Real Analysis Ph.D. Qualifying Exam Mathematics, Temple University August 23, 2024

Part I. (Do 3 problems)

1. Let $f_n(x) = n \sin\left(\frac{x}{n}\right)$. Prove that:

(a) f_n converges uniformly on any finite interval.

Hint: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ for all *x*.

- (b) f_n does not converge uniformly on \mathbb{R} .
- (c) f_n does not converge in measure on \mathbb{R} . Hint: show that the interval $(n\pi, (n + 1)\pi)$ is contained in the set $\{x : |f_n(x) - x| > \epsilon\}$.
- 2. Let $E \subset \mathbb{R}^n$. The function $f : E \to \mathbb{R}$ is upper semicontinuous at $x_0 \in E$ if for each $\epsilon > 0$ there exists $\delta > 0$ such that $f(x) \leq f(x_0) + \epsilon$ for all $|x x_0| < \delta, x \in E$.

If *f* is upper semicontinuous in *E* compact, then prove that

- (a) f is bounded above in E,
- (b) *f* attains its maximum in *E*, that is there exists $x_0 \in E$ such that $f(x_0) = \sup_{x \in E} f(x)$.
- 3. Let μ be a Borel measure in \mathbb{R} with $\mu(\mathbb{R}) < \infty$. Define $f(x) = \mu((-\infty, x])$ for $x \in \mathbb{R}$. Prove that
 - (a) *f* is monotone increasing
 - (b) $\mu((a, b]) = f(b) f(a)$; for a < b
 - (c) f is continuous from the right
 - (d) $\lim_{x\to-\infty} f(x) = 0.$
- 4. Let $|E| < \infty$ and let *X* denote the class of Lebesgue measurable functions in *E*. Given $f, g \in X$ define

$$d(f,g) = \int_E \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx.$$

Prove that

- (a) (X, d) is a metric space
- (b) $f_k \to f$ in (X, d) if and only if $f_k \to f$ in measure in *E*.

HINT: the function $\alpha(x) = \frac{x}{1+x}$ is increasing in $[0, \infty)$ and satisfies $\alpha(x+y) \le \alpha(x) + \alpha(y)$.

Part II. (Do 2 problems)

1. Let $1 \le r and <math>0 < \lambda < 1$ with $\frac{\lambda}{r} + \frac{1-\lambda}{s} = \frac{1}{p}$. Prove the inequality $\|f\|_p \le \|f\|_r^{\lambda} \|f\|_s^{1-\lambda}$,

where $\|\cdot\|_p$ denotes the L^p -norm of f over E.

2. Let $f \in L^1(E)$ with $|E| < \infty$ and define the sequence

$$f_n(x) = \frac{1}{n} \log \left(1 + e^{nf(x)}\right).$$

Prove that

$$\lim_{n\to\infty}\int_E f_n(x)\,dx=\int_E f^+(x)\,dx.$$

Proceed in steps as follows proving:

- (a) $0 \le f_n(x) \le |f(x)| + \log 2$. Hint: $0 < e^{nf(x)} \le e^{n|f(x)|}$ and $e^{n|f(x)|} \ge 1$
- (b) if $f(x) \ge 0$, then $f_n(x) \to f(x)$. Hint: write $f_n(x) = \frac{1}{n} \log \left(e^{nf(x)} \left(1 + e^{-nf(x)} \right) \right)$
- (c) if f(x) < 0, then $f_n(x) \to 0$.
- (d) the function $|f(x)| + \log 2 \in L^1(E)$, and conclude using Lebesgue dominated convergence theorem.
- 3. If λ , μ are measures on a sigma algebra of sets Σ , recall that λ is absolutely continuous with respect to μ , written $\lambda \ll \mu$, if $A \in \Sigma$ and $\mu(A) = 0$ then $\lambda(A) = 0$; and λ is singular with respect to μ , written $\lambda \perp \mu$, if there exists $A \in \Sigma$ with $\lambda(A) = 0$ and $\mu(A^c) = 0$.

Let λ_1 , λ_2 and μ be measures on a sigma algebra Σ . Prove that

- (a) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $\lambda_1 + \lambda_1 \ll \mu$
- (b) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 \perp \lambda_2$
- (c) If $\lambda_1 \ll \mu$ and $\lambda_1 \perp \mu$, then $\lambda_1 = 0$.