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A B ST R A C T

SOME RESULTS IN  RAM SEY TH EO R Y

by A aron Robertson

D octor o f Philosophy  
Tem ple U niversity, 1999

Advisor: Dr. Doron Zeilberger

In this dissertation we find several new results in the field of Ramsey Theory. 

In the second chapter we find lower bounds for some classical Ramsey numbers, 

give two general lower bounds for multicolored Ramsey numbers, and define the 

concept of difference Ramsey numbers. Extending techniques due to Greenwood, 

Gleason, and Chung we are able to establish eleven new lower bounds for multi

colored Ramsey numbers. These are R (3,3,6) >  60, R(3,3,9) >  91, R{3,3,11) >  

141, R (5,5,5) >  242, R(Q, 6,6) >  692, R (3,3 ,3 ,4) >  91, R (3 ,3 ,3 , 5) >  137,

R (3 ,3 ,3 ,6 ) > 183, R (3 ,3,3,7) >  220, R (3 ,3 ,3 ,9) > 336, and  R (3 ,3 ,3 ,l l)  >  

431.

In the third chapter we turn  to  Schur numbers, which are closely related to 

the Ramsey numbers. In this area we show that the minimum number, asym ptot

ically, of monochromatic Schur triples in any 2-coloring of [1, n] is n2/ 22 +  0 (n ).  

We then use this result to establish an upper bound for the minimum number,

iii
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asymptotically, of monochromatic Schur triples in any r-coloring of [1, n]. Af

ter establishing this bound, we define Tssai numbers, a new generalization of the 

Schur numbers. We show that these numbers extend very naturally from dif

ference Ramsey numbers. After presenting some values for small Issai numbers 

we turn  to another Ramsey-type number, the van der Waerden number. For 

this number we determine that the minimum number, asymptotically, of van der 

Waerden triples is bounded between n2/ 38 + 0 (n )  and n2[ 16 +  0(n).

iv
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1

C H A PTER  1 

IN TR O D U C TIO N

1.1 Early R esults

Until Andrew Wiles proved Ferm at’s Last Theorem, almost every mathematician 

who ever lived dreamed of proving the deceptively simple statement:

F e rm a t’s L ast T h e o re m : For n >  3, x n -f- yn = zn has no nontrivial solution 

in the integers.

The lure to prove this theorem which had not been cracked for so many 

years drew Issai Schur in. Of course, we know that Schur did not prove it. He 

did, however, prove the following theorem.

T heo rem : For n > 1, x n +  yn =  zn has a solution in the integers mod. p, fo r a 

sufficiently large prime, p.

To prove this result, Schur had to prove an intermediate result, which, in 

most m athematicians’ view, greatly overshadows the above theorem. The lemma 

he used is know today as Schur’s Theorem. Schur’s Theorem is widely held 

as the first Ramsey-type theorem to spark research activity. As an aside, the 

first Ramsey-type theorem is generally believed to be a work of David Hilbert. 

However, Hilbert’s work went unnoticed as far as opening up the field of Ramsey 

Theory. Schur, in 1916, proved the following.
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S c h u r’s T h eo rem : Given r, there exists an integer N  =  N {r) such that any 

r-coloring o f the integers 1 through N  must admit a monochromatic solution to 

x  + y = z.

Schur is speculated to have worked on further applications of his “lemma.” 

However, no published work in this direction appears. We now jum p forward 

to 1927 when the next m ajor Ramsey-type theorem was proved. B.L. van der 

Waerden proved the following theorem, first conjectured by Schur.

V an d e r  W a e rd e n ’s T h eo re m : I f  the positive integers are 2-colored, then there 

must be an arbitrarily long monochromatic arithmetic progression.

Three years later, in 1930, Frank Ramsey proved his eponymous theorem. 

This theorem epitomizes the flavor of the subject, and is a beautiful result. 

R a m se y ’s T h eo rem : Let ki > 2, i = 1,2, . . . , r ,  be given. Then there exists 

a minimal positive integer N  =  R{k\, ki, ■.., kT) such that any r-coloring o f the 

edges of the complete graph on N  vertices, K ^ ,  must admit a j-colored complete 

graph on kj vertices fo r  some j  E { 1 ,2 ,. . . ,  r}.

This result caught the interest of many mathematicians, and also introduced 

many of them  to the field of combinatorics. However the result was not widely 

publicized. Consider as proof the fact that Erdos and Szekeres discovered an 

equivalent form of Ramsey’s Theorem independently five years later. To their 

dismay, this beautiful result had already been discovered.

It was a t this point that Ramsey Theory was given its name by Erdos. How

ever, Ramsey Theory was still not exploding with activity. An even more striking 

fact pertaining to the small amount of activity in Ramsey Theory is th a t it was not 

until 1955 th a t the first nontrivial Ramsey number was discovered by Greenwood 

and Gleason ([GG]). This result came 25 years after the publication of Ramsey’s 

Theorem. However, in the past 40 years or so, Ramsey Theory has experienced 

a flurry of activity. Thanks in large part to the travelling m athem atician Paul
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Erdos, Ramsey Theory has become a vast field of many interesting, appealing, 

and beautiful results. Paul Erdos used to say th a t all of the best proofs of all 

theorems are stored in a book, that only a higher power has access to. He would 

call this book, The Book. Erdos himself, is sure to have many proofs appear in 

the book, many of which are results from Ramsey Theory. For a survey of some 

proofs which should be included in The Book, see [AZ].

1.2 Recent R esu lts

Ramsey Theory has continued to be a very active area of research. The passing 

of Paul Erdos in 1996, was the end of an era. B ut his legacy will live on in the 

problems he left behind, many of which are in Ramsey Theory. A good collection 

of some of his open problems can be found in [CGr].

Currently, Ramsey Theory is as active as it ever was. For example, in 

1995 J. H. Kim stunned the mathematical community when he proved th a t the 

Ramsey number R (3 ,n )  has order of magnitude n 2 /log{n) ([Kim]). Another 

groundbreaking result was the determination of the Ramsey number R (4,5) by 

B. McKay and S. Radziszowski ([MR]). Together with many computers they 

calculated it to be 25.

W ith the computer technology and speed available today, Ramsey Theory 

can be furthered in directions untouchable by hum an methods. Many problems 

in Ramsey Theory are finite  problems. Thus, it is conceivable that computers 

will someday soon be quick enough to tackle such enormous problems, given that 

there are quick and intelligent algorithms to use.

The research th a t follows in this dissertation melds constuctive, algorithmic, 

and com putational combinatorics to gives Some Results in Ramsey Theory.
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4

C H A PTER  2 

CLASSICAL R A M SEY  N U M B E R S

2.1 Introduction

A t any party of six people, either three of them mutually know each other, or three 

o f them mutually do not know each other.

The above fact is known as the puzzle problem or the party problem. Its roots 

are very old, but it is a classical example of a problem from the field of Ramsey 

Theory. Ramsey Theory is a very elegant and intriguing field of mathematics. 

The problems are quite often very easy to pose and understand, but difficult 

to solve. The methods used to solve these problems often require creative and 

innovative ideas.

In this chapter we will concentrate on Ramsey’s Theorem ([Ram]). Since 

Ramsey’s result in 1930, Ramsey Theory has flourished and produced a vast 

number of beautiful results and proofs. The determination of Ramsey numbers 

(the numbers whose existence are proved in Ramsey’s Theorem) has been one 

subarea whose research has been long lasting. In this chapter we will extend re

sults of Greenwood, Gleason, and Chung, and employ some computer algorithms 

to obtain some new results.
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Now we will restate Ramsey’s Theorem for edgewise colorings:

R a m s e y ’s T h eo rem : Let ki > 2, i =  1 , 2 be given. Then there exists 

a minimal positive integer N  =  R{k\, &2 , . . . ,  kT) such that any r-coloring o f the  

edges o f the complete graph on N  vertices must admit a j-colored complete graph 

on kj vertices for some j  €  { 1 ,2 ,..., r}.

W ith regard to the above theorem, we will make the following definition 

which will be called upon many times throughout this dissertation.

D efin itio n  2.1 Ramsey Property: An edgewise r-colored complete graph on JV 

vertices, K n , is said to have the Ramsey Property if there exist j : 1 <  j  <  r ,  

such that a monochromatic j-colored complete graph on kj vertices is a subgraph 

of the r-colored AOv-

Much effort has gone into finding the exact values of these Ramsey num 

bers. For a current survey, see Stanislaw Radziszowski’s Dynamic Survey of Small 

Ramsey Numbers [Rad]. As of this writing, only 10 Ramsey numbers for edge

wise colorings of complete graphs are known. On the other hand, there has been 

some good progress made with finding lower bounds for these hard-to-compute 

numbers. In the sections to follow we will obtain new lower bounds for several 

multicolored Ramsey numbers. We will also develop a recursive algorithm which 

will find the best possible lower bound of edgewise colored complete graphs w ith 

a certain structure imposed on them. Using this algorithm we can find good 

lower bounds for some Ramsey numbers automatically.
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2.2 The F in ite  F ield  M ethod

6

In this first section we add two more lower bounds to Radziszowski’s Dynamic 

Survey [Rad] on the subject. We show, by using the finite field technique in 

[GG], that R (5,5 ,5) > 242 and i?(6 ,6,6) >  692. The previous best lower 

bound for R (5,5 ,5) was 169 given by Song [S], who more generally shows that 

R (5 ,5 , . . .  ,5) >  4(6.48)r_1 +  1 holds for all r. For i?(6,6,6) there was no estab-
r  tim e s

lished nontrivial lower bound.

Consider the number R (5 ,5 ,5 ). To find a lower bound, L, we are searching 

for a three coloring of K l which avoids a monochromatic K 5. We use an argument 

of Greenwood and Gleason, which is reproduced here for the sake of completeness.

Let L be prime and consider the field of L  elements, numbered from 0 to 

L — l. Associate each field element with a vertex of K ^. We require that 3 divides 

L — 1. Now consider the cubic residues of the multiplicative group 7Tl =  Zr, \  {0}, 

which form a coset of Z£. Since 3 divides L — l, there must be 2 other cosets.

Let i  and j  be two vertices of K t-  Color the edges of K l as follows: If j  — i 

is a cubic residue color the edge connecting i and j  red, if it is in the second 

coset, color the edge blue, and if it is the third coset, color the edge green. (Note 

that the order of differencing is immaterial since —1 is a cubic residue.)

Now suppose that a monochromatic K 5 exists in this coloring. W ithout loss 

of generality we may call the five vertices 0, a, b, c, and d, with 0 < a < b < c < d .  

Then the set of edges, E  =  {a, b,c,d ,b  — a ,c  — a ,d  — a ,c  — b,d — b,d — c}, 

must be a subset of one of the cosets. Since a ^  0, multiplication by a~x is 

allowed. Set B  =  ba~l , C = ca~x, and D = da~x. Then the set a~lE  = 

{1, B , C, D, B  — 1, C — 1 ,D  — l ,C  — B ,D  — B ,D  — C} must be a subset of the 

cubic residues. Hence if we find an L for which there does not exist B , C, and 

D such that a~x E  is a subset of the cubic residues, then we can conclude that
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# (  5 ,5 ,5) >  L. Of course, this argument holds for #(£, £ , . . . ,  f) for any k , and
'  ^  '

k tim es
any t  provided — 1 is a k th residue and k  | L  — 1.

To search for these prime lower bounds, we employ the Maple package RES 

(available from the author’s website1). We only achieved results when we re

stricted our search to fields of prime order (although any finite field can be ex

plored using RES (or a t least easily modified to do so)). Since we are considering 

the number # (5 ,5 ,5 ) , reject any prime, q, for which 3 does not divide q — 1. 

This can be accomplished automatically by using the procedure pryme. By using 

the procedure r e s  we produce all of the cubic residues of Z*, for a given prime, 

p. We then use the procedure s iv  to discard any residue, # ,  for which R  — 1 

is not a residue. We now have a much more manageable list to search. Calling 

the procedure d i f f  check, we check ail possible 3-sets (for B , C, and D) to de

termine whether a 3-set with all differences between any two elements all being 

cubic residues exists or not. If such a 3-set exists, d i f f  check will output the first 

3-set it finds. However, in the event that no such 3-set exists, d i f f  check will 

output 1, meaning a lower bounds has been established.

RES can also be used to search finite fields whose order is not prime. For 

example, to verify th a t the field on 24 elements, avoids a monochromatic triangle 

by using cubic residues (this fact was proven in [GG]), type G a lF ie ld 3 (2 ,4 ,3 ) .

By using RES we were able to find the following lower bounds: # (5 , 5, 5) > 

242 and # (6 ,6 ,6 ) >  692. These are obtained by the following colorings: (Since 

—1 is a cubic residue it suffices to list only entries up to 120 for # (5 , 5, 5) and 

345 for # (6 ,6 ,6 ).)

1 www.math.temple.edu /  ~aaron /
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£ (5 ,5 ,5 ) > 241:

C olor 1: 1, 5, 6, 8, 17, 21, 23, 25, 26, 27, 28, 30, 33, 36, 40, 41, 43, 44, 47,

48, 57, 61, 64, 73, 76, 79, 85, 87, 91, 93, 98, 101, 102, 103, 105, 106, 111, 115,

116, 117

C olor 2: 2, 7, 9, 10, 11, 12, 16, 19, 29, 31, 34, 35, 37, 39, 42, 45, 46, 50, 52,

54, 55, 56, 59, 60, 66, 67, 71, 72, 80, 82, 83, 86, 88, 89, 94, 95, 96, 113, 114, 119

C olor 3: 3, 4, 13, 14, 15, 18, 20, 22, 24, 32, 38, 49, 51, 53, 58 , 62, 63, 65, 

68, 69, 70, 74, 75, 77, 78, 81, 84, 90, 92, 97, 99, 100, 104, 107, 108, 109, 110, 112, 

118, 120

£ (6 ,6 ,6 ) > 691:

C olor 1: 1, 2, 4, 5, 8, 10, 16, 19, 20, 21, 25, 27, 31, 32, 33, 38, 39, 40, 42, 

50, 51, 54, 62, 64, 66, 67, 69, 71, 73, 76, 78, 80, 83, 84, 87, 89, 95, 100, 102, 105, 

107, 108, 109, 123, 124, 125, 128, 132, 134, 135, 138, 139, 142, 146, 149, 151, 152,

155, 156, 160, 163, 165, 166, 168, 173, 174, 178, 179, 181, 190, 191, 195, 199, 200,

204, 210, 214, 216, 218, 246, 248, 250, 255, 256, 259, 263, 264, 268, 270, 271, 276,

278, 283, 284, 291, 292, 293, 298, 301, 302, 304, 309, 310, 311, 312, 320, 326, 329,

330, 332, 333, 335, 336, 343, 345

C olor 2: 7, 9, 11, 13, 14, 17, 18, 22, 23, 26, 28, 29, 34, 35, 36, 41, 44, 45, 

46, 52, 55, 56, 58, 65, 68, 70, 72, 82, 85, 88, 90, 92, 97, 103, 104, 110, 111, 112, 

115, 116, 127, 129, 130, 131, 133, 136, 140, 141, 144, 145, 147, 159, 164, 167, 170,

171, 175, 176, 177, 180, 183, 184, 189, 194, 197, 205, 206, 208, 209, 217, 220, 222,

224, 225, 227, 229, 230, 231, 232, 233, 237, 241, 243, 247, 251, 254, 257, 258, 260,

262, 266, 272, 273, 275, 279, 280, 281, 282, 288, 290, 294, 297, 303, 313, 318, 323,

325, 328, 331, 334, 337, 339, 340, 341, 342

C olor 3: 3, 6, 12, 15, 24, 30, 37, 43, 47, 48, 49, 53, 57, 59, 60, 61, 63, 74, 

75, 77, 79. 81, 86, 91, 93, 94, 96, 98, 99, 101, 106, 113, 114, 117, 118, 119, 120,
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121, 122, 126, 137, 143, 148, 150, 153, 154, 157, 158, 161, 162, 169, 172, 182, 185,

186, 187, 188, 192, 193, 196, 198, 201, 202, 203, 207, 211, 212, 213, 215, 219, 221,

223, 226, 228, 234, 235, 236, 238, 239, 240, 242, 244, 245, 249, 252, 253, 261, 265,

267, 269, 274, 277, 285 , 286 , 287, 289 , 295, 296 , 299, 300 , 305 , 306 , 307 , 308, 314,

315, 316, 317, 319, 321, 322, 324, 327, 338, 344

2.3 On R(3,3,3, ki , . . . ,  kr)

We now turn our atten tion  to finding a general lower bound for the Ramsey 

numbers in the title of this section. Let N  =  7?(&i, k i . . . . ,  kr). The Ramsey 

Property implies that there must exist a graph on N  — 1 vertices which avoids 

the Ramsey Property. Using such a graph, along with the construction in [C], 

we will extend Fan Chung’s result to prove that, for any natural number r  and 

for any > 3, i =  1 , 2 , . . .  r,

R(3,3,3, k i , A:2, - - •, >  3/2(3,3, k i , &2? • • • ■> kr) +  R{_ki, &2,. . . ,  kr ) — 3.

We prove the above inequality via a construction. Fix r  > 1 and k{ >  3 for 

i = 1,2, . . .  r. Let M  = R {3,3, kx, &2, . . .  kT) — 1. Ramsey’s Theorem proves the 

existence of a graph, S , on M  vertices which avoids the Ramsey Property. Call 

the incidence matrix of this graph Tr+2 =  Tr+2(x0, x i , x 2, . . .  , x r+2 )- The x,-, for 

i = 1,2, . . .  r  +  2, are the r  +  2 colors. Since any diagonal entry in Tr + 2  does not 

represent an edge of /Cvr, we place x0 along the diagonal of Tr+ 2  and nowhere 

else. We note that the order of the x,-, for i =  0 , 1 , 2 , . . . ,  r + 2, is extremely 

important; by the definition of S', and the order of the xt’s we mean that there is 

no Xi-colored nor X2 -colored triangles, and no xt+2 -colored AT;, for i =  1, 2 , . . .  r.
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10

Let the colors be 1 ,2 , . . . ,  r +  3. Consider the following slightly modified 

construction from [C] in Figure 2.1 below. By permuting the colors of the (r  +  2)- 

colored graph S  we can construct Tr+3,

A
D B

r r+3( 0 , l , 2 , . . . , r + 3 )  =  E  F  C
1 , . . . , 1  2 , . . . , 2  3 , . . . , 3

: : : g
1......... 1 2 , - - - , 2  3 , . . . , 3

Figure 2.1: Block Incidence M atrix Associated W ith R{3, 3, 3, k i , . . . ,  kr )

the incidence m atrix of a (r +  3)-colored graph H  on 3M  +  R (ki, k2, . . . ,  kr) — 1 

vertices, where
A =  Tr+2( 0 , 2 , 3 , 4 ,5 , . . . , r  +  3)

B  =  Tr+2(0,3 , 1 ,4 , 5 , . . . ,  r  +  3)

C =  r r+2( 0 , l , 2 , 4 , 5 , . . . , r  +  3)

D = !Tr+2(3,2 , 1 , 4 , 5 , . . . ,  r  +  3)

E  =  Tr+2(2 ,1 ,3 ,4 ,5 , . . .  , r  +  3)

F  = Tr+2{ 1 , 3 , 2 , 4 , 5 , . . .  , r  +  3) 

and G  is any matrix on R {k \ , k2, . . . ,  kT) — 1 vertices in the colors 4 through r +  3 

which avoids the Ramsey Property.

Using Fan Chung’s result in [C] where she proves that Rs{3) >  3Rs- 2(3) +  

Rs- 3(3) — 3 (where Rs(3) =  R(3 ,3 , . . .  ,3) with s 3’s) we see that the (r +  3)- 

colored graph FI avoids a 1-colored, 2-colored, and 3-colored triangle. We now 

argue that no (j +  3)-colored /v^ exists in H  for j  = 1 , 2 , . . .  , r :  Assume there 

exists a /-colored Kkj in H-, for some J  between 4 and r +  3. Then there 

must exist entries in H  all of value J  which represent the edges of the
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J-colored Kus - First note that if one of these entries is in G, then all entries 

must be in G as there are no entries of value J  in the columns to the left of 

G. Hence the entries are in the submatrix Q, consisting of the first 3M  

rows and the first 3M  columns of Tr+3 . However, by the construction of Tr+3 

we see that all of these entries5 coordinates can be taken modulo M . since the 

entries of value J  in each block are in exactly the same relative positions as in 

the upper left block A. We further note that if (s, t )  and (u,u) are two of the 

entries5 coordinates in question, then (s , t ) ^  (u,v)  (mod M)  (componentwise). 

H we had s = u (mod M ), then since (u,s)  must also have the same value as 

(u, u) we would have (u, s)  =  (u,u) (mod M).  This implies that the entry J  is 

on the diagonal of A  =  Tr+2(0,2, 3 , 4 , . . . ,  r +  3), a contradiction. Hence, if we 

have a J-colored IyJ-j in the submatrix Q then there m ust be a J-colored in 

A = Tr+2 {0,2, 3 , 4 , . . . ,  r  +  3), contradicting the definition of Tr+2-

R em ark  2.1 Up to the renaming of colors and vertices, the above permutation 

configuration of colors which defines T4 is the on ly  configuration which will avoid 

monochromatic triangles. This was shown by an exhaustive search of all permu

tations of four colors.

Using the above observation we give 6 new lower bounds for multicolored 

Ramsey numbers. Currently in Radziszowski5s Dynamic Survey [R], we have 

that A(3,3,3,4) >  87, due to Exoo [E2]. By applying the result of this section 

to 1?(3,3,3,4) and using the fact that 12(3,3,4) > 30 [K], we get the new lower 

bound: 12(3,3,3,4) >  91. Using the bound 12(3,3,5) >  45 [E3,KLR], we get 

the bound 12(3,3,3,5) >  137. Finally, using 12(3,3,6) >  54, 12(3,3,7) >  72, 

12(3,3,9) >  110, and 12(3,3,11) >  138 all from [SLZL], we get 12(3,3,3,6) >  165, 

12(3,3,3,7) >  220, 12(3,3,3,9) >  336, and 12(3,3,3,11) >  422.
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We also note that since i?(3 ,3 ,3 ,4) <  R (3 ,3,R(3,4)) =  i?(3,3,9) (see [B]) 

we have i?(3,3,9) >  91 which beats the previous best lower bound of 90 [LS].

2.4 On R(3, k, I)

We now extend Fan Chung’s construction in [C] in a different direction. Inspired 

by her incidence matrix construction, we search for other constructions which 

give lower bounds for general multicolored Ramsey numbers. The progress made 

in this direction so far is summed up in the following theorem.

T h e o re m  2.1 R (3, k , I) >  4R(k,  I — 2) — 3

Proof: Let M  =  R(k.  I — 2) — 1 and let G be a 2-coloring of Km  which contains 

no red Kk and no blue Ki- 2 - Further, let T( x o,xi ,£ 2 ) be the incidence matrix 

for G. where the xo entries are only along the diagonal, and there is no xi-colored 

Kk and no X2 -colored Ki - 2 .

We will prove the above theorem via a construction. We will show that 

the m atrix in Figure 2.2, S,  is an incidence matrix on 4M  vertices which avoids 

a 1-colored K 3 , a 2-colored Kk,  and a 3-colored Ki. We then conclude that 

R{3, k, I) > 4R(k,  1 - 2 ) -  3. Define S  as:

A
S =  B  A

C C A  
C C B  A

Figure 2.2: Block Incidence Matrix Associated with R( 3, k , /)

where A  = A  = T( 0,2,3), B  = B  = T{3,2,1), and C = C =  T( l ,2 ,3) .  

The argument below shows that S  avoids the above-mentioned monochromatic 

complete graphs.
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No 1-colored /v3: To have a 1-colored triangle we must have three entries’ co

ordinates (k , j ) ,  and (k, i)  all of value 1. W ithout loss of generality we

may assume j  < i < k. For any 1-colored triangle we would have either 

( i , j )  =  (k , j )  (mod M ) (componentwise), while k  ^  i (mod M) ,  or (k, i)  =  

(&,/) (mod M),  while i  ^  j  (mod M ); both clear contradictions.

No 2-colored Kk ’ Since all 2 entries are in the same relative position, any (£) 

entries’ coordinates representing the edges of a AT can be taken modulo M. 

Hence, there exists a 2-colored AT in S  if and only if there exists a 2-colored AT 

in T(0,2,3). By definition of T(0,2,3), no 2-colored Kk can exist in S.

No 3-colored Kj \ W ithout loss of generality we can consider the structure of the 

('£) entries representing the edges of a K[ as pictured in Figure 2.3 below.

•(*i J )  •(*i»*o)
• ( * 2  > i )  • ( * 2 , * o )  • ( * 2 , » l )

• ( * / —2 , y )  • ( * / - 2 , * o )  • ( * / - 2 , * l )  • • •  • ( * / - 2 , * / - 3 )

Figure 2.3: Structure of a Ki Subgraph

If there is no entry in neither B  nor B,  then by taking all entries’ coordinates 

modulo M  we would have a 3-colored Ki in A, a contradiction of the definition 

of A. If we have entries in either B  or B , or both, then we have three cases: 

C ase  I: ( i , j )  £ B  but no (k . l ) G B.  Delete the entire column of 3’s containing 

( i , j )  (the leftmost co lu m n  in the picture above). By taking the remaining 3 

entries’ coordinates modulo M , we get a 3-colored AT/_i E A, again a contradiction 

of the definition of A.
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C ase I I :  ( i , j )  £  B  but no (k,l) G B  . Delete the entire row of 3’s containing 

( i , j)  (the bottom  row in the picture above). By taking the remaining (*2 *) 3 

entries’ coordinates modulo M ,  we get a 3-colored K i- i  €  A, a contradiction of 

the definition of A.

C ase I I I :  ( i , j)  €  B  and (k,l) €  B  . Delete the entire column of 3’s containing 

( i , j)  and also the entire row of 3’s containing (k , l ). By taking the remaining 

^~2) 3 entries’ coordinates modulo M ,  we get a 3-colored Rf_ 2  € A, again a 

contradiction of the definition of A.

This completes the proof, thereby giving the general bound R (3, k, I) > 

4R(k, I — 2) — 3. Since R (3,9) =  36, this general result shows that R (3,3,11) >  

141, which beats the previous best bound of 138 found in [SLZL]. Coupling this 

new result with the general bound in section 1.3 we see tha t R (3,3,3,11) >  431.

C o ro lla ry  2.1 R(3, k i ,k 2, . . . ,  kr ) >  4i2(k! — 2, k2, . . . ,  kr) — 3

Proof: Let A  =  A  = T (0, 2 ,3 ,4 ,5 , . . . ,  r + 1), B  = B  = T{3, 2 , 1 ,4 ,5 , . . . ,  r  +  1 ) 

and C =  C  =  T ( l,  2 ,3 ,4 ,5 , . . .  , r  +  1). Using the same construction as found 

in the proof of Theorem 2.1, we argue that there is no ^-colored Kkj, for j  =

4 ,5 , . . . ,  r  -t-1, by appealing to the argument proving no 2-colored Kk.

2.5 Difference R am sey Num bers

Here we will find good lower bounds for the classical Ramsey numbers. To accom

plish this, we find edgewise colorings of complete graphs which avoid the Ramsey 

Property. Our approach is to construct a recursive algorithm to find the best 

possible colorings among those colorings we search. Since searching all possible
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colorings of a  complete graph on any nontrivial number of vertices is not feasible 

by today’s computing standards, we must restrict the class of colored graphs to 

be searched. The class of graphs we will search will be the class of difference 

graphs.

D efin itio n  2.2 Difference Graph: Consider the complete graph on n  vertices, 

K n. Number the vertices 1 through n. Let i < j  be two vertices of K n. Let 

B n be a set of arbitrary integers between 1  and n  — 1. Call Bn the set of blue 

differences on n  vertices. We now color the edges of K n as follows: if j  — i G B n 

then color the edge connecting i and j  blue, otherwise color the edge red. The 

resulting colored graph will be called a difference graph.

Given k  and I, a difference graph with the maximal number of vertices which 

avoids both a blue Kk and a red K[ will be called a maximal difference Ramsey 

graph. Let the number of vertices of a maximal difference Ramsey graph be V. 

Then we will define the difference Ramsey number, denoted D(k, I), to be V  -I-1.

D e fin itio n  2.3 Difference Ramsey Numbers: The difference Ramsey number, 

denoted D(k, I), is the minimal integer such that any difference graph must either 

contain a red Kk subgraph or a blue Ki subgraph.

Since the class of difference graphs is a subclass of all two-colored complete 

graphs, we have that D (k ,l) < R (k ,l ) .  Hence, by finding the difference Ramsey 

numbers, we are finding lower bounds for the classical Ramsey numbers.

Before we present the computational aspect of these difference Ramsey num

bers, we establish that the recursive inequality D(k, I) < D(k — 1,1)+ D(k, I — 1), 

which is analogous to the upper bound derived from Ramsey’s proof [GRS p. 3], 

does not easily follow from Ramsey’s proof.

To see this consider the difference Ramsey number D(3,3) =  6 . Let the 

set of red differences be Rq =  {1,2,4} (and thus the set of blue differences is
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B& =  {3,5}). Call this difference graph DG. In Ramsey’s proof, a vertex v 

is isolated. The next step is to notice that, regardless of the choice of v, the 

number of red edges from v to D6 \  {u} >  D{2,3) =  3. Let G be the graph which 

has each vertex connected to the vertex v by a red edge. If v E {1,6} then G has 

3 vertices, otherwise it has 4 vertices. Either way, the  number of vertices of G is 

at least Z)(2,3) =  3.

In order for Ramsey’s argument to work in our difference graph situation, 

we must show that G is isomorphic to a difference graph. Assume there exists an 

isomorphism, (j> : {1 , 2 ,3 ,4 ,5 , 6 } — ► {1 , 2 ,3 ,4 ,5 , 6 }, such that the vertex set of 

G , is mapped onto {1,2,3} or {1,2,3,4} (depending on the number of vertices 

of G), and the edge coloring is preserved. Then 4>{G) would be a difference 

graph. Notice now that <p({u}) E {4,5,6}. For any choice of ^({u}) we obtain 

the contradiction that the difference 1  must be bo th  red and blue (for different 

edges). Hence, no such isomorphism can exist, and thus we cannot use the 

difference Ramsey number property to conclude th a t the inequality holds.

However, the difference Ramsey numbers seem to be, for small values, quite 

close to the Ramsey numbers. This may just be a case of the Law of Small Num

bers, but numerical evidence from this section leads us to make the following 

conjecture.

C o n jec tu re  1 : D (k , /) <  D(k  — 1 , /) +  D (k , / — 1 )

The set of difference graphs is a superclass of the often searched cyclic (or 

circular) graphs (see the survey [CG] by Chung and Grinstead), which are sim

ilarly defined. The distinction is that, using the notation above, for a graph to 

be cyclic we require that if b E B n, then we must have n — 6  E B n. By remov

ing this cyclic? condition, we remove from the coloring the dependence on n, and
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can thereby construct a recursive algorithm to find the set of maximal difference 

Ramsey graphs.

The recursive step in the algorithm is described as follows. A difference 

graph on n  vertices consists of B n, the set of blue differences, and Rn, the set of 

red differences. Thus B n U  Rn =  { 1 ,2 ,3 ,. . . ,  n  — 1}. To obtain a difference graph 

on rz-Fl vertices, we consider the difference d — n. If B n\j{d }  avoids a red clique, 

then we have a difference graph on n +  1 vertices where B n+i =  B n U {d} and 

Rn+y — Rn. (Note tha t now B n+x U  Rn+x =  { 1 ,2 ,3 , . . . ,  n}.) Likewise, if Rn U  {d} 

avoids a blue clique, then we have a different difference graph on n  4 - 1  vertices 

with B n+i =  B n and Rn+i = Rn U {d}. Hence, we have a simple recursion which 

is not possible with cyclic colorings. (By increasing the number of vertices from 

n  to n  ■+■ 1, a cyclic graph may become noncyclic (for some b £  B n, we have th a t 

n — b £  B n) ). We can now use our recursive algorithm to find automatically 

(and we must note theoretically due to time and memory constraints, but m u ch  

less tim e and memory than would be required to search all graphs) all maximal 

difference Ramsey graphs for any given k and I.

2 .5 .1  About the Maple Package AUTORAMSEY

AUTQRAMSEY is a Maple package that automatically computes all difference graphs 

with the maximum number of vertices th a t avoid both a blue Kk  and a red 

K i . Hence, this package automatically finds lower bounds for the Ramsey num

ber R (k ,l ) .  In the spirit of automation, and to take another step towards AI, 

AUTORAMSEY can create a verification Maple program tailored to the maximal 

graph (s) calculated in AUTORAMSEY (that can be run a t your leisure) and can
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write a  L^TgX paper giving the lower bound for the Ramsey number R (k, I) along 

with a maximal difference graph that avoids both a blue Kk and a red Ki.

The computer generated program is a straightforward program that can be 

used to (double) check that the results obtained in AUTORAMSEY do indeed avoid 

both a blue Kk a-nd a red Ki. Further, this program can be easily altered (with 

instructions on how to do so) to search two-colored complete graphs for /e-cliques 

and /-anticliques.

AUTORAMSEY has also been translated into Fortran?? as D F . f  to speed up 

the algorithm implementation. The code for the translated programs (dependent 

upon the clique sizes we axe trying to avoid) is available for download from the 

author’s webpage2.

‘2.5.2 The Algorithm

Below, we give the pseudocode for finding the maximal difference Ramsey graph(s).

In turn, it will also find the exact value of the difference Ramsey numbers D (k , /). 

Because the number of difference graphs is of order 2n as compared to 2" 2 / 2  for 

all colored graphs, the algorithm can feasibly work on larger Ramsey numbers.

Let Dn be th e class o f difference graphs on n vertices. Let G oodSet be the 

set o f difference graphs that avoid both a b lue Kk and a red K[.

Set m =  min(k, 1)

Find Dm_i, our starting point.

Set GoodSet =  Dm_x.

Set j =  m — 1 

WHILE flag ^  0 do

2 www.math, temple.edu/~aaron/
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FOR i from 1  to | GoodSet | do

Take T G GoodSet, where T is of the form T =  [Bj, Rj]

where Bj and Rj are the blue and red difference sets on j vertices 

Consider Sb =  [Bj U {j}, Rj] and Sr =  [Bj, Rj U {j}]

If Sb avoids both a blue Kk and a red Kj then 

NewGoodSet := NewGoodSet U Sb 

If Sr avoids both a blue Kk and a red Ki then 

NewGoodSet :=  NewGoodSet U Sr 

Repeat FO R loop with a new T 

If | NewGoodSet |=  0 then RETURN GoodSet and set flag =  0 

Else, set GoodSet =  NewGoodSet, NewGoodSet =  {}, and j =  j +  1  

Repeat WHILE loop

For this algorithm to be efficient we must have the subroutine which checks 

whether or not a monochromatic clique is avoided be very quick. We use the 

following lemma to achieve quick results in the Fortran77 code. (The Maple 

code is mainly for separately checking (with a different, much slower, but more 

straightforward, algorithm) the Fortran77 code for small cases.)

L em m a  2.1 Define the binary operation * to be x * y  = | x — y |. Let D be a set of  

differences. I f  D contains a k-clique, then there exists K  C D, with | K  |=  k — 1, 

such that for all x , y  €  K , x * y €. D.

Proof: We will prove the contrapositive. Let K  = {di,d2, ■ - - ,dfc_x}. Order and 

rename the elements of K  so that d\ <  d2 < - .. < dk-i- Let uo <  <  • • • <  ^k-i

be the vertices of a k-set where dt- =  ut- — vQ. By supposition, there exists I  < J
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such that d j * d[ = d j — di D. This is the edge connecting v j  with V [ .  Since 

this edge is not in D, D  contains no fc-clique.

By using this lemma we need only check pairs of elements in a k-set, rather 

than  constructing all possible colorings using the k-set. Further, we need not 

worry about the ordering of the pairs: the operation * is commutative.

2.5.3 Some Results

It is easy to find lower bounds for R (k ,l) ,  so we must show th a t the algorithm 

gives “good” lower bounds. Below are two tables of the difference Ramsey number 

results obtained so far. The first table is of the difference Ramsey number values. 

The second table is of the number of maximal difference Ramsey graphs found. 

For these we make no claim of nonisomorphism. If we are considering the diagonal 

Ramsey number R (k ,k ) ,  then the number of maximal difference graphs takes 

into account the symmetry of colors; i.e. we do not count a reversal of colors 

as a different difference graph. Where lower bounds are listed we have made 

constraints on the size of the set GoodSet in the algorithm due to memory and/or 

(self-imposed) time restrictions.

When we compare our test results to the well known maximal Ramsey graphs 

for R (3,3), R(3,4), R (3,5), R (4,4) [GG], and i?(4 ,5) [MR], we find that the 

program has found the critical colorings for all of these numbers. The classical 

coloring in [GRS] for R (3,4) is not a difference graph, and hence is not found 

by the program. More importantly, however, is that the program does find a 

difference graph on S vertices that avoids both a blue K 3 and a  red K 4. Hence, 

for the Ramsey numbers found by Gleason and Greenwood [GG], and for i?(4, 5) 

found by McKay and Radziszowski [MR] we have found critical Ramsey graphs 

which are also difference graphs.
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Table 2.1: Difference Ramsey Numbers

1

k
3 4 5 6 7 8 9 1 0 1 1

3 6 9 14 17 2 2 27 36 39 46
4 18 25 34 47 >  53 >  62
5 42 > 5 7

Table 2.2: Number of Maximal Difference Ramsey Graphs

I
k

3 4 5 6 7 8 9 1 0 1 1

3 1 2 3 7 13 13 4 2 1 6

4 1 6 24 2 1 n /a n /a
5 1 1 n /a

The algorithm presented above can be trivially extended to search difference 

graphs with more than two colors. The progress made so far in this direction 

follows.

2.5.4 Multicolored Difference Ramsey Numbers

The algorithm presented here can be applied to an arbitrary number of colors. 

To change from two to three colors, the recursive step in the algorithm simply 

becomes the addition of the next difference to each of the three color sets B n, Rn, 

and Gn (G for green). Everything else remains the same. Hence, the alteration of 

the program to any number of colors is a simple one. The main hurdle encountered 

while searching difference graphs of more than two colors is that the size of the 

set G oodSet in the algorithm grows very quickly. In fact, the system’s memory 

while fully searching all difference graphs was consumed within seconds for most
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multicolored difference Ramsey numbers. However, we have been able to obtain 

the following 3-colored Ramsey number results:

£>(3,3,3) =  15 £>(3,3,4) = 3 0

£>(3,3,5) = 4 2  £>(3,3,6) > 6 0

We note here that £>(3,3,6 ) >  60 implies that R (3 ,3 ,6 ) >  60, which is a 

new result. The previous best lower bound was 54 [SLZL]. The coloring on 59

vertices is cyclic, hence we need only list the differences up to 29:

Table 2.3: Critical Coloring Which Shows R (3 ,3 ,6 ) >  60

Color Number Differences Colored
1 5,12,13,14,16,20,22
2 10,15,19,24,26,27
3 1,2,3,4,6,7,8,9,11,17,18,21,23,25,28,29

Coupling the result R (3 ,3 , 6 ) > 6 0  with the general bound from section 1.3 

we find that R (3 ,3,3,6) > 183.

2.5.5 Future Directions

Currently the algorithm which searches for the maximal difference Ramsey graphs 

is a straightforward search. If the memory requirement exceeds the space in 

the computer, the algorithm will only return a lower bound. In the future this 

algorithm should be adapted to backtrack searches or network searching. For 

a backtrack search we would keep track of the difference for which the memory 

barrier is reached and then start splitting up the search. This would create a tree 

structure. We then check all leaves on this tree and choose the maximal graph.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



For network searching, the same type of backtrack algorithm would be used 

except tha t difference branches of the tree would be sent to different computers. 

T his would be much quicker, but of course would cost much more in computer 

facilities.
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C H A PT E R  3

SC H U R  TRIPLES A N D  ASSO CIATED
N U M BER S

3.1 Introduction

In 1S92, Hilbert proved what is perhaps the first result in Ramsey theory. His 

result, however, did not spark interest in the field. It was not until 1916, when 

Issai Schur proved the following theorem that the spark of activity in Ramsey 

Theory was ignited.

S c h u r’s T h eo rem : Given r, there exists an integer N  =  N{r) such that any 

r-coloring of the integers 1 through N  must admit a monochromatic solution to 

x + y = z.

In this chapter we investigate the asymptotic properties of monochromatic 

Schur triples, as well as some related numbers. These related numbers include 

van der Waerden triples and Issai numbers, an extension of the Schur numbers.

3.2 On the A sym ptotic Behavior o f Schur

Triples

Schur’s theorem assures us that any r-coloring of the integers m ust have a min

imal N r so that [l,iVr], is guaranteed to contain a monochromatic Schur triple
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{£, j ,  i +  j } .  Since monochromatic Schur triples are unavoidable, one may still 

want to be able to color [1 , n] in such a way as to minimize their number. In this 

article we answer a question raised in [GRR], by showing that, asymptotically, 

the m in im u m  number of monochromatic Schur triples tha t can occur in any 2 - 

coloring of the integers from 1 to n  is n2/22 +  0{n). It is easy to see that this 

is achieved by coloring [ l ,4 n / l l ]  and [1 0 n /ll, n] blue while coloring the rest, i.e. 

( 4 n / l l ,  10rc/ll) red. This coloring was discovered by Zeilberger [Z].

3.2.1 Formulation

Color the integers 1 through n  either red or blue. If an integer, m, is colored blue 

we shall say color(m) =  0, if it is colored red we shall say color(m) =  1 . We are 

now searching for integers 1  < x < y < z < n  such tha t x  +  y = z  and either 

x, y. and 2  are all colored blue or x, y, and 2  are all colored red.

Define the following events on [n] =  { 1 ,2 ,. . . ,  n}  for (i, j ,  k) E {0, l} 3:

&ij,k —\ {(<*> b, c) E [n] : a + b = c and color{a) =  i, color(b) =  j ,  color(c) =  k}  | .

Our goal here is to find an expression for <*0 ,0 , 0  +  <2 1 ,1 , 1  • To this end we count the

following sums of the above events: <*ij,o +  <*ij,i, <*i,oj +  and <*o,ij +

w ith ( i , j )  E {0, l} 2.

We proceed by calculating upper and lower bounds for the sums of events 

defined above. Using the programs LBeqns and UBeqns in the maple package 

SCHUR (available from the author’s website1), the following bounds can be veri

fied. Let Xi = 0 if color(i) =  0, xt- =  1 if color(i) =  1 , and define Xi =  1 — x,-.

1- YJjZl+i XiXj < a 0)0,o +  »o,o,i <  El=i £ £ f i i

2 - E 5 T  Ey=i+i XiXj < <*0 ,1 , 0  +  <2 0 ,1 , 1  <  E xii IZjZlti

1www.math.temple.edu/~aaron/
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3 . E-Ii Zj=Ui ^  Qi.o,o +  “ 1,0,1 < E l i  E y = ii XiXj

4- E ,= i E7=i+i x i x j  — a i,i,o +  “ 1,1,1 ^  E«=i E_/=t'+i x ix j

5. E 7 = 3  E ? = S f _1)’n) XiXj <  “ 0,o,o +  “ 1 ,0 , 0  <  E ? ^ 1 E £2+ i',b) x ixJ
fi V̂ n— 1 r^mm(2 (i-l),n) - _i_ ^  <; xpn — 1 i-'Tnin(2t,n) -o- Ẑ t= 3  2 _j={+i x tXj ^  “ o,o,i t  “ 1 ,0 , 1  _  JLt=i 2 ^j=t+i x tx3
7  V" n — 1 ^rnin(2{i—l),n) — ^  ^  ̂ ->n— 1 y*min(2 i,n) —
(- E i=3 Ej=j+i x,Xj S “ 0,1,0 ~r “ 1,1,0 S Zw=1 2^y=i+i x:£_7

Q 1 y»nun(2 (t—l),n) ^  ^  y n — 1 y min(2i,n)
b- E«=3 Ey=z+i x,Xj S “ 0,1,1 +  “ 1,1,1 S Z î=i Z ĵ'=t+i xtXj

9- E .+ l Ej'=2t'+1 — “ 0,0,0 +  “ 0,1,0 <  E /= l Ej=2x-1 x i x j

10. Et'=l Ey=2z'+1 x i x j  — “ 0,0,1 d~ “ 0,1,1 5: E tL l Ej=2i— 1

11- Ez'=l Ej=2i+1 x i x j  — “ 1,0,0 d~ “ 1,1,0 5: E ,?=l Ej=2i—1 X i~

12. Et'=l E"=2i+1 a;ix i  — “ 1,0,1 d~ “ 1,1,1 E»=l Ey=2i—1 x ii

i' X j

i X j

We now note that for each of the above 12 inequality ranges the difference 

between the lower bound and the upper bound is O(n). Hence we can conclude 

that the following equations must hold:

n—1
E\. “ 0 ,0 ,0  +  “ o ,o ,i  =  E i = i  E y = i + i  x ix j  +  0 {n)

E 2 - “ 0 , 1,0 +  “ 0 ,1,1 =  E i J l  E y = i + 1 x ixj  +  0 { n )

E 3 . “ 1 ,0 ,0  +  “ 1,0,1 =  E i J i  E y = { + i  x ixj  d" O(n)

E 4 . “ 1 ,1 ,0  +  “ 1,1,1 =  E j - J i  E y = / + i  x ixj  +  0 (n)

E s. “ 0 ,0 ,0  +  “ 1,0,0 =  E F E i1 x ix 3 +  O(n)

Eq. “ 0 ,0 ,1  +  “ 1,0,1 =  E i = i  E i ^ i + i ( i “ l ) ,n )  xiXj +  0 (n)

E 7. “ 0 ,1 ,0  +  “ 1,1,0 =  E E i 1 E ? = ii(l_1)’n) XiXj + 0(n)

Es. “ 0 ,1 ,1  +  “ 1,1,1 =  E F E 1 E Jm= r + i ( i _ 1 ) ’n )  x iXj +  O(n)
n—I

E g .  “ 0 ,0 ,0  + “ 0 ,1,0 =  E i ' = l  E y = 2i + 1  x ix j  +  O(n)
n —1

E iq. “ 0 ,0,1 +  “ 0 ,1,1 =  E . = l  E y = 2t'+ 1  XiXj  +  0 ( n )
n — 1

E\\.  “ 1 ,0 ,0  +  “ 1,1,0 =  E . - J l  E y = 2 : + 1  XiX 3 d" 0 {n)
n — 1

E \ 2 - “ 1,0,1 d -  “ 1,1,1 =  E t’= i  E y = 2 i + i  x ix j d -  0 (n)
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We now have a system of 12 equations with 8  unknowns. W ritten in m atrix 

form we have Ax = b with x  =  [<*o,o,o <*0 ,0 , 1  Qo,i,o <*1 ,0 , 0  <*0 ,1 , 1  <*1 ,0 , 1  <*1 ,1 , 0  <*i,i,i]T 

and b = [rhs(Ei) rhs(E 2 ) rhs^Ez) r hs(E i2 )]T-, where rhs(Ei)  is the right hand 

side of equation E{. Solving this system for the number of monochromatic Schur 

triples, i.e. <*0 ,0 ,0 +<*1 ,1 ,1 , we find a particular solution, x par = r h s (E i )— r/is(f?6) +  

rhs(E i2). Hence, all solutions of this system are z =  x par +  c(kernel(A )), where 

c is any constant. Since we want <*0 ,0 , 0  +  <*1 ,1 , 1  and we find tha t the kernel of A 

is [ — 1  1 1 1  — 1  — 1  — 1  1 ]T we see that <*0 ,0 , 0  +  <*1 ,1 , 1  =  rh s(E i)  — rhs{E6) +  

rhs(E i2 ) — c +  c =  rhs(E \ ) — rhs(E6) +  rhs(Ei2) for any choice of c. Hence we 

have found an expression for the number of monochromatic Schur triples of any

2 -coloring of [n]:

n - i  n —1 m in (2 ( i —l ) rn) n

J 2  Y1 - J 2  x ix j  + ° ( n )
t=l j=i'+l i=l j=i-f-l x=l j=2i+l

We will now derive an equivalent expression for the num ber of monochro

matic Schur triples using the expression above. By symmetry of colors we can 

let X{ = X{. Keeping in mind that all simplification can be done modulo O(n), a 

routine calculation shows that the above expression is equivalent to the following:

n —1

i l  H  xi + Y , Y l  x i x j ~ Y ,  S  xi + ^ -  + o{n)
i=i j=i+i { = 1  j=2 i+l i= 1 j=t+l i'=l j=i+ 1

Let k =  5Z7=i x i- Using the facts that X2”=t+i x ix j  =  (*) and
n.

H,?=i 1 3 7 =2 1 + 1  x i — H?=i we see that the above is equivalent to:

2 n —t

J2  x ix j  + Y2 \  xj  + ^ - ~ k n  + ^ -  + (0{n)
i = l j = i + l  t‘= l  L ‘j J  “
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3.2.2 Reformulation

We can reformulate the problem of minimizing the number of monochromatic 

Schur triples into the following ‘Advanced Discrete Calculus’ problem.

Let

f  n~‘ 71 i £ 2  n 2

F (x t , . . . , x n) = ^ 2  J 2  x <xi +  5 3  9  XJ + —  ~  kn + — -
1=1 j = i + l  i=  1 ■* “

Find the global minimum of F over the n-dimensional (discrete) unit cube, 

i.e. over {0, l } n. To this end, we make the following definition.

D efin itio n  3 .1  Discrete partial derivative of f ( x i , . . .  , x n): For any function,

f ( x i , . . . ,  xn), the discrete partial derivative dTf  is defined to be

dr 1 i • • • j  t • • • ,  •T-n.) -—  f(,^  1 ■ • • i  j  • - • i  ) f{.^li -  ■ • , 1  3 * n  • - • i  ^n) •

In this situation, a global minimum must also be a local minimum (in the Ham

ming metric). Let (r1?. . . ,  zn) be a local minimum. Then obviously we have the 

n inequalities

drF ( z i , . . . ,  zn) < 0  for 1  <  r <  n .

Noting that (2xr — l ) 2  =  1 and (2xr — l)x r =  x r on {0, l } n, a routine

calculation shows that for 1  <  r <  n,

{n n-r r I } I 1

5 3  Xi +  5 3 Xi (n ~  L9 J) 9 {̂'-<f} f 9  9

1=1  t = i  ~  “  j  “  “
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where Is  is the  indicator function on the set S. Fix k, 1  <  k < n, and focus 

on those (zx, . . . ,  zn) for which E"=i zi =  By symmetry we may assume that 

k > n / 2 .

Since a t a local minimum (z i , . . . ,  zn), drG (z i , . . . ,  zn) <  0 precisely when

(2 zr -  1 ) {A: -  n +  [ r / 2 J +  Ey=[ z, ~  1/2} < 1  for 1  <  r < n / 2

(2 zr -  1 ) {k  -  n +  Lr/2 J +  Zj} < 1 / 2  for n / 2  < r <  n

it follows th a t any local minimum (zl5. . . ,  zn) satisfies the following Ping-Pong 

Recurrence.

3.2.3 Ping-Pong Recurrence

Choose a, b E {0,1} arbitrarily each time H  or H  is used, where H  and H  are 

the following functions:

' 0 , if y > 1/ 2 ;

H(y)  := < 1, if y  < 0 ;

a, if 0 <  y < 1/ 2 .

' 0 , if y  >  i;

H ( y ) := 1, F+
i

A 1

if - 1  <  y  <  l .
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Then we must have, for r =  n, n — 1 , . . . ,  n — [n/2 J +  1 ,

zr = H ( k - n +  [ | J  +  Ef=[ Zj) , (Right Volley)

zn _ r + 1  = H ( 2 k - n -  1/2 +  |a==±Lj -  £ ? =r zj)  , (Left Volley)

and if n is odd then ^(n+i) / 2  = H(k  — n + +  EylT 1 ^ 2 -j)-

These equations determine a solution (depending upon the choices of the

a's and b's made along the way), z (if it exists), in the order zn, zn- i ,  2 2 , -

When we solve the Ping-Pong recurrence we forget the fact that E ”=i =  k. 

Most of the time a solution will not satisfy this last condition, but when it does, 

we have a genuine local minimum. Note that any local minimum must show up 

in this way, and hence any global minimum as well.

By analyzing the output of the Maple routine p to r 2  in the Maple package 

RON (available from the author’s website2), we are able to find the following 

solutions, for n sufficiently large, to the Ping-Pong recurrence. Stealing notation 

from the theory of formal languages, for any word (or letter) W, W 171 means TV 

repeated m  times’.

Let w = 2 k — n, k ^  n / 2  (this case must be dealt with separately). By 

symmetry we may assume that k > n/2. Then 0 < w < n. If w > n /2  then the 

only solution is 0” . If w < n/2, then let s be the unique integer 0 <  s <  0 0 , that 

satisfies n/(l2s  +  14) < w <  n/(12s +2).

C ase I: If n / 8  < w < n / 2  then the solutions are oln/2i l n - ln/ 2 J- “,-Cl0“’+Cl, where

Ci £ ( —1 , 0 , 1 }.

2 www.math.temple.edu/ ~aaron /
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C ase  II : If n /(12s +  8 ) <  w < n /(12s +  2) then the solutions are

{q 4 u /+ c i ^ [ n / 2 j - 4 u / - c i Q 7 i —[ n / 2j —7 u/— (C2+C3+C4) ^ 6 u /+ c 3 q iu + c*  £o r  s  _  £ .

q 4 ui+C4 ^ 6 u /+ C 5 ‘ g6u;+C g‘ ^ s / 2 £ ^ q 6 u /+ c 1‘ ^ s / 2 qu ;+C 9 £Q r  5  >  £

where the cf's and c / ’s are bounded constants (independent of n) and Q can be 

an (almost) arbitrary mix of r  zeroes and ones (where r is the unique integer

such that the length of this interval is n). Further, the number of ones in Q is at

most 12io. Notation: (1) the c^ ’s can be different constants with i ranging from 

1  to s / 2 ; (2 ) if s is odd (ab) 3 / 2 is (a 6 )̂ s_1 ^ 2 a.

C ase  TTT: If n/(12s + 14) < w < n/(12s + S) then the solutions are

{
Q 4w+ di - ^ n - 5 w - ( d 1+d2 )Qw+d2  £o r  s  _  Q .

Q4tu-M 3 ( £ 6 ^ + ^ '  gSuM-c^' y / 2 Q ^ Q 6 w + d l l £6u;+<d‘ )s /2 q u /-M 8 £Q r  s  >  Q

where the dj's and dy ’s are bounded constants and Q can be an (almost) arbi

trary  mix of r  zeroes and ones, with the number of ones in Q at most Qw.

C ase  IV : if w =  0  (i.e. s =  oo), the solutions are:

051(1^'o ^ ' )n/(2 Gi)Q (0 5"‘ 1 ?"‘ )«/(2 G2 )

where gx €  {0,1,2}, the other gds and <7,”' ’s are bounded between 3 and 1 1 , Q is 

an (almost) arbitrary mix of r zeroes and ones with the number of ones bounded 

between 0  and 2 2 , Gx =  52,(g? + gS‘), and G 2 =  £ t( ^ ‘ +flr5 1)-
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The verification that these are in fact the solutions is a routine verification. 

All that is required is to plug the answers back in, and verify that they satisfy 

the Ping-Pong recurrence.

Now it is time to impose the extra condition that HiLi z % = k (= (w + n)/2).  

W ith Cases I and II a routine calculation yields a contradiction of the applicable 

range of w when n is sufficiently large. For Case III, a routine calculation yields 

a local minimum of to =  n / 1 1  if s =  0 . If s > 0 argue as follows. Let t 

be the number of l ’s in Q. Recall that r  is the total num ber of CPs and l ’s 

in Q. Let wc(s) =  n/(12s +  c) where we must have 8  <  c <  14. Since we need 

HiLu zi = k (= (w + n)/2), we see that 6 wc(s)s+ t  =  n(12s+c-f-l)/(24s+2c) gives 

t =  (c-t-l)u7c(s ) / 2 . Further, since the number of l ’s in Q is bounded by 6 u>c(s), we 

find that we must have c <  11. We also must have r  =  n — iuc(s)(12s +  5), by the 

definition of r. Using the simple inequality r > £, we have n  — tuc(s)(12s +  5) >  

(c +  l)i£7c(s ) / 2 . From this deduce that c >  1 1 . Hence we m ust have c =  1 1  at a 

local minimum. Thus the local minima for Case III, s > 0, are ws =  n/(12s +  l l ) .  

Case IV gives infinitely many local minima.

We are now ready to give the colorings which will give a locally minimum 

value for the number of monochromatic Schur triples. Since the global minimum 

must occur as a local minimum, we need only determine the minimum of these 

local minima. The local minima are asymptotically equivalent (mod 0 { n )) to

f :=  o ^ ( i 6 ^ o 6 u,a) 2 l 6 u,5 (0 6 u,sI6u;3)^0“;j for 0  <  s <  oo (w ith ws := 

1 Z tQO =  ((fip)n/(2t> for 3  < t < I I

We now evaluate F to calculate the number of monochromatic Schur triples 

at each of these Z j .  Recall that
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n /2  n - t  n  ■ ^ 2 R 2

x fX j + 5 ^  -  ry +  — -  kn  +  — +  0 (n)
i= l j = i + l  t '= l  L “ J  “  ^

For 0 <  s < oo we break F down as follows:

n /2  n —iE  E  X { X j
i= l j= i+ l

L ^fA l (1 2 i' - 2 ) iu3 f  ( 1 2 t—2)ur3 m a x ( n —j ,n —( l 2 i—5 )w i)

T ,  E  { £  i  +  -  (2 i - 1 )) +  x )  1

t = l  j = ( 1 2 i —8)u/3 (  l= j + l  l= n —( l 2 i—5 )w s

+ 22 f i ± I  _ y + i
•> n /2  n —i

) .  S  E i -
i= (n —3 )w ,/2  J = i + 1

A routine calculation shows that 5 2 ? = i Hy=i+i x i x j  = f(4s 2  +  5s +  l ) ^ 2 +  0(n).  

Using HLaLiJ =  — a 2 ) / 4  +  0 ( n ) we see fĉ at

i=iE  s  * ;  =  E  E
1 =  1 J =  ( l 2 t —8)t£/5

s  (12i—2)u/3 j  n —ius

+ . Ei= n —7w ,

I
L2 J

is equal to (18s2+39s+21)u;2-|-0(n). Since A: =  (ws+ n )/2, a routine simplification 

shows that for 0  <  s <  oo

F { Z j )  =
1 2 s - ( " 8  o \-n +  0 {n) ,

16(12s +  1 1 )

which is strictly increasing in s. At s =  0 we get n 2 [22 +  0( n )  (and. as s —► oo 

we get n2/ 16 +  0(n) ) .  Further, another routine calculation shows that Z^  =  

n2/16 +  <9(n) for any natural number t  (which, of course, is the above limit).
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3.2.4 The Answer

The above arguments o f this section have shown that the coloring found by Zeil- 

berger is in fact the global minimum. In our notation,

ZQ =  04n/u i 6"/11 on/11

sets the world-record minimum value of n2/ 22 +  0(n )  monochromatic Schur 

triples.

3.2.5 A  Lower Bound for the r-color Case

Here we show that our result implies a good upper bound for the general r-coloring 

of the first n integers. If we r-color the integers (with colors C \ . . .  CT) from 1 to 

n then the minimum number of monochromatic Schur triples is bounded above

by
n2

+ 0(n).
2 2r-3l l

This comes from the following coloring:

Color{i) =  Cj if £  < i < for 1  <  j  < r -  2 ,

Color(i) =  Cr—i if 1 <  i < or 2 ^ -

Color{i) =  CT if ^  < i <

The coloring above is constructed to insure that there are no Cy-colored 

Schur triples for 1  < j  <  r — 2, and that there is a minimal number of Cr_i and 

CT colored Schur triples in the interval [ l , n / 2 r-2].
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3.3 Issai N um bers

3 5

We may extend Schur’s theorem to the following theorem:

T h e o re m  3.1 Given r and k, there exists an integer N  =  N(r, k ) such that any 

r-coloring of the integers 1 through N  must admit a monochromatic solution to 

]Ct'=l x i  — 3*k-

This is not a new theorem. In fact it is a special case of Rado’s Theorem  

[GRS p. 56]. We will, however, present a simple proof which relies only on 

Ramsey’s Theorem and the notions already presented in this dissertation.

Proof: Consider the r-colored difference Ramsey number N  =  D(k,
r tim es

Then any r-coloring of K ^  must have a monochromatic Kk subgraph. Let the 

vertices of this subgraph be {u0, v \ , . . . ,  Vk-i}, with the differences di =  ut- — vQ. 

By ordering and renaming we may assume that di < d2 < ■ ■ ■ < dk-i- Since Kk  is 

monochromatic, we have that the edges Vi-iVi, for i =  1 , 2 , . . . ,  k — 1 , and Vk-iVo 

must all be the same color. Since the r-colored K ^  is a difference graph we have 

th a t di, dk~u and (di+i — dt-), for i =  1 , 2 , . . . ,  k — 1 , must all be assigned the same 

color. Hence we have the monochromatic solution di -I- J2i=i (di+l — di) = dk-i-  

Using this theorem we will define Issai numbers. But first, another definition 

is in order.

D e fin itio n  3.2 Schur k-tuple: We will call a A;-tuple, (xi ,X2 , . . .  ,Xk),  a Schur 

k-tuple if Y,i~i X{ =  Xk-

In the case where k =  3, the 3-tuple (x, y , x  + y) is called a Schur triple. In 

Schur’s Theorem the only parameter is r, the number of colors. Hence, a Schur 

number is defined to be the minimal integer S  =  S(r)  such that any r-coloring 

of the integers 1 through S  must contain a monochromatic Schur triple. It is
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known that 5(2) =  5, 5(3) =  14, and 5(4) =  45. The Schur numbers have been 

generalized in [BB] and [Sch] in directions different from what will be presented 

here. We will extend the Schur numbers in the same fashion as the Ramsey 

numbers were extended from R (k , k) to R (k , /).

D e fin itio n  3.3 Issai Number: Let 5  =  5(Arx, &2, . . . ,  kr ) be the minimal integer 

such tha t any r-coloring of the integers from 1 to 5  must have a monochromatic 

Schur fc,--tuple, for some i G {1 , 2 , . . .  ,r} . 5  will be called an Issai number.

The existence of these Issai numbers is implied by the existence of the dif

ference Ramsey numbers D (k i , fc2, • - •, kr). In fact, we have the following result:

L e m m a  3.1 5(Arx, Ar2, . . . ,  kr) <  D (ku  k2, . ■ ■, kr) — 1

Proof: By definition of a  difference Ramsey number, there exists a minimal in

teger N  =  D(ki ,  A:2, . . . ,  A;r ) such that any r-coloring of K n  must contain a 

monochromatic /v^,, for some i E {1 , 2 , . . . , r } .  Using the same reasoning as 

in the proof of Theorem 1 and the fact that the differences in the difference 

graph are 1 , 2 , . . . ,  N  — 1, we have the stated inequality.

Using this new definition and notation, it is already known that 5(3,3) =  5, 

5 (3 ,3 ,3 ) =  14, and 5 (3 ,3 ,3 ,3 ) =  45. We note here that since D(3,3,3) =  15 we 

immediately have 5(3, 3, 3) <  14, whereas before, since i?(3,3,3) =  17, we had 

only that 5(3,3,3) <  16.

Attempts to find a general bound for 5(&, /) have thus far been unsuccessful. 

The values in Table 3.1 (below) leads us to make the following seemingly trivial 

conjecture:

C o n je c tu re  2 : S(k  — 1,/) <  S(k,  I)

The difficulty here is that a monochromatic Schur fc-tuple in no way implies 

the existence of a monochromatic Schur (k — l)-tuple. To see this, consider the
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following coloring of {1 , 2 , . . . ,  9}. Color {1 ,3,5,9} red, and the other integers 

blue. Then we have the red Schur 4-tuple (1 ,3,5,9).  However no red Schur triple 

exists in this coloring.

Below we give some Issai number values and exceptional colorings. We used 

the Maple package ISSAI (available from the author’s webpage3) to calculate the 

exact values as well as an exceptional coloring given below. ISSAI is written 

for two colors, but can easily be extended to any number of colors. The value 

5(3,3) =  5 has been known, since before Schur proved his theorem. The value 

5(4,4) =  11 follows from Beutelspacher and Brestovansky in [BB], who more 

generally show that 5 (k, k) =  k2 — k  — 1 . The remaining values are new.

Table 3.1: Issai Numbers

1
k

3 4 5 6 7

3 5 7 1 1 13 > 17
4 1 1 14

The exceptional colorings found by ISSAI are as follows. Let S ( k , /) denote 

the minimal number such that any 2-coloring of the integers from 1  to S(k, l )  

must contain either a red Schur &-tuple or a blue Schur /-tuple. It is enough to 

list only those integers colored red:

3 www.math.temple.edu/' aaxon/
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Table 3.2: Critical Colorings of Some Issai Numbers

Issai Number Lower Bound Integers Colored Red
S(3,4) 7 1 , 6

S(3,5) 1 1 1,3,8,10
S(4,4) 1 1 1,2,9,10
S(3,6) 13 1,3,10,12
S(4,5) 14 1,2,12,13
S(3.7) 17 1,3,5,12,14,16

3.4 On th e  A sym ptotic Behavior of van der

W aerden Triples

In this last section we turn our attention briefly to a related triple, which we have 

called a van der Waerden triple, named after B. van der Waerden who, in 1927, 

published the following theorem, conjectured by Schur.

V an d e r W a e rd e n ’s T h eo rem : For all natural numbers k and r, there exists a 

minimal integers W(k ,  r) such that i f  {1 , 2 , . . . ,  W( k ,  r)} is r-colored, then there 

must exist a monochromatic k-term arithmetic progression.

Very few exact values for these van der Waerden numbers are known. In 

this section we will give upper and lower bounds for the asymptotic minimum 

number of monochromatic 3-term arithmetic progressions, which we call van der 

Waerden triples, in any 2-coloring of the first n natural numbers.

First we note that the minimum number of monochromatic van der W aer

den triples is bounded above by n2/ 16 O(n).  This comes from the coloring

(OOll ) " / 4  (where, again, W m means W  repeated m  times). For this, the only 

monochromatic van der Waerden triples we have are of the form (i, i +  4d, i + Sd). 

Hence we have Y ld ^ i^8 1 monochromatic van der Waerden triples, which

gives the desired upper bound.
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Turning our attention to finding a lower bound for the minimum number 

of monochromatic van der Waerden triples, consider the complete graph on n  

vertices, K n. Color the edges of K n two colors. Goodman [G] proved th a t this 

colored graph must contain n3/24-F 0 ( n 2) monochromatic triangles. Let (a, 6 , c) 

be a van der Waerden triple. Using a technique in [GRR], we define a map, 7 , 

from the set of triangles to the set of vdw-triples:

{ (k + i — 2  j,  k  — j , k  — i ) if j  — i < k — j  

( 2 j  — k — 1 , j  — i, k — 1) if k — j  < j  -  i

provided that k  — j  ^  j  — i.

Observe that the van der Waerden triple (a, 6 , c) can be associated to at 

most 2(n — c) triangles. Further, we have th a t for each (a,b,c) there are c/2 

van der Waerden triples with last term  c. These facts, coupled with Goodm an’s 

result, imply that there are strictly more than n2/38 +  0 (n )  monochromatic van 

der W aerden triples.

Hence, the minimum number, asymptotically, of monochromatic van der 

Waerden triples in any 2-coloring of {1 ,2 , . . . ,  n} is bounded between n2/3 8 + 0 (n )  

and n 2/ 16 -I- O(n).
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