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ABSTRACT

W?2P—estimates for the linearized Monge-Ampere equation

Federico Tournier
DOCTOR OF PHILOSOPHY

Temple University, July, 2002

Professor Cristian E. Gutiérrez, Chair

In this dissertation we study interior a priori estimates in L? for second deriva-
tives of solutions u to the linearized Monge-Ampére equation trace(® D?u) = f
where ® is the matrix of cofactors of D?¢ and ¢ is a C? convex function on
a convex normalized domain Q. We assume A < detD?¢ < A and ¢ = 0 on
J9Q. We show the existence of a number p depending only on A, A,n and on
the distance between Q' and Q such that u € W??.
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CHAPTER 1

Introduction

The L? estimates for the second derivatives of solutions to second order
elliptic nondivergence equations of the form trace(A(z)D?u(z)) = f(z), where
the matrix A(z) is uniformly elliptic in a domain Q C R", that is, A|§J? <
(A(2)€,8) < AJ€)? for all z € Q and £ € R", were derived in the 50’s as
a consequence of the Calderén-Zygmund theory of singular integrals. More
precisely, if A(z) is continuous in €, then for any domain ' € Q and any

1 < p < oo we have

| Dul| o(er) < Cllullzoge) + I fllizecey), (1.1)

where C is a constant depending only on n,p, A, A, dist(€?,9Q) and the mod-
ulus of continuity of the matrix A(z), see [GT83, Chapter 9].

If the coefficient matrix A is uniformly elliptic and only measurable, then
it was discovered by Lin [L86] that the inequality

| D?ull ooy < Cllull =) + f ]l o), (1.2)

holds true for some p > 0, possibly small, and C > 0 depending only on
n, A, A, dist(€¥,892), and it is false for any p. An estimate similar to (1.2) was
discovered by Evans [E85] for fully nonlinear uniformly elliptic equations of
the form F(D?u) = 0.

Recently, Caffarelli proved that if u is convex in Q convex normalized, f

is continuous with 0 < A < f < A in Q, and u solves the Monge—Ampére
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equation det D?*u = f with u = 0 on 9Q, then ||D?ul|p(y < C forallp > 0
with a constant C depending only on n,p, A, A, dist(', ), and the modulus
of continuity of f, see [C] and [GO1, Chapter 6].

In this thesis we consider the linearized Monge—Ampére operator. We stress
that this operator is in general not uniformly elliptic in Q. More precisely, let
Q2 C R™ be a strictly convex domain and ¢ € C?(Q2) be a convex function such
that A < detD%¢ < A in Q. The linearized Monge—Ampere equation is

Lyu = trace(®D?u) = f (1.3)

where ® = (detD?¢)(D?¢) ! is the matrix of cofactors of D?¢p. A theory for
this equation has been developed in [CG97] where, in particular, Harnack’s
inequality is proved. Applications of this theory include the solution of a
problem in affine differential geometry, see [TWO0O|.

The purpose in this thesis is to study the LP integrability of second deriva-
tives of solutions to the equation (1.3). The main result of the thesis, Theo-
rem 6.1, is that there exist p > 0 and C > 0 depending only on n, A, A,and
dist(©', Q) such that

| D?ulf eery < C(llullo(ey + | fll () (1.4)

for all solutions u € C%(Q2) of equation (1.3). It is important to notice that the
matrix @ is locally uniformly elliptic but the constant C in (1.4) is independent
of the size of its eigenvalues. In other words, we have no control on the size
of each eigenvalue of ®, we only assume that their product is controlled by
A and A. In addition, the estimate (1.4) is false for all p > 0. Indeed, we
show examples where given p > 1, there exist A(p) and A(p) and a sequence
¢n € C=(QQ) such that ¢ = 0 on 9N and \ < detD?¢, < A for each n and
such that || D?@,||s(gs0) = 00 as n — oo.

One important element in the analysis of equation (1.3) is the fact that
Lsd =~ 1 which means that the function ¢ takes the role that quadratic poly-
nomials take on a uniformly elliptic equation. The analogous sets to Euclidean

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



balls in this setting are the level sets of the function ¢ which are called sec-
tions. The main idea to prove our result is to separate the problem into two
main steps. The first step is to estimate the measure of the set of points
where a solution u can be approximated by quadratic polynomials in which
the quadratic term is defined by the quasidistance given by the sections of ¢; a
covering theorem with sections is crucial in this step. The second step consists
of estimating the measure of the set of points where the quasidistance is dom-
inated by Euclidean distance; this step deals only with the convex function
0.

A main difficulty in proving our theorem was to realize the right notion
for the sets Gxr(u) given in Definition 3.2. If one defines Gr(u) directly with
Euclidean distance, then this does not takes into account the behavior of ¢
in different directions. The difficulty is that then, one has to deal with the
norms of T and T~! normalizing S,(z,t) and then, the eccentricity of S,(z,t)
becomes an obstacle. Once we define the sets G(u) using the quasidistance
given by the sections, Definition 3.1, the difficulty comes from deciding the
size of the neighborhood in which we want the inequality in the definition of
Gu(u) to hold. To estimate D?u(zy) it is enough to have |u(z) — u(zg) —
V(u)(zo)(z — z0)| < Md(z,z¢)? for all z in a neighborhood of zy but it is
important to specify this neighborhood since eventually we have to compare
Gar(u) with Gaar(u); in particular this becomes important in the hypothesis
of Lemma 4.2.

Our proof uses the method of Caffarelli [C] clarified by Gutiérrez in [GO1];
in particular, the W?? estimates for the Monge—Ampére equation are a good
guideline for our proof; some of these ideas are also used in the W?2? estimates
for non-linear elliptic equations in Caffarelli and Cabré’s book [CC95] from
where some of the notation is borrowed.

The method of proof differs considerably from the classical WP estimates
as in Gilbarg and Trudinger [GT83] as well as the estimates of Lin and Evans.
Gilbarg and Trudinger proof uses perturbation arguments and is based on the
inequality || D?u||Lr) < C||Aul|sa) for u € WZP(R2). The ellipticity of the
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operator L and the modulus of continuity of the coefficients of L are essential
in that proof; these two elements are not present in our setting.

A hypothesis requires that A < detD?¢ < A and our method does not
seem to give information about the relation between the best exponent p for
which our theorem holds with the constants A and A. A conjecture is that if
|detD?¢ — 1| < € then p(e) tends to oo as € tends to 0. This conjecture does
not follow from our proof. It is true that if |det D?¢ — 1| < € with ¢ = 0 on
0Q normalized then || D%¢||s(q, ,;2) < C where p(e) tends to oo as € tends to
0. In some sense this says that the ”ellipticity becomes better” when det D%¢
is closer to one but it does not seem to give information on the modulus of
continuity of the coefficients of our equation.

The organization of the thesis is the following. In Chapter 2 we introduce
all the preliminary material. Chapter 3 contains the main definitions and
the second step mentioned above is proved. Chapter 4 contains the proof of
the density lemmas need later. In Chapter 5 we prove the main result for
the homogeneous case, and Chapter 6 contains the non-homogeneous case.
Chapter 7 contains the proof of an inequality used in Chapter 3, and Chapter

8 contains the examples mentioned in this Introduction.
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CHAPTER 2

Preliminary results

In this chapter we list the results about sections and normalization that
are relevant for what follows.
Given a function ¢ : Q@ — R, d¢ denotes the subdifferential of ¢. The

Monge-Ampére measure associated with ¢ is

p(E) = Mg(E) = |0¢(E))|, (2.1)
for all Borel subsets E C Q. In case ¢ is convex and C?({), we have

06(E)| = [ det D*6(y)dy. (22)

A convez normalized domain is a strictly convex domain Q C R"™ such that
B,,(0) € Q@ C By(0). If S is any convex set with nonempty interior, there
exists an ellipsoid F such that a, £ C S C F and hence, there exists an affine
transformation T such that B,,(0) C T'(S) C B:1(0).

A section of the convez function ¢ € C(Q) is defined by

Ss(Z,t) = {z € Q: ¢(z) < §(Z) + Vo(Z) - (z — Z) + t}, (2.3)

where V denotes the standard gradient.

Given 0 < a < 1 we define the sections at the minimum to be the sets

Qo = {z € Q: ¢(z) < (1 — a) mingd}
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The next five results about sections hold under the assumption that ¢ € C*(Q)
is a convex function such that A < det(D?¢) < A and ¢ = 0 on 8Q where Q is

a convex normalized domain. These results can be found in Chapters 3 and 5
of [GO1].

Lemma 2.1 For each 0 < a < 1 there ezists ) depending only on a, X and A
such that for all z € Q4 and for all t < n, we have Sy(z,t) € Q.

Lemma 2.1 is crucial in two ways for our result. First, because as we men-
tioned in the introduction, it allows for sections to take the role of Euclidean
balls and certain very important sets are defined using sections. Second, be-
cause the exponent p appearing in our main theorem depends on the constant
n of this lemma.

It is also important to remark that Lemma 2.1 holds under weaker as-
sumptions on the function ¢ but certain regularity of ¢ is required on 9
as examples of Pogorelov show; see [GO1, Chapter 5. We will only use this
lemma as stated.

The following four lemmas hold for sections which a priori are known to

be compactly contained in Q.

Lemma 2.2 (Engulfing property) There ezists § such that if z € Sy(y,t)
then Sy(y,t) C Sy(z,0t).

The following Lemma is used for an iteration argument in Chapters 5 and 6.

Lemma 2.3 Suppose a < 8 and z € Q, then Sy(z,Co(8 — a)?) C Qg for
some Cy and v depending only on A and A.

Lemma 2.4 There ezxists constants C; and C, depending only on n, A and A
such that

Cit? < |Sy(z,t)] < Cat™2.

Lemma 2.4 says that the measure of any section depends essentially on the

parameter t and is comparable to the measure of an Euclidean ball of radius
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Vt. However, a section may look like an ellipsoid in which the ratio between
the longest axes and the shortest axes goes to infinity as the parameter ¢ goes
to 0. In other words, the eccentricity of a section is not bounded by constants
depending only on A, A, and n.

The following lemma is a simple consequence of Lemma 2.4:

Lemma 2.5 Given 0 < a < 1 there ezists 0 < € < 1 depending only on \ A
and n such that (1 —€)u(Sy(z,t)) < u(Sy(z,at)) for any section Sy(z,t) € Q.

We will also need the following observation about normalization. Let
Ss(Z,t) be a section and let T normalize Sy(Z, t). Let ¢(y) = 10(T1y). We

then have T(S,(Z,t)) = S3(T%,1) and detD?3(y) = tIT%T—lzdetqub(T“y),
e n

Since B,,(0) C T(S,(z,t)) C B;(0) ,it follows that —tl < |detT|% < % where
C: and C, depend on A,A and n. Hence, \' < detD?¢(y) < A’ on S;(Tz,1).
Letting ¥(y) = 6(y) — (7) — V(¥) - (y — §) — 1 where TZ = § we have ¢ =0
on 95;(9,1) and N < detD?*p < A'. In particular, Lemma 2.1 holds for 1.

Next, we state a covering lemma for sections, which is in Chapter 6 of
[GO1].

Lemma 2.6 Let A C Q and suppose that for each z € A a section Sy(z,t) €
Q is given such that t is bounded by a fired number . Then, there ezists a
countable subfamily {Sy(zk,tr) }e with the foiiowing properties:

1. AC U, Ss(zk,te), and

2. for 0 < € < €(n, A, A) we have that the family {Sy(zk, (1 — €)ti) }x has

bounded overlaps, more precisely,
1
Z XSo(@(1-at) (%) < C log p
k

where C depends also on n,\,and A and xg denotes the characteristic
function of the set E.
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The next lemma is of fundamental importance in setting up an iteration

argument, and it complements the previous lemma. Its proof is in [CG97].

Lemma 2.7 Let O C Q and 0 < € < 1. Suppose that for each z € O, there
exists a section Sy(z,t;) C Q with t, < 8 and

W(Sy(@,t:) N O) _
PEACER)

Then, there ezists a countable subfamily of sections {Ss(zk,tx)}r and 0 <
d(e) < 1 such that O C |, Sy(zk, tx) and p(O) < §(€) p(lU, Ss(zk, tr))-

We now define and state a theorem for the maximal function that will be used
in Chapter 6.

Definition 2.1 For z € §,,, define

Myu(f)(z) = sup

2B T o TN

Theorem 2.1 There ezists a constant C depending on A and A such that

({2 € Quo : Mu(f)(2) > B}) < —‘ﬁ’- fn £ () ldu(y).

PROOF: Let Ag = {x € Qq, : M,(f)(z) > B}. For each z € Ag, there
exists t; < 71p/2 such that

1

1(Se(z, t)) Js, o) |f(¥)ldu(y) = 8.

Consider the family S,(z,2t;)). By Lemma 2.6, there exists a count-
able subfamily {Ss(zk,2tc)}« such that Ag C |JSs(zk,2tx) and such that

Yk Xso(@rr(1-e)2t) (2) < C log L for every € < e.
We have

k(Ag) < Z#(S‘»(z‘k, 2t;)) <C Z B(Ss(zk, (1 — €)2t))-
k k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Also,
1

K -
Fs 1(Ss(Zicr te)) Js,(eentn) £ @)l dr(y)
<c - / ()] du(y).
B(Ss(zk, (1 — €)2ty)) Se(zi,(1—€)2tx)
Therefore,
Bu(Ss(zk, (1 —€)2t,)) < C |f ()] du(y).
So(zi(1—€)2¢;)
Hence,

H(As) < 2C 3 Bu(Su(zr, (1 - )288)
k

C
< 'Ez,; /s |£()] dialy)

o (T, (L—€)2¢t;)

C
> /Q XS e (1-e)260) (¥) | (¥)] dps(y)
k

C
=5 [ X Xsuten-omo @)l F @)l duty)
k

Clogl
= /Q £ du(y).

<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

CHAPTER 3

Main definitions

In this chapter we define the quasidistance given by the sections of ¢ and
using this quasidistance we define the sets where the solution u is touched
from above and below by certain polynomials. We also prove in this chapter a
lemma for solutions to the Monge-Ampére equation which is the second step
mentioned in the introduction.

First, we begin with a simple lemma that is used repeatedly in our calcu-

lations.

Lemma 3.1 Let ) be a bounded domain, ¢ € C*(Q) convez with det D?¢(z) >
0 forz € Q; and u € C*(Q). Let w = u+ ¢, ['(w) the convez envelope of
w, and the contact set C = {z € Q : w(z) = T'(w)(z)}. Suppose E C C and
F C Q be measurable sets such that 8¢(F) C dw(E).

Then

+ n
Mo(F) < nl—n /E ((aglt%-i—n) ) det D?*¢(z) dz. (3.1)
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PROOF: We have
M¢(F) < Mw(E) < / det D*w(z) dz
E

_ [ det ®(z) det D*w(z)
B /B det ®(z)

nin /E ﬁ(—a (trace (®(z) D*w(z)))" dz
N ni /E (det D2;(x))"-l (trace (®(z)(D*u(z) + D*¢(z))))" dz

_ 1 1 2
= /E (et D2t (Lgu(z) +n det D®¢(z))" d
and (3.1) follows. a

dz

3.1 A quasi-metric

Let Q be a convex normalized domain in R*, ¢ € C%(Q) convex, ¢ = 0 on
0Q,0< A <detD*¢<AinQ.

Definition 3.1 Let S;(zq,m0) € Q. Given z € Sy(zg,70) we define
d(z,z9)? = inf{t : z € Sy(zo, 1)} (3.2)
Remark 3.1 If ¢ € C'(Q), then d(z, z)? = ¢(z) — ¢(z0) — V(o) - (z — o).
Lemma 3.2 The function d in Definition 3.1 satisfies:
(a) d(z,y)? < 6 (d(z,2)? + d(y, z)?) whenever are all defined.
(b) If S;(Z,m0) € Q, then d(z,Z)? is a convez function of z on the set
Ss(Z,70)-
PROOF: (a) Let z € Sy(z,t1),y € Sy(z,t2) and ¢t = max{t;,¢,}. Since
y € Sg(z,t), we have by the engulfing property S;(z,t) C Sy(y,0t); and
z € Sp(2,t1) C Sp(z,t) C Ss(y, 6t). Hence d(z,y)? < 6t < 8(t, + t2), and so
d(z,y)? <0 inf{t; +t2 : z € Sy(z,t1),y € Sy(2,t2)}
=0 (inf{t1 : ¢ € Sy(z,t1)} +inf{t: : y € Sy(2,2)})
=0 (d(z,2)* +d(y,2)?) .
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Notice that if z,y € S(z,d) and §8 < mo, then d(z,y)? is defined because
T € Sy(y, 09).
(b) Let z;,z2 € S4(Z,m0) and 0 < A < 1. We have

d(Azy + (1 = Nz, £)? = inf{t : A\zy + (1 = N)z2 € S4(Z, 1)}
Suppose 1 € S4(Z,t1) and 22 € Sy(Z,t2), and let ¥(z) = ¢(z) —d(Z) —Vo(Z)-

(z — Z). The function ¥ is convex and so
YAz + (1 = A)z2) < Mp(z1) + (1 = N)(z2) < Aty + (1 — At

Then Azy 4 (1 — A)z2 € Su(Z, Mty + (1 — A)t2) and

inf{t : Azy + (1 — N)z2 € Su(Z,t)} < Aty + (1 = Ato.
Since t; and t, are arbitrary, we get

inf{t : Az + (1 — N)za € Su(Z,t)}

< Ainf{t:z, € Su(Z,t)} + (1 — A inf{t : z, € Sy(Z,t)};
that is,

d(Azy + (1 — A)z2,Z)? < Ad(z1, )2 + (1 — \) d(z2, 2)2.

3.2 Spaces

For the following definitions we fiz 0 < ag < 1 once for all.
Definition 3.2 Given u € C*(Q), 0 < ag < 1, M > 1, 0 the engulfing
constant, and 6°/M < n(ag), we define
Gi(u) = {T € Qq, 1 u(z) < u(Z) + Vu(Z) - (z — ) + M d(z, T)?,
Vz € Sy(z,0%°/M)};
Gy(u) = {Z € Qqq 1 u(z) > u(Z) + Vu(Z) - (z — ) — M d(z, )3,
Vz € S4(%,6%/M)};
and

Gur(u) = Gir(u) N Gy(u).
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3.3 A Lemma for the Monge-Ampere equa-
tion

Lemma 3.3 Let  be a normalized convex domain, ¢ € C*(Q) with ¢ =0 on

0N, and 0<detD?’¢) < Ain Q. Let 0 <ag <oy <1 and

G (9) = {Z € Qa, : 4(2) < G(2) +V(Z) - (z—Z) + M |z — Z|*, Vz €}

Then

1
Quy \ Gin ()] < (1 - 1)n) Qul
where M(t) = (t -: 1) AY"C(ay), and for all0 < t < 1.

PROOF: Let w be the solution to det D?w =1 in Q with w = 0 on 9. It
follows from Pogorelov’s estimate, {GO1, inequality (4.2.6)], that
gg(cn)(w) =Q

We have that det D*(AY" w) = A > det D*¢. Then by the comparison princi-
ple, [GO1, Theorem 1.4.6]), AY"w < ¢ in Q, and so —w/2 > —¢/(2A/") > 0.

Consequently, 3 >w— AL 2w in Q. |
o(z w(z
Let v, (z) =t (w( ) — 2A1/"> + (1 —t)——. Then
¢ w
WEWS AR S S g

for 0 <t < 1. Let I'(v,) be the convex envelope of v, in €2, and C; be the set of
contact points, C; = {z € Q : I'(v;)(z) = v(z)}. Then w < T(v,) < vy < w/2,
and so V(w/2)(Q) C 8T'(v:)(?), by [GO1, Lemma 1.4.1]. Therefore

IV (w/2)(Q)] < |0T(x)(Q)] = |8T(ve)(C.)] by Lemma 7.1
< [ (((r(20)) " - (o (o)) )
< [ (5 -gmemr)

<ted (),
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. t
by Theorem 7.1 since v,(z) = (%1) w(z) —t 2‘6\(:::/)71 . Hence we obtain
—lal <l
E+1)" " =
This implies |2, \ C:| < (1 G +11)n> IQ4,|, and since C; N Q,, C Qy, N

g;}(t)@&), we obtain the desired estimate. O
Notice that if 0 < ag < @; < 1, then dist(q,,90,) = C(ag, ;). Hence
if Z € 4, then the Euclidean ball B ;/4(Z) C 4, for t < (BC(ao, a1))?.

Lemma 3.4 Let
Ag = {z € Qo : B /() C Sp(z,t), Vi< o}, (3.3)
where g < min{n(ag), (8C(aq, @1))?}. Then we have
Gr(9) C Ag.

PROOF: Let Z € G3,(¢), and let z € B 4,5(Z). We have ¢(z) < #(Z) +
Vo(Z) - (z — Z) + 8%z — Z|? for each z € Q,,. By the choice of 7y, we have
B /;/4(T) C Qq,. Then ¢(z) < ¢(Z) + V(Z) - (z — Z) + t, that is, z € S,(Z, t)
and so T € Ag. a

Remark 3.2 From Lemma 3.4, Qo \ 45 C Qg \ G42(®), and therefore

C("‘a A1 aO)

/—‘(an \AB) < l‘(an \g;;(‘ﬁ)) < AIan \g;-?(¢)l < IBQ !

(3.4)
by Lemma 3.3.

Remark 3.3 If Z € Ag, then d(z, Z)? < 8|z — z|? for all z € Sy(Z, m0)-
Indeed, we have B, ;,4(Z) C S4(Z,t) for all t < mo. If = € Sy(Z, 7o), then

{t:z € Byp(T)} C {t:z € S4(z,t)},

and so, inf{t : z € S4(z,t)} < inf{t : £ € B 43/5(Z)}. Consequently, d(z, z)? <

Bz — z2.
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Remark 3.4 We have
AgNGg(u) C {z € Qg : |Diju(z)| < B3, fori,j=1,---,n},

for each § such that 62/8 < n(ao).
In fact, if € Ag N Gg(u), then

~Bd(z,7)* < u(z) ~ u(Z) - Vu(Z) - (z — %) < Bd(z, Z)*

for all z € S,(%,6%/8). Since £ € Ag, by the previous remark d(z,z)? <

B3|z — z|? we get
=Bz - zI* < u(z) —u(F) - Vu(Z) - (z - Z) < Bz — z?

for each z € S,(Z,6%/8), and so |D;;u(z)| < 8°.

If 0 < a < ag, then from Remark 3.4 we have that

{z € Qa:|Dju(z)| > B} =\ {z€Q%: |D;ju(z)| < 8%}
C Qo: \ (Aﬁ N Gﬁ(u))1 where oz/ﬂ < 77(00)
C (% \ A) U (0 \ Gs(u)). (3.5)
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CHAPTER 4
Density Lemmas

In this chapter we prove two density lemmas that will be used in Chapters

5 and 6 to prove the decay of u(Q, \ Gs(u)) for 8 large.

Lemma 4.1 Let Q2 be a normalized conver domain, ¢ € C*(Q), ¢ = 0 on 9Q,
and A < det D%¢p < A. Supposeu € C*(Q),0<u <1, and Lyu =0 in Q.
Then for each € > 0 there ezists §(¢) > 0 such that if M > —1—, then we

d(e)

have
u(G;mo(u) n S¢,(.’L‘0, to)) > (1 - 6) ,U-(S,b(l’o, to)), (41)

for all sections Sy(zg,ts) C Na, with ty < 19/86.
PROOF: Let T normalize the section S;(zg,t). Let

3y) = f;qs(T“y), vo = T,
¥(y) = ¢(y) — d(¥o) — V(%) - (¥ — yo) — 1,
and  4(y) =u(T'y).

We have T'(S4(zq,t0)) = $(yo, 1) = Q is normalized, ¥ = 0 on 8%, and
XN < det D*% < A’ in Q by the observation after lemma 2.5. Foreach0 < a < 1
there exists n(a) such that if § € Qq, then S,(7,7(a)) cC Q by Lemma 2.1.
Therefore if § € Qq, then ¥(§) + V¥(7) - (y — ) + n(a) <0 forall y € 0.
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Let w.(y) = n(a)i(y) + ¥(y), and let v, be the convex envelope of w, in
Q, and

Ca = {y € Q: waly) = 7alv),
and 3 ¢, supporting hyperplane to v, at y with £, <0 in Q}.
Claim 1. V%(Q,) C Vw,(Ca).
To prove this claim, let § € Q, and
§ = max{¥(7) + V¥(g) - (v - §) + n(e) — wa(y) : y € B}
=y%(y) + V(@) - (v° — §) + n(a) —wa(y"),

for some y* € Q. Notice that y* € . Because since § € 6, we have § >
Y(F) + n(a) — wa(7) = n(a)(1 — @(g)) > 0. And if it were y* € 99, then we
would have § < —w,(y*) < 0, which is contradictory. Therefore

W(@) + V(@) - (v" =) +n(a) —wa(y") = %(F) +V(d) - (y - 7) +n(a) — waly)

for all y € Q, that is,

wa(y) > wa(y®) + V'J)@) -(y—y°),

for all y € Q. Since wa(y*) + V¥(7) - (y — y°) is convex as a function of y, we
have that

Wa(Y) 2 Ya(y) 2 wa(y") + VY(7) - (v — ¥°),

and so wa(y*) = va(y"). Also wa(y*) + VY (7) - (y —y*) = ¢(3) + V¥(7) - (y —
7) +n(a) —d < —6 < 0 in Q, and therefore V(7)) € Vw,(Ca). This proves
claim 1.

We have D*¢(y) = L (T~')* D*¢(T"'y) T, so

(D%¢(y)) ' = to T (D*¢(T'y)) 1 T

Also D?*i(y) = (T7')! D*u(T~'y) T. If &(y) is the matrix of cofactors of
D*¢(y), ie., ¥(y) = (D?¢(y)) ™! det D*§(y), then

Lju(y) = trace(®(y) D*a(y)) = 0
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in Q. Applying Lemma 3.1 with u ~ n(a)d, ¢ ~ ¥, E =Cq, F = Qq, we get

[ det D*3(y) dy < / det D23(y) dy.
Qa Ca

We also have

det D%¢(y) = det D*¢(T'y),

1
tg | det T'|2
and hence

/_ det D*¢(T~'y) dy 5/ det D%2¢(T'y) dy.
fa Ca

We have Q, = T(S,(zo, ato)) and for now suppose
Co. CT(A),

where A is a set that will be determined. Then

/ det D*¢(z) dz < / det D%¢(z) dz,
So{za.ato) A

that is,
B(Se(zo: ato)) < p(A)- (4.2)
Claim 2. C, CT (S¢(a:0,t0) N Gl‘/(n(a)to)(u)) , for all a sufficiently close

to omne.

Proof of Claim 2. Let §j € C,. Then § = T'Z for some Z € S;(zg, to) and

n(a)a(y) +¥(y) = €(y), for all y € T(Sp(zo, to)) (4.3)

with equality at y = §, for some ¢ affine with £ < 0 in T'(S,(zo, tp)). We now
claim that

é(z) < (Z) + V() - (z — Z) + d(z, £)*, (4.4)

for all z € S4(Z, o). Indeed, let z € Sy4(Z,t). Then ¢(z) — (H(Z) + Vo (Z) - (z —
Z)) <t, and hence

¢(x) — (6(Z) + Vo(Z) - (z — Z)) < inf{t : ¢ € Sy(Z,t)} = d(z, £)°.

This proves (4.4).
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Recall that ¢(y) = %d)(T‘Iy) where T normalizes S;(zo, to). Also Sy(zo, to) C
0
an and T € S¢(:L‘0,to), SO L € an, and S¢(.’f, T]Q) € 2. And from (44), if
z € Sy(Z,mo), then ¢(z) < @(Z) + V@(Z) - (x — Z) + d(z, Z)°. Consequently,

3v) < 6@) +VI@) - v —17) + t—t-d(:r-ly, T-'g)?, (4.5)

for all y € T(Ss(Z,7m0)). On the other hand, by definition of ¢ and ¥, the
inequality (4.5) is equivalent to

B(y) < (@) + V@) - (y—7) + % ATy, T-9)* = I (y) + tl d(T'y, T-'g)?

for all y € T(Sy(Z,1n0)), with equality at § = TZ. Notice that by engulfing
and since to < 19/6, we have Sy(zg,t0) C Ss(Z, 0to) C S4(Z, 7o), and hence by
(4.3) we get

n@)ily) = &) - G(v) - 7 dT 9 T715),
for all y € T(Sy(zo, to)) with equality for y = 7. Let
9(v) = &) - yly) = 5 ATy, T )%
for y € T(S4(Z,m0)), and

B = {y € T(S4(%,m0)) : g(y) > 0}.

Ify € 0T (Sy(zo, to)) then €(y) < Oand so g(y) < — y(y)——d(T‘ y, T7'9)* <
—(y) = 0, and therefore BNAIT(Sy(zo, to)) = @, and smce, by Lemma 3.2(b),
g is concave, it follows that B is connected. Hence B C T'(S;(zo,to)). This
implies that

n(a) u(y) = g(y), (4.6)

for each y € T(S4(Z,n0)) with equality at y = §. Because we have that
n(a)i(y) = g(y) for each y € T(S4(x0, t0)), and if y € T(S4(Z,70))\T(So(Z0, to)),
then y € B and so g(y) < 0 < n(a)a(y), that is, (4.6) follows. Since ¢ is a
supporting hyperplane to n(a) 4(y) + ¥(y) at §, we then get

u(y) 2 w(y) + Va@) - (y—7) — 'y, T7'9)%,

1
ton(c)
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for all y € T(S(Z,n0))-

Hence we have proved that for each 0 < a < 1 we have

Ca C {7 € T(S4(z0,t0)) :

1
ton(c)
Yy € T(Sy(Z,m0)), where § = TZ}.

a(y) > a(g) + Va(g) - (y — §) — d(T 'y, T7'g)?,

Since u(y) = u(T'y), it follows that

Ca C T {S4(20,0) N G ppmiey(®))

as long as tgn(a)6* < ng (as required to define the set G with the definition
3.2) and for {40 < ny. Notice that since n(a) — 0 as @ — 1, the condition
ton(a) 6% < mo is always satisfied for o close to one. This completes the proof
of claim 2.

To complete the proof of the lemma, we notice that from Lemma 2.5, given

€ > 0 there exists a = a(e€) sufficiently close to one such that

(1 - 6)“(S¢(x01t0)) S u(s¢(x0, atO))a

for all sections S4(zg, to) compactly contained in 2. This inequality combined
with (4.2) and Claim 2 yields the desired result with M > = . d
(42) i 5@ ~ nale)

Lemma 4.2 Let Q be a normalized convezr domain, ¢ € C*(Q), ¢ = 0 on 99,
and A < det D¢ < A. Suppose u € C*(Q), and Lyu =0 in Q.

Then for each € > 0 there ezists 6(¢) > 0 such that if M > 3(16—) and
Se(zo,t0) NG(u) # 0, then we have

(G544 (w) N Se(30,10)) > (1 — €) p(S(o, ta)), (4.7)

where tg < 1/A, Sp(Zo,to) C Nag, and 83/X < ng.
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PROOF: Let 54,(1‘0, to) C QQD, to < i <2

S < Zs’ and let T € Sy(zo, to) NG ().

Let T normalize S,(zg,to), and set

3@ = 4T, 50 =Tao
¥(y) = ¢(y) — d(o) — V(o) - (¥ — vo) — L,
and a(y) = t—lo-u(T"ly).

We have as in Lemma 4.1 that T(Sg(z0,%0)) = S3(%0,1) = Q is normalized,
¥ =0 on 8Q, and N < det D2y < A’ in (.
Let § = TZ. Since Z € Sy(xo, to) N Ga(u), we have

-Ad(z,%)® < u(z) —u(z) - Vu(z) - (z — £) < Ad(z, ),

for all z € S4(z,6°/)). Hence changing variables we get

_\UT Ty, Ty
to
for all y € T(S,(Z,6%/7)).

Since Z € Sy(zo, to), we have Sy(zq, t) C Ss(Z, 6ty) by the engulfing prop-
erty. So, if z € Sy(zg, to), then d(z, )% < 0ty, and consequently d(T "'y, T-1§)? <
Oty for all y € T(Sy(zo,te)). Also since tg < 1/A, we have Sy(zg,t0) C
Ss(Z,0%/A). Then

< a(y)—ua(@ - Va@) (y-9) <A

d(T! -1-\2
( yt’T g (4.8)
0

—M < a(y) —a(y) — Va(g) - (y —§) < M9,

and if we set

270 '

then0 <v<1in Q.
Let 0 < a < 1. There exists! n(a) > 0 such that if § € Qq, then

V(@) + V(@) - (y —9) +n(a)(6 +1/2) <0,
!Notice this n(a) is the n(a) from lemma 2.1 divided by 6 + }
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for all y € Q.
Define
wa(y) = n(a)v(y) + ¥(y)-

We have 9 < w, < n(a) + 9 in . Let v, be the convex envelope of w, in €,

and

Ca={7¢€ Q: Wa(F) = Ya(¥),
and 3 ¢; supporting hyperplane to v, at 7,
with ¢; < —n(a)(d — 1/2) in Q}.

Claim 1. V¢(Q,) C Vwa(Ca).
Proof of Claim 2. Let 7 € Q,, and

§ = max{$(5) + V(9) - (v — §) +1(e) — waly) 1y € O}
We have § > 9(§) — wa(7) = n(a)(1 — u(§)) = 0, and if y € 8, then we have
V() + VY(9) - (y — 7) + n(a) —waly) <0
Therefore there exists y* €  such that

0 =u(@) +Vu(y) - (v° —7) + n(a) — wa(y")
> () + V(G) - (y — §) + n(a) — wa(y),

for all y € Q. Hence
wa(y) 2 waly") + VY (§) - (y — y°),

for all y € Q. Also notice that

wa(y™) + V() - (y —¢") =9¥(@) + Vy(@) - (y — §) + n(a) —
< %) +Vy(g) - (y — 9) + n(a) < —n(a)(8 —1/2),

for all y € Q. This proves Claim 1.
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Proceeding as in Lemma 4.1, we have
/ﬁ det D*¢(T 'y) dy < /c det D*¢(T'y) dy.
We have Q, = T(Sg(zo,atp)). If we assume that
Ca C T(A), (4.9)

where A is a set to be determined, then we have

/ det D?¢(z) dz < / det D%*¢(z) dz,
S@(zﬂvatﬂ) A

that is,
1(Se(To, aty)) < u(A). (4.10)
We next determine A.

Claim 2. The inequaloity (4.9) holds with A = §,(xq, to) N Gy, (u), for M
2

sufficiently large, M > —.
v (@)

Proof of Claim 2. Let § € C,. There exists ¢ affine such that n(a)v(y) +
P(y) = U(y) forall y € T(Sy(zo, to)), and with equality at 3, and ¢ < —n(a)(8—
1/2) in T(S4(zo,t0)). Here § = Tz for T € Sy(zo,t0), Su(Z,m0) € Q, and we
have as in Lemma 4.1 (see proof of (4.5)) that

. 1 N o
() < &) + - d(T ty, T7'g)?,
for all y € T(S4(Z,n9)) with equality at §, and where Ey- is affine given by
&(y) = ¥(@) + V@) - (v — 9).

Therefore
n(e)u(y) 2 €w) — () - - ATy, T 57, (4.11)
for each y € T(S4(zo,t0)), and with equality at y = §, because Sy(zo,ty) C
Sy(Z,0te) C Su(Z,mp) for Oty < np.
Define
9v) = o) - &(0) — - ATy, T 9%
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We have from (4.8)
(T, T )
to

A0
9(5) = n(@)o(3) 2 n(e) =5

Our goal is to extend the inequality (4.11) to the set T'(S,(%,6%/(A\M))), for
some M sufficiently large. Notice that since Z,Z € Sy(zo, %) and ¢ty < 1/, by
engulfing

S¢(.’l}0,to) C S¢,(f, 0t0) C S¢(2-!,0//\),
and

Ss(Z0,t0) C Sp(Z,0te) C Sp(Z,6/A).
Hence Z € S4(&,0/)), and again by engulfing S4(Z,0/)\) C S4(F,0%/A) and
therefore

Ss(%,62/(AM)) C Ss(%,8/)) C S4(%,6%/)) (4.12)

for M > 6. Therefore to achieve our goal, it is enough to extend the inequality
(4.11) to T'(S4(Z,6%/))); notice that Sy(z,6%/)) € Q.

Let
-1 —-1:-\2
2o M(T ,zt/,T )
B = {y € T(S4(%,6°/) : 9(y) = n(e) IV -
We claim that
B C T(S4(zo, to))- (4.13)

We first prove that
B C {y € T(S,(z,6%/)\)) :
0> —e)+ &) + (5 (1-22)) a9+ K- 0y
= B. (4.14)
If y € B, then

J 1
0> —l(y) +¢45(y) + L d(T 'y, T '§)? - n(c) —d(T 'y, T~'§)? + n(a) )
to 20 to 2
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On the other hand, from Lemma 3.2(a)
1) AT TP o) (AITTUP AT
26 to - 2 to to
Since d(T~'3, T~§)? < 6tq, we get that y € B, and (4.14) follows.
Since n(a)/2 < 1, we have that the function

~t) + &) + (5 (1- B2)) arw -9 + L2 a0

is convex and hence B is connected. Notice that we have S4(Z,62/)\) C
Ss(2,0%/X) C Sp(Z,m0) for 83/X < mo, and so d(T~ 'y, T~'§)? is defined for
y € T(S4(2,6%/7))-

Second, we shall prove that
B C T(S4(zo, o)) (4.15)
We begin showing that
B N OT(S4(zo,to)) = 0. (4.16)

Suppose y € T (Sy(zg,to)) then we claim that

—(y) + G;(y) + (% (1 - @)) d(T 'y, T719)% + "—(a—)(l —6) > 0. (4.17)

Recall that ¢ < —n(a)(0—1/2) in T(S4(zo, t0)), and &; (y)+ d(T— y, T-15)2 >
¥(y) = 0. Since Sy(zo, to) C Ss(&,0ts), we have d(T 'y, T“ 7)? < 6tg. Hence
(4.17) follows, and therefore (4.16) holds. Since § € B N T(Sy(zo,%)) and B
is connected, we get (4.15).

Combining (4.14) with (4.15), we get (4.13) as desired.

Recall that n(a)v(y) = g(y) in T(Ss(zo, ta)) by (4.11), and if

y € T(S4(Z,6°/2)) \ T(S4(0, t0)),

then y ¢ B by (4.13), that is,

-1 —1,42
\g — (T zt/,T 9)
0

9(y) <n(a) Y,
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On the other hand, by definition of G5(u) we have from (4.8) that
d(T 'y, T~'g)?
to

u(y) —u(g) - Va@) - (y—9) = -2

b

for all y € T(S4(%,6%/))), and hence

-1, —1:\2
2 (Ae— d(T ";’OT 9) ) < n(@)v(y),

so g(y) < n(a)v(y). Therefore, we have that g(y) < n(a)v(y) for all y €
T(S4(Z,6%/))) with equality at y = 4. In particular, by (4.12) we have that
9(y) < n(a)v(y) for all y € T(Sy(%,0%/(AM))) because Sy(z,6%/(AM)) C
Ss(Z,6%/)) with equality at § = TZ, for M > 6.

Therefore (4.11) holds for all y € T(S4(Z,60%/(AM))).

Notice that from the definitions of ¢ and ¢; we have g(y) =a+p-(y —§) —
%d(T'ly, T-'%)? with a = n(a)v(§) and p = n(a)Vu(F). By definition of v
we then get that

_ 276
ton(a)

for all y € T(S4(&,0%/(AM)) for all M > 8. Therefore we have proved that

a(y) > a(g) + V(@) - (v — 7) d(T™'y, T7'9)?,

Ca
- ~ = -~ - 20 -1, p—1-2
C {g € T(Ss(zo,t0)) : a(y) = 4(¥) + Va(y) - (y — §) — fon(a) d(T™"y,T™'§)
Yy € T(54(%,6%/(AM))) where § = TZ} = F,
for each M > 4. Now
- - - - 20 o2
F =T{Z € Sy(zo,to) : u(z) > u(Z) + Vu(Z) - (z - %) — md(:z;,:c)

Vr € S4(,6°/(AM)))}
= T(Sy(xo, o) N Gypr(u)),

picking M = %)-, (the requirement in the definition of G is satisfied since
Ss(Zo,to) C N and 82/(AM) = n(a)8/(2)) < n(a) since A is sufficiently

large). So Claim 2 is proved.
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Then from (4.10) and Claim 2 we obtain

1(Ss(z0, ato)) < p(Sy(zo,ta) N Gxpr(u)).

From Lemma 2.5, given € > 0 there exists 0 < a = a(e) < 1 such that

(1 — €)pu(Ss(zo, to)) < p(Ss(zo, ato)).

The lemma now follows taking §(e) = n(a(e))/(26). a
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CHAPTER 5

The homogeneous case

Let u € C?*(Q) satisfying Lyu = 0in Q with |u] <1in Q. ff0 <o < 1,
recall that
Qo = {z€Q:0(z) < (1 — ag) m&nq&}.

Let 0 < € < 1/2 and M the largest of the constants in Lemmas 4.1 and 4.2.

1 - 1
Applying Lemma 4.1 to the functions u-;— and u2+ , and noticing that

Gy ((u+1)/2) C Gop(u) and Gp((—u + 1)/2) C Gy (u), we get

p(Ss(Z0, t0) N Goprye(4)) > (1 — €) p(Sp(zo, o)),
and
I.L(Sq;-.((l!o,to) n G;-M/to(u)) > (1 - 6) [l(5¢($0, to)),

as long as Sy(zg,t9) C Qa, and t,0%/M < ng. Now

#(Se(20,t0) \ Gastzie) = 1 (Ss(@, o) \ (Gaazee N Girape))
= p((Se(zo, to) \ Gangyey) Y (Ss(z0, to) \ Gapys,))
< u(Ss(Zo, ta) \ Gaprs,) + 1(Ss(Zasta) \ Gapse,)
< 2ep(Sg(zo, to))-
Let a2 < a1 < ag. There exists 72 such that if z € Q,, and ¢ < 7, then

Sy(z,t) C Qq,; and there exists 7, such that if z € Q,, and ¢ < n; then
Ss(z,t) C Qqy-
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Let 93/1\ < 1m2/2 and let z¢ € Qag \ G (u).

Define
g(t) = 2((Raq \ Gam(u)) N Sp(zo,t))
1(Sg(zo,t)) :

We have lim,_,q g(t) = 1. Also, if 2/ <t <1, then Sy(zo,t) C Qu, and

£((Qaz \ Ganr (1)) N Sy(zo, t) < pu(Ss(xo, t) \ Ganr(u))
< p(Ss(zo, t) \ Ganye(u))
< 2e u(Ss(xo, t)),

since Gaprse(u) C Gap(u). Therefore g(t) < 2¢ for t € [2/)\,m). Then by
continuity of g, there exists t;, < 2/\ < 63/) < 15/2 such that g(t;,) = 2e.

Then we have proved that if 0 < € < 1/2 and M is the constant in Lemma
4.1, then for as < @; < ap and for any A > 0 such that /) < 75/2 and for
any zg € 4, \ Gasr(u) there exists t,, < 2/ such that

p((Qaz \ Ganr(u)) N Sp(To, tzo)) = 26 p(Sp(To, tz,))- (5.1)
We now claim that (5.1) implies that
S¢(To,tzs) C Qo \ Ga(u)- (5.2)

Suppose that (5.2) is false. Since zq € 4, and t;, < 2/X < 7, we have that
S¢(zo, tzy) C Qa,. Therefore, if Sy(zo,tzq) € Ra; \ Ga(u), then Sy(zo,tz,) N
Gi(u) # 0 and hence from Lemma 4.2 applied to u and —u, we have for M
sufficiently large

(1 —€) u(Sp(z0, tz,)) < p(Ss(xo, tzo) N Gipr(u)),

and
(1 - 6) “(Stﬁ(an tto)) < “(S(ﬁ(xOr t:ro) N Gj\-ll'[(u));

notice that G;,,(—u) = Gf,,(u) and Gr(—u) = Gx(u). Therefore

B(Ss(Z0,tze) \ Ganr(u)) < 2ep(Sy(zo, tz,),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

and so

#((Qaz \ GAM(U)) A S¢(I0: tzo)) < “(SQS(:EO? tﬂ-’o) \ G»\Nl(u)) < 26[_1.(5,#(1’0, tzo)’

contradicting (5.1). This proves (5.2).
Then from Lemma 2.7 we get that

#(Qaz \ Gan (1)) < () 4(Qay \ Ga(w)), (5.3)

where a2 < a; < ag, /A < 172/2, and M = M(e) large, and for all €

sufficiently small.

5.1 Power decay

Recalling Lemma 2.3, we can apply (5.3) with A = M and

6°  Colar—a2)” _m

M 2 2

263 L/y
@2 =M= (co M) :

Qo \ Gar2(u)) < 5(€) (R, \ Gu(u)).

— aa)?
Next apply (5.3) with A = M? and 9 = M =5 that is,

3
M 2 2"’

263 1/v 263 \ /7 263 1/y
%=z (COT') B (COM) - (c'o 1\/[2) '

#(Qa; \ Gars (v)) < 8(€)p(Qaz \ Gurz(u) < (8(6))® 1(Qay \ Gar(u)).

that is,

Then

Then

Continuing in this way, if

k-1 1/
263
a=a—3 (Co M:‘) :
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then
14(Qa;, \ Gare(u)) < (8(€))*" (R, \ Gar(w)).

1Yy 1
Now >°22, (2\/[1/‘7) = =T and so

Q0 —e \ Gare()) < (8(6))" " (R \ Gur(w)),

At/ o

fork=1,2,---.

We then obtain the following theorem:

Theorem 5.1 Let Q be a normalized convezr domain, ¢ € C*(Q) convez, ¢ =
00ndQ, A <det D*¢ < A, u € C*(Q), |ul <1 inQ, solution to Lyu = 0 in Q.
Then for each e > 0 and 0 < ag < 1 there ezist a constant M = M (e, ag, A, A)

such that for all u and ¢ as above we have
14(Qaos2 \ Garx (1)) < (8(€))* ™" 14(Qao \ Gur(w)),
fork=1,2,--.

This statement implies the following. Let t > M and pick k such that
.’\/[k <t< ]V[k+l. Then GA,[k(U) C Gg(U) C G}\,[k-H (U) and k& < IOgM t < k+1.
So

(a2 \ Ge(u)) < p(Qagr2 \ Gux(u))
< (8(6)* 7" 1(Qap \ Gur(w))

< (8(6))*™ 1(Qg) = ﬁ (6()F* 1( Qo)
) In é(€)
< e (00 ulQa0) = s M (D).

Thus, combining this estimate with Remark 3.2 and the inclusion (3.5), we

obtain our main theorem in the homogeneous case:

Theorem 5.2 Let Q be a normalized conver domain, ¢ € C*(Q), ¢ = 0 on
09, and A < det D%¢ < A. Suppose u € C%*(Q), and Lyu = 0 in Q. Then,
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given 0 < o < 1 there ezist positive constants p and C depending only on A,
A, and aqg such that

1 D?ull o9,y 2) < CllullLoa)-

ProorF: Let v

. We can apply the above estimate to v to get
llull ()

|D?v|| (0, j2an) < C for some p and C depending on A, A, and ap which
implies the theorem, since in our case Lebesgue measure is comparable to the
Monge-Ampére measure u. O
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CHAPTER 6

The nonhomogeneous case

Lemma 6.1 Let Q be a normalized conver domain, ¢ € C*(2), ¢ =0 on 89,
and A < det D?*¢ < A. Suppose u € C*(), 0 < u < 1, and Lyu = f in Q.
Assume that || f/ det D?¢|jpn(q) < 1.

Then for each € > 0 there exist positive constants n(e, A\, A) and C(\, A,n)
such that for each n < n(e, A, A) and for each section Sy(xqg,tg) C Qag, we have

MG 1) (W) N S(z0,t0)) > (1 = V" =ty C(A A7) (S (w0, 0)-
(6.1)

PROOF: We use the notation from the proof of Lemma 4.1. The proof
proceeds in the same way, in particular, Claims 1 and 2 hold; the only difference
is to handle the integral f; det D24(y) dy.

Let ®(y) = det D?¢(y) (D?4(y))~". We have

. 1
D ¢(y) = o (T~ D*¢(T~'y) T,

and D?a(y) = (T~1)t D>u(T~'y) T-1. So

det D2¢(y) = det D*¢(T'y),

1
3 |det T|2
and (D*¢(y)) ™! = to T (D*¢(T'y)) ' T*. Hence

1

- 9. _ i
trace(‘I’(y) D u(y)) = tg—l l det le

f(T1y),
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- 1 n—1
det B(y) = (WT_P) (det D2¢(T"'y))"1.

Applying Lemma 3.1 with u ~ n(a)i, ¢ ~ ¥, E=0C,, F=%,, and using
Minkowski’s inequality we get

_ 1/n
( _ det D?¢(y) dy)
Qa

n@) 1 |F(T1y)[" e
="n [det TR </c (det D2G(T-1y))™ dy)

. 1/n
+ ( det D%¢(y) dy) .
Ca

Since by Claim 2, C, C T(S,(zg,t0) N GI-/(n(a)to)(u))’ we get

1/n
( / det D¢(y) dy)
T(Ss(zo.axta))

e L (] sy N\
T n |det T \ Jr(s,(zoto)G- ) (det D2¢(T—'y))"! v

1/(n(a)t

1/n
+ ( / det D*¢(y) dy .
T(Svﬁ(zovto)ncl-/("(a)go)(u))

Changing variables yields

1/n
( f det D*¢(zx) da:) (6.2)
So(zo,atg)
1/n
L@, / @
n So(20.L0)NG oy () (A€ D2(2))71

yv
Se¢(zo0,t0)NG

1/n
det D?¢(z) d:r:) .

1/(n(a)tg) (¥)
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That is,

p#(Sy(zo, at))!/"

(8
ﬂ(n ) to ||/ (det D*¢)||Ln(@) + 1(Sp(Z0, ta) N G iapee) (@)™

n(a)
n

<

< ——to + u(Sp(z0, t0) N G niaptey @)™
(83 2 — n
< Q(n—) to/> C(n, A, A) (S0, t0)) /™ + (S (o, ta) N TN () R

Notice that this inequality holds for any n < n(a) Given 0 < € < 1/2 pick

a = a(e) such that

(1 — €) u(Sp(zo, t0)) < u(Se(zo, ato)),

which combined with the previous inequality yields the lemma for any n <
n(a(e))- O

Lemma 6.2 Let Q be a normalized convex domain, ¢ € C*(Q2), ¢ = 0 on 89Q,
and A < det D®¢ < A. Suppose u € C*(Q), and Lyu = f in Q.

Then for each 0 < € < 1/2 there exzist positive constants n(e, \,A) and
C(e, A\ A) such that if Sy(zo,t0) C Qag, to < 1/A < no/83, T € Sy(zo,t0) N
Gi(u), and M,((f/ det D?6))")(Z) < (20nA\)", then

(G5 r6/y(w) N Sp(xa, ta)) > ((1 — €)™ — Cle, A, A)n))" u(Sy(zo,to), (6.3)
forn < n(e, A A).

PROOF: We use the notation from Lemma 4.2 and notice that Claims 1
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and 2 hold. As in the proof of (6.2) we get

w(Ss(zo, to)) /"

1/n
n(e) 1 f(z)"
=T e (/sé(,o',o) (det D2g(z))™1 dz)

+ 1(S5(20, to) N Gy ey ()™

n(a) 1 - 1/n
<S50 1(Ss(Z,0t0))

i/n
1 2 f(z)"
x (n(sqb(z, 7%0)) /5'4,(5,0:0) 4t D°0(2) (et D)) “"”)

+ 1(Se(zo, to) N Gg_,\a/,,(a)(u))l/n

< ) s (S4(2,016))/" M((§/ det D)) ()"

+ 1(S4(z0, to) N Grg/m(a) (W™
< C(X\ A)n(a) u(Ss(zo, 1)) + 1(Ss(z0, to) N Gayp/miay (W)™

notice that in the above inequality, n(a) can be replaced by any n < n(a).

Therefore picking a = a(€) as in the proof of the previous lemma we get

#(Sy(20,t0)) ((1 — €)™ = C(n, A, A)n)" < u(Se(To, to) N Gapg/n(t)),

for each n < n(a). ()

6.1 Power decay for the non homogeneous case

Let Q be a normalized convex domain, ¢ € C?*(Q) convex, ¢ = 0 on 99,
A< detD?* < A, ue C¥Q), |u <1in Q, Lyu = f in Q and suppose
that |[f/det D?¢||rnq,u) < 1. Given 0 < € < 1/4 we pick 7 sufficiently small
depending on € such that from Lemma 6.1 we get with M = 1/n and for
Se(xo,t0) C Qg that

21— ) (S0, t0)) < (S (0, o) N Gz (u))
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and 2
Z(l — €) 1(S(T0, to)) < u(Ss(wa,ta) N Gy, (u))-

Hence

1(Se(To, to) \ Garyie(u)) = (Se(zos to) \ (Gig/e (u) N Giapype (1))
< p(Se(zo,t0) \ GI,/to(u)) + u(Sp(zo, to) \ G/ (0)

< (2 = 5(1— Di(Sa(zo0,t0)) = 5(e) 1(Ss(a0, ).

Proceeding as in Section 5 we get that given 0 < € < 1/4 there exist M =
M(e,A,A) as in Lemmas 6.1 and 6.2 such that for a; < a; < o and for
63/) < 12/2 and for any zg € Qqa, \ Gap(u) there exists t,, < 1/ such that

1((Qaz \ Ganr (1)) 0 Sy(Z0, b)) = 6(€) 1(Sp(T0, t2y))- (6.4)
We now claim that if zg € Qq, \ Gamr(u), 83/ < 12/2 and (6.4) holds, then

So(Z0rteg) € (D \ Ga(w)) U {& € Ry : M, ((f/ det D*0)")(z) > (20mA)"}.
(6.5)
Otherwise and since zy € €24, and ¢;; < 1/ < 12, we have that Sy(zg,t,,) C
Qa, and there exists T € Sy(Zo, tz,) NGa(u) such that M, ((f/ det D*¢)")(z) <
(20n)\)™. Then by Lemma 6.2 we get that

21— O (S(z01 b)) < H{S(Eo1teg) N Grae ),

and
201~ €) (S0, tey)) < i Sp(Eartzo) O G (u).

Hence

B((Qa; \ Gam (1)) NSy(To, tz5)) < u(Se(To,tz,) \Ganr(u)) < 6(€) p(Sy(zo, tz,))s

a contradiction with (6.4). So (6.5) is proved.
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Hence by Lemma 2.7, there exist 0 < §(¢) < 1 and a family of sections

S4(zk, tr) whose union covers Q,, \ Gapr(u) satisfying (6.4) and

1#(Qar \ Gane (1)) < 6(€) p(UR, Sz t))
< 8(€) w(Qay \ Ga(w))
+6(€) u{z € Qag : M, ((f/ det D*¢)™)(z) > (26n)\)"},
(6.6)

by (6.5).

We now proceed as in Subsection 5.1. Fix a; < ag and let A = M, and set

g3 L/y

Qs = qp — ( c 1\/[) where v and Cj are the constants in Lemma 2.1. Then
0

63 83

== Co(ay — ag)” =19, and so from (6.6) we get

1#(Qa \ Garr(u)) < 5(e) (R, \ Gar(uw))
+6(e) p{z € Qo : M, ((f/ det D*¢)™)(z) > (20nM)"}.

63 1/v 93 93
C_OW) 180 — = —— = Co(az—a3)” = ns.

Next let A\ = M2 and a3 =°‘2_< X M

Then
#(Qay \ Gars(1)) < 3(€) 1(Qay \ Garz(w))
+8(€) p{z € Qo : ML ((f/ det D*¢)™)(z) > (20nM?)"}
< 8(€)? p(Qay \ Gur(u))
+8(€)* u{z € Qug : M,((f/ det D*¢)")(z) > (20nM)"}
+ 6(€) u{z € Qap : ML ((f/ det D*¢)™)(z) > (20nM>)"}.

3 /v
Continuing in this way we let A = M* and ax.; = ok — (_Coal\/j) . Then
63 63

X M
”(Qak-ﬂ. \ Gurerr(u)
< 6% p(Qq, \ Gar(u))

= Co(atx — ak4+1)? = 7, and

k
+D & p{z € Qay : M, ((f/ det D*¢)")(z) > C (M™)*+1 7},

=1
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Since M,, is of weak type 1-1, Theorem 2.1, we get

p{z € Qag : My ((f/ det D*¢)")(z) > C (M™)**17}

-
= (M™*+1=5 |, |det D%

Set mg = max{é, M ~"}. Then we have

du(®) < apmyery

k
> u{z € Qo : M((f/ det D*9)")(z) > C (M™)*+1}
=1

k
<C, E mE*tt = C, kmf*t.
=1

Hence
B(Qaprr \ Garerr (1)) < mg p(Qa, \ Gar(w)) + Cr kmb™t < Cmb+! (1 + k),

where the constant C depends on u(2). Writing m; = \/mg and since mg < 1,

we have that m&*! (1 + k) < Cm¥*L. So

#(Qak-i-l \GM“‘“(u)) < é’m,f+1'

g3 /v 93 1/~
On the other hand, oy = al—zk ( ) >a=-Y ( ) =

=t \ CoMi =1\ Co M

03 /v 1
a—| = —————— > ap/2, for M sufficiently large depending on o, and

Co Mty -1
therefore

1(Qags2 \ Gare+1(w)) < Cmb+,
for k=1,2,....
If t > M, pick k such that M**! <t < M**2 then k+1 <log, t < k+2
M

and

1(Qao/2 \ Ge(1)) < p(Qagy2 \ Gapetr(u)) < Cmit! < mi glosar m1
1
Combining this inequality with Remark 3.2 and (3.5) we get the estimate
C
p({z € Qay/2 : | Dyju(z)| > B}) < 7

for some 7 > 0 and for all 8 large. Therefore, we obtain the main theorem in

(6.7)

the nonhomogeneous case:
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Theorem 6.1 Let Q be a normalized conver domain, ¢ € C*(Q) convez, ¢ =
0 ondQ, A < detD?¢ < A, u € C¥(Q), and Lyu = f in Q. Then, given
0 < ag < 1 there ezist positive constants p and C depending only on A\, A and

oo such that

|1 D?ull Lr(@y2) < Cllullzooge) + I fllLr(ey)-

PrOOF: Let v =

u
. Applying (6.7) to v, we

l[ell 2o + || g | L)

obtain ||D%v|| LP(Qyp.dp) < C for some p and C depending on A, A, and ap.

This implies that

”Dzu“LP(an/;-,d#) <C (”u||L°°(Q) + "f”L"(Q.d#)) .

The theorem then follows since by assumption Lebesgue measure is comparable

to the Monge—-Ampére u. O

6.2 Remark

Suppose A < Mo = f < Ain Q with ¢ = 0 on 9Q. If f € C*(Q), then
from [C, Theorem 2] we have that ¢ € C>*(2). Then NId < D?*¢(z) <
NId for all z € @ € Q and with A\’ and A’ positive constants depending
only on n, A, A,dist(Q2',99) and the C*-norm of f. Suppose Lyu = 0 in
Q. Then by classical Schauder’s estimates u € C**(Q") for Q" € ¥, in
particular, ||D?ul|tsqvy < C, for all p > 0 where the constant C depends on
n, A, A, dist(Q”,8Q') and the C*-norm of f.
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CHAPTER 7
A convexity inequality

Let u, f € C(Q2), f = 0, we say that Mu < f in the viscosity sense if u is

a viscosity supersolution to Mu = f in Q.

Theorem 7.1 Letu,v € C(Q) convez, with Mu < 1+¢ in the viscosity sense,
and v generalized solution to Mv = a in 2, with o a positive constant. Let

I'(u — v) be the convez envelope of u —v in Q. Then

18T (u — v)(E)| < /C (1 + ¥ = /) ") dg, (7.1)

nE
for each Borel set E C Q, whereC = {z € Q : T'(u — v)(z) = (u —v)(z)}. If

v € C%(Q) is convez then
19T (u — v)(E)| < / (((1 +e)Ym — det D%(z)l/")’f)" dz. (7.2)
CNE
We use the following lemma.

Lemma 7.1 If u € C(Q), I'(u) is the convez envelope of u in Q, and pu is
the Monge—-Ampére measure associated with I'(u), then u has support in the
contact set C = {z € Q : ['(u)(z) = u(z)}.

ProOOF: Let B C 2 be a Borel set. We have u(B) = u(BNC) +u(BN
(Q\ Q). If p e 8T (u)(2\ C), then there exists o € Q \ C with p € dI'(u)(zg),
and so ¢(z) = ['(u)(zo) +p - (z — z,) is a supporting hyperplane to I'(u) at
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zo in Q. By [GO1, Lemma 6.6.2] there exist at most n + 1 points z; € C such
that Ig = Zn+l /\i I; with /\i Z O, Z'H-l ’\i = 1, and F('U.)(:L‘t) = 'U.(Il?,) = Z(x,-).

i=1 i=1
So T'(u)(z) = ¢(z) for each z in the simplex generated by {z;}}!, and in
particular for some z # zy; that is, p € 0I'(u)(z). Then by Aleksandrov [GO1,
Lemma 1.1.12], |0 (u)(2\ C)| = 0. O

PROOF: [of Theorem 7.1] We proceed in a sequence of steps.

Step 1. Let B = Bgr(y) be a ball with B C 2, and u € C(Q). There exists
a sequence gp € C*(9B) such that |gr(z) — u(z)| < 1/k for each z € 9B.
Let u; be the convex solution to det D?>u; = 1+ € in B, ux = g in 0B,
and ux € C*(B)N C(B). A variant of (GO1, Lemma 1.6.1] gives that there
exist a subsequence of uy, also denoted by u, and u,, € C(B) convex such
that ur — uo uniformly on compact subsets of B, with Mu, = 1 + € in
the generalized sense in B and u. = u on dB. Since det D?u;, = Mu in the
generalized sense, by the comparison principle [GO1, Theorem 1.4.6] we have
that

mén(uk —Uy) = nal};n(gk —u), and mg.x(uk —Ug) = né%.x(gk —u).

Therefore |u; — ueo| < 1/k in B, and so u; converges uniformly to 4 in B.

Step 1°. Let v be a convex generalized solution to Mv = a in 2. There
exist hx € C*(9B) such that |hi(z)—v(z)| < 1/kin dB. Let v, be the solution
to det D?v;, = a in B with v, = h; on 8B. We have that v, € C*(B). Since
Muv = det D*v, = a in B, by the comparison principle |vi(z) — v(z)| < 1/k
for all z € B. Therefore vy — v uniformly in B.

Step 2. If Mu < 1+ € in the viscosity sense in a ball B = Bg(y) with
u € C(B), then u,, < uin B. Let § > 0 and ¢(z) = & |z — y|>. Expanding the

determinant we obtain
det D?*(u + ¢) > det D%up + (26)" > 1 + € > Mu.
Then from Lemma 1.7.2 we get that

mgn(u-uk—qb) =n3g1(u—gk——6R2) > —-1/k— 6 R
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Hence u(z) > uk(z) + 0|z — y|> — § — § R? for z € B. Letting § — 0 and
k — oo we get u > Uy

Step 3. We have I'g(ur — vx) = I's(ue — v) uniformly in B; here '
denotes the convex envelope in B. This follows from Steps 1-1°.

Step 4. Since u > uy in B and u = u,, on 4B, we have that
|0Tq(u — v)(B)| £ 10T 8(ue — v)(B)],

where ['q and I's denote the convex envelopes in €2 and in B respectively, for

any v € C(Q). In fact, from Lemma 7.1
|0Ta(u — v)(B)| = [0Ta(u — v)(BNC)|,

where C = {z € Q : Tq(u—v)(z) = (u—v)(z)}. Let p € Cq(u—v)(BNC). Then
p € O(ue — v)(B). Because, there exists y € BN C such that To(u — v)(z) >
Colu —v)(y) +p-(x —y) for all z € Q. Since Ip(u — v)(z) < (u — v)(z)
for all z € 2, we obtain (u —v)(z) > (u—v)(y) +p- (z —y) for all z € Q,
ie, p € d(u — v)(z). Since u = uyx on 8N, we get from [GO1l, Lemma
1.4.1] that p € 9(ue — v)(B). We now need the following: if h € C(D)
with D strictly convez, then TI'p(h)(z) = h(z) for all z € 8D (this follows
arguing as in the first part of the proof of [GO1, Theorem 1.5.2]; or noticing
that Tp(h)(z) = Cugine(h)(z) for z € D, where T ygme(h)(z) = sup{a(z) :
a is affine and a(z) < h(z) for all z € D}, and then applying the first part
of [GO1, Theorem 1.5.2] directly.) Applying this fact with h = u, — v and
D = B, we get that I'g(te —¥) = U —v in @B and since I'g(Ugo —¥) < Ue—V
in B, it follows once again from [GO1, Lemma 1.4.1] that d(u, — v)(B) C
Ol g(ue — v)(B), and Step 4 is complete.
Step 5. We claim that

0L B(ueo — v)(B)| < liminf |8 g (we ~ ve)(B)|-
From Step 3 and [GO1, Lemma 1.2.2 (ii)], we have

0T g (uco — v)(K)| < liminf |0T p(ux — ve)(U)|,
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for each K ¢ U ¢ U C B with K compact and U open. Since the Monge—
Ampere measure is a Borel measure finite on compact sets, it is regular and
SO

0T g(Ueo — v)(B)| = sup [OT g(uew — v)(K)]|,

KcB,Kcpt
and the claim follows.
Step 6. We have

10T 5 (i — u)(B)] < /C det D*(uy, — vi) () dz,

where Cx = {z € B : Tg(ur — v)(z) = (ur — ve)(z)}, from [GO1, Theorem
1.4.5]. For = € C, we have

(det D?u(x))"/™ + (det D*(wi — vi)(z))"/" < (det D?ur(z)) "™,
and hence

det D(us ~ 0)(@)dz < [ (14" = (det D*uu(@))'")" d
Ci Ci

< 1+e)l/m —al/m)" " dz 7.3
[ (« %) (73)
for each ball B C 2. Combining Steps 4-5 and (7.3), we get that

0Ta(u —0)(B)| < (1 +9Y" —a¥/") )" B,

for each ball B C Q. Therefore, the measure [8Tq(u — v)(-)| is absclutely
continuous with respect to Lebesgue measure, and so there exists h € L} ()
such that

|80 (u — v)(E)| = /B h(z) dz,

for each Borel set E C 2, and

h(z) < (((1 +e)l/n al/n)*)", ae. in Q.
Then (7.1) follows from Lemma 7.1.
The proof of (7.2) follows omitting Step 1’ and taking v, = v. O
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CHAPTER 8

Counterexamples

In this chapter we show with an example that the estimate (1.4) is not
valid for all p. We consider a slight variant of the two dimensional example
from (W95, p. 842]. Let a > 4 and

z® + By*z*~e, if ly| < |z|*!
#(z,y) = R
ya?yle~Ae=t) 4 gye/lelif jy| > ||t
where 3,4 and & are constants that will be chosen such that ¢ and D¢ are
continuous across the curve |y| = |z|*~1, ¢ is convex in the regions |y| > |z|*~!
and |y| < |z|*"!, and Ci(a) € Mo < Ci(a) in the generalized sense, where

Ci(a) are positive constants depending only on a.

We have
, ar* '+ 82 —-a)y?zt-=, if |y| < |z]|*!
¢(zT,y) = .
2y pyle-2/(e-1), if [y| > |z}*~;
5ulo0) 28y z>=, if [y} < |z|*
W\ Y) = a—-2 , _, a
—-1/(a—-1) —  pl/(a—1) : a—1.
V7Y +o—y iyl > |27
ala—1)z2+f2—a)(1-a) s, if fy] <[zl
¢zz(xy y) =

2yyle2 e, if ly| > |=]*7Y
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282 —-a)yz'™®,  ifly| < |z]*!

¢2:y(zv y) = a—2
9 —1/(a—1) if a-1.
Y= —SyVeD, [y > ol
byy(z,Y)
2ﬁ1‘2_a, if Iyl < Izla—l
= _ a—2 1 g2 y=olle-l) 4 § a 1 y@-a/la=l) - if |yl > z]o—t.

a—1la-1 a—1la-1

Therefore
28(a(e 1) > det D*¢ > 28(a(a — 1) — Bla —2)(@—3))  (8.1)
for |y| < |z|*~!; and

(a@—1)2 = 2 @—_7-1?(50 —7(a —2)(2a - 3)) (8.2)

for |y| > |z]*L.
We now study the continuity of ¢ and D¢ across |y| = |z|*~!. For the

continuity of ¢ we need
z° + B$2a—2x2—a = ’717212&-2 + 5:60,
so
1+83=v+4. (8.3)
For the continuity of ¢, we need
az®" ! + (2 — a)z?* 2! = 2yz2>2,

SO

a+B82—a)=2y. (8.4)
For the continuity of ¢, we need

a—2
2zt +

9 a—1 n—2=
pz""'z 7a—1 a—1

z,
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s0
a—2 do

283 =~ .

B /a—l+a—1

Therefore 3, 4, v solve the system of equations

(8.5)

B—6-v=1
2—-a)8 -2y =—a
20a-1)B—-ad —(a—2)y=0.

The solutions to this system are given by
2 2 2
(137677)=(1_—’072--)+5<_71)'2——1),
a a a «

where ¢ is arbitrary.
We next impose conditions on 3,4, such that ¢ is convex. We have for
ly| < |z|*~! that

bez = (@ — 1)(az®? + B(a — 2)y°z™%) > 0
if 3> 0. If [y| > |z]|>"!, then
bre = 2yy@=D/@-1) 5 o
for 4 > 0. Also, we have for |y| < |z|*"! that
By = 2Bz > 0

for 5 > 0. If |y| > |z|*, then

1

(_a__ljg(aay@—a)/(a—l) _ ,y(a _ 2)z2y—a/(a—l))

¢y~y=

> _ 1 e-al a5y — nie—2)).

2 ez 1)231 (ba —v(a —2))

Since v =2 — 2 +§ (2 — 1), we get that da —v(a — 2) > 0, and so ¢, > 0,
as long as

2(a-2)(a—-1)

g o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

We need det D?¢ > 0. The right hand side of (8.1) is positive if 8 <
ala—1)

(o —2)(a-3)

; and sinceB=1—§+5§, we must have

. a(a—1)—(a—2)2%(a—3)
o< 2(a —2)(a—3)

On the other hand, the right hand side of (8.2) is positive if da —vy(a —2)(2a —
3) >0, and sincey=2-2 +6(§ — 1), we get

2(a-2)(a-1)(2a-3)

> T (e—2 a3
Also v > 0 amounts
5<2(a—1)
a—2
We have
_ . f2e—=1) Pla—1)=(a—=2)*(a—3)| _2(a-1)
52(0‘)““““{ —2 2(c — 2)(a — 3) T a-2

_ 2(a-2)(a—-1) 2(a~2)(a—-1)(2a-23)
61(a)—max{ a?+(a—-2)2 " a?+(a—2)2(2a-3) }

_ 2(a—2)(a—-1)(2a - 3)

T a4+ (¢ —-2)2(2a-3) '

and it is easy to check that §,(a) < d2(a). Therefore each § satisfying
d1(a) < § < &2(a)

determines 3 and v with the desired properties and therefore ¢.

We have that D%¢ & LP for p > e .

a—?2

Lemma 8.1 Given p > 1 there ezist positive constants A < A depending only
on p and a strictly convez bounded domain Q2 and a convez function ¢ € C?(Q)
with A < det D*y < A in Q and with ¥ = 1 on 8Q such that the inequality

|D*yl|e < C is impossible with a constant C depending only on n,p, A and
A.
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PROOF: Let ¢ be the function constructed above for a > 4 sufficiently
1 Q = {z: ¢(2) < 1}, f(z) = det D®¢4(z), and
A = Ci{a), A = Cs(a). Consider 7.(z) a nonnegative smooth mollifier and
let f. = f xn.. We have that A\ < f. < A in Q. Let ¢, be the solution to
det D?*¢, = f. in Q and ¢, = 1 on 9. We have that f. — f weakly. Then by
[GO1, Lemma 1.6.1], {¢.} contains a subsequence ¢« — @. If | D?*¢e || < C

with a constant depending only on p,n, )\ and A, then D?¢, would contain a

large such that p > > 2

subsequence D*¢¢ converging in L” to some function v. But then D%¢ = v, a

contradiction. O
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