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A B ST R A C T

QUANTUM RANDOM WALKS UNDER DECOHERENCE

Zhongzhi Liu 

DOCTOR OF PHILOSOPHY

Temple University, May, 2007

Wei-Shih Yang, Chair

In this thesis, we consider quantum random walks on finite dimensional Hilbert 

spaces when decoherence is introduced. From the pure mathematics definition 

of history, we assign probabilities to histories according to R. Feynman’s inte­

gral principle, and give out master equations and Green functions. We prove 

that decoherent quantum processes are ergodic. On finite lattices, we show 

that they have the same limiting distributions as classical random walks. This 

is an extension of the results on classical random walks, and it verifies that 

classical physical properties can be induced from the quantum theory under 

the decoherence theory frame.
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C H A PT E R  1 

Introduction

Random walks form one of the algorithmic tools in physics, computation 

science and financial mathematics. They have been applied to a variety of 

problems, such as estimating the volume of a convex body and solving certain 

differential equations. Since R. Feynman gave his idea of a quantum computer 

[1], quantum algorithms have been developed, such as Shor’s factoring algo­

rithm [2] and Grover’s search algorithm [23]. Quantum random walks are 

expected to play the same roles as classical random walks in future compu­

tation science. From a quantum mechanics point of view, quantum random 

walks are quantum system evolutions and connected with the fundamental 

theory of quantum dynamic. Quantum random walks are of mathematical 

interest in their own right.

The basic idea of quantum walks can be traced back to the dynamics of 

quantum diffusion. Using a discrete time step to study quantum dynamics is 

described as quantum random walk. The discrete time quantum random walks 

were first used by R. Feynman for discretizing the Dirac equation [4], The term 

” quantum random walks” appeared in the late 1980s from Gudder (1988) [5], 
Grossing and Zeilinger (1988) and Aharonov, Davidovich and Zagury in (1993) 

[6] . Motivated by quantum information and quantum computation, quantum 

random walks were studied again by Meyer in [7]. Recently, Aharonov, Am- 

bainis, Kempe and Vazirani studied quantum random walks on general graphs
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with rigorous proofs. As a result, several rigorous results for quantum random 

walks were obtained.

This research has uncovered many effects that are different from the clas­

sical random walks, both from the physical point of view as well as from 

computer or information theory perspective. Kempe gave review on the dif­

ferences in [8]. For example, in classical random walk, the probability of being 

absorbed by a wall at the original point 0 is 1 for a particle starting at position 

1. But in quantum random Hadamard walk, the probability of being absorbed 

is - .7T
Interference phenomena are a well-known feature of quantum mechanics. 

The theory of decoherence is the study of interactions between a system and 

its environment. Decoherence occurs when a system loses phase coherence 

between different portions of its quantum states. Decoherence is caused by 

interactions with the second system, which may be considered as either the 

environments or a measuring device. As a result of the interaction, the wave 

functions of the system and the measuring device become entangled with each 

other. Since the measuring device has many degrees of freedom, the system 

behaves as a classical statistical ensemble of the different portions of the sys­

tem states. In each member of the ensemble, the system appears to have 

collapsed onto a state with precise values. Some classical physical properties 

can be induced from the quantum theory under the decoherence theory frame. 

Decoherence plays a fundamental role in transforming from the quantum to 

the classical regime.

In quantum mechanics, the decoherent histories approach was initiated in 

1984 by Robert Griffiths [9], and independently proposed by Roland Omns 

[10] shortly after. It was subsequently rediscovered by Murray Gell-Mann and 

James Hartle [11].

In mathematics, decoherence can be regarded as describing a stochastic 

process with intrinsic randomness. The histories for which decoherence is 

concerned are random histories of interactions with the environments. It is a 

useful idea to assign probabilities to histories, but it is not so easy to achieve.
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In physics, decoherence assigns probabilities only to histories belonging to 

special families which satisfy a certain decoherence condition guaranteeing that 

P(x)  is additive, and hence provide a consistent assignment of probabilities to 

elements.

A pure mathematical decoherent process can be described as follows. Let 

H  be a Hilbert space spanned by particle states fa, fa, ■ ■ ■ fa  ■ ■ ■, which is 

an orthonormal basis of H. Let U be a unitary operator. If we choose an 

initial state fa,  a pure quantum random walk with some discrete time t is

f a  =  U ^ f a ) .

We also choose A 0 = fal — pi,  and Ai = fafdli, where I  is the unit , 

Hj is the projection from H  to the subspace Cfa spanned by fa, and p is a 

real number in the interval [0,1]. These operators can be considered as the 

interferences or measurements.

A decoherent quantum random walk (process) with an initial state fa with 

some discrete time t is

n tfa = (Ajt O U)(AH_X Of / ) . . .  (Ah  O U)(Ah  O U)fa

for a sequence Qt =  (fat °U )o  (Aj t-1 o f / ) . . .  (A^ o U), ji € {0,1, 2, . . .  , n , . ..}. 

We call this decoherent quantum random walk an Clt process, since it is deter­

mined by the order sequence Q,t-

Under an flt process and an initial state fa, the probability of the particle 

being measured at state (f>j is |<  fa,{ltfa > |2. According to R.Feynman’s fa­

mous path integral principle, we define the following as the probability that a 

quantum particle is found at fa at time t.

p ; ( j ) =  E  \ < ^ f a t f a > \ 2

where is the set of all order fit.

If p =  0, Ajt are zero, and A 0 is the unit operator, then the decoherent 

quantum walk is a pure quantum walk fa — UL(fa).. On the other hand, if 

p = 1, then A q is zero, and AJt is a projector for all j t , then the decoherent 

quantum random walk is a classical Markov chain.
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We know that a classical Markov chain is ergodic , but not a pure quantum 

random walk. In this thesis, we prove that a decoherent quantum random walk 

is ergodic for p  ^  0 when H  is finite Hilbert space. There are many ways to 

approach this problem. We will apply the generating function technique to 

work on the problem.

The structure of this thesis is as follows: First, in Chapter 2, we present 

some basic concepts and facts of quantum mechanics, such as state of quan­

tum system, density matrix and Schrodinger equation. In Chapter 3, the 

pure mathematics definition of history is introduced. We associate a kind of 

probability with the histories, and give out the master equation (3.9)

t + 1 N  | 2

S — 1 1 = 1

for t > 0. By the generating function technique, we prove tha t the limiting 

distribution exists. For finite case, under a family of Grover diffusion matrices, 

we show that the limiting distribution is ^  on N  points lattice. This is the 

same result as classical random walks. In this chapter, we also show that 

in a infinite dimensional space the probabilities still satisfy the above master 

equation. In Chapter 4. we deal with some hitting time questions of pure 

quantum walks in a half plane.
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C H A PT E R  2

Quantum M echanics 

Prelim inaries

2.1 States, Observables and D ensity Opera­

tors of Quantum System s

In quantum mechanics, one of the major differences from classical mechan­

ics is the superposition principle: Physical states are represented as vectors of 

a complex Hilbert space H.  Two vectors a  and j3 represent the same state 

of a quantum system if and only if they differ by a non-zero multiplication 

constant. In other word, a  and f3 represent the same quantum state if there 

is a non-zero complex number c G C such that

So if H  is an n dimensional space, quantum states are just the elements of the 

projective space C P n_1. In general, under an orthonormal basis {et} of H, a 

state of a system ip is

a = c(3.

where
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The quantity |<  > |2 =  |xi|2 is the probability to find the system in the

state e* in a measure. With this explanation, a state of a system is a distri­

bution function on all the unit vectors of H. If we identify the dual space of 

H  with itself, a physical state in quantum system can be treated as a linear 

functional on H.

Another special concept for quantum mechanics is observable. An observ­

able is simply a Hermitian operator on a Hilbert space. This means that A  is 

an observable if and only if for any a, 0 of H,

< Aa,(3 >—< a,A(3 > .

Two observables A  and B  are simultaneously measurable if

[A, B] =  A B  -  B A  =  0.

A family of observables {Ai, A 2 , . . .  An} are simultaneously measurable if the 

corresponding operators commute with each other. If e is the common eigen­

vector, and

Ai(e) = A je ,

then the joint probability of simultaneously observables in a state ip is

|<  e,ip > |2 .

A linear operator P  is a projector on H  if and only if P  is a Hermitian operator 

such that

P 2 =  P.

A  projector is an observable. Actually, projector operators play a fundamental 

role in quantum measurements.

A family of projectors {Pi, P2 , ■ ■ ■ Pn}, is said to be mutually orthogonal 

if and only if when i ^  j ,  Pi Pj =  0. It is said to be complete if and only if 

J2Pi = I, where I  is the identity of H.

A mutually orthogonal family of projectors are simultaneously measurable. 

An Hermitian operator is diagonalizable. It has real eigenvalues and orthogo­

nal eigenvectors. If its spectrum is discrete and we denote by e* its eigenvectors
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and \ i  the corresponding eigenvalues. Then

A = 'ŝ 2 l \ iei ® eit

where e3 are elements in the dual space of H, and satisfy e3(e, ) =  Sj.

For a state of system ip, the quantity |<  ei,ip > |2 is interpreted as the prob­

ability to find the value A., in a measure of the physical observable associated 

to A. For a Hermitian A  and a state ip, the quantity

< ip\A\ip >=< ip,A(ip) > =  ^  Ai \< ei,ip > |2

is interpreted as the expected value of a measurement with respect to an 

observable A  of a quantum system in a state ip.

The quantity

\A(ip)|2 = <  A(ip),A(ip) >

is the second moment of the measures of the observable associated with A. 

Since A  is Hermitian, the expectation value is real.

The second quantity has different versions in physics. We would like to 

explain that by using notations from physics. Dirac has introduced the kets 

\e% > to denote vectors of Hilbert space H, and the bras < e3 \ for the elements 

of the dual space of H. Using \el >< ej\. to denote the tensor product et ® e3. 

For a state ip,

ip = ^  x tet ,

the dual is

ip = y ^ yXjeu

where Xi is the complex conjugate xt.

From

j Gj I X t  Gj | Cj ®  Gj ,

we have

|ip >< ip\ = ip ®ip =  XiXjGi ® ej.
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I^l2 =  trac(\ip >< V'l).

Now if A  is represented by a matrix

A{e.i) —

we have

A{ei) =  ^ auei .

Then

|A(/i/>)|2 =  trac(|i4 ( '0 ) > <  A (^ ) |) .

For density operators, we have a pure mathematics definition. A linear 

operator on a Hilbert space is a density operator if it is a semi-definite Her­

mitian operators of trace 1. It is clear that for a state ip of system, p = ip ® ip 
is a density operator. In physics, it is called a pure ensemble. It can be shown 

that a density operator represents a pure ensemble if and only if the operator 

is a projector. From A(ip) =  Yi x%al2e^  it is easy to see that

< ip,A(ip) > =  trace(pA).
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2.2 Quantum Evolution and Schrodinger Equa­

tion

In a closed quantum system, evolution is determined by the action of an 

unitary operator U. Let the initial state be ip (to), and U(t,to) be the unitary 

operator, then at moment t, the state of the system is described by the vector

ip(t) = U(t , t0)ip(t0). (2.2)

U(t, t0) is called the evolution operator. If two times translation are performed 

successively, the corresponding evolution operators are assumed to satisfy the 

following composition law:

U(t, t0) = U(t, t i)U{t i , tQ)

This composition law is the analog of the Markov property for transition prob­

abilities in the theory of stochastics. However, U(t , t0) forms a one parameter 

transform subgroup of the unitary group. The transition of probabilities in 

stochastic theory define only semigroup.

UU(t, to)  is differentiable as a function of t, ip(t) satisfies

ih^  =  HiP(t) (2.3)

where h is the Planck constant, H  is the Hamiltonian. This equation is the

basic equation of quantum mechanics. It is called Schrodinger equation. From

mathematical perspective, Schrodinger equation is

=  ( - )

where —^H(t)  is a skew-Hermitian operator.

If the Hamiltonian H(t)  is independent of time t, in other word, H(t)  =  H, 

then all matrices commute and the above equation has a simple solution

U(t) = e ~ iHt.
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Generally, the solution is given by the path integral.

As a function of time, the expectation value of an operator A  can be written

as

< ip(t), Aip(t) >=< U(t,to)ip(to), AU(t,to)i>{to) > 

= <  V’(io),U (Mo)*AU(t,to)4>(t0) >

Then we have the Heisenberg representation of operator A,

A(t) = U(t,toYAU(t,to).

The operators A(t)  satisfies the evolution equation:

i h ^  = [H,A(t)]. (2.5)

Since a state ip associated with a density operator p =  \ip > <  tp\, the evolution 

of state induces the evolution of density operators.

p(t) =  U(t,to)p(to)U*(t.t0).

The equation (2.1) appears in another form

i h ^ t = \ H ,p ( t ) l  (2.6)
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2.3 Quantum Random  Walks

In the classical discrete random walks, a particle is located at one of a 

finite or countable set of definite positions, such as the set of integers on the 

line or a graph of finite vertices. In response to a random event, the particle 

moves either right or left. The iterated process represents the basic exam­

ple of a Markov chain. Generally, A Markov chain be characterized by a 

pair(IF(£n),p(0)), where W (tn) = Wij(tn) is a transition probability matrix or 

a stochastic matrix. Let p(0) — (pi(0),p2(0),.. .p„(0))T be the initial prob­

ability distribution vector. At time tn, the probability distribution p(tn) is 

determined by W ( tn) as

p(tn) = W  (tn)p(t0) . (2.7)

Since p(tn) is a probability distribution, W (tn) is a stochastic matrix, so we 

have

'Y ^P ii tn )  =  1, o <  Pi(tn) <  1, 
i

and

Y ,  Wijitn) =  1, 0 < Wij(tn) < 1.
i

For a classical random walk on the real line, the matrix is

W (tn) = (W(t0))n,

where VFq(fo) =  when \i — j\ = 1, otherwise Wlj( t0) = 0. By comparing 

2.7 with 2.2, we define quantum random walks as quantum evolutions.

According to the evolution operators, quantum random walks are classified 

as discrete quantum walks and continuous quantum walks. For time parameter 

t, if the evolution operators U(t) form a discrete subgroup of some unitary 
group, then the quantum walk is discrete. Similarly, if U(t) form a continuous 

subgroup of a unitary group, the quantum walk is continuous. Generally, we 

use integer n  as the time parameter of a discrete quantum walk, and notation

u ( t n) = (u r ,
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for some unitary operator U on the states space H.

At continuous cases, U(t) is determined by its Hamiltonian H , in other 

word,

U(t) = e - ^ n .

In direct analogy to classical random walks on the line, we have the follow­

ing example. Let Z  denote the integers on the real line and let D = {i?, L}, 

where we make identification R  =  right and L = l e f t . The quantum systems 

will have the state set Z  ® D. The quantum states of the system are unit 

vectors in the Hilbert space H  = l2(Z) <g) l2(D) with an orthonormal basis 

{n  <g> d, n 6 Z ,d  £ D}. For Hadamard operator A  on l2(D), and identity I  

on l2(Z ), we have a unitary operator /  ® A  on whole space H. Next, define 

another unitary operator, shift operator on H  as follows

S(n  ® R) =  (n +  1) <8> R, 

S(n  ® L) — (n — 1) ® L.

Finally, the composition S o i l  ® A) is the unitary operator for Hadamard 

walk.
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2.4 Quantum Decoherence

In quantum mechanics, for a closed system, decoherent histories approach 

is to find sets of histories and to assign probabilities to histories. Such sets of 

histories are called consistent or decoherent. The approach provides a frame­

work from which we can discuss classical properties from quantum mechanics.

The histories of a closed system are sequences of alternative at a succession 

of time. For example, in a typical experiment, a particle is emitted from a 

decaying nucleus at time t\, then it passes through a magnetic field at time 

t2, then it is absorbed by a detector at time t3.

In quantum mechanics, properties of a system at a fixed time are rep­

resented by a set of projection operators {Ai,Aj  . . .}. At each time t, if the 

system appears at i , the projection operator A, effect a partition of the possible 

alternative i. The set of operators satisfy exhaustive and exclusive conditions

Y ^ A3A) =  1, AiAj = 5 jA ,  
j

A quantum mechanical history is characterized by a sequence of time depen­

dent projections

^ tn = Aj1(t\)Aj2(t2) ■ ■ ■ Ajn(tn) 

and an initial state V'o- The candidate probability for such histories is

< >= trace(Cl*npQin).

It is easy to show that this number is non-negative. However it does not 

satisfy all the axioms of probability theory. It does not satisfy the axiom 

of additivity. The standard example is the double slit experiment. In this 

experiment, the histories consist of projections at two moments of time. At 

time fi, the first projection determines which slit the particle went through, 

the second projection determines the point at which the particle hit the screen 

at time t2. It is well known that the probability distribution for the interference 

pattern on the screen can not be written as a sum of the probabilities for going 

through each slit.
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There are certain types of histories for which this candidate probability 

satisfies the sum rules. We have the following necessary and sufficient condition 

for that types histories: for any two histories 14* and Q,s,

D(Qt ,Qs) — trace(QtpQs ) =  0.

We call this decoherence functional. Intuitively, it measures the amount of 

interference between pairs of histories.
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C H A PT E R  3 

Decoherent Quantum Walks on 

Finite Lattices

3.1 Definitions and Generating Functions

Let H  be an n  dimensional Hilbert space over C  spanned by particle states 

<pi, cj>2, ■ ■ ■ 4>n, which is an orthonormal basis of H. Let U be a unitary matrix. 

We also choose Aq = \ / l  — pi, and A  =  R pR , where /  is the unit matrix, R  

is the projection from H  to the subspace C(Pl spanned by (pi, and p is a real 

number in interval [0,1].

For an order sequence of operators =  (A]t oU)o (Ajt_1 o lJ ) . . .  (AJ1 oU), ji G 

{0,1,2, . . .  n}, if we choose some (pi as an initial state , a decoherent quantum 

random walk (process) start at (pi with some discrete time £ =  {1,2, . . .} is

n t(pi = {AJt O l / ) ( R t_1 o f / ) . . .  (Ah O U)(Ajl O U)(pi.

We call this decoherent quantum random walk an Q,t process, since it is deter­

mined by the order sequence R , and call f~lt(pi a history.

Each unit vector in H  represents a state of the particle. Let (p be a unit 

vector. Under an Qt process, the probability of the particle being measured at 

state (p is |<  (p,Qt(pi > |2.

According to the Feynman’s famous paths integral principle, we define the
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probability that a quantum particle is found at (f> at time t as follows,

W ) =  E  \<4>^t4>i>W
OtGSt

where Et is the set of all operator sequences Qt , and we postulate tha t Pq{4>) =

|<  (j>,<pi >j2 . We will prove that Pl{4>) <  1 for all t > 0.

Rem ark : If p  =  0, A ^’s are zero, and Aq is the unit matrix, then the 

decoherent quantum walk is a pure quantum walk. On the other side, if p  = 1, 

then A q is zero, and A]t is a projector for all j t , the decoherent quantum 

random walk is a classical Markov chain.

We know that a classical Markov chain is ergodic , but not a pure quantum 

random walk. We hope that a decoherent quantum random walk is ergodic for 

p  0. There are many ways to approach this problem. We consider generating 

functions.
(X )

t=i
where P^(J) = i?(0y).

Before describing this function, we need to estimate some quantities. First 

we prove that Ptl(<p) < 1 for every t, and any unit vector <p € H, when i , — 

1,2, . .  N.

We prove that by induction on t. At t = 0, by the definition and Schwarz 

inequality, we have Pq((()) = \< > |2 <  1.

Let <j) =  YliLi Q'ltf'i be a unit vector, then a; satisfy YliLi \ai f  — 1- 
We assume that the claim is true for t = k and any unit vector </> in H.  We 

will prove that for t =  k +  1.

Let flfc =  (Ajk o U ) . . .  (Aj2 o L/')(Aj1 o 17) be a general element of H*. We 

introduce an operation

Ajk+ioUoEk = {Ah+i°U° =  (Ajk+i°U)0(A3koU) ■ • • (A32oU)(Aj ioU)\Vtok e  Hfc}, 

then we have a partition of £fc+i
N

Sfc+i  =  [_J Ai °  L  o S*;.
1=0
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Thus

-ffe+i «■) =  E  |<  0) Hfc+10i 'H
f̂c+lSHfc+i
N

=  E  E  | <  (j), Ai O u  O >|<^ (p, / i ;  o  o  o  ^>|2

i= 0  AioUo'Ek
N

=  ^ ( ! <  <P,Aq o U o Qkcbi > | 2 +  E E  | <  0, A; o U o {IkCpi > |2)
=fc =fc *=1

(3-1)

Note that A\ o U o Qk = Ai o U oQ k, then

|<  0, A0 o U o >\2 = \<(U*o  A*)0, Qkfr > j2 ^  2)

= ( l-p ) \< U * < p ,n k<t>i>\2 .

Similarly

| < < M j o E / o f i fc«fc > | 2 =  |< {U* o A\)<t>^k<j>i > | 2

=  p | a * | 2 | <  U*(f>i,Clk<t>i > | 2 -

Equation(3.1) becomes
N

P'k+1(cp) = ( i - p ) Y , \ <  u*4>,nk^  > | 2 + p ^ M 2 ] T | <  u*<f>h n k<j>i > | 2 .

Hfc 1=1 3*
(3.4)

So that, for fc > 0, we have
N

PS.+M  =  C1 -  P) W 0 )  + p E  M 2 H ( V ’<h)- (3-5)
/ = i

By the assumption,

Pl(U*<f>) < 1

and

H W h )  < i,

We have proved that

n +M  < i.

As a result of the inequality, we have the follow proposition.
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Proposition  3.1 The generating functions g){z) =  8) + J^t=i Pk(j)zt ana~ 

lytic on {z, \z\ < 1}.

From (3.5), we see that if <f> = <fj, then

= P l ( V ' h Y (3-6)

Moreover if we choose 4>j,j =  l , 2 , . . . iV as the eigenvectors of U*, and the
i 2respective eigenvalues are Xj, |Aj| = 1 .

In this case,

Since Po(j) — SL so that

P L  i(j) =  P K u ' t i )  

= M 2p;U)  

= p m
(3.7)

t=1

f t * )  =  I

This is the trivial case for solving function g)(z).

Now we want to find a recursion formula for solving g)(z) in general case. 

jl

N

If U*6j =  Wjp(f)i, by the general equation (3.5), for t > 1, we get

i=i
p',(u"ii>i) = (i-tifi-irftitpErf puwfo)

Using equation 3.6, we have

N

Pt+1(j} = (i - p )p u ((u * ) % ) + p Y 1  K 1} p ^ l)-
z=i

Let
N

i=\
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and repeating the process on

N I 2
P t - M u ' ) 2<t>j) =  (i - P)/?_2( ( £ / * ) V j ) + p E \w »

i=i

For t > 0, we obtain that

t —1 n
r(s4-l) |2 p ij

s=0 Z=1
^ +1(j) =  E p (1 - ^ E I < +1)|2̂ )  +  (1 - p ) ^ o ( ( ^ ) t+V ,). (3.

If p =  0, decoherence quantum walks become pure quantum walks, we have 

only the last term in the above equation

p ' U i )  =  Po‘((E n ,+Vj)-

Now we suppose 0, and

N

( U ' Y h  = Y ,  w j U ’
1 = 1

by the definition,

p;m")‘*'<t>,) = ndrT,
we can rewrite the last term as

(1 -  p)‘P0‘((f/-)‘+V i) =  P(1 -  p)‘i | ^ +,)l2

n  1

=  £ p ( i - p ) ‘Hd l+1)M .
i = l  P

Now, for t > 0, replacing s for s + 1, equation 3.8 becomes,

t + i  JV

^ +i(j) = E ^ 1 -  p)s_1 E  \wii pi+i-.(0. (3-9)r(s)I KK
a = l  Z=1

where we reset Pq(/) =  ^Sj. This is our recursion formula of Pt‘+1(j).

Remark: In this recursion formula, we reset that Pq(1) =  This number 

can not be induced from the definition of P?(j) for t > 1. Since it is not a 

probability, it lives only in this recursion formula. At time t = 0, we have
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supposed the J*- to be the initial probability.

Now we can write out the generating function g)(z) as follows:

,t+ 1

t=o
oo t+1 AT

W
j l^ i w + E E p d - p r ' E r

t= 0  s= l 1=1
oo oo N

H w + E E k i - p ) - E K

•t+1

(3.10)
(•)

h
s = l t = s — 1 

oo
i= l

JV

t+1

= « S w + E p j ((1- i ’W ' '1E r l ‘) E
,t—s+ l

S = 1 1 = 1

but

Let

t = S —  1

i „

t = s  — 1

Qn = -  p )z Y  1
S = 1

wo(»)
jl

from the above equation, we have

1
G — /  +  QG H— Q — Q. 

P
(3.11)

Since the norm of Q is less than 1 on {z, \z\ < 1 }, then (I  — Q ) _1 exists on 

the disk.

Thus

G = I  + - ( I - Q ) ~ 1Q. (3.12)
P

on {z, \z\ < 1 }.

Note that Q — —(I — Q) + I, so that

G =  +  - ( /  -  Q)_1.
P P

(3.13)

We write this as our first theorem.
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T h eo rem  3.1 For any decoherent quantum random walk in a finite dimen­

sional Hilbert space H, the generating function of the walk is

g  =
p p

which is meromorphic on {z, \ z\ < and the poles are on or outside the unit

circle.

Since G is analytic on \z\ < 1, and det(I — Q ) is analytic on \z\ < by the 

equation 3.13, then the theorem holds.

Before we prove that the decoherence quantum walks are ergodic, we in­

troduce some notations. Let

i ( t n * i 2 =

w}-■>
2

2
wj;>

2

2
W ^VV1N 

VV2 N

2 \

2

< 1
2

w i f
2

VVNN
2

/

Then Q(z) is a generating matrix by the sequence of matrices

From det(I — Q(z )) =  0, we know that 1 is a eigenvalue of Q(z). By 

analyzing the eigenvalues of Q(z), for some decoherent quantum walk, we will 

show that G(z) has only one pole z =  1 on the unit circle. Instead of directly 

proving this claim, we prove a more general theorem on the properties of a 

sequence of double stochastic matrices. The reason is that Q(z ) is a generating 

matrix of the sequence

l^*|2 , |(^*)2|2 , ■ - - j  l(^*)” |2 , -----------

Since (U*)n is unitary for any n, then |(U*)n\2 are double stochastic matrices 

for n  =  1 , 2 , __

We say a stochastic matrix W  has gap property if and only if W  has an 

eigenvalue Ai =  1 with multiplicity 1 , and all other eigenvalues A* satisfy 

(Ai| <  1 for i = 2 , . . . ,  N.
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Theorem  3.2 Let 0 < p < 1, and Wn, n = 1 ,2 ,. . . ,  be a sequence of stochastic 

matrices, and Q(z ) =  |  (qz)nWn. Suppose for some Wno has the gap 

property. Then eigenvalues X(z) of Q(z ) satisfy |A(z)| < 1, for any \z\ < 

l , z ^  1. At  z  =  1, Q( 1) has the gap property.

let Vo =  (1,1, • • •, 1)T- Since Wn is stochastic for any n, Vo is a common 

eigenvector of all Wn. Then

Q(z)V0 = X0(z)V0,

where
\ f \ Pz Ao {z)

1 — qz
Thus \Xo(z)\ < 1 when |z\ < 1 except z = 1. Suppose A(z) is another eigenvalue 

of Q{z) for some fixed The corresponding eigenvector is V(z).  It is clear that 

< V(z),  Vo > =  0, otherwise A(z) =  A0 (z;). We assume that |V(^)| =  1. For any 

n 7  ̂ no, we have

|<  V (z ) ,W nV(z)  > | < 1 

for Wn are stochastic matrices. From assumption, we know that

\ < V ( z ) ,W noV ( z ) > \ < l .

otherwise, it will contradict with that Wno has gap property. Then

\\(z)\ = \< V (z ) ,Q (z )V (z )> \  = < V ( z ) , W r, V ( z ) >
71= 1

< - Y q n \< V { z ) ,W nV{z)  > | < 1 
q ^
P

71= 1

C oro lla ry  3.1 In finite dimensional space H, if  \U*\ has gap property, then 

for the decoherent quantum walks, the generating matrix of functions is analytic 

on the unit disk \z\ < 1 except z = 1 .

Suppose zq, \zq\ > 1 , makes det(I — Q(z )) =  0, then zq is a pole of G(z). 

But det(I — Q(z)) is analytic on the disk {z, \z\ <  -}, so that for some small
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positive number 0 < 5 < det(I — Q(z)) has finite zero points on the circle 

{z, \z\ =  1}, but does not have zero points on the disk \z\ < 1 +  5. This means 

that G(z) is meromorphic on disk {z, \z\ < 1 +  5}, and G(z) is analytic on the 

circle \z\ = 1 +  5. So that by the Residue theorem, for some positive £, we have

2m  J\A=i 2m  fiM=l+5 z t+1 ^  z t+1

From the definition of G(z) , we know that

™ = h L 3 ^ i z - ( 3 - 1 5 )

On the other hand,

So that

lim <£ ~77r d z  = 0 .
t ^ o o J \ z \= l + 5  Z t+1

■ G(z).lim Pf(j) =  lim Y ^ Res(-t—>oo t yt~\-1

If G{z) has only one pole z =  1 on \z\ = 1, or equivalently, by our corollary, \U*\ 

with gap property, the above equation means that the decoherent quantum 

walk on H  is ergodic. We have proved the following theorem.

T h eo rem  3.3 In a finite Hilbert space, if  \U*\ has gap property, then the 

decoherent quantum walks are ergodic.
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3.2 Decoherent Grover Quantum Random  Walks

In this section, we will apply the theorems of the above section to some ex­

amples. Grover diffusion matrix appears in quantum mechanics and computer 

sciences. Grover matrix D  can be written as

^ n h t ^a

b

b

a b

where a = — 1 , and b = jj.

For a vector k € , we use S (k ) to denote the matrix

/ V i* i 

V o

where Ii is the I x I identity matrix, \k\ is the L 1 norm of k , i.e. the number 

of 1 in vector k.

We let U be a general Grover matrix.

( 1. _  i 
N  -1

_2_

N

S(k)D  =

V

_2_ 

‘ N  
_2_

TV

2 2 2
N N N

-2- -  1N
2 2
N N

■: 
i — — +  1 

N  ' 1
2
N

2
N

2
N - - 2 -  +  1N

In order to give the explicit expression of Q(z), we have to calculate | ( S i ^ D )'11 . 

First we diagonalize matrix S(k)D.  The characteristic polynomial of S(k)D  

is

|A/ — S(k)D\ — 0.
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That is
a — X b b 

b a — X b

—b —b . . .  —a — A —b

—b —b . . .  —b —a — X

By simplifying, the characteristic polynomial becomes

=  0,

a — A b 0

(N  — \k\ — 1 ) 6  a - X  + ( N - \ k \ - 2)b |fc| (1 +  A) 

- b  - b  1 — A.

=  0 .

That is

a — b — X b 0

b - a  t A  a - A  +  (iV — |fc| - 2 ) 6  jfcj (1 +  A) 

0 - b 1 -  A

=  0 .

Further simplifying yields

( 1  +  A)JV-lfc,- 1(l -  A)I*|- 1 [A2 -  2 ( 1  -  \k\ b)X +  1] =  0.

Then S(k)D  has eigenvalues 1 and —1 with multiplicity |/c| — 1 and N  — |/c| — 1 

respectively. The left two eigenvalues are el°k, e~l6k, where cos(dk) =  1 — ^  

and sin(6k) = j fy/ \k\  (N -  \k\).

Now we want to find all eigenvectors corresponding to these eigenvalues. 

From

(I  + S (k )D )X  = 0 

we get N  — | A; | — 1 eigenvectors corresponding to A =  — 1
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X iV_ !fcM =  ( l I 0 , 0 , . . . , - l , 0 _ _ 0 ) '

jfcl
Similarly from

(I  -  S (k )D )X  = 0, 

we have |fc| — 1 eigenvectors corresponding to A =  1

y i  =  ( o , o ,  0 , 1̂, - 1, 0 , . . . o ) r ,

JV—|fc|

y 2 =  ( o , o , . . . , o , i , o , - i . . . , o ) r ,

Y\k\-i =  (0 , 0 , . . ,  0 , 1 , 0 , . . . ,  0 , —1 )T.

The last two eigenvectors come from the equation

{S(k)D -  XN- J ) X  = 0.

They are

7 _ ( 1 1_____ L_ 1 \T
1 V / T 7  T T T ’ ' ' '  > / T 7 --------i T T ’ / T T T ’ '  '  '  > / I T T '  ’

Zo = (

v ^ W , v W " ’ v W
i i 1 1 , -

"  V w - w ’ y r a ’"  ’ y i* i
where there are !/d terms of —\= in each vector above.

1 1  V^i
Let S  be

S  =  (X]v-ife|-i, • • • X 2 , X\ ,  Z\, Z 2 , Y\ , . . . ,  Yffci-i),

and

M  =
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where

From

E  =
e 0  

0  e_i<

S{k)D  =  S M S  ,

for any integer t, we have

(S(k)D)n =  (S')~1M tS l

By calculating directly,

S ' =

1
0 0 - 1 0 0 0  . . 0  '

1 0 - 1 0 0 0 0  . 0

1 - 1 0 0 0 0 0  . 0

i % i i 1 1 1 1
y / N - \ k \ y / N - \ k \ j N - \ k \ y j N - \ k \ V M \ /W \

i i i 1 l 1 1
y / N - \ k \ y / N - \ k \ y / N ~\k\ y j N - |fc| V w V ^ l

0 0 0 0 1 - l 0  . 0

0 0 0 0 1 0 - 1  . . 0

k 0 0 0 0 1 0 0  . ■ - 1 ,

By rewriting it as a block matrix

5 ' =

From the formula

S'~'L =
1 D \ - l, —A~1B ( E  — CA~l B)

- E ~ l C{A -  B E - ' C ) - 1 (E  -  CA~l B)~ l
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and that

/  i i  i_
y/N-\k\

i
y/N-\k\

i ~
V'AT-lfcl
(jV-lfei-l)

A- 1 -
1

y/N~\k\ y/N-\k\ y/N-\k\

i y / ( N - \ k \ ) i -{N-\k - l ) i i
y/N-\k\
{N-\k\-l)i

V N~\k\
i

y/N-\k\
I

V 1>

yjN-\k\ y/N-\k\

E~ 1

V W \

( l

1

1

1
y/m

lfcj-1

1
y/\k\

1
yftki

1
y/\k\

|fc|-l
y/\k\

1
y/\k\

1

1
y/\k\

1
y/W\

l
v W

l

\

v 1
1

yfm
1 1

V ^ i
lfcl-1
y/W.J

we have

(A -1 1

2 i ^ ( N - \ k \ )

/  2 i 2 i 2 i

- 1
y/N-\k\

2 i
y/N-\k\ 

2 i
y/N-\k\

-2(JV-|fc[-l)i
y/N-\k\ y/N-\k\ ^N -\k \

2 i —2(JV—|fe| —i )i 2 i - 1

- 1/

;

y/N—\k\
—2(JV—|fc|—l)i

y/N~W\ 
2 i

y /N~\k\
2 i

\  y/N~\k\ y/N-\k\ y/N-\k\

and

(E  C A - ' B ) - 1 =  *
2 V W \

(  1 hy/W\
1 2(|fe|—1)

y/W\

1 %- - y/W\

2

2
y/W
2(|fc|—1)

2
y/W\

2
v ^ i

2
V l* i

1 2 2 2
y/W y/W\ "  y /W

- 1

. . .  j

- 1

2 \
y/W

2

y/W
2

y/\k\

2(|fc|-l) 
y/W\ )
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the other two matrices are

-  A~lB ( E  -  C A - XB ) - X = -
z2v /(iV -  |fc|)

1 0  0

- E  C(A  -  B E  C) =
2 VW\

0 0 0 

0 0 0

0 0 0

Then we have

( S ( k ) D f  =

( a t h  bt

bt a t bt

bt bt bt

d t d t d t

d t d t d t

\  d t d t d t

■ bt Ct ct

■ bt ct ct

at Ct Ct

■ d t e t f t

d t f t  Ct

d t f t  f t

where

a t
( — 1 Y (N  — \k\ — 1 ) +  cos(td)

bt =

ct

d t —

c t

N - \ k \  

cos(tQ) — ( — I f  
N - \ k \  ’

—sin(t6)

sin(td)
( N - \ k \ y

cos(td) + \k\ -  1

f t  =

\k |
cos(td) — 1

\k\ '

Ct

Ct

Ct

f t

f t

e t
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Further

( S ( k ) D) '

w \2 \ b t f \ b t ?  ■ ■ N 2 k l 2 k l 2 ■ k l 2 \

Mil2 M 2 I M 2 • ■ \ b t f k l 2 k l 2 • Mil2

\ b t f N 2 M 2 • • k l 2 k l 2 k l 2 ■ k l 2

\d t f \dt  | 2 \dt  I2 ■ ■ M i l 2 Mi l2 l / i l 2 ■ ■ l / i l 2

\dt f \ d t \2 K l 2 • • M i l 2 l / i l 2 M il 2 ■ • l / i l 2

K\ d t \2 \dt\2 \ d t \2 . k i 2 i / i l 2 i / i l 2 ■ • M i l 2 y

Recall that

thus

Q { z )  =

where

( Q n Ql2 Ql2 ■ ■ • Ql2 Q i n  Q i n  ■ ■ Q i n  ^

Ql2 Q n Ql2 ■ ■ Ql2 Q i n  Q in ■ Q i n

Ql2 Ql2 Ql2 ■ ■ Q n Q i n  Q in ■ Q i n

Q ni Q ni Q ni  ■ ■ Q n  i Q n n  Q\k\N ■ ■ Q\k\N

Q ni Q ni Q ni  ■ ■ Q ni Q\k\N Q n n  ■ ■ Q\k\N

\ Q n  1 Q ni Q ni  ■ • • Q ni Q\k\N Q\k\N ■ • Q n n  /

Q n ( z )  = - E fltl2 ( q z f ,

Q n ( z )  — - E \bt\2 ( q z ) \

Q i n (z ) = - E
«  t

\ct\2 { q z ) \

Q n i \ z ) = - Ea ^
\dt \2 ( q z ) \

( * ) >

Q n n (z ) =  - ^ 2 \ e t \2 (qz Y 
9 t
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Q|fc]iv(^) =  -  l-^l2
^ t

By Theorem 3.3, we know that Q(z) has eigenvalues A(z) with norm strictly 

less than 1 for all \z\ = 1 except z = 1. Therefore

g (z) = - ^ i + h i  -  Q y z ) r '

has a unique pole on \z\ =  1 at z =  1, But here we would like to verify that 

by directly calculating. First we calculate the eigenvalues of Q(z). From

Q n — A Ql2 Ql2 ■ Ql2 Q i n Qnv Qnv

Ql2 Q n — A Ql2 Ql2 Q i n Q i n Q i n

Ql2 Ql2 Ql2 • • Q n — A Q i n Q i n Q i n

Qni Qni Q ni  ■ Q ni Q n n  — A Q\k\N Q\k\N

Qjvi Qni Q n i  ■ Q ni Qifc|jv Q n n  — A . Q\k\N

Qni Q ni Q ni  ■ Q ni Q|fc|jv Qiqjv ■ Q n n  — A

we get

(Qn -  A -  Qi2)n - w - \ Q n n  ~  A -

1 0 0 Ql2 Q in 0  . . . 0

0 1 0  . Ql2 Q in o . . . 0

- 1 - 1 - 1  . • Q n — A Q in o . . . 0

0 0 0  . Qjvi Qnn — A - l  . . . - l

0 0 0  . Qni ■ Q|fc|N l . . . 0

0 0 0  . Qni Q|fc|N o . . 1

So that the eigenvalues of Q(z) are

A =  Qn — Q 12
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with multiplicity of N  — jfc| — 1 and

A =  Qnn  — Q\u\n

of multiplicity of jfc] — 1 , and the roots of

Q n  — A -F (N  — \k\ — \ )Qi2 (N  — \k\)QiN

\k\Qm  Qn n  ~  ^  + (\k\ ~  l)Q\k\N
= 0 .

From at — bt + (—1)* and et = f t + 1 , and expressions of Q Q 1),Q  12 , Q nn  and 

Q\k\N,  we have the following equations.

2p
Q uiz )  -  Q12(z) =

( N - \ k \ ) q

where

For any \z\ =  1, since

h(z) =
pz

1 — qz

IQu(z) -  Q u i z )I < 1,

thus Q n ( z )  — Qn{z)  7  ̂ 1 on the unit circle. 

Similarly, we have

Q n n (z ) -  Q\k\N ( z ) =  ■{—  y 2 c o s ( t d ) ( q z Y  +
|/c| q t \k \

and

2P , 1*1" 2

\Qn n (z ) — Q\k\N{z)\  <  1

h(z),

on the unit circle.

From

Q 11 — A+(iV —|fcj — 1)Q12 =  N  „  l fe(-z) ~ A + . , r P. . ,n  V ]cos2{ t d ^ q z f ,

and

N - \ k \  v ' (N  — |/c|)g “

Q n n  -  A +  (|fc| -  l )Q\k\N = —| r r ~ K z ) ~  A +  777-|fc| \k\q
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we obtain the last two eigenvalues

Ajv-i =  h{z) -

\ N = h(z).

We know that h(z) < 1 on \z\ =  1 except z =  1. Next we want to show that 

Ajv-i ^  1 on the unit circle.

Rewrite Ajv- i as

From this equation, we have |Ajv—1 | < 1 when \z\ = 1. Therefore, G(z) has 

a unique pole on the unit circle \z\ = 1 at z = 1. This means that, for some 

<5 > 0 , the contour integral of G(z) on the circle \z\ = 1 +  5 comes from the 

single residue of G(z) at z =  1. Next we calculate the residue directly from 

the expression of G(z).

From

det(Q(z) -  I) = (Q n  -  Q n  ~ 1)n ~W- \ Q n n  ~  Q\k\N ~  1

(3.17)

the cofactor of Q n  — 1 in Q(z) — /  is

->4ii =  (Qn  -  Q n ~  1)n ~ ^ - \ Q n n  -  Q\k\N -  I ) 1* 1-1

Q n -  1 +  (N  -  \k\ -  2 )Qi2 (N -  |A:| -  1)Q1A

|A;| Q iv i Q n n  — 1 +  (|fc| — l)Q |fcjjv
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Thus

res(G(z)u)z- i  = - r e s l —- A n ^Z>>
pdet(Q{z) — 1)

3=1

{ Q u  ~  Q u  ~  1)(~ lkl(N-iki)a sin2(t6)(qzy)\k\(N-\k\)q

Q u - 1  + ( N -  \k\ -  2)Q12 {N  -  \k\ -  1 )Q1N '

\k \Qm Q n n  — 1 +  (\k\ — l)Q\k\N

but

{ Q u  — Ql2 ~  l)z=l —
( W - 1*1)9

{ Q n n  ~  1 +  {\k\ -  l )Q\k \N)z=i  =  - j r p  $ 3  s i n 2 (t 9 )<l
lKl 9 t

and

Then

i&l QiviQ-.iv = P ■ ( ^ s in 2 (t0 )g*)2.

<2n — 1 +  (iV — |fc| — 2)Q12 {N -  \k\ -  1)Q1N

\k \Qm Q n n  -  1 +  {\k\ — l)Q\k\N z= 1

p 1

|fc|5

Thus the residue is jj. By similarly calculation, we obtain 

res{G{z)tj)z=i =  —res(  1p det(Q(z) — 1)
1

N '
z=1

Prom the equation,

G{z) =  - P- I  +  1 r{7— (I -  Q{z)Yq p d e t { I - Q { z ))

we know that the order of the pole of G{z) at z =  1 is one. Finally we have

lim Plt {j) =t—► oo iv

This prove the theorem.
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T h eo rem  3.4 In a finite Hilbert space H , the decoherent Grover quantum 

walk is ergodic. The limit distribution is

The limit speed in limt _+00 Pl{j) — jj is controlled by the distance between the 

unit circle and set of the poles of G(z) except z = 1. We would like to show 

that this gap will disappear when either p approaches 0 or N  goes to infinity. 

We will prove that in two steps. First we claim that there is at least one pole 

of G(z) in {z, 1 < \z\ < ^}. Second we prove that all the poles in the region 

approach 1 when either p goes to 0 or N  goes to infinity. Since the poles are 

the points zq that make Q ( zq) has eigenvalue 1, we will analyze the eigenvalues 

of Q(z ). Recall that the eigenvalues are

It is a third degree polynomial equation of 2  with real coefficients, so that 

there is at least one real root.

Qn(z) -  Qu(z),

Qn n (z ) ~  Q\k\N{z )- 

Now we prove the first claim by considering the roots of

Qn{z)  -  Qi2\z) = 1.

That is

Simplifying

1 1 N - \ k \  N - \ k \ - 2
1 +  qzeie 1 +  qze~i9 p 1 — qz
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First we suppose that the root is - r ,  for some r > K By rewriting the 

equation as

1 1 _ N - \ k \  N - \ k \ - 2
"F

1 — qrew 1 — qre~i9 p 1 +  qr

In this equation, the right side is a positive number. The left side is 2 times a 

real part of 1_fS[re,.d ■ But

Re(— ^—  i =  R e^  ~  qre^
' 1 -  qrei9̂ ' 1 +  (qr)2 — 2 qrcos(6)

From

4 \k\
1 +  (qr)2 — 2qrcos(6) — (1 — qr)2 +  2qr(l — cos(9)) > 

we obtain that

1 ifl +  i  L z i f l  <  2 T T T ( 1 -  C0SW )  =  L1 — qreie 1 — qre~ld 4\k\

So that
AT -  |fc| N  — \k\ - 2  ; 1

p 1 +  qr
On the other hand,

N  — jfc! N -  \ k \ - 2  2 n .
 —  —  >  -  >  2 .

p 1 + qr p

This is a contradiction. So that the real root r  is in the region {z, \z\ < 4} or 

is positive.

Now suppose that r  is positive. Since real part of 1+greit> is less 1, then we 

have
1 —  <  2 .

1 +  qrel6 1 +  gre -10

So that
N  — |fc| _  N - \ k \ - 2  

p 1 — qr
From this we get

1 — qr > 0 .

<  2 .
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Thus
1

r < -.
Q

We have proved the first claim.

For the second claim, when p approach 0, then  ̂ approach 1. Then the 

claim is clear. Now we only consider N  goes to infinity.

Now suppose some complex number z, 1 < \z\ < ^ is a root of Q n ~ Q  12 =  1- 

Since cosd =  , so we can think z as a function of p, \k\ and TV. We rewrite

the above equation as

{ vW  z j p , N ) - l _______ 2pz(p, N )
( N - \ k \ ) q ^  ( )  1 - q z ( p , N )  (N  — | / c | ) ( l  — qz(p, N ) ) '

From this we see that

lim z(p ,N)  =  lim z(p ,N)  = 1.
p —>0 TV — ►oo

Similarly, if z, 1 < \z\ < 1, is a root of Q n n ( z )  — Q\k\N(z) =  1) then z is a root

Let N  —> 0 0 , then cosiO) — 1, from this equation we have z —» 1. Finally if 

z, 1 < \z\ < -, is a root of’ q '

h { z )~  \ k \ ( N * - \ k \ ) ^ S i n 2 m q z ) ‘ = l -

N  —> oo implies that sin{6) —> 0, the above equation implies that z approaches 

1. So that we prove the second claim. From two claims, we can say that the 

gap disappears when N  goes to infinity or p approaches 0. Recall that equation 

(3-14)

2m  J ]z)=f z^ 1 2m  J ]zj=l+6 zt+1 ^  z 

If we use K  (N , p) to denote some constant such that

<f ' -j^ j -dz  = K (N ,p )  <j> 4 ,
J \ z \ —l-\-S % J \ z \ = l + $  Z

we can rewrite the theorem (3.4) as
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T h eo rem  3.5 In a finite Hilbert space H, the decoherent Grover quantum 

walk is ergodic. The limit distribution is

PiU) = ^  + K ( N ,p ) 0 (e~c ^ ) ,

where

lim C(p, N ) =  lim C(p, N ) =  0 .
p—>0 N —»oo
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3.3 Decoherent Quantum Walks on H ypercubes

Quantum random walks on the hypercube are related to many quantum 

algorithms, they have been studied recently by many people [32]. The geo­

metric properties of the hypercube make the quantum random walks exhibit 

a numbers of features different from that of other graph such as cycles. For 

an example, a quantum walk on the n-cycle mixes in time 0 (nlogn), however 

on the hypercube it mixes faster than 0 (nlogn). when decoherence is intro­

duced, under continuous cases, Alagic and Russell [12] give the exact mixing 

times. In this section, we will study the limit distribution function when the 

quantum walks are discrete and subjected to decoherence. First we introduce 

some notations and finite Fourier transform.

Let Z 2 be the A-dimensional hypercube, i.e, Z2 is a N  dimensional 

vector space on the field Zi- It has a regular basis of vectors B  = {al =

(0,. . . ,  1, . . .  0) , i =  1, 2 , . . . ,  N}.  Under the classical inner product <, >, Z 2 is 

an Euclidean space.

Let and L(B)  be the Hilbert spaces of complex functions on Z 2

and B  respectively. We consider H  = <g> L(B)  as a Hilbert space with

inner product

< f  ® h , g ®  I > = <  / , g >< h,l >

An orthonormal basis in H  is

{8X ® 5ai\x G Z2 , oc G B}.

Under this basis, any element in H  can be expressed as

¥ =  y(x,ai)8x ® 8ai,
{x,oti)aZ!£ ®B

where is the coordinate. By arranging the order, for a fixed x, we have

n —dimensional vector

’I,(X) =  'L(i,a2)) ^(x.Ojv))'
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Then we can consider $  as a vector valued function on

V : Z *  -> CN.

For any two elements T and 4>, the inner product is

< >F,4> > =  J 2

{x'a) (3.18)
=  < \I/(x), 4>(x) >

X

where < ^ (x ), 4>(x) > is the inner product of 'F(x) and $(x) in C N with the 

classical Hermitian.

The Fourier transform of $  is =  4' :

From

< ? ( * ) , ? ( $ )  > =  J 2  < .7W (fc),.F($)(fc) >
k

= w ' Z < E < - 1><i,‘ >4 'W ’E ( - 1)<’'‘ >* w  >
k x y (3.19)

=  ' 5 2 < >
X

= <  4>,4> >,

we get a lemma.

L em m a 3.1

< 4-, 4> > = <  4', 4> > .

The shift operator S  is defined as

S($?.)(x) = {^ i (x  © « i), 4>2(x © a 2) , . . .  4f„(x © oin)).

By definition, we have

< S{*) ,S (Q)  > =  ] T  S ( * ) {x,a)S(<S>){Xta)
(x,a)

= ^  a)$(x+a,a) (3.20)
(x,a)

= <  4’,<f> > .
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Then we obtain a lemma.

Lem m a 3.2

< S (tf),S ($ ) > = <  > .

The property of exchanging the order of S  and T  is the following.

Lem m a 3.3 For any k =  ( k i , h .. . , fcjv) in Z2 ,

^(_l)fci 0 0  . . . 0  ^

T o  S(V)(k)  =
0 ( - l ) fc2 0  . . . 0

T m k )

I  0 0 0  . . . ( -1  )kNj

By the definitions of S  and T ,  we have 

f o 5 ( f ) ( f c )  =  ^ ( - l ) <xfc>5 (^)(x )
X

=  -j= =  © o;i), © a 2), ■ ■ ■ ^ n(x © a n))

( - l ) fcl 0  0

0  ( - 1 ) * 2 0

0 0 0

We use S(k)  denote the matrix

/  (—l)fcl 0  0

0  ( ~ l ) fc2 0

0  \  

0

( _ 1  )kNJ

(3.21)

\  0 0  0  . . .  ( - 1  )kN)  

for k =  (fci, /c2 , • • ■ kN) and fcj € {0 , 1 }.

For any N  x N  matrix D =  (D,j),  we define a linear operator on LyZ^) ®L{B)

as

Dfy(x) =  D(^i(a:), 'M z ) , • • • ^ n { x ))2
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Since

( D o f ) ( * ) ( k )  =  D - ^ = ^ ( - l ) < I’‘><P(i)

=  7 p E ( - 1)<I,‘ > c * w  (3,22)

= n o t m ,

therefore, we have proved the following lemma.

L em m a 3.4

T o D  = D o T .

For a fixed unitary D  and initial state 'F0, the first step quantum walk is

$ i(x ) =  (SoD)Vo(x) .

For discrete time t, the quantum walk is the process

* t (x)  =  ( S o D ) t * 0(x).

From Lemma 3.3 and Lemma 3.4, we get

%(k) = (s ( k ) o D y r ( * 0){k).

Let Uk — Sik) o D, the above equation is

%(k)  =  U t ^ 0)(k).

Next, we introduce operators Aj  =  I  <g> y/pllj, j  =  1, • • •, N,  and A 0 =  I  ® 

a/ 1  — p i  on L{Z^)  ® L(B).  A s  Todd A.Brun and H, A. Carteret did in paper 

[13], we consider the decoherence only on the coin space.

For a history

n t = (Ajt o S o  D)(Ajt__1 o S o  D ) . . .  (Ajo o S o D ) ,

and two states 8y ® 53 and 8X 8a, we consider the quantity

Pt{x a)(8y ® 83) -  l< Sv ® ® > | 2 •
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By the equation (3.18)

< Sy 0  5g,£lt (8x 0  5a) > = Y 1 < ® 8g)(k),Jr(fltSx 0  8a)(k) >,
k

and

F(Sy ® <W(*) =  ^  ̂
(3.23)

^ ( a ( 5 x  ® s a ) ( k )  = {Ajt oUk) . . .  (Aj0 O Uk)(T (8x 0  tfQ)(fc)
1 (3-24)

=  (AJt oUk) . . .  (Aj0 o Uk)—j = ( —l ) <k'x>5a.

Therefore

<C! Sy ^  Sq* l̂f( ŜX {̂) SaJ

=  < ( - i r ^ w - i ^ s w * ) * .  >

=  ^ E ( - 1><'‘-!'+' > <  >

(3.25)

where, we use Q,t{k) denote (Ajt o Uk) - - (Aj0 0  Uk).

Then

—  E4 iv
Os

2

< ^ , E ( - X)<k’x+y>tit(k)(8a) >
k \

(3.26)

For an easy estimation of above quantities, we suppose that \x +  y\ is an
■N 
2odd number. We divide Z^’ into two parts. One is the set of k such that
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< k, x  +  y > is an odd number, denote by A.  The rest is — A.  The above 

equation becomes

k ^  . ■ _  A (3.27)
-  Y  n t (k)(sa) - Y ^ t ( k ) ( s a).

k e Z g - A  k€A

Since < (1 , 1 , . . . ,  1), x +  y > =  \x +  y\ is an odd number, (1 , 1 , . .  ., 1 ) is in A  

and

A + ( l , l , . . . l )  = Z ? - A .

From the definition of S(k),  for each element k in — A,  we have a unique 

element k in A  such that

S(k) = S (k ) ( - I ) ,

equivalently,

U~k = ~Uk.

Therefore, for a fixed decoherent history Qt =  (Ajt o Uk) ■ ■ ■ {Aj0 o Uk), we have 

a corresponding history (Ajt o Uk).... (AJa o Uk) =  Then for an even

number t,

Y ( - l ) <k’x+y>tit(k) =  0

k

That means when \x +  y\ is odd and t is even,

Py( t )  =  0.

For a general case, by introducing row and column exchange matrix E(i , j ) ,  

for any pair of we have

E ( i , j )E ( i , j )  = L  

If D  is Grover’s matrix, Dij = jj — Sj, then

E ( i , j )D E ( i , j )  = D.
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For a fixed k, we have a product of a sequence of exchange matrices E(k),  

such that

E(k)S(k)E(k) = S(k).

Then we can rewrite f%(k) as E(k) ((Ajt o S(k) o D ) . ..  (Aj0 o S(k) o D)) E{k). 

We have

< 50, n t (k)(5a) >=< E(k)*(50) , n t (E(k)5a) >,

where the Q,t is the same as that in Section 3.2. So that we can apply Theorem 

3.5 to the last term in the inequality (3.25), we obtain

l i m ^  j< Sy ® 6 p , Q t ( 6 x  ® Sa) > | 2 <  (3.28)
fit

For fixed positions x ,y  and a start state Sx ® 6a, the limiting distribution 

function of quantum walk with decoherence Px(y) satisfies:

t
ft

? x ( y ) =  l i p  i<  Sy ®  5p,  Q t { 5 x ®  5a ) > | 2

t h 1-
N

<

(3.29)

We summarize what was done as follows.

T h eo rem  3.6 In the hypercube , for the decoherence introduced only in the 

direction space, i f  x + y has an odd first norm, and time t is even, Pf{t)  =  0. 

In general, limt P* <1.
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3.4 Decoherent Walks on Infinite D im ensional 

Spaces

In this section, we will show that in an infinite dimensional case Green 

functions G(z) satisfies the equation

G = - h + - ( I - Q ) - 1.
P P

A general quantum random walk on the line provide us with a simple 

infinity case. One dimensional Hadamard walk defined as follows: Let H  be 

the Hilbert space spanned by the particle states {<pXi ,x  € Z , i  = 1,2}, which 

is an orthonormal basis of H.

U : H  —► H  is the unitary operator:

U(4>xi)  =  ^ ( < P { x + 1)1 +  4>{x-1)2 )-

U{ (px  2 ) =  ^ ( 0 ( x + i ) i  — 1)2 )*

Then for an initial state ipo, one dimensional quantum random walk is the 

process

-i/'t =  tftyo-

Now we consider a general decoherent quantum random walk on the line. Let 

Axi — s/P^xi , where Hxt is the projector operator from H  to the subspace 

spanned by and A u =  y/\ — pi,  I  is the unit operator on H. If we choose 

the initial state of the particle where ip0 is a unit vector in H,  a decoherent 

quantum random walk is the process

ftt(V’o) =  (A* 0  u )(A ^t-i ° U ) . . .  ( A ^  o U)ip 0,

where € {u,xi}.
For a unit vector ijj of H , the probability of the particle be found at ip in 

a Qt process is defined by

|<  ip,£ltip0 > | 2 •
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We still use the notation Et to denote the set of all f lt .

Let

i 5/ ° w =  E  i < V ' , a ^ 0 >i2 .
fit

We have to prove that Pf°(ip) < 1 for any t and unit vector ip of H. The proof 

is similar to that in section 1. But here ip = where X  is an infinity

set {xi, z € Z, i =  1, 2.}. Since ip is a unit vector, all the coefficients ipXi satisfy

i^«i2 =  L
v

When t  =  1,

> l2

= ( 1  - p )  |<  1p,Ulpo > | 2 +  ^ 2  \lpxi\2p\< <t>xi,Ulpo > | 2 .

By Schwarz’s inequality, Pf°(ip) < 1.

For general t, we have

P&(iP) = ( 1  - p ) P f ° ( U * i P ) + p J 2  IM 2Pt°(U*<Pxi). (3.30)
x

By induction, we prove that the claim is true for each t. For the generating 

function
OO

9 S M  =  £ F<” « V ) 2 ‘.
t=o

we have the same proposition as P ro p o sio n l.l

Proposition  3.2 For any decoherent quantum random walk in Hilbert space 

H , the generating function of the walk is analytic on {z, \z\ < 1 }.

We consider the recursion formula of P f l(pyj). From (2.1), we obtain that

P tU ^v i )  =  pr(u*<pyj).

As we did in section 1 , we repeat using equation (2.1). If we suppose

(u'Y4>„ = Y . w l % t <t>Tk,
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the recursion formula for P?l(4>yj ) is

t + i

5  =  1 rfc€X

(3.31)

As in Section 1, let

uu

Q y j , r k  ^  ] P Z ( ( 1  V)% )
s—1

w [s) ,y j,rk

Using G denote the infinity matrix g%j(z),xi,yj G X ,  we have equation

G — /  +  QG -\— Q — Q 
P

(3.32)

Since (U*)s is unitary for any s, so that the norm ||(5|| < 1 on {z, \z\ < 1}, 

then ( /  — Q) - 1 exists as an operator on H  when \z\ < 1. From the above 

equation, we get

G = I + - ( I - Q ) - 1Q (3.33)
P

on {z, \z\ < 1}.

note that Q = —(I — Q) + I,  so that

G = - - I + - ( I - Q ) ~ 1.
P P

We have shown that the gap between the eigenvalues disappears when the 

dimension goes to infinity. Even though G(z) satisfies the above equation, we 

can not use Cauchy integral formula to find the limit distribution. However 

this equation provides us with a choice for further analysis.
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C H A PT E R  4 

Quantum Random  Walks on 

H alf Spaces

As m classical random walks, some quantities are introduced in quantum 

random walks, such as hitting time, limit distribution. In order to deal with 

quantities, several mathematical methods have been used. The most com­

monly used techniques are diagonalization of the shift operator and Fourier 

transform. Diagonalization of the shift operator is limited to the situation 

where it can be diagonalized, e.g., quantum random walks on the whole space. 

When we restrict a quantum random walk in a subset such as a half plan, 

Fourier transform and diagonalization shift operator can not give good re­

sults. Under this situation, path integral is a useful method. In this chapter, 

we will use path integral to investigate some hitting time problems in a half 

space of Z d.
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4.1 N otations and Definitions

We shall start with the definition of quantum random walks in a d-dimensional 

space. Let Z d be a d-dimensional integer lattice. For a d-dimensional quan­

tum  random walk, the position Hilbert space is the Hilbert space Hp spanned 

by an orthonormal basis { |x  >,x  <E Z d}. For convenience, we use Dirac no­

tation for vectors in this chapter. The coin Hilbert space Hc is spanned by 

an orthonormal basis { |j > , j  = 1,2,..., 2d.}. The state space is defined by 

H  =  Hp ® Hc.

The evolution of the quantum random walk is defined as follows. Let

orthonormal basis for Z d, and ed+j  =  — e,, for j  =  1,2,..., d. The shift operator 

S  : H  —> H  is defined by

for all j .  The coin operator A : Hc —► Hc is a unitary operator. Then the 

evolution operator for the quantum random walk is defined by U =  S ( I  ® A), 

where I  denotes the identity operator on Hp.

Let ip0 <E H  and ipt = The sequence {ipt}o° is called a d-dimensional

quantum random walk with initial state ipo- We will mainly consider Hadamard 

walks by the following Hadamard matrix.

The 1-dimensional Hadamard walk is the quantum random walk on Z x 

with A — H2,

e\ =  (1,0, ...,0), e2 =  (0,1,0,..., 0), ..., ed =  (0,0,..., 0,1) be the standard

5 (|z  > ®|j >) = \x +  ej > <g)\j >,

The 2-dimensional Hadamard walk is the quantum random walk on Z 2 with

1 1 - 1 1 - 1  
A = H2 ® H2 = -

2  1 1 - 1 - 1

V I - 1 - 1 1 /
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Grover’s walk in 2 dimensions is the quantum random walk on Z 2 with

/

A - 1-
2

V

1

- 1

1

1

1

1

- 1

1

1

1

1

- 1

\

The measurements for a quantum random walk are defined as follows. 

Let YPX be the orthogonal projection operator of H  onto the linear span of 

\x > ® |j > and n x the orthogonal projection of H  onto the linear span of 

{|x > <S>|j >]j  =  1,2,...,2d}. The position operators X  = (X\,  ...,Xd) are 

unbounded linear operators on H  such that

Xi(\x  > ®|j >) =  Xi\x > >,

for all x  £ Z  , j  = 1,2,..., 2d, and i = 1,2,..., d.

Let ipt =  Y . %  '4>t(x, j )\x > ® |j > be the quantum random walk

at time t, where ipt { x, j )  is the coefficient at \x >  >. Let \4>t {x,  j ) \ 2 be

the probability that the particle is found at state \x >  >  at time t, and

p t ( x) =  pt (x, 1) +  Pt {x,  2) +  ... +  pt (x,  2d) be the probability tha t the particle 

is found at state \x > at time t.
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4.2 The Path Integral

Our formulation of path integral is described as follows. A path w is defined 

by w =  (wo,w\, ...,wn), where Wi £ Z d, and \wi — Wi_i| =  1. The length of w 

is defined by |u;| =  n. Let eji = Wi — be the increment at i-th step of w. 

Then w — (w0, w \ , w n) can be 1-1 identified with (wo; ej l , ..., ejn). We use 

Q,n denote the set of path of length n, i.e. Qn =  {w; |ic| =  n}.

D efin ition  4.1 (Amplitude function) For 1 <  i, j  < 2d, x  £ Z d, the ampli­

tude function is defined for w £ OF,

(4.1)

here Wi — and wQ =  x; otherwise ^fl'x{w) =  0. Here 5j(k) = 0 if

k 7  ̂j  and Sj(k) =  1 if  k = j .

Let B  be the transpose of A. Then we have

( w )  —  b i j i b j ^  - ■ ■ b j n _ 1j n 5 j ( j n ) .J n  — l 3 n  3 (4.2)

D efin ition  4.2 Let T C fln. The amplitude of a T is defined by

(4.3)

Let Q, = U^L0On. For T C Q, with Tn =  T fl Lln, we also define

OO
(4.4)

7 1 = 0

and

^ ( r )  =  5 3 $ v x(r).
j

For any ip £ H,  we shall write

2 d

ip(x, i)\x > <g>|z > .
*=i x e z d
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By definition of U,

U1 \x > ®|i > =  aji\x  +  ej > ® |j >)
j 

= U ^  ] aj2jiajii\X "f" ejl d" Cj2 ^  ® | j 2  > ) •
.72 j l

By induction, the above

=  ^ a j t j t - \ - - - a 3 2 h a h i \ x  d "  e j i  d ” e h  d~ ••• d -  e J t  >  ® | j t  >

i t , - - j  i

=  ^ ' If ( ^  =  y)|y > ® li  >■
y,j

Therefore, we have the following proposition.

Proposition 4.1 If  tpt =  Ut \x  > ®|* >, then for all y  G Z d, j  =  1, ...,2d, we 

have

M v , j )  =  =  y ) ,

The above proposition unifies the path integrals for quantum random walks 

and classical random walks, if a non-unitary A  is allowed. Indeed, if we let 

aij =  1/2d, for all i , j , then for the d-dimensional classical simple random 

walk, ( X t ) ^ l0, on Z d, the conditional probability

P ( X t =  y \ X Q =  x)  =  * ix(u>t =  y),

for all y  G Z d, and any i =  1,..., 2d.

The above proposition works for general quantum random walks on Cayley 

graph as well. Let G be a group. Let E  be a set of generators of G such that the 

identity x0 </ E. Let (G, E)  be the Cayley graph associated with G and E. The 

position Hilbert space is Hp spanned by an orthonormal basis {\x > ,x  G G}. 

The coin Hilbert space Hc is spanned by an orthonormal basis {| j  > , ej G E}.  

The state space is H  =  Hp ® Hc.

The shift operator S' : H  —>• H  is

5 ( |x  >  ® | j  > )  =  |a: • e 3 >  ® |j  > ,
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for all j ,  where • is the operation of the group. The coin operator A  : Hc Hc 

is any unitary operator. The evolution operator for the quantum random walk 

on (G ,E )is defined by U = S ( I  ® A), where I  denotes the identity operator 

on Hp. Let ip0 £ H  and h't =  UtrtpQ. The sequence {ipt }o° is called a quantum 

random walk on (G,E)  with initial state ipo- Then Proposition 4.1 holds for 

quantum random walks on (G , E )

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



55

4.3 Quantum Random  Walks on H alf P lane

Now we apply the path integral to quantum random walks in half-spaces. 

The following method works for any d, but for convenience of presentation, we 

will consider d =  2 only.

Let D = {(x,y)  € Z 2, x  <  0} be the left half-space. Let r  =  t {w ) =  

inf{f > 0; wt G D}  be the first hitting time of D  by w.

The amplitude Green function for the quantum random walk in the right 

half-space with zero boundary conditions is given by

Here i is the initial type, j  is the ending type, n is the initial position in the 

z-axis, y is the ending position in the y-axis, and z is a complex number. We 

note that 'F)n(wt =  (0 ,y ) ,r  =  t) is in L 2(y ,t ) ( see (4.17) and (4.18) below). 

Therefore the Green function is absolutely convergent for \z\ < 1. It exists in 

the sense of L 2(0), for z — ezd and satisfies

OO

t=  1

Similarly, let

f i n(k,z)  =  0 < k < 2tt
y

and

= Y , eiky* T (w* =  (0, y ) , r  =  t ) ,o  <  fc <  27T
y

be the Fourier transforms. Note that we continue to use f*'n{k,z)  instead of 

f j ’n(k,z)  for the Fourier transform. The Fourier transform is understood by 

its variables. Then

L 2{y,t)

Therefore, for a.e. k,
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This implies l / j ’" ( ^ ) | 2 < 0 0  an<̂  f}’n{̂ ->z ) is analytic in \z\ < 1, for a.e. 
k, and f j 'n{k,reie) —>■ f]'n{k,eie) in L 2{6), as r  |  1- In particular, we put 

/ j  =  fh°. Let F  be a 4 x 4 matrix with entries FtJ = /j(/c, z). We also let A 

denote the matrix obtained from A  by interchanging the first and the third 

columns.

Since ^ f ( w t =  (0, y ) , r  = t) =  0 if t < \y\. So that

OO CO

^2\fj(y,z)\ = X l  X ^ 0^  =  (°>y)-r  =  =  ( ° ’ ° ) ’T =  *)**!■
y yj= 0 t=\y\ t = l

Since '&f(wt = (0,y) ,T = t ) is in L2(y,t), it is bounded by a constant M.  

Therefore, the above sum is bounded by
OO OO

m  x  X + M  X
y^O  t=\y\ t = 1

r 2M  lrl
<  h — n  +  M V-A - \ z \  l - \ z \

which goes to 0 as \z\ —> 0. We have shown that

f o $ X i  =  °- (4-6)
y

Now, by considering a sample path of cases r  =  1, r  =  2, and for r  > 3, it 

visits the vertical line x =  1 exactly Z +  1 times before hitting D. We obtain 

the following recursive relations:

f]{y,z)  = zbi252(j)5i{y) + z b ^ S ^ S ^ y )  +  zbnzbi353(j)50(y)

OO

+z&*iXX X fji(yi>z)fh(y* - yi-uz)zhiMj)-
l=l jij2—ii yiy2-yi-i

The infinite series of the above sum is bounded by J2i^ lC l, where C = 

maXij \\fj(y,z)\\Li(y) and \\fi{y, z)\\Li(y) = J2 y \f}(y,z )\- BY (4-6)> C < 1 ii 
\z\ is sufficiently small. Therefore the series is convergent for sufficiently small 

\z\. Applying the Fourier transform, we have

fU k ,z )  =  zbi252(j)eik + zbH54(j)e~ik
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+ [zbn zb13 + zbn f j 1(k , z ) f j 12{ k , z ) . . . f f l 1 (k , z)zbjl3]S3(j)
1= 1  3 1 3 2 - - 3 1

= zbi282(j)elk +  zbi484(j)e zk + {zbn ( z B )l3 + zba F lzB]13}83(j). 

So that
i=i

f}(k, z) = zbi2elk82{j) + zbi4e lkS4( j ) +  zbil[I  _  F zB]1363(j).

Note that by (4.6), the above series is convergent for sufficiently small \z\ and 

I  — F  is invertible. This implies the following proposition.

P ro p o sitio n  4.2 For each fixed k, there exists 5 > 0 such that for all \z\ < 5, 

the Green functions satisfy

(

F  = zA

0 0 0 0

0 eik 0 0

0 0 ([1 - F } - l z A )13 0

\

V o ~—iko o

To simplify the notation, we put

([1 -  JF]_12o4)i3 =  g(k, z), for \z\ < 8.

(4.7)

(4.8)

For the related Green functions with other initial positions, we note that for 

n > 1, f]'n{y) =  0, for all j  ^  3. For j  = 3, we have

In particular,

/a (k,z)  = ([1 -  F] zA)i3, for \z\ < 8.

f s ' i k ,  z) =  ([1 -  F]~lz A )l3 =  g, for \z\ < 8. 

f l ( k , z )  = zan f l ' l {k,z) = zau g , for \z\ < 8.

(4.9)

(4.10)

(4.11)

and

C oro lla ry  4.1 For n > 1, \z\ < 8.

(a) r3n{k) = r / { k ) u l ' \ k ) Y - F

0>) f l ' n{k) =  ( /33,1(£;)r, and f 3’l {k) = ([1 -  F]-1zA)33.
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For some matrices A, the equation (4.7) has a solution hl̂ {k ,z ) such that 

for every k, h j (k , z ) is analytic in \z\ < 1, relatively continuous in \z\ < 1 and 

equal to f]{k, z) for \z\ < 8. For example, when d = 2, we put

/  1 1 1 1 ^

1 - 1 1 - 1  

1 1 - 1 - 1  

1 - 1 - 1  1V /

in (4.7). We solve (4.7) and get g(z) =  0 for z — 0, elk, e lk. And for 0 < \z\ <

8, z ^  0, eik, —e~ik,

9 =
+  iz3 sin k +  iz  sin k +  1 — R(z)  

z (—z + eik)(z + e~tk)
(4.12)

where

R(z) = y j (—1 +  z2)(—1 +  z6 — 2iz sin k — 2i z5 sin k +  z2 sin2 k — zA sin2 k).

(4.13)

To show that the solution function is analytic inside of the unit disk and 

relatively continuous in the closed unit disk, by (4.7), it is sufficient to show 

that for every k, g(k,z)  is analytic in \z\ < 1 and continuous in |z\ < 1. Let 

h(k,z)  be the right hand side of (4.12). We shall first show that for every k, 

h (k , z ) is analytic in \z\ < 1 and continuous in \z\ < 1. Let

K  =  (—1 +  z2)(—1 + z6 — 2izsin k — 2i z5 sin k +  z2 sin2 k — z4 sin2 k).

Then R 2(z) = K.  Considering K  on the unit circle, we have

K(k ,  eld) =  4e4l0sin0(sin0sin2 k +  2 cos 29 sin k — sin 36).

Also,

0 30 0 30
sin 9 sin2 k + 2 cos 29 sin k — sin 39 =  2(sin -  sin k +  cos — )(cos -  sin k — sin — ).

Z Zd At z

This is a quadratic equation of sin A;. For every 9, there is only one solution 

for sin k (the other solution has absolute value greater than one).
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Note that sin |  and sin y  are periodic. Hence for every k, there are six 

0’s corresponding to sin k, which give the six roots on the unit circle for every 

k. Taking 1 and -1 into account, K ( k , z ) has eight zeros on the unit circle. 

These are all the zeros for K ( k , z ) on the complex plane since K ( k , z )  is a 

polynomial of degree 8 in z, for every k. We can choose a branch cut for R(z)  

such that it is analytic in the unit disk and R (0) =  1. This implies that h 

is meromorphic inside the unit disk. Let zq be the pole of h with smallest 

norm. Suppose |z0| =  r  < 1. Then h is analytic for \z\ < r. However, this 

implies that / 3n  =  h for \z\ < r. Note that / 3n  is analytic for all \z\ < 1, hence 

limz_ Zo h(z) = limẑ zo f ^ ( k , z )  exists. This contradicts to the fact that z0 is 

a pole for h. Therefore, h is analytic in the unit disk. We have thus proved 

that both h and g are analytic inside the unit disk and relatively continuous 

in the closed unit ball.

By solving equation (4.7), we have 0) =  0, and for 0 <  \z\ < 5,

31 z ( - l  + z2 + z c o s k - i z s m k )
3 1 — z2 +  z4 — i z (—1 +  z 2) sin k +  R(z)

The above expression for f i 4(k,z) can be extended to \z\ < 1. Since both

denominator and numerator of f i 4(k, z) are relatively continuous in the closed

unit, ball, to show that f i 4(k, z) is relatively continuous in the closed unit ball,

it is sufficient to show that the denominator is non-zero on \z\ =  1. To this

end, we write

f l l { k , z ) =  N
T  +  R(z)  ’ 

where

N  = z {—1 +  z 1 +  zcosk  — izsink),

T  = 1 — z2 + z4 — iz[—1 +  z 2) sin k,

R 2{z) =  K,

K  = (—1 +  z2)(—1 +  z6 — 2izsin k — 2i z 5 sin k +  z 2 sin2 k — z4 sin2 k).

By comparing the real part and the imaginary part of (T2 — K )(k ,e l9) =  0,

we have

T 2 - K  = 0
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if and only if
3 — 2 cos 29

However
3 — 2 cos 29 

4 sin#
Hence, the only two solutions for T  + R (z ) =  0 are 9 =  | , k  = |  and 9 — 

— | ,  k =  — | .  By evaluating the function at these points, we see T  +  R ( z ) ^  0. 

Therefore the denominators of f ^ ( k , e ie) is never zero.

Since < 1, for all n, we have 0 < | / | 1(—k, el0)| < 1, for a.e. k,9  € 

[0,2-7r]. We are interested in the decay property of | / | 1(—A, ei6l)|. Let L = 

{(A;, 11/g1 (A;, el<9)| =  1}. We first show that

\ f(k,  el6)\ =  1 sin#(sin#sin2 k +  2cos2#sinA — sin3#) < 0. (4.15)

By direct calculation, we have

i.e.,

—4sin#(sin#sin2 A+2cos2#sin A—sin 3#) =  |4sin#(sin#sin2 A+2 cos 2# sin k —sin 30) |,

|T2 — K\  =  |iV|4,

|A''!2 =  1 +  4sin#(sin# — sin A),

\R(z)\2 = |4sin#(sin#sin2 k + 2 cos 29 sin k — sin 39) |, 

|T |2 =  (1 — 4 sin2 9 +  2 sin#sin A)2.

Also, note that \T +  R ( z )|2 =  and |T — R ( z ) |2 =  ][T ^ 2  ^ • Then we have

\T2 ~  K \2\ f \4 -  2(|T |2 +  \R(z)\2)\N\2\ f \2 +  \N \4 =  0.

Hence, | / |  =  1 if and only if

|T2 -  K |2 -  2(|T |2 +  \ R{z )\2) \ N \ 2 + |A |4 =  0,

which holds only when the left hand side is non-negative. This implies (4.15) 

and L  =  {#, A; sin #(sin 9 sin2 A +  2 cos 29 sin k — sin 39) < 0}.
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3  Q 30

Let ki = h (9) =  a rc s in (^ ^ : ) and k2 = k2{9) =  a r c s i n ( - ^ | : ). Then in 

the square {{9,k) G [0, 27t] x [0, 27t]}, Lc is the region

{9 G [o, f  ] , k  G (fci,7T -  h )}

u {9 G r 7rU >f ] , k e  (tt - k 2 , 2i r  +  k 2 ) ) }

u {9 G r i t

h  > ,) U (tt -  k 2 , 2tt)}

u {9 G r it 
Y2 ’ 2f ] , k e (  o,hq) U (tt -  k \ , 2 n ) }

u {9 G \2n
Y 3 , e  (n -  k i , 2 i r  +  k i )}

u {Q G r 3 7 r 
L 4

, 7r ] , k  €  ( k 2 , 1 ?r to

u {9 G K . -  k 2, 27T +  ^2)}

u {9 G r 57r 
1 4 , f ] , k e ( k 1,7T -  fci)}

u { Q G r 4 t t  

1 3 , f ] , k e ( o , 7T — fci) U (27T +  fci, 27r)}

u {9 G r 3ir 
Y 2 7T — ^ 2 ) U (2-7T +  k 2, 27t)}

u {9 G r 5it 
Y 3 , 7f l k e ( k  2,7T -  ^2)}

u {9 G t 7 t t  

Y 4 , 2-7r], k  £  ( it -  fci,27T +  fcl)},

This implies that L has a positive Lebesgue measure. The numerical value of 

the Lebesgue measure of L  «  0.556.
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4.4 The First H itting Probabilities on H alf Plane

The first hitting probability of D  by a quantum random walk starts with 

initial state |(n, 0) > <8 >|* > is related to the following Green function

OO

f]'n( y , z ) = = (°>y)>r = *)**• (4-16)
t=i

The probability that a 2-dimensional quantum random walk in the right half­

space D c exits from D c at (0, y) is given by

OO

P f ( v )  =  E  =  (0, y),T = t ) | 2 =  H * * "^  =  (0, y),T = t ) | | |2(t).
t= i

(4.17)

By (4.17), ?(wt — (0, y ) ,r  =  t) is in L 2(t), therefore f l ’n{y ,z ) is in L2(9), 

for z = el6. For n > 1, the probability that the quantum random walk ever 

exits from the right half-space is

OO

= E E W l 14 = C0,y),T = 4) I2 = I W K  = (0,»),r =
y t—1

(4.18)

By Fourier transform, we have

1 f 2n 1 f 27C
=  dd2 l̂ f T ( k - k ^ ie) f T ^ e~ld)dk^  (4 -19)

and
-1 /*2tt -I r2ir

pi,n = p i,n{k)lk=Q = _ _ J  M — j  / ?i’n(-A:1 )eie) / ; 'n(fc1 , e- <e)dfci. (420)

Suppose that the quantum random walk starts with initial state | (n, 0) >

®|i >. We have known that lim ^oo Pg’n is exists and equal to the positive 

Lebesgue measure of L = {(k,9)\ \f^1(k ,e ie)\ =  1} [38]. We will consider the 

asymptotic behavior of P^'n as n go to oo.

For simplicity, we write /  for / f 1. Let ^  =  0, £2 =  7r/4, £3 =  7r / 2 ,

£4 =  37t / 4 , £5 =  tt, £ 6 =  57t / 4 , £7  =  37t / 2 , £ 8 =  77r / 4 , and £9 =  2ir. For a fixed 

9 ^  L c is an union of open intervals, Ujlj. Let p\ { 9)  < P2{9) < ... < Pi (9)
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be the endpoints of the intervals. Let k\{6) =  arcsin ^  j . Then k\ is a root 

of the quadratic equation

sin # sin2 k +  2 cos 29 sin k — sin 39 = 0.

For 9 e  (0, | ) ,  p\(9) =  ki(9) and p2(0) = r̂ — k\{9). Let =  {9 € (0, | ) ,  A: e 

(£q,7r/2)}. We will consider the behavior of | / | 2 over S2 only, since the other 

regions can be treated similarly. In fi, we have 

. .r, 1 — 4 sin 0 sin k +  4 sin2 9
I / I  = {1 — 4 sin2# +  2 sin # sin k +  2y /sin#(sin# sin2 k +  2 cos2#sin k — sin3#)}2 

N 0

(T0 +  2 v ^ o ) 2'

Hence,

1 I f|2 _  8/^0 +  ATqt/ K q 
1/1 “  (T0 +  2 v ^ o )2

4 v ^ o
To +  2 y / K o

s i n  M
Fix #, as k —> /q from or equivalently, sin k —> -^ iK  we have 

To +  2-\/~Kq —»■ —1 +  2 cos # > C >  0, 

where C  is independent of # G [0,7r/4]. This implies that

1 -  I / I 2 ~  0 {^Ko) .  (4.21)

Now we show upper bound for 1 — | / | 2. For a fixed #, we have

<9fcTo =  cos k(2 sin # sin k +  2 cos 2#) sin #. (4.22)

Since the right side of (4.22) is less than a positive constant for all (#, k)  in 12, 

by the Mean Value Theorem, we have

K 0( 9 , k ) < C 1{ k - k 1), (4.23)

for all (#, k) in 12. By (4.21), we then have

l - | / | 2 < C lV/ fc-fc1, (4.24)
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for all (9, k) in Q.

If we let Ij = (a.j,bj), and Cj =  for all sufficiently small positive

constant e, =  {£* < 9 < £i+i; aj + e < Cj} and OL = {£i < 9 < £i+i; bj — e > 

Cj} have positive Lebesgue measures. On these set,

1 - 1  f ( k + ) ?  < C ^ \ k - a , \ ,

for all & < 9 < £i+1, and a7 < k < cJ; here C  is a universal positive constant. 

The same asymptotic behavior also holds for the other end of the interval, i.e.,

1 -  l / f t e ‘*)|2 <

for all £  < 9 < £i+i, and bj > k > Cj.

We shall consider Q =  {9 E (0, f ) , k  E (ki,7t/2)} only for lower bound 

of 1 — \f(k,  e19)]2, since the rest can be treated similarly. Let fli =  {9 € 

(0, f  -  r]),k E (/ci,7r/2)} and =  {9 E ( f  -  2r/, f  ) ,k  E (ki ,n /2)}.  For fixed 

k, let 9\ be such that ki{9\) = k. We shall show

l - \ f \ 2 > C 2^ / 9 ^ 9 [ ,  (4.25)

for all (9, k) in fl2 , and

1 -  | / | 2 > C z V d y / k - h ,  (4.26)

for all (9, k ) in Qi- 

By

deKo =  cos 0(sin 9 + 2 cos 29 — sin 39) + sin #(cos 9 — 4  sin 29 — 3  cos 39), (4.27) 

we have

- d eK o( ~ ) > 0 ,  

and since dgKo is continuous everywhere, there exists a  > 0, such that

- d eK 0 > C 2 > 0, (4.28)

for all (9, k) in fl2- By the Mean Value Theorem,

K o > C 2{ 0 - 0 x), (4.29)
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for all (0, k) in Q,2. By (4.21), we have thus proved (4.25).

To prove (4.26), we take partial derivative in k. By (4.22),

dkKo — cos k ( 2  sin 0  sin k +  2  cos 2 0 ) sin 6.

Let

Z (9 ,k ) =  cos k( 2 sin 6 sin k +  2 cos 20).

Then Z is continuous everywhere. Note that Z(0, k\) is positive and bounded 

away from zero uniformly in 0 < 9 < 7t/ 4  — rj, and C29 < sin9,  for some 

C2 > 0, there exists a sufficiently small 7  such that

dkKo > C29, (4.30)

for all 0 <  9 < tt/A — 7 , k\ < k < k\ +  7 .  By the Mean Value Theorem and 

(4.21), we have

1 -  | / | 2 > C2V 9 V k - h ,  (4.31)

for all 0 < 9 < 7t / 4  — 7 7 , k\ < k < k\ +  7 . Since 1 — | / | 2 is positive and 

uniformly bounded away from zero on 0 < 0 < 7r/ 4  — 7 , £7  +  7  <  fc <  7r / 2 , we 

have proved (4.26) by choosing a sufficiently small C2 > 0 .

Now we consider the equation

“  P>°° =  (2 l f r M d k  =  (2 ^ F  £  S  f  i  W ' dkde- (4-32>

We shall show that each term has the same asymptotic behavior as n —> 0 0 . 

First we introduce a lemma.

L em m a 4.1 Let g and h be functions on interval (a, (3) such that the integral

f (n ) =  la 9(u)enh( Û du exists for all sufficiently large positive n. Suppose h
is a real-valued function, continuous at u = a, continuously differentiable for 

a < u < a + r], with g > 0. Suppose further that h! < 0, for a < u < a  + g, 
and h(u) < h(a ) — e, with e > 0, for a  +  77 < u < (3. If  h'{u) ~  — A{u — a )1"-1 

and g(u) ~  B(u — o;)A_1 as u —> a, A > 0, v > 0, then

l (n )  =  f ^ g ( u ) e nl,tu*du ~

as n oc.
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Let

Q= w r C O i t ikM - ( 4 - 3 3 )

be one of the terms in the above sum. We will consider Q only since the rest 

can be treated in the same way.

First /  is continuous in (aj ,Cj ), \f{dj)\ =  1, \ f(cj)\ < 1 and | / |  is strictly

less than 1 in (a j , Cj ). Moreover, by what we have proved before Lemma 4.1 ,

there is a sufficiently small positive constant e, independent of d such that

Oij  — 0 <C £ i+ l) dj  € <i k  <C Cj}

has a positive Lebesgue measure, and on this set

l - \ f ( k , e ie)\2 < C y J \ k - a j \. (4.34)

For all < 8 < £i+i, dj < k < +  e,

C ^ \ k - d j \  <

and for all & < 0 < £i+i, at + e < k < Ci,

| / | 2 < a  < 1. (4-35)

For the lower bound of Q, we have

I r A*j+e)  !
Q ^ 7 T T 2  /  II - C ( k ~ a ^ \ ndkdd.( 2 * r  J 0 i . J a .

Applying Lemma 4.1, with

h(k) =  ln[l — C{k — dj )  2 ], 

g(k) = 1, A =  l , u  =

we have

— l—  [  [ { j + ) \l - C { k - aj) li \ndkdd ~  [  Cn~2d9 ~  0 (n ~ 2),
(2vr) J J J

as n —> oo, since O t] has a positive Lebesgue measure.
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For the upper bound, let Qi =  ^ 2  Jfii \ f \2ndkd,0, and Q2 =  fn \Oi l / |2" ^ ^ -  

Then

Q = Qi +  (32-

L e t  f i n  =  { 6  <  0 <  6 + i ~ ? ? , %  <  k <  %• +  7 } ,  f i i2  =  { 6  <  0 <  6  +  7 , %  <

k < Cj}, and fii3 =  fii \  (fin  U fin)- if 7 is sufficiently small, then

C y / l ^ M y / l k - a j l  < 1 -  \ f {k ,ew) \ \  in fin , (4.36)

CV\Q -  ~  aj\ < 1 -  |/(/c ,e^ )|2, in fin , (4.37)

\ f ( k ,e ie)\2 < a < l ,  in f in ,  (4.38)

C \ / |0 - 6 l ) / l f c - a il < \

Ql < <3ll +  Q 12 +  Ql3,

1 f t i + l - V  r (a . j +  7 )

I  l / l 2 ” d “ '

1 /•& + 7  / “Cj

«“ - ( S p / 6 6 + 1 " -

By (4.38), Q 13 =  0(e~cn), as n —► 0 0 , for some c > 0. For the upper bound of 

Q n, by (4.36), for any <5 > 0,

1 r i i + i - V  r { aj + i )

Q u  < TTTTi /  /  |1 -  C(# -  « i( fc  -
( 2 t t )  J  a -

Applying Lemma 4.1, with

h(k) = ln[l -  C\9 -  6 | H k -  %■)£+*], 

g(k) = l , \  = l , v  = ± + 6,A = C \ d - t i \ * , B = l ,

and

We have

where
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we have

r i i+ i - n  r{°-j+1 )1 rii+i-ri rw+'i)
— J  /  |i -  c ( e  -  ( , ) H k  -  a jp
(27r) J^  Ja

~  (Ul \ -------   _ )(3 + a)_1d0.
• 4  C ( 9 - ^ n

As n —► oo, the last term is at the same order n~2+e, where e can be chosen

arbitrary small if 5 is chosen small enough. Similarly, Q i2  < 0 (n ~ 2+e), as

n oo. For Q2, let fi2i =  {&i(£m ~ v) < k < cj ,6\  -  7  < # < ^i},
H22 =  (Q \  fii) \  O21 - By (4.31), if 7  is sufficiently small, then

C ^ W ^ \  < 1 -  | f ( k ,  eie)\2, in Q2U (4.39)

|/(fc,e^ ) | 2 < a  < 1, in fl22, (4.40)

and

c V \ e - « A < \

Let

Q n  =  - p fr , I  \ f \ 2"dkde ,
( 2 7 r )  J n 2 1

f e  =  t A s  /  l / |2"d*d(J.
(2 tt) Jn 22

Then Q2 =  Q21 +  <322- By (4.40), Q22 = 0(e~cn), as n  -► 0 0 , for some c > 0. 

By a similar argument as that in the lower bound, Q21 <  0 (n ~ 2), as n —► 0 0 . 

We have thus obtained

T h eo rem  4.1 For Hadamard walks on Z 2, for any e > 0,

cm " 2 < P in -  P33o° < c2 (e)n~2+e, (4.41)

as n —>0 0 , where c\, c2 (e) are positive constants.

For the hrst hitting time r  at the left half-space. It is well-known that 

the expectation of r  is infinite for classical random walks. We will show that 

for a quantum random walk, if it hits, then the conditional expectation of r
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is finite. To this end, we need some properties of function / .  Recall that for 

Hadamard walks,

^ k,e   ̂ =  T  + R ( z ) ’
where

N  = z {—1 + z 2 + zcosk  — izsink) ,

T  = I — z2 + z4 — iz (—1 +  z2) sin k,

R 2{z ) = K,

K  =  (—1 +  z2)(—1 +  z 6 — 2izsink  — 2iz5sink  +  z 2 sin2 k — z4 sin2 k).

For every k, K (k , z )  is a polynomial in z of order 8 . By factoring K (k ,z ) ,  we 

get

K(k , z) = {z + 1 )2(z -  1 )2{z -  e ^ ) ( z  -  e~i9l)(z -  el02)(z -  e ^ 2)

where 6\ =  arccos 1̂ -̂— , 02 =  arccos ~1~^°ak. Therefore all the zeros of

K (k , z )  are on the unit circle, for every k. Now, for K (k , z ) ,  we write the

roots of K  as {e1̂  }, 6j — 9j(k) such that Xp=i = 0- For each j ,  set 

hdj(z) = — z). We then have the following properties: 1. hg^z)  is

analytic except {z; \z\ > l , a rgz  =  6*,}; 2. h6j(z) is analytic in {z; \z\ < 1 } and
^3 Qrelatively continuous in \z\ < 1; 3. he5{ 0) =  e ~ . If we define R(z)  =  11/=i

then R 2{z) = K  and R(0) =  1. Therefore R{z) can be defined as analytic in

\z\ < 1 , relatively continuous in \z\ < 1 and R(0 ) =  1 .

Let r  =  e~s. Then

\ d f  | I ft fF) l—  =  \dzf d sz |
os

, dzN ( T  + R(z)) -  N (dzT  +  dzR ( z ) ) ,
~  1 (T  + R { z ) f  K e e }\.

Note that T  +  R(z)  is never zero on the unit circle, N  and T  are polynomials 

in z. Therefore to estimate dzR(z)  it is sufficient to obtain an upper bound of
\ 9£ \
i ds  ' *
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From R{z) =  IIj= i he, , we have

iK M  = -  * ) ( - i ) l  = 2 Rn+ffje'0’ -

2-y/le^ -  z\ yf\9j -  9\ ’

if z =  rel9, 0  < r 0 < r < 1 .

— y  — z| < C,

for all \z\ < 1. By the Product Rule, we have obtained the following lemma.

L em m a 4.2 For every k, there exists a set Dk = [0,2n]\{91(k),92(k), ...,9m(k)} 

such that the partial derivative drf (k , r e~ ld) exists and is continuous in 0  < 

r  < 1, 9 G -D/c- Moreover there exists a constant C, independent of k ,9 , r  such 

that

!& /(*, r e " ) | < C £ ; -

/o r all k e  [0 , 27t], r 0 < r  < 1 , for some 0  < ro < 1 , and all 9 £ Dk.

For a probability measure and its Laplace transform, we have the following 

lemma.

L em m a 4.3 Let /a be a probability measure supported in [0, oo). Let p(s) = 

f^° e~stdp(t) be the Laplace transform of p. For all n = 1,2,..., the following 

statements hold.

(a) I f  J0°° tndp(t) < oo, then ( - 1 ) " ^ ^  =  / 0°° tne - stdp(t) < oo.

(b) I f  (—l)ndfsn^ ]o exists, then / 0°° tndp(t) < oo.

Let
OO

p M  =  £ e - V f ( f )
t= 1

be the Laplace transform. By the same argument as that in (4.20), we have
1 n2n -| /»27t

P{S) = 2W o  ddt o  I  (4.42)
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-1 r2ir i  p2ir

=  2 -« L
We will consider the case i = j  = 3 only, since other cases can be treated 

the same. The derivative of the above integrand is

ds[ f ( - k ,  e~s+ie)f (k ,  e"")]" =  n [ f ( - k ,  e ^ ) ] ”- e~s+'e)[f(k,  e ^ ) ] "

By Lemma 4.2, | / |  < 1 and for every fc, there exists a set Dk =  [0, 27t] \  

{di(fc), 62(k), ...,9m(k)} such that the partial derivative drf (k,  re~ld) exists and 

is continuous in 0 < r  < 1, 0 G Hj,. Moreover there exists a constant, inde­

pendent of k, 9, r such that

771 1

for all k e  [0, 27t], \  < r < 1 and 9 & Dk- Therefore, the derivative of the 

integrand in (4.42) is bounded by

m ^

which is independent of s and integrable. By the Dominated Convergence 

Theorem, p(s) is differentiable. Then Lemmas 4.2 and 4.3 imply the following 

theorem.

T h eo rem  4.2 For Hadamard walks on Z 2, when r  is finite, then conditional 

expectation of r ,  with respect to P 3n, is finite.
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