MATH 1042 RECOMMENDED HOMEWORK PROBLEMS

Fall 2025

Text: James Stewart, Calculus, Early Transcendentals, 9th Edition, Cengage Learning.

Chapter 5: Integrals

- **5.2:** 35, 36, 42, 45, 57, 59, 61, 63
- **5.3:** 3, 7, 10, 13, 26, 27, 29, 33, 34, 35, 37, 41, 43, 47, 50, 52, 55, 57, 72, 74, 83a,b,c
- **5.4:** 10, 14, 15, 16, 20, 22, 32, 35, 36, 39, 40, 41, 45, 57, 58, 74
- **5.5:** 2, 4, 9, 14, 15, 21, 22, 25, 27, 32, 35, 45, 48, 50, 51, 52, 54, 59, 61, 63, 65, 77

Chapter 6: Applications of Integration

- **6.1:** 2, 4, 11, 14, 17, 19, 20, 22, 24, 28, 29, 37, 41
- **6.2:** 11, 12, 15, 18, 19, 21, 23, 25, 27, 29-39 (in Problems 29-39, do only the odd numbers and only set up the integrals, do not evaluate them)
- **6.4:** 1, 3, 5, 7, 8, 10, 13, 15

Chapter 7: Techniques of Integration

- **7.1:** 1, 2, 3, 11, 13, 15, 16, 25, 27, 28, 33, 39, 43, 47, 71
- **7.2:** 1, 3, 4, 6, 7, 9, 11, 13, 18, 21, 22, 23, 25, 27, 29, 40, 52, 65, 66, 69, 71;
- **7.3:** 6, 7, 8, 9, 10, 11, 12, 15, 18, 19, 28, 35, 43
- **7.4:** 2, 6, 9, 12, 15, 17, 19, 21, 23, 26, 30, 68, 69
- **7.8:** 1, 6, 9, 12, 16, 19, 22, 27, 29, 30, 35, 37, 40, 45, 50, 51, 53 (in Problems 50, 51, and 53, make a **rough** sketch, do not use a graphing calculator), 58, 59, 60

Chapter 11: Infinite Sequences and Series

- **11.1:** 29, 33, 36, 38, 41, 42, 43, 47, 48, 53, 54, 57, 61, 79, 81
- **11.2:** 1, 3, 4, 15, 17, 20, 21, 28, 29, 32, 37, 39, 41, 42, 45, 47, 60, 61, 62, 65
- **11.3:** 7, 8, 9, 11, 17, 19, 21, 23, 29
- **11.4:** 1, 2, 3, 7, 9, 12, 13, 14, 15, 17, 23, 27, 29, 33, 37
- **11.5:** 6, 7, 9, 10, 13, 18, 23, 27, 28, 30
- **11.6:** 1, 5, 7, 8, 9, 10, 11, 14, 15, 16, 21, 22, 24, 25, 26, 27, 29, 30, 33
- **11.8:** 4, 12, 13, 15, 17, 19, 22, 23, 25, 37, 38
- **11.9:** 3, 6, 8, 10, 15, 16, 17, 22, 28, 30
- **11.10:** 3, 4, 6, 8, 9, 22, 25, 27, 28, 30 (in Problems 24, 25, 27, 28, and 30, only find the **first four terms of the Taylor Series**), 39, 41, 43, 44, 60, 61
- **11.11:** 3, 4, 5, 6, 7(in Problems 3-7, do not graph f and T_3)

Some problems using the same techniques as the assigned homework for additional practice if needed For problems such as "A7: 1", see *Additional Homework Problems* on next pages

5.2: 43, 46, 58

5.3: 9, 25, 30, 36, 42, 45, 49, 73

5.4: 13, 44

5.5: 20, 31, 40, 47, 53, 62

6.1: 13, 21

6.2: 13, 14, 17, 22, 30-40even (only set up, but do not evaluate the integrals in 30-40)

7.1: 5, 14, 21, 32

7.2: 5, 12, 14, 17, 28, 30, Also **A7:** 1, 2, 3

7.3: 5, 14, 16, 20

7.4: 5, 16, 37

7.5: Most of the exercises are good for practice. And the text of 7.5 itself is very helpful for review.

7.8: 2, 10, 13, 25, 28, 31, 57, 62; Also **A7:** 4, 5

11.1: 31, 34, 39, 46, 51, 55, 56, 62

11.2: 18, 30, 31, 40, 44, 46, 59 Also **A11: 1**

11.4: 11, 19, 28, 34; Also **A11:** 2

11.5: 5, 11, 14, 16, 25

11.6: 12, 23, 28, 31

11.8: 5, 6, 14, 21, 24

11.9: 7, 21, 27; Also **A11:** 3, 4

11.10: 7, 24, 42, 62

Additional Homework Problems

A7

1. The region D in the xy-plane is bounded by the curves $y = \arcsin x$, $y = \operatorname{arcsec} x$, and the lines y = 0 and $y = \frac{\pi}{4}$ (see the illustration). Find the volume of the solid formed by rotating region D about the y-axis.

- 2. The region D in the xy-plane is bounded by the curve $y = \tan x$ and the lines y = 0 and $x = \frac{\pi}{4}$ (see the illustration).
- (a) Find the volume of the solid obtained by rotating region D about the x-axis.
- (b) Find the volume of the solid obtained by rotating region D about the line y = 1.

- 3. The region R in the xy-plane is bounded by the curve $y = e^x$ and the lines y = 2 and x = 0 (see the illustration).
- (a) Set up an integral to find the volume of the solid obtained by rotating region D about the y-axis. You do not need to evaluate this integral.
- (b) Set up an integral to find the volume of the solid obtained by rotating region D about the line x = 1. You do not need to evaluate this integral.

- 4. Consider the region $D = \{(x,y)|x \ge 0, 0 \le y \le \sqrt{x}e^{-x}\}$ as shown in the picture. A solid, S is generated by rotating region D about the x-axis.
- (a) Express the volume of solid S first as an improper integral, and then as a limit of proper integrals.
- (b) Find the volume of solid S, or show that this volume is infinite.

- 5. Consider the region $D=\{(x,y)|1< x\leq 5, 0\leq y\leq \frac{1}{\sqrt{x-1}}\}$ as shown in the picture. A solid, S is generated by rotating region D about the x-axis.
- (a) Express the volume of solid S first as an improper integral, and then as a limit of proper integrals.
- (b) Find the volume of solid S, or show that this volume is infinite.

A11

- 1. Suppose that the N-th partial sum of the series $\sum_{n=1}^{\infty} a_n$ is $S_N = \frac{3N-1}{5N+1}$.
- (a) Does the series $\sum_{n=1}^{\infty} a_n$ converge? If so, find its sum.
- (b) Does the sequence $\{a_n\}_{n=1}^{\infty}$ converge? If so, find its limit.
- 2. Determine whether each series coverges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3 + \sin n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3 + \sin n}{n\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{4^n}{3^n + 5^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{5^n}{3^n + 4^n}$$

3. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{4^n (2n)!}$$
.

- (a) Evaluate f'(x). Simplify and give your answer in summation notation.
- (b) Evaluate $\int f(x)dx$. Simplify and give your answer in summation notation.

4. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{5^n (x-4)^{n+1}}{(n+3)(n+1)!}$$
.

- (a) Evaluate f'(x). Simplify and give your answer in summation notation.
- (b) Evaluate $\int f(x)dx$. Simplify and give your answer in summation notation.