

Comprehensive Examination in Geometry & Topology
Department of Mathematics, Temple University

January 2026

Part I. Solve three of the following problems.

I.1 Let X be the cell complex obtained by starting with a rose whose four petals are labeled a, b, c, d , considered as generators for $\pi_1(X)$, and attaching three 2-cells along the words $aba^{-1}b^{-1}$, $cdc^{-1}d^{-1}$, and $aba^{-1}c^{-1}$.

- (a) Find a presentation for $\pi_1(X)$.
- (b) Prove that $\pi_1(X)$ is not abelian.
- (c) Compute the homology groups $H_n(X)$ for each n .

I.2

- (a) State Sard's theorem for smooth maps between smooth manifolds.
- (b) Prove the following simpler statement, without appealing to Sard's theorem, using only standard facts about Lebesgue measure on \mathbb{R}^n :

If M and N are compact smooth manifolds of dimensions m and n , respectively, with $m < n$, then for any smooth map $f : M \rightarrow N$, the image $f(M)$ has measure zero in N .

I.3 Let S_g be the closed, orientable surface of genus g . Show that $f_*(\pi_1(S_2))$ has infinite index in $\pi_1(S_5)$ for any continuous map $f : S_2 \rightarrow S_5$.

I.4 Let \mathbb{S}^2 be the standard unit sphere in \mathbb{R}^3 . Compute

$$\int_{\mathbb{S}^2} \omega$$

for $\omega = (e^{x^3+y^2} + z)dy \wedge dx + \cos(y^3 + z)dy \wedge dz + (x + z^4)dz \wedge dx$.

Part II. Solve two of the following problems.

II.1 Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function with $f(x) > 0$ for all $x \in \mathbb{R}$.

(a) Prove that the surface of revolution

$$y^2 + z^2 = f(x)^2$$

is a smooth hypersurface in $H \subseteq \mathbb{R}^3$.

(b) If $x \in \mathbb{R}$ is a critical point of $f(x)$ and $p = (x, y, z) \in H$, prove that the tangent space to H at p is spanned by $\frac{\partial}{\partial x}$ and $z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}$, where $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\}$ are the standard coordinate directions generating $T_p \mathbb{R}^3$.

(c) Prove that the map

$$(x, y, z) \mapsto \left(\frac{y}{f(x)}, \frac{z}{f(x)} \right)$$

defines a smooth submersion from H onto the standard unit circle in the yz -plane.

II.2 Let N be a closed, connected 5-manifold with $\pi_1(N) \cong \mathbb{Z}/7$ and $H_2(N) \cong \mathbb{Z}^3 \oplus \mathbb{Z}/4$.

(a) Prove that N is orientable.

(b) Compute the singular homology groups of N .

II.3 Let X be a connected cell complex, $x \in X$ be a base point, and $p: \tilde{X} \rightarrow X$ be a (possibly disconnected) covering. For any $\gamma \in \pi_1(X, x)$ and any $y \in p^{-1}(x)$ define

$$y \cdot \gamma = \tilde{\gamma}_y(1),$$

where $\tilde{\gamma}_y$ is the path lift of γ starting at y .

(a) Show that this defines a right action of $\pi_1(X, x)$ on a fiber $p^{-1}(x)$, called the *monodromy action*. (A right action means, $y \cdot 1 = y$ and $(y \cdot \gamma) \cdot \delta = y \cdot (\gamma\delta)$ for all $\gamma, \delta \in \pi_1(X, x)$.)

(b) Show that the monodromy action is transitive on $p^{-1}(x)$ if and only if \tilde{X} is connected. (An action is transitive if for any two points there is a group element mapping one to the other.)

(c) Show that if \tilde{X} is connected and $y \in p^{-1}(x)$, then $(\tilde{X}, y) \rightarrow (X, x)$ is the based covering space corresponding to the subgroup H stabilizing y with respect to the monodromy action.