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ABSTRACT

QUANTUM RANDOM WALKS UNDER DECOHERENCE

Zhongzhi Liu
DOCTOR OF PHILOSOPHY

Temple University, May, 2007

Wei-Shih Yang, Chair

In this thesis, we consider quantum random walks on finite dimensional Hilbert
spaces when decoherence is introduced. From the pure mathematics definition
of history, we assign probabilities to histories according to R. Feynman’s inte-
gral principle, and give out master equations and Green functions. We prove
that decoherent quantum processes are ergodic. On finite lattices, we show
that they have the same limiting distributions as classical random walks. This
is an extension of the results on classical random walks, and it verifies that
classical physical properties can be induced from the quantum theory under

the decoherence theory frame.
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CHAPTER 1

Introduction

Random walks form one of the algorithmic tools in physics, computation
science and financial mathematics. They have been applied to a variety of
problems, such as estimating the volume of a convex body and solving certain
differential equations. Since R.Feynman gave his idea of a quantum computer
[1], quantum algorithms have been developed, such as Shor’s factoring algo-
rithm [2] and Grover’s search algorithm [23]. Quantum random walks are
expected to play the same roles as classical random walks in future compu-
tation science. From a quantum mechanics point of view, quantum random
walks are quantum system evolutions and connected with the fundamental
theory of quantum dynamic. Quantum random walks are of mathematical
interest in their own right.

The basic idea of quantum walks can be traced back to the dynamics of
quantum diffusion. Using a discrete time step to study quantum dynamics is
described as quantum random walk. The discrete time quantum random walks
were first used by R.Feynman for discretizing the Dirac equation [4]. The term
” quantum random walks” appeared in the late 1980s from Gudder (1988) [5],
Grossing and Zeilinger (1988) and Aharonov, Davidovich and Zagury in (1993)
[6] . Motivated by quantum information and quantum computation, quantum
random walks were studied again by Meyer in [7]. Recently, Aharonov, Am-

bainis, Kempe and Vazirani studied quantum random walks on general graphs
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with rigorous proofs. As a result, several rigorous results for quantum random
walks were obtained.

This research has uncovered many effects that are different from the clas-
sical random walks, both from the physical point of view as well as from
computer or information theory perspective. Kempe gave review on the dif-
ferences in [8]. For example, in classical random walk, the probability of being
absorbed by a wall at the original point 0 is 1 for a particle starting at position

1. But in quantum random Hadamard walk, the probability of being absorbed
2

P

Interference phenomena are a well-known feature of quantum mechanics.

18

The theory of decoherence is the study of interactions between a system and
its environment. Decoherence occurs when a system loses phase coherence
between different portions of its quantum states. Decoherence is caused by
interactions with the second system, which may be considered as either the
environments or a measuring device. As a result of the interaction, the wave
functions of the system and the measuring device become entangled with each
other. Since the measuring device has many degrees of freedom, the system
behaves as a classical statistical ensemble of the different portions of the sys-
tem states. In each member of the ensemble, the system appears to have
collapsed onto a state with precise values. Some classical physical properties
can be induced from the quantum theory under the decoherence theory frame.
Decoherence plays a fundamental role in transforming from the quantum to
the classical regime.

In quantum mechanics, the decoherent histories approach was initiated in
1984 by Robert Griffiths [9], and independently proposed by Roland Omns
[10] shortly after. It was subsequently rediscovered by Murray Gell-Mann and
James Hartle [11].

In mathematics, decoherence can be regarded as describing a stochastic
process with intrinsic randomness. The histories for which decoherence is
concerned are random histories of interactions with the environments. It is a

useful idea to assign probabilities to histories, but it is not so easy to achieve.
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In physics, decoherence assigns probabilities only to histories belonging to
special families which satisfy a certain decoherence condition guaranteeing that
P(z) is additive, and hence provide a consistent assignment of probabilities to
elements.

A pure mathematical decoherent process can be described as follows. Let
H be a Hilbert space spanned by particle states ¢y, ¢q,... ¢, ..., wWhich is
an orthonormal basis of H. Let U be a unitary operator. If we choose an
initial state ¢p, a pure quantum random walk with some discrete time ¢ is
W = Ut(o).

We also choose Ay = /1 —pl, and A; = ,/pll;, where I is the unit ,
I1; is the projection from H to the subspace C¢; spanned by ¢;, and p is a
real number in the interval [0,1]. These operators can be considered as the
interferences or measurements.

A decoherent quantum random walk (process) with an initial state ¢; with

some discrete time ¢ is
Qt¢i = (Ajt ° U)(Ajt—l o U) T (Ajz © U)(Ah o U)¢z

for a sequence ; = (A4;,0U)0(4;,_,0U)...(4;,0U0),51€{0,1,2,.../n,...}.
We call this decoherent quantum random walk an {2; process, since it is deter-
mined by the order sequence );.

Under an §2; process and an initial state ¢;, the probability of the particle
being measured at state ¢; is |[< ¢;, Qs >|*. According to R.Feynman’s fa-
mous path integral principle, we define the following as the probability that a
quantum particle is found at ¢; at time ¢.

PiG) = > 1< ¢, Qe: >
QeE:
where =, is the set of all order ;.

If p = 0,A;, are zero, and A, is the unit operator, then the decoherent
quantum walk is a pure quantum walk ¥, = U%(¢o).. On the other hand, if
p = 1, then Ay is zero, and A;, is a projector for all j;, then the decoherent

quantum random walk is a classical Markov chain.
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We know that a classical Markov chain is ergodic , but not a pure quantum
random walk. In this thesis, we prove that a decoherent quantum random walk
is ergodic for p # 0 when H is finite Hilbert space. There are many ways to
approach this problem. We will apply the generating function technique to
work on the problem.

The structure of this thesis is as follows: First, in Chapter 2, we present
some basic concepts and facts of quantum mechanics, such as state of quan-
tum system, density matrix and Schrodinger equation. In Chapter 3, the
pure mathematics definition of history is introduced. We associate a kind of

probability with the histories, and give out the master equation (3.9)

t+1 N

() =Y p—pp Y W)
s=1 =1

2
i

t'+1—s(l)1

for ¢ > 0. By the generating function technique, we prove that the limiting
distribution exists. For finite case, under a family of Grover diffusion matrices,
we show that the limiting distribution is % on N points lattice. This is the
same result as classical random walks. In this chapter, we also show that
in a infinite dimensional space the probabilities still satisfy the above master
equation. In Chapter 4. we deal with some hitting time questions of pure

quantum walks in a half plane.
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CHAPTER 2

Quantum Mechanics

Preliminaries

2.1 States, Observables and Density Opera-
tors of Quantum Systems

In quantum mechanics, one of the major differences from classical mechan-
ics is the superposition principle: Physical states are represented as vectors of
a complex Hilbert space H. Two vectors o and 3 represent the same state
of a quantum system if and only if they differ by a non-zerc multiplication
constant. In other word, a and [ represent the same quantum state if there

is a non-zero complex number ¢ € C such that
a=cf.

So if H is an n dimensional space, quantum states are just the elements of the
projective space CP™~!. In general, under an orthonormal basis {e;} of H, a

state of a system v is

where
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The quantity |< e;,¥ >|* = |z;|* is the probability to find the system in the
state e; in a measure. With this explanation, a state of a system is a distri-
bution function on all the unit vectors of H. If we identify the dual space of
H with itself, a physical state in quantum system can be treated as a linear
functional on H.

Another special concept for quantum mechanics is observable. An observ-
able is simply a Hermitian operator on a Hilbert space. This means that A is

an observable if and only if for any «, 8 of H,
<A, >=<a,AB > .

Two observables A and B are simultaneously measurable if
[A,B]=AB—- BA=0.

A family of observables {4;, Ay, ... A,} are simultaneously measurable if the
corresponding operators commute with each other. If e is the common eigen-
vector, and

Ai(e) = e,
then the joint probability of simultaneously observables in a state ¢ is

|<e v >

A linear operator P is a projector on H if and only if P is a Hermitian operator
such that

PP=P
A projector is an observable. Actually, projector operators play a fundamental
role in quantum measurements.

A family of projectors {Py, P,,...P,}, is said to be mutually orthogonal
if and only if when i # j, P,P; = 0. It is said to be complete if and only if
> P, =1, where I is the identity of H.

A mutually orthogonal family of projectors are simultaneously measurable.
An Hermitian operator is diagonalizable. It has real eigenvalues and orthogo-

nal eigenvectors. If its spectrum is discrete and we denote by e; its eigenvectors
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and \; the corresponding eigenvalues. Then
A = Z )\iei &® éi,

where € are elements in the dual space of H, and satisfy &;(e;) = 67.
For a state of system ¥, the quantity |< e;, % >|* is interpreted as the prob-
ability to find the value \; in a measure of the physical observable associated

to A. For a Hermitian A and a state i, the quantity

< PAY >=< P, AY) >= D M|< e, >

is interpreted as the expected value of a measurement with respect to an
observable A of a quantum system in a state 1.

The quantity
|A@W)]* =< A(p), A(p) >

is the second moment of the measures of the observable associated with A.
Since A is Hermitian, the expectation value is real.

The second quantity has different versions in physics. We would like to
explain that by using notations from physics. Dirac has introduced the kets
le; > to denote vectors of Hilbert space H, and the bras < e;| for the elements

of the dual space of H. Using |e; >< ¢;|. to denote the tensor product e; ® €;.

For a state v,
Y= Z Ti€;,

P = Zfiéia

where Z; is the complex conjugate z;.

the dual is

From

|€i >< €j| =€; ®8_J,

we have

W >< ¢| :'l/J@?;:Zl'lf]Bz@éj
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I.CE1|2 l‘l.’fg Ce l‘lfn
o ToTq |.’172|2 ... I9Z, (2 1)
Tp,T1 ZTpZo ... lxn|

Thus
W1 = trac(y >< ).

Now if A is represented by a matrix
Ale) = aie;,

we have
Ae) = aer.
Then
|A@W)|* = trac(|A(¥) >< A(¥)))-

For density operators, we have a pure mathematics definition. A linear
operator on a Hilbert space is a density operator if it is a semi-definite Her-
mitian operators of trace 1. It is clear that for a state ¢ of system, p =¥ ® ¥
is a density operator. In physics, it is called a pure ensemble. It can be shown
that a density operator represents a pure ensemble if and only if the operator

is a projector. From A(y) = > z;a;5€;, it is easy to see that

<, A(Y) >= trace(pA).
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2.2 Quantum Evolution and Schrodinger Equa-
tion

In a closed quantum system, evolution is determined by the action of an
unitary operator U. Let the initial state be 9 (o), and U(¢, %) be the unitary

operator, then at moment ¢, the state of the system is described by the vector

Y(t) = Ult, to)(to). (2.2)

Ul(t, to) is called the evolution operator. If two times translation are performed
successively, the corresponding evolution operators are assumed to satisfy the

following composition law:
U(t, t()) = U(t, tl)U(tl, t())

This composition law is the analog of the Markov property for transition prob-
abilities in the theory of stochastics. However, U(t, ;) forms a one parameter
transform subgroup of the unitary group. The transition of probabilities in
stochastic theory define only semigroup.

If U(t, o) is differentiable as a function of t, 1(t) satisfies

oy
ihr = Hy(!) (2.3)

where h is the Planck constant, H is the Hamiltonian. This equation is the
basic equation of quantum mechanics. It is called Schrédinger equation. From

mathematical perspective, Schrodinger equation is

oU(t) i
—5 =~y HOU®), (24)

where —£ H (t) is a skew-Hermitian operator.
If the Hamiltonian H (t) is independent of time ¢, in other word, H(t) = H,

then all matrices commute and the above equation has a simple solution
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Generally, the solution is given by the path integral.

As a function of time, the expectation value of an operator A can be written

as
< P(t), A(t) >=< U(t,t0)1(to), AU (£, o) (t0) >

=< Y(to), U(t, to)* AU (t, to)1h(to) >

Then we have the Heisenberg representation of operator A,
A(t) = U(t, o) AU (¢, to).

The operators A(t) satisfies the evolution equation:

DA(t)

ih=2 = [H, A(®)] (2.5)

Since a state 1) associated with a density operator p = |¢p >< |, the evolution

of state induces the evolution of density operators.
p(t) = U(t, to)p(to)U*(t.to).
The equation (2.1) appears in another form
dp

i = [H, p(t)] (2.6)
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2.3 Quantum Random Walks

In the classical discrete random walks, a particle is located at one of a
finite or countable set of definite positions, such as the set of integers on the
line or a graph of finite vertices. In response to a random event, the particle
moves either right or left. The iterated process represents the basic exam-
ple of a Markov chain. Generally, A Markov chain be characterized by a
pair(W (t,), p(0)), where W (t,) = W;;(t,) is a transition probability matrix or
a stochastic matrix. Let p(0) = (p1(0),p2(0),...p.(0))T be the initial prob-
ability distribution vector. At time t,, the probability distribution p(t,) is
determined by W(t,) as

p(tn) = W(tn)p(to). (2.7)

Since p(t,) is a probability distribution, W (t,,) is a stochastic matrix, so we
have
> opilta) =1, 0 < py(ta) < 1,

and
ST Wilta) =1, 0< Wi(ta) < 1.

For a classical random walk on the real line, the matrix is
W(tn) = (W(to))",

where Wi;(to) = 1, when |i — j| = 1, otherwise W,;(to) = 0. By comparing
2.7 with 2.2, we define quantum random walks as quantum evolutions.
According to the evolution operators, quantum random walks are classified
as discrete quantum walks and continuous quantum walks. For time parameter
t, if the evolution operators U(t) form a discrete subgroup of some unitary
group, then the quantum walk is discrete. Similarly, if U(t) form a continuous

subgroup of a unitary group, the quantum walk is continuous. Generally, we

use integer n as the time parameter of a discrete quantum walk, and notation
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for some unitary operator U on the states space H.

At continuous cases, U(t) is determined by its Hamiltonian H, in other
word,

U(t) = e 4",

In direct analogy to classical random walks on the line, we have the follow-
ing example. Let Z denote the integers on the real line and let D = {R, L},
where we make identification R = right and L = left. The quantum systems
will have the state set Z ® D. The quantum states of the system are unit
vectors in the Hilbert space H = 1?(Z) ® [*(D) with an orthonormal basis
{n®d, n € Z,d € D}. For Hadamard operator 4 on [*(D), and identity I
on [?(Z), we have a unitary operator I ® A on whole space H. Next, define

another unitary operator, shift operator on H as follows
Sn®R)=(n+1) R,

SneL)=(Mn-1)®L.

Finally, the composition S o (I ® A) is the unitary operator for Hadamard

walk.
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2.4 Quantum Decoherence

In quantum mechanics. for a closed system, decoherent histories approach
is to find sets of histories and to assign probabilities to histories. Such sets of
histories are called consistent or decoherent. The approach provides a frame-
work from which we can discuss classical properties from quantum mechanics.

The histories of a closed system are sequences of alternative at a succession
of time. For example, in a typical experiment, a particle is emitted from a
decaying nucleus at time #;, then it passes through a magnetic field at time
ts, then it is absorbed by a detector at time ¢3.

In quantum mechanics, properties of a system at a fixed time are rep-
resented by a set of projection operators {4;, 4,...}. At each time ¢, if the
system appears at ¢, the projection operator A; effect a partition of the possible

alternative ¢. The set of operators satisfy exhaustive and exclusive conditions

SN AA =1, AA; =6lA;
J

A quantum mechanical history is characterized by a sequence of time depen-

dent projections
Q,, = Ajy(t1)Aj,(t2) - - Aji(En)

and an initial state . The candidate probability for such histories is
<), Q¥ >=trace(SY, pSly,, ).

It is easy to show that this number is non-negative. However it does not
satisfy all the axioms of probability theory. It does not satisfy the axiom
of additivity. The standard example is the double slit experiment. In this
experiment, the histories consist of projections at two moments of time. At
time £;, the first projection determines which slit the particle went through.
the second projection determines the point at which the particle hit the screen
at time £,. It is well known that the probability distribution for the interference
pattern on the screen can not be written as a sum of the probabilities for going

through each slit.
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There are certain types of histories for which this candidate probability
satisfies the sum rules. We have the following necessary and sufficient condition

for that types histories: for any two histories {2; and €,
D($, Q) = trace(Q; pf2;) = 0.

We call this decoherence functional. Intuitively, it measures the amount of

interference between pairs of histories.
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CHAPTER 3

Decoherent Quantum Walks on

Finite Lattices

3.1 Definitions and Generating Functions

Let H be an n dimensional Hilbert space over C spanned by particle states
é1, 02, . . . On, which is an orthonormal basis of H. Let U be a unitary matrix.
We also choose Ay = /1T — pI, and A; = \/pIl;, where I is the unit matrix, II;
is the projection from H to the subspace C¢; spanned by ¢,, and p is a real
number in interval [0, 1].

For an order sequence of operators 0, = (A4;,0U)0(A4;,_,oU)...(A;,0U), ji €
{0,1,2,...n}, if we choose some ¢; as an initial state , a decoherent quantum

random walk (process) start at ¢; with some discrete time t = {1,2,...} is
Mg = (A]t © U)(Ajt—l ° U) e (Ajz ° U)(AJI © U)¢1

We call this decoherent quantum random walk an 2, process, since it is deter-
mined by the order sequence €2, and call );¢; a history.

Each unit vector in H represents a state of the particle. Let ¢ be a unit
vector. Under an ; process, the probability of the particle being measured at
state ¢ is |< ¢, Qe >|°.

According to the Feynman’s famous paths integral principle, we define the
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probability that a quantum particle is found at ¢ at time ¢ as follows,
Pi(@)= Y |< & uei >*,
Qees,
where = is the set of all operator sequences (2;, and we postulate that P}(¢) =
|< ¢, ¢; >|°. We will prove that Pi(¢) < 1 for all ¢ > 0.

Remark : If p = 0, A,,’s are zero, and A is the unit matrix, then the
decoherent quantum walk is a pure quantum walk. On the other side, if p = 1,
then Ag is zero, and Aj, is a projector for all j;, the decoherent quantum
random walk is a classical Markov chain.

We know that a classical Markov chain is ergodic , but not a pure quantum
random walk. We hope that a decoherent quantum random walk is ergodic for
p # 0. There are many ways to approach this problem. We consider generating

functions.

gi(2) = 8+ > Pi(j)7,
t=1

where Pi(j) = Pi(#;).

Before describing this function, we need to estimate some quantities. First
we prove that Pj(¢) < 1 for every ¢, and any unit vector ¢ € H, when i,=
1,2,.. N.
We prove that by induction on t. At t = 0, by the definition and Schwarz
inequality, we have Pi(¢) = |< ¢,¢; >|* < 1.
Let ¢ = Zfil a;¢; be a unit vector, then q; satisfy Z{il las* = 1.
We assume that the claim is true for ¢ = k£ and any unit vector ¢ in H. We
will prove that for ¢t = k + 1.

Let Q. = (Aj, 0 Uj... (A, o U)(A;, o U) be a general element of Z;. We

introduce an operation

Aj, ., 0UEy = {A;,, oUoQy = (Aj,, 0U)o(A;0U) ... (4;,0U)(A4;U) |V € E},

Jh+1 Jk+1

then we have a partition of =g,

N
Skl = UAz oU o0&y
1=0
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Thus
P12+1(¢) = Z |< @, Q10 >|2
Qe+ 1€8k41
N
=3 > 1< AcUog >
=0 AjoUoZ;
N
=D (< ¢ Ao Uoudi >+ D |< o, 40U ouei >[)
i Zr =1
(3.1)
Note that A;0U 0 Qy, = A; o U o€, then
|< ¢, Ag o U o i >|2 = |< (U* 0 A, et >I 5.
=(1-p)|< U*¢, Ui >I*.
Similarly
1< ¢, Ao U o Qs > = |< (U 0 A}, Qutpy > 33)

= pla)?|< U*ér, i >|*.

Equation(3.1) becomes

N
Pig(@)=1-p)Y I<Us, 2 > +p) lal*Y_ < U Ui >I.
Sk 1=1 Sk
(3.4)
So that, for £ > 0, we have

N
Pi(¢) = (L—p)Pi(U*¢) +p Y _ lal* Fi(U ). (3.5)

1=1
By the assumption,
P(U¢) <1

and
PiU*¢) <1,

We have proved that
Pia(¢) <L

As a result of the inequality. we have the follow proposition.
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Proposition 3.1 The generating functions gi(z) = 0% +>_,_, Pi(j)z" is ana-
lytic on {z,|z] < 1}.

From (3.5), we see that if ¢ = ¢;, then

Piia(5) = P(U9;). (3.6)
Moreover if we choose ¢;,7 = 1,2,... N as the eigenvectors of U*, and the
respective eigenvalues are A, i)\j| =1

In this case,
(7)) = PL(U"¢))
= X" P(5) (3.7)
= F,(j).

Since P’( ) = &%, so that

gi(z) =86+ P(j)

This is the trivial case for solving function g}(z).
Now we want to find a recursion formula for solving gj(z) in general case.

IfU*¢; = Z;\il W'j(ll)@, by the general equation (3.5), for ¢ > 1, we get

P{U"85) = (1= p)PLL((U")e) +p2] Wil Py
Using equation 3.6, we have
3 N i 2 i
Pinli) = (1= )P(U7)%)) +pZ\W}}>y Pi(#).

Let
N

U*)¢; = Z WJ-(IQ)@,

=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19
and repeating the process on
N 2
* ) * 2 7
Pea((U")85) = (1= D) PLA((U0) + 2 3 |WiP| PLI)
1=1
For t > 0, we obtain that

P,y (5) Zpl— Z|W(S“’|2P:s) +(1-p)R((U*) ;). (3.8)

If p = 0, decoherence quantum walks become pure quantum walks, we have

only the last term in the above equation
Ptz+1( ) Pg((U*)t+l¢j)-

Now we suppose p # 0, and

Z 4l ¢l,

by the definition,
B((U")**1g5) = WP,

we can rewrite the last term as

‘ 1
(1= Y B((U")F105) = p(1 = p)' WP

_ Zp t+1)|21

Now, for ¢t > 0, replacing s for s + 1, equation 3.8 becomes,

t+1

ti+1 Zp 1_ s 1le(s)

where we reset Pi(l) = 14¢. This is our recursion formula of P¢, (7).
0 701 t41

Pl (D), (3.9)

Remark: In this recursion formula, we reset that Pi(l) = ;}5}. This number
can not be induced from the definition of P;(j) for ¢ > 1. Since it is not a

probability, it lives only in this recursion formula. At time ¢t = 0, we have
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supposed the (5;- to be the initial probability.

Now we can write out the generating function g;(z) as follows:

= 51(2 +Z t+1 A

oo t+1 N
= 0i(2) + Z Zp(l )t Z ’W(S Pl ()t
o . (3.10)
=5+ 30 Y - p)- o] B
s=1 t=s—1
. s 2 ) —8
= 6i(2) + Z p2((1 - p)2)°? Z wil Z Pl (D7,
s=1 =1 t=s5—1
but -
i —8 i 1 1 1
Z Pl (D27 = gi(2) + =8 — 4.
t=s5—1 p
Let -,
Q=Y pe1-p2y Wi
s=1
from the above equation, we have
1
G=I+QG+I—)Q—Q. (3.11)
Since the norm of @ is less than 1 on {z,|z| < 1}, then (I — Q)™ ! exists on
the disk.
Thus
1
G=1+ 2—7([ -Q)7Q. (3.12)
on {z,|z| < 1}.

Note that @ = —(I — @) + 1, so that
G=- q1+ SI=Q) L (3.13)

We write this as our first theorem.
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Theorem 3.1 For any decoherent quantum random walk in a finite dimen-

stonal Hilbert space H, the generating function of the walk is
1
G=-1r+Zu-q@
p p

which is meromorphic on {z,|z| < %}, and the poles are on or outside the unit

circle.

Since G is analytic on |z| < 1, and det(I — Q) is analytic on |z| < ¢, by the
equation 3.13, then the theorem holds.
Before we prove that the decoherence quantum walks are ergodic, we in-

troduce some notations. Let

2 2 2

wil R

@ e )]

](U*)sl2 — W21 W22 !W2N
2 2 o |2

wel| o we| Wik

Then Q(z) is a generating matrix by the sequence of matrices
* 2 Tk 2 *\ 70 2
1220 RN 0740 i RN (720 Ll RS

From det(I — Q(z)) = 0, we know that 1 is a eigenvalue of Q(z). By
analyzing the eigenvalues of Q(z), for some decoherent quantum walk, we will
show that G(z) has only one pole z = 1 on the unit circle. Instead of directly
proving this claim, we prove a more general theorem on the properties of a
sequence of double stochastic matrices. The reason is that Q(z) is a generating

matrix of the sequence
* * 2 *\ 71
L2 120 & R [( 7 L O

Since (U*)™ is unitary for any n, then |(U*)"|* are double stochastic matrices
forn=1,2,....

We say a stochastic matrix W has gap property if and only if W has an
eigenvalue A\; = 1 with multiplicity 1, and all other eigenvalues A; satisty

(/\i[<1fori:2,‘..,N.
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Theorem 3.2 LetO <p < 1,and W,,n=1,2,..., be a sequence of stochastic
matrices, and Q(z) = 23777 (q2)"Wa. Suppose for some Wy, has the gap
property. Then eigenvalues N(z) of Q(z) satisfy |A(2)| < 1, for any |z| <
1,z # 1. At z=1, Q(1) has the gap property.

let Vo = (1,1,..., l)T. Since W, is stochastic for any n, V; is a common

eigenvector of all W,,. Then
Q(2)Vo = Mo(2) Vo,

where
pz

)\0(2) = 1_ qz.

Thus |A\o(2)|] < 1 when |z] < 1 except z = 1. Suppose X(z) is another eigenvalue
of Q(z) for some fixed z. The corresponding eigenvector is V'(z). It is clear that
< V(z), Vo >= 0, otherwise A\(z) = Ao(z). We assume that |V (z)| = 1. For any
n # ng, we have

< V(2),W,V(z) >| <1

for W,, are stochastic matrices. From assumption, we know that
|< V(2), Wn,V(2) >| < L.

otherwise, it will contradict with that W,,, has gap property. Then

IAz)| = < V(2), @)V (2) >| = §Z<qz>" <V(2), WaV(2) >

< gzan V(2), WaV(2) >| < 1
n=1

Corollary 3.1 In finite dimensional space H, if |{U*| has gap property, then
for the decoherent quantum walks, the generating matriz of functions is analytic

on the unit disk |z| <1 except z = 1.

Suppose zy, |20] > 1, makes det(I — Q(z)) = 0, then 2, is a pole of G(z).
But det(I — Q(z)) is analytic on the disk {z,|z| < -;—}, so that for some small
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positive number 0 < § < £, det(I — Q(2)) has finite zero points on the circle
{z,]z] = 1}, but does not have zero points on the disk |z| < 1+ ¢. This means
that G(z) is meromorphic on disk {z, |z] < 1+ ¢}, and G(z) is analytic on the

circle |z| = 144. So that by the Residue theorem, for some positive §, we have

dz + Z Res(ft(fl))

1 G(z)dz 1 G(z)

; t+1 - ; t+1
2me |zj=¢ Z 2me (z|=1+5 2t

n (314)

From the definition of G(z) , we know that

i 1 G(z)
P(5) =5~ ?l{z|=§ zt(+1 dz. (3.15)
On the other hand,
lim Gt(fl) dz = 0.
t=00 Jizl=145 %
So that
G(2)

tl_lglo Pij) = li{nZRes(F”zi.

If G(z) has only one pole z = 1 on {z| = 1, or equivalently, by our corollary, |U*|
with gap property, the above equation means that the decoherent quantum

walk on H is ergodic. We have proved the following theorem.

Theorem 3.3 In a finite Hilbert space, if |U*| has gap property, then the

decoherent quantum walks are ergodic.
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3.2 Decoherent Grover Quantum Random Walks

In this section, we will apply the theorems of the above section to some ex-

amples. Grover diffusion matrix appears in quantum mechanics and computer
sciences. Grover matrix D can be written as

a b b b
b a b b
b b a

-2 _ = 2
where a = & — 1, and b = .

For a vector k € Z2 | we use S(k) to denote the matrix

In_ ik 0)
0 —Iy/)

where I; is the | x [ identity matrix, |k| is the L! norm of k, i.e. the number
of 1 in vector k.

We let I/ be a general Grover matrix.

2 2 2
N N N
22 2 2
N N N N
S(k)D = .. .
2 2 2 2
N W -~t1l -5
2 _2 2 _2
N N N v t1

In order to give the explicit expression of Q(z), we have to calculate |(S (k)DY t| i

First we diagonalize matrix S(k)D. The characteristic polynomial of S(k)D
1s

I\ — S(k)D| = 0.
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That is
a— A b b b
b a—-X b b
=0.
—b -b ... —a—X —b
—b -b ... b —a—-2A
By simplifying, the characteristic polynomial becomes
a— A b 0
(L) E20 N )E (N — k| = 1) a— A+ (N = [k| —2)b [k (1+ )| =0.
\ —b —b 1-A
That is
la—b— A b 0
(L+NVE=2(1 - Ny g X a— A+ (N = |k| —2)b k] (1+A)|=0.
0 —b 1-A

Further simplifying yields
(14 AV - NF=A2 _9(1 — k| b)A + 1] = 0.

Then S(k)D has eigenvalues 1 and —1 with multiplicity |k|—1 and N — |k| -1

respectively. The left two eigenvalues are €% e~*% where cos(x) = 1 — 2—}5—'

and sin(6k) = 2/ |k| (N — |k}).
Now we want to find all eigenvectors corresponding to these eigenvalues.

From
(I+S(k)D)X =0

we get N — |k| — 1 eigenvectors corresponding to A = —1
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X =(1,-1,...,0),7
X, =(1,0,-1,...,0),7

iy g sy sy

Xn_1 = (1,0,0,...,-1,0...,0)T.
Similarly from
(I - S(k)D)X =0,
we have |k| — 1 eigenvectors corresponding to A = 1

Y; =(0,0,...,0,1,-1,0,...0)T,
N ——’

Vg1 = (0,0, ..,0,1,0,...,0,-1)T.

The last two eigenvectors come from the equation
(S(k)D — An_1 )X = 0.

They are
7

2 1 1
Vv — [k| \F \/_

where there are |k| terms of ﬁ in each vector above.
Let S be

T

Z = (-

Zy =

S=(Xnogj-1,--- X2, X1, 21,22, Y1, ..., Yjg)-1).

and
—Iny_jg-1 O O
M - O E 0 ]

0 0 Ip
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where

From

for any integer ¢, we have

(S(k)D)* = (S)'M*S.

By calculating directly,

27

1 0 0 -1 0 0 0 0
1 0 -1 0 0 0 0 ... 0
1 -1 0 0 0 0 o . 0
i o i i SR U NS U
¢ = | N N Nk LR VA VAL N
7 i [ 1 _ 1 1 1 ) 1
Nkl ANkl y/N-[k| /N=Ik| VIEE VIR VIR N
0 0 0 0 1 -1 0 ... 0
0 0 0 0 1 0 -1 ... 0
0 0 0 0 1 0 0 -1

By rewriting it as a block matrix
o A B
C E)

e (A - BE-1C)™
—E-C(A - BE"'C)™!

From the formula

—A'B(E—-CA7'B)"1\
(E—CA™'B)™ ’
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and that
/N-ik| V/N—lk|
/N-lk| V/N—[k|
Al = ! .
/(N ~ k) ; —(N—[|- 1)
V/N=[k| V/N—|k|
—(N—|ki—1)i i
v/ N-Ik] V/N—Ik|
1 L _L 1
Ikl Ik| Ikl
R i S W L
! VIR VI T VK
El'=—=|1 L B2 L
] [k [ v
1 L L L
VKl W VK
we have
1
(A— BE71C)t =
iV/(N — |k])
2¢ 2i 21
V/N-lk| V/N-k| N—|k|
2 2i —2(N-fk|-1
/N-lk| /N—[k| N—|k|
2% —2(N—|k|—-1)i 2i
/N—Ik| / N—lki o N—|k|
—2(N—|k|=1)i 2i 2
V/N—Ik| NIkl N—|k|
and :
1 2 2
Ik] N
1 20k 2
) VIR Ik
E-CA'B)'=—"=|1 2 2D
( ) %] VIki [kl
1 2. 2
Ik} Ik

f
= !
{7

=

-1
-1

|
—_

I
—_

oo
Ko

Bl

N

E

|k

%‘” %|” = |“

_ 2014

1

1
Ik

E
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the othér two matrices are

1 0 O 0
A'B(E - CA™'B)™! = .
i2¢/(N — |k])
1 0 O 0
0 0 0 1
: 1 0 0 0 ... 1
_E'C(A - BEC) ' = ——
2v/|K|
0 0 O 1
Then we have

Qg bt bt ce bt Ct (67 S 641

bt ay bt e bt Ct Ct e Ct

by b b ... a cee G

(S(k)D)'t _ t t t t G G ’

dt dt dt Ce. dt € ft Ce ft

dt dt dt Ce dt ft €t ... ft

dt dt dt . dt ft ft A

where
_ (=1Y(N — k| = 1) + cos(t0)
"o N = H] |
_ cos(t0) — (—1)*
t — N _ ]kl )
—sin(tl)
= —————,
VIEN (N — [k])
sin(t0)

C VIR TR
o = cos(tf) + |k| — 1
|kl ’
- cos(td) — 1
o ||
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Further
N | W O | L T
L S O | Y R A L P
l(S(k)D)’tZ: S L S LY O T L P L P
‘ AT A A O A L P L P A
LA T A U v A L A L P
\ld:l® |def* 1al® .. 1&f (AP £
Recall that -
p 2
Q) =73 (a2 (stk)D)"|,
t=1
thus ,
Qun Qi Q12 ... Qur Qv GQw
Qiz Qu @iz ... Q2 Qv Qv
Qz) = Qr Qi Qr ... @u Qv Qv
Qvi Qv1 Qv .. Qv Qnv QN
Qv Qv Qv - Qn1 Quy @nw
Qnvi vt Qn1 - QN1 Qv QN
where

Qu(z) = gz jadf” (g2)",
Qra(z) = §Z 0ol (g2)',
Quniz) = §Z jerf? (g2,
Qi) = gz jdf* (g2)",

T
. P
Qnn(z) = p > e’ (g2)",
t

|c]

!Ct|2

|ce

|l
Fas

|t‘31t12

Q1N
QN

Qv
QN
QN

QNN)
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Quin(z) = ¢ D IAF (a2)'

By Theorem 3.3, we know that Q(z) has eigenvalues A(z) with norm strictly

less than 1 for all |2| = 1 except z = 1. Therefore

has a unique pole on |z| = 1 at z = 1. But here we would like to verify that

by directly calculating. First we calculate the eigenvalues of (z). From

Qll - )\ Ql? QIZ - Ql? QlN QlN s QlN
Ql? Qll - /\ Q12 S QIQ QIN QIN e QIN
Q2 Qiz Qun ... Qu—X G Qv ... QN
Qw1 Qv Qw1 .- @y Qnn—A QN .. Qin
QN1 Qv Qm - OQm Quy Qv —A ... Qun
Qn1 Qv Qv .- Qm Quny  ~ Qun - ONv— A

we get

(Qu — N = Qi) 1 (Qny — A — Q)™

1 0 0 ... Qnn Qn 0 ... 0
0 1 C ... Qu Qw0 ... 0
~1 -1 =1 ... Qu—-X Qv 0 .. 0} (3.16)
[0 0 0 ... Qwvi Qwvn—X -1 ... -1
0 0 0 ... Qv Qwy 1 ... 0
0 0 0 .. Qm Quy 0 ... 1

So that the eigenvalues of Q(z) are

A= Q11 - Q12
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with multiplicity of N — |k| — 1 and
A=Qnn — QN

of multiplicity of |k] — 1, and the roots of

Qu — A+ (N — |k - 1)Q1 (N — k)@~
k] Q1 Qny — A+ (k] — 1)Qun

=0.

From a; = b, + (—1)" and e; = f; + 1, and expressions of Q(11), @12, @nn and

Qxv, we have the following equations.

Quts) = Qute) = G g W eos()@) + M ),
where
A pz
h(z) = -

For any |z| = 1, since
| |Qu1(2) — Qua(z)] < 1,

thus @Qs:(2) — Q12(2) # 1 on the unit circle.

Similarly, we have
2
Qun() = Quin(2) = - S eos(9)@)' + k()

and

QNN (2) — Qun(2)] < 1
on the unit circle.
From

N |k —1

Qu - +(N—|k|-1)Qy = N1k h(z)—A+——k|~S“cos (t0)(gz)t,

(N —|

and

k|l —-1
Q=+ (] = D = () = A g e )02
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we obtain the last two eigenvalueé
Aot = h{z) = ————— Y sin?(th)(q2)",
|k (N Ikl Z

AN = h(z)
We know that h(z) < 1 on |2z] =1 except z = 1. Next we want to show that

An_1 # 1 on the unit circle.

Rewrite Ay_; as

|/€|ch05 (t0)+sin*(t6))(gz)* - |k| Zsm (t0)(gz)" I f|k\)qzt:$m2(t6)(qz)t

_ b / t (!k|'—1)p_ p 522 2\t

_F cos? )t (15| (N — |k|) = N)p sin2(t0)( g2\t
= g 208" 0)@) + B ]Zt: (t0)(q2)"

From this equation, we have |Ay_1] < 1 when |z| = 1. Therefore, G(z) has
a unique pole on the unit circle |z| = 1 at z = 1. This means that, for some
§ > 0, the contour integral of G(z) on the circle |z| = 1 4 § comes from the
single residue of G(z) at z = 1. Next we calculate the residue directly from
the expression of G(z).
From
det(Q(z) — I) =(Qu — Q12 — VN M Quy — Quyn — 1)!*!
pN 2
(h(z) = 1)(h(2) = —————— ) sin*(t0)(qz)" — 1),
’ VRNV = [Rg Z
(3.17)

the cofactor of Q1 — 1in Q(z) — I is
A = (Qu — Q2 — DV H2(Quy — Qv — D

Qu — 1+ (N — k| —2)Q12 (N — k| = 1)@in
‘ |k| @1 Qnv — 1+ (k| — 1)Quin '
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Thus
. 1 An(z)
res(G(z)11)z=1 = —T€S (5-——__det(Q(z) — 1)> .
__ ( 1
(@11 — Q12 — 1)(—,‘;?,%,;4)4 )Dy sin?(t0)(gz)?)
Qu — 1+ (N — jk| — 2)Q12 (N =k = 1)Qiv )
k| @n1 Qny — 1+ ([l = D)Qumn|/ ,;
but
(Qu—Qiz—1)=1 = |k| (Z Ycos®(t0)q" — 2),
(Qux — 1+ (Ik] = 1)Qpin) 21 = —l—k% 3 sin’(t6)q"
and )
_ p - ¢
1kl Qn1Q-n = (N =Tk (; sin?(t6)q%)?.
Then

Qu — 1+ (N — k| —2)Q1 (N = |k] = 1)Qin
k] Qw1 Qny — 1+ (Jk| = 1) Qv

|k[ Zmn t9)q) lki)(Q” Qi - 1).

Thus the residue is —ﬁ. By similarly calculation, we obtain

From the equation,

p, 1 1 .
G(z) = —51+;det(1_Q(z))(I—Q(Z)) )

we know that the order of the pole of G(2) at z = 1 is one. Finally we have
i 1
A FO) =

This prove the theorem.
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Theorem 3.4 In a finite Hilbert space H, the decoherent Grover gquantum

walk is ergodic. The limit distribution is

I
fim Pi(7) = &

The limit speed in limy—.o0 P (j) = % is controlled by the distance between the

unit circle and set of the poles of G(z) except z = 1. We would like to show
that this gap will disappear when either p approaches 0 or N goes to infinity.
We will prove that in two steps. First we claim that there is at least one pole
of G(z) in {2,1 < |2| < %} Second we prove that all the poles in the region
approach 1 when either p goes to 0 or IV goes to infinity. Since the poles are
the points zg that make Q(z) has eigenvalue 1, we will analyze the eigenvalues

of Q(z). Recall that the eigenvalues are

L
h(/’) - 1— q27

N pN .2 t

P T =T & S 0

t

Qn(z) - ng(z),
Qnn(2) = Qun(2).

Now we prove the first claim by considering the roots of

Qll(z) - Q12(Z) =1

That is |
N2 » S
h 4 (—1)"(gz)*cos(t8) = 1.
(N — |&[) (N — |kljq ;
Simplifying
1 1 N—|k| N-—|kl -2
4 _ = - <
1+qgze?® 1+ qgze™® D 1-gqz

It is a third degree polynomial equation of z with real coefficients, so that

there is at least one real root.
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First we suppose that the root is —r, for some r > %. By rewriting the

equation as

1 . 1 _N—k| N-—-k|l-2
1—gre? 1—qre D 1+gr

In this equation, the right side is a positive number. The left side is 2 times a

real part of ——. But

1—gre*
"
Re(- 1 L Re(1 — gre™*) '
1—qrei®’ 14 (gr)? — 2grcos()
From
2 41k
1+ {gr)? — 2grcos(8) = (1 — qr)? + 2qr(1 — cos(8)) > —— TR

we obtain that

1 + 1 < N
1—gre?® 1—gre* 4 k|

So that
— |kl N-—|k| -2
- <1

P 1+4gr

On the other hand,

— k| N-|k-2_2 |
Ak R > = >
D 1+gqr P

This is a contradiction. So that the real root r is in the region {z, |2| < %} or

is positive.

Now suppose that r is positive. Since real part of ——z is less 1, then we
have

1 1

1+ gret® 1 + qre=* <z

So that |k| k2

. 1 o < 2.
From this we get

1—qgr>0.
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Thus
r <. -.
We have proved the first claim.
For the second claim, when p approach 0, then % approach 1. Then the
claim is clear. Now we only consider N goes to infinity.
Now suppose some complex number z,1 < |z| < % isaroot of Q11—Q12 = 1.

. —2|k . - . .
Since cosf = X N' | so we can think z as a function of p, |k| and N. We rewrite

the above equation as

2p = _D(az teos _ Z(p7N)_1_ 2pz(p, N)
= ig 2D @ M) eos(t9) = i = 0 e, )

From this we see that
hn(1)z(p N) = lim z2(p,N) = 1.
p— N—ooo

Similarly, if 2,1 < |2| < 1, is a root of Qnn(2) — Qun(2) = 1, then z is a root

of
=2,
wq Z e =1

Let N — oo, then cos(f) = 1, from this equation we have z — 1. Finally if

z,1 <jz| < %, is a root of
h(z) - ————— sin®(t0)(qz
)~ e T 2 ’=

N — oo implies that sin(6) — 0, the above equation implies that z approaches
1. So that we prove the second claim. From two claims, we can say that the
gap disappears when N goes to infinity or p approaches 0. Recall that equation
(3.14)

1 G(z) 1 G(z G(z

t+1 : t+1 o1
271 Jjyy=e 21T 271 Jyy=igs # +

If we use K{N,p) to denote some constant such that

. G(2) f 1
dz = K(N —d
ﬁ;j=1+5 ZH1 (N.2) =146 2 ‘

we can rewrite the theorem (3.4) as
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Theorem 3.5 In a finite Hilbert space H, the decoherent Grover guantum

walk is ergodic. The limit distribution s

C 1 _
Fi() = + K(N,p)O(e7"N),

where
lim C(p,N) = A}im C(p,N)=0.

p—0
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3.3 Decoherent Quantum Walks on Hypercubes

Quantum random walks on the hypercube are related to many quantum
algorithms, they have been studied recently by many people [32]. The geo-
metric properties of the hypercube make the quantum random walks exhibit
a numbers of features different from that of other graph such as cycles. For
an example, a quantum walk on the n-cycle mixes in time O(nlogn), however
on the hypercube it mixes faster than O(nlogn). when decoherence is intro-
duced, under continuous cases, Alagic and Russell [12] give the exact mixing
times. In this section, we will study the limit distribution function when the
quantum walks are discrete and subjected to decoherence. First we introduce
some notations and finite Fourier transform.

Let ZY be the N-dimensional hypercube, i.e, Z&¥ is a N dimensional
vector space on the field Z,. It has a regular basis of vectors B = {a, =
(6,. .,1,...0),5=1,2,...,N}. Under the classical inner product <, >, Z3' is
an Euclidean space.

Let L(ZY) and L(B) be the Hilbert spaces of complex functions on Z3
and B respectively. We consider H = L(Z)') ® L(B) as a Hilbert space with
inner product :

<fRhg®l>=< f,g><h,l>

An orthonormal basis in H is
{6, ®dalz € Z), 00 € B}.
Uader this basis, any element ¥ in H can be expressed as

U= Z \I,(z,a,-)(sl‘ ® 5041'7
'\z,ai)EZéV®B

where U(, ,,) is the coordinate. By arranging the order, for a fixed x, we have

n—dimensional vector

‘I/(x) = <lpizyal)’ \II(IYOQ)’ ‘II(Z’O‘N))
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Then we can consider ¥ as a vector valued function on Z%
v zZy - oV
For any two elements ¥ and @, the inner product is

<TE>= Voadpea)
(=2 (3.18)
=) < ¥(z),®(z) >

where < U(z), ®(z) > is the inner product of ¥(z) and ®(z) in CV with the

classical Hermitian.

Do <D (EHTRU(), Y (1) Uy) >
k x y (3.19)

we get a lemma.

Lemma 3.1
<U,d>=<0,&>.

The shift operator S is defined as
S(T){z) = (T 1(z D 1), Va(z ® az),... Vu(z ® an)).

By definition, we have

< S(¥),8(2) > = S(¥)(2,0)5(2) 1,0
(z,0)

=Y VerawProm (3.20)

(z.@)

=< U, P>
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Then we obtain a lemma.

Lemma 3.2
< S(¥),5(?) >=<T,® >.

The property of exchanging the order of S and F is the following.

Lemma 3.3 For any k = (ky, ks, ..., kn) in ZY,

(-DF 0 0 ... 0
Fosm—| ¢ V0 0 mgyw
0 0 0 ... (=1

By the definitions of S and F, we have

FoS(W)(k) = (~1)**>S(¥)(z)

T

= \/_12_7 Z(——l)“b(\lfl(x ®a1),Vs(z® aa),... Vn{z ® an))

(<) 0 0 ... 0
0 -1k 0 L. 0
= (=1) F(T)(k).
0 0 0 ... (=1)k~
(3.21)
We use S(k) denote the matrix
-1k 0 0 ... 0
0 (-Lk 0 ... 0
0 0 0 . (=1)k~

for k = (k1, ks, .. k) and k; € {0,1}.
For any N x N matrix D = (D,;), we define a linear operator on L(Z{')® L(B)

as
DU(z} = D(T1(z), ¥y(2),... Ty(z))T.
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Since
__L Z(—1)<I’k>D\I/(x) (3.22)

therefore, we have proved the following lemma.

Lemma 3.4

FoD=DoF.

For a fixed unitary D and initial state ¥y, the first step quantum walk is

¥,(z) = (5 0 D)¥o(a).
For discrete time t, the quantum walk is the process

U, (z) = (S o D)'Wy(x).
From Lemma 3.3 and Lemma 3.4, we get
Bi(k) = (S(k) o DY F(Lo) (k).
Let Uy = S(k) o D, the above equation is

Uy (k) = ULF(Lo) (k).

Next, we introduce operators A; = I ® \/pll;,j7 = 1,...,N, and 49 = I ®
VT —pl on L(Z)) ® L(B). As Todd A.Brun and H, A. Carteret did in paper
[13], we consider the decoherence only on the coin space.

For a history
Q= (Aj,0SoD)Aj, ,0S0D)...(Aj,0So D),
and two states §, ® dg and §, ® d,, we consider the quantity

PG, @65 = 3 |< 5, ® 03, 00, ®8.) >

Q€S
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By the equation (3.18)

< 8, ® 05, (0 ® 8a) >= D < F(6, ® 8p)(k), F (b @ 8a) (K) >,
k

and
1
F(6y ® 0p)(k) = N D (=1 (8, ® b5)(2)
) « (3.23)
= —/Q—N(—l)<k’y>5ﬂ>
F (202 ® 8a)(k) = (Ajz, 0 Uk) - .- (Ajo 0 Ur)(F (0z © da) (k)
1 . (3.24)
= (A;,0U4)...(Aj o Up) \/Q_N(—1)<’°7 b
Therefore
<0y, ® 5, U0, ®6a) >
LN Z <k y>5 ( 1)<k’I>Qt(k)5a >

1
—NZ y<RvHE> < 55 Qu(k)(8a) >
k

1 T
= o <08, ) (=1 Q(k) (6a) >
k
(3.25)
where, we use (k) denote (4;, o Uy) .. (Aj, 0 Ug).
Then
D 1< 8, ® 65, Q{8 ® 8a) >
Q
1 | i
= 4—NZ 1< 55,2( 1)<k 45> ), (k) (6a) > \
Q| k i
(3.26)

For an easy estimation of above quantities, we suppose that |z + y| is an

odd number. We divide Z}' into two parts. One is the set of k such that
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< k,z +y > is an odd number, denote by A. The rest is Z' — A. The above

equation becomes

D (D) (k) (6a)
k

. » . (3.27)
= Y k)(Ga) = D ulk)(8a)
kezll-A keA
Since < {1,1,...,1),z +y >= |z + y| is an odd number, (1,1,...,1) isin A

and
A+ (1,1, . 1)=2N - A

From the definition of S(k), for each element k in Z) — A, we have a unique

element k in A such that
equivalently,

Therefore, for a fixed decoherent history 2, = (A4;,0Uy) ... (A4;, o Ui), we have
a corresponding history {A;, o Ug)...(4j, o Ug) = (=1)*Q;:. Then for an even
number £, '
Z(_l‘)<k,x+y>Qt(k) =0
k
That means when |z + y! is odd and ¢ is even,

PE(t) = 0.

For a general case, by introducing row and column exchange matrix E(z, j),

for any pair of (z,7), we have
E(,7)E(,5) =1
If D is Grover’s matrix, D;; = 7%,— — 53, then

E(i,j)DE(x,j) = D.
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For a fixed k, we have a product of a sequence of exchange matrices E(k),
such that '
E(k)S(k)E(k) = S(k).
Then we can rewrite (k) as E(k) ((4;, 0 S(k) o D) ... (4;, 0 S(k) o D)) E(k).
We have
< 85,0 (k)(85) >=< E(k)*(85), Uu(E(k)da) >,

where the ; is the same as that in Section 3.2. So that we can apply Theorem

3.5 to the last term in the inequality (3.25), we obtain

, 5 \ 1 .
hp; i< 8, ® 85,00, ®0,) >> < ¥ (3.28)

For fixed positions z,y and a start state §, ® d,, the limiting distribution
function of quantum walk with decoherence P,(y) satisfies:
\ . s 2

Ely) =lim Y < 3, ® ds, (5, © ba) >|
7 ' (3.29)

N1

We summarize what was done as follows.

Theorem 3.6 In the hypercube ZY¥, for the decoherence introduced only in the
direction space, if T +y has an odd first norm, and time t is even, Py (t) =

In general, lim; P < 1.
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3.4 Decoherent Walks on Infinite Dimensional
Spaces

In this section, we will show that in an infinite dimensional case Green

functions G(z) satisfies the equation
1
G=-1r+-(1-Q™
p p

A general quantum random walk on the line provide us with a simple
infinity case. One dimensional Hadamard walk defined as follows: Let H be
the Hilbert space spanned by the particle states {¢.;, z € Z,7 = 1,2}, which
is an orthonormal basis of H.

U : H — H is the unitary operator:

U(pz1) = ﬁ(ﬁb(zﬂ)l + P(z-1)2)-
U(¢z2) = \/L§(¢(a:+1)1 - ¢’(z—1)2)-

Then for an initial state 1o, one dimensional quantum random walk is the
process

Yy = U two-
Now we consider a general decoherent quantum random walk on the line. Let
Az = /PIli, where II;; is the projector operator from H to the subspace
spanned by ¢.;, and A, = /1T —pI, I is the unit operator on H. If we choose

the initial state of the particle 1o, where v is a unit vector in H, a decoherent

quantum random walk is the process
Qt(¢0) = (Am ° U)(A,ut~1 © U) s (Al»tl © U)"/}()?

where p; € {v, zi}.
For a unit vector ¢ of H, the probability of the particle be found at % in
a ; process is defined by

|< 1, Qo >[*,
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We still use the notation =; to denote the set of all €2,.
Let
P (y) = Z |< ¥, Quo >

Q€S
We have to prove that Pf"(zﬁ) < 1 for any t and unit vector 3 of H. The proof
is similar to that in section 1. But here ¥ = Y y ¥zi¢si, where X is an infinity

set {zi,z € Z,i = 1,2.}. Since 9 is a unit vector, all the coeflicients 1,; satisfy

Z |¢Ii|2 =1
X

When t =1,
PP(@) = > <9, Qo >|°

93N

= (1=p)[< %, U >I*+ Y [thuil* p|< i, Utho >|*.
X

By Schwarz’s inequality, PY°(¢) < 1.

For general t, we have

Pia(W) =1 =p)PPU ) +p)_[ul B°(U'¢z).  (3.30)
X
By induction, we prove that the claim is true for each ¢{. For the generating
function
g3(2) = D P (9u)"
=0

we have the same proposition as Proposionl.1

Proposition 3.2 For any decoherent quantum random walk in Hilbert space

H, the generating function of the walk is analytic on {z,|z| < 1}.

We consider the recursion formula of P (¢,;). From (2.1), we obtain that
Pml(¢y1) Ptxi(U*(ﬁyj)-

As we did in section 1, we repeat using equation (2.1). If we suppose

U* ¢y] Z yJ,rk¢Tk7
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the recursion formula for P (¢,;) is

‘ t+1 9 '
PE(0) = s =) Y WL PEL6). (33D)
s=1 rkeX

As in Section 1, let

oC
2
Quirk = Y_p((1 = p)2)~ Wi,
s=1
Using G denote the infinity matrix g%(z), zi,yj € X, we have equation

G=I+QG+I—1)Q—Q (3.32)

Since (U*)® is unitary for any s, so that the norm [|Q| < 1 on {z,|2] < 1},
then (I — @Q)™! exists as an operator on H when |z| < 1. From the above
equation, we get

G=1+ %(I -Q)'Q (3.33)
on {z, |z| < 1}.
note that @ = —(I — @) + 1, so that

¢=-dr+1r-g
P p

We have shown that the gap between the eigenvalues disappears when the
dimension goes to infinity. Even though G(z) satisfies the above equation, we
can not use Cauchy integral formula to find the limit distribution. However

this equation provides us with a choice for further analysis.
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CHAPTER 4

Quantum Random Walks on

Half Spaces

As in classical random walks, some quantities are introduced in quantum
random walks, such as hitting time, limit distribution. In order to deal with
quantities, several mathematical methods have been used. The most com-
monly used techniques are diagonalization of the shift operator and Fourier
transform. Diagonalization of the shift operator is limited to the situation
where it can be diagonalized, e.g., quantum random walks on the whole space.
When we restrict a quantum random walk in a subset such as a half plan,
Fourier transform and diagonalization shift operator can not give good re-
sults. Under this situation, path integral is a useful method. In this chapter,
we will use path integral to investigate some hitting time problems in a half

space of Z¢.
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4.1 Notations and Definitions

We shall start with the definition of quantum random walks in a d-dimensional
space. Let Z¢ be a d-dimensional integer lattice. For a d-dimensional quan-
tum random walk, the position Hilbert space is the Hilbert space H, spanned
by an orthonormal basis {|z >,z € Z¢}. For convenience, we use Dirac no-
tation for vectors in this chapter. The coin Hilbert space H. is spanned by
an orthonormal basis {|j >,7 = 1,2,...,2d.}. The state space is defined by
H=H,® H..

The evolution of the quantum random walk is defined as follows. Let
e; = (1,0,...,0), e = (0,1,0,...,0), ..., eq = (0,0,...,0,1) be the standard
orthonormal basis for Z¢, and eqrj = —e;, for j = 1,2,...,d. The shift operator

S : H — H is defined by
S(lz > ®lj >) =|z+e; > Q| >,

for all j. The coin operator A : H, — H. is a unitary operator. Then the
evolution operator for the quantum random walk is defined by U = S(I ® A),
where I denotes the identity operator on H,.

Let 1o € H and 1; = U'y. The sequence {1;}5° is called a d-dimensional
quantum random walk with initial state 1. We will mainly consider Hadamard
walks by the following Hadamard matrix.

The 1-dimensional Hadamard walk is the quantum random walk on Z!

WlthAIHQ,
1 1 1
Hy=— .
\/§<1 —1)

The 2-dimensional Hadamard walk is the quantum random walk on Z?2 with

A=H2®H2=%

P = =
—
|
—
I
—
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Grover’s walk in 2 dimensions is the quantum random walk on Z? with

-1 1 1 1

1 -1 1 1
a=1

1 1 -1 1

The measurements for a quantum random walk are defined as follows.
Let IIZ be the orthogonal projection operator of H onto the linear span of
|x > ®|7 > and II, the orthogonal projection of H onto the linear span of
{lz > ®|j >;5 = 1,2,...,2d}. The position operators X = (X3,...,Xy) are

unbounded linear operators on H such that
Xi(lz > ®lj >) = zilz > Q|j >,

forallz € Z¢,j=1,2,...,2d, and i = 1,2,...,d.

Let ¢, = Z?il Y reza Wiz, j)lz > ®|j > be the quantum random walk
at time t, where ¥4(z,j) is the coefficient at |z > ®|j >. Let [¢y(z,7)|? be
the probability that the particle is found at state |z > ®|j > at time ¢, and
p(7) = pe(x, 1) + pe(z,2) + ... + p(z, 2d) be the probability that the particle

is found at state |z > at time ¢.
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4.2 The Path Integral

Our formulation of path integral is described as follows. A path w is defined
by w = (wo, w1, ..., W), where w; € Z%, and |w; — w;_1| = 1. The length of w
is defined by |w| = n. Let e;, = w; — w;—1 be the increment at ¢-th step of w.
Then w = (wo, wy, ..., w,) can be 1-1 identified with (wo;ej,, ..., €;5,). We use

Q" denote the set of path of length n, i.e. Q, = {w;|w| =n}.

Definition 4.1 (Amplitude function) For 1 < i,j < 2d, v € Z%, the ampli-
tude function is defined for w € Q"

\Il;yz ('U)) = 6]' (jn)ajnjn—lajn—1jn_2"'a‘jli’ (4' 1)

here w; — w;—y = ej, and wy = x; otherwise \D;I(w) = 0. Here 6;(k) =0 if

k#jando;(k)=114fk=j.
Let B be the transpose of A. Then we have
U™ (w) = bigybs13-+-Djn 15203 (Jn)- (4.2)
Definition 4.2 Let I' C Q™. The amplitude of a " is defined by
W) =) T (w). (4.3)

werl

Let Q = U2 Q" For I' C Q with I'" = T' N Q", we also define

o

V() = (), (4.4)

n=0

and

T2 (T) = Z TeH(T).

For any ¢ € H, we shall write

2d
=33 W(z,i)z > @i >

i=1 zcZd
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By definition of U,

Ullz > ®li >= U (> asle +¢; > ®]j >)
j

= Ut_2(zzaj2j1aj1i|x +ej +ej > ®|j2 >)'
Jj2 N

By induction, the above

= Z ooy iy Qjsi|T + €51 + €, + ... + €5, > ®lje >

=Y U =y)ly > B >.
YJ
Therefore, we have the following proposition.

Proposition 4.1 If i, = Ut|lz > ®|i >, then for ally € Z%,j = 1,...,2d, we
have
¢t(y;]) = \Ij;‘z(wt = y)a

The above proposition unifies the path integrals for quantum random walks
and classical random walks, if a non-unitary A is allowed. Indeed, if we let
a;; = 1/2d, for all 4,7, then for the d-dimensional classical simple random

walk, (X;)$2,, on Z¢, the conditional probability
P(Xt = leO = $) = \I’w(wt = y),

forally € Z¢, and any i = 1, ..., 2d.

The above proposition works for general quantum random walks on Cayley
graph as well. Let G be a group. Let E be a set of generators of G such that the
identity zo ¢ E. Let (G, E) be the Cayley graph associated with G and E. The
position Hilbert space is H, spanned by an orthonormal basis {|z >,z € G}.
The coin Hilbert space H, is spanned by an orthonormal basis {|j >,e; € E}.
The state space is H = H, ® H..

The shift operator S: H — H is

S(lz > @ >)=|z-e >®|7 >,
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for all 7, where - is the operation of the group. The coin operator A : H. — H,
is any unitary operator. The evolution operator for the quantum random walk
on (G, E)is defined by U = S(I ® A), where I denotes the identity operator
on H,. Let 1o € H and ¢y = U'tpy. The sequence {:}§° is called a quantum
random walk on (G, E) with initial state 1)9. Then Proposition 4.1 holds for

quantum random walks on (G, E)
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4.3 Quantum Random Walks on Half Plane

Now we apply the path integral to quantum random walks in half-spaces.
The following method works for any d, but for convenience of presentation, we
will consider d = 2 only.

Let D = {(z,y) € Z% z < 0} be the left half-space. Let 7 = 7(w) =
inf{t > 0;w; € D} be the first hitting time of D by w.

The amplitude Green function for the quantum random walk in the right

half-space with zero boundary conditions is given by
F™y) = Z M w, = (0,y),7 = t)2"

Here 1 is the initial type, 7 is the ending type, n is the initial position in the
z-axis, y is the ending position in the y-axis, and z is a complex number. We
note that ¥ (w, = (0,y),7 = t) is in L*(y,t) ( see (4.17) and (4.18) below).
Therefore the Green function is absolutely convergent for |z| < 1. It exists in

the sense of L?(8), for z = € and satisfies

n 1 o 1,7 1 1,m —1
Ny (= )7 =g = 5= | 405w (49

Similarly, let
’"k:z Ze’kyfmy, ,0<k<2rm

and
o™k, t) Ze’ky\ym(w 0,9),7=1),0< k <27

be the Fourier transforms. Note that we continue to use f;’"(k, z) instead of
f;"(k, z) for the Fourier transform. The Fourier transform is understood by

its variables. Then
1 2 9 1 o 1,1 10\12 in _ 2
% 0 d % 0 If] (kae )I dk = IIlIl] (wt - (O)y)aT = t)“LQ(y,t) < 0.

Therefore, for a.e. k,
1 2m

i,m 012
o ), do|f;" (k,e”)]” < oo.
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This implies }_, |f;’"(k,t)|2 < oo and f;’"(k,z) is analytic in |z| < 1, for a.e.
k, and f;’"(k,rew) — f;’"(k,e“’) in L2(9), as r T 1. In particular, we put
f;f = f;’o. Let F be a 4 x 4 matrix with entries Fj; = f;f(k,z). We also let A
denote the matrix obtained from A by interchanging the first and the third

columns.
Since Ui (w, = (0,y),7 =1t) = 0if t < |y|. So that

Zlf (v, 2 1—2\2@0 =(0,y),7=1) t\+|Z\If’° =(0,0),7 =1)2"|.
t=1

y#0  t=[y|
Since ¥¥(w, = (0,y),7 = t) is in L*(y,t), it is bounded by a constant M.

Therefore, the above sum is bounded by

MZleIt—i—MZIz]t

y#0 t=[y|

2M E
<[22 AL

which goes to 0 as |z] — 0. We have shown that
lim D | fi(y,2)| = 0. (4.6)
Y

Now, by considering a sample path of cases 7 =1, 7 = 2, and for 7 > 3, it
visits the vertical line x = 1 exactly [ + 1 times before hitting D). We obtain

the following recursive relations:

Fi(y, z) = 2b263(5)01(y) + 2b:a84(5)0-1(y) + 2bi12b1303(j)d0(y)

+Zbi12 Z Z fjll(ybz) ]j;,l(y2—y17z)-- J' "y — yi—1, 2)2bj,303(7)-

=1 jijz-- 3t y1y2--.yi—1

The infinite series of the above sum is bounded by .,4'C!, where C' =
max; ; || fi(y, 2) 1y and 1 fj(y, )l = 2, 1f;(y:2)]. By (4.6), C < 1 if

|z| is sufficiently small. Therefore the series is convergent for sufficiently small

|z|. Applying the Fourier transform, we have

f;(k‘, Z) = Zbi252(j)€ik + Zbi4(s4(j)€_ik
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Hebazbis +2ba D Y fh(k2)fk,2) . £k, 2)2bj8]ds(5)

=1 jij2..01

= zbigég(j)eik + Zbi4(54(j)6_ik + {Zbﬂ(ZB)lg -+ Zbil [Z FIZB]lg}(Sg(j).

=1
So that

f;(k, z) = Zbizeik52(j) + Zbi4€—ik54(j) + 2bis [

I .
7 Bliads(5)-
Note that by (4.6), the above series is convergent for sufficiently small |z| and

I — F is invertible. This implies the following proposition.

Proposition 4.2 For each fired k, there exists § > 0 such that for all |z| < 4,

the Green functions satisfy

0 0 0 0
| 0 e 0 0
F=zA| = ° (4.7)
0 0 ([1 — F]_le)lg 0
0 0 0 e ik
To simplify the notation, we put
([1 — F]7'2A)13 = g(k, 2), for |z| < é. (4.8)

For the related Green functions with other initial positions, we note that for

n>1, f;"(y) =0, for all j # 3. For j = 3, we have

vk, z) = ([1 — F}'2A)s, for |2| < 6. (4.9)

In particular,
f3'(k,2) = (1 — F]'2zA)13 = g, for |z| < 6. (4.10)
fHk, 2) = zay1 f3' (k, 2) = zay g, for |z} < 6. (4.11)

and

Corollary 4.1 Forn > 1, |z| <.
(a) £;"(k) = f3' (B)(f3" (k)"
(b) f3"(k) = (f3H k)", and f3' (k) = ([1 — F]™'zA)ss.
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For some matrices A, the equation (4.7) has a solution hi(k, z) such that
for every k, h(k, z) is analytic in |2| < 1, relatively continuous in |z| <1 and

equal to f(k,z) for |2| < ¢. For example, when d = 2, we put

—
—t
—
[u——y

[N}
—_ =

p—

|

—

|

—_

-1 -1 1

in (4.7). We solve (4.7) and get g(2) = 0 for z = 0,e*,e~*. And for 0 < 2| <
5, 2 #0,e* —ei,
—z4 +i2¥sink + izsink + 1 — R(z2)

z(—z + %) (z + e~) ’ (4.12)

g:

where

R(z) = \ﬂ—l + 22)(—1+ 28 — 2izsink — 2i25sink + 22sin® k — 24 sin® k).
(4.13)

To show that the solution function is analytic inside of the unit disk and
relatively continuous in the closed unit disk, by (4.7), it is sufficient to show
that for every k, g(k, z) is analytic in |2] < 1 and continuous in |z] < 1. Let
h(k, z) be the right hand side of (4.12). We shall first show that for every &,

h(k, z) is analytic in |z| < 1 and continuous in |z| < 1. Let
K = (=14 2%) (=14 2° — 2izsink — 2i2°sink + 2?sin® k — z*sin® k).
Then R?(z) = K. Considering K on the unit circle, we have
K (k,e”) = 4e** sin 6(sin § sin” k + 2 cos 20 sin k — sin 36).
Also,
30

0 30 0
sin @ sin® k + 2 cos 26 sin k —sin 30 = 2(sin 3 sin k + cos 3)(003 3 sin k —sin ?)

This is a quadratic equation of sink. For every 6, there is only one solution

for sin k (the other solution has absolute value greater than one).
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Note that sing and sin 32—‘9 are periodic. Hence for every k, there are six
§’s corresponding to sin k, which give the six roots on the unit circle for every
k. Taking 1 and -1 into account, K (k,z) has eight zeros on the unit circle.
These are all the zeros for K (k,z) on the complex plane since K(k,z) is a
polynomial of degree 8 in z, for every k. We can choose a branch cut for R(z)
such that it is analytic in the unit disk and R(0) = 1. This implies that A
is meromorphic inside the unit disk. Let z; be the pole of A with smallest
norm. Suppose |2 = r < 1. Then h is analytic for |z| < r. However, this
implies that fi! = h for |z| < r. Note that f3! is analytic for all |z| < 1, hence
lim,_,,, h(z) = lim,_.,, f3*(k, z) exists. This contradicts to the fact that z is
a pole for h. Therefore, h is analytic in the unit disk. We have thus proved
that both h and ¢ are analytic inside the unit disk and relatively continuous
in the closed unit ball.

By solving equation (4.7), we have f3!(k,0) = 0, and for 0 < |z| < 4,

31 2(—1+ 2%+ zcosk —izsink)

k,z) = . 4.14
3 (k2) 1— 22+ 2% —iz(—1+ 22)sink + R(z) (4.14)

The above expression for f3'(k,z) can be extended to |z| < 1. Since both
denominator and numerator of f$'(k, z) are relatively continuous in the closed
unit ball, to show that f3!(k, z) is relatively continuous in the closed unit ball,
it is sufficient to show that the denominator is non-zero on |z| = 1. To this

end, we write

N
31 _
3 (k7z)_T+R(z)7

where
N = z(—1+ 2* + zcosk — izsink),
T=1-2"+2"—iz(~1+2%)sink,
R*z) =K,
K = (=1+2%) (=14 2% — 2izsink — 2iz°sink + 2%sin® k — z*sin® k).
By comparing the real part and the imaginary part of (T2 — K)(k,e?) = 0,

we have

T2 - K =0
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if and only if

sin k 3 —2cos20
nk=—— .
4sin 8
However,
3 —2cos26 1
= infd| > 1.
| 4sind | I4sin9+sm |2

Hence, the only two solutions for T+ R(z) = 0 are § = %,k = § and 6 =
~%,k = —7%. By evaluating the function at these points, we see T'+ R(z) # 0.
Therefore the denominators of f3!(k,e®) is never zero.

Since P§" < 1, for all n, we have 0 < |f31(—k,e?)| < 1, for ae. k,0 €
[0,27]. We are interested in the decay property of |f3'(—k,e®)]. Let L =
{(k,0)||f31(k,e®)| = 1}. We first show that

|f(k,e?)| =1 <= sinfd(sinfsin’k + 2cos20sink —sin30) < 0. (4.15)
By direct calculation, we have
7% ~ K| =N,
|N|? =1+ 4sinf(sin6 — sink),
|R(2)|* = |4sin §(sin O sin® k + 2 cos 20 sin k — sin 36)|,
|T)? = (1 — 4sin® 6 + 2sin G sin k)*.

Also, note that |T + R(z2)]* = % and |T — R(2)]* = %ﬂ,l—f’z Then we have

(T2 — KPIfI = 2(TP + |R(:)P)INELSE + T = 0.
Hence, |f| = 1 if and only if

7% — KI? = 2(1T1* + |R(2)[)IN|* + [N* = 0,

ie.,
—45in O(sin 0 sin? k+2 cos 20 sin k—sin 36) = |4 sin O(sin 6 sin® k+2 cos 20 sin k—sin 36)|,

which holds only when the left hand side is non-negative. This implies (4.15)
and L = {0, k;sin O(sin § sin® k + 2 cos 20 sin k — sin 30) < 0}.
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.. 36
Let ky = k1(0) = arcsin(sslir;-g) and ko = ko(6) = arcsin(— ﬁ) Then in
the square {(6,k) € [0,2x] x [0, 2n]}, L¢ is the region

{6 € [0,
{0 e
{0 €
{0 €[5, ]kG(Okl) (m — ky,2m)}
{6 € 3]ke(m—k,2r+k)}

[ (ki,m—k1)}
[
[
[
[
{6 € 5F, 7],k € (ko,m — k2)}
[
[
E
E
E
[

€
€ (m— kg, 21+ ko)) }
€ (0,ky) U (m — ko, 2m)}

G

T CO CT TS YT
N
l:\“ﬁﬁ

> x>

c C ¢ CcCcCccCcccacaccc

{6 € [r, 2],k € (r — ks, 27 + k) }

{6 € T’f ”],ke(kl,ﬂ—kl)}

{0 €[4, 3] ke (0,7 —k)U (2 + ki1,2m)}
{6 €3, ke (0,7 —ky) U (2m + ko, 27)}
{0 €35, Tk € (ky,mm — k2)}

{0 € [Z,2n],k € (m — Ky, 21 + K1) },

This implies that L has a positive Lebesgue measure. The numerical value of

the Lebesgue measure of L ~ 0.556.
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4.4 The First Hitting Probabilities on Half Plane

The first hitting probability of D by a quantum random walk starts with

initial state |(n,0) > ®|¢ > is related to the following Green function

f;’"(y, z) = Z \Ifj.n(wt = (0,y),7 = t)2". (4.16)

The probability that a 2-dimensional quantum random walk in the right half-
space D¢ exits from D¢ at (0,y) is given by

Py(y) = Y W5 (we = (0,9),7 = )7 = 05" (we = (0,9), 7 = )1 Z2(s)-
= (4.17)
By (4.17), U (w; = (0,y), 7 = t) is in L3(t), therefore f"(y,2) is in L(9),
for z = €. For n > 1, the probability that the quantum random walk ever

exits from the right half-space is

Péyn = Z Z lqjgn(wt = (0) y)’ T= t)[2 = ||\Ilén(wt = (O> y)7 T= t)lliz(y,t)'
y  t=1
(4.18)
By Fourier transform, we have

i,n 1 o 1 & N 0y pi,n —i0
P (k)Z%/O db— : Fim(k = ki, ) £ (ke e dky, (4.19)

and
] ) 1 27 1 2 o g 0

Suppose that the quantum random walk starts with initial state |(n,0) >
®|i >. We have known that lim,_., P;™ is exists and equal to the positive
Lebesgue measure of L = {(k,0)||f3'(k, )| = 1} [38]. We will consider the
asymptotic behavior of Py™ as n go to co.

For simplicity, we write f for f3!. Let & = 0, & = «w/4, & = ©/2,
€4=3n/4,& =m, & = 5m/4, & = 37/2, &g = Tr/4, and & = 2n. For a fixed
6 # &, L€ is an union of open intervals, U;I;. Let pi(0) < p2(0) < ... < pi(0)
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sin 3¢ .
2-. Then k; is a root

n
s )

be the endpoints of the intervals. Let &;(8) = arcsin

of the quadratic equation
sin@sin® k + 2 cos 20 sin k — sin 36 = 0.

For 0 € (0,%), p1(0) = k1(8) and pa(f) = m — k1(8). Let Q@ = {6 € (0,%),k €
(ky,7/2)}. We will consider the behavior of |f]? over Q only, since the other

regions can be treated similarly. In €2, we have

1 —4sinfsink + 4sin® 9

P =

1 {1 — 4sin® @ + 2sin @ sin k + 21/sin (sin § sin® k + 2 cos 20 sin k -- sin 30)}2
(To + 2\/K0)2'

Hence,

8Ky + 4ToV/Ko

T + 2y
4Ky

To +2vVKo

n 30
Fix 0, as k — ky from € or equivalently, sin k — %1—5—, we have
in 3

L= |f*

To + 2/ Ko — —1 4 2cosf > C > 0,
where C is independent of § € [0, 7/4]. This implies that
1—|fI* ~ O(VKo). (4.21)
Now we show upper bound for 1 — | f|2. For a fixed 6, we have
O Ko = cosk(2sin@sink + 2 cos 26) sin 6. (4.22)

Since the right side of (4.22) is less than a positive constant for all (6, k) in €,
by the Mean Value Theorem, we have

Ko(0,k) < Ci(k — ki), (4.23)
for all (6,k) in Q. By (4.21), we then have

1—|fP <CivVk =k, (4.24)
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for all (6,k) in Q.
If we let I; = (a;,b;), and ¢; = “j;rbj , for all sufficiently small positive

constant €, O;; = {& < 0 < &y;0;+e < cjtand Of; = {&§ < 0 < &iy1;05—€ >

¢;} have positive Lebesgue measures. On these set,

1= |f(k,e”)] < Cy/lk — ayl,

for all § < 0 < &41, and a; < k < ¢;, here C is a universal positive constant.

The same asymptotic behavior also holds for the other end of the interval, i.e.,

1= |f(k, ) < C\J1k — by,

for all § < 0 < &1, and b; > k > ¢;.

We shall consider @ = {6 € (0,%),k € (k1,7/2)} only for lower bound
of 1 — |f(k,e®)|?, since the rest can be treated similarly. Let Q; = {0 €
(0,2 —n),k € (ki,m/2)} and Qy = {6 € (§ —2n,5),k € (k;,7/2)}. For fixed
k, let 6; be such that k1(6;) = k. We shall show

1— | > Co/0 -6y, (4.25)
for all (0,k) in £, and
1—|f? > CoVOVE — ki, (4.26)

for all (0, k) in ;.
By

Op Ko = cos 6(sin 6 + 2 cos 26 — sin 30) + sin §(cos § — 4 sin 20 — 3 cos 36), (4.27)

we have
T

—0gKo(—,=) >0

(4 0( 4) 2) )

and since 95K is continuous everywhere, there exists a > 0, such that
—89K0 > (09 > 0, (428)

for all (#,k) in Q5. By the Mean Value Theorem,

Ko > Co(0 — 6y), (4.29)
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for all (0, k) in ;. By (4.21), we have thus proved (4.25).
To prove (4.26), we take partial derivative in k. By (4.22),

Ok Ko = cosk(2sinfsink + 2 cos20) sin §.

Let
Z(6,k) = cosk(2sinfsink + 2 cos 20).

Then Z is continuous everywhere. Note that Z(8, k) is positive and bounded
away from zero uniformly in 0 < § < n/4 —n, and C28 < sin8, for some

Cy > 0, there exists a sufficiently small v such that
O Ko > Ca, (4.30)

foral 0 < 8 < /4 —mn, k1 < k < k1 + . By the Mean Value Theorem and
(4.21), we have

1—[f]? > CovVovk — ku, (4.31)

forall 0 < 8 < w/4—mn, k1 < k < k; + 7. Since 1 — |f]? is positive and
uniformly bounded away from zeroon 0 < § < 7/4—n, ki +v < k < /2, we
have proved (4.26) by choosing a sufficiently small C; > 0.

Now we consider the equation

t—1
P — P> = / | FI*dbdk = (21)2 ZZ/ / |FI"dkdf. (4.32)
i=1

We shall show that each term has the same asymptotic behavior as n — oo.

First we introduce a lemma.

Lemma 4.1 Let g and h be functions on interval (o, 3) such that the integral
f(n) = ff g(u)e™ @ du exists for all sufficiently large positive n. Suppose h
is a real-valued function, continuous at u = «, continuously differentiable for
a<u<a+n, withn > 0. Suppose further that b < 0, fora <u < a+n,
and h(u) < h(a) ~ ¢, withe > 0, fora+n <u < 3. If A'(u) ~ —A(u — o)~
and g(u) ~ Blu — o)t asu — o, A >0, v > 0, then

) = [ gt i~ 2oLy

as n — oC.
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Let
(Q = _1 o 7 2ndk’d€ 4.33

be one of the terms in the above sum. We will consider @) only since the rest
can be treated in the same way.

First f is continuous in (aj,c;), |f(a;)] = 1, | f(¢;)] < 1 and |f] is strictly
less than 1 in (aj,¢;). Moreover, by what we have proved before Lemma 4.1 ,

there is a sufficiently small positive constant €, independent of § such that
Oij = {& <6 <§i+1;aj+e <k< Cj}
has a positive Lebesgue measure, and on this set

1= |f(k,e”)? < Cy/lk ~al. (4.34)

Forall §; <0 <&, 0, <k<a +e

Cy/lk —a;| <

and for all §; < 0 < &4, a; +€ < k < ¢,

[N

IfP<a<l. (4.35)

For the lower bound of @), we have

1 (aj+e) .
©= (2m)? /O / 1= C(k - a;)2|"dkd?.

Applying Lemma 4.1, with
h(k) = In[l — C(k — a;)7],

1
g(k):l,)\zl,yz§,

we have

1 (aj+e€) N
———2/ / 11— C(k — a;)2|"dkdf ~ / Cn~2df ~ O(n™?),
(27r) Oij aj Oij

as n — oo, since O;; has a positive Lebesgue measure.
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For the upper bound, let Q; = (_2717—)2 Jo, |f?"dkdf, and Q2 = (2—717)—2 fQ\Ql | f|2"dkd8.
Then
Q=Q1+ &

Let 4, = {61 << 61‘4_1—7],0,]‘ <k< aj+’y}, 912 = {fz <0< §i+’)/,(lj <
k < ¢}, and Q3 = Q1 \ (41 U Qyz). if 7 is sufficiently small, then

CV16 = &L/ Ik — a;] 1= |f(k,€”), in Qu, (4.36)
CV0 — &/ |k —a;] <1 —|f(k, €)%, in Qia, (4.37)

|f(k, )P < a< 1, in Qu3, (4.38)

and
1
CVI0 = &ly/lk =g < 5.
We have
Q1 < Q11+ Q12 + Q1s,
where

1 &ir1—n  plaj+) |f12 Jedd
Q = —/ / " )
11 (27r)2 {i LL]'

L[ e | FI>"dkdd
Q = —'_/ / " )
ST
1

- 2n
Qi3 = )2 /Qmm dkdd.

By (4.38), Q13 = O(e™“"), as n — o0, for some ¢ > 0. For the upper bound of
Q11, by (4.36), for any § > 0,

1 &r1—n  plaj+y) i 1 sm
Qnﬁw/ / I1-C(6 - &)7(k — a;)2""|"dkdf.
& aj
Applying Lerama, 4.1, with
h(k) = Infl = C0 - &[> (k — a;)2*’],

1
g(k):1,/\-:1,1/:54—6,14:6"0_51'%7B=17
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we have

1 &v1—n  plaj+y) L L
/ / 11— C0 —&)7(k —a;)2"|"dkdf
& aj

Gy
Ei 1—
~ [t e,
& C’(@—&)En

As n — 00, the last term is at the same order n~>

+¢ where € can be chosen
arbitrary small if 6 is chosen small enough. Similarly, Q12 < O(n™2%), as
n — o0o. FPor QQ, let le = {k‘l(&q_l — 77) < k < C]',el -7 < 9 < 01},

Qoo = (2\ ) \ Q21. By (4.31), if ~ is sufficiently small, then

C V |0 - 01' S - If(k:7ew)|27 in Q?l? (439)

|f(k,e®)? < a <1, in Q, (4.40)
and
V16— 6:] < %
Let
Qa1 = ﬁ /Qm | f|*"dkds,
Qo2 = (—2—1@ /Q | fI*"dkdb.

Then Qs = Q21 + Q2. By (4.40), Qo2 = O(e™"), as n — oo, for some ¢ > 0.
By a similar argument as that in the lower bound, @, < O(n™2), as n — oc.

We have thus obtained
Theorem 4.1 For Hadamard walks on Z?%, for any € > 0,

an < PIM — P3%® < cy(e)n T, (4.41)
as n — oo, where ¢y, ca(€) are positive constants.

For the first hitting time 7 at the left half-space. It is well-known that
the expectation of 7 is infinite for classical random walks. We will show that

for a quantum random walk, if it hits, then the conditional expectation of T
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is finite. To this end, we need some properties of function f. Recall that for

Hadamard walks,

oy N
f(kaee)'" T—*—R(Z)’

where

N = z(—=14 2%+ zcosk — izsink),

T=1-2242"—iz(-14 2% sink,

K =(-1+42%)(=1+ 2% — 2izsink — 2iz°sink + 2*sin’ k — 2*sin? k).

For every k, K (k, z) is a polynomial in z of order 8. By factoring K (k, z), we
get

K(k,z)=(z+ 1)2(,2 _ 1)2(2 _ 61‘91)(2 _ e—i91)(z _ ei&g)(z _ 6_1'92)

where 6; = arccos I;CQ‘M, #, = arccos 11_2‘3&’“ Therefore all the zeros of
K(k,z) are on the unit circle, for every k. Now, for K(k,z), we write the
roots of K as {e}, §; = 6;(k) such that Z?zl §; = 0. For each j, set
ho,(2) = Rrye,(€"% — z). We then have the following properties: 1. hg(z) is
analytic except {z;|z| > 1,arg z = 6;}; 2. hg,(2) is analytic in {z; |2| < 1} and
relatively continuous in |z| < 1; 3. hy,(0) = 7. If we define R(z) = H?:I ha;,
then R%(z) = K and R(0) = 1. Therefore R(z) can be defined as analytic in
|z] < 1, relatively continuous in |z| < 1 and R(0) = 1.
Let r = e7°. Then

of,
5l = lo-fo.

|(j’zN(T + R(z)) — N(3,T + 8,R(z))
(T + R(2))?

(%)

Note that T+ R(z) is never zero on the unit circle, N and T" are polynomials

in z. Therefore to estimate 9, R(z) it is sufficient to obtain an upper bound of
)
kAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

From R(z) = H§=1 he,, we have

Hoy (2 = 1R, (6 = (D) = 5]

1 C

R

ifz=re? 0<ro<r<l.

|ho,(2)] = |Rere, (€ — 2)|

—Jlet -z < ¢,

for all |z] < 1. By the Product Rule, we have obtained the following lemma.

Lemma 4.2 For every k, there exists a set Dy = [0, 27]\{01(k), 82(k), ..., 0 (k)}
such that the partial derwative O, f(k,re™) exists and is continuous in 0 <
r <1, 0 € Dy. Moreover there exists a constant C, independent of k,8,r such
that

18, (k, re")| < CZ \/|_0_9

for all k € [0,27], ro <7 < 1, for some 0 <1y <1, and all 6 € Dy.

For a probability measure and its Laplace transform, we have the following

lemma.

Lemma 4.3 Let pu be a probability measure supported in [0,00). Let p(s) =
J5° e7stdu(t) be the Laplace transform of p. For alln = 1,2, ..., the following
statements hold.

(a) If [ thdu(t) < oo, then (—1)" L = fo‘” trestdu(t) < co.

(b) If (-1 )"dn )\ ezists, then Jothdu(t) <

Let

i e StPl "(¢t)

t=1

be the Laplace transform. By the same argument as that in (4.20), we have

1 2 1 2w ) ) ]
=— [ df— D (—k, e O FOM (K e dE .
p(s) 27r/0 9%/0 5 (k) 7 ) (4.42)
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1 27 1 2 1 0 ] 0
= — df— =k, e T 21 (k. e dk.
5 | 0 |1 ke )
We will consider the case ¢ = j = 3 only, since other cases can be treated

the same. The derivative of the above integrand is
Os[f (—k, e+ ) f(k, e )" = n[f (—k, e~ )" 710, f(—k, e~ ) [ f(k,e™)]".

By Lemma 4.2, |f| < 1 and for every k, there exists a set Dy = [0,2x] \
{61(k), 62(k), ..., 0 (k) } such that the partial derivative 9, f (k, re*) exists and
is continuous in 0 < r < 1, § € Di. Moreover there exists a constant, inde-
pendent of k, 6, r such that

m

) 1
iarf(k,re’0)| <C _—
; V10 — i

for all k € [0,2n], % < r < 1and @ € Dy. Therefore, the derivative of the
integrand in (4.42) is bounded by

= 1
C) —F—
; V10 — 6
which is independent of s and integrable. By the Dominated Convergence

Theorem, p(s) is differentiable. Then Lemmas 4.2 and 4.3 imply the following

theorem.

Theorem 4.2 For Hadamard walks on Z*, when T is finite, then conditional

ezpectation of T, with respect to P3", is finite.
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