

Numerical Analysis Qualifying Written Exam (August 2025)

Part I: do 3 of 4

1.

We want to interpolate a continuous function with continuous derivative in the interval $I = [0, 1]$. We are only given the values of the function at the nodes $x_i \in I$, i.e., we know $f(x_i)$, but not the function f itself. We are also given the values of the derivative at the end points, i.e., $f'(0)$ and $f'(1)$. We also know that the original function is such that

$$\max_{x \in I} |f^{(k)}(x)| > 10, \quad k \geq 3.$$

Our goal is to produce an interpolating function $g(x) \in C^1$ and we want to guarantee that $|f(x) - g(x)|$ is small across the interval.

- (a) Describe a method you would use to solve this interpolation problem.
- (b) Give a formula for $g(x)$, $x \in [0, 1]$, and explain in detail how you obtain it.
- (c) Provide an estimate of the error $|f(x) - g(x)|$, $x \in [0, 1]$.

2.

Consider the function $f(x) = \cos^2(x) - 1/2$, $x \in [0, \pi]$, and a root x_* such that $f(x_*) = 0$. In this question, you are asked to provide a method of the form $x_{k+1} = g(x_k)$, so that $x_k \rightarrow x_*$ quadratically.

- (a) Explain what quadratic convergence means for the sequence of iterates given by x_k .
- (b) Describe your proposed method in detail, and how would you use it for this particular function f .
- (c) Prove the quadratic convergence of your proposed method, and give condition on the initial value x_0 that guarantees the convergence for this particular function f .

3.

Consider the dynamical system

$$\begin{bmatrix} u \\ v \end{bmatrix}' = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

- (a) Explain *absolute stability* of a numerical time-stepping scheme.
- (b) Derive the regions of absolute stability for the Forward Euler (FE) and the leapfrog

(LF) method ($U^{n+1} = U^{n-1} + 2kf(U^n)$).

(c) Which of the two methods, FE or LF, would you use for the above system? Explain.

4.

Consider the initial value problem $u' = -u$; $u(0) = 1$.

(a) Calculate and sketch the graph of the growth factor $R(z)$ (note, z is a real number in this problem) for both the Backward Euler (BE) and Crank-Nicholson (CN) scheme.

(b) What can you say about the behavior of BE and CN for larger time steps k ? How does this behavior affect the numerical solution of u ?

(c) Define L-stability and, based on (a) and (b), argue the importance of L-stability.

Part II: do 2 of 3

1.

Consider an interpolation problem with the $n + 1$ points x_0, x_1, \dots, x_n , with abcisas f_0, \dots, f_n . Let the interpolation polynomial of degree n be $p(x)$. Suppose that once you have $p(x)$ you have a new piece of data, namely f'_j for some $0 \leq j \leq n$. One is seeking an new interpolating polynomial $q(x)$ so that $q(x_i) = f_i$, $i = 0, \dots, n$ and $q'(x_j) = f'_j$.

- (a) Can you use the polynomial already computed $p(x)$ and just compute a new polynomial $r(x)$ so that $q(x) = p(x) + r(x)$? If yes, explain how to do it. If not, why not?
- (b) What is the degree of $r(x)$?
- (c) Is this polynomial unique? Why?

2.

We wish to approximate the numerical value of the integral $\int_a^b f(x)dx$ using the evaluation of the function at n points, x_i , $i = 1, \dots, n$..

- (a) Give the expression for the general Newton-Cotes rule using n points.
- (b) Give a formula for the error obtained with the formula provided in part (a).
- (c) Let $f(x) = p(x)$ be a polynomial. Given the formula from part (a), for what degree of $p(x)$ is the formula exact?.
- (d) Let α_i be the weights for the Newton-Cotes rule. Assume that the points x_i are equidistant. Prove that

$$\sum_{i=1}^n \alpha_i = n.$$

- (e) Describe a numerical method using n points to evaluate integrals of the form $\int_a^b \omega(x)f(x)dx$ for some weight function $\omega(x)$ so that the method is exact for $f(x)$ being a polynomial of degree $2n - 1$.

3.

Consider the system

$$\begin{bmatrix} u \\ v \end{bmatrix}' = \begin{bmatrix} -500 & 499 \\ 499 & -500 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} u \cdot v \\ -u \cdot v \end{bmatrix}.$$

- (a) Using the above system, explain the properties of linearity/nonlinearity and stiffness. Identify which part of the right hand side can be considered stiff.
- (b) Suggest a time-stepping scheme for stiff problems and explain why or why not it is a good choice. In this context also explain the effect of order reduction when dealing

with stiff problems.

- (c) Explain the idea of semi-implicit methods.
- (d) Give an example of a semi-implicit method and apply it to the above system.