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A B S T R A C T

THE LIMITING DISTRIBUTION OF DECOHERENT QUANTUM

RANDOM WALKS

Kai Zhang 

DOCTOR OF PHILOSOPHY

Temple University, May, 2007

Professor Wei-Shih Yang, Chair

Although the position distributions of one-dimensional quantum random walks 

are strikingly different from those of classical random walks, when decoherence 

is involved, simulations suggest that the resulting position distributions take 

on many classical features over time. Our research aims to investigate this 

phenomenon analytically. We establish the connection between pure quantum 

random walks and decoherent ones through a decoherence equation. From 

this equation, we obtain exact analytical formulae of the generating functions 

of decoherent quantum walks, for two different initial states. Using these 

formulae, we show tha t when time t —► oo, the limiting position distributions 

of both walks are Gaussian. These results explicitly describe the relationship 

between the system and the level of decoherence.
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CHAPTER 1 

Introduction

Quantum random walks recently gained great interest from probabilists, 

quantum physicists, and computer scientists. The interest was sparked by their 

important roles in developing the highly efficient quantum algorithms. For in­

stance, Grover’s search algorithm [11] has time cost 0 ( \ /N ) ,  in contrast to the 

ordinary search algorithm which has a cost of O(N). This quantum searching 

algorithm was proved to be closely related to the behaviors of quantum ran­

dom walks in [2] and [26], As another example, Shor’s algorithm also improved 

the speed of factorization dramatically [27]. The high efficiency of quantum 

algorithms is discussed in [12] and [13]. Experimental implementations of the 

algorithms are discussed in [7] and [8],

Besides their important applications, quantum random walks are very at­

tractive themselves due to their dramatic non-classical behaviors. After quan­

tum  random walks are defined in [3], many articles ([4], [10], [19], [21], [22], 

etc.) to study the distribution of quantum random walks have been published 

and it is known that the non-classical behaviors are due to the quantum co­

herence evolution [23]. One of the most shocking differences [4] is that the 

variances of quantum random walks are 0 ( t 2) as time t grows, while the ones 
o f c la ss ic a l r a n d o m  w alk s  a re  0(t) .  V a rio u s  lim it  th e o re m s  o f q u a n tu m  ran­

dom walks are established ([9], [10], [18], [19]). An excellent reference could 

be found in [15].
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One of the most concerns about the quantum walk system is that it is very 

sensitive to the inevitable decoherence effect. This effect could be caused by 

many reasons, such as interaction with environment and system imperfections 

([5], [6], [25]). Decoherence could make the quantum behaviors disappear. 

Physicists tried to study this phenomenon as well as its influence. For the one­

dimensional case, in the model in [5], decoherence is caused by measurements 

on the particle’s chirality. Long-time first and second moments of the walk were 

obtained and numerical results showed that the distributions look like classical 

normal distributions. Similar scenes are found in other models ([14], [16], [17], 

[20], [23], [24]). If we denote the position random variable of the decoherent 

quantum random walk by X t , all of above papers mentioned the fact that the 

variance of the simulated X t grows linearly in time t. In particular, in [23] it 

is shown analytically that the variance is indeed linear in t.

These results stimulated us to prove that the one-dimensional decoher­

ent quantum random walk ^  converges to a normal distribution. Our work 

focuses on the one-dimensional discrete-time Hadamard walk with measure­

ments taken on both position and chirality at each time step. This kind of 

decoherence is studied numerically in [7], [14], [16] and [17] but we will study 

it fully analytically.

We shall see that when the particle is not measured, then the system is 

pure quantum and ^  does not converge. However, even when the particle 

is measured subject to a very small probability, ^  will converge to a normal 

distribution. Eventually, when the particle is measured for sure at each step, 

then the system becomes purely classical and ^  converges to the standard 

normal distribution.

In the next section, we introduce the basic notations and definitions. We 

then introduce our methodology of generating functions and the decoherence 

equation. We list our results and proofs after them. Finally, we summarize 
our work and give some discussions.
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CHAPTER 2 

Statement of Results

2.1 N otations and D efinitions

2.1 .1  Q uantum  R andom  W alks

We start with a brief description of the one-dimensional pure quantum 

random walk system. Recall that in the classical random walks, the particle 

moves to the right or left depending on the result of a coin toss. However, 

in the quantum random walks, the particle has its chirality {right, le f t}  as 

another degree of freedom. At each time step, a unitary transformation is 

applied to the chirality state of the particle and the particle moves according 

to its new chirality state.

Formal definitions are as follows.

D efin ition  2.1 (The Space of the Quantum Random Walk)

The p o sitio n  space Hp is defined as the complex Hilbert space spanned by 

the orthonormal basis {|y > ,y & Z}. The coin space H c is defined as the 

complex Hilbert space spanned by the orthonormal basis {|I > ,l  =  1,2}. The 

s ta te  space H is defined as

H  =  Hp <S> Hc.

A vector £ H  with \\f>\\i2 =  1 is called a sta te .
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The state tells us the particle’s position and chirality. A basis in H  is 

denoted by {<j)yi =  \y > ®|Z >: y G Z, I = 1,2} where y is the particle’s 

position and I is its chirality. I =  1 means “left” and I — 2 means “right” .

The coin opera tor A : Hc —> Hc is a unitary operator. The evolu tion  

opera tor U : H  —> H  is defined by

where Ip is the identity in the position space.

The coin operator here is an analogue to the flipping coin in the classical walk. 

We now define the quantum random walk as follows.

D efin ition  2.3 (The Quantum Random Walk)

called a on e-d im en sional quantum  random  walk.

The most famous and best-studied example of quantum random walks is 

the Hadamard walk.

E xam ple  2.1 (The One-Dimensional Hadamard Walk)

Let A  be the 2 x 2  Hadamard matrix

Now we introduce the evolution operator which drives the particle.

D efin ition  2.2 (The Evolution of the Quantum Random Walk) 

The sh ift operator S  : H  —> H  is defined by

U — S(IP® A),

Let fio 6 H  be the initial state and let = Wfio. The sequence {V'tltf *s

The quantum random walk is associated with A is called a on e-d im en siona l 

H adam ard  walk.
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We will focus on Hadamard walk in this article and we may assume that 

the particle starts at the origin.

We now define the quantum probability as follows.

D efin ition  2.4 (The Quantum Probability)

The probability  of a particle at state to be found at state rj is defined by 

| < 7], if > |2.

In particular, the probability of the quantum random walk, starting from 

0 , with type i , to be found at x  with type j  is

2.1 .2  D ecoh eren ce

We focus on decoherence caused by measurements. The definition of mea­

surements is

D efin ition  2.5 (Measurements)

{A i,i  £ A} is called a m easurem ent if

ie A

where A is some index set and A* is the adjoint operator of A, i.e., the complex 

conjugate of transposed matrix of A.

In this work, we consider the measurements similar as in [5]. Let p be a real 

number in [0, 1] to denote the probability of the random walk being measured 

at each step. We let A c : H  —> H  be s.t. A c =  y/1 — p i  to be the coherence 

projection. We also let A x. : H  —> H  be s.t. A Xt = ^JpEXuXi to be the 

decoherence projection to the subspace span{(pXi}. Under this setup, the index 
set A is A =  {c} IJIx, : i £ Z , t  =  l,2}.

Now we define the decoherent quantum random walk as follows.

(2 .1)

(2 .2)
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D efin ition  2.6  (Decoherent Quantum Random Walk)

Let ip be a state in H. The random variable X f  over Z is called the decoher­

en t quantum  random  walk starting at ip at time t if  its probability mass 

function at x  is given by

P (X *  =  i )  =  E E E ' - ' E I < ( A V H - V V )  ■ • • {Ah U)i- > I2-
i jteAjt-iek jieA

(2.3)

In other words, the walk starts at ip, then we apply the evolution operator 

U, then we try  to measure it, then we let the evolution go again and try  to 

measure again. Figure 2.1.2 illustrates the possibilities tha t could happen in a 

single step. The process repeats until the t th  step is finished. We then consider 

the position distribution of the particle. We call each (jq, j 2, . . .  ) a path.

We also call < <pXi, (Ajt U) (Ajt_1 [ / ) . . .  (Aj1U)ip >  an amplitude function of 

the particle associated with the path. Many paths yield 0 amplitude due to 

the decoherence projections, A^.’s. However, the summation in (2.3) over 

all paths ( j i , j2, .. •jt,%i) gives the probability of the particle to be found at 

position state |.x > at time t.

(a) No measurement (b) A measurement (c) A measurement

is taken. is taken and the par- is taken but the par­

ticle is found. tid e  is not found.

Figure 2.1: Three possibilities in a step of the decoherent quantum walk.

At each step of a path, the walk is either not measured with probability 

q — 1 — p or is measured at <pXi with probability p. So when p =  0, then
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the walk is not measured and the system is the same as the pure quantum 

random walk defined before. When p = 1, the particle is interfered at each 

step, hence the quantum behavior essentially disappears and the system is 

exactly classical.

Throughout this paper, we shall work on the decoherent Hadamard walk 

starting from position 0. We use

ptW  = E E " ■ E I < ( A i . U K A ^ U ) . . .  (Ah U)i, > |2 (2.4)

to denote the probability of at time t, a particle in the decoherent quantum 

random walk starting from V’ to be found at state </>. In particular, we denote 

the probability that at time t, the particle starting at <fi0i to be found at 4>Xj

J1J2,—Jt€A
Since we are interested in the limiting distribution of the walk, we focus 

on the Fourier transform of the above probabilities,

itsAjt-ieA jieA

by

(2.5)

X

where i in elkx is the standard notation for the complex number such that 

i2 =  —1, while i in P j(x , t ) means index.

We shall consider two types of walks. We first consider the walk starting 

at the state <̂>0 =  +  *̂ 75^02 • We call this walk “centered” and denote it

by X t . Note that

= \{P }{x p )  + P?(x,t)).

(2.7)
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Hence

P { x t = x ) = Y J Pt°i4>,3)
j

(2 .8 )

i j

and the characteristic function of X t would be

(2.9)
i  j

Prom the above equation, we can see that its characteristic function is ob­

tained by taking average of those of the initial chirality state i ’s. Further 

more, in [4], it is shown that the pure quantum random walk starting with </>o 

has a symmetric position distribution. These are the reasons why we call it 

“centered” .

We also consider the walk that starts at 4’o1, X t = x f Dl. It is the walk

starting at 0 with chirality “right” . Therefore, the characteristic function of 

X t is

for some positive number v in the centered walk case, as well as to show that

(2 .10)

j

Our goals are to show that as t —» oo,

as t oo

in this specific initial state case.
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2.2 Generating Functions and the D ecoher­

ence Equation

2.2 .1  G en eratin g  F unctions

The direct calculation is with very complicated combinatorics and is formidable. 

Therefore, we introduce the idea of the generating functions.

D efin ition  2.7 (Generating Functions)

The generating  fu n c tio n  of the decoherent quantum random walk is

OO

(2 .11)
t-o

The Fourier transform of the generating function is

X

Note that for 2 in the unit disk {z  : \z\ < 1}, since \Pf(k,t)\ < 1 and 

\Pj(x ,t)\ < 1 f°r every t, an<̂  P j { x , z ) ’s are analytic. Fur­

thermore,

OO

|Pj(x, t)et o z f < o o .■e^z4!2 < oo.
x  t = 0

Hence, by Fubini’s theorem, we have

OO

x  t = 0
oo

t= 0  x
oo

t = 0

i.e., Pj(fc,z)’s are analytic and Pj(fc,f)’s are the coefficients of z4 in the ex­

pansions of P f(k ,z y s. Therefore, instead of finding P f(k , ty s directly, we first
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find the explicit formulae of Pf{k, z ) ’s, then we apply the Cauchy’s Theorem

( 2 ' 1 3 )

for some 0 < r  < 1, to get PHk, t).

2.2 .2  T he D ecoh eren ce E quation

We now introduce the functions Qlj(k ,z )  and Q%j(x ,z ) .  These two func­

tions are very important in the proofs. We let W )(k,t)  =  Yhx W f(x ,t)e lkx be 

the Fourier transform of the pure Hadamard walk. We also let Q^{k,z) =  

 ̂ W j(k ,t) (qzy  for 0 < p < 1 and q = 1 — p. Note tha t \Wj(k,t)\ < 1. 

Hence, for z  6 {z : \z\ < -}, \Q%-(k,z)\ < oo. Therefore, Qy(k,z) is analytic 

in {z : \z\ < ^}. Furthermore, let Q^{x,z) = |  t ) b y  Fubini’s

theorem again we have

OO

Q K M  =  ^ W 7 (M )(< Z Z )‘ = Y J Q){x,z)eikx. (2.14)
 ̂ t =  1  X

W ith above notations, we derive the following theorem.

T h eo rem  2.1 (The Decoherence Equation)

The function P f ( k , z ) ’s are analytic in {z : \z\ < 1} and are meromorphic 

in {z : \z\ < Furthermore, if  we denote the matrices of (Pf(k,z)) and 

(Qj(k,z)) by P  and Q respectively, then

P  =  ——I  +  —{I — Q)~^. (2.15)
P P

This equation established the relationship between the decoherent quan­

tum  random walk (left hand side) and the pure quantum random walk (right 

hand side). By working on the Fourier transform of the pure quantum ran­
dom walk, we get the formulae of Pf(k, z ) ’s fro m  th is  e q u a tio n .  T h e  fo llow ing  

diagram is an illustration of our methodology.
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j-m‘ / , \ G enerating Functions NPj(x,t)  --------------------- > P {x,z)

Fourier Transform

m , t )

Fourier Transform

Cauchy Theorem
PUk,z)

Decoherence Equation

Fourier Transform

W U k,t )

2.3 M ain R esults

2.3.1 C lassical W alks R ev isited

We first consider the classical walk case, i.e., the p =  1 case, as an illustra­

tion of our approach. Note that for a classical random walk Ct, we have the 

result tha t —> N ( 0 , 1) as t —> oo.

When p — 1 and q = 0 , Ql-{k,z) =  Wj(k, 1 )z. Let W  denote the matrix 

of (W j(k , 1)) and let Q denote the matrix of (Qlj ( k , 1)), then Q =  zW .  The 

decoherence equation becomes

Pj(k, z)  = ( ( i - Q y ' y ^ z )
oo

t=0
oo

=  £ ( ( w ) ' ) ' / -
t=o

By comparing the coefficients of z l we see that P j(k , t) =  (W 4)*-. Since only 

the first step of the pure quantum walk is involved in W , we can find Pj(k, t ) ’s 

directly. We do this by first calculating WJ(x, 1). Note that

W }(x,l)  = \<4>Xj,U4>0 l> l 2,
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we have

=  i« ; ,

w ?(x , i )  = h '
2 X'l

Hence, after the Fourier transform,

Therefore,

and

Hence,

W }(k , l )  = \ e ik, 

^ ( M )  = ±e~ik, 

Wi2(k, 1) =  \ e ik, 

W22( k , l )  = \e ~ ik.

W  =  -
1 /  eifc e_ifc
2 \ g_*fc

^  =  (cos k)* (  e™ 1 
1 +  e2lfc I e2*fc \

p<yr‘>

=

/ ^ \t= (cM^ )

-  < i - £ + 4 » ‘
-i/c2 —> e 2 ,

which is the characteristic function of the standard normal distribution, the 

limiting distribution of the well known classical walk. It is also clear tha t the 

walk starting at </>0i is exactly classical.
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2 .3 .2  R esu lts  for th e  C entered  D ecoh eren t Q uantum  

R andom  W alk

Now we look into the case of the centered walk with general p. We first 

show that the position distribution of the walk is symmetric with respect to 

the origin.

T h eo rem  2.2  Let X t be the centered decoherent Hadamard walk on the line

with 0 < p < 1 and q =  1 — p. Then E (X t) =  0 , Vt.

We then consider the limiting distribution. We shall apply the same 

method as in the previous section to find the characteristic function of the 

centered walk, P ( k , t ) =  \  jP j(k , t ) .  We derive the following theorem for 

the limiting distribution of the centered decoherent Hadamard walk.

T heo rem  2.3 Let X t be the centered decoherent Hadamard walk on the line

with 0 < p < 1 and q — 1 — p. Then the characteristic function P {k , t) of X t

in distribution as t —> oo.

This theorem states that after long time t, the position distribution of the 

particle is Gaussian. We see from the variance of the distribution tha t it is 

a mixture of the quantum and classical distribution. When p is nearly 1, the 

variance approaches 1 and this implies that the behaviors of the walk are as of 

a classical one. When p is very small, we see that the variance goes to infinity, 
meaning that ^  does not converge. A remark on the speed of convergence is 

discussed in the following chapter.

We also find the long time variance of X t as follows.

satisfies

(2.16)

as t —> oo, i.e.,

(2.17)
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T h eo rem  2.4 Let X t be the centered decoherent Hadamard walk on the line 

with 0 < p < 1 and q =  1 — p. Then

VariX t) = -  j L =  -  4 ( 1  +  g2 -  v/T +  ? )  +  0(e~at),
v  p v i  +  q2 p

(2.18)

for some c > 0, as t —» oo.

This theorem shows that for fixed p, the magnitude of the walk is growing 

linearly in \ft. We compare our analytical results with simulated results in [16]. 

For p — 0.1, the standard deviation at t — 500 is about 62.0. For p =  0.08, 

the standard deviation at t =  500 is about 69.4. For p = 0.06, the standard 

deviation at t = 500 is about 80.0. For p — 0.04, the standard deviation at 

t — 500 is about 97.2. For p = 0.02, the standard deviation at t — 500 is about 

132.8. Those above results match well with the figure 1 in [16].

2.3 .3  R esu lts  for a Specific In itia l S ta te

Now we consider the decoherent walk starting at </>0l. As before we first 

find its expectation.

T h eo rem  2.5 Let X t be the decoherent Hadamard walk starting at with 

0 < p < 1 and q =  I —p. Let pt =  E (X t), then we have pt — —- + 0(e~ dt)

for some d > 0, as t —► oo.

This theorem shows that the limiting position expectation of the decoherent 

Hadamard walk is to the right of the origin, if the initial coin state is “right” . 

We see that when p —> 0, pt —> oo. It is consistent with the result in [4] that 

the pure quantum random walk starting with chirality “right” is drifted to the 

right.
T h e n  w e sh o w  t h a t  th e  l im itin g  d is t r ib u t io n  o f  th e  d e c o h e re n t  H a d a m a r d  

walk starting at f  0l is also Gaussian.
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T h eo rem  2.6 Let X t be the decoherent Hadamard walk starting at (f0l with 

0 < p < 1 and q = 1 — p. Then the characteristic function P(k, t ) of X t 

satisfies

as t —> oo, i.e.,

_> iV(0 , 2 ) (2 .20)
V t P

in distribution as t —» oo.

R em ark  2.1 Note that here the converging speed is 0(t~%) while we have 

0 ( t~ l ) for the centered walk. This is because when one takes the average 

of the >s> the error terms in i~3 cancel. This result shows that the

centered walk converges faster.
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CHAPTER 3 

Proofs of the Theorems

3.1 P roof of the D ecoherence Equation

We start with an observation of the decoherent quantum random walk and 

get a recursive formula. Then we apply that formula to P j(k , z )’s to establish 

the decoherence equation.

For any state cf> e  H, <fi can be written as <p =  i < ‘fiynfi >  ^yr By 

definition, for t > 1,

r t l W

=  E  (I < *  W A / M A k - i V ) ■ ■ ■ (Ah u » a, > |2 +
ji,hy,jteA.

+ Y J \<<t>,AyiU{AjtU){Ajt^ U ) . . . { A h U)4)0i > |2)

=  E  (q\ < U*cf>, ( A ^ A ^ U ) . . .  {Ah U)<t>Qi > |2 +
i i  , h v , j t . e h

+ E l  < V ' W '  (AuV)(AhJ J ) ... (A„ £/).*,, > I2)
y,i 

= g E  \ < U ^ , ( A n U)(Ajt_1U ) . . . ( A j lU)<l>0i> \ 2 +

\ < K A > \ 2 E  I < U*cpyi,(A jtU)(Ajt^ U ) . . .  (Ah U ) ^  > I2. 
y,1 ii j 2,-..,jt6A
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That is

p % m  = qp r (u * 4 > )+ P J 2 \  < m > \2pr(u*4> vt). (3 .1)
y>i

In particular, for </> = </)Xj, we have

P%i(.<l>xi) = P?0i(U*<i>Xj), (3.2)

which in turn gives

P fl[(</>) = qP?°'(U*4>) + p Y ,  | <  > I2< ° i ( ^ ) -  (3-3)

This is our recursive formula. Also, for t — 1, we have

p f 0i {4>) = q\<4>, U<t>0i > \2 + P ^ 2 \  < 12Pf°l (3.4)
y,1

and

Pt^W xj)  = \<4>xj ,U<t>oi > I2- (3-5)

Apply the recursive formula (3.3) and (3.4) repeatedly, we have the following

equation

PUx,t) = P^(4>Xl)3 

t - 1

= e ^ - i e i  < > 12̂ ( ^ , ) + ? t_ ii < v
S =  1 y,l

Note that by the definition of Wj(x, t), we have

|< ^ , ( t /* ) s<̂ . > | 2 

=  \<</>Xj, U ‘<j>y i > \ 2 

=  W j ( x - y , s )

and that

| < ^ , , t /V o , > l2 =  WUx,t).

tj, ^12 (3.6)
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Therefore, (3.6) becomes

t- i

i*(x, t) = Y l  pqS~l E wKx -  y> s)p̂ i - s)+ * ) ■  (3-7)
s=i y,i

Now, by (3.7), for z £ {z : \z\ < ^},

OO

pj ( x >z ) = '5 2 pj ( x >t )*?
t=o

oo

where

t=i
oo t —1

t = 1 s = l  ^  y ,l

= ^ .  + l o ; ( x ^ ) +

I**"*+E-^)',E^(x-^5) E pi(y, t -s)
s = l  ^  y,l  t —s —1

= S ° '+ -Q ) (x ,z )+  (3-8)

OO

+ E -w  E T(* -». »)(# (»• *) - ■*»')
a=l  ̂ y,t

1 OO

= ^  +  lQ ;( I , i ) - E ^ 9 2)*M,i(=:. 3)+
S =  1

OO

+ E  l & y  E w t t x  -  y > s^p t t y ’z)
3=1  q  y ,l

= %  + j Q ) ( x , * ) - Q ) ( x , z ) +

+ E QlAx ~y’ z">pi(y'
y,i

5Z  =
1, a = f3,m = n 

0 , otherwise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Finally, we take the Fourier transform on (3.8),

x

= Y . 5* / kx + - J 2  Q)(x ^ y kx+
X  ^  X

+ E E ^-y ; 4 P/(̂ Kfc3:
x  y ,l

=5) + q-Q ){k ,z )+j  p  j

+ E E ptty> zY ky E QlAx -  y> zY Kx~y) (3.9)
l y  x

=S‘ + q-Q -(k , , )+

i y

=<5‘ + ?Q;(M)+

1

The interchanges of summations are justified since the series absolutely con­

verges. Now, denoting the matrices (Pj(k, z)) and (Q* (fc, z)) by P  and Q, we 

have the following equation.

P = I  + ±Q + PQ, (3.10)
P

which is

P (I  — Q) = —- ( /  — Q) + - I -  (3.11)
p  p

We complete the proof by the following lemma.

L em m a 3.1 For z 6  {z : \z\ < 1}, the matrix I  — Q is invertible.
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(3.12) implies tha t | |Q | |o o  =  m aXjV. \QlA < 1. Therefore,

OO

n —0 n = 0  (3.13)

< 0 0 ,

i.e., the series JA’Y o  Qn converges. This implies tha t ( /  — Q)~l exists and

{I - Q Y 1 =
71—0

By Lemma 3.1, I  — Q is invertible and together with (3.11) we have

P  = - q- I  + - ( I - Q ) - \  (3.14)
V V

which is exactly (2.15).

For z € {z : \z\ < 4}, | det( /  — Q)\ < oo. Hence, det (I  — Q) is analytic. 

Note also that

q , 1 -  Q\P i(k ,z )  =  - ^  +p p det ( /  -  Q) :

^ ( M  = <?2
p det ( /  — Q) ’

pdet ( /  — Q) ’
i - Q i

p p det (I -  Q)'

Therefore, P j(/c,z)’s are meromorphic functions for z € {z : \z\ < ^}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

3.2 Proofs in the Centered W alk Case

3 .2 .1  P relim inary

To make use of the decoherence equation (2.15), first we need to know the 

formulae of W j(k,t) ,  i.e., we look at the pure quantum walk in the Fourier 

transform.

Similar as the setup in [4], we let the initial state be fat , and we let 

^ ( x ,  t) = <  fa., Utfai > be the coefficient of the walk at time t at coordinate 

4>Xj, then W j(x ,t)  = \ ^ { x , t ) \ 2. We also introduce ^ ( k , t )  =  ^2x ^ lj(x , t)e lkx 

and ^ l (k, t) =  { ^ \ { k , t ) , ^ l2{k,t))T in the Fourier transform as in [4]. The 

evolution operator in k space, U(k), is defined s.t. 4">l(k ,t  + 1) =  U {k)^ l{k,t). 

It is obtained in [4] that

Therefore.

with

2\ / l  +  cos2 k

2\ / l  +  cos2 k

where € [—| , |]  is s.t. sinta^ =  and costn^ = / 1+cos2 k  
2
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Let A * = \  + a V W fc  and Ck =  a T & T  Then for * =  2n -  1, we have

Uf(k) =
t , (2Ak — 1) cosujkt + i sh iest 2Ck cosujkt

\ 2Cfc cos ujj-t (1 — 2Ak) cos u>kt + i sin u>kt J

/  —g-K^t _|_ 2^ fc cosiOkt 2Ck cosujkt \

\  2C/. cos u>kt eluJkt — 2A k cos tokt J
and, for t = 2n, we have

_  /  z(2Afc -  l)sina;fct +  coswfet 2iC'fcsinu;fcf \

y 2iCfc sincjfci «(1 — 2Ak) sinu>kt + cosLukt J

/  e-iukt _|_ 2Aki s inukt 2iCk sin u>kt \

y 2iCk sin u>kt ezulkt — 2Aki sin u>kt J

Now, note that

$}(*, 0) =  J ]  < <t>Xj, =  <5), (3.15)

and tha t \l/*(£:,f) = (U(k))t 'i>l (k, 0), we conclude that \&t(fc,t) =  ((U(k))) a  ^ , u ; ,  we uuiiuiLiuc Liiau

Hence, for t  = 2n — 1,

ty{(k,t)  =  —e~tulkt + 2Ak cosu)kt,

^2  (k, t ) = 2Ck cosukt,

^ l ( k , t )  — 2Ck cosivkt,

^ 2 (k, t )  =  elulkt — 2Ak cos ujkt.

For t  =  2n,

\hJ(A;, t) =  +  2Hfcisino;i,t,

^ l ( k , t )  = 2iCk sinujkt,

1(k , t) =  2iCk sinu>kt,

>̂2 (k, t )  =  elulkt — 2A ki sin uikt.

Since W j(x,t)  =  f)|2, in the Fourier transform,

1
2tt Jo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We use the above equation to find Wj(k,t).

For t — 2n — l,

   1 r
W H k,t)  = —  /  ( e - ^ + ^ - d t  _  2As coscoste - lulk- ‘t

2?r j 0
- 2ylfc_s cos u>k_ste~tUst +  4j4sj4fc_s cos ujst cos u>k_st)ds

i
W22(M ) =  —  / (ei(Ws+̂ - s)t- 2As coswste,a;k- st

27T J o

- 2 A k_s cosu)k_stelulst +  4AS-Afc_3 cosuj3t cosu)k- st)ds,

  1 f 2v
W U k.t)  = —  4C'sC'fc_s cos u>kt cos u)k- stds,

27r J o

1 f 2v ~ ~
W 2(k , t ) =  —  / 4C'sC'fc_s cos tukt cos u k_stds.

2?r J o

Similarly, for t =  2n,

_  1 /'27r
W H k,t)  = —  /  (e-i(Ws+w'=-s)t +  2Asi s i n ( j , t e ^ - st

2tt Jo
+ 2Afe_sisinw fc_ste_*Cl'st -  4J4sAfc_asinwst sinwfc_st)ds

  . 1 c2̂
W22(M ) =  —  / (ei(Ws+a,'!- s)t- 2Asisinw steî -  

2?r Jo
A u s t2Ak_si sincufc_ste*tJat -  AA3A k-a sintjstsina;fc_st)ds,

_  1 /'27r
W U k ,t ) =  / 4CsCfc_s sinwfcisinw fc_.JcLs,

271" Jo

1 f 27t
W ?(k ,t) =  / 4C'sCfc_s sina;fctsina;fc_sid5.

2vr Jo
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We separate the real and imaginary parts of Wj(k, t). For f =  2n — 1, 

Re(W }(k,t)) = Re(W%(k,t))
1 f 2lr 1 COS UJst COS LUk-st I f 2* .  .

cosscosf/c — s) as — —  / smca,,tsmu;/c_stas,
Jo 2 COS CUS COS L O k -s  27T

Re{W}(k,t)) = R e(W 2(k,t))
r2ir cos k

2n J0 2 cos ojs  cos u>k-
■ COS LVst cos Uk-stds,

Im (W l(k ,  t)) = - Im (W 2(k , t))

i .  r \ _________
2-7T J0 y/2 COS IV s

1 coss 1 cos (k — s) .
cosuatsmuik-st H— 7=---------------cosWfc_srsm a;srjas,

\/2 COS LUk-s

Im (W }(k , t )) =  - Im (W 2(k , t))
1 f 2v sink cosu)stcos!vk- st ,

= -------- / --------------------------------------------- G(S
27T Jo 2 coscua cos LOk-s

For t = 2n,

Re(W l(k ,t))  = R e(W 2(k,t))
1 /"27r 1 sina;sf sinu;fc_st

27T J 0 2 COS C O S O J k - s

1 /■
cos s cos (k — s)ds-\------- / cos tvst cos tVk~stds,

27T Jo

Re(W }(k,t))
f2-7T

Re{W 2(k , t)) 
cos k

!0 2 cos cos Wfc-s
sin caai sin iVk-stds,

J_  f 2*(_l_____
27T Jo a/2  cos w,

cos s 1 cos(fc
sin ivst cos iVk-st +

a/2 COS (Vk—s
■ sin iVk~st cos u st)ds,

Im (W ^ (k , t)) =  - /m (W 2(fc,f))
1 Z'277 s i n f c s i n a p i s m ,

=  —  / --------------------------- as.
27r Jo 2 cos cas cos Wfc_s

Now we are ready to find PJ (fc, -z)’s formulae.
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3 .2 .2  T he In trod uction  o f S^’s

To find the formulae of Pj(k, ,z)’s, we first introduce several short notations. 

We introduce the E j’s for z € {z : \z\ < ^}. Let

Ei =  Re(Q\)
OO

^  t - 1

E 2 =  Re{Q\)
OO

^ t= 1

9 t= i

Im{Q,
OO

P 1

^  t = 1

Since |lT)(fc,t)| < 1, for 2 € {z : |^| < i}, the above series all converge. 

Therefore, E j’s are all analytic in {z : \z\ < ^}.

Now det( /  — Q) can be written as

det (I  — Q)

= 1 — q \ — q \ +  q \q \ — q \ q \

=  ( l - E i ^ - E ^  +  Ea2 ^ 2.

Note tha t P(k, z) =  |  . Pj{k, z). By the decoherence equation (2.15), this
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function can be written as 

P (k ,z )

_  _  Q 1 2 — Q\ +  Q\ +  Q\ — Q\
p 2p det ( /  — Q)

.. OO OO

=  “  I  +  pdet (7 — Q) (1 “  Vq E [ f e W 1('=,i))](^)* +  t))](<p)‘)

_  _  £ ________________________1 ~ S i +  E2_
P p ( ( i - s 1)2 - s 22 +  s 32 - s 42)-

(3.17)

Therefore, once we have the formulae of E j’s, we have the formulae of 

P (k ,z) .  To find E j’s formulae, we first look for the formulae for z € (—~> ~) 

as a real number. Then we show that they are the desired formulae for all 

z G {z : \z\ < i} . Let

OO

h  =  Y  cos [(2n -  l)o;a] cos [(2n -  1 )ojk_s](qz)2n~1,
n = 1 

oo

h  =  Y j Sin ^ 2n “  Sil1 ^ 2n ~~ ( lZ)2n̂ )
n = 1 
oo

h  = Y  cos t(2n)^] cos [(2nVfc-s] (^ )2n,
n = l
oo

h  =  y~]sin [(2n)cus] sin [(2n)ujk- s](qz)2n,
n = l

oo

h  =  5 ^ cos K2n ~  sin t(2n ~
n = 1 

oo

16 =  ^ s i n  [(2n — l)cus] cos [(2n — l)cufc_s](gz)2n-1,
n = l
oo

17 =  X ^sin  [(2n)cus] cos [(2n)wfc_s](<pz)2rl,
n = l

oo

/ 8 =  Y j  cos [(2n)u;s] sin [(2n)tufc_.,] (qz)2n.
n = 1

Since E j’s are bounded, we can interchange the integral and the summation
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to write E,-’s as

=  i  +
q In J0 2 cos u>s cos uik- s

E2 =  [ 2 - ------ — ------ ( h - h ) d s ,
q 2tt Jq 2 cos ujs cos u>k- s

„  p i  f 27T 1 , cos s / T T . cos (k — s) , T T N1 .Z 3 = t —  _ ------  / 5 +  / 7 + -----  ̂ l ( l 6 + l8)]ds,
q2n J0 V2 cos los cosojk- s

^  p i  f 2̂  1 sin A; .
E4 — - /--- ------------------- ( - / 1 +  / 4)ds.

q 27r 70 2 cos cos wfc_s

Then we have

h - h

= — cos cos ujk_aqz(l -  q2z 2),

—I2 +  h  
1 1— [—-  sin s sin (k — s)qz + q2z 2 [cos2 s +  cos2 (k — s) — 1] 

3
- - s i n s  sin (k — s)q3zs — q4z4},

where

h  + h

- j - - ^ q z  cos lus [sin (k — s) +  2qz sin s +  q2z2 sin (k — s)], 
■L) V 2

h  +  h

-j- —j=qz cos cok_s [sin s +  2qz sin (k — s) +  q2z2 sin s], 
D y/2

D

=  (1 — 2 cos (cos +  ujk_ s) q z  +  q2z 2) ( l  +  2 cos (u>3 +  ojk- s ) q z  +  q2 z 2)

= cos (k -  2s)(q3z3 -  2 cos Â 2,?2 +  qz) +  ij4z4 -  cos A;g32;3 -  cos kqz +  1.
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Therefore,

1 f 2* 1 1
Ei =  p z—  / — [cos (k — 2s)qz(cos k — qz) +  -  cos k

2tt J0 D 2

cos kq2z2 — q3z3]ds,

1 1 f 2n 1
S 2 =  - p * c o s f c ( l - g V )  —  j  — ds,

1 f 27T 1 1 1
E3 =  p z s in k —  — [cos(fe -  2s)qz + -  +  - q 2z2]ds,

z7T J q JJ Z Z

E.4
1 1 f 27r 1
-p z  sin k (l  -  q2z2)— J  — ds

By the integral formula

dx 2 , b — c . 1 ..
arctan U   tan (-ax))

J b + ccosax ay/b2 - c2 V b + c 2

for b > c and the fact that

q4z4 — cos kq3z 3 — cos kqz +  1 > q3z3 — 2 cos kq2z2 +  qz

for z we haveV g ’ g '  ’

l r 2* l ,
D ds

i r2w ds
2tt Jo cos [k — 2s)(q3z 3 — 2 cos kq2z2 +  qz) +  qi zA — cos kq3z3 — cos kqz +  1
 1_____________________________
y j (q4z4 — cos kq3z 3 — cos kqz +  l )2 — (q3z 3 — 2 cos kq2z2 +  qz)2

1
(1 +  qz)( 1 — qz) y / (q2z2 — (1 +  cos k)qz +  1 ){q2z2 +  (1 +  cos k)qz +  1) 

Letting

E  =  y j  (q2z2 — (1 +  cos k)qz +  l)(q2z 2 +  (1 +  cos k)qz +  1),
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we have

v  Vz 1 1
S l  ~ ~ 2  2----- 3--------i--------— [ c o s k - q zqAzz — 2 cos kqz +  1

cos k — 2 qz +  cos kq2z21 
2E

^ 2 =pz cos k -^ j ,  (3.18)

pz sink  1 — q2z2
3 q2z2 — 2 cos kqz +  1 2E  ’

S 4 =  — pz sin k —=. 
r  2 E

Now that we have obtained the formulae of E j’s for z € we can

check easily by taking the principal branch of log, the formulae are analytic

in {z : \z\ < t} . Hence, by the Analytic Continuation Theorem, they are the

desired formulae ioi z E {z : \z\ < -}.I I  q J

3.2 .3  P roofs in Su bsection  2.3.2

We begin with a lemma showing the formula of P(k, z).

L em m a 3.2 The generating function of the centered decoherent quantum ran­

dom walk, P{k,z), is given by

P(k ,z)
_  q(q ~  cos2 k)z2 +  pcos kz -f- (1 — zcos k)E

pq cos kz 3 — (pq +  p)z2 +  p cos kz + (z2 — 2 cos kz  +  1 )E

Proof. The formula is obtained by applying (3.18) to (3.17).

Proof of theorem 2.2. Note that from the formula above, for some r  < 1, 

we have

E ( X t )

= \ d kP(0, t)

=  J - /  °kP^ d z
27Tl J lzl=r i z t+1 

=  0.
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The change of the order of integration and differentiation is justified since 

dkP(k, z) is continuous on the contour.

Proof of theorem 2.3. The denominator of P ( k , z ) has less than eight iso­

lated roots. We shall now look for the root with the smallest absolute value. 

This root has no closed form. However, since we concentrate on the asymptotic 

behaviors, we need only to know its behaviors around k =  0 . The properties 

of this root are summarized in the following lemma.

L e m m a  3 .3  Let D (k ,z ) denote the denominator of P (k ,z) .  Then the root of 

D(k, z) =  0 in z, with z — 1 when k =  0 is of the smallest absolute value in a 

neighborhood of k = 0. I f  we denote it by z{k), then z(k ) has multiplicity one 

and can be written as follows.

z(k) =  1 +  dkz(0)k +  o(k).

Proof. For k =  0, D{0 ,z) =  (1 — z ) { \ —qz)(jpz+{l — z ) y j l  +  q2z2). By solving 

this equation we can see that z — 1 has the smallest absolute value. The root 

of the second smallest absolute value has a closed form expression, which we 

put in the appendix. We denote this root by z(p). An expansion of the root 

around p =  0 is

HP) =  l +  ^ P + ^  +  ^ ) p 2 +  o(p2). (3.19)

Now, by continuity of k, z{k) has the smallest absolute value in a neigh­

borhood of k =  0 .

Since dzD (k ,z ) |fc=o,z=i ^  0, z{k) has multiplicity one. We then apply the 

Implicit Function Theorem to find its derivatives.

R e m a r k  3 .1  For p —> 1, D(0,z)  —> 1 — z, for all z e  {z : \z\ < 1}, which
implies that other roots go to infinity and eventually disappear.

Now we utilize the Implicit Function Theorem to find dkz{0) and dk2z(0).
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Let F{k) be the denominator of P ( k , z ) and the function z{k) is defined 

implicitly by F (k ) =  0.

Take the first derivative and we get

0 =  dkF{k )

=  —pq sin kz3 +  pq cos kZz2dkz — {pq +  p)2zdkz 

—p sin kz + p cos kdkz

+E{2zdkz +  2sinA:z — 2 cos kdkz) + dkE (z2 — 2 cos kz  +  1).

Put in k = 0 and z = 1, the equation becomes

{pq -  p)dkz = 0 ,

which implies that

dkz{ 0) =  0. (3.20)

Now, for dk2z{0), we can take the second derivative on F(k)  to get 

0 =  dk2F

=  — pq cos kz3 — 2pq sin k3z2dkz + pq cos k{3z2dk2z +  6z{dkz)2)

— {pq +  p){2zdk2 z +  2{dkz)2) — p cos kz — 2psm.kdkz +  p cos kdk2z 

+E{2zdk2z +  2 cos kz — 2 cos kdk2z)

+2dkE{2zdkz +  2 sin kdkz — 2 cos kdkz ) 

dk2E{z2 — 2 cos kz +  1),

which in turn gives

dk2z{0) = P +  2V ^ ~ 2 . (3.21)

Similarly, taking the third derivative of F{k) = 0 gives

dk3z{ 0) =  0 .
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Also, by taking the fourth derivative we get

dk4z(0) =  ■—  - r(76g4 -  83qs(l + q2) U
p6{ 1 +  q2) 2

+  16g3 +  68g2 -  q2( 1 +  g2)2 -  37g(l +  q2)^ + 

+  16g — 23(1 +  q2)^ +  28).

Hence we have the expansion of z{k) at k =  0

^(fc) =  i  +  P +  2V/ l  +  g2 ,g fc2 +  Q(fc4^ (3 22)

The residue of is

R e s ( ^ f i , z ( k ) )  = ( 4 r )t+1 lim (z -  z(fc))P(fc, z) .  (3.23)
H + i  ^ ( ” 0  z —>z(k)

We then show another lemma.

L e m m a  3 .4

lim (z(fc) — z)P(k, z) = 1 +  0(fe2) (3.24)
z —*z(k)

as k —> 0 .

Proof. Note that Vz ^  1;

lim(z(A;) -  z)P(k, z) = 1,
A;—> 0

i.e., Ve > 0, 3<5, s.t.,

\(z(k) — z)P (k ,z)  — 11 < e (3.25)

for |k | < 8. (3.25) implies that

for \k\ <  8. Hence,

1™ Iiz (k) — z)P (k ,z)  — 1| < e

I lim (z(k) — z )P (k ,z ) — 1| < e
z ^ z ( k )
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for \k\ < 5, i.e.,

lim lim (z(k) — z)P (k ,z)  =  1.
h —>0 2—>z{h)

Now, for a small r\ > 0 s.t. z (k ) is the only pole in the circle \z — 1| — n ,  we 

have

limn lin^  ~ z^ k’z) ~k —>0 z —>z(k) /C

= lim /  P (k ,z)dz  — 1)
fĉ o k 2iti J\z_i\=n (3.26)

dkP(0,z)dz

= 0 .

Similarly, we also have

Iin?, Ud?m V i ^ z ^  ~ z ^ ( k ’z ) ~  ^/c—j-0 z —+z{k) K

l
® dk2P(0,z)dz

J |z—l | = n2^  J | z - l | = r i

_ j w  * , 2^ ( - i  +  y r + y ? )  p -27)
(1 -  z)2 (1 -  z)2(pz + (1 -  z ) ^ / l  +  q2z2) ’

= p + 2Vt t ? - 2 _  V  _ 2

P +  92 P

Therefore, limz-^z(k){z{k) — z )P (k , 2) =  1 +  0 {k 2).

Now for any fixed k G [0, 27r], the characteristic function of ^  is P (-^ ,t ) .  

Since the roots of D(k, z) are isolated, we can set r(p) = 1 +  ^ p s.t. 1 ^ ) 1  < 

r(p) and other roots are outside the circle {\z\ =  r(p)}. Furthermore, when t 

is large, ^  is small, hence the lemmas are applicable. We define the contour 

C as C = {z : \z\ — ro} lj{^  : \z\ = r(p)}, where r 0 <  1.

By definition,

P ( k t) = J - I  ^ A d z .  (3.28)
' y f t '  ^ i r i  J \ z \= r Q ^ + 1
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Since z(-^=) is the only pole in the contour, we have 

Rc/ {̂ ' z ) -A k ) ) -  M f  d z - f
■n 'e A l  z t + 1 , 2 4  2 7 r iV j) z |= r 0 2 {+ !  ® M = r (p )  z ^ 1

For fixed 0 < p < 1, supfc ^|=r(-p) 1 ^ ) 1  < oo. Hence,

/  ^  t
t  U ~ dz = )■

.7 |z |= r(p )

We have

=  ~ R es( ^ 7 ^  +

Note that by (3.24), we have

lim lim ( z (A )  -  *)P("7=> -  1 +  0 (t 1).t->ooz_ z(fc) y'i ^
'■Vt

Note also that by (3.22),

which implies that

=  (i +  L + J V ^ - I ! ^ .  +  0 (r 2))-(w ) 

=  (i _ P ± V l ± Z _ ^ ^  +  0 ( r 2))t+i

=  ex p { -p +  2v /^ +  g2 ~ 2 fc2} +  0 ( r 1),Vfc.
2 p

Therefore, by (3.23),

P (z (~7f))0  =  exP { - P +  2v /I  +  g — - fc2} +  0 ( t  x), Vfc G [0, 2tt] 
Vt 2P
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as t —> oo. Hence, the limiting distribution is Gaussian with variance v =
p+2y/l+q2-2

p

R em ark  3.2 We put some comment on the speed of convergence in the theo­

rem, i.e., we compare the speed of 0(r(p)~t) and 0 ( t_1). Note that by (3.19) 

that we can pick r(p) as large as r{p) = 1 +  Note also that the equation

r{p)t =  t (3.33)

has two solutions if  1 < r{p) < 1.44. Therefore, when p > \f2[eh — 1)

0.62, r(p)~t < t~x for all t, which implies that the error term is of order 0 ( j ) .  

However, for p small, there is an interesting phenomenon. Although fo r t  very 

large, r(p)~t < t~l , there is an interval o f t  such that r(p)~t > i -1 . A rough 

approximation of the bigger root, T, in equation (3.33) is

T  >  ( “  l o g ( l o g ( r ( l , » > '  <3 -3 4 )

For instance, if r{p) =  1.01 then r(p)~t > H 1 for  2 < t < 651. This implies 

that when the system is nearly not interfered, the error term can be very large 

and the classical behaviors are not significant for a long time.

Numerical studies on this phenomenon can be found in [16] and [17], They 

showed that for pT  <C 1 and T >  1, the distribution is highly uniform in the 

time interval — ̂  < x  < ^  and the variance of the walk is about T 2, which 

are very similar to the one of pure quantum walk.

Proof of Theorem 2.f.: For X t , we can also find its long time variance. Let 

C  be the same contour as before, when t is large, z = 1 is the closest root to 

0 among all that of the denominator of P(k, z).

Note that

d2kP(0,z)
z  2z2(—l  +  i / l  +  q2z 2)

(1 -  z )2 (1 -  z)2(pz +  (1 -  z ) \ J \  +  q2z 2) ’
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and that

Res( —  ( Z—  + ____ 2̂ t ^ .L ± l 2̂ l ) i)
1 *t+11 (i -  z f  +  (i _  z)2{pz +  (i _  z)y/ T T j W )

= ( - 1  -  2 ( v / iT ^  +  g g L .  +  ^ ( i  +  q2 -  v T T ? ) .
p  p  y / i  +  ? 2 p

Hence,

V ar(X t)

= - d k2P(0,t)
1 £ d t ip ( 0 , z ) dz

2m Jc  z t+1

-  p  ( 1 ( Z . 2z2(—1 +  -\/l +  g22:2)  ̂ t
es<z<+i( ( l - z )2 ( i - z)a(Pj + ( i - z)v/ i +422!))’ <r(p)

=  p + 2 ' A + ? - 2t „  ,
P p  V 1 +  g2 P 2

The change of the order of integration and differentiation is justified since 

dk2P (k , z) is continuous on the contour. Hence, the long time variance of the
walk is P+2V ^ - 2t _  _  _2 (1 +  g2 _  +  0 (r(p )- t) .

3.3 Proofs in Subsection 2.3.3

From the decoherence equation we have

/? ( * , , )  -  - M  ^p pdet (I  -  Q )’ 
1 <52
p det ( /  — Q)

Let X t be the walk starting with type 1 at time t and P (k ,z )  — P±(k,z) + 

P2 (/c, z) be the generating function of it. Then

P{k,z)
(£ 1   Fb “1“ 2S 3 -1- S 2 “1“ ?'F;4
p +  p d e t ( I - Q )

S 3 +  S 4
=  P (k ,z )  + i

pdet ( /  — Q)
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Note that E3 and S 4 both have a factor of sin A;, we denote and° * 5 sin Ac sm i

by E3 and E4 respectively.

Proof of Theorem 2.5. Note that

dkP(0, z)
S 3 +  S 4

. / s 3 +  e 4 ..
=  H —   )lfc=o

z{s/ 1 +  q2z2 -  1)
(1 -  z)(jpz +  (1 -  z)y/ 1 +  q2z2)

Let C be the same contour as before, when t is large, z = 1 is closest to 0 

among the roots of the above denominator. Hence, for fixed p,

E (X t)

- d kP(0,t)
%

1 f  dkP(0, z)
2tti Jc iz t+1

dz

( \ / l  +  g2^2 - l )  ^
2tt* Jc z t { 1 — z){pz +  (1 — +  q2z2)

=  i?es(------------- (V l +  g2*2 - ! ) _  ̂j) +  Q (r (p)-t)
2 * (1  -  z ) (p .Z  +  (1  -  Z ) y j  1 +  (?2 .Z2 )

\ / l  +  ^  — 1 , ^  t v̂-t^
=  ---------- --------------+  0 ( r ( p )  )•

Proof of Theorem 2.6. Let =  E (X t). We want to show tha t —>

iV(0,u). The long time characteristic function is 
k .

P i 7 t ' t)e "
r>t k  J.\ I ^  I  ^  ( S 3 +  S 4  w  k= P i —p ,t)e  + e '/*■ s in —p - — ® ——  (—-— —— — )(—=, z)dz 

y/t y/t 2m Jc  zt+l p det (I  -  Q) y/t
, p +  2^ /l  +  g2 — 2 2 u=  e x p { ------------y— ---------------k J}  +  0 ( t  2 ).

Zp
Hence, the limiting distribution of the decoherent quantum random walk start­

ing with type 1 is Gaussian with variance v = p+2'J l̂ q — .
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R em ark  3.3 Note again that there is an interval of t such that r(p) 

The length of this interval T  has the rough estimation of

T  > log (2p)
2p
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CHAPTER 4 

Conclusions

We have investigated the quantum walk with decoherence on both position 

and chirality states. Long time limits are obtained for both centered walk and 

the walk starting at 0 with chirality “right” . Analytical explanations of the 

dynamics of the decoherent quantum walk system are given and we see that 

the system is indeed a mixture of quantum and classical ones. The limiting 

distributions of quantum random walks are Gaussian if decoherence occurs.

We want to emphasize that our work is done through a purely analytical 

approach. The method of establishing an equation between the decoherent 

system and the pure quantum system is new in this area of study. We believe 

this method is widely applicable in future studies.

From Remark 3.2 and Remark 3.3, we also see that when p is small, the 

system remains non-classical for a very long time. If a quantum algorithm can 

be finished before the classical features appear, then we call it a “pseudoquan­

tum ” algorithm. However, we do not know how fast the “pseudoquantum” 

algorithms are as compared to the classical ones. It would be a very interest­

ing problem for future studies.
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APPENDIX A

Appendix

The other three roots of pz +  (1 — z ) \J  1 +  q2z 2 = 0 are

zp l= l/2 + l/6*3"(l/2 )/q* ((3*q"2* ((27 -50*q+ 27*q"2+ 3*3"(l/2 )* (l 
46*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" (1 /3 ) -4*q*((27- 
50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 / 
2 ) ) *q"2)" (1 /3 )+ 2 '(1 /3 )* ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+ 
27-100*q-100*q"3+27*q"4)" (1 /2 ))  *q"2) " (2/3)+2*2" (2 /3) *q"2) /  ( 
(27-50*q+27*q"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4) 
" (1 /2) ) *q"2) "(1 /3 ) ) " ( l /2 )  + l/6 * 3 '' (1 /2) /q* ( (6*q'’2*( (27-50*q+2 
7*q~2+3*3~(1 /2 )*(146*q~2+27-100*q-100*q"3+27*q~4)“ ( 1 /2 ) )*q~
2 )“ (1 /3 )* ( (3*q~2*( (27-50*q+27*q~2+3*3"(1 /2)*(146*q"2+27-100 
*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 ) -4*q*( (27-50*q+27*q"2+3 
* 3 " (1 /2 )* (146*q~2+27-100*q-100*q"3+27*q~4)" (1 /2 ) )*q~2)"(1 /3  
)+ 2 " (1 /3 )* ((27-50*q+27*q~2+3*3~(1 /2 )* (146*q"2+27-100*q-100* 
q"3+27*q"4)" (1 /2 ) ) *q~2)"(2 /3 )+ 2 * 2 "(2 /3 )*q~2)/ ( (27-50*q+27*q 
"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" 
(1 /3 ) ) " (1 /2 ) -8*q*( (27-50*q+27*q"2+3*3"(1 /2 )*(146*q"2+27-100 
*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)“ (1 /3 )* ( (3*q"2*( (27-50*q+27*q 
"2+ 3*3"(1 /2)*(146*q"2+27-100*q-100*q"3+27*q"4)“ (1 /2 ) )*q"2)" 
(1 /3 ) -4*q*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100* 
q"3+27*q"4)" (1 /2 ) ) *q"2)“ (1 /3 )+ 2 "(1 /3 )* ((27-50*q+27*q"2+3*3" 
(1 /2 )*(146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" (2/3)+2 
* 2 " (2 /3 )*q"2)/ ( (27-50*q+27*q"2+3*3"(1 /2)*(146*q"2+27-100*q- 
100*q"3+27*q"4)" (1 /2 ) )*q"2)" ( 1 /3 ) ) " ( 1 /2 ) - ( (3*q"2*( (27-50*q+ 
2 7 * q ~ 2 + 3 * 3 " ( 1 / 2 ) * ( 1 4 6 * q " 2 + 2 7 - 1 0 0 * q - 1 0 0 * q " 3 + 2 7 * q ' 4 ) ~ ( l / 2 ) ) * q  
" 2 )" (1 /3 ) -4*q*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q- 
100*q"3+27*q"4)" (1 /2 ) ) *q"2)"(l/3)+2"(l/3)*((27-50*q+ 27*q"2+  
3 * 3 "(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" (2 /
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3) +2*2" (2 /3) *q"2) /  ( (27-50*q+27*q"2+3*3" (1 /2) * ( 146*q"2+27-10 
0*q-100*q"3+27*q"4)~(1 /2 ) )*q"2)~(1 /3 ))" (1 /2 )* 2 " (1 /3 )* ((2 7 -5  
0*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4)"(l/2 
) ) *q"2)~(2 /3 ) -2 * ( (3*q"2*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2 
+27-100*q-100*q"3+27*q"4)" (1 /2 )) *q"2)" (1 /3) -4*q* ( (27-50*q+2 
7*q"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4) " (1 /2 ))  *q" 
2)"(l/3)+ 2"(l/3)*((27-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100 
*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (2/3)+ 2*2"(2 /3 )*q"2)/((2 7 -5 0  
*q+27*q~2+3*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4)''(l/2) 
) *q"2)" (1 /3 ) )" (1 /2 )* 2 " (2 /3 )*q"2+12*3"(1 /2 )*q*( (27-50*q+27*q 
"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4)~(1 /2 ) )*q"2)" 
(1 /3 )+ 6*3"(1 /2 )*q"3*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27- 
100*q-100*q"3+27*q"4)" (1 /2 ) ) *q"2)" (1 /3 )-1 2 * 3 " (1 /2 )*q"2*((27 
-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4)"(1 
/ 2 ) ) *q"2)" ( 1 / 3 ) ) / ( ( 27-50*q+27*q"2+3*3"(1/2)*(146*q"2+27-100 
*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" ( 1 / 3 ) / ( (3*q"2*( (27-50*q+27*q 
"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4)"(1 /2 ) )*q"2)" 
(1 /3 ) -4*q*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100* 
q"3+27*q"4)" (1 /2 ) ) *q"2)" (1 /3 )+ 2 " (1 /3 )* ((27-50*q+27*q"2+3*3" 
(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" (2/3)+2 
* 2 " (2 /3 )*q"2)/ ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q- 
100*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 ) )" (1 /2 ) ) " (1 /2 )

zp2=1 /2 -1 /6 * 3 "(1 /2 )/q* ((3*q"2 * ((27-50*q+27*q"2+3*3"(1/2)*(1 
46*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" (1 /3 ) -4*q*((27- 
50*q+27*q"2+3*3"(1/2)*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 / 
2))*q"2)"(l/3 )+ 2"(l/3 )*((27-50*q+ 27*q"2+ 3*3"(l/2 )*(146*q"2+  
27-100*q-100*q"3+27*q"4)" (1 /2 ) ) *q"2)" (2 /3 )+ 2 * 2 "(2 /3 )*q"2 ) / (  
(27-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4) 
" ( 1 /2 ) ) *q~2)" ( 1 /3 ) ) " ( l/2 )+ l/6 /q * (- ( -1 8 * q "2 * ( (27-50*q+27*q"2 
+3*3"(1 /2 )*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ) ) *q"2)"(1 
/3)*((3*q"2*((27-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-10 
0*q"3+27*q"4)" (1 /2 ) ) *q"2)" (1 /3 ) -4*q*( (27-50*q+27*q"2+3*3"(1 
/ 2 ) * (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)" ( l /3 )+ 2 " ( 
1 /3 )* ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100*q"3+2 
7*q"4)" (1 /2 ) ) *q"2)" (2/3)+2*2"(2 /3 )*q"2)/ ( (27-50*q+27*q"2+3* 
3 " (l/2)*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ) )* q "2 )"(1 /3 )
) ~ ( l / 2 ) + 2 4 * q * ( ( 2 7 - 5 0 * q + 2 7 * q ~ 2 + 3 * 3 ' ' ( l / 2 ) * ( 1 4 6 * q - 2 + 2 7 - i 0 0 * q - l
00*q"3+27*q"4)" (1 /2 ) ) *q"2)" (1 /3 )* ( (3*q"2*( (27-50*q+27*q"2+3 
* 3 " (1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)"(1 /3  
) -4*q*( (27-50*q+27*q"2+3*3"(1/2)*(146*q~2+27-100*q-100*q"3+
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27*q~4)‘ (1 /2 ) )*q~2)~(l/3)+2“ (1 /3 )* ( (27~50*q+27*q-2+3*3-(1/2  
) *(146*q~2+27-100*q-100*q~3+27*q~4)~(1 /2 ) )*q"2)"(2/3)+2*2"( 
2/3) *q~2) /  ( (27-50*q+27*q"2+3*3- ( 1/ 2) * ( 146*q''2+27-100*q-100* 
q-3+27*q"4)“ (1 /2 ) )*q“2 )“ ( 1 /3 ) )~ (l/2 )+ 3 * ( (3*q“2*( (27-50*q+27 
*q-2+3*3-(l/2)*(146*q-2+27-100*q-100*q-3+27*q-4)-(l/2))*q-2 
) - ( l /3 ) -4 * q * ( (27-50*q+27*q-2+3*3"(1/2)*(146*q~2+27-100*q-10 
0*q-3+27*q"4)" ( 1 /2 ) ) *q"2)" ( l/3 )+ 2 “ (1 /3 )* ( (27-50*q+27*q"2+3* 
3“ (1 /2 )* (146*q~2+27-100*q-100*q-3+27*q~4)“ (1 /2 ) )*q“2 )~ (2/3) 
+2*2~(2 /3 )*q~2)/ ( (27-50*q+27*q-2+3*3-(1 /2 )* (146*q‘ 2+27-100* 
q-100*q-3+27*q~4)-(1 /2 ) )*q -2 )~ (1 /3 ) ) ' ( l / 2 ) * 2 - (1 /3 )*((27-50*  
q+27*q~2+3*3-(1 /2 )* (146*q~2+27-100*q-100*q~3+27*q-4)“ (1 /2 )) 
*q~2)-(2 /3 )+ 6 * ((3*q~2*( (27-50*q+27*q"2+3*3~(1 /2 )* (146*q~2+2 
7-100*q-100*q~3+27*q''4)“ (1 /2 ) )*q~2)“ (1 /3 ) -4*q*( (27-50*q+27* 
q~2+3*3~(1 /2 )* (146*q-2+27-100*q-100*q-3+27*q"4)- ( 1 /2 ) ) *q"2) 
~(1 /3 )+ 2 '(1 /3 )* ( (27-50*q+27*q~2+3*3~(1 /2 )* (146*q-2+27-100*q 
-100*q-3+27*q-4)- ( 1 /2 ) ) *q~2)- (2/3)+2*2~(2 /3 )*q"2)/ ( (27-50*q 
+27*q-2+3*3"(l/2)*(146*q-2+27-100*q-100*q-3+27*q-4)-(l/2))* 
q‘ 2 ) - (1 /3 ) ) - (1 /2 )* 2 - (2 /3 )*q~2+36*3~(1 /2 )*q*( (27-50*q+27*q~2 
+ 3*3"(1 /2)*(146*q"2+27-100*q-100*q~3+27*q-4)" ( 1 /2 ) ) *q"2)"(1 
/3 ) +18*3~(1 /2 )*q~3*((27-50*q+27*q"2+3*3"(1 /2 )*(146*q"2+27-1 
00*q-100*q-3+27*q-4)~(1 /2 ) )*q"2)" (1 /3 )-3 6 * 3 " (1 /2 )*q~2*((27- 
50*q+27*q-2+3*3-(1 /2)*(146*q~2+27-100*q-100*q"3+27*q-4)" (1 / 
2 ) ) * q -2 )- ( 1 / 3 ) ) / ( (27-50*q+27*q-2+ 3*3-(1 /2)*(146*q-2+27-100* 
q-100*q-3+27*q~4)~(1 /2 ) )*q~2)" (l/3)/((3*q"2*((27-50*q+ 27*q" 
2+3*3-(1 /2)*(146*q-2+27-100*q-100*q~3+27*q-4)- ( 1 /2 ) )*q“2 ) - (  
1 /3 )-4*q*( (27-50*q+27*q-2+3*3-(1 /2 )* (146*q-2+27-100*q-100*q 
-3+27*q-4)- ( 1 /2 ) ) *q"2)- (1 /3 )+2~(1 /3 )* ( (27-50*q+27*q-2+3*3~( 
1 /2 )*(146*q-2+27-100*q-100*q-3+27*q-4)~(1 /2 ) )*q"2)"(2/3)+2* 
2 " (2 /3 )*q"2)/ ( ( 27-50*q+27*q-2+3*3~(1 /2 )* (146*q~2+27-100*q-l 
00*q-3+27*q-4)- ( 1 /2 ) ) *q“2 )“ (1 /3 ) )~(1 /2 ) ) - (1 /2 )

zp3=1 /2 -1 /6 * 3 -(1 /2 ) /q*((3*q"2*((27-50*q+27*q"2+3*3-(1/2)*(1 
46*q-2+27-100*q-100*q-3+27*q-4)“ (1 /2 ) )*q“2 ) - ( 1 /3 ) -4*q*((27- 
50*q+27*q-2+3*3-(l/2)*(146*q-2+27-100*q-100*q-3+27*q-4)-(l/ 
2 ) ) *q~2)- (1 /3 )+ 2 - (1 /3 )* ( (27-50*q+27*q-2+3*3-(1 /2 )* (146*q-2+ 
27 -1 0 0 * q -1 0 0 * q -3 + 27*q-4 )-(l/2 ))*q -2 )-(2 /3 )+ 2*2-(2 /3 )*q -2 )/( 
(27-50*q+27*q-2+3*3-(l/2)*(146*q-2+27-100*q-100*q~3+27*q-4) 
- ( 1 / 2 ) ) * q ~ 2 ) " ( 1 / 3 ) ) “ ( 1 / 2 ) - 1 / 6 / q * ( - ( - 1 8 * q ~ 2 * ( ( 2 7 - 5 0 *q+27 *q"2  
+ 3*3-(1 /2 )* (146*q-2+27-100*q-100*q-3+27*q-4)~( 1 /2 ) )*q~2)~(1 
/3)*((3*q-2*((27-50*q+27*q-2+3*3-(l/2)*(146*q-2+27-100*q-10 
0*q-3+27*q~4)~(1 /2 ) )*q"2)- (l/3)-4*q*((27-50*q+27*q-2+3*3-(1
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/2)*(146*q"2+27-100*q-100*q"3+27*q"4) " (1 /2 ))  *q"2) ~ C1/3) +2~ ( 
1 /3 )* ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q~2+27-100*q-100*q"3+2 
7*q"4) " (1 /2) ) *q“2) " (2/3)+2*2" (2 /3) *q"2) /  ( (27-50*q+27*q"2+3* 
3"(l/2 )*(146*q"2+27-100*q-100*q"3+27*q"4)"(l/2))*q"2)"(l/3) 
) “ (l/2)+24*q*((27-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q-l 
00*q"3+27*q"4) " (1 /2 ))  *q"2) " (1 /3) * ( (3*q"2* ( (27-50*q+27*q"2+3 
*3"(l/2)*(146*q"2+27-100*q-100*q"3+27*q"4) " (1 /2 ))  *q"2)" (1 /3  
) -4*q* ( (27-50*q+27*q"2+3*3" (1 /2) * (146*q"2+27-100*q-100*q"3+ 
27*q"4)" ( 1 /2 ) ) *q"2)" (l/3 )+2"(l/3)*((27-50*q+27*q"2+ 3*3"(1/2  
) * (146*q"2+27-100*q~100*q"3+27*q"4) " (1 /2) ) *q"2) " (2 /3) +2*2' ( 
2 /3 )*q"2)/ ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100* 
q"3+27*q"4) " (1 /2) ) *q"2) " (1 /3) ) " (1 /2) +3* ( (3*q"2* ( (27-50*q+27 
*q"2+3*3~ (1/2) * ( 146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ))  *q"2 
) " ( 1 /3 ) -4*q*((27-50*q+27*q"2+3*3"(1 /2 )*(146*q"2+27-100*q-10 
0*q"3+27*q“4 ) " (1 /2 ) ) *q"2)" ( l/3 )+ 2 " (1 /3 )* ( (27-50*q+27*q"2+3* 
3~(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q"2)"(2 /3 ) 
+2*2"(2 /3 )*q"2)/ ( (27-50*q+27*q~2+3*3"(1 /2 )*(146*q"2+27-100* 
q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 ))" (1 /2 )* 2 "(1 /3 )* ((2 7 -5 0 *  
q+27*q"2+3*3"(1 /2 )*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ))  
*q"2)" (2 /3 )+ 6 * ((3*q"2*( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+2 
7-100*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 ) -4*q*( (27-50*q+27* 
q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" ( 1 /2 ) ) *q“2) 
"(l/3)+2"(l/3)*((27-50*q+27*q"2+3*3"(l/2)*(146*q"2+27-100*q 
-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (2/3)+2*2"(2 /3 )*q"2)/ ( (27-50*q 
+27*q“2+3*3"(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ))*  
q "2 )" (1 /3 ) )" (1 /2 )* 2 " (2 /3 )*q"2+36*3"(1 /2 )*q*( (27-50*q+27*q"2 
+3*3"(1 /2 )*(146*q"2+27-100*q-100*q"3+27*q~4)" ( 1 /2 ) ) *q"2)"(1 
/ 3 ) +18*3"(1/2)*q"3*((27-50*q+27*q"2+3*3"(1 /2 )*(146*q"2+27-1 
00*q-100*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 )-3 6 * 3 " (1 /2 )*q"2*((27- 
50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-100*q"3+27*q"4)" (1 / 
2 ) ) *q"2)~( 1 / 3 ) ) / ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100* 
q-100*q"3+27*q"4)" (1 /2 ) ) *q"2)" ( 1 / 3 ) / ( (3*q"2*( (27-50*q+27*q" 
2+3*3"(1 /2 )*(146*q"2+27-100*q-100*q~3+27*q"4)" ( 1 /2 ) ) *q"2)"( 
1 /3 )-4*q*( (27-50*q+27*q~2+3*3"(1 /2)*(146*q"2+27-100*q-100*q 
"3+27*q"4)" (1 /2 ) ) *q"2)" (l/3 )+2"(l/3)*((27-50*q+27*q"2+ 3*3"( 
1 /2 )*(146*q"2+27-100*q-100*q"3+27*q"4)" (1 /2 ) ) *q"2)"(2/3)+2* 
2 " (2 /3 )*q"2)/ ( (27-50*q+27*q"2+3*3"(1 /2 )* (146*q"2+27-100*q-l 
00*q"3+27*q"4)" (1 /2 ) )*q"2)" (1 /3 ) ) " (1 /2 ) ) " (1 /2 )

zp l  has the second smallest absolute value and is the z(p) in our proof.
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