

Real Analysis Ph.D. Qualifying Exam
Mathematics, Temple University
August 22, 2025

Part I. (Do 3 problems)

1. Fix an arbitrary $n \in \mathbb{N}$. For each part below, give an example of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ satisfying the stated conditions.
 - (a) $f \in L^1(\mathbb{R}^n)$ but $f \notin L^2(\mathbb{R}^n)$.
 - (b) $f \in L^2(\mathbb{R}^n)$ but $f \notin L^1(\mathbb{R}^n)$.
2. Define a sequence of functions $f_n : [0, 1] \rightarrow \mathbb{R}$ by

$$f_n(x) = \frac{ne^{-x}}{1 + n^2x^2}.$$

Prove that $\lim_{n \rightarrow \infty} f_n(x) = 0$ for $x \in (0, 1]$, $\lim_{n \rightarrow \infty} f_n(0) = +\infty$, and evaluate

$$\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx.$$

3. Let $f(x) = x^2 \sin(1/x^3)$ for $x \in [-1, 1]$, $x \neq 0$, and $f(0) = 0$. Show that f is differentiable on $[-1, 1]$ but f' is unbounded on $[-1, 1]$.
4. Let $E \subset \mathbb{R}^n$ be a bounded Lebesgue measurable set. Let $\nu \in \mathbb{R}^n$ be fixed and define H to be the hyperplane with equation $H = \{x : x \cdot \nu = 0\}$.

Given $t \in \mathbb{R}$, let $H_t = \{x : x \cdot \nu \leq t\}$. Prove that there exists $t_0 \in \mathbb{R}$ such that $|E \cap H_{t_0}| = |E \cap (H_{t_0})^c|$. That is, for each ν there exists a hyperplane with normal ν dividing E into two sets of equal measure.

HINT: Prove and use that the function $G(t) = |E \cap H_t|$ is continuous.

Part II. (Do 2 problems)

1. Consider the space $X = [0, 1]$ and the σ -algebra of Borel sets of X . Let m denote the Lebesgue measure and μ the counting measure (i.e. for any Borel set E of X , $\mu(E) =$ the number of elements in E if E is finite, and $\mu(E) = \infty$ if E is infinite).
2. Suppose μ is σ -finite measure in X and $f_n \rightarrow f$ a.e. with f and f_n measurable for all n . Given $\epsilon > 0$ prove that there exists a sequence of sets $E_k \subset X$ such that $\mu(X \setminus \bigcup_{k=1}^{\infty} E_k) < \epsilon$ with $f_n \rightarrow f$ uniformly on each E_k .
3. Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set. Let $1 \leq p < \infty$, $f_k, f \in L^p(E)$, and let $a_k = \int_E |f_k(x) - f(x)|^p dx$. Here dx denotes, as usual, integration with respect to the Lebesgue measure in \mathbb{R}^n . Suppose that $\sum_{k=1}^{\infty} a_k < \infty$. Prove that $f_k \rightarrow f$ a.e. in E as $k \rightarrow \infty$.