

Comprehensive Examination in Geometry & Topology
Department of Mathematics, Temple University

January 2025

Part I. Solve three of the following problems.

I.1 Prove or give a counterexample to each of the following:

- (a) Every connected cell complex has a connected double cover.
- (b) Every continuous map $f: T^2 \rightarrow T^2 \setminus \{p\}$ is null homotopic, where T^2 is the 2-torus.
- (c) For any smooth embedded $f: S^1 \rightarrow S^4$, the manifold $S^4 \setminus f(S^1)$ is simply connected.

I.2 Fix $a, b \in (0, \infty)$ and consider the subset of \mathbb{R}^4 defined by

$$N = \{(x, y, z, w) \in \mathbb{R}^4 : x^2 + y^6 = a, z^4 - w^2 = b\}.$$

- (a) Prove that N is a 2-dimensional manifold.
- (b) Compute the tangent space $T_{(x,y,z,w)}N$ at $(x, y, z, w) \in N$ by giving an explicit basis.

I.3 Let $F = F(a, b, c)$ be the free group of rank 3.

- (a) Find a normal subgroup H such that $F/H \cong \mathbb{Z}/3$.
- (b) Give, with proof, a minimal set of generators for H .

I.4 Consider the submanifold

$$X = \{(x, y, z, w) \in \mathbb{R}^4 : x^2 + y^2 = z^2 + w^2 = 1\}$$

of \mathbb{R}^4 and the 2-form

$$\omega = (-y \, dx + x \, dy) \wedge (-w \, dz + z \, dw)$$

on X .

- (a) Compute $\int_X \omega$.
- (b) Prove that ω is an orientation form on X .

Part II. Solve two of the following problems.

II.1 Let M be a smooth manifold.

- (a) Suppose that M is connected and that $p, q \in M$. Show that there is a diffeomorphism $F: M \rightarrow M$ such that $F(p) = q$.
- (b) Is the same true if M is disconnected? Prove or give a counterexample.

II.2 Let α be a nonseparating simple closed curve on a torus T . Let X be obtained by gluing a Möbius band M to T via a map $f: \partial M \rightarrow \alpha$ of degree 3.

- (a) Compute $\pi_1(X)$.
- (b) Show $\pi_1(X)$ is infinite and not abelian.
- (c) Compute the singular homology groups of X .

II.3 Answer the following:

- (a) Show that a closed (i.e. compact without boundary) orientable manifold cannot be homotopy equivalent to a closed nonorientable manifold.
- (b) Is the same true for noncompact manifolds?
- (c) Suppose that M is a compact orientable n -manifold with boundary $\partial M \neq \emptyset$. Prove that if M is contractible, then $H_i(\partial M) = H_i(S^{n-1})$ for all $i \geq 0$. (Hint: Use Poincaré–Lefschetz duality.)