Ph.D. Comprehensive Examination Real Analysis Spring 2017

Part I. Do three of these problems.

I.1. Give examples of the following (and prove your assertions):

- i) A continuous function $f : \mathbb{R} \to \mathbb{R}$ that is bounded but not uniformly continuous.
- *ii*) A uniformly continuous function $f : \mathbb{R} \to \mathbb{R}$ that is not bounded.
- *iii*) A function $f:[0,1] \to \mathbb{R}$ that is continuous but not Lipschitz continuous.

I.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function with f and $f' \in L^1(\mathbb{R})$ (with respect to Lebesgue measure). Show:

- i) Both limits $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ exist.
- *ii*) $\lim_{\lambda \to \infty} \int_{\mathbb{R}} f(x) \cos(\lambda x) \, dx = 0.$

Hint for part *ii*): $\cos t = \frac{d \sin t}{dt}$.

I.3. (a) Find the limit and justify your answer:

$$\lim_{n \to \infty} \int_0^1 \frac{n^{1/2} x}{1 + nx^2} \, dx.$$

(b) Find the limit and justify your answer:

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \cos\left(\frac{x}{n}\right) dx.$$

I.4. Let (X, \mathcal{M}, μ) be a measure space and $E \subset X$ measurable with finite measure. Suppose $f : E \to \mathbb{R}$ is measurable. Let E_k be measurable subsets of E. Suppose $\int_E |f| d\mu < \infty$ and $\lim_{k \to \infty} \mu(E_k) = 0$. Show that $\lim_{k \to \infty} \int_{E_k} |f| d\mu = 0$.

Part II on next page

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part II. Do two of these problems.

II.1. Let $I = [-1, 1] \subset \mathbb{R}$. Recall that $f : I \to \mathbb{R}$ is said to be absolutely continuous if it has the property that

for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every disjoint family $\{[a_{\ell}, b_{\ell}]\}_{\ell=1}^{N}$ of subintervals of I,

$$\sum_{\ell=1}^{N} |b_{\ell} - a_{\ell}| < \delta \implies \sum_{\ell=1}^{N} |f(b_{\ell}) - f(a_{\ell})| < \varepsilon.$$

Let A be the set of absolutely continuous functions on I. Show:

- i) A is a subalgebra of the algebra $C(I,\mathbb{R})$ of continuous real valued functions $I \to \mathbb{R}$.
- ii) If $f: I \to \mathbb{R}$ is Lipschitz continuous on I, then it is absolutely continuous.
- *iii*) A is dense in $C(I, \mathbb{R})$.

II.2. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers converging to 0 as $n \to \infty$. Define $A, A_N : \ell^2 \to \ell^2$ by

$$Ax = \{a_n x_n\}_{n=0}^{\infty}, A_N x = \{a_n x_n\}_{n=N}^{\infty} \text{ for } x = \{x_n\}_{n=0}^{\infty} \in \ell^2.$$

i) Show that for every $\mu \in \mathbb{N}$ there is $N_{\mu} \in \mathbb{N}$ such that

$$N \ge N_{\mu} \implies \text{ for all } \{x_n\}_{n=0}^{\infty} \in \ell^2 : \|\{a_n x_n\}_{n=N}^{\infty}\|_{\ell^2} \le \frac{1}{\mu} \|\{x_n\}_{n=0}^{\infty}\|_{\ell^2}$$

ii) Show that every bounded sequence $\{x^{(j)}\}_{j=1}^{\infty}$ in ℓ^2 has a subsequence $\{x^{(j_k)}\}_{k=1}^{\infty}$ such that $Ax^{(j_k)}$ converges in ℓ^2 .

Hint: Bounded sequences in finite dimensional spaces have convergent subsequences.

II.3. Suppose f and xf(x) are both integrable on \mathbb{R} . Let $F(k) = \int_{-\infty}^{\infty} e^{ikx} f(x) dx$, $k \in \mathbb{R}$. Show that F is continuously differentiable and $F'(k) = i \int_{-\infty}^{\infty} e^{ikx} xf(x) dx$.