Real Analysis Ph.D. Qualifying Exam Temple University January, 2016

• Justify your answers thoroughly.

• You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.

• For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part I (Do 3 problems)

I.1. Let *X*, *d* be a compact metric space and μ an arbitrary Borel measure on *X*. Use the latter to define $L^{\infty}(X)$ with norm $||f||_{\infty}$, $\hat{f} \in L^{\infty}(X)$.

(a) Show that

$$
||f||_{\infty} \leq \sup_{x \in X} |f(x)|, \quad f \in C(X)
$$
 (†)

(b) Show that if $\mu(B) > 0$ for every (nonempty) ball in *X*, then equality holds in (†).

I.2. Give an example of a non-negative measurable function on $R = [-1, 1] \times [-1, 1]$ such that $\int_R f(x, y) dx dy < \infty$ but

$$
\int_{[-1,1]} f(x,y) dx = \infty \quad \forall y \in \mathbb{Q} \cap [0,1].
$$

I.3. Let $f \in L^1(0, \infty)$ be nonnegative. Prove that

$$
\lim_{n\to\infty}\frac{1}{n}\int_0^n x f(x)dx\to 0.
$$

I.4. Suppose $f_k \to f$ in L^p , $1 \leq p < \infty$, $g_k \to g$ pointwise, and $||g_k||_{\infty} \leq M < \infty$ for all *k*. Prove that $f_k g_k \to fg$ in L^p .

Part II (Do 2 problems)

II.1. Let $f : \mathbb{R} \to \mathbb{R}$ be the function

$$
f(x) = \begin{cases} x & \text{if } |x| > 1 \\ 0 & \text{if } |x| \le 1 \end{cases}
$$

Let μ be the Lebesgue measure on R (on the Borel σ -algebra \mathcal{B}) and let $\nu = f_*\mu$ be the measure defined by

$$
\nu(E) = \mu(f^{-1}(E)), \quad E \in \mathcal{B}.
$$

Find the Lebesgue decomposition of ν with respect to μ , i.e., find measures λ and ρ such that $\nu = \lambda + \rho$, $\lambda \perp \mu$, $\rho \ll \mu$. Here $\lambda \perp \mu$ means that there exist disjoint sets $A, B \in \mathcal{B}$ such that $\mathbb{R} = A \cup B$ and $\lambda(A) = \mu(B) = 0$. $\rho \ll \mu$ means that $\rho(E) = 0$ for each set *E* for which $\mu(E) = 0$. II.2. Suppose *f* and *xf* are Lebesgue integrable functions $\mathbb{R} \to \mathbb{C}$. Show that the function $\hat{f}: \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$
\hat{f}(\xi) = \int e^{-ix\xi} f(x) dx
$$

is of class C^1 (i.e., \hat{f} is differentiable everywhere with $\hat{f'}$ continuous).

- **II.3.** Let $a_n > 0$ with $\sum_n a_n < \infty$. Let $x_n \in R$ for all n. Let $f(x) = \sum_{n=1}^{\infty} a_n \chi_{[x_n,\infty)}(x)$. Show that
	- (a) *f* is uniformly convergent on *R*.
	- (b) *f* is continuous at $x \neq x_n$.
	- (c) *f* is right continuous with left limit at *xn*.
	- (d) $f' = 0$ a.e.