Part I. (Do 3 problems)

- 1. Let a_n and ε_n be sequences of real numbers satisfying $|a_{n+1} a_n| \leq \varepsilon_n$ for all *n* with $\sum_{k=1}^{\infty} \sum_{\ell}^{n} \epsilon_k < \infty$. Prove that a_n converges to some *a* and $|a - a_n| \leq \sum_{k=n}^{\infty} \sum_{\ell}^{n} \epsilon_k$.
- 2. Given two sets $A, B \subset \mathbb{R}^n$ define $A + B = \{x + y, x \in A, y \in B\}$. Prove that
	- (a) if *A* is open or *B* is open, then $A + B$ is open,
	- (b) if *A* is compact and *B* is closed, then $A + B$ is closed.
	- (c) in \mathbb{R}^2 take $A = \{(x, 0) : x \in \mathbb{R}\}\$ and $B = \{(y, 1/y) : y > 0\}$, show A and B are both closed and $A + B$ is not.
- 3. Let $f_n(x) = n x e^{-nx^2}$ on [0, +∞). Prove that
	- (a) f_n converges to zero pointwise in $[0, +\infty)$
	- (b) f_n does not converge uniformly in $[0, +\infty)$
	- (c) f_n converges in measure on $[0, +\infty)$
	- (d) $\int_0^\infty f_n(x) dx = \frac{1}{2}$ 2 .

HINT for (c): may use that $e^z \geq \frac{z^2}{2}$ for all $z \geq 0$.

4. Suppose $f_n \to f$ a.e. on \mathbb{R}^n , f_n measurable. Prove that for each $\epsilon > 0$ there exist a sequence of disjoint measurable sets E_j of finite measure such that $|\mathbb{R}^n \setminus \cup_{j=1}^{\infty} E_j| < \epsilon$ and $f_n \to f$ uniformly on each E_j .

Part II. (Do 2 problems)

1. Let *b* > 0, *f* $\in L^1(0, b)$ and let *g*(*x*) = \int^b *x f*(*t*) $\frac{d^2y}{dt}$ *dt* for $0 < x < b$. Prove that $g \in L^1(0, b)$ and \int^{b} $\boldsymbol{0}$ *g*(*x*) *dx* = \int^{b} $\boldsymbol{0}$ *f*(*t*) *dt*.

- 2. Let $1 \le p < \infty$, f_k , $f \in L^p(E)$, and let $a_k = \int_E |f_k(x) f(x)|^p dx$. Suppose that $\sum_{k=1}^{\infty} a_k < \infty$. Prove that $f_k \to f$ a.e. in *E* as $k \to \infty$.
- 3. Let *f* be a continuous function in [−1, 2]. For 0 ≤ *x* ≤ 1 and *k* ≥ 1 let

$$
f_k(x) = \frac{k}{2} \int_{x-\frac{1}{k}}^{x+\frac{1}{k}} f(t) dt.
$$

Prove that f_k is continuous in [0, 1] and $f_k \to f$ uniformly in [0, 1].