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ABSTRACT

IMPROVED ALGORITHMS AND
IMPLEMENTATIONS IN THE MULTI-WZ THEORY

by Akalu Tefera

Doctor of Philosophy
Temple University, 2000

Advisor: Professor Doron Zeilberger

In this dissertation we find improved algorithms and implementations that
completely automate the continuous version of the multi-WZ method.

In the first chapter we give a brief review of the multi-WZ method. In Chap-
ter 2 we describe complete automation of the continuous multi-WZ method. In
Chapter 3, using our Maple packages, we give automated proofs to several math-

ematical problems. In Chapter 4, we discuss future directions of our research.

iii
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CHAPTER 1
INTRODUCTION

[dentities in mathematics are usually hard to prove and often require lengthy
and tedious verification. One of the most exciting discoveries in recent vears, due
to Herb Wilf and Doron Zeilberger [WZ92], is that every proper-hypergeometric
multi-integral or sum identity with a fized number of integration and summation
signs possesses a computer-constructible proof.

In general, the “objects” of study in the WZ theory are expressions of the kind

3 / F(n.k,x)dx

k
and identities between them. In the above general integral-sum. n and k are
discrete multi-variables, while x is a continuous multi-variable. and F is hyperge-
ometric in all its arguments.
Presently the computer implementation of the WZ method is done by considering
two special cases of the general integral-sum. One is the case of the pure multi-
sum, i.e. X is empty, and the other is the case of the pure multi-integral, i.e. k
is empty. These two cases are called the discrete multi-WZ and the continuous

multi- WZ, respectively.

1.1 The Discrete Multi-WZ

This case includes expressions of the kind
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and identities between them.
Some examples of multi-sum identities that can be proved automatically by using

the multi-WZ method are the Apéry-Shmidt-Strehl identity

== () -2 ¢

where n > 0 is an integer, the Andrews-Paule sum

ii (i 4'_]-)2(411; 2i.)—.2j) - (@n+ 1)(2 n)

prfoar S WY 2n — 21 n
and various other multi-sum binomial coefficient identities.
There are several efficient implementations that handle binomial summation iden-
tities. To mention a few: Zeilberger’'s [Z90] EKHAD', C. Krattenthaler’s [K93]
HYP?, B. Gauthier’s [G99] HYPERG3, and Schorn’s [PS95] fastZeil!. For multi-
sum binomial identities K. Wegschaider’s [W97] MultiSum® is a nice Mathematica
implementation of Wilf and Zeilberger’s [WZ92] extension of Sister Celine’s tech-

nique.

1.2 The Continuous Multi-WZ
This case includes expressions of the kind

/.../F(n,:z:l,...,:rk)dl‘l R £ 8

and identities between them. In the above integral expression, n is a discrete

multi-variable and F is hypergeometric in all its arguments. Some examples

'available from http://www.math.temple.edu/~zeilberg/

2available from http://radon.mat.univie.ac.at/People/kratt/

3available from http://wew-igm.univ-mlv.fr/~gauthier/

‘available from http://www.risc.uni-linz.ac.at/research/combinat/risc/software/

Savailable from http://www.risc.uni-linz.ac.at/research/combinat/risc/softwvare/
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of multi-integral identities that can be automatically proved by the multi-WZ

method, for any fized given dimension, are the celebrated Mehta-Dyson integral

]
-Zk—x z,%/2 ( . \2c¢ (CJ)
—_ e &= z; —z;)°°dxr, - - -dzp = .

(27)ER /(_oo,m)k lsgsk ’ H

where k£ > 0 is an integer and c is a non-negative integer, the Selberg‘s integral
k
/ H.r:-’(l-—x,-)b H (r -—1:]) dry---drg =
[0.1)* | i=1 1<i<j<k

H (a+(F~-1)(b+(j—-1)c)(jo)!
j=1 (a+b+(k+j—-2)c+ 1)

where a, b and ¢ are non-negative integers, and constant term expressions such
as the celebrated Dyson’s ex-conjecture
a
T; ka)!
cr| I (1-%)|=%2
zj a!

1<ig <k
t#]

where a is a non-negative integer and

CT(f(zy,....,zx)) := constant term of f(zr,,zs,...,Z)

:= coeff. of 929 ---2% of the Laurent polynomial f

Ty, T9,.. :
= (’)-—1)‘~ / / f L 2 - k) dII - ’dl’k.
0 —1 Ti

where C is a circle around the origin.

See [AAR98] for a superb exposition of these and others very important identities
and of numerous applications. At present, the continuous multi-WZ method
[WZ92] is capable of mechanically proving these identities only for fixed k. In
principle it should work for any specific value of &£, but in practice it only works

for £ < N, where the value of N depends on a given identity and implementation

Doron Zeilberger wrote a Maple implementation, TRIPLE_INTEGRAL®, that per-

forms the algorithm described in [WZ92] for the case of three continuous variables.

Savailable from http://www.math.temple.edu/~zeilberg/
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But TRIPLE_INTEGRAL does not completely automate the method. for instance,
it requires the user to guess and input the denominators of the rational certifi-
cates of the required recurrence-differential (WZ) equation. One of the goals
of this thesis was to improve and generalize Zeilberger's TRIPLE_INTEGRAL for
any specific number of continuous variables so that it completely automates the
continuous multi-WZ method. To this end, we wrote Maple implementations,
Mint and SMint? which improve and generalize Zeilberger’'s TRIPLE_INTEGRAL
for any specific number of continuous variables. In Chapter 2 we describe com-
plete automation of the continuous multi-WZ method. In Chapter 3, using our
Maple packages, we give automated proofs of various mathematical problems. In

Chapter 4 we discuss future directions of our research.

Tthey are available from http://www.math.temple.edu/~akalu/
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CHAPTER 2

COMPLETE AUTOMATION OF THE
CONTINUOUS MULTI-WZ METHOD

We will describe Maple implementations, Mint and SMint. of the continuous
version of the multi-WZ method. We will also give several examples of how
these packages can be used to systematically generate proofs of identities (or

recurrences) which involve multiple integrals of proper-hypergeometric functions.

2.1 Notations and Basic Definitions

Numbers. We denote the set of integers by Z, the set of positive integers by N.
and the set of negative integers by —IN.

Operators. Let n be a discrete variable, r be a continuous variable. x be a
continuous multi-variable, and F be a function. We use the following operator

notations.

E.F(n;x) := F(n+1;x),
7,
D.F := —a;F,
A F(n;x) = F(n+1;x) — F(n; x).

Annihilators. An operator P is said to annihilate a function F if PF = 0.
For example, E, — Ex — I annihilates F(n, k) = (kil), and D2 + 41 anni-

hilates F(z) = sin(2 x).
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Rising Factorial. The rising factorial svmbol (a), for n € Z, is defined as

My(a+i) ifneN
(a), := 1 forn=0

ﬁ ian—Nanda¢{1,_,...,—n}

Elementary Symmetric Functions. The elementary symmetric function of
Ii.....Zn of order r, denoted by e,. is defined as

r
€, = Z H‘rij'

1<iy <-<ir<n j=1

Hypergeometric functions. Let F := F(n,x) be a function of m discrete
variables n = (n,,...,n,;) and k continuous variables x = (zy,....z¢). We say
that

e F is hypergeometric if

(i). Z=f = Rational,;(n,x),(i =1....,m).
(ii). 22 — Rationaly;(n,x). (i = 1.....k).

e Fis proper-hypergeometric if it can be reduced to the form:

m J L
P(n, x)e® [ Ri(x)™ [ S;(x)> ] (¢"n1 + - - - + e@nm + fi)1"
i=1

=1 (=1
where
(i). P(n,x) is a polynomial,
(ii). Ry, R:, S; are rational functions in x,

(iii). ¢; and f; are complex numbers (in general, commuting indetermi-
nates),

iv). e ... e and ¢, (l =1,...,L) are integers.
I m
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Example : F(n,z) = z" is a hypergeometric function, since Ej‘,—ﬁ = r and
L2:£ = B are rational functions.
Many important identities, for instance, those mentioned in section 1.2 involve

multiple integrals of proper-hypergeometric functions.

2.2 Description of the Algorithm

The heart of the algorithm is the following fundamental theorem of the (contin-

uwous) multi-WZ method.

Theorem 2.1 (The fundamental theorem) Let F(n:z,,....xz;) be a proper-
-hypergeometric function in all its arguments where n is a discrete variable and
Iy,....Zx are continuous variables. There erists a non-zero linear ordinary re-

currence operator with polynomial coefficients P(E,,n) and a k-tuple of rational

functions [Ry, ..., Ry ] in the variables n, z.,...,z: such that

k
P(E,.n)F = Z D, (R;F) (WZ equation).

j=l1
Note that the polynomial coefficients of P(E,.n) are free of z,,.... 1.

Suppose we have to prove a multiple integral identity of the form
/ / F(nizy....,z¢)dz, - - -dzy = 1. n € Zxo, (2.1)
T e

where v,.1=1,..., k, are circles around the origin.

The general method to prove (2.1) is to find a recurrence equation satisfied by

By the fundamental theorem, F satisfies a WZ equation:

ZL:a,-(n)F(n+i;a:1,...,J:k)=zk:Dr] (R; F), (2.2)
i=0 =1

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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where a;(n) are polynomials in n and aq(n) = 1.

By integrating both sides of (2.2) with respect to z;....,z;, we get
L
Za,—(n) f(n+1) =0.
=0

The identity (2.1) follows once the initial conditions f(n) =1, n=0.1,...,L —
1 are checked. Computational experience shows that the algorithm which is
described below is usually successful in getting a WZ equation with L = 1.

For the proof of the fundamental theorem and its beautiful theoretical aspects
see [WZ92].

The algorithm that implements the continuous multi-WZ method is summarized

as follows.
e INPUT:
— A proper-hypergeometric function F'(n:x), where x = (r;,....1¢):
— Variable names: n,ry,..., ok;

— Maximal order of the required recurrence operator in n, i.e.. degree

with respect to E, (optional, default = 6).

e OUTPUT:

A non-zero recurrence-differential equation (WZ-equation):

order k
Z ai(n) Fln+1,x) = ZD,J(RJ- F)
1=0 =1

if it exists; 0 otherwise.

e DESCRIPTION:

1. Set up the WZ (rational) equation :

order E-z k 1 [ (n X) ]
a; =D, |Z=——F| =0
; Jz=:1 F 7 {qi(n,x)
=0 * j=1"*
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with unknowns ¢;(n) and p;(n.x), where
M,
pi(n.x) = Y bja(n)x",
1=0

x! = le:z:f-‘, 1 = (l,....0), Mj = (M,;,....M;). and replace

gj(n,x) by 1.

o

Clear the denominators in (1) and equate the coefficients of the mono-
mials in x to get a homogeneous system of linear equations in the
unknowns a; and b;.

3. Solve the resulting system.

4. If a non-zero solution is obtained, then stop. If not. increase degrees of
p;j(n,x), replace g;(n.x) by next “best” conceivable value by looking
at the factors of the denominators of D; log(F). and then go back to

step 3.

Remarks:
(i). The fundamental theorem of WZ guarantees the algorithm’s eventual suc-

cess. One just needs to keep increasing the order of the recurrence operator.

(ii). Computational experience shows that, for many real life examples (as can

be seen in Chapter 3), the computer time is not prohibitive.

(iii). If F(n,x) is symmetric in z = (z,...,zx), then the efficiency of the algo-

rithm can be improved by looking for a rational function

instead of a k—tuple of rational functions. To this end, set the WZ (rational)

equation

F F q(z;: X;)

i=0 Jj=1

order 1 k R
5 a,-(n)E"F —ZLDI, [MF] =0,
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where

(2,....Tk-1) forj=1
*] = (1‘.17"'7xj—l:Ij+17"'7$k—l) f0r1<]<k_1
(1,...,ZTk=2) forj=k-1
and
k=1
p(usvy, ..., k-1) —Zbi.J(n)U H em(ti,---. k-1)"
S m=1
where,
i=(i1,....0%-1)

2.3 Description of Mint and SMint

Mint and SMint are packages of Maple programs that implement the above al-
gorithm. Mint stands for Multiple integrals and SMint for Symmetric Multiple
integrals. Basically, both packages contain the same procedures, but SMint is
applicable for proper-hypergeometric functions F(n,x) which are symmetric in
x. Below we give a description of the main procedures that are contained in the
package Mint.

There are two versions of Mint. The first one is for Maple V release 2 or 3, which
is stored by the name Mint3, the second one is for Maple V release 4 and above,

which is stored by the name Mint5. Both of them are available from
http://www.math.temple.edu/~akalu/maplepack/

They are loaded into the Maple session by typing read ‘Mint3‘ orread ‘Mint5°.
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> read ‘Mint5°¢;

Mint: a Maple package for Multiple Integration
of proper-hypergeometric functions by

the continuous version of the multi-WZ method.

Akalu Tefera, Temple University, Department of Mathematics.

Please report all bugs and comments to: akalu@math.temple.edu

For a list of procedures, type:

?Mint or help(Mint)

For help with a specific procedure, type:

?procedure name or help(procedure name)

CAUTION: this version of Mint is for Maple V Release 5

2.3.1 findrecl

The function findrec1 finds a \WZ-equation that is satisfied by a given proper-

hypergeometric function. findrecl can be called in several ways:

e findrecl1(integrand, n, intnvars, auziliary_vars, recurrence_order, denom-
_poly ) ; tries to find a WZ-equation that is satisfied by the proper-hyper-

geometric integrand. The program searches for a recurrence operator in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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n of order is equal to recurrence_order and looks for a k-tuple of rational
functions (the certificate), where k is equal to the number of integration

variables. Here the user inputs and guesses the denominators denom_poly

of the rational functions.

e findrecl(integrand, n, intnvars, auriliary_vars, recurrence_order) ; tries
to find a non-zero WZ-equation for integrand. but searching for possible

denominators of the rational certificates is done automatically.

e findrecl (integrand, n, intnvars, auziliary_vars, denom_poly) ; is like both
of the above findreci(arguments), but looks for a non-zero recurrence
operator whose order in E, is at most 6 (the default maximum order) and

rational certificates with denominators denom_poly.

e findrecl(integrand, n, intnvars, auziliary_vars) ; and findrec1 (integrand,
n, tntnvars) ; look for a non-zero recurrence operator whose order in £, is

at most 6.

The following example illustrates how the function is used.

Example: Prove

1 /// (z+y+2z)° dr duds — n!
(271)3 Je Jc Jo xm+! yk+l zn-m—k+1 Yas = e (n—m —k)!
where C a circle surrounding the origin.
Proof:

Let

(z+y+2z2)"mkl(n—-m-k)!
(2 T i)3 n! rm+1 yk+1 zn—m—k+1 °

M(n,m,k) := /C/C/CFdxdydz

We want to show that M(n,m.k) =1 for all m, n and k in Z5, , where m < n

F:=Fn,mk.zy,z) =

and £k < n.
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findreci1(F,n, [x,y,2z], [m,k],1); gives the output:

T
Fln,z,y.z]-F[n+1,z,y.z] = D[z, —n—HF_[n, T,y z]]+

D[y, —745Fn.z.y.2]] + D[z, Z¥¢F [n.z.y. z]]

and the result follows by triple contour integration with respect to z, y and :z
and the fact that A£(0,0,0) = 1. O

Remark:
(i). In the computer output, F_[variables] means F(variables) and D_[z.G]

means D (G) = a%G. We used this notation for the sake of convenience

and to avoid conflict with the Maple built in global variables.

(ii). Without recurrence.order specification, findrecl searches for a non-zero
WZ-equation, starting from order zero all the way up to order 6 (the
default). Depending on the integrand, this may take some time before
findrecl gets the required WZ-equation. Therefore, we recommend that

the user inputs the expected order of the WZ-equation.

2.3.2 findrec2 and findrec3

The function findrec?2 is similar to findrecl but is targeted to find a non-zero
recurrence operator in m = (n;,...,n,), m > 1.

The function findrec3 tries to find a non-zero WZ-equation for the integrand by
using a given ansatz (a list of monomials in forward-shift variables). It can be
called in either of the following formats.

findrec3(integrand, n, forward_shift_vars, intnvars, auriliary_vars, ansatz, de-
nom_poly) ;

findrec3(integrand, n, forward_shift_vars, intnvars, auziliary_vars, ansatz) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1
(1 -1 — 22 — y — y2) gm+1) g+ 1)’
Then findrec2(F, [n,m], [x,y], [J,[1,2]); outputs in 7 seconds!

Examples: Let F := F(n,m,z,y) :=

dm+8+4n)F[n,m.z.y] — (3m + 10)F_[n,m + 2, z, y]+

2n+2)Fn+1,m,z,y]+8+2n+4m)Fnm+1,z.y] +
—5+4z2+ 4z
z

(n+1)F[n+1,m+1,z,y]=D_[z,— F.[n,m,z,y]] +

_@y+1(+22)

- {n.m. z,y]|

D_[y.

Alternatively, findrec3(F,[(n,m], [N,M], [x,y], (], [N,M,N*M,M"2]); outputs
the above WZ-equation in 4 seconds. Even on this simple example the resuit is

obtained noticeably quicker when the orders are input with ansatz.

2.3.3 checkrec

The function checkrec takes a WZ-equation which involves the symbols F_ or
D_, and returns true if the given function satisfies the equation, false otherwise.
Example: If rec is the above WZ-equation then the call checkrec(rec.F);

outputs true.

2.3.4 sumtointn and msumtointn

Using Egorychev’s [Eg84] method, every binomial coefficient sum or multi-sum
can be expressed as a contour or multi-contour integral.

Example: Consider

- 2n+1
S(n) = Z(—I)k( - )

!This and others computer running time mentioned in the paper are based on the compu-
tations which were done in Maple V release 3 on HDS work station.
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An integral representation of (’;):

a 1
= 1+2)%:27%) = / 1+2)%2%'dz.0<r < .
(b) CT (( +2) ) 271 |:[=r( +2) ' s

Thus,

S(n) = i(—l)kCT: ((1+z)2n+lz2k)

k=0

= CT <i(_1)k (1 + z)2n+1 sz)

k=0

2 NA\2n+1
- CT w* (1 +w) -
1+ w2

Therefore by interfacing Egorychev’s method with the continuous multi-\WWZ method
we get an alternative approach to sums. One of the advantages is that we get
new companion tdentities quite different from the ones one gets by the direct

approach. For example, Dixon’s identity

a+b\fa+c\ [ fb+c) (a+b+c)!
;(_I)k (a+k) (c+k) (b+k> T albd!

can be written as the multi-contour integral

1 (z1 + 1)%F(2p + 1)87°(1 — 2z 29)°7° e (a+b+c)!
(271)2 /c /c zp2a+l zyatctl (=1) a'b!c!

By using Egorychev’s approach, the functions sumtointn and msumtointn

find a constant term (CT) expression for a given sum.

sumtointn:

sumtointn finds a constant term expression for a single-sum of the form

Stn) =3 Lﬂ (‘;)] v,

k =1

i.e., it looks for a function F(z,..., z;) such that S(n) = CT(F) and outputs:

Fv[zlr"'vzt]'
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The calling syntax is:

sumtointn(bino_coeffs, z, k , [m,n]);

where bino_coeffs is the (finite) product of binomial coefficients in the summand,
z takes the remaining part of the summand, & is the summation index and [m.n]
is the range of the summation index.

For the sake of convenience, binomial(a, b) should be input as [a,b].

Example: To find a CT expression for Dixon’s sum
3
2n
SN
RN
we make the call: sumtointn([2#*n,k]"3,(-1)"k,k,[0,infinity]); and get

2n
((Zl+1)(22+1)(1—21 zZ)) ’[21722]

2129

This means

msumtointn:

msumtointn finds a constant term expression for a multi-sum of the form

Sn)= 3 [H (Z)] y*.

kl ..... km i=1

The calling syntax is:
msumtointn(bino_coeffs, z, [ky,... kJ,[[(m,n,],...,[m;,n1]);,
where £,, ..., k; are the summation indices and [m;,n;] (i = 1,...,[) are the

corresponding ranges of the summation indices.

so=55 (1) (15 ()

Example: Let

Then the call:
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msumtointn([n,k]*[n+k,k]*(k,j]1"3,1, [k,j]1,[[0,infinity],
[0,infinityl]);

outputs:
(z1+1)(2z2+29z1 + 51+ 1))"

(Zl Z2)n(22 d 1)

. [zlr 52]

2.3.5 ssum and msum

By interfacing Egorychev’s method with the continuous multi-\WZ method. the
functions ssum and msum find a non-zero WZ-equation for the constant term

expression of a given sum, i.e., if

3 SUMMAND(n,k) = CT(F(z1,..-.2))
k

F
= ‘/;---/;(‘2’7‘_2_)!—:~d21"'d2¢,

J=1 ~1

]

N A
where SUMMAND(n. k) = [ (a,)] n¥, then ssum and msum find a non-zero
=1

bi
WZ-equation for ————our——.
(ZWZ)t H;:l <

ssum:

ssum finds a non-zero WZ-equation for the constant term expression of a given
single sum. [t can be called in either of the following forms.
ssum(bino_coeffs, z, sumvar, mainvar, sum_bound, order) ;
ssum(bino_coeffs, z. sumvar, mainvar, sum_bound) ;

Example: Let

a+b\fa+c\[(b+c
S(a:b¢) := ;(_1)k<a+k) (c+k) (b+k>'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Then
ssum(fa+b,a+k]*[a+c,c+k|*[b+c.b+k|, (—1)k, k. a,[—a. infinity], 1);
outputs:

(a+1+b+c)F [a,z1,22] —(a+1)Ffa+ 1,2, 2] =

21+ 1)(2z2z; — 1)F_[a, 2z, 2 z2+ 1)F_ la, 2z, 2
D_ 21,( 1 )(222 2, ) [a( 1.42] +D_|z _( 2 ) [ ! 2]
2z 2 2z
+ - b— 1+ (a+c) o+ (b+c) :
Fla.z;, 2] = (—1)¢ 1)z§c a)zé a)( :11) ( :-.-1) (1 — zp z)(eF®
el 472 z0 2,
msum:

msum finds a non-zero WZ-equation for the constant term expression of a given
multi-sum. It can be called in either of the following forms.
msum(bino_coeffs, z, sumvars, mainvar. sum_bound, order) ;
msum(bino_coeffs, ., sumvars, mainvar, sum_bound) ;

Example: Let

Then the call

msum([i+j,il*[n,il*[n,j], (-1)~(i+j),[1,j],n,[[0,infinity],
[0,infinityl]l,1);

outputs:
1

271z

F[n,z] —F[n+1,2]=D][z,0,F[n.z] =
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2.4 The WZ Proof Procedure

In this section we would overview the WZ proof procedure by considering two

important special cases.

2.4.1 Type I Identities

Suppose we have to prove an identity of the form

Let

Answer(n)

Hence the given problem reduces to proving

/.../G(n;xl,,,,,xr)d:cl---d:r:,.==1. (2.3)

e Define

We want to prove

f(n)=1 VTZGZZQ

ie.,

Anf(n) =0,/(0) =1 (2.4)
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e A good way to certify (2.4) would be to display a WZ equation:

N X o
where H; = R; F. and R; is a rational function of n.r;,...,z,. For then
we would simply integrate with respect to z;, (i = 1....,1) to get

/ /AnG(n Ty, ..., .r,)d:z:l---dxr=i/ /’63 H;, =
=1 i
Hence
A, f(n) =0.

e Hence (2.5), together with the trivially verifiable case n = 0, implies (2.3).

Remark:

Note that the creative and central part of the WZ proof procedure is the pro-
duction of (2.5) (the WZ equation), but this is done by the computer using the
packages Mint or SMint. All we have to do is to input G to Mint and then Mint

will deliver us (2.5).

2.4.2 Type II Identities
Supposc we have to prove an identity of the form
[ [Fmsz...z)de - do, = [ [Griye....y)dyy - dy, (26)
Let us call the left side lhs(n) and the right side rhs(n).
e Find WZ-equations for F and G:
P(En.n) F =YD, (R F).

P(E..n)G =Y D, (R:G).
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e From the WZ-equations, get the operators A(E,,n) and A(E,, n).

e If, as is usually the case, A and A are identical, this proves (2.6) once the
trivially evalnable initial conditions (hs(n) = rhs(n),n = 0.1, ..., order(4)—
1. are checked. In the rare event that A and 4 are different. one can use
the Euclidean algorithm (adapted to the non-commutative ring of linear
recurrence operators with polynomial coefficients) to find a “minimal” op-
erator B(E,,n) such that 4 and A are left multiples of it. It follows that
both lhs(n) and rhs(n) are annihilated by B(FE,,n) if it is true up to

maz(order(A), order(4)).

In the next chapter we give a number of examples of identities of the above types

and their computerized proofs.
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CHAPTER 3

EXAMPLES OF COMPUTER GENERATED
PROOFS

In this chapter we give various examples to show how one can systematically

use the packages Mint and SMint to generate proofs of identities (or recurrences)

which involve multiple integrals of proper-hypergeometric functions.

3.1 An Identity Equivalent to the Pfaff-Saalschiitz Iden-
tity
Theorem 3.1

(1+J:)k(1+y)l= Z <k+n)(l+m)rmyn k.l € Zs,.

(1 _ Iy)k+l+l 20 m n

Proof:

To prove the above identity, we use the constant term (CT) approach.
1 (1+ )1 +y)!
(k;;n) (l—:;lm) (1 - y)(k+l+l)xm y" :

Fix m. n € Z>¢ and let f(k,[,z.y) := Then

CT(f(k,l.z,y)) is given by

CT(ktay) = oo | Cf_(%f*_y)dxdy,

where C ={z:|z|=r}and 0<r < 1.
Thus, we want to show CT(f(k,l,z,y)) = 1.

Let F := F(k,L,z,y) _-f-(—’%;’—y) nd a(k.0) = o5 Z)2/'[1?(;!1(11,
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\We -vant to prove that a(k.l) =1 for all £, [ in Z5,. But, by symmetry of k£ and
[. it suffices to show a(k,l) =1 for all k in Z>¢, i.e, Aga(k.l) =0 for all k in Z>
and a(0.!) = 1.

By applyving findrec1! we obtain the WZ-equation for F:
Ay F =D (R F)+ D, (R F),

where

_ ry(l+y)
(k+n+1)(1-zy)

r(l+ 1)

- (k+n+1)(1-zxy) and R, =

R,

Hence. by contour integration with respect to r and y, we get A, a(k,l) = 0.
To complete the proof, we evaluate a(0,!). To this end, let 6(!) := a(0,!) and

G := F(0,l,z.y). Then G satisfies the WZ-equation?:
AG =D (R G)+ Dy, (R:G),

where
nr(l+y)

_ _y(l+y)
(+1)(m+1+1) ’

R= dR')—
! an [+1

Hence. by contour integration with respect to r and y, we get A;b(l) = 0. Since

b(0) =1, it follows that b({) =1 for all [ in Z5¢. a

3.2 An Identity Equivalent to the Dixon’s Identity

Theorem 3.2

1 2 —z a+b 22 — 21)8%(2, — = b+c
/ / (21 2)" " (23 1)*7(22 — z3) dz; dzpdz; =
cJcJC

(27‘—1')3 zl2a+1322b+1232c+l

(a+b+c)!

+b+
(=1)* a'b' c!

where a, b and c are in Z>¢ and C is a circle around the origin.

'findrec1(F,k, [x,y], [1,m,n]); in 46 seconds
2findrec1(G,1, (x,y], [m,n]); in 2 seconds
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Proof:
Let

a'blc! (—1)370+e(z) — 2,)%%8(23 — 2,)%7¢(2p — z3)b*C

(27i)%(a + b + ¢)lz 20+ 2y +1 75241

F(az b: C. 21, 22, 23) =

and

I(a,b,c) :=/c;/c/;F(a,b,c,21,z2,z3)dzldz2dz3.

We want to show that I(a,b.c) =1 for all a, b and c in Z»,.

The function findreci outputs the following WZ-equation®:
Ay F =D. (R, F) +D., (Ry F) + D., (Rs F).

where

R — (2023 + 22123 + 220 21) _ z2(:3+2z)
1= 2 = ;
2(a+b+c+1)z 2(a+b+c+1)z

and

z3(z2 + 2 21)

. 3.1
2(a+b+c+ 1)z (3-1)

R; =
Then by triple contour integration with respect to z;, 2> and z3, we get
A, I{a,b,c) =0.
By the symmetry of the problem with respect to a. b and ¢, we get from (3.1)
AyI(a,b,c) =A.I(a,b,c) =0.

Since 7(0.0,0) = 1, it follows that I(a,b.c) =1 for all a, b and c in Z5,. O

3.3 The 3-Dimensional Dyson’s Ex-conjecture

z\*) _ (3a)!
CT(xgl.:,Isg (1 B -1;) ) = e a € ZZO'

1#7

Theorem 3.3

3findreci(F, a, [z21,22,23], [b,c], 1); in 65 seconds.
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Proof:
Let

1 1 a!3 o) e
NCY - = dz, dzs,
T(a) (27‘.1)3 /C'</;'/C' I\ T2 I3 (30)' 151‘1153 (1 _’Z,‘j) dr, dr, dz;,

1)

where C is a circle surrounding the origin.

We want to show that T(a) =1 for all a in Z54. To this end. let

Fo— a!3 H (1 _ ﬂ)a
) (2 T i)3 T, T213(3 a)! 1<5.,<3 I;j

£33

Then the function findrec1 delivers the following WZ-equation*.
A F=D, (RWF)+D;,(RyF)+ D,, (R3 F),

where R, = R(z;; T2, 13), Rs = R(z2;T1.13), R3 = R(z3; 1., z2) and

ay’? —2ayz+az?-2yz+z22+y
6z (3a+1)(3a+2) B
3ay? —6ay’z—-6ayz?+3azd -4y +2y3 -49y%z+223
6yz(3a+1)(3a+2)

R(z:y, z)

The result follows by triple contour integration with respect to z;. 2 and z; and

the fact that T(0) = 1. O

3.4 The Habsieger-Zeilberger G,;-Case of Macdonald’s

Conjecture

Theorem 3.4 Let g(m,n,z,y,z) be
(- C-96-3T (- (-3 02
62050 [0-5) (-2 (-5)

ifindrec1(F,a, [x1,x2,x3],[],1) in 173 seconds.
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B3m+3n)!(3n)(2m)!(2n)!

d h(m,n) := 5. Th
and h(m. ) = o T im + 2n)! (m & )l minl Le"
CT(g(m.n,z,y,z)) = h(m,n)
Proof:
Let
— o _ glm,n,z1,y.2)
Fi=F(m.n.z.y.z):= 27i)3zyzh(m,n)
and

G(m,n) :=/;‘/C‘LFdxdydz.

We want to show that G(m.n) =1 for all m and n in Z5,.

The function findrec1 delivers the following WZ-equation?.
ApnF=D,(RiF)+Dy(R:F)+ D.(R3F),

where R, = R(z:y,z), Ry = R(y;z.z), R3 = R(z;z,y) and

1
Ru;v.w) = A w? ;
(uie. w) 1‘2u(‘2m+1)(3m+3n+‘2)(3m+3n+1)2v’~’w(6L womT

EE3m?+18u3 3’ + 138w m—-—4d v +4%wdu—-duve? +

—drituw+4t i -4 P+ 120wt nP 4P wm? + 183 wlin +

S5uluwin+3duwim+6luin?+120%win+ 183 w3 n? + 203wt +

2 ; . : -
v 2wl #4143 W + Pt + 103wt mE 5t i n +

10w’ n+10%wn+602wim+2ulwim?+402w m? +3viulm +

< B 2 - K
20 P m? + 2Tl mn+6 0% wdun?+190% wtumn + 1202w um® +

3 2umn+ 11 w?un+

Netwdun+142wPum+6dw?un+190°3w

4 uw?lum—-6udvuw?n =27 wmn+ 193 vw?mn+18udvdn —

Sfindreci(F,m, [x,y,z], [n],1); in 3062 seconds, and
findreci(F,m, [x,y,2z],[n],1, [x"2¢y~222"2, x"2«y~2+2"2, x"2¢y~222"2]); in 1786
seconds.
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~
-1

123 2wm?-1NudvPwn— 4 VPwm+ 193 vPwmn — 1230 wm? -

11udv?wn - 14 Pwm+4viw?mn-27vuwmn — 18v uwn® +
7iwimn - 18uvw'n® — 10uvw'm? —18uvwin - 13uvwm -
Tuvumn+ 1422w mn — 10vtuwm - 18 v uwn — 13vtuwm —
6utviwn®+7viulmn+60t 2712-§-13u‘"’1.:3m+1‘.21;311)2um).
By triple contour integration with respect to z. y and z. we get A,, G(m.n) = 0.
To complete the proof, set G(n) := G(0,n) and F := F(0,n.z.y. z). and then we
show G(n) = 1 for all n in Z5,.
F satisfies the WZ-equation®:

ApnF=D,(RF)+Dy(R,F)+ D.(R3 F),

where R = R(z;y,z2), Ry, = R(y:z,z), R3 = R(2;z,y) and
1
108n(3n+2)(3n + 1)ud w33

1w n+100%u " n?+8v3u' n+54udwde?n? — 20uwtvdn® —

( dutv®n —5ut®n—

R(u;v,w) =

6uw®*n+36uuw’e’n+90vdwein+ 84’ wein?+24v’wol +
WWuwe n?+8uwiu' n+9u2vu' n+36u’w?n+9u?vw n?+

sdut®w?n? —16uv®uwin +90Pvuwin+84 P vwin? +9v3uwin +
9ud P w?n?+ 24’ vut —20u vt w3 n® +9u? v wn + 126 2 vt win +
2

1382 viwin? - 5wt wbn?+24u?viwt + 9% w n2)

By triple contour integration with respect to z, y and z. we get A, G(n) = 0.

Since G(0) = 1, it follows that G(n) =1 for all n in Z,. i

Remark: The above identity was conjectured in [Ma82] and [Mo82] and

proved independently, simultaneously and humanly by Laurent Habsiger [H86]

8findreci(F,n, [x,y,2],[],1); in 9506 seconds.
findreci(F,n, [x,y,2],(],1,[x"3%y"3*2"3,x"3+y~3+2"3,x"3* y~3%2-3]); in 3615

seconds.
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and Doron Zeilberger [Z87]. Then the first computer proof for the two variable
version of the identity was given by Shalosh B. Ekahd [Ek91], but the method

used was ad-hoc.

3.5 The 3-Dimensional Mehta-Dyson Integral
Theorem 3.5

(nj)!
n!

3

3 2
e ZJ=lI’ /2 H (Ii - .’L']‘)zn dr, d.’l,'g drz = H
j=1

7 |
(27)%2 J(—o0,00)3 1<i<j<3

Proof:
Let

- mt 2n 3 '
€ J=1 i<j I; —I; n:
F = F(n, Ty,ZTo, -7:3) = nlS‘(JSii( i ]) 1—[ (

@m)" i ()]

and MD(n) := / F dz,dz, dz;. Then F satisfies the WZ-equation®:

(’wi)a

ApnF =D, (R F) + Dy, (Ra F) + D;, (R; F)

where R} = R(zx;T2.13). Ry = R(z,; 1y, x3), R3 = R(z3;1;,72) and

1
T36(Bn+2)3n+1)(2n+ 1)(
1wl +709vw? —393uw?+24u+ 1002 v + 1002 w — 4 vt wd + 56T 2w —

7090w + 304w wn? + 304 u? v n® -

R(u;v.w) =

57413 — 574w® — 28 v v n+ 786wl un + 786 vl wn + 270 ud + 480 n? w v? —
64n’uv? —562nw?u —5362nuv? — 320 win+2112nu + 2946 nv +
9Q2ulvw? —64n?w?u+ 1346 nwv® + 1346 nw?v + 567 uv? v + 2946 nw +
135uv = 1730w+ 108 v’ vw? n — 18u?vw® +22udvuwd — 10uv? wt —
28uuw?n +36uwin—2u?v?wd +20ud?w? - 2u® P w4+ 24uvPwn +

8uludn+135uuw? — 1393 w? — 4w 3 +36uvin+uvwt +2duvwdn -

“findrec1(F,n, [x1,x2,x3],[],1); in 416 seconds.
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320 wn+urPw—173vw' —68vwin —68viwn +384und +1992un? +
2076 wn® + 384 wn® + 2076 vn? + 688 u®n + 384 vn’® — 640w’ n + 208 u® n” -
160w’ n? —18u?v'w+4uvdwd +22u® P w + 64uv?uw’n + 48 uviuw’ +
92u?v?w - 176uvwn? — 292uvwn + 128wl vwn + 2623 vw — 1903 w? +
480 n’w?v — 264 uvw — 10w uv' — 160v° n? — 19v?w® — 640¢°n +

108wl vdwn —393uv? —139udv? — 4u?v® + 8u’e )

By triple integration with respect to z;, 3 and z3, we get MD(n+1)—MD(n) = 0.
Since MD(0) = 1, it follows that MD(n) =1 for all n in Z5,. O

3.6 Problem Number 10777 of the MONTHLY

Using Mint we give a complete solution of the following problem [P00].

Problem: For nonnegative integers m and n, evaluate

T () i ()
dr™ \1 + 12/ dz" \1 + z2

Solution:
oc m 1 ar 1 ..
Let a(m,n) := ( ) ( ) dz. We will show that
o drm \1+z2/ dz" \1+ z2
( (—1)n{ntmlin (2)n+m if n + m is even
a(m.n) = J mensl
(-1) NMn -2k - 1)-
e 1 min=l_ | o2k+l(3p ) .
\ (-1 2m+n(m+n) (1 + Y=g %k*;)s—(tj)l) if n +m is odd
Case 1: m + n even.
We have

a(m, n) = 1 °°d’"( 1 )d"( 1 )da:
2 dz™ \1+ 22/ dz™ \1 + 22 )
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By integration by parts we get

_ (-l)n o 1 a+m ( 1 ) _ n
a(m.n) = 2 /—oo1+:z:2d:1:"+”‘ 1+ 22 dz = (=1)"a(0,m +n).

Let b(n) := a(0.n), where n is a nonnegative integer. Then the Cauchy integral

formula vields

dz dz

b(n) = 471'2/ /l~-rl— (1+12)(1+~2)( )

dzdzx

=t (T+22)(1+ (7 +1)2)2n ]

n!
(1+22)(1 + (z + )?) 27!

Now set F(n;z,z) := . Then F(n;z, z) satisfies the

\WZ-equation?:
4F(n+2:z,z2)+ (n+2)(n+1)F(n;z,z) = D, (FR,) + D. (F R,) (WZ)

where
(n+1)1+z*)2nz+42+3nz+72)
z22(n+3)

R[z

and
(n+1)(n:*+4n+7x +2zz+32%+ 10)

R, =
2 z(n +3)

Integrating (WZ) with respect to z and z, we get
cAbn+2)+ (n+2)(n+1)b(n) =0

Since b(0) = 7 /2, b(1) = 0, it follows that

b(n) = n;“ (%)n (1+(-1)") integer n > 0.

Consequently,
(n+m)lz fi\"™m
4 (3) '

a(m,n) = (-1)"

8findreci(n!/(1+x°2)/(1+(z+x)"2)/z~(n+1) ,n, [x,z], [1,2); in 2 seconds.
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Case 2: m + n odd.
Without loss of generality, assume m is even and n is odd. Then by integration
by parts, we get

n—1
==

a(m,n) = (-1)F**F 3 (m+2k)! (n—2k—1)! —a(0,n+m)
k=0

Let b(n) := a(0,n), where n is a nonnegative integer, and F(n; z, z) be as above.

Then Cauchy integral formula yields

1
b(n) = / / dzdz.
(m) "rz =% (1 + z2)(1 + (z + z)2) 27! z
Then by integrating (WZ) with respect to r and z, we get

(TL+ 1)'(377.-{-— (1 + (- I)n-rl) n+1
2(n+3) :

4bn+2)+ (n+2)(n+ 1) b(n) =

Solving the above recurrence equation for n odd, we get

bn) = (-1)*F n! (“_ —Z“ 22k+1(3 k + 5) )

2 = 2k+3)(k+2)

Hence,
a(m.n) = (- 1)"“"“Z(m+2k)!(n—2k—1)!-
k=0
mintl 1 mip=l_) 92k+1(a L 4 =
(-1) (m + n)! |+ Z 2 (3k+3) '

2m+n o RE+3)(k+2)

O

3.7 The Probability of Returning Home After n Steps

In a biased simple random walk, the probability of returning home after n steps is
given by the constant term of f(n,z,y) := (az+bz ' +cy+dy~")" with respect

to r and y, where n € N and a, b, ¢ and d are arbitrary non-zero constants.
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Now S(n) := CT(f) := %/C /CF(n, z,y)dzrdy, where F(n,z.y) := v

and C is a circle around the origin.

Then F satisfies the WZ-equation®:

(n+4)2F(n+4,z,y) —8(n+3)*(dc+ba) F(n +2,z.y) +
16 (ba —dc)*(n+3)(n+1) F(n.z.y) = D, (R, F) + D, (R, F),
where

R — P(n.a.b.c.d,x.y) _ Q(n.a.b,c.d.x.y)
LT T 8383 Bnbe 0 8nd3r3y3(n + 1)be2

and P(n.a.b.c.d.z,y), Q(n.a,b,c,d, r,y) are polynomials in n,a.b,c,d.y '°.

By double contour integration with respect to r and y, we get
(n+4)2S(n+4)—8 (n+3)%(dc+ba) S(n+2)+16 (ba—d c)*(n+3)(n+1) S(n) = 0.

Hence, finding the CT(f) boils down to solving the above recurrence equation.

a

3.8 Tefera’s Identity

Doron Zeilberger asked to find the closed form evaluation of the following &-

dimensional integral.

Ax(mon) = [ (eax)™(ea(x))"e ) dx

[0.+0c)*
First by using Mint we found recurrence equations for Ai(m,n) w.r.t. n for
k =2,3.4.5.6 (note that for £ = 1, trivially Ax(m.n) =0).
Let Fi(m.n:x) := (e2(x))™(e1(x))"e~**). The output generated by Mint using

the procedure findrec1 is summarized in Table 3.1.

“findreci(F,n, [x,y], [a,b,c,d],4); in 331 seconds.
9P and Q are available from http://vww.math.temple.edu/~akalu/multiwz/PQ.ps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://ww.math.temple.edu/~akalu/multivz/PQ.ps

33

Table 3.1: WZ-equations for specific k&

k WZ-equation CPU time
(seconds)

2 (En - (2m+n+2) I) F2 = _212:1 DI‘ [R(Ii;ii)Fg], 0.19
R(u;v) =u

3 (En - (2m+n+3) [) F3 = _Z?=l Dr‘ [R(I,‘Zii)F;;], 0.62
R(u;vi,vp) = u

41 (En—2m+n+4)I)F; = -3t D [R(z:i: %) Fy), 2.54
R(uivy.....v3) =u

3 (En - (2m+n+5) [) F5 = - ?:l Dz‘ [R(.’L’,';ii)Fs], 11.37
R(u;vy,...,v4) =u

6| (En—(2m+n+6)[)Fs = —Xi D [R(z:X)Fe]. 61.61
R(u:vy,...,v5) =u

It is a matter of time before the following conjecture emerges.

(En —2m+n+k)I) Fi(m.n;x) = - zk: D, [R(z;:X;)Fi(m. n: x)]. (3.2)

where

Hence. by integrating both sides of (3.2) w.r.t. z,,....z; over [0, oc)¥, we obtain,
Aiim+1.n)—2m+n+k)4Ax(m.n) =0 (3.3)

Now we evaluate the boundary value Ai(m) = Ag(m,0). Let Fip(m:x) :=
Fi(m,0;x). The results produced by Mint for £ = 2,....6 are summarized
in Table 3.2.

Hence, we conjecture:

DJ:. [R(Ix; ii)Fk(m; X)] s
(3.4)

(kEm—(k=1)2m+k)(m +1)I) Fi(m;x) = — _k

i=1
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Table 3.2: WZ-equations for the boundary case

k WZ-equation CPU time
(seconds)
2| REn—(2m+2)(m+1)I) F, = -2, D, [R(z;; %) F), 0.21
Ru;v)=(m+1+v)u
31 BEL.-212m+3)(m+1)I) F; 0.47

= - Z?:[ DI;’ [R(rigﬁi)l:h]r

R(U (IR 'U2) = (2 (m + 1) + Cl(Ul,’Uz))’U -+ 62(1)1, U2)
1| {En—32m+Y)(m+1)]) F 1.31
= - Z;‘zl D.’!.‘. [R(xlzil) F4]7

R(u; vy, ve,v3) = (B3 (m + 1) + ey (vy. v2, v3))u + e2(vy, v, v3)

5| BE,—4(2m+5)(m+1)I) F; 5.64
= - ¥ Dz, [R(zi; %;) F3),
R(UZ Uty e --s U4) = (4 (m+1)+€1 (vlt sy 'IJ4))U+€2(U1. e 'U.;)
6| (6E,—5(2m+6)(m+1)I) Fg 22.16
= - Z?:l D., [R(xi;ii)FS]:
R(u;vy, ..., vs) = (8 (m+1)+e (vy,....vs))utex(vy, ... vs)
where
Ruivy, ... ,vk—1) = (k= 1)(m+1) +er(vr,--- . vk—1))u +eavr.- - Uk-1)
Hence, by integrating both sides of (3.4) w.r.t. z,...,zs over [0, oc)¥, we obtain,
EAy(m+1)—(k=-1)2m+k)(m+ 1) Ag(m) =k A4 (m + 1) (3.3)

Therefore, using (3.3) and (3.3) we get:

Ag(m,m) = M@m Atk - DUE/2), (2 (k- 1)

Cm+k—1) i ) Bi(m)

for any positive integer k, and for all non-negative integers m and n. where,

_ (k(k=2)™((k - 1)/2),, gy
Bi(m) — Be(m — 1) = NN Bi_i(m)  k>2

By(m)=0,m >0, and B¢(0) =1, k > 2.
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The above conjecture was proved [T99] by a close collaboration with Mint.
Our proof may hence be termed computer assisted. Thus we have the following

theorem.
Theorem 3.6

'/[O.+oc)’¢ (ez(x))m(el (x))ne—el(x) dx =

m!'2m+n+k—-1)k/2), (2(k-1) ”‘B
2m+k—1)! ( k ) k(m)

for any positive integer k, and for all non-negative integers m and n, where,

_ (k(k = 2)™((k = 1)/2)
(k= 12" (k/2),,

Bi(m) — Bx(m — 1) ™ By_1(m) k> 2,
Bi(m)=0,m>0, and B¢(0) =1, k> 2.

For the complete proof of the above theorem, see [T99].

3.9 Binomial (Multi)Sum Identities

The following examples illustrate how one can use the functions ssum and msum

to prove sum and multi-sum identities.
3.9.1 A Generalized Vandermonde Identity

== ()0 (i) =72

Proof:
The call

msum([r, i} *[s, j] * [t,n — i — j], 1,[i. j].r.[[0, infinity], [0, infinity]], 1);
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outputs, in 8 seconds,

t+r+1+s)F(r.z)+(n—t—r—s—1)F(r+1.z;) =D, ((z1 + 1)F(r.z;)).

(zl + 1)t+r+s
2 iz rHstt-n+l :

S ()()(, L) - e

where C is a circle around the origin.

This means

where F(r,z;) =

Now, let S(r;s,t,n) = / F(r,z,)dz;. Then, by contour integration with respect
c

to z;. we get

(t+r+1+s)S(r:s.t,n)+(n—t—r—s—1)S(r+1l:s.t.n) =0

Since S(0;s.t,n) = ( _*S_:- t n)’ it follows that
s —
S(ris.t.n) = (3““). o
n

3.9.2 The Sum of Carlitz

In the problem section of the American Mathematical Monthly. L. Carlitz [C68]

asked for a proof the following statement.

Let S, = Z (Z +J> (Z -Z k) (k : z)’ n € Zsq. Show that

1+j+k=n t
2n
Sn - Sﬂ—l = ( ).
n

Observe that the above recurrence equation is equivalent to

s (0)(5)602) -5 0)

Invoking Mint with

Proof:
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msum([i+j,il*[n-i,j]*[n-j,n-i-j],1,[i,j],n,[[0,infinity],
[0,infinity]],2);

we get, in 37 seconds,
An+6)F(n,z1,20) —(84+3n)F(l+n,z;,20) +(n+2)F(n+ 2,2z, 22) =

D., (R F)+D., (R, F).

where

(2221 + 22+ 1) 3 3 2 2
R, = Zizon 4+ 227 z0+ 42027 +2n 2027 +
' (.2221-+-222+1)(n-+-2).22(1 2 L2 24 2

4zfn+52f — 323z —4nzpz; +6nz; +62; — 102z —8nzp —

n—2)

(29021 + 22+ 1)
(2021 + 229+ 1)(n+ 2)z,
3nzz —3z22 +3nz§+3z§ —42z;—2nz—n ——2)

(z1 + 1) (29 21 + 229 + 1)1
(2mi)2z8 N (2 + 1) (=23 2z — 23 + 2021 — 20+ 20 27 + 21)

(]

R,

(ngzf+nz§zf+4z2zl +2nz3z —

F(n? <1 22)

Let S(n) := /C/C F(n, zy, 23) dzy dzs, where C is a circle around the origin. By

integration with respect to z; and z,, we get
dn+6)S(n)—(8+3n)S(n+ 1)+ (n+2)S(n+2)=0.

(2K
Checking that the above recurrence equation is satisfied by rhs(n) := Z ( v )
k=0
and comparing the initial values for n = 0 and n = 1, completes the proof. O

Remark: The above Carlitz problem is also proved automatically in [WZ92] by

using the discrete (double sum) WZ method and in [W97].
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CHAPTER 4
FUTURE DIRECTIONS

Our goals are:

1. To write an efficient and fast Maple implementation of the g-multi-WZ

method,

2. To improve the discrete-continuous multi-WZ algorithm and to write fast

and efficient Maple programs to implement it.

4.1 The g-Case

4.1.1 Notations and Basic Definitions

Constant Term. For any Laurent polynomial f(z,,..., Zp). CTzy, 2 (f).m <

n. denotes the constant term with respect to z,,..., 2.

Operators. In addition to the notations and definitions introduced in 2.1 we

use the operator notation:
Q: F(z,y) = F(gz,y).
q-Rising Factorial. The g¢-rising factorial, denoted by (a: q),, is defined as

n—1
(a:q)n=[[(1 —¢'a)

=0
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oo
and (a; g) denotes the product [[(1 - ¢*a).
i=0

. (a; @)oo

Note that (a;¢q)p = ——————.

" (ag%9)e

q-Hypergeometric functions. Let F' := F(n,x) be a function of m discrete
variables n = (ny,...,n,) and k continuous variables x = (z,,...,zx). We say

F is g-hypergeometric if

(i). Z=f = Rational, ;(g.q™.....¢".0.x), (i =1....,m)

(ii). QEF*—F = Rational, ;(q.¢™.....¢"™.n.x), (i =1,....k)

Example: F(n,z) = (z;9). is g-hypergeometric. To see this, we only need to

observe that

E,. F F(n+1,z)

F F(n,z)
= 1—q"zx
Q:F _ F(n.qx)
F F(n,z)
1
T 1-z
g-Proper-hypergeometric functions. A function F(n,,....n,.z;,...,x,;) is

g-proper-hypergeometric if it is the product of the following types of expressions.

(qPH-I) Polynomials P(q,q¢™,....q"™.x},...,Z.),

(qHP-II) (cz,® ---z,% g% ™ -..g%n"m) 7 where the o; and 3; and ~ are in-

tegers, and c is any indeterminate constant or parameter,
(qPH-III) qZ--J @y miny 4370 b ™ where the a;; and the b; are integers,
(qPH-IV) z"t ...z, ™

Many important identities, for instance, constant term identities of the following

type involve g-proper-hypergeometric functions.
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The g-Dyson identity, conjectured by Andrews and proved by Zeilberger and

Bressoud [ZB85],

i qz; _ (¢:q)ay+-+an ,
CToven 11 (f’q)a‘ ( T ’q)a,  (@:9)a; - (9)an (1)

and the Askey-Wilson identity

(2% @)o(2 7)o
(a2;9)oo(a/2: @)oo (b 2: @) oc(b/2: @) (€ 21 @) e (d 23 @)
_ 2 (abed; )
(@9 (abig)x(aci@)oc(ad; ) (bd: @) (cd: @)
where [al, [b], |¢]. |d]| < 1.

CT.

4.1.2 Description of the Algorithm

The heart of the algorithm is the following fundamental theorem of the (contin-

uous) g-multi-WZ method.

Theorem 4.1 (The g-fundamental theorem) Let F(n:z,,....x,) be a proper-
hypergeometric function in all its arguments, where n is a discrete variable and
Iy.....x, are continuous variables. There ezists a linear ordinary recurrence op-

erator with polynomzial coefficients P(E,, q", q) and a r-tuple rational of functions
p

[Ri.....R.]in (q,q" z\,...,x,), such that

P(Eq..q".q) F =Y (Qz, — 1) (R; F) (¢-WZ equation)
j=1
For the proof of the theorem and its beautiful theoretical aspects see [WZ92].

The algorithm that implements the continuous q-multi-WZ method is summa-

rized as follows.

e INPUT:

— A g-proper-hypergeometric function F,
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— Variable names: n,z,,..., z,,

— Maximal order of the required recurrence operator in n, i.e.., degree

with respect to E, (optional; default = 6).

e OUTPUT:
order )
A recurrence operator z ai(q,q") E; where a;(q,q") are nolvnomials in
=0
q.q" and a r-tuple of rational functions (the certificate) [R;...., R.] such
that
order r
3 aig.q") F(n+i:x) = (@, = I) (R, F) =0
=0 ij=1

if it exists; O otherwise.
e DESCRIPTION:

1. Set up the g-multi-WZ (rational) equation:

S aclq.m BE il(Q:,— [——sf(""’"”‘)p]=o.

i=0 tj(qv an X)
with
M,
si(g,9", %) = Z bia(g.q") x'
where, x! = [Tz, 1 = (Ih,.. .. k), M, = = (M, ;..... M ), replace

ti(g.q™,x) by “best” conceivable value,

2. Clear the denominators in (1) and equate the coefficients of the mono-
mials in x to get a homogeneous system of linear equations in the
unknowns a; and b,

3. Solve the resulting system,

4. If a non-zero solution obtained. stop. If not, increase degrees of
sj(q,q",x), replace t;(q.q".x) by next “best” conceivable value by
looking at the factors of the denominators of Q‘%—)— and then go to

step 3.
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gMint is a package of Maple programs that implement the above algorithm. The
present version of gMint is not very efficient when the number of continuous
variables r,,...,z, gets large (say r > 3), since the system of homogeneous
linear equations to be solved gets very huge and Maple needs a lot of computer
time to solve it. Currently we are tryving to make the program more efficient and
in the near future we will give a complete description and set of applications of
the package and show trough examples how one can use it to generate proofs of

g-identities involving q-hypergeometric functions. In particular, the package can

be used to prove constant term identities, such as (4.1) and (4.2).

4.2 The Concrete Multi-WZ Case

This is the case which integrates both the CONtinuous and the disCRETFE multi-
WZ cases. This case includes identities which involve both Y~ and [ sign, i.e

identities of general form
s / Fn.k,x,y)dy =% / G(n'.K.x'.y')dy'
k k’

or

Z/F(n, k,x,y)dy = answer(n, x)
k

where k and y are not empty. In the near future we hope to write a Maple
implementation of the concrete multi-WZ case and try to produce examples that

show how one can use it to prove identities of the above types.
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