2dtHAUHL2 + D||VAc||7. —D/AV (pVO Aa—/A u-Vo)Ao. (4.94)

We estimate

[ 8900 < 198l 9l [l

< OV Al 2 | Vul 2 1Al 2 IVl Aplls (4.95)

and similarly

‘/ u-Vo)Ao

Now, we have

‘/ A((o — U)A‘P)Ap'

< C|VAG| 2|Vl | Au| )2 [V 2 A1, (4.96)

< |IVApllez [[IVol | A®|| 4 + [lo — &l L4 [ VAR 1]
< CIV Al [IVall 21 A IVl 2 + IV ol Vol 180l @97
whereas
’/ (0 —0) V@)Ap‘
<IVAplle2 [IVVo| 2 [V | Lo + |V a[VV | 4]
< CIVAl 1Al lplles + Vol 2N IVl e] . @98)
Here, we have used the fact that the Riesz transforms are bounded in L?, and so

|VVo|2 = [[VAT'VA T Ac||2 < C||Ac|| e (4.99)
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Similarly, we have the bounds

’ / A(pAD)Ac

< CIV Al IVl IRV oz + 1ol 2 Vol 210N 4.100)
and

‘/A(Vp-V@)AU

< CVAale (180l ol + VAl IAA 2Vl 4101)
Putting (4.93)—(4.101) together, and applying Young’s and Poincaré’s inequalities,
we have the differential inequality

i(IIApHiz +[|Ac||Z2) + D(IVAp|[Z: + VA7)
dt
< C(Aullz: + [Volze + IV allz2) [Apl 72
+ C(lAulzz + [Vollz2) | Ao 72 (4.102)
Consequently, (4.81) follows from (4.86), (4.87), and Lemma 1.1.
We denote by C'% the space of «-Holder continuous functions on T? with the

norm

v\r)—7v
lolloos = ollse +  sup B =W 4.103)
z,y€T2 z#y |x - y|7

Corollary 4.2. Let ug € H?,c;(0) € H? Then, there exists a positive constant cg
depending on D, €, v, and a positive constant Cs depending on ||uo|| gz, ||ci(0)|| 2,
|¢i(0)|| 72, & and universal constants, such that

[u®)llcoarz + llp()llcoarz + llo(t) = llgorsz < Cse™ (4.104)

holds for all t > 0.
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Proof: The estimate (4.104) follows from the bound
[vllcoare < Cllvllwrs < Clllvlzs + [[Vv]| 4]
1/2 1/2 1/2 1/2
< Ol 1Vl + Vol 2 Avl 47, (4.105)

which holds for all v € W14(T?) with mean zero, and from Proposition 4.4.

Remark 4.5. In Proposition 4.3, we assumed that vy € H',¢;(0) € H' which
guarantee by Theorem 4.3 the global existence of solutions and the nonnegativity of
the concentrations c;, and obtained the exponential decay of the LP norm of p and
o —o. In Corollary 4.2, we have assumed higher regularity of the initial data to get
the exponential decay of the L™ norm of u, p and o — 6. However, if we assume
in this latter corollary that the initial data are only in H*, then from (4.86), (4.87),
and (4.82) we deduce the existence of t, such that

[Au(to) |72 + [|Ap(to)l[72 + [[Aa(t)|I72 < o0 (4.106)
and so we obtain (4.81) and (4.80) for all t > t,. We also note that the constants
C? and C¥% in Proposition 4.3 are independent of u, depending only on the L norm
of the ¢1(0) and c5(0), whereas the constants Cy and Cg in Proposition 4.4 depend

on the H? norm of all initial data.

4.5 Added Body Forces

In this section, we consider the Navier-Stokes equations driven the electrical force

and a smooth, mean zero, divergence-free body force,
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ou+u-Vu+Vp=vAu—pVo + f

V.u=0
pP==C —C

(4.107)
—eAD =p

81501 +u- VCl = DACl -+ DV - (clv(I))

Oico +u-Veg = DAcy — DV - (o VD)

in T? x [0, 00), with ug, ¢1(0), co(0) € H'. We assume that v, has mean zero, and
¢1(0) and c2(0) have equal mean. We take ¢;(0) > 0, and by Theorem 4.3 which is

valid in this case as well, the concentrations c¢; are nonnegative for all time ¢ > 0.

Proposition 4.5. Let p > 2. g, ¢1(0),co(0) € H' There exist positive constants
ai,as depending on D, €, &, and ) (the constant in Proposition 2.1), and posi-
tive constants CY(||po|| e, [|oo||r2) and CE(||oo||Le, ||pol|L2) depending on the cor-
responding initial data, o, p and universal constants, such that

lp(t)llze < CTe™ ™ (4.108)
and

lo(t) — G| < Che ! (4.109)

hold for all t > 0. Furthermore,
t+T

[ (19902 + Va1 + oo ) s

1 _ _
< o= (@lullZ + 203 + o) Te > (4.110)
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holds for anyt > 0,T > 0.

The proof follows along the lines of the proofs of Propositions 4.2 and 4.3.
Indeed, multiplying the p and o — & equations by p|p[P~2 and (0 — &)|0 — G|[P~2
respectively, the terms involving u cancel out and we conclude that the estimates
for the L? norms of p and o (4.108) and (4.109) hold for any p > 2. In particular,
(4.43) is satisfied.

The following proposition shows that adding a body force to the Navier-Stokes
equation does not change the exponential decay of the H2 norms of p and o — & but

results in the velocity v being bounded in H2.

Proposition 4.6. Let ug € H? ¢;(0) € H? Then, there exist positive constants

s, ¢y, Cs, i depending on D, € and v, and positive constants C', and C:, depending

c1(0) || g2,

on the initial data ||uo|| g2, 2(0)||zr2 and &, and positive constants C)
and C{, depending in addition on the forces f, and positive constants R3 and Rs

depending on f such that

IVu(t)||7. < Che™ " + Ry, 4.111)
IVp(t)||22 + (| Vo (t)]|22 < Che™, (4.112)
[Au(t)||3. < Cle " + Rs, (4.113)

and

12p()]I72 + 1 Ac(B)]72 < Che" (4.114)
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hold for all t > 0.

Moreover, there exists a positive constant L > 0 depending on ||ug|| g1, ||c1(0)]| g1,
|c2(0)|| 1, f and universal constants such that
t
/(||AU(S)Hi2 +1Ap()lIZ2 + 1A (s)|[72)ds < L (4.115)

0
forallt > 0.

We note that the estimate (4.115) requires only that ug, ¢;(0), c2(0) € H'. No
additional regularity of the initial data is required.

The proof is similar to the proof of Proposition 4.4. We omit the details.

Corollary 4.3. Let uy € H?,¢;(0) € H?. Then, there exist positive constants cy and
¢y depending on D, €, v, and a positive constant C§ depending on ||ug|| g2, ||¢;(0)|| g2,
|lci(0)|| g2, and &, a positive constant C§ depending in addition on the body forces
f, and a positive constant Rg depending on f such that

[ul| oz < Che 5t + Ry (4.116)
and

||p(lf)||co,1/2 + ||C7(t> - 5”00,1/2 < Cée_cét (4.117)

holds for all t > 0.
This follows from Proposition 4.6, see the proof of Corollary 4.2.

Theorem 4.4. (Absorbing Ball) Let ug,c1(0),c2(0) € H' such that ug and (c; —

c2)(0) have mean zero. Suppose that (u,cy,co) solves (4.107). Then, there exists

1(0) [,

an R > 0 depending on f, and to > 0 depending on ||uo|| 1, |c2(0) || g1
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and the parameters of the problem, such that
1Au(®)I72 + [[Acs(@)][7: + |Aca ()72 < R (4.118)

holds for all t > t.

Proof: In view of equation (4.115), there exists ¢y, € [0, 1] such that

1Au(to) 72 + [ Ap(to) 72 + [ Ac(to)]l 22 < L. (4.119)
Thus, the result follows from equations (4.113), (4.114), and from the parallelogram
law

1Ap11Z2 + 1 A0lfZ: = 2| Aci |72 + 2] Aca 7. (4.120)

LetV = HINH®H'@H' C H. Let V' be the convex subset of V consisting of
vectors (u, ¢y, ¢2) such that u is divergence free with mean zero and ¢; > 0, ¢, > 0
a.e. with [ ¢; = [ 9. Let

S(t):V =V (4.121)

be the solution map
S(t)(ug, c1(0),c2(0)) = (u(t), c1(t), ca(t)) (4.122)
corresponding to system (4.107). As a consequence of Theorem 4.2, S(¢) is well-
defined on V' for every ¢ > 0. Moreover, the uniqueness of solutions implies that
S(t+ s)wg = S(t)(S(s)wo) (4.123)
forallt,s > 0, i.e., S(t) is a semigroup. We proceed to investigate other properties
of the map S(t).

We consider the natural topology on H
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lwli3, = lullZ + lledlZz + lleallz: (4.124)
and the natural topology on V'
lwll5 = llullz + ez + lleallz- (4.125)

We address the continuity of the map S(t).

Theorem 4.5. (Continuity) Let w? = (u1(0), i (0),c3(0)), w9 = (ug(0), c3(0), c3(0))
€ V. Lett > 0. There exist constants K,(t), Ko(t) and Ks(t), locally uniformly
bounded as functions of t > 0, and locally bounded as initial data w?, w9 are varied
in V', such that S(t) is Lipschitz continuous in H obeying

ISH)wy — SHwsll3, < Ka()lwy — walf3, (4.126)
S(t) is Lipschitz continuous in V' obeying

8@l — Sl < Kol — w3, @.127)
and S(t) is Lipschitz continuous for t > 0 from H to V' obeying

tIS(wy — SHwplliy < Ks(t)llwy — wlf3- (4.128)

Proof: We write S(t)w? = (uy(t), ci(t),ci(t)) and S(t)w§ = (ua(t), c3(t), 3(t)).
Letpy =cl —ch, pp =2 — 2,00 =cl +cl, 090 =+ 3. We write u = u; — uo,
p=p1—pzand o =01 — 03.

We note that u, p and o obey system (4.24). Following the proof of uniqueness
in Theorem 4.1, we obtain a differential inequality of the form

d
= lelze + llpllze + llolze] + vIIVullz: + DIIVolz: + Dl Vollz:

< ka(t) [lullze + llollzz + lollz:] (4.129)
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where
2/3 2/3
ki (t) = Ol V| 35| Aw | 3521V pu | 22+ | Vo | 2o | pr 2o+ |02 | o[ 0o 22+1].

Letting
t

K;(t) = 4exp /kl(s)ds , (4.130)
0

we obtain (4.126).

Now, we take the L? inner product of the three equations of system (4.24) with
—Au, —Ap and —Aoc respectively, and we add them. We obtain the differential
inequality

= IVllze + Vol + [Vollz]

+v||Aul|Z: + D[ Apl|z2 + D||Ac]|7
< Cllur - Vuy = ug - V|72 + [lur - Vpr = ug - Vs 72]
+ C [|Jur - Vor — up - Vo2 + [ p1 VO — paV Dy |72]
+C[IV - (01V®) — 0oVDs) |22 + |V - (0 V®1 — poVB)|[22] . (4.131)
We estimate
uy - Vuy — ug - Vug||3s = ||u - Vug + uy - Vul3,
< ClIVullZallVullzs + [luall7e [Vl 72], (4.132)
luy - Vpr = ug - Vpol[72 = [lu- Vi +us - Vol 22
< ClIVoullzallVullze + lluzll 1 Vol 72] (4.133)

and



|uy - Vo, —ug - Vogl32 = |lu- Vo, +uy - Vol|7.

< ClIVorllZslIVulzz + luzl - IVo L]
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(4.134)

using Poincaré and Ladyzhenskaya’s interpolation inequalities. Using in addition

elliptic regularity, we have
01V @1 = paVDsll72 = )V 1 + ps V|72

< CIVeL7 + llp2ll72] Vol 72
We also estimate

[V - (01V®) — 02V D) |72

= HO’A(I)l + O'QA(I) -+ Vo - V(I)l + VO'Q : V@H%Q

< Cllplli=llolze + IV @17 Volze]
+ Clozllie + [Vollz2) I Voll7:
and
IV (01 V&1 — p2VP,)]72
= [|pAP; + po AP + Vp - VP, + Vpy - V|72
< Cllpallze + llp2llioe + V@[T + [Vo2llZ2] I VollZ:-
In view of (4.129), we obtain a differential inequality of the form
%[HUHfm +lpllz + llollzn] < ka@lullz + lollin + lollz]

where

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)
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ka(t) = ku(t) + ClIVualzs + IVprllZs + IVoullZs + [V p2ll7:]

+ClIVoalzz + luzlliee + o2l + lloallie]- (4.140)

Letting
t

Ky (t) = 4exp /kg(s)ds ) (4.141)
0

we obtain (4.127).
The derivation of (4.128) is a little different. The sum of the equations resulting
from taking L? inner product of the u, p and o equations with —Au, —Ap and —Ac

respectively gives

li[‘
2dt

[Vullz: + [V ollZ2 + Vo]

+v[|AullZ: + Dl Apllz: + D] Ac]z:

:/(U'VU1+U2‘VU)'AU“‘/(U'VPl“‘UQ'Vp)Ap

+ /(u Vo, +uy - Vo)Ao + /(,OVCI)l + V) - Au

iy / (V - (0V®1 + 0 VP))Ap — D / (V- (V1 + pp VD)) Ao (4.142)
In order to get (4.128), we let w(t) = (u(t), p(t),o(t)), and we show that w obeys
a differential inequality of the type

%HMH%H < Zi®)lwlin + Zo(®)wlZ2 (4.143)

such that

lw(t)||72 < Zs(t)||lwol| 2 (4.144)

and
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[ 1weds < CZ40) + 1)l (4,145
where 7, (t), Z5(t) angl Z4(t) are locally bounded functions in time, Z5(t) is a lo-
cally integrable function in time, and C' is a positive constant. Then, multiplying
(4.143) by ¢ and integrating by parts in time from 0 to ¢, we obtain

tlw®)lE: < C'(Z5(t) + 1lwoll 22 (4.146)
where Zj5(t) is a locally bounded function in time, and C’ > 0 is a positive constant.

We start by integrating (4.129). Using (4.126), we obtain
t

/(HW(S)H%Q +IVo()lIL + [IVo(s)lL2)ds

<C 1—|—/k‘1(s)K1(s)ds |w) — wd]|3.. (4.147)

0
This is the analogue of (4.145). Then, we estimate

\ / w- Vg +ug - V) - Au| < Cllul |} Vul 15V || 15 | Aw || 57| A 22

+ Ollus|[}22 V|57Vl 2 | Aul| 25, (4.148)

L2

‘/“ Vo1 +uz - Vp)AP‘ < Cllull IVl IV o |2 A Ap ]l e
1/2 1/2 1/2 3/2
+ COllugll 2 [Vl 2 IVoll 2 1202 (4.149)
and

'/ (u-Vor+us - Vo) Ac| < Cllull 22 Vull 2 Vor |2 | Aay |2 | Ac]| 2

+ COllus|| )2 (Ve |5 Vol Aa |32, (4.150)
In view of the fact that

V][t < Cllpl|zz, (4.151)
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we have

‘/(pV@l + p2VO) - Au

< Cllipllzsllpll 2| Aullze + [[p2llall ol 22 [ Awll 2] (4.152)

Moreover,

/ (V- (eVD, + UQVCI)))Ap‘

< Cl(lol L NValls + loll2) IV prllze + loall=lloll 2] Apll 2
+ CllpillslVollr: + Vool 2l Vol 2] Apl| 2 (4.153)

and

‘/(v (pV P, + p VD)) Ao

< ClIVpll2IVoulice + llpall = lloll 21| Aol 2

+ ClllpallesIVollee + [V pall 2 [Vl 2]l A | - (4.154)

We apply Young’s inequality and we use (4.129) to obtain
d 2 2 2
ol + lpllz + o]
< CMy()[[ullf> + CMa(t) (oIl + llolZ2)
+ CMs()(IVullZ: + [V ollZ: + [VallZ2), (4.155)
where
Mi(t) = ki + [V |72 ]| Aw |72 + 1V pr |72l A0 172
+ Vo ll72)| Aoy |7, (4.156)

Ma(t) = b + Vil + Va2 + ozl + o2l (4.157)
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and

My(t) = 1+ [[Vusl[do + IVl + [V pall3e + [VoulZe. (4158)
This is a differential inequality of type (4.143), with w(t) = (u(t), p(t), o(t)) satis-
fying (4.144) and (4.145). Therefore, we obtain (4.128).

We proceed to show that the solution map S(¢) is injective on V'.

Theorem 4.6. (Backward Uniqueness) Let w?,w§ € V'. If there exists T > 0 such

that S(T)w? = S(T)w), then wd = w).

Proof: Let w(t) = S(t)w) — S(t)wd = (u(t), c1(t), c2(t)) and w(t) = 2 (S(t)w) +
Stwy) = (u(t),c1(t), e2(t)). Letp = ¢; —co, p = ¢ — G2, ® = TA2p and
o =1A7

We note that w(t) obeys the equation

dyw + Aw + L()w = 0 (4.159)
where
Aw = (vAu, —DAci, —DAc) (4.160)
and
L(w)w = (L (w)w, Ly(w)w, Ly(w)w) (4.161)
with
Li(@)w = B(@,u) + Bu, @) + P(pV® + pVP)), (4.162)

Ly(@)yw=u-V& 4+ 1-Ve, — DV - (1 VP + VD), (4.163)
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L(@)w =u-Vé+1-Vey + DV - (VD + 5 VD). (4.164)

We consider the evolution of the norm
Ey = [[ulZ2 + lleall72 + lleallZ2 = wll (4.165)
obtained by taking the inner product in H of equation (4.159) with (u, ¢, ¢o) = w,

and we note that £y obeys the equation

1d -
where
By = v||Azul% + D||Ver |2 + D||Veo 22 = (w, Aw)s,. (4.167)
We observe that
1d 1 By (L(w)w,w)y
——1 — == — /" 4.1
2dt 8 (E0> BT E (4.168)
Let
1
Y (t) =log (—) (4.169)
Ey
and so
1d By (L(w)w,w)y
—Y{t)= — + —r——"2". 4.170
2dt (*) Ey + Ey ( )

We proceed to show that Y'(¢) cannot reach the value +oc in finite time. We

start by noting that the derivative of F; /E\ obeys
d Ei d

d F, ., d E, d _
—— =E,'—F - ——logEy=E,' —E; + ——Y. 4.171
R o R T T e R R P I A “.171)
Taking the inner product of equation (4.159) in H with Aw leads to
1d ~
5 77 B+ 1Al + (L(@)w, Aw)y = 0 (4.172)

2dt
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which implies that

LdB A+ (L@, Avyu | By (Bt (L@wwhe) o
2dt By Ey Ey Ey
Since
2
B2 | Awl? H( El) w
— L=l A== | —= 4.174)
2 )
Eqg Eqo Ey) EY? »
we obtain
1dE;

S5 = B N A-BE ol By (L@, (A~ BB ) w),,. (4175)

Now, we claim that

[(L(w)w, w)y| < Ai(t)Er + Ao(t) Eo (4.176)
with
T
/ )+ Ay (1)dt < 0. 4.177)
0

To prove this claim, we note first that
(B(u,u),u)r2 = (u- Ve, e1)p2 = (U Ve, c) 2 = 0. (4.178)
Since v has mean zero, an application of Ladyzhenskaya’s inequality followed by
Poincaré’s inequality gives
|(B(u, @), w)r2| < IVallzzllullzs < ClIVall2|Vullz: < ClIVl 2By (4.179)
Using in addition elliptic regularity and the fact that p has mean zero, we obtain
(B(pV® + VD), w) 2] < ulpallpll s VDI + el allA] 2| V| s
< OVl (| Verllzz + 1Vesl| 2) (V] 22 + 5] 22)
<O (14 IV + 713 ) £ (4.180)

Now, we estimate
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|(u-Vei,er)re| = |(u- Ver, a1) 2| < Ol Vul|2|| Ve 2] 1 ]| s
< C(1+ |[él74) En, (4.181)

(- V&, ) 2] < C(1+ ||&|24) En, (4.182)

(V- (1 VO + G VD), ¢1) e
< C([lell 2 IVl e [ Verllzz + 1@ 122 [ Veall 2 (I Ver [ 2 + [[Veallz2))
< C(|VO|[7ee + |Gl 22 + [[E1][72 + 1) E1 + Eq (4.183)
and
(V-(2VO+EVD), 3) 12| < C(|VO| 7+ [l 2+ |Cl 72 +1) 1+ Eo (4.184)
This ends the proof of the first claim.

Next, we claim that

| L(@)w||3, < Bi(t)Ey + By(t)Ey (4.185)
with
T
/ (Bo(t) + B (£))dt < oc. (4.186)
0

Since u and p have mean zero, then elliptic regularity together with an application
of Holder, Ladyzhenskaya, Poincaré and Young inequalities gives
1B(@, u) + Bu, w72 < C([@ll 1 Vullz: + | VullZ: | Vall7.)
< C(l[allz + IVallZe) B, (4.187)
IP(pV® + 5V )72 < C(| Vol 7=l VRI[7 + 17117211V oll72)

< C(||VP|2 + |1722) En, (4.188)
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lu- Ve +@- Vel < C(|VullLlI Vel Zs + ullie | Verll72)
< C(IVas + [l ) Er, (4.189)
lu- Ve + - Veol3 < CUIVEI + ]2 E, (4.190)
IV (a1 V® + & Vo3
= 1 AD + Ve, VO + 5 AD 4+ V& V|2,
< C((leallz I Vellze + el z) AN VAl 2 + ([ Ver |72 VD7)
+C(l[alZallplle2l1Vollze + Va7 Vellz:)
< CUIAIZ=NVAlZ: + V(7= + G )70 + [ VE72) Er
+110ll21Voll 2 Eo, (4.191)
and
IV - (VP + &V ®)|[3
< C(IplIZ: VAl 72 + IVl + G270 + | VE172) Ey
+ 1PNl 22 VPl L2 Eo. (4.192)
Thus, the second claim is proved.
As a consequence of the above claims and Schwarz inequality, we deduce the
differential inequalities
d F,y E,

tho 1< )EO O() ( )
and
d

Ey
%Y (1) < (2A4(t) + 1)E0 + 2A40(t) (4.194)
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which imply that Y (¢) € L>°(0,T). This ends the proof.

Now, we fix M > 0, and we let V), to be the subset of V' consisting of vectors
(u,c1,co) such that u is divergence free with mean zero and ¢; and ¢, are non-
negative functions a.e. with equal space averages less than or equal to M. As a
consequence of Theorem 4.4, there exists 7 > 0 depending only on f such that
for any initial data wy = (ug, ¢1(0),c2(0)) € Vi, there exists ¢, > 0 depending on
lluol| 1, [|€1(0) ]| 1, ||c2(0) ]| 2 and the parameters of the problem such that for all
t > to, we have S(t)wy € B, where

By ={w=(u,c1,c2) € Var : ullaz + |ler — G lla + |le2 — Gl < Ri}.

Remark 4.6. We note that there exists T' > 0 depending only on Ry and M and the
parameters of the problem such that
S(t)By. C By (4.195)

forallt > T.

Remark 4.7. Blj‘{l is compact in H because the space averages of all the concen-

trations ¢, and ¢y such that (u, c1, cy) € Vyy are uniformly bounded by M.

Remark 4.8. The set V) is convex. Consequently, B}]\{[l is a convex set, and so it is

connected.

The properties of the map S(t) listed and proved above, together with the con-
nectedness and compactness properties of BMl , imply the existence of a global at-

tractor.
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Theorem 4.7. (Global Attractor) Let

Xy =(St)BY, (4.196)
t>0
Then:

(a) Xy is compact in H.
(b) S(t) Xy = Xy forallt > 0.

(c) If Z is bounded in V) in the norm of of V, and S(t)Z = Z for all t > 0, then

Z C Xy
(d) For every wy € Vi, tlim disty (S(t)wo, Xpr) = 0.
—00
(e) Xy is connected.

The proof is omitted and follows the proof of Theorem 1.7
We end this section by showing that X, has finite fractal dimension. The ab-

stract formulation of the system is
(

Oy +u-Veg — DAcp — DV - (V) = 0,

Oscy +u-Veg — DAcy + DV - (o V®) = 0, (4.197)
—eAD = p,
p=2C—C

\
where P is the Leray-Hopf projector, A = P(—A) is the Stokes operator, and

B(u,v) = P(u.Vv).
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We consider a solution w = S(t)wy = (u(t), ¢1(t), ca(t)) of (4.197) with initial
data @, in B} . We consider the linearization of S(t) along w(t)
wo — w(t) = S'(t, w)wy (4.198)

viewed as an operator on . The function w(t) = (u(t), c1(t), c2(t)) solves

Ow + Aw + L(w)w =0 (4.199)
where

Aw = (vAu, —DAcy, —DAc) (4.200)

and
L(w)w = (Li(w)w, Ly(w)w, Ly(w)w) (4.201)

with
Li(@)w = B(u,u) + B(u, ) + P(pV® + pVd)), (4.202)
Ly(@)w =u-V& +1- Ve, — DV - (VO + & VD), (4.203)
Ls(@)w =u-Vé 41 -Vey + DV - (VD + VD). (4.204)

We consider the scalar product in A™H given by
(Wi A= AWy Y1 A== Ayn) any = det(wi, yj)u (4.205)
and the volume elements given by
Vlt) = s () A~ A wa ()| o (4.206)
We note that the monomial wy (¢) A - - - A w, () evolves according to the equation

O(w1 () A+ ANwy(t)) + (A4 L(w))p(wi (E) A+ Awp(t) =0 (4.207)
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where

(A + L(w))n(wr () A~ - Awn(t))

= A+ Lw)w A Awy+---Fw A A (A4 L(w))w,,. (4.208)
Thus, the volume element evolves according to the ODE

%Vn + Trace((A + L(w))Qn)Vn, =0 (4.209)

where (), is the orthogonal projection in H onto the linear space spanned by the

vectors wy, . .., Wy.

Theorem 4.8. (Decay of Volume Elements) There exists a positive integer Ny de-
pending on Ry and M such that for any wy € Bg,, and for any n > Ny, and for
any wi(0),...,w,(0) € H

1S/t @i (0) A -+ A S (b, B)wa(0) ] ange < Va(0)e ™ (4.210)

holds for any t > ty with ty depending on R;.

Proof: For each ¢, choose an orthonormal basis b; = (v;, 7}, 72) of the linear span

17

of wy,...,w,. Then

n

Trace((A + L(@))Qn) = Y _(Abs, bi)a + Y _(L(@)bi, bi)3. (4.211)
=1 =1
‘We note that

n

Trace(AQ,) = Z(Abi7 bi)n

i=1

— Z [(vAv;, vi)3 + (=DAr} v} )12 + (=DAr}  17) 2]

i=1

>t g (4.212)
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where y1; are eigenvalues of A4 in H. By Proposition 4.1, there exists a constant C'
such that y, > Ck for all k > 1. It follows that Trace(AQ,) > Cyn? for some
positive constant Cy.

Let p; = r} —r? and ®; = 2A~?p;. In view of Holder’s inequality, Ladyzhen-

skaya’s inequality, elliptic regularity and the fact that ||b;||3; = 1 for all i, we have

the bounds
Y (B ), v)pz] <Y Hloill7al| Vall 2
i=1 =1
n 1/2
< OV zn'/? <Z ||vui||§2> (4.213)
=1
and

n

| Z(MMV‘T’ +pV®;), b;) 2|

=1

<> (Il loull 2 leil2 + 11V @ill e 171122 64 2
=1

<> (2098 + Cll 91 + Clallse 97217
=1

< 2||Ve| e

n 1/4 n 1/4
+ C||pl| g2n®* <Z ||Vn~1||%z> + (Z IIVTEII%z) (4.214)
i=1 i=1

and

1> (i Ve el <D0 UVl (Ve + DI Va| .
=1 i=1

n /4 / 1/4
< C|[Vé | 2n' (Z IIWiH%z) (Z IIVﬁIIiz>
i=1 i=1

n 1/4
+C||Vé | 2n®* <Z HWH%) (4.215)
=1
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and
1> (v Véa, )|
i=1
n /4 , 1/4
< C||Vé|2n'’? (Z ||Vvi||%z> (Z IIVT?IIia)
i=1 i=1
n 1/4
+ C||Véy||2n®* (Z HW-H%) : (4.216)
i=1
Now, using the triangle inequality, we have
S [V (19E + V@), e + (V- (2VE + V), 12 s
i=1
< Z [(r}V&% Vri) e — (r?V&D,Vr?)Lz}
i=1
+ 1> (@ = E) V0, Vi) iz — (@ - &)V, Vrid)is|
i=1
+ 1> @V, V(] =) (4.217)
i=1

where ¢ = ¢; = ¢o, and using the same inequalities as above, we obtain

D [0V, Vi) e — (12D, Vi) 12|
=1

< 3 [I9B e V7Ll + 1V B [ 9722
=1

" 1/2 " 1/2
< [TF e (z ||Vr3||%2> + (z ||Vr?||%2> w21s)
=1 =1

and
D (@ =)V, V)| < ZC|’VT3||L2||VP1HIL/22H51 — a2
i=1 =1
. 3/4
< Cn'||E — & (Z ||V7"3H%z>
=1

i=1

n /4 , 1/2
+ Cn*MYE — | (Z ||w§||2> (Z ||Vr3||%z) (4.219)
=1
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and
Y (@ = &)V, Vi)
i=1
" 3/4
< OnM|&y — &l 12 <Z ||V712||%2)
i=1
N /4 , 1/2
+Cn'/*éy — G| (Z HW%W) (Z HVT?H%Q) (4.220)
i=1 i=1
and

n

D (Ve V(rf —1r7))e

i=1

n

c .
= EvAiel - )l

=1

<Y cellr! — 2|3, < 4Cen. (4.221)
i=1
Since @, € B}, there exists ¢, depending on R; such that w(t) = S(t)wy € By,
for all ¢t > t,.

Combining the bounds (4.213)—(4.221) and applying Young’s inequality give
t

%/Trace((A + L(w))Qy)ds > }lTrace(AQn) — Cien — CyC(Ry)n

0
1
for all t > ty. Here, C, Cy are universal positive constants, C'(R;) is a constant

depending on Ry, and 0 < ¢ < M. Thus, choosing

4

n> (14 CiM + C0(Ry)) (4.223)
0

ends the proof.
As a consequence, and following the proof of the similar result in [35], we

conclude that

Theorem 4.9. The global attractor Xy, has a finite fractal dimension in H.
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We end this section with the following result:
Theorem 4.10. The global attractor X, has a finite fractal dimension in V.

Proof: Since B% is bounded in H?, we conclude by Rellich compactness theorem
that S (zf)Bf‘{1 is compact in V for all ¢ > T', see Remark 4.6. Hence, the property
(4.128), together with the fact that X, has a finite fractal dimension in H, allows

us to conclude that X;; has a finite fractal dimension in V.

4.6 Added Body Forces and Added Charge Density

In this section, we consider the general case
4

Oou+u-Vu+Vp=vAu—(p+ N)VP + f

V-u=0
p=7C —C

(4.224)
—eAP=p+ N

8t61 +u - Vq = DACl + DV . (01V<I>)

0o +u-Veg = DAcy — DV - (o VD)

\
where the body forces f are smooth, divergence-free, time independent, and have
mean zero, and the added charge density /V is smooth and time independent. We as-
sume that u has mean zero, and that the initial concentrations c¢;(x,0) and c3(z, 0)

have space averages ¢, and ¢, satisfying ¢ — ¢ = N. We consider initial data
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(ug, c1(0),c2(0)) € H'. We also assume that the initial concentrations are nonneg-
ative functions and we recall that this property is preserved for all positive times ¢

by Theorem 4.3, which holds in this case as well.

Proposition 4.7. Let ug € H and ¢;(0) € L*. Then, there exists C' > 0 such that
lo(t) = all72 + llp(t) — oIz
< (lloo = a1z + llpo — AllZ2)e™" + [15]IZ2 + ClINIZo (4.225)

holds for all t > 0. Moreover,
T

[ (195 + 19012 + Floto) 13 ) s

t
1

< Dt
- D

(([loo = &172 + llpo — pll72)e™
+C(T + 1)(|7]172 + IN156) (4.226)

holds for anyt > 0,T > 0.

Proof. We recall that o and p obey

00 +u-Vo=DAo+ DV - (pVP)
(4.227)

Op+u-Vp=DAp+ DV - (cV®).
We take the L? inner product of the equations obeyed by o and p with o and p

respectively, we add, and use the fact that

/pAcba = —%/G(p)Q — %/Npa (4.228)

to get the equation

1d
5= (ol + pll22) + D(IVellz: + 1[Vellz2)

2 dt
D D
+ —/U(p)2 = ——/Npa. (4.229)
€ €
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We estimate

D
—/Npa
€

D D D
< ZINlslllsllolze < llpls + ol + IV,

=
2

D D, .
< S llellze + S llo = allze + S oz + ClIN e (4.230)

- 2
in view of Holder’s and Young’s inequalities. We obtain the differential inequality
D
2

5= (lo=alli: + llp = pllZ2) + 5 (IVallZ: + 1 Vpllz2)

=
2

D
+ 5 llellze < S lollz: + CIN s (4.231)

In view of Poincaré inequality, we get
d _ _ _ _
T (o =alz= + llp = pllz2) + D(llo = G112 + llp = Allz2)
< D|5|j32 + C||N||%s. (4.232)

This gives (4.225). Integrating (4.231), we obtain (4.226).

Proposition 4.8. Let ug € H' ¢;(0) € H'. Then, there exist positive constants
My, My, M3, My and Ms depending on the initial data and the parameters of the
problem, and positive constants &1, &, and &3 depending on f, N and & such that
IVull72 < Mi(|Vuol| 2, ool 22, | poll2)e ™" + &i(f, N, @), (4.233)
IolZs < Ma(llpollzs, looll2)e™ P + &(f, N, 5), (4.234)
and
IVllz> + [ Vallz:

< M3(|[Vpollzzs Vool 2, || poll oy ([ Vol p2)e P + &(f, N, &) (4.235)
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hold for any t > 0. Moreover,
t+T

/(HAPH%2 + || Ac||72)ds < My([|Vpollr2, [ Vool 2, | poll 22, [|[ Vo 2)e ™"

t
+&(f,N,5) (T +1) (4.236)
and
t+T

/ 1Aullf2ds < Ms([[Vuol|z2, lloollzz, llpollz2)e™ +& (f, N, &) (T+1) (4.237)

t
hold for any t > 0, T > 0.

Proof. The proof is similar to that of Proposition 4.4. We briefly sketch the main
ideas. Taking the L? inner product of the u-equation with —Auw leads to the differ-
ential inequality
d 2 2 6 3
S IVullze + v Aulz. < Cllpllz: + Cllplzs + Cpv. (4.238)
An application of Lemma 1.1 gives (4.237). Integrating (4.238) gives (4.237).
Taking the L? inner product of the p-equation (4.65) with p|p| and estimating

the resulting terms gives

1d
2dt

4/3

3 _
tllo =% lolzs + Cn

D& 2
lellzs +==lpllz> < Cllo — all;

< Clpllzs + ClIVolzallo = ol + Cn. (4239
Thus, Lemma 1.1 gives (4.234).

Finally, taking the L? inner product of the p-equation (4.65) and of the o-

equation with —Ap and — Ao respectively, adding the resulting equations, and es-
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timating the obtained terms give the differential inequality
%(HWIFLQ +IVallz2) + DU ApIZ: + [ Acl|Z)
< C(IVullz2 + lIollzs + +INZ) (IVollZ: + I Vollz2)
+Cllo = al|7: IV ollZ: + CllpllZIVpllZ2 + +pllz2 + Cn. (4.240)

Lemma 1.1 gives (4.235). Integrating (4.240) gives (4.236).

Proposition 4.9. Let ug € H? ¢;(0) € H? Then, there exist positive constants
Mg and M, depending on the initial data and the parameters of the problem, and
positive constants &, and &5 depending on f, N and & such that

JAul2 < My(||Auollze, [ Voo llia, [ Vpoll2)e ™ + E4(f, Noa)  (4241)
and

1ApI1Z2 + [AplI72 < Me(l|Apollz2, [|Aco|l 22, [| Vol 2)e ™"

+&5(f, N, o) (4.242)

hold for all t > 0.

Proof. The proof follows the derivation of (4.80) and (4.81) in Proposition 4.4. We
omit the details.

Let V" be the convex subset of V = H' @ H @ H' @ H' consisting of vectors
(u, c1,c2) such that u is divergence free with mean zero and ¢; and ¢, are non-
negative functions a.e. whose difference has a space average equal to —N. We
define the solution map

" 1"

o): V' =V (4.243)
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corresponding to system (4.224) by
O(t)(ug, c1(0), c2(0)) = (u(t), c1(t), ca(t)). (4.244)
For each M > 0, we consider the convex subset V;, of V" consisting of vectors
(u,c1,co) such that u is divergence free with mean zero and ¢; and ¢, are non-
negative functions a.e. whose space averages are less than or equal to M/ and whose
difference has a space average equal to —N. By Proposition 4.9, there exists Ry >
0 depending on the body forces f, the added charge density N, and the positive
constant M, such that for any wy = (ug,c1(0),c2(0)) € Vj,, there exists t, >
0 depending on ||ug|| g1, ||c1(0)|| g1, ||c2(0)|| g1 such that for all ¢ > ¢, we have
O(t)wo € By, where
By, = {(u,c1,¢2) € Vi lullgz + |ler — @z + [lea — Gof g2 < Ro}. (4.245)
We note that the map O(t) has the same properties as the map S(¢), namely the
existence of a compact absorbing ball, continuity properties (cf. Theorem 4.5) and
injectivity (cf. Theorem 4.6). The existence of a global attractor is proved as in
Theorem 4.7 and its finite dimensionality follows from decay of volume elements
(Theorem 4.8) like in Theorems 4.9 and 4.10. The proofs of these theorems are

similar to the proofs of the respective results for N = 0, and are omitted.

Theorem 4.11. There exists a global attractor X which is compact in V" and has
finite fractal dimension, such that
tlim disty(O(t)wy, X) =0 (4.246)
— 00

holds uniformly for wq in bounded sets in V" .
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