Part I. (Do 3 problems)

- 1. Let a_n and ε_n be sequences of real numbers satisfying $|a_{n+1} a_n| \le \varepsilon_n$ for all n with $\sum_{k=1}^{\infty} \varepsilon_k < \infty$. Prove that a_n converges to some a and $|a a_n| \le \sum_{k=n}^{\infty} \varepsilon_k$.
- 2. Given two sets $A, B \subset \mathbb{R}^n$ define $A + B = \{x + y, x \in A, y \in B\}$. Prove that
 - (a) if A is open or B is open, then A + B is open,
 - (b) if A is compact and B is closed, then A + B is closed.
 - (c) in \mathbb{R}^2 take $A = \{(x, 0) : x \in \mathbb{R}\}$ and $B = \{(y, 1/y) : y > 0\}$, show A and B are both closed and A + B is not.
- 3. Let $f_n(x) = n x e^{-n x^2}$ on $[0, +\infty)$. Prove that
 - (a) f_n converges to zero pointwise in $[0, +\infty)$
 - (b) f_n does not converge uniformly in $[0, +\infty)$
 - (c) f_n converges in measure on $[0, +\infty)$
 - (d) $\int_0^\infty f_n(x) \, dx = \frac{1}{2}.$

HINT for (c): may use that $e^z \ge z^2/2$ for all $z \ge 0$.

4. Suppose $f_n \to f$ a.e. on \mathbb{R}^n , f_n measurable. Prove that for each $\epsilon > 0$ there exist a sequence of disjoint measurable sets E_j of finite measure such that $|\mathbb{R}^n \setminus \bigcup_{j=1}^{\infty} E_j| < \epsilon$ and $f_n \to f$ uniformly on each E_j .

Part II. (Do 2 problems)

1. Let
$$b > 0$$
, $f \in L^1(0, b)$ and let $g(x) = \int_x^b \frac{f(t)}{t} dt$ for $0 < x < b$. Prove that $g \in L^1(0, b)$ and
$$\int_0^b g(x) dx = \int_0^b f(t) dt.$$

- 2. Let $1 \le p < \infty$, $f_k, f \in L^p(E)$, and let $a_k = \int_E |f_k(x) f(x)|^p dx$. Suppose that $\sum_{k=1}^{\infty} a_k < \infty$. Prove that $f_k \to f$ a.e. in *E* as $k \to \infty$.
- 3. Let *f* be a continuous function in [-1, 2]. For $0 \le x \le 1$ and $k \ge 1$ let

$$f_k(x)=\frac{k}{2}\int_{x-\frac{1}{k}}^{x+\frac{1}{k}}f(t)\,dt.$$

Prove that f_k is continuous in [0, 1] and $f_k \rightarrow f$ uniformly in [0, 1].