

The Business of Science®

Quantitative EDS Analysis using AZtec software platform

Good Practices

The Business of Science®

Step 1: Enter Project Notes and Specimen Notes for the sample in "Describe Specimen"

Step 2: Select "Ratemeter" in the "Mini View" to verify the dead time and input count rate.

Step 3: Perform a "Beam Measurement" in "Optimize" Calibrate step (If interested in un-normalized quant).

Step 4: Collect a reference image in "Scan Image" step in Point&ID. Skip if not interested in collecting an image.

Step 5: Start spectral acquisition by selecting appropriate tool (spot, rectangular region, etc.) and clicking on the region of interest in Point & ID.

Step 6: Use the Fitted Spectrum tool to verify peak identification in "Confirm elements"

Step 7: Quant in Calculate Composition step.

For Quant using Standards:

Step 8: Acquire a spectrum from a standard as defined above. Standardize the elements of interest in "Standardize" (located in Optimize).

Step 9: Re-quantify spectra from unknown samples using the updated standard database.

Step 1: project/Specimen details AZtec - Project 1 ⊙ ⊙_{nce®} File View Techniques Tools Help Q) ? Search Help 3-0 Data View Point & ID Guided Compare Acquire Confirm Calculate **Current Site** Data Tree Scan Image EDS-SEM Report Spectra Composition Spectra Elements Custom Results Specimens in 'Project 1' Summary Specimen Geometry Pre-defined Elements + New Specimen Project Notes Click here to begin entering notes about your project. Specimen 1 -d* Site 1 🔹 Mini View 🛛 Ratemeter 🔻 🌼 **Enter Project Notes and Specimen Notes** Input Count Rate 82360 cps Output Count Rate 36860 cps Dead Time 57% Specimen Notes for 'Specimen 1' Process Time 3 Click here to begin entering notes about your specimen. Recommended WD 8.5 mm High Voltage 20.0 kV Step Notes In this step you can: · Write notes on your Project and Specimen (For convenience you can also copy images/diagrams Specimen Coating Information: and text from other documents/emails and paste into these windows). The specimen has been coated with: Carbon · Add New Specimens to the Project: Thickness (nm): 10.00 Density (g/cm³): 2.25 + New Specimen 3 OXFORD Mag: 4465 x HV: 20.0 kV WD: 8.76 mm Specimen Tilt: 0.00° Input Rate: 82360 cps Output Rate: 36860 cps Dead Time: 57% Process Time: 3

View Techniques Tools Help EDS-SEM	O Image Ima	Search Help Q Data View Current Site Data Tree
pecimens in 'Project 1' H New Specimen	Summary Specimen Geometry Pre-defined Elements Project Notes Click here to begin entering notes about your project	
	Select "Ratemeter" in the "Mini View" to verify the dead time and input count rate.	Site 1 Mini View Ratemeter Input Count Rate 32360 cps Output Count Rate 36860 cps Dead Time 57% Process Time 3 Recommended WD 8.5 mm High Voltage 20.0 kV Step Notes In this step you can:
	Specimen Coating Information: The specimen has been coated with: Carbon Thickness (nm): 10.00 Density (g/cm ³): 2.25	 Write notes on your Project and Specimen (For convenience you can also copy images/diagrams and text from other documents/emails and paste into these windows). Add New Specimens to the Project:

Step 3: Beam measurement for un-normalized quant analysis

AZtec - Pre	piect 1		
File View	Techniqu	ues Tools Help	nco®
EDS-SEM	1	Optimize Collect a spectrum from copper tape or any of the other available pure elements in the list.	acc
		Routine: Beam Measurement 🔻 Element: Cobalt 🔻 Acquire Spectra 🕨 START 🔳 STOP	
10		Beam Measurement Energy Calibration	
T.+	1111	Beam Measurement	
	4	If you require accurate un-normalized quantitative analysis results, you must perform the Beam Measurement routine. Any change in the microscope settings such as accelerating voltage or lens control will lead to the change in the beam current. Under these circumstances you must perform the Beam Measurement routine before you do accurate quantitative analysis.	
	15 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note that you <u>do not need</u> to perform the Beam Measurement routine if you are only interested in: •Qualitative Analysis •Normalized Quantitative Analysis	
	1 · · · ·] ·	Energy Calibration	
		For accurate identification of peaks, you need to perform the Energy Calibration . Energy Calibration measures the shift in the position of the spectral peaks and resolution of the system. As the system has very stable electronics, you may only need to calibrate the system once in several months, provided the environmental temperature of the laboratory is fairly stable. A few degrees change in the environmental temperature can cause a small shift in the position of peaks.	
		The Energy Calibration routine is performed for representative Process times, available energy ranges and number of channels in one operation. This means if you change any of these settings soon after you perform the Energy Calibration , you will not need to re- calibrate the system.	

e 5

1

Step 4: Collect a reference image

Step 5: Start Spectral Acquisition

AZtec - Project 1

Step 6: Fitted Spectrum Tool – to confirm the elements in the spectrum

Step 6: Fitted Spectrum Tool – to confirm the elements in the spectrum

Step 7: Quant

Step 7: Quant - Multiple Spectra Comparison

View Techniques Tools Help					
Point & ID	Describe Specimen Scan Image Acquire Spectra Confir Elemen	n Calculate Composition	Compare Spectra Report Results Cus	ded Data View Current Site Data Tree	9) ? • 2 X
vailable Templates Summary Table - Single Spectrum Comparison of Results - Two Spectra Summary Table - Multiple Spectra Full Results Table (customizable) - Single Spe Spectrum Details - Details Spectrum Processing Diagnostics Table (customizable) - Single Sp	ectrum Copy Copy	spectrum 6 Current Spectrum 6 Oxygen by Stoichiometry Carbon 100 nmi 2.25 a/cm ³	Multiple spectra can be selected fro the Data Tree by holding the "ctrl" button on the keyboard. These selected spectra can be added to th Quant Summary Table.	A - $- $ Site 1 Electron Image 1 Electron Image 2 Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 5 - $- $ Site 2	
Quant Results View Viewed Data: Multiple Spectra Spectrum Label Spectrum 1 Spectrum 2 Spectrum 3	V O Na Al Si M 48.51 8.34 10.56 32.33 O 45.17 7.87 10.93 35.73 O 48.51 8.32 10.56 32.32 O	t % ▼ Ca Ti Ba Total 15 0.11 100.00 Pr 123 0.07 100.00 Pr 17 0.12 100.00 Pr	Project Path oject 1/Specimen 1/Site 1 oject 1/Specimen 1/Site 1 oject 1/Specimen 1/Site 1	Electron Image 3	â
Statistic O Na Al Vlax 48.51 8.34 10.9 Vlin 34.06 7.87 10.5 Average 44.06 5.85 5.85	34.06 19.56 Si K Ca Ti Ba 35.73 0.23 0.12 11.55 34.83 6 19.56 0.15 0.07 11.55 34.83 29.98 7.13	11.55 34.83 100.00 Pr	oject 1/Specimen 1/Site 2	Add Selected Spectra	
				Add Selected Spectra	to Quant Step

Step 8: Optimize - Standardize

ł.

á

Step 9: Re-quantify using new standards database

AZtec - Project 1

A few examples to demonstrate the use of various settings in Calculate Composition Quant Settings

Processing options All Elements Element by Difference Entitivities element: Ovgen + Oxygen by Stoichiometry Humber of term 3.00							Deco arbor Add	elem elem ce ele car A	ent I	elen	ients				Three Enat Sign	eshold quantitative results ble thresholding ma levet 20		
Nor	maliz	e resu	alts					••	Quar Facto User	nt sta ory: :	ndar Qua	dizati nt Sti	ons Indar	dizati	ons(i	Exten	led Set)	
Cu	rrent ed Lis	spect t	trum															
Fix Fix	ed Lis	it and	Curre	ent S	pectri	um											He	Automatic line selection for all elements
Fix Fix	ed Lis Be	it and	Curre	ent Sj	pectri	um						-	c	N	0	F	He Ne	Automatic line selection for all elements
Fix Fix H U Na	ed Lis Be Mg	it and	Curre	ent Sj	pectri	um		10	N	-	76	U Al	C SI	N P	0 5	FCI	He Ne Ar	Automatic line selection for all elements
Fix Fix H U Na K Rb	ed Lis Be Mg Ca Sr	sc v	TI 7r	V Nb	Cr	Mn	Fe	Co	Ni	Cu	Zn	U Al Ga	C Si Ge	N P As	0 S Se Te	F Cl Br	He Ne Ar Kr	Automatic line selection for all elements Element Details for Hydrogen Fixed weight %: 0.00
Fix Fix H U Na K Rb Cs	ed Lis Be Mg Ca Sr Ba	Sc Y La	TI Zr Hr	V Nb Ta	Cr Mo	um Mn Tc Re	Fe Ru Os	Co Rh Ir	Ni Pd Pt	Cu Ag Au	Zn Cd Hg	H Al Ga In TL	C Si Ge Sn Ph	N P As Sb Bi	O S Se Te Pa	F Cl Br T At	He Ne Ar Kr Xe Rn	Automatic line selection for all elements Element Details for Hydrogen Fixed weight %: 0.00
H H U Na K Rb Cs Fr	ed Lis Be Mg Ca Sr Ba Ra	Sc Y La Ac	TI Zr Hf	V Nb Ta	Cr Mo W	Mn Tc Re	Fe Ru Os	Co Rh Ir	Ni Pd Pt	Cu Ag Au	Zn Cd Hg	Н Al Ga In Tl	C Si Ge Sn Pb	N P As Sb Bi	O S Se Te Po	F Cl Br T At	He Ne Ar Kr Xe Rn	Automatic line selection for all elements Element Details for Hydrogen Fixed weight %: 0.00
H H H Na K Rb Cs Fr	ed Lis Be Mg Ca Sr Ba Ra	Sc Y La Ac	TI Zr Hf Ce	V Nb Ta	Cr Mo W	Mn Tc Re Pm	Fe Ru Os Sm	Co Rh Ir Eu	Ni Pd Pt Gd	Cu Ag Au Tb	Zn Cd Hg Dy	U Al Ga In Tl Ho	C Si Ge Sn Pb Er	N P As Sb Bi	O S Se Te Po Yb	F Cl Br T At	He Ne Ar Kr Xe Rn	Automatic line selection for all elements Element Details for Hydrogen Fixed weight %: 0.00
Fix Fix Na K Rb Cs Fr	ed Lis Be Mg Ca Sr Ba Ra	SC Y La Ac	Ti Zr Hf Ce	V ND Ta Pr Pa	Cr Mo W Nd	um Mn Tc Re Pm Np	Fe Ru Os Sm Pu	Co Rh Ir Eu Am	≥i Pd Pd Cm	Cu Ag Au Tb Bk	Zn Cd Hg Dy Cf	B Al Ga In Tl Ho	C Si Ge Si Pb Er	N P As Sb Bi	O S Se Po Yb	F Cl Br T At Lu	He Ne Ar Kr Xe Rn	Automatic line selection for all elements Element Details for Hydrogen Fixed weight %: 0.00

© Oxford Instruments 2011

Page 14

Olivine: To demonstrate the effect of Carbon coating on Oxygen measurement

The Business of Science®

Olivine Certified Values									
0: 43.89									
Mg: 30.42									
Si: 19.44									
Mn: 0.08									
Fe: 5.87									
Ni: 0.3									
DS-SEM Quant Settings									
Processing options									
• All Elements									
Element by Difference Combined element: Oxygen -									
Oxygen by Stoichiometry									
Number of ions: 3.00									
Normalize results									

Spectrum quantified by processing all elements, including Oxygen. Normalization was not enabled as beam measurement was performed before the spectral acquisition.

	Olivine	Wt%						
	0	33.14						
	Mg	28.84						
	Si	18.85						
	Mn	0.15						
	Fe	5.69						
	Ni	0.23						
	Total	86.90						
Specimen Coating Information:								
	The specimen has been	coated with: Carbon	-					
	Thic	kness (nm): 10.00						
	Den	sity (g/cm³): 2.25						

Oxygen concentration is severely underestimated due to wrong coating thickness. The actual carbon coating thickness is 90nm – measured using ThinFilmID software.

AZtec Quant

Olivine	Wt%
0	44.09
Mg	31.00
Si	19.08
Mn	0.16
Fe	5.86
Ni	0.24
Total	100.43
pecimen Coating Inform	ation:

pecimen Coating In	formation:		
The specimen has	been coated with:	Carbon	-
	Thickness (nm):	90.00	
	Density (g/cm³):	2.25	

Oxygen concentration is accurately calculated with right Carbon coating thickness. Carbon has an absorption edge near Oxygen, therefore heavily absorbs Oxygen x-rays.

Albite: To demonstrate the effect of Pileup peaks

Albite Certified Values O: 48.76 Na: 8.6 Al: 10.34 Si: 32.03 K: 0.18 Ca: 0.09

AZtec Quant

Albite	Wt%
0	48.90
Na	8.59
Al	10.51
Si	31.81
К	0.10
Са	0.11
Total	100.02

Benitoite: To demonstrate the importance of Fitted Spectrum tool to confirm overlapping peaks

The Business of Science®

Benitoite: Certified Values O: 34.82 Si: 20.38 Ti: 11.58 Ba: 33.21

AZtec Quant

Benitoite	Wt%
0	34.81
Si	20.09
Ti	11.37
Ва	34.74
Total	101.01

Calcite: To demonstrate the use of "Fixed Weight %" to incorporate Carbon in the Quant

Calcite: Certified Values C: 12.02 O: 47.98 Ca: 39.98 Mn: 0.01 Quantifying Carbon using EDS on an SEM is near-impossible as most samples are either coated with carbon or carbon gets sputter deposited by the e-beam during analysis. Therefore, carbon is typically analyzed using alternative techniques. In such cases the Carbon concentration can be entered as "Fixed wt.%" to incorporate it in the matrix corrections.

AZtec Quant

Calcite	Wt%
C (fixed value)	12.02
0	48.02
Ca	39.22
Total	99.26

Boron Nitride with Carbon coating and Oxygen contamination To demonstrate the use of "**Deconvolution Elements**" in Quant settings

The Business of Science®

250µm

Manually removing surface coating and other contaminant elements from identification will NOT remove their corresponding x-ray contribution. This may lead to inaccurate quantitative analysis.

The right way to account for these elements is by adding them as "Deconvolution Elements" in the Quant setup (following slide). Quant by removing coating and contaminant elements

BN	Atomic %
В	55.17
N	44.83

Inaccurate quant – must be 50/50 at.%

Quant after applying coating correction and deconvolving contaminant elements out of the analysis.

BN	Atomic %
В	49.93
Ν	50.07