Real Analysis Ph.D. Qualifying Exam Temple University January 11, 2019

Part I. (Do 3 problems)

- 1. Suppose $f_n \to f$ uniformly in *E* where f_n are continuous. Prove that if $x_0 \in E$ and $x_n \to x_0$ with $x_n \in E$, then $f_n(x_n) \to f(x_0)$.
- 2. Let $f_n(x) = n \sin\left(\frac{x}{n}\right)$. Prove that:
 - (a) f_n converges uniformly on any finite interval.

Hint: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ for all *x*.

- (b) f_n does not converge uniformly on \mathbb{R} .
- (c) f_n does not converge in measure on \mathbb{R} . Hint: the interval $(n\pi, (n + 1)\pi)$ is contained in the set $|f_n(x) x| > \epsilon$.
- 3. Prove that the upper lim is sub additive and lower lim is super additive:

$$\limsup_{k \to \infty} (a_k + b_k) \le \limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k$$
$$\liminf_{k \to \infty} (a_k + b_k) \ge \liminf_{k \to \infty} a_k + \liminf_{k \to \infty} b_k.$$

To avoid operations with $\pm \infty$ assume the sequences are bounded.

4. Prove that on C[0,1] the norms $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$ and $||f||_1 = \int_0^1 |f(x)| dx$ are not equivalent.

Part II. (Do 2 problems)

- 1. Let $f \in L^p(E,\mu)$, $1 \le p < \infty$, and $E = \bigcup_{j=1}^{\infty} E_j$ with $E_j \subset E_{j+1}$. Prove that $f \chi_{E_j} \to f$ in $L^p(E,\mu)$.
- 2. Let μ be a Borel measure in \mathbb{R} with $\mu(\mathbb{R}) < \infty$. Define $f(x) = \mu((-\infty, x])$ for $x \in \mathbb{R}$. Prove that
 - (a) *f* is monotone increasing
 - (b) $\mu((a, b]) = f(b) f(a)$; for a < b
 - (c) f is continuous from the right
 - (d) $\lim_{x\to-\infty} f(x) = 0.$

3. Let $f : [a, b] \to \mathbb{R}$ integrable. Prove that the functions $f_n(x) = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f(t) dt$ are well defined for $a \le x \le b, n = 1, 2, \cdots$ and satisfy $\int_a^x f_n(t) dt = f_{n+1}(x)$.