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Plan of lecture: 2.

A symplectic structure is a rather elusive geometric structure that can be
put on an even dimensional space. This talk will describe some basic
properties of this structure, explain some fundamental results and briefly
discuss some open problems.

I (I): What is symplectic topology?

I (II) Some fundamental results on symplectic embeddings

I (III) Open Questions



Geometry I: — Euclidean 3.
Geometry is the study of the structure of space. (many possibilities)

We are all familiar with plane Euclidean Geometry with its lines, angles,
distance measure and circles:



Geometry in higher dimensions – via linear algebra 4.

Position in two dimensions is given by two numbers (or coordinates).
Position in three dimensions is given by three numbers: ~v = (v1, v2, v3).
Position in n dimensions is given by n numbers (v1, . . . , vn) and we
measure lengths and angles using the dot product.
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The dot product ~v · ~v is symmetric, i.e. ~v · ~w = ~w · ~v .



Symplectic Geometry 5.

In Symplectic Geometry the dot product ~v · ~w is replaced by an anti- (or
skew-) symmetric form ω0(~v , ~w), i.e. ω0(~v , ~w) = −ω0(~w , ~v), so that
ω0(~v , ~v) = 0. Thus there is no notion of length, but there is a notion of
the (signed) area of 2-dim objects.

Basic example: on R2, we have ω0 = dxdy (in calculus notation). It is an
area form often written dx ∧ dy
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]
= v1w2 − v2w1.

ω0(~v , ~w) is the area of the rectangle spanned by these two vectors.

Its sign depends on orientation.



The standard (linear) symplectic form ω0 6.

on R4 we have ω0 := dx1 ∧ dy1 + dx2 ∧ dy2, a sum of area forms

Here S is a piece of surface that
you project in two different ways
and then add the areas.

Since ω0 is closed, i.e. dω0 = 0, we get flabby measurements: by Stokes’
theorem, the area of a surface S can be written as an integral

∫
S
ω0; it

does not change as S moves as long as the boundary remains fixed.



The standard (linear) symplectic form ω0 7.

In R4 the x1, x2- plane in R4

is Lagrangian: any surface S
in this plane projects to a line
in both the x1, y1 and
x2, y2-planes and so
has zero symplectic area.
Thus directions are not all
the same — the geometry is anisotropic.

It’s the same in higher dimensions: in R6 we have
ω0 := dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3, again a sum of area forms, with
coordinates grouped in pairs.

In physics, the pair xi , yi represents the position and velocity of a particle in one

direction – so a particle moving in 3-space gives 6 coordinates. The symplectic

form gives an important (but geometrically somewhat obscure) measurement of

the mutual entanglement of position and velocity.



Many symplectomorphisms: 8.

In general, a symplectic structure on a 2n-dimensional manifold M is a
closed, nondegenerate 2-form ω.

Every function H : M → R generates a flow φHt , t ∈ R (1-parameter
group of motions of space) that preserves ω: (φHt )∗(ω) = ω. Such
transformations are called symplectomorphisms.
The flow is a solution of Hamilton’s differential equations — generated
by the vector field XH given by ω(XH , ·) = dH(·)– so that in R2n we have
∂x
∂t = ∂H

∂y ,
∂y
∂t = −∂H

∂x .

Example: if H = 1
2 (x2 + y2) on (R2, dx ∧ dy), we find

dH = xdx + ydy =⇒ XH = y∂x − x∂y

giving a clockwise rotation, preserving the circles H = const.

But there are many, much more twisty symplectomorphisms Because
there are so many, symplectic geometry is very flexible.



Nineteenth century symplectic geometry 9.

In classical mechanics, the flow φHt describes the time evolution of a
mechanical system with energy function H; thus energy is conserved as
the system evolves with time. This picture is largely due to William
Rowan Hamilton (also the inventor of quaternions); Sonia Kovalevsky
used this approach in her celebrated study of spinning tops.



Late twentieth century symplectic geometry 10.

Very deep and subtle connections between symplectic and complex geometry
were first noticed and exploited by Misha Gromov (on left) in 1985, giving rise
to a main tool in the modern theory J-holomorphic curves.

His ideas were extended by Andreas Floer (on right) in the late 1980s, who

used them to develop an influential Morse theory for spaces of loop and paths

in a symplectic manifold, now called Floer homology. These new concepts are

the basis for the relevance of symplectic geometry to string theory and mirror

symmetry.



Relation of Symplectic to Complex geometry: 11.

Symplectic and Euclidean geometry are related via complex numbers: Identify
R2 with C where z = x + iy , so R2n ≡ Cn. Then

ω0(~v , ~w) = ‖~v‖ ‖~w‖ sin(θ) = i~v · ~w
symplectic form dot product

where θ is the angle between ~v , ~w and i =
√
−1. (see left-hand picture)

Gromov discovered that it makes sense to consider perturbations J of the
operation “multiply tangent vectors by i ”. So J is an operator ~v 7→ J(~v) on
tangent vectors such that J2 = −Id and that is positively related to ω0 by:
ω0(~v , J~v) ≥ 0. J is called an almost complex structure.



J-holomorphic curves: 13.

The analogs of geodesics are J-holomorphic curves – these are one dimensional
complex curves (so two real dimensions)
i.e. they are surfaces C such as a sphere
or torus and such that, for every
tangent vector ~v , the vector J(~v)
is also tangent to C .

I In R4 = C2 (complex plane) every solution
of a polynomial in the complex variables z1, z2

is a J-holomorphic curve (with J = i). eg we could take C to consist of
the solutions to z2 = z3

1 + z1 + 1.

I But J is much more flexible that the complex structure i .

I So there are many more J-holomorphic curves than complex curves; –
they are most useful when they persist under perturbations of J.



Relation of Symplectic to Complex geometry: 11.

Symplectic and Euclidean geometry are related via complex numbers:
Identify R2 with C where z = x + iy , so R2n ≡ Cn. Then

ω0(~v , ~w) = ‖~v‖ ‖~w‖ sin(θ) =i~v · ~w

where θ is the angle between ~v , ~w and i =
√
−1.

Since multiplication by i =
√
−1 rotates the complex plane by 900, the

above identity also implies that the two gradients are mutually
perpendicular:

Euclidean gradient gradH = i (Symplectic gradient) = i XH .



Special Features of Symplectic Geometry: 12.

I The theory has two faces, with two kinds of submanifolds;
I symplectic – the restriction of ω is nongenerate, relation to complex

surfaces
I Lagrangian – the restriction of ω vanishes; relation to dynamics,

totally real objects

I tight connection with physics (from Hamiltonian dynamics in 19th century
to dualities/mirror symmetry in string theory today);

I Darboux’s theorem – all symplectic forms are locally diffeomorphic;

I the group of symplectomorphisms φ is infinite dimensional (since it
contains all φH

t ) and C0- (i.e. uniformly) closed among all
diffeomorphisms; i.e. although the equation φ∗(ω) = ω involves first
derivatives, there is a notion of symplectic capacity c such that

I φ∗(ω) = ω iff φ preserves c;
I the condition φ preserves c does not involve derivatives. more later

I Thus symplectic geometry is in many respects a topological theory,
involving a very interesting interplay between flexibility and rigidity.



II. Some fundamental results 13.

In 2 dimensions, a symplectic form is an area form. Hence every closed
oriented surface (eg a sphere or torus) has a natural symplectic structure,
unique up to a scaling factor. Moreover there are many area preserving
diffeomorphisms.

(Moser - 1965) If a closed disc D ⊂ R2 is diffeomorphic to a closed
region U of the same total area, there is an area preserving

diffeomorphism φ : D
∼=→ U.

 =D  =U

r°r®

slit diskdisk

The situation is quite different in higher dimensions.



The Nonsqueezing theorem 14.

Consider the problem of embedding the ball

B4(a) =
{

(z1, z2) : π(|z1|2 + |z2|2) ≤ a
}
⊂ C2 = R4

into the cylinder Z (A) =
{

(z1, z2) : π|z1|2 ≤ A
}
⊂ R4, where we write

z1 = x1 + iy1 ∈ C = R2:

?a

)A(Z

B

Nonsqueezing Theorem (Gromov: 1985) There is a symplectic
embedding B(a) ↪→ Z (A) if and only if a ≤ A.

The volume preserving map (z1, z2) 7→
(
λz1,

1
λ
z2), λ :=

√
A
a

does squeeze the ball

into the cylinder.



Symplectic measurements: 15.

Although the Nonsqueezing Theorem may seem just like a curiosity, it
turns out to be a cornerstone of the modern theory.

Gromov, Ekeland–Hofer: Given an open U ⊂ R2n define the symplectic
capacity by

c(U) = sup{a : B(a) embeds symplectically in U}.

I c(U) is a symplectic invariant;

I it is essentially 2-dimensional, eg Z (A) is a set of infinite volume
with finite capacity

I any orientation preserving diffeomorphism φ that preserves c (i.e.
c(φ(U)) = c(U) for all U) is an (anti)-symplectomorphism, i.e.
φ∗(ω) = ±ω.

Many other very interesting symplectic measurements have been
developed by Hofer, Polterovich, Hutchings, among many others . . .



Embedding 4-dimensional ellipsoids 16.

Let E (a, b) be the ellipsoid {(z1, z2) : π
( |z1|2

a + |z2|2
b

)
≤ 1}.

1·) =b2j2zj + =a2j1zj(¼

a;bEthe ellipsoid 

Hofer conjectured around 2010 that intE (a, b) embeds symplectically in
intE (c , d) if and only if N (a, b) ≤ N (c , d). Here N (a, b) is the set of all
numbers ka + `b, k, ` ≥ 0, arranged with multiplicities in increasing order. So,
N (2, 2) = (0, 2, 2︸︷︷︸, 4, 4, 4︸ ︷︷ ︸, 6, 6, 6, 6︸ ︷︷ ︸, 8, 8, 8, 8, 8︸ ︷︷ ︸, . . . ), and

N (1, 4) = (0, 1, 2︸︷︷︸, 3, 4, 4︸ ︷︷ ︸, 5, 5, 6, 6︸ ︷︷ ︸, 7, 7, 8, 8, 8︸ ︷︷ ︸, . . . Thus N (1, 4) ≤ N (2, 2) because

the first sequence is termwise no larger than the second.

This conjecture now proved by McDuff (2012). An illustration of what it means:



The “ellipsoid into ball” embedding capacity 17.

For a ≥ 1 define c(a) := inf
{
µ : E(1, a) embeds sympl. in B(µ)

}
.

This function was calculated by McDuff–Schlenk (2012).
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I For a < τ 4 ≈ 6.7 (where τ = 1+
√
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) there is an infinite staircase (with

numerics based on the Fibonacci numbers),

I for a ≥ 8 1
36

=
(

17
6

)2
, c(a) =

√
a – no obstruction except for volume

I τ 4 < a < 8 1
36

is a transitional region;

I there are rather few results or plausible guesses as to behavior in dim > 4.

The obvious analog of Hofer’s conjecture is false (Guth).



III. Some open questions 18.

(I) Which manifolds are symplectic?

I Necessary topological conditions: the manifold must admit an
almost complex structure (a higher dim. analog of an orientation) and (if
closed, i.e. compact without boundary) a cohomology class a = [ω] with
an > 0 (the de Rham class represented by ω);

I (Gromov) if M is connected and open (i.e. noncompact or with

boundary) this is enough;

I (Taubes) there are closed 4-dim manifolds satisfying these conditions
with no symplectic structure; e.g. the connected sum of three copies
of CP2, the complex projective plane.

I no such examples are known in higher dim — but almost surely exist.

I The analogous questions in contact geometry (symplectic
geometry’s odd-dimensional twin) now have some answers.



Contact and symplectic geometry I: 19

I A contact structure on a manifold Y is a
nowhere integrable hyperplane field ξ given by
the kernel (or vanishing locus) of a 1-form α. Nonintegrability means that
the planes continually twist, and that the curvature of the plane field
(given by the 2-form d(tα) ) defines a symplectic structure in a little
neighbourhood Y × (−ε, ε) of Y .

I Conversely, every convex codimension 1 hypersurface in a symplectic
manifold (e.g. a sphere S2n−1 in R2n) has a natural contact structure.

I Some aspects of symplectic and contact geometry are the same but some
are very different:

I in both geometries, every function H on the manifold generates a
flow, so there are many structure-preserving diffeomorphisms;

I the contact structure in Euclidean space can be rescaled by a map of
the form (x , y , z) 7→ (λx , λy , λ2z); so the nonsqueezing phenomena
are very different.



Contact and symplectic geometry II: 20.

I In 2014 Borman, Eliashberg and Murphy showed that every hyperplane
field that satisfies a mild topological condition is homotopic to a contact
structure that is unique up to contactomorphism.

I All contact structures constructed in this way are overtwisted.

I But contact structures that bound symplectic manifolds are never
overtwisted.

I the existence and classification of tight (i.e. not overtwisted) contact
structures is not at all understood in dimensions > 3.



A very few References: 22.

M. S. Borman, Ya. Eliashberg, E. Murphy, Existence and classification of overtwisted
contact structures in all dimensions, Acta Math. (215) (2015), no 2, 281–361.

Ya. Eliashberg, Classification of overtwisted contact structures on 3-manifolds.
Inventiones Mathematicae, 98 (1989) , 623–637.

A. Floer, Morse theory for Lagrangian intersections. Journal of Differential Geometry ,
28 (1988), 513–547.

H. Hofer, On the topological properties of symplectic maps. Proceedings of the Royal
Society of Edinburgh 115 (1990), 25–38.

M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Inventiones
Mathematicae, 82 (1985), 307–47.

D. McDuff and D.A. Salamon, Introduction to Symplectic Topology, 3rd edition,
Oxford University Press, 2017. (with many other references)

D. McDuff and F. Schlenk, The embedding capacity of 4-dimensional symplectic
ellipsoids, Annals of Mathematics (2) 175 (2012), no 3, 1191–1282.


