

Comprehensive Examination in Geometry & Topology
Department of Mathematics, Temple University

August 2025

Part I. Solve three of the following problems.

I.1 Prove or give a counterexample to each of the following:

1. Every smooth manifold M with $H_1(M) = \mathbb{Z}/5$ is orientable.
2. If $Y \subset X$ is a retract, then $H_i(X) \cong H_i(Y)$ for all i .
3. Every subgroup of F_2 is free.
4. Every finite normal cover of a two-petal rose whose deck group is abelian embeds in a 2-torus.

I.2 Let S be a closed (compact, without boundary) orientable surface and $f: S \rightarrow \mathbb{R}$ be a smooth function. Prove that

$$\int_S f d\alpha = - \int_S df \wedge \alpha$$

for every smooth 1-form α on S .

I.3 Let x^1, \dots, x^N be standard coordinates on \mathbb{R}^N and M be a smooth k -dimensional submanifold. Prove that every point $x \in M$ has a neighborhood on which the restriction of some k coordinate functions x^{i_1}, \dots, x^{i_k} form local coordinates on M .

I.4 Classify all closed (compact, without boundary) connected surfaces that finitely cover the closed orientable surface of genus 5.

Part II. Solve two of the following problems.

II.1 Suppose $F(x_0, \dots, x_n)$ is a nonzero homogeneous polynomial of degree $k \geq 1$, meaning that

$$F(\lambda x_0, \dots, \lambda x_n) = \lambda^k F(x_0, \dots, x_n)$$

for all $\lambda \in \mathbb{R}$ and $(x_0, \dots, x_n) \in \mathbb{R}^{n+1}$.

1. Suppose that the gradient vector $\nabla F(x_0, \dots, x_n)$ is nonzero for all (x_0, \dots, x_n) for which $F(x_0, \dots, x_n) = 0$. Prove that

$$Z_F = \left\{ [x_0 : \dots : x_n] \in \mathbb{RP}^n : F(x_0, \dots, x_n) = 0 \right\} \subseteq \mathbb{RP}^n$$

is a well-defined smooth submanifold and compute its dimension, where $[x_0 : \dots : x_n]$ denotes standard homogeneous coordinates in \mathbb{RP}^n . (Note that F itself is a function defined on \mathbb{R}^{n+1} , not \mathbb{RP}^n .)

2. Give an example where \mathbb{RP}^n is *not* orientable but Z_F is orientable (as an abstract smooth manifold).

II.2

1. Construct a Δ -complex Y whose nonzero integer homology groups are:

$$\begin{aligned} H_0(Y) &= \mathbb{Z}^2 \\ H_1(Y) &= \mathbb{Z}^2 \oplus \mathbb{Z}/7 \\ H_3(Y) &= \mathbb{Z} \end{aligned}$$

2. Can such a Y be homotopy equivalent to a closed, orientable manifold?

II.3 Let T^3 be the 3-torus (i.e. $T^3 = S^1 \times S^1 \times S^1$) and let X be the space obtained by taking two copies of T^3 and gluing them together by identifying the 2-torus $S^1 \times S^1 \times \{\theta\}$ in each (for some fixed $\theta \in S^1$).

1. Compute $\pi_1(X)$.
2. Show that $\pi_1(X)$ is nonabelian.
3. Describe the universal cover of X .